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Abstract: We review and update on a few conjectures concerning matrix permanent that are easily stated,
understood, and accessible to general math audience. They are: Soules permanent-on-top conjecture†, Lieb
permanent dominance conjecture, Bapat and Sunder conjecture† on Hadamard product and diagonal en-
tries, Chollet conjecture on Hadamard product, Marcus conjecture on permanent of permanents, and several
other conjectures. Some of these conjectures are recently settled; some are still open. We also raise a few new
questions for future study. (†conjectures have been recently settled negatively.)
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1 Introduction
Computed from the elements of a square matrix, the determinant of a square matrix is one of the most useful
and important concepts in mathematics. Of many matrix functions, permanent is another important one. It
arises naturally in the study of the symmetric tensors in multilinear algebra (see, e.g., [37]); it also plays a
role in combinatorics (see, e.g., [56]). Both terms were introduced in the 1800s (see, e.g., [39, p. 1]); and they
are still useful in research.

One of the intriguing problems on permanent is the so-called van der Waerden conjecture (theorem) re-
garding the minimum value of the permanent on the Birkho� polytope of doubly stochastic matrices. It was
conjectured by van der Waerden in 1926 and resolved in the a�rmative by Egoryĉev and Falikman indepen-
dently in 1981 (see, e.g., [40]). Second to the van der Waerden conjecture is, in my opinion, the permanence
dominance conjecture (see below). Since its appearance in the mid-1960s, it has drawnmuch attention of the
mathematicians in the area; it remains open as one of the most important unsolved problems in linear al-
gebra and matrix theory. A closely related and stronger statement is the permanent-on-top conjecture which
appeared about the same time and is recently shown to be false with the help of computation utility.

We begin by the permanent-on-top (POT) conjecture and two chains of conjectures on permanent start-
ing with the POT conjecture, reviewing and updating their developments and status. We also include a few
other conjectures on permanent of our interest that are easily stated but remain unsolved or even have no
progress over the decades. A few comprehensive surveys on permanent, including many open conjectures
and problems, are the Minc’s monograph Permanents 1978 [39], and subsequent articles Theory of Perma-
nents 1978–1981 [40] and Theory of Permanents 1982–1985 [41], followed by Cheon and Wanless’ An update
on Minc’s survey of open problems involving permanents 2005 [9].
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2 Preliminaries
Let Mn be the set of all n × n complex matrices. We assume n ≥ 2 in the paper. For an n × n matrix A = (aij),
the determinant detA of A is

∑
σ∈Sn

∏n
t=1 sign(σ)atσ(t), where Sn is the symmetric group of degree n, while

the permanent of A = (aij), denoted by perA, is simply de�ned as perA =
∑

σ∈Sn
∏n
t=1 atσ(t). For A ∈ Mn,

by writing A > 0 (resp. A ≥ 0) we mean that A is positive (resp. semi) de�nite, that is, x*Ax > 0 (resp.
x*Ax ≥ 0) for all column vectors x ∈ Cn, where x* = (x̄)t is the conjugate transpose of x. It is known that if A
is positive semide�nite, then 0 ≤ detA ≤

∏n
i=1 aii ≤ perA. Determinant and permanent may be regarded as

sister functions of positive semide�nitematrices asmany of their results exist side by side. For example,when
A and B are n×n and positive semide�nite, then det(A+B) ≥ detA+det B and per(A+B) ≥ perA+per B. (Note:
the directions of inequalities for “det" and “per" sometimes are the same and some other times are reversed.)
A permanent analogue of a determinant result does not always exist. For instance, if A ≥ 0 is written as
A = R + Si, where R and S are Hermitian, then detA ≤ det R (the Robertson-Taussky inequality); but perA
and per R are incomparable in general [27].

Determinant and permanent are special generalized matrix functions. Let Sn be the symmetric group of
degree n, H be a subgroup of Sn, and χ be a character on H. The generalizedmatrix function of an n×nmatrix
A = (aij) with respect to H and χ is de�ned by (see, e.g., [30, p. 124])

dHχ (A) =
∑
σ∈H

χ(σ)
n∏
t=1
atσ(t)

Setting H = Sn and χ(g) = sign(g) = ±1 according to g ∈ H being even or odd, we have the determinant
detA; putting H = Sn and χ(g) = 1 for all g, we get the permanent perA =

∑
σ∈Sn

∏n
i=1 aiσ(i). The product

of the main diagonal entries of A, h(A) = a11a22 · · · ann, known as the Hadamard matrix function, is also a
generalized matrix function by taking H = {e}, where e is the group identity of Sn. Specially, if H = Sn and χ
is an irreducible character of Sn, then the permanent dHχ (A) is referred to as immanant.

