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ON QUADRATURE RULES

ASSOCIATED WITH APPELL POLYNOMIALS
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Abstract: A quadrature rule using Appell polynomials and generalizing both
the Euler-MacLaurin quadrature formula and a similar quadrature rule, ob-
tained in Bretti et al [15], which makes use of Euler (instead of Bernoulli)
numbers and even (instead of odd) derivatives of the given function at the
extrema of the considered interval, is derived. An expression of the remainder
term and a numerical example are also enclosed.

AMS Subject Classification: 33C99, 33F05, 65D32.
Key words: Appell polynomials, Euler-MacLaurin quadrature rule, quadra-
ture formulas.

1. Introduction

The Bernoulli polynomials Bn(x) are usually defined (see e.g. Gradshteyn
et al [1], p. xxix) starting from the generating function:

G(x, t) :=
text

et − 1
=

∞∑

n=0

Bn(x)
tn

n!
, |t| < 2π, (1.1)
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and consequently, the Bernoulli numbers Bn := Bn(0) can be obtained by the
generating function:

t

et − 1
=

∞∑

n=0

Bn
tn

n!
. (1.2)

The Bernoulli numbers (see Bernoulli [2] and Saalschuetz [3]) enter in many
mathematical formulas, such as the Taylor expansion in a neighborhood of the
origin of the trigonometric and hyperbolic tangent and cotangent functions, the
sums of powers of natural numbers, the residual term of the Euler-MacLaurin
quadrature formula (see Stoer [4]).

The Bernoulli polynomials, first studied by Euler (see Euler [5], Nörlund
[6] and Bateman et al [7]), are employed in the integral representation of differ-
entiable periodic functions, and play an important role in the approximation
of such functions by means of polynomials.

The Euler polynomials En(x) are defined by the generating function:

2ext

et + 1
=

∞∑

n=0

En(x)
tn

n!
, |t| < π. (1.3)

The Euler numbers En can be obtained by the generating function:

2

et + e−t
=

∞∑

n=0

En

n!
tn, (1.4)

and the connection between Euler numbers and Euler polynomials is given by

En

(
1

2

)
= 2−nEn, n = 0, 1, 2, ... .

The first Euler numbers are given by

E0 = 1, E1 = 0, E2 = −1, E3 = 0, E4 = 5, E5 = 0, E6 = −61, E7 = 0, ... .

For further values see Abramowitz et al [8], p. 810.
The Euler polynomials satisfy the symmetry relation

Em(1− t) = (−1)mEm(t).

Since Em(0) = Em(1) = 0, for m even, we put, if m is odd:

em = Em(0) = −Em(1).

The connection of em with Euler numbers is given by the formula

em = − 1

2m

m∑

h=0

(
m

h

)
Em−h. (1.5)



The Euler polynomials are strictly connected with the Bernoulli ones, and
enter in the Taylor expansion in a neighborhood of the origin of the trigono-
metric and hyperbolic secant functions.

The Appell polynomials (see Appell [9]) can be defined by considering the
following generating function

GR(x, t) = A(t)ext =
∞∑

n=0

Rn(x)

n!
tn, (1.6)

where

A(t) =
∞∑

k=0

Rk

k!
tk, (A(0) 6= 0) (1.7)

is analytic function at t = 0, and Rk := Rk(0), R0 = A(0) 6= 0.
It is easy to see that

• If A(t) = t
et−1

, then Rn(x) = Bn(x),

• If A(t) = 2
et+1

, then Rn(x) = En(x).

• If A(t) = α1 · · ·αmtm[(eα1t−1) · · · (eαmt−1)]−1, then Rn(x) is the Bernoulli
polynomials of order m (see Bateman et al [7]).

• If A(t) = 2m[(eα1t + 1) · · · (eαmt + 1)]−1, then Rn(x) is the Euler polyno-
mials of order m (see Bateman et al [7]).

