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ASYMPTOTICS OF THE ZEROS OF RELATIVISTIC HERMITE
POLYNOMIALS∗

MATTHEW HE† , K. PAN‡ , AND PAOLO E. RICCI§

SIAM J. MATH. ANAL. c© 1997 Society for Industrial and Applied Mathematics
Vol. 28, No. 5, pp. 1248–1257, September 1997 015

Abstract. The relativistic Hermite polynomial (RHP) is a class of orthogonal polynomials
associated with varying weights. We study the asymptotics of the zeros of the RHP when both
degree n of polynomials and relativistic parameter N approach infinity.
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1. Introduction. Relativistic Hermite polynomials (RHPs) {H(N)
n (x)}∞n=0 were

introduced in [1] in connection with the wave functions of the quantum relativistic
harmonic oscillator. It was shown in [1] that the RHP satisfies the second-order
differential equation(

1 +
x2

N

)
y′′n −

2

N
(N + n− 1)xy′n +

n

N
(2N + n− 1)yn = 0.(1.1)

Equation (1.1) is a particular case of a second-order hypergeometric-type equation [9]

σ(x)y′′ + τ(x)y′ + λy = 0,(1.2)

where

σ(x) =

(
1 +

x2

N

)
,

τ = − 2

N
(N + n− 1)x,

λ =
n

N
(2N + n− 1).

It is easy to verify that the following relation holds:

λ = −nτ ′ − 1

2
n(n− 1)σ′′.

By solving the equation

[σ(x)ρn(x;N)]′ = τ(x)ρn(x;N),
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one can find the symmetric factor or weight function

ρn(x;N) =

(
1 +

x2

N

)−(N+n)

, N >
1

2
, n = 0, 1, 2, . . . , x ∈ (−∞,∞).(1.3)

Using this weight function, the following orthogonality of the RHP was established in
[1]: ∫ ∞

−∞
xkH(N)

n (x)ρn(x;N)dx = 0, k = 0, 1, . . . , n− 1.(1.4)

That is, {H(N)
n (x)}∞n=0 is a class of orthogonal polynomials with respect to a sequence

of varying weight functions ρn(x). Clearly,

lim
N→∞

ρn(x;N) = e−x
2

and

lim
N→∞

H(N)
n (x) = Hn(x).

So the relativistic Hermite polynomials become classical Hermite polynomials when
the relativistic parameter N →∞.

The distributions of zeros of RHP were studied in [2]. An analytic approximation
for the distribution was derived within the framework of the WKB approximation.

The asymptotics of orthogonal polynomials with respect to varying weights are
closely related to constrained or weighted polynomial approximation. Logarithmic
potential has been extensively used in investigating such asymptotics. We study the
asymptotics of the zeros of RHP when both n and N approach ∞ by using the
potential-theoretic method.

The paper is organized as follows: in order to state our main results, we shall
introduce some basics from potential theory in section 2. Applying a general result
from potential theory developed in [11] to our relativistic weight function, we deter-
mine the support of the equilibrium measure explicitly in section 3. In section 4,
we give an explicit formula for the density function of the equilibrium measure. The
asymptotics of the zeros of the RHP when both n and N approach∞ are determined
in section 5.

2. Basics of potential theory. We shall use logarithmic potentials of Borel
measures. If µ is a finite Borel measure with compact support, then its logarithmic
potential is defined as its convolution with the logarithmic kernel:

Uµ(z) =

∫
log

1

|z − t|dµ(t).

Let E be a closed subset of the real number line. A weight function w on E is said
to be admissible if it satisfies the following three conditions:

(i) w is continuous;
(ii) Cap{x ∈ E | w(x) > 0} > 0;

(iii) Z := {x ∈ E : w(x) = 0} has capacity zero; and
(iv) if E is unbounded, then |x|w(x)→ 0 as |x| → ∞, x ∈ E.
We say that w is strongly admissible if

(i) wq is admissible for every q, 0 < q ≤ 1;
(ii) E is regular, i.e., for all k large, E ∩ [−k, k] is regular with respect to the

Dirichlet problem for its complement on the Riemann sphere, and
(iii) E\Z is interval-like.
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We define Q = Qw by

w(x) = exp(−Q(x)).(2.1)

Then Q : E → (−∞,∞] is continuous everywhere where w is positive, i.e., Q is finite.
Let M(E) be the set of all positive unit Borel measures µ with support S(µ) :=

supp(µ) ⊂ E and define the weighted energy integral

Iw[µ] =

∫∫
log

1

|z − t|w(z)w(t)
dµ(z)dµ(t).