Let A = (aij) be a square matrix. We write A = (Aij) ∈ Mn(Mm) if A is an n × n partitioned matrix in which
each block Aij is m × m. (Thus, A is an mn × mn matrix.) In case n = 2, we write explicitly A =

(
A11
A21

A12
A22

)
.

Listed below are a few well-known milestone inequalities for determinant, permanent, and generalized
matrix functions of positive semide�nite matrices. They stand out because of their elegancy in form and
importance in applications. Let A = (aij) be an n × n positive semide�nite matrix with a partitioned form
A =

(
A11
A21

A12
A22

)
, where A11 and A22 are square submatrices (possibly of di�erent sizes) of A. We have the

following inequalities concerning A.

Hadamard inequality (1893):

detA ≤
n∏
i=1
aii (1)

Fischer inequality (1908):
detA ≤ detA11 detA22 (2)

Schur inequality (1918):
detA ≤ 1

χ(e)d
H
χ (A) (3)

Marcus inequality (1963):

perA ≥
n∏
i=1
aii (4)

Lieb inequality (1966):
perA ≥ perA11 perA22 (5)
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Schur inequality (3) implies Fischer inequality (2) which implies Hadamard inequality (1). (4) and (5) are
permanent analogues of (1) and (2), respectively. Inequality (5) (in a more general form) was �rst conjectured
by Marcus and Newman in 1965 [32] and proved by Lieb in 1966 [28], and re-proved by Djokovič in 1969 [11].

If we compare (1) and (4), and (2) and (5), in view of (3), we can naturally ask if the right hand of (3) is
bounded by perA, that is, if the following holds:

1
χ(e)d

H
χ (A) ≤ perA (6)

This is a conjecture of Lieb also known as the permanent dominance conjecture. It was stated explicitly
by Lieb in 1966 [28] when studying a similar problem of Marcus and Minc 1965 [32]: Under what conditions
on χ and H will the following inequality hold for all n × n positive semide�nite A

∑
σ∈H

χ(σ)
n∏
i=1
aiσ(i) ≤ perA? (7)

(6) and (7) are the same when χ is degree 1, i.e., χ(e) = 1.
Agreat amount of e�ortwasmade in attempting to solve the Liebpermanent dominance conjecture, espe-

cially from the late 1960s to early 1990s. Motivated by Lieb conjecture [28], Soules proposed in his 1966 Ph.D.
thesis (see also Merris 1987 [36]) a conjecture stronger than the permanent dominance conjecture. Soules
conjecture states that the permanent of a positive semide�nite matrix A is the largest eigenvalue of the Schur
power matrix of A (see Section 3). This is referred to as permanent-on-top (POT) conjecture. In fact, POT con-
jecture is the strongest among several permanent conjectures (see, e.g., [9]):

Lieb per-dom −→ Marcus per-in-per
↗

Soules POT†

↘
Bapat & Sunder† −→ Chollet

It is known now that Soules and Bapat & Sunder conjectures are false; but the other three, the Lieb,
Marcus and Chollet conjectures, are still open. In view of recent developments in the area and with more
advanced computation tools available nowadays, it is worth revisiting these long standing conjectures.

3 The permanent-on-top conjecture is false
In a recent publication, Shchesnovich 2016 [52] settled in the negative a long standing conjecture on perma-
nent; it shows that the permanent-on-top (POT) conjecture is false. The POT conjecture was originally formu-
lated by Soules in his Ph. D. dissertation 1966 [53, Conjecture, p. 3] (formally published in Minc’s 1983 [40,
p. 249]) in attempting to answer the Lieb conjecture [28]. It stated that the permanent of a positive semidef-
inite matrix A was the largest eigenvalue of the Schur power matrix of A. For an n × n matrix A = (aij), the
Schur power matrix of A, denoted by π(A), is an n! × n! matrix with entries sαβ lexicographically indexed by
permutations α, β ∈ Sn:

sαβ =
n∏
t=1
aα(t)β(t)