• If A(t) = eξ0+ξ1t+···ξd+1td+1
, ξd+1 6= 0, then Rn(x) is the generalized Gould-

Hopper polynomials (see Douak [10], Srivastava [11] and Gould et al [12]),
including the Hermite polynomials when d = 1 and classical 2−orthogonal
polynomials when d = 2.

The differential equations satisfied by Bn(x), En(x) and Rn(x) have been
presented in He et al [13].

We next assume that

A′(t)
A(t)

=
∞∑

n=0

αn
tn

n!
. (1.8)

The numerical coefficients αk, k = 1, 2, ..., n − 1, are defined in (1.8), and
are linked to the values Rk by the following relations:

Rk+1 =
k∑

h=0

(
k

h

)
Rhαk−h.

The Rk will be called Appell numbers, associated with A(t).
It is useful to recall the following result, characterizing the Appell polyno-

mials:
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Theorem 1.1 The only polynomials Pn(x) satisfying the condition

P ′
n(x) = nPn−1(x), n = 0, 1, 2, . . . (1.9)

are the Appell polynomials.

The proof is essentially contained in Specht [14], Sect. 1, althought in this
article no reference is given to Appell polynomials.

In this note, starting from the Appell polynomials, and Appell numbers
associated with A(t), we construct a quadrature rule generalizing both the
Euler-MacLaurin quadrature formula, and the formula presented in Bretti et
al [15], which uses Euler numbers and even derivatives of the integrand at the
extrema of the given interval.

2. The Euler-MacLaurin quadrature formula

In this section we recall briefly the classical Euler-MacLaurin quadrature
formula (see Stoer [4]), and a similar formula derived by Bretti et al [15].

Given a function f(x) ∈ C2m[a, b] and an uniform partition of [a, b] by
means of points:

xh := a + hδ, δ :=
b− a

n
, h = 0, 1, 2, ..., n (2.1)

where x = a + tδ, putting f(x) = f(a + tδ) =: g(t), t ∈ [0, n], it follows:

g(k)(t) = δkf (k)(a + tδ), k = 0, 1, ..., 2m. (2.2)

Therefore ∫ b

a
f(x)dx = δ

∫ n

0
g(t)dt. (2.3)

Denoting by T (f) the quadrature of the integral (2.3) obtained by using the
composite trapezoidal rule we can write:

δ
[
1

2
g(0) + g(1) + ... + g(n− 1) +

1

2
g(n)

]
=

= δ
[
1

2
f(a) + f(x1) + ... + f(xn−1) +

1

2
f(b)

]
= T (f ; δ) = T (f) (2.4)

Then the following proposition is valid:

Proposition 2.1 If f(x) ∈ C2m[a, b], for the composite trapezoidal rule
the asymptotic formula holds true

T (f) = I0 − I1δ
2 − I2δ

4 − ...− Im−1δ
2m−2 + R2m(f ; δ),
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where:

I0 =
∫ b

a
f(x)dx, (2.5)

Ik =
(−1)kBk

(2k)!

[
f (2k−1)(b)− f (2k−1)(a)

]
, k = 1, 2, ...,m− 1,

and

R2m(f ; δ) = − δ2m

(2m)!

∫ b

a

[
S2m

(
x− a

δ

)
− S2m(0)

]
f (2m)(x)dx = O(δ2m),

where the function S2m(x) is the periodic continuation, of period 1, of the
polynomial function B2m(x) starting from its values when x ∈ [0, 1].

As a consequence the Euler-MacLaurin quadrature formula can be written
in the form

∫ b

a
f(x)dx = δ

[
1

2
f(a) + f(x1) + ... + f(xn−1) +

1

2
f(b)

]

+
m−1∑

k=1

(−1)kBk

(2k)!
δk

[
f (2k−1)(b)− f (2k−1)(a)

]
+ R2m(f ; δ), (2.6)

where:

R2m(f ; δ) =
δ2m

(2m)!

∫ b

a

[
S2m

(
x− a

δ

)
− S2m(0)

]
f (2m)(x)dx = O(δ2m).