Let

Vw(E) = inf{Iw[µ] | µ ∈M(E)}.

Then the following properties are true (cf. [12], [10]).
(i) Vw(E) is finite.

(ii) There exists a unique µE ∈M(E) such that

Iw(µw) = Vw(E).

Moreover, µw has finite logarithmic energy.
(iii) S(µw) is a compact subset of E.
(iv) The inequality

Uµw(z) +Q(z) ≥ Fw, z ∈ E.(2.2)

(v) The equality

Uµw(z) +Q(z) = Fw, z ∈ S(µw).(2.3)

The measure µw is called the equilibrium or extremal measure in the presence of
an external field, and

Fw = Vw(E)−
∫
Qdµw.(2.4)

In order to state our applications to polynomial extremal problems, we define

En,p(w) := inf{‖[w(x)]n[xn − P (x)]‖E,p : P ∈ Pn−1},

where Pn is the set of all polynomials with degrees ≤ n and

‖f‖E,p :=

(∫
E

|f |pdx
)1/p

,

n = 1, 2, . . . , 0 < p ≤ ∞. The extremal polynomials Tn(x;w, p) = xn + · · · ∈ Pn are
defined by the property

En,p(x) = ‖[w(x)]nTn(x;w, p)‖E,p.

Finally, in this section, we state the following two lemmas.
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Lemma 2.1 (see [6]). Let w be strongly admissible and 0 < p ≤ ∞. Let {tn,k}nk=1

be the zeros of Tn(x;w, p). Then there exists a closed bounded interval I containing
S(µw) and all the zeros of Tn(x;w, p). Moreover,

lim
n→∞

|Tn(x;w, p)|1/n = exp

[∫
log |z − t|dµw(t)

]
uniformly on every compact set of the complex plane disjoint from I,

lim
n→∞

[En,p]
1/n = exp(Fw),

and

lim
n→∞

µn = µw

in the weak-star topology, where

µn(B) :=
1

n
#{k : tn,k ∈ B}, n = 1, 2, . . . ,

for any Borel set B.
Lemma 2.2 (see [6]). Let w be strongly admissible and 0 < p ≤ ∞. Suppose that

I ⊂ R is a closed bounded interval containing S(µw). Let {vn,k}nk=1 be a triangular
scheme of points lying in I. With this scheme, let qn(x) =

∏n
k=1(x − vn,k). Assume

that for some p (0 < p ≤ ∞),

lim
n→∞

‖wnqn‖1/nE,p ≤ exp(Fw).

Then

lim
n→∞

|qn(x)|1/n = exp

[∫
log |z − t|dµw(t)

]
uniformly on every compact set of the complex plane disjoint from I, and

lim
n→∞

µn = µw

in the weak-star topology, where

µn(B) :=
1

n
|{k : vn,k ∈ B}|, n = 1, 2, . . . ,

for any Borel set B.

3. Support of equilibrium measure. A fundamental theorem [5] in weighted
polynomial approximation asserts that every weighted polynomial {wn(x)pn(x)}must
assume its maximum modulus on S(µ), i.e.,

‖wn(x)pn(x)‖E = ‖wn(x)pn(x)‖S(µ),(3.1)

where S(µ) is the support of the equilibrium measure of the set E, and ‖ · ‖E is the
sup norm.
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In this section we determine explicitly the support of the equilibrium measure S(µ)
for the weight function ρn(x;N). To find S(µ), we shall need to directly maximize
the following F -functional [5]:

F (a, b) = log

(
(b− a)

4

)
− 1

π

∫ b

a

Q(x)√
(x− a)(b− x)

dx.