As a principal submatrix of the n-fold tensor (Kronecker) power ⊗nA, the Schur power matrix π(A) in-
herits many properties of A. For instance, if A is positive semide�nite, then so is its Schur power; and the
eigenvalues of π(A) interlace those of⊗nA. Observing that for each �xed α ∈ Sn,

∑
β∈Sn

sαβ =
∑
β∈Sn

n∏
t=1
aα(t)β(t) = perA
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We see that every row sum of π(A) is perA [54]. Consequently, perA is an eigenvalue of π(A). It is also
known (and not di�cult to show) that detA is an eigenvalue of π(A) too. In fact, detA is the smallest eigen-
value of π(A) when A ≥ 0; see [37, p. 221]. For positive semide�nite A, the POT conjecture claimed that perA
was the largest eigenvalue of π(A). Note that POT conjecture is independent of subgroup H and character χ
in (6).

The counterpart of the POT conjecture for determinant is that detA is the smallest eigenvalue of S(A)
which is shown implicitly in Schur 1918 [51], as pointed out by Bapat and Sunder 1986 [4, p. 154]. Bapat and
Sunder 1986 [4] proved that the POT conjecture is true for n ≤ 3 (and also provided an equivalent form of
the POT conjecture). POT conjecture involved no subgroup and character and it would yield Lieb conjecture
(in the case of degree 1 characters as assumed in [53, p. 3] and more generally in Merris 1987 [36]) because
the value on the left hand side of (6) is contained in the numerical range of the Schur power matrix. IfW(X)
denotes the numerical range of a squarematrix X, then the POT conjecture is equivalent to the statement that
for A ≥ 0,

W
(
π(A)

)
= [detA, perA] (8)

In fact, SoulesPOTconjecturewas the strongest among several permanent conjectures; see the conjecture
chains in the previous section; see also, e.g., [9].

Notice that if A is an n×n positive semide�nite matrix, then x*Ax ≤ λmax(A)x*x for all column vectors x ∈
Cn, where λmax(A) is the largest eigenvalue of A. Shchesnovich 2016 [52] presented an example of 5×5 positive
semide�nite matrix H (thus π(H) is 5! × 5!, i.e., 120 × 120) and a column vector X of 5! = 120 components
(which is omitted here as it is too large) such that

X*π(H)X > per(H)X*X

where

H =


40 14 − 22i −4 − 8i 8 + 16i 22 − 36i

14 + 22i 22 16 − 14i −9 − i 23 − 12i
−4 + 8i 16 + 14i 52 8 − 34i 14 − 30i
8 − 16i −9 + i 8 + 34i 34 18 − 19i

22 + 36i 23 + 12i 14 + 30i 18 + 19i 75

 = u*u + v*v

with
u = (4 + 2i, 2 − 3i, −4 − 4i, −3 + 4i, 1), v = (2 − 4i, −3i, 2 − 4i, −3i, −5 − 7i).

H is a 5×5 positive semide�nitematrix of rank 2 having eigenvalues 0, 0, 0, 91, and 132, while its Schur power
matrix π(H) is of rank 27.

The Schur power matrix S(H) is of order 5! = 120. It would be di�cult to compute and display π(H).
A computation utility is needed. It is also demonstrated in [52] through characteristic polynomial that
λmax(π(H)) > perH:

λmax(π(H)) = 320
(

2185775 +
√

160600333345
)
> per(H) = 814016640

For an n-square matrix A, the Schur power matrix π(A) as a principal submatrix of the tensor power⊗nA
may have interest in its own right. It is easy to show that {w1w2 · · ·wn | wi ∈ W(A), i = 1, 2, . . . , n} ⊆
W(⊗nA).