Remark 2.1 In F.B. Hildebrand [16], p. 156, the particular case n = 1
is considered starting from the Euler-MacLaurin summation formula. In this
case, the above formula (2.6) becomes:

∫ b

a
f(x)dx =

b− a

2
[f(a) + f(b)]

+
m−1∑

k=1

(−1)kBk

(2k)!
(b− a)2k

[
f (2k−1)(b)− f (2k−1)(a)

]
+ R2m(f ; δ), (2.7)

and the remainder term can be written in the form

R2m(f ; δ) = (−1)mBm
(b− a)2m+1

(2m)!
f (2m)(ξ), ξ ∈ [a, b]. (2.8)

In Bretti et al [15], the use of Euler polynomials and Euler numbers allows
to construct a quadrature rule similar to the previous one, but using Euler
(instead of Bernoulli) numbers, and even (instead of odd) order derivatives of
the given function at the extrema of the considered interval.
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As a matter of fact, the following proposition holds true:

Proposition 2.2 Consider a function f(x) ∈ C2m[a, b] and the corre-
sponding integral over [a, b]. Let xi = a + iδ, i = 0, 1, ..., n, where δ := b−a

n
,

and fi = f(xi), f
(p)
i = f (p)(xi), p = 1, 2, ..., 2m. Then the following composite

trapezoidal rule holds true:

∫ b

a
f(x)dx = δ

(
1

2
f(a) + f1 + ... + fn−1 +

1

2
f(b)

)

−
m∑

k=2

e2k−1

(2k − 1)!
δ2k−1

[
f (2k−2)(b) + f (2k−2)(a)

]
+ RE[f ; δ], (2.9)

where the correction terms are expressed by means of the even derivatives of
the given function f(x) at the extrema, and the error term is given by

RE[f ; δ] =
δ2m

(2m)!

n−1∑

i=0

∫ xi+1

xi

f (2m)(x)E2m

(
x− xi

δ

)
dx. (2.10)

3. Quadrature rule associated with Appell polynomials

We recall that

• R′
n(t) = nRn−1(t)

• Rn(0) := Rn

where the Rn are the Appell numbers, associated with A(t).
In the following we will assume for A(t) the normalization R0(t) = R0 = 1, so
that the corresponding Rk(t) polynomials are monic. By using the recursion
relation, proved in He et al [13]:

Rn+1(t) = (t + α0)Rn(t) +
n−1∑

k=0

(
n

k

)
αn−kRk(t),

it is possible to construct, step by step, by recursion:

R1(t) = t + α0,

R2(t) = (t + α0)R1(t) + α1R0(t) = (t + α0)
2 + α1,

R3(t) = (t + α0)R2(t) + α2R0(t) + 2α1R1(t) =

= (t + α0)
3 + 3α1(t + α0) + α2,
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and so on.
Since Appell polynomials are determined by the sequence αn, the recurrence
relation:

Rn+1 =
n∑

k=0

(
n

k

)
Rkαn−k

is very useful.
In the following we will use the notation:

Sk := Rk(1), k = 0, 1, 2, ... (3.1)

and the coefficient

α0 =
A′(0)

A(0)
=
R1

R0

= R1 (3.2)

will come into play.
Note that all the Sk can be written in terms of the Appell numbers Rh, h =
0, 1, ..., k, associated with A(t), since we can write:

A(t)et =
∞∑

k=0

Rk(1)
tk

k!
=

∞∑

k=0

Rk

k!
tk

∞∑

k=0

tk

k!
=

∞∑

k=0

k∑

h=0

(
k

h

)
Rh

tk

k!
,

and consequently:

Sk =
k∑

h=0

(
k

h

)
Rh, h = 0, 1, 2, ... .