We define wn(x) = ρ
1
2n
n (x;N). Then we have

Qn(x) = log
1

wn(x)
=

(
1

2
+
N

2n

)
log

(
1 +

x2

N

)
.

Since Qn(x) is an even function, the F -functional can be written as follows:

F (a) := f(−a, a) = log a− 1

π

(
1 +

N

n

)∫ a

0

log

(
1 +

t2

N

)
√
a2 − t2

dt− log 2.

By an elementary integral formula [3],∫ 1

0

log(1 + bx2)√
1− x2

ds = π log
1 +
√

1 + b

2
.

We have

F (a) = log
a

2
−
(

1 +
N

n

)
log

1 +
√

1 + a2

N

2
.

It is now elementary to check that the choice of a = an, which maximizes F (−a, a),
is given by

an =

√
n(n+ 2N)

N
.(3.2)

Therefore, we have determined the support [−an, an] of equilibrium measure corre-
sponding to varying weight ρn(x;N).

Furthermore, we can determine the constant Fwn ,

Fwn = log
an
2
−
(

1 +
N

n

)
log

1 +
√

1 +
a2
n

N

2
.

We note that

lim
N→∞

an =
√

2n,

lim
n→∞

Fwn = −1

2
logN,

which concides with the results of [8]. We remark here that, although we use a
potential-theoretic approach similar to the one used in [8], our approach is more
direct. We shall continue our investigation along the same direction to determine the
equilibrium measure.
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4. Equilibrium measure. In section 3, we determined the support S(µn) =
[−an, an] of equilibrium measure µn associated with varying weight wn(x). In this
section, we apply a general formula [12, p. 53] for the density function of the equilib-
rium measure to our weight function wn(x) and find the following theorem.

Theorem 4.1.

dµn(t) = gn(t)dt =
N

nπ

√
a2
n − t2

N + t2
dt, t ∈ S(µn).(4.1)

Proof. It was shown in [12, Lem. 5.1] that the integral equation∫ 1

−1

log
1

|x− t|g(t)dt = −Q(x) + C,

where C is some constant, has a solution g(t) of the form

g(t) =
2

π2

√
1− t2

∫ 1

0

sQ′(s)− tQ′(t)
(1− s2)1/2(s2 − t2)

ds+
D1√
1− t2

,(4.2)

where

D1 =
1

π
− 1

π2

∫ 1

−1

sQ′(s)√
1− s2

ds.(4.3)

g(t) is even and has total integral 1 over [−1, 1]. Apply (4.2) and (4.3) to

Qn(anx) =

(
1

2
+
N

2n

)
log

(
1 +

a2
nx

2

N

)
,

and we get

gn(t) =
N

nπ

√
a2
n − t2

N + t2
.

We note that

lim
n→∞

gn(t) =

√
N

π(N + t2)
, t ∈ (−∞,∞).

5. Asymptotics of zeros. In this section, we study the zeros distribution of

H
(N)
n (x) for n, N → ∞. The following lemma tells us that the support of H

(N)
n (x)

“lives” also in some compact set in L2.
Lemma 5.3. For w(x) = (1 + x2/N)(−N−n)/2, there is a positive constant A

independent of n, N, such that, for p ∈ Pn,

‖w(x)p(x)‖(−∞,∞),2 ≤ 2‖w(x)p(x)‖[−Aan,Aan],2.

Proof. The proof can be found in [4] for the fixed weight. Here we have a varying
weight, so we may proceed exactly as in Theorem 5.2 in [4] to get the lemma.

The next theorem will discuss the location of the zeros of H
(N)
n (x).
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Theorem 5.2. For w(x) = (1 + x2/N)(−N−n)/2, there is a positive constant D

independent of n, N, such that all the zeros of H
(N)
n (x) lie in [−Dan, Dan].

Proof. Let Xn,N denote the largest zero of H
(N)
n (x). Suppose now that ∀A > 0

there exist n, N such that Xn,N > Aan. Let

tn,N (x) :=
x−Aan
x−Xn,N

H(N)
n (x).