Question 1: Can one �nd a counterexample of size n = 4 for the POT conjecture? As is known, the POT
conjecture is true for n ≤ 3. With a counterexample of 5 × 5, Shchesnovich 2016 [52, p. 198] states that a
4 × 4 counterexample was not found despite an extensive search.
Question 2:Referring (8), what is exactly themaximumvalue (whichmay exceed perA) in the numerical
range of the Schur power matrix of a positive semide�nite matrix? Of a Hermitian matrix? That is, �nd
λmax(π(A)). This question is especially of interest as the numerical range of a Hermitianmatrix is a closed
interval [d, p]. What are the left and right end points, i.e, d and p, of the interval? A result of Pate 1989
[46, Theorem 4] implies that 〈π(A)x, x〉 ≤ perA for all unit vectors x in certain (but not all) subspaces of
Cn!.
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Question 3: Investigate the numerical range of the Schur powermatrix π(A) for a general n-squarematrix
A. It is contained in the numerical range of⊗nA because π(A) is a principal submatrix of the latter.

Note: There has been a confusion about the names of the conjectures in the literature. In 1987 [36, Conjec-
ture 1], Merris called inequality (6) the Permanental Dominance Conjecture; in the same book, Johnson 1987
[26, p. 168] called (6) the permanent-on-top conjecture, while in their introductions, Bapat [2] and Zhang [58]
considered the two being the same. Besides, there have been several variations of the POT conjecture; see
Merris 1987 [36].

Now it is known that the Soules POT conjecture is false. The weaker one, Lieb permanence dominance
conjecture, is still open. It has been proven true for special cases of H = Sn and some characters χ (see the
next section).

4 The permanent dominance conjecture is open
In 1965, Marcus and Minc proposed the following question regarding the permanent of positive semide�nite
matrices with a subgroup of the permutation group and group character (see also [39, p. 158], [40, p. 244],
and [41, p. 132]):

Problem 2 of [32, p. 588]. Let H be a subgroup of Sn and let χ be a character of degree 1 of H. Under what
conditions on χ and H will the inequality

∑
σ∈H

χ(σ)
n∏
i=1
aiσ(i) ≤ perA (9)

hold for all n × n positive semide�nite Hermitian A?
In 1966, Lieb stated that the answer to the above question is given by the conjecture below (referred to as

Conjecture α in Lieb 1966 [28]):

Lieb permanent dominance conjecture 1966 [28]. Let H be a subgroup of the symmetric group Sn and let χ
be a character of degree m of H. Then

1
m
∑
σ∈H

χ(σ)
n∏
i=1
aiσ(i) ≤ perA (10)

holds for all n × n positive semide�nite Hermitian A.
The permanent dominance conjecture (10) claims that perA is the smallest (best) upper-bound of

1
m
∑

σ∈H χ(σ)
∏n
i=1 aiσ(i) for all subgroups and characters. Merris 1983 [34] gave an upper bound

1
m
∑
σ∈H

χ(σ)
n∏
i=1
aiσ(i) ≤

( n∏
i=1

(An)ii

)1/n

≤ 1
n

n∑
i=1

λni (11)

where (An)ii denotes the ith diagonal entry of An and the λis are the eigenvalues of A. The middle term in (11)
is no less than perA as noted in [36, p. 215].

Historically, in his Ph.D. dissertation, Soules 1966 [54, p. 3] (where characters were assumed to have de-
gree 1) proposed the later so-called POT conjecture, stating that it had the permanent dominance inequality
as its consequence. This method for approaching (9) and (10) was announced by Soules at the 1981 Santa
Barbara Multilinear Algebra Conference (see [40, p. 245]).

In 1986 at the Auburn Matrix Conference, Merris called Lieb’s conjecture Permanent Dominance Conjec-
ture (see [35, p. 135], and also [36]). This term has later been used by Minc [41, p. 135], Soules [54], Pate [49],
Cheon and Wanless [9], and many others. So it has become known as the permanent dominance conjecture.
Merris [36, p. 216] explicitly pointed out that the Soules POT conjecture implied the Lieb permanent domi-
nance conjecture. In his 1994 paper [54], Soules gave a clear and brief explanation of this. In fact, Souels POT
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310 | Fuzhen Zhang

conjecture would imply several permanent conjectures (see, e.g., [9]). A great amount of work was devoted
to the permanent dominance conjecture since its appearance to early 1990s. As an open problem on perma-
nent, this conjecture is arguablymost interesting and intriguing; it involves group theory, combinatorics, and
matrix theory, of course.