The main result of this article is expressed by the following theorem:

Theorem 3.1 Consider a function f(x) ∈ Cm+1[a, b] and the correspond-
ing integral over [a, b]. Let xi = a + iδ, i = 0, 1, ..., n, where δ := b−a

n
, and

fi = f(xi), f
(p)
i = f (p)(xi), p = 1, 2, ..., m + 1. Then the following composite

trapezoidal rule holds true:

∫ b

a
f(x)dx = δ

(
f(b)S1 − f(a)R1 +

n−1∑

i=1

fi

)

+
m∑

k=1

(−1)k

(k + 1)!
δk+1

[
f (k)(b)Sk+1 − f (k)(a)Rk+1 +

n−1∑

i=1

f
(k)
i (Sk+1 −Rk+1)

]

+RA[f ], (3.3)

where the correction terms are expressed by means of all derivatives of the
given function f(x), and the error term is given by

RA[f ; δ] = δm+2 (−1)m+1

(m + 1)!

n−1∑

i=0

∫ xi+1

xi

f (m+1)(x)Rm+1

(
x− xi

δ

)
dx. (3.4)



Proof. We consider first the trapezoidal rule extended to the whole interval.
Let be f(x) ∈ Cm+1[a, b] and consider the integral of f over [a, b]. Putting

f(x) = f(a + δt) =: g(t), where δ = b − a denotes the length of the interval,
and t = x−a

δ
, by using subsequent integration by parts we find:

∫ b

a
f(x)dx = δ

∫ 1

0
g(t)dt = δ

∫ 1

0
g(t)dR1(t) =

= δ
{
[g(t)R1(t)]

1
0 −

∫ 1

0
g′(t)R1(t)dt

}
=

= δ
{
[g(1)R1(1)− g(0)R1(0)]− 1

2
[g′(t)R2(t)]

1
0 +

1

2

∫ 1

0
g′′(t)R2(t)dt

}
=

= δ
{
[g(1)(1 + α0)− g(0)α0]− 1

2
[g′(1)R2(1)− g′(0)R2(0)]

+
1

2

∫ 1

0
g′′(t)R2(t)dt

}
=

= δ
{
[g(1)(1 + α0)− g(0)α0]− 1

2
[g′(1)R2(1)− g′(0)R2(0)]

+
1

6
[g′′(t)R3(t)]

1
0 −

1

6

∫ 1

0
g′′′(t)R3(t)dt

}
=

· · ·
= δ

{
[g(1)(1 + α0)− g(0)α0] +

m∑

k=1

(−1)k

(k + 1)!

[
g(k)(1)Rk+1(1)− g(k)(0)Rk+1(0)

]

+
(−1)m+1

(m + 1)!

∫ 1

0
g(m+1)(t)Rm+1(t)dt

}
.

Recalling the positions f(x) = g(t), and (3.1)-(3.2), the preceding formula
yields

∫ b

a
f(x)dx = δ

{
[f(b)S1 − f(a)R1] +

m∑

k=1

(−1)k

(k + 1)!
δk

[
f (k)(b)Sk+1 − f (k)(a)Rk+1

]

+
(−1)m+1

(m + 1)!
δm+1

∫ 1

0
f (m+1)(x)Rm+1

(
x− a

δ

)
dx

}
. (3.5)

Consider now a partition of the interval [a, b] into n partial intervals by means
of equidistant knots xi = a + iδ, i = 0, 1, ..., n, where δ := b−a

n
, fi = f(xi),

f
(p)
i = f (p)(xi), p = 1, 2, ..., m + 1. From eq. (3.3) it follows:

∫ b

a
f(x)dx =

n−1∑

i=0

∫ xi+1

xi

f(x)dx = δ

(
f(b)S1 − f(a)R1 +

n−1∑

i=1

fi

)



+
m∑

k=1

(−1)k

(k + 1)!
δk+1

[
f (k)(b)Sk+1 − f (k)(a)Rk+1 +

n−1∑

i=1

f
(k)
i (Sk+1 −Rk+1)

]

+δm+2 (−1)m+1

(m + 1)!

n−1∑

i=0

∫ xi+1

xi

f (m+1)(x)Rm+1

(
x− xi

δ

)
dx.