Then, for x ∈ [−Aan, Aan],

|tn,N (x)| ≤ 2Aan
Xn,N −Aan

|H(N)
n (x)|.

Hence, from the lemma above, we have

‖w(x)tn,N (x)‖(−∞,∞),2

≤ 2‖w(x)tn,N (x)‖[−Aan,Aan],2

≤ 2

(
2Aan

Xn,N −Aan,N

)
‖w(x)H(N)

n (x)‖[−Aan,Aan],2

≤ 2

(
2Aan

Xn,N −Aan,N

)
‖w(x)H(N)

n (x)‖(−∞,∞),2.

Thus, since H
(N)
n (x) is extremal, the inequality implies that 1 ≤ 4Aan/(Xn,N −Aan),

that is, Xn,N ≤ 5Aan.
Now, we consider the case in which both n and N converge to ∞ with the same

rate.
Theorem 5.3. Let N = λn and an be as in (3.2), where λ is a fixed number.

Then

lim
n→∞

|H(N)
n (anx)| 1n = exp

[∫ 1

−1

log |z − t|dµ(t)

]
locally uniformly in C\[−1, 1], where

dµ(t) =
λ(1 + 2λ)

π

√
1− t2

λ2 + (1 + 2λ)t2
dt.

Furthermore, let {tn,k}nk=1 be the zeros of H
(N)
n (anx) and B be a Borel set. Define

µn :=
1

n
|{k : tn,k ∈ B}|, n = 1, 2, . . . ;

then

lim
n→∞

µn = µ

in the weak-star topology.
Proof. Let

w(x) =

(
1 +

(1 + 2λ)

λ2
x2

)− 1+λ
2

.
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Let tn(x) = xn + · · · be the extremal polynomial for the sup norm on [−1, 1],

‖w(x)ntn(x)‖ = inf
pn=xn+···

‖w(x)npn(x)‖,

and Tn(x) = anntn( x
an

). Notice that an =
√

(1 + 2λ)n/λ; then

‖w(x)nH
(N)
n (anx)‖[−1,1],2

=

∥∥∥∥∥
(

1 +
(1 + 2λ)

λ2
x2

)− 1+λ
2 n

H(N)
n (anx)

∥∥∥∥∥
[−1,1],2

=

∥∥∥∥∥
(

1 +
(1 + 2λ)

λ2

x2

a2
n

)− 1+λ
2 n

H(N)
n (x)

∥∥∥∥∥
[−an,an],2

≤
∥∥∥∥∥
(

1 +
x2

λn

)− 1+λ
2 n

H(N)
n (x)

∥∥∥∥∥
(−∞,∞),2

≤
∥∥∥∥∥
(

1 +
x2

λn

)− 1+λ
2 n

Tn(x)

∥∥∥∥∥
(−∞,∞),2

≤
∥∥∥∥∥
(

1 +
x2

λn

)− 1+λ
2 n

Tn(x)

∥∥∥∥∥
−(∞,∞),∞

=

∥∥∥∥∥
(

1 +
x2

λn

)− 1+λ
2 n

Tn(x)

∥∥∥∥∥
[−an,an],∞

=

∥∥∥∥∥
(

1 +
(1 + 2λ)

λ2
x2

)− 1+λ
2 n

Tn(anx)

∥∥∥∥∥
[−1,1],∞

=

∥∥∥∥∥
(

1 +
(1 + 2λ)

λ2
x2

)− 1+λ
2 n

anntn(x)

∥∥∥∥∥
[−1,1],∞

.

Thus we have∥∥∥∥[w(x)]n
Hn(anx)

ann

∥∥∥∥ 1
n

[−1,1],2

≤
∥∥∥∥∥
(

1 +
(1 + 2λ)

λ2
x2

)− 1+λ
2 n

tn(x)

∥∥∥∥∥
1/n

[−1,1],∞

.(5.1)

For the weight w, notice that tn(x) is the extremal for w, and from Lemma 1, we have

lim sup
n→∞

∥∥∥∥w(x)n
Hn(anx)

ann

∥∥∥∥ 1
n

[−1,1],2

≤ exp(Fw).