Several paths have been taken to attack or approach the Lieb conjecture. Observe that the right hand side
of (10) is independent of the choices of the subgroup and the character. Immediate cases to be studied are:
H = Sn, χ is the principal character (i.e., χ(e) = 1), or χ is irreducible.

Great amount work has been done for immanant (with H = Sn and irreducible χ) and some signi�cant re-
sults have been obtained. It is known [48, 49] that the permanent dominance conjecture is true for immanants
with n ≤ 13.

The interest and attention on this interesting and rather di�cult conjecture appeared fading away in the
last decades. In the author’s opinion, there is still a long way to go for a complete solution of the general
conjecture. Cheon andWanless 2005 [9, p. 317] set an excellent account in detail about the permanent domi-
nance conjecture. Other references on this conjecture are Merris 1987 [36], Johnson 1987 [26], and references
therein.

5 Bapat & Sunder conjecture is false
Shchesnovich 2016 [52] devotes a section discussing a permanent conjecture of Bapat and Sunder 1985 [3]
that is weaker than the POT conjecture and explains that the weaker one may be true for a physical reason
(quantum theory). The counterexample provided in [52] settles POT conjecture negatively but does not work
for the Bapat & Sunder conjecture.

Recall the Oppenheim inequality [42] for positive semide�nite matrices: Let A = (aij) and B = (bij) be
n × n positive semide�nite matrices. Then

det(A ◦ B) ≥ detA
n∏
i=1
bii ≥ detA det B (12)

where A ◦ B = (aijbij) is the Hadamard (a.k.a Schur) product of A and B. In view of (12) for permanent, Bapat
and Sunder 1985 [3, p. 117] and 1986 [4, Conjecture 2] raised the question (conjecture) whether

per(A ◦ B) ≤ perA b11 · · · bnn (13)

It is not di�cult to reduce Bapat & Sunder conjecture to the case of correlation matrices (see, e.g., [57]).
By a correlation matrix, we mean a positive semide�nite matrix all whose main diagonal entries are equal to
1. That is, Bapat & Sunder conjecture is equivalent to the statement that if A and B are correlation matrices,
then

per(A ◦ B) ≤ perA (14)

Bapat & Sunder conjecture is weaker than the permanent-on-top conjecture (which is now known false);
seeMerris 1987 [36, Conjecture 10, p. 220]. Drury 2016 [14] found a counterexample and settled this negatively.
Let A be

1 0 1√
2

1√
2

1√
2

1√
2

1√
2

0 1 1√
2 e

4
5 iπ 1√

2 e
2
5 iπ 1√

2
1√

2 e
− 2

5 iπ 1√
2 e
− 4

5 iπ

1√
2

1√
2 e
− 4

5 iπ 1 cos
(

1
5 π
)
e−

1
5 iπ cos

(
2
5 π
)
e−

2
5 iπ cos

(
2
5 π
)
e

2
5 iπ cos

(
1
5 π
)
e

1
5 iπ

1√
2

1√
2 e
− 2

5 iπ cos
(

1
5 π
)
e

1
5 iπ 1 cos

(
1
5 π
)
e−

1
5 iπ cos

(
2
5 π
)
e−

2
5 iπ cos

(
2
5 π
)
e

2
5 iπ

1√
2

1√
2 cos

(
2
5 π
)
e

2
5 iπ cos

(
1
5 π
)
e

1
5 iπ 1 cos

(
1
5 π
)
e−

1
5 iπ cos

(
2
5 π
)
e−

2
5 iπ

1√
2

1√
2 e

2
5 iπ cos

(
2
5 π
)
e−

2
5 iπ cos

(
2
5 π
)
e

2
5 iπ cos

(
1
5 π
)
e

1
5 iπ 1 cos

(
1
5 π
)
e−

1
5 iπ

1√
2

1√
2 e

4
5 iπ cos

(
1
5 π
)
e−

1
5 iπ cos

(
2
5 π
)
e−

2
5 iπ cos

(
2
5 π
)
e

2
5 iπ cos

(
1
5 π
)
e

1
5 iπ 1


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Drury’s matrices A (of rank 2 with complex entries) and B = At = Ā are 7 × 7 correlation matrices with
perA = 45 and per(A ◦ B) = 6185

128 , having the ratio per(A ◦ B)/
(

perA
∏7
i=1 bii

)
= 1237/1152 > 1. Moreover,

λmax(A) = 3.5, while λmax(π(A)) = 525/8 = 65.625. Very recently, Drury [15] provided a real counterexample
of size 16 × 16 with rank 3. So n = 16 is the smallest size of known real positive semide�nite matrices that
fail the POT conjecture. Note that Drury’s counterexamples also disprove the POT conjecture as the latter is
stronger.