Note that the remainder term of the above procedure is expressed by

RA[f ; δ] = δm+2 (−1)m+1

(m + 1)!

n−1∑

i=0

∫ xi+1

xi

f (m+1)(x)Rm+1

(
x− xi

δ

)
dx.

Remark 3.1 In our opinion, althought general formulas of the same type
of eq. (3.3) can be derived by using integration by parts, starting from the
integral

(−1)n+1

(n + 1)!

∫ b

a
f (n+1)(x)

(
xn+1 − Pn(x)

)
dx,

where Pn denotes an arbitrary polynomial of degree at most n, our approach
represents the natural extension of the Euler-MacLaurin quadrature rule, a
subject that, apparently, never appeared in literature before.

4. Numerical example

In this section, we will show an application of the quadrature rule (3.3),
associated with Appell polynomials. Of course the choice of the function A(t)
is arbitrary, but it is convenient to choose A(t) in such a way that the
corresponding Appell numbers Rk are not increasing.

Fix the integral N , and define:

A(t) :=
1

e
exp

(
exp(− t

N
)
)

,

so that the normalizing condition A(0) = R0 = 1 is satisfied.
Then, putting:

A′(t)
A(t)

=
∞∑

k=0

αk
tk

k!

and recalling the definition (1.7) of the function A(t), the numerical values

αk =
(−1)k+1

Nk+1

are easily found. Furthermore Appell numbers can be computed by means of
the recurrence relation:

Rh+1 = − 1

N

h∑

k=0

(
h

k

)
(−1)h−k

Nh−k
Rk



The first values of the Rk are consequently:

R0 = A(0) = 1, R1 = − 1

N
, R2 =

2

N2
, R3 = − 5

N3
, . . .

and so on.

Remark 4.1 Note that the Appell-type quadrature rule depends on the
function A(t) we start with, and consequently the obtained result could be
worse than the corresponding obtained by using the Euler-MacLaurin one.

It seems to be an interesting problem to investigate how to relate the in-
tegrand function f(x) with the function A(t) to be considered, in order to
minimize the remainder term. However, this seems to be a difficult subject to
work with.

In the following classical example, by using the function A(t) of eq. (4.1),
and assuming N = 2, we obtain better results with respect to other similar
formulas.

Consider the integral

J :=
∫ 1

0

1

x + 1
dx =

∫ 0.5

0

1

1− x
dx ' 0.69314718246...,

where the “exact” value is obtained by using Mathematica c©.
Computing J by the Euler-type quadrature rule, assuming m = 6

n = 90, and A(t) = 2
et+1

,

x(i) = a + (i− 1)δ = (i− 1) 1
90

, (i = 1, ..., 90),

and recalling that, by eq. (1.5): e3 = 1
4
, e5 = −1

2
, e7 = 17

8
, e9 = −31

2
, e11 = 691

4

The composite trapezoidal rule gives:

JTRAP = 0.6931548...

and, using the correction of the Euler-type quadrature rule, we found:

JEUL = 0.6931547...

and the following estimate for the remainder term:

|R(E)
12 | ≤ 10−5.

By using the Appell-type quadrature rule, with m = 5 e n = 90, A(t) =

ee−
t
2−1, (i.e. N = 2), we found the better approximation

JAPP = 0.693147180...



and, for the remainder term, the better estimate:

|R(A)
6 | ≤ 3 · 10−9.
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9 (1880), 119–144.

[10] K. Douak, The relation of the d-orthogonal polynomials to the Appell
polynomials, J. Comput. Appl. Math., 70 (1996), 279–295.

[11] H.M. Srivastava, A note on generating function for the generalized Her-
mite polynomials, Proc. Konin. Neder. Aka. Wetens. Indag. Math., 79
(1976), 457–461.