Notice that Hn(anx)
ann

= xn + · · · and the zeros of H
(N)
n (anx) lie in [−D,D]. From

Lemma 2, we have the proof of the theorem.
Theorem 5.4. Let N = λnn and an be as in (3.2). If λn →∞, then

lim
n→∞

|H(N)
n (anx)| 1n = exp

[∫ 1

−1

log |z − t|dν(t)

]
locally uniformly in C\[−1, 1], where

dν(t) =
2

π

√
1− t2 dt.
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Furthermore, let the sequence of unit measures {νn}∞n=1 be

νn :=
1

n
|{k : tn,k ∈ B}|, n = 1, 2, . . . ,

where B is a Borel set and {tn,k}nk=1 are the zeros of H
(N)
n (anx). If λn →∞, then

lim
n−∞

νn = ν

in the weak-star topology.
Proof. In the proof of (5.1), it is easy to see that for any pn(x) = xn + · · · ∈ Pn,

we have ∥∥∥∥∥
(

1 +
(1 + 2λn)

λ2
n

x2

)− 1+λn
2 n

Hn(anx)

ann

∥∥∥∥∥
[−1,1],2

(5.2)

≤
∥∥∥∥∥
(

1 +
(1 + 2λn)

λ2
n

x2

)− 1+λn
2 n

pn(x)

∥∥∥∥∥
[−1,1],∞

.

Here, we consider w(x) = e−x
2

on [−1, 1]; the equilibrium measure is dν =
2
π

√
1− t2 dt [7]. Choose pn(x) = Tn(x;w,∞); from (5.2), we have∥∥∥∥∥[w(x)]n

H
(N)
n (anx)

ann

∥∥∥∥∥
[−1,1],2

=

∥∥∥∥∥e−nx2H
(N)
n (anx)

ann

∥∥∥∥∥
[−1,1],2

≤
∥∥∥∥∥e−nx2

(
1 +

(1 + 2λn)

λ2
n

x2

) 1+λn
2 n

∥∥∥∥∥
[−1,1],2

∥∥∥∥∥
(

1 +
(1 + 2λn)

λ2
n

x2

)− 1+λn
2 n

H
(N)
n (anx)

ann

∥∥∥∥∥
[−1,1],2

≤
∥∥∥∥∥e−nx2

(
1 +

(1 + 2λn)

λ2
n

x2

) 1+λn
2 n

∥∥∥∥∥
[−1,1],2

∥∥∥∥∥
(

1 +
(1 + 2λn)

λ2
n

x2

)− 1+λn
2 n

Tn(x;w,∞)

∥∥∥∥∥
[−1,1],∞

≤
∥∥∥∥∥e−nx2

(
1 +

(1 + 2λn)

λ2
n

x2

) 1+λn
2 n

∥∥∥∥∥
[−1,1],2

∥∥∥∥∥enx2

(
1 +

(1 + 2λn)

λ2
n

x2

)− 1+λn
2 n

∥∥∥∥∥
[−1,1],∞

×
∥∥∥e−nx2

Tn(x;w,∞)
∥∥∥

[−1,1],∞
.

Notice that, as λn →∞,

lim
n→∞

∥∥∥∥∥e−nx2

(
1 +

(1 + 2λn)

λ2
n

x2

) 1+λn
2 n

∥∥∥∥∥
1/n

[−1,1],2

= 1

and

lim
n→∞

∥∥∥∥∥enx2

(
1 +

(1 + 2λn)

λ2
n

x2

)− 1+λn
2 n

∥∥∥∥∥
1/n

[−1,1],∞

= 1;
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then

lim
n→∞

∥∥∥∥∥[w(x)]n
H

(N)
n (anx)

ann

∥∥∥∥∥
1/n

[−1,1],2

≤ eFw .

From Lemma 2, this completes the proof of the theorem.
For the case when N is fixed and n→∞, see [8].
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