Question 4: Can one �nd a counterexample of size n < 7, say n = 4, with complex (or real) entries, for
the Bapat & Sunder conjecture?

Question 5: Can one �nd a real counterexample of size n < 16? That is to say, does the Bapat & Sun-
der conjecture (and also the POT conjecture) hold true for real positive semide�nite matrices of sizes
no more than 15? Shchesnovich 2016 [52, p. 198] states that all found counterexamples are complex and
rank de�cient. Drury’s counterexamples are also rank de�cient. Soules 1994 [54] showed certain nec-
essary conditions for a real positive semide�nite matrix to fail the conjecture. (Note: the statement “By
Theorem 1, the conjecture can only fail at a singular matrix" on page 222, line 19 of [54] is incorrect.) In
particular, for the case of real and n = 4, if POT fails, then there exists a singular matrix for which the
POT is false. It follows that the POT conjecture would be true for n = 4 if one could prove that it is true for
all singular positive semide�nite matrices of size n = 4.

Denote by Cn the collection of all n × n complex correlation matrices. The set Cn can be thought of as a
subset of Cn

2
and it is compact and convex. The compactness of Cn follows from the fact that A ≥ 0 if and

only if all principal submatrices of A have nonnegative determinants. We also see that Cn is closed under the
Hadamard product. Given A ∈ Cn, we de�ne a function on Cn by

fA(X) = per(A ◦ X), X ∈ Cn (15)

Since Cn is compact and fA is continuous, there exists a correlation matrix depending on A, referred to
as maximizer of A and denoted by MA, such that

f (MA) = max
X∈Cn

per(A ◦ X)

i.e., the maximal value can be attained. Drury’s example shows that it is possible that a (irreducible) max-
imizer has all entries with moduli less than 1. Several properties of maximizing matrices are presented in
Zhang 2013 [58].

In view of (12), we see that the determinant is a “Hadamard-dilation" function on Cn in the sense that
detA ≤ det(A ◦ X) for A ∈ Cn and any X ∈ Cn. Equivalently, max{detA, det B} ≤ det(A ◦ B) for A, B ∈ Cn. In
contrast, the permanent is no “Hadamard-compression" on Cn.

Figure 1: det, per, and dHχ on Cn

Let A = (aij) ∈ Mn and k be a positive integer. Denote by A[k] the k-fold Hadamard product of A, that is,
A[k] = (akij). If A is a correlation matrix, then limk→∞ A[k] is a correlation matrix having entries 1, −1, and 0.
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It is easy to see that per
(
A[k]) ≤ perA if k is large enough. If A ∈ Cn is such a matrix that has an maximizer

MA for which per(A ◦ MA) > perA, then there must exist a positive integer r such that per(A ◦ M[r]
A ) ≤ perA.

Drury’s 16 × 16 example shows that per(A ◦ A) > perA for some real correlation matrices A.

Question 6: Characterize all the matrices A ∈ Cn that have the Hadamard-compression property, that is,
per(A ◦ X) ≤ perA for all X ∈ Cn. These are exactly the matrices having the property per(A ◦MA) ≤ perA.
Question 7: Other than the determinant, are there any other generalized matrix functions dHχ on Cn that
areHadamard-dilation?Namely, for all n×n correlationmatricesA andB, dHχ (A◦B) ≥ max{dHχ (A), dHχ (B)}.
Note that such a matrix function is closely related to the subgroup H and character. If H = {e} (the
Hadamard matrix function), then the inequality holds true.
Question 8: Characterize all maximizers of a given matrix A ∈ Cn.

Moreover, some other fragmentary results are seen. It is known [57, Result 5] that for n × n correlation
matrices A and B, per(A ◦ B) ≤ per Ct, where Ct is the n × n correlation matrix with all o�-diagonal entries
equal to t, where t = 1 − λmin(A), t = 1 − λmin(B), or t = 1 − λmin(A ◦ B). It is also known [57, Result 4] that if
A is nonnegative entrywise, i.e., aij ≥ 0, and B is positive semide�nite, then |per(A ◦ B)| ≤ per(A)b11 · · · bnn .

6 Chollet conjecture is open
In view of the classical result (of Oppenheim 1930) det(A ◦ B) ≥ detA det B for A, B ≥ 0, Chollet 1982 [10]
proposed an interesting problem concerning the permanent of theHadamard product of positive semide�nite
matrices:

Chollet conjecture 1982 [10]. If A ≥ 0 and B ≥ 0 are n × n matrices, then

per(A ◦ B) ≤ perA per B (16)

Chollet showed that the inequality holds if and only if it is true when B = Ā:

per(A ◦ Ā) ≤ (perA)2 (17)

(17) is immediate from (16) with B = Ā. (17) implies (16) as shown in [10]:

0 ≤ per(A ◦ B) =
∑
σ∈Sn

n∏
t=1
atσ(t)btσ(t)

≤
∑
σ∈Sn

n∏
t=1
|atσ(t)| |btσ(t)|

≤

∑
σ∈Sn

n∏
t=1
|atσ(t)|

2

 1
2
∑
σ∈Sn

n∏
t=1
|btσ(t)|

2

 1
2

=
(

per(A ◦ Ā)
) 1

2
(

per(B ◦ B̄)
) 1

2

≤ perA per B (18)

With Drury’s example in [14], per(A◦B) = per(A◦ Ā) = 6185
128 < 50 < 452 = (perA)2. Moreover, if A = (aij) is

a correlationmatrix, then all |aij| ≤ 1. Thus, per(A◦Ā) ≤ per(|A|), where |A| = (|aij|). Note that perA ≤ per(|A|).
Chollet conjecture is weaker than the Bapat & Sunder conjecture because per B ≥

∏n
i=1 bii. Special cases

of (16) were settled in the 1980s. Gregorac and Hentzel 1987 [17] showed by elementary methods that the
inequality is true for the case of 2 × 2 and 3 × 3 matrices, which are also immediate consequences of the
stronger results of Bapat and Sunder 1986 [4]. Grone and Merris 1987 [20] and also Marcus and Sandy 1988
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[33] discussed theChollet conjecture and theBapat&Sunder conjecture. Relatedworks are seen inZhang 1989
[57] andBeasley 2000 [5] (on some in�nite classes ofmatrices). As theBapat&Sunder conjecture (13) is settled
in the negative recently, Chollet conjecture stands out and is appealing as an interesting open question. The
real case of the Chollet conjecture is the following.

Question 9: Let A = (aij) be a positive semide�nite matrix of real entries. Does the following inequality
hold?

per
(

(a2
ij)
)
≤ (perA)2

7 A few more open conjectures on permanent
Below are a few conjectures and research problems that virtually have no progress made in the past years.
They are easily stated and understood, but appear to be forgotten. We bring them up again and hope to get
renewed attention.

Marcus per-in-per conjecture 1965 [32] Let A be a positive semide�nite mn × mn matrix partitioned as A =
(Aij) in which each Aij is n × n. Let P be the m × m matrix whose (i, j) entry is perAij. Then

perA ≥ per P

If A is positive de�nite, then equality occurs if and only if all Aij = 0, i ≠ j.

The case of m = 2 is proved by Lieb 1966 [28] and Djokovič 1969 [11]. A weaker inequality that perA ≥
(per P)/n! is shown by Pate 1981 [43]. Pate 1982 [44] also shows that for eachm, Marcus per-in-per conjecture
is true for n su�ciently large. This may be compared with Thompson’s det-in-det theorem 1961 [55] which
asserts that the determinant of A is dominated by the determinant of D whose (i, j) entry is detAij, that is,
detA ≤ detD.

Marcus-Mincmax-per-U problem 1965 [32] Let A be an n×n positive semide�nite matrix. Find themaximum
value of per(U*AU) for all n × n unitary matrices U.

Permanent is a continuous function on the compact set of unitary matrices. The minimum and maxi-
mum values are achievable. Some upper bounds in terms of eigenvalues and trace of the matrix A have been
obtained. For instance,

per(U*AU) ≤ 1
n

n∑
i=1

λni

where λi are the eigenvalues of the n × n positive semide�nite matrix A (see, e.g., [31]). It was conjectured
that themaximum of per(U*AU) is attainedwhen all themain diagonal entries of U*AU are all equal (see [41,
p. 132]). However, this is false; see a counterexample in [13] or [9, p. 331]. The problem is studied with partial
solutions by Drew and Johnson 1989 [12] and Grone et al 1986 [19].

Foregger per-k conjecture 1978 [39, p. 157]. Let n be a given positive integer. Then there exists a positive
integer k (solely depending on n) such that for all n × n doubly stochastic matrices A

per(Ak) ≤ perA

Chang 1984 [7] and 1990 [8] con�rmed the conjectureunder certain conditions. For instance, if 1
2 < perA <

1, then per(Am) < perA for any integer m ≥ 2. No other progress is seen.

Bapat-Sunder per-max conjecture 1986 [4, Conjecture 3]. Let A be an n × n positive semide�nite matrix.
Denote by A(i, j) the (n − 1) × (n − 1) submatrix of A obtained by deleting the ith row and jth column of A. Then
perA is the maximum eigenvalue of the matrix

(
aij perA(i, j)

)
.

Brought to you by | Nova Southeastern University
Authenticated

Download Date | 11/9/17 9:20 PM



314 | Fuzhen Zhang

This statement is weaker than the POT conjecture which is true for n ≤ 3. Hence, the Bapat-Sunder per-
max conjecture holds true when the size of the matrix is no more than 3. Other than this, nothing else is
known.

For nonnegative A ∈ Mn and B ∈ Mm, Brualdi 1966 [6] showed that

(perA)m(per B)n ≤ per(A ⊗ B)

Does this also hold for positive semide�nite matrices?

Liang-So-Zhang per-tensor product conjecture 1992 [59]. Let A and B be n × n and m ×m positive semidef-
inite matrices, respectively. Then

(perA)m(per B)n ≤ per(A ⊗ B)

By Brualdi’s result, the conjecture holds true for positive semide�nite matrices of nonnegative entries. In
particular, if A and B are square matrices of 1s, it reduces to the known inequality (n!)m(m!)n ≤ (nm)!.

Liang-So-Zhang per-tensor product conjecture, if proven to be true, would imply a result of Ando 1981 [1]:

max{(n!)−m , (m!)−n}(perA)m(per B)n ≤ per(A ⊗ B)

which is stronger than a result of Marcus 1966 [29]:

(n!)−m(m!)−n(perA)m(per B)n ≤ per(A ⊗ B)

A special case of Liang-So-Zhang per-tensor product conjecture is the conjecture of Pate 1984 [45]: If
M ∈ Mm is positive semide�nite and Jk is the all one matrix of size k, then

(k!)m(perM)k ≤ per(Jk ⊗M) (19)

which has been con�rmed for k = 2 by Pate 1984 [45] and for m = 2 [59].

2m (perM)2 ≤ per
(
M M
M M

)
It would be interesting for one to consider the case whereM is 3 × 3 in (19) and the case where Jk is 3 × 3

in (19).

In light of the Chollet conjecture per(A ◦ B) ≤ perA per B, we have

Liang-So-ZhangHadamard-Kronecker product conjecture 1992 [59]. Let A and B be n×n positive semidef-
inite matrices. Then (

per(A ◦ B)
)n ≤ per(A ⊗ B)

The above conjecture is proved [59, Theorem 2] for any positive semide�nite A ∈ Mn and special B =
(bij) ∈ Mn with all diagonal entries equal (to a, say) and all the entries above the main diagonal equal (to
bij = b, say, for all i < j).

Drury permanent conjecture 2016 [16]. Let A be an n×n positive semide�nite matrix and B be the submatrix
of A obtained by deleting the �rst row and column of A. Let Bjk be the submatrix of B obtained by deleting the
jth row and kth column of B. Then

(a11 per B)2 +
( n∑
k=2
|a1k|

2 per(Bkk)
)2

≤ (perA)2 (20)

Two immediate consequences of (20) are a11 per B ≤ perA (well-known) and
n∑
k=2
|a1k|

2 per(Bkk) ≤ perA (21)

(21) itself is an interesting open problem. Chollet conjecture follows from (20).
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