[12] H.W. Gould and A.T. Hopper, Operational formulas connected with two
generalizations of Hermite Polynomials, Duke Math. J., 29 (1962), 51–
62.

https://www.researchgate.net/publication/242979691_The_relation_of_the_d-orthogonal_polynomials_to_the_Appell_polynomials?el=1_x_8&enrichId=rgreq-2c6ca909c4014e9b2fe88bb067259a7a-XXX&enrichSource=Y292ZXJQYWdlOzI2NzE0OTUwMDtBUzoxNjgwNzU0MjkxNjMwMTFAMTQxNzA4MzcxMzk2Nw==
https://www.researchgate.net/publication/242979691_The_relation_of_the_d-orthogonal_polynomials_to_the_Appell_polynomials?el=1_x_8&enrichId=rgreq-2c6ca909c4014e9b2fe88bb067259a7a-XXX&enrichSource=Y292ZXJQYWdlOzI2NzE0OTUwMDtBUzoxNjgwNzU0MjkxNjMwMTFAMTQxNzA4MzcxMzk2Nw==
https://www.researchgate.net/publication/265461800_A_Note_on_a_Generating_Function_for_the_Generalized_Hermite_Polynomials?el=1_x_8&enrichId=rgreq-2c6ca909c4014e9b2fe88bb067259a7a-XXX&enrichSource=Y292ZXJQYWdlOzI2NzE0OTUwMDtBUzoxNjgwNzU0MjkxNjMwMTFAMTQxNzA4MzcxMzk2Nw==
https://www.researchgate.net/publication/265461800_A_Note_on_a_Generating_Function_for_the_Generalized_Hermite_Polynomials?el=1_x_8&enrichId=rgreq-2c6ca909c4014e9b2fe88bb067259a7a-XXX&enrichSource=Y292ZXJQYWdlOzI2NzE0OTUwMDtBUzoxNjgwNzU0MjkxNjMwMTFAMTQxNzA4MzcxMzk2Nw==
https://www.researchgate.net/publication/265461800_A_Note_on_a_Generating_Function_for_the_Generalized_Hermite_Polynomials?el=1_x_8&enrichId=rgreq-2c6ca909c4014e9b2fe88bb067259a7a-XXX&enrichSource=Y292ZXJQYWdlOzI2NzE0OTUwMDtBUzoxNjgwNzU0MjkxNjMwMTFAMTQxNzA4MzcxMzk2Nw==
https://www.researchgate.net/publication/38335756_Operational_formulas_connected_with_two_generalization_of_Hermite_polynomials?el=1_x_8&enrichId=rgreq-2c6ca909c4014e9b2fe88bb067259a7a-XXX&enrichSource=Y292ZXJQYWdlOzI2NzE0OTUwMDtBUzoxNjgwNzU0MjkxNjMwMTFAMTQxNzA4MzcxMzk2Nw==
https://www.researchgate.net/publication/38335756_Operational_formulas_connected_with_two_generalization_of_Hermite_polynomials?el=1_x_8&enrichId=rgreq-2c6ca909c4014e9b2fe88bb067259a7a-XXX&enrichSource=Y292ZXJQYWdlOzI2NzE0OTUwMDtBUzoxNjgwNzU0MjkxNjMwMTFAMTQxNzA4MzcxMzk2Nw==
https://www.researchgate.net/publication/38335756_Operational_formulas_connected_with_two_generalization_of_Hermite_polynomials?el=1_x_8&enrichId=rgreq-2c6ca909c4014e9b2fe88bb067259a7a-XXX&enrichSource=Y292ZXJQYWdlOzI2NzE0OTUwMDtBUzoxNjgwNzU0MjkxNjMwMTFAMTQxNzA4MzcxMzk2Nw==
https://www.researchgate.net/publication/225092415_Table_of_Integrals_Series_and_Products?el=1_x_8&enrichId=rgreq-2c6ca909c4014e9b2fe88bb067259a7a-XXX&enrichSource=Y292ZXJQYWdlOzI2NzE0OTUwMDtBUzoxNjgwNzU0MjkxNjMwMTFAMTQxNzA4MzcxMzk2Nw==
https://www.researchgate.net/publication/225092415_Table_of_Integrals_Series_and_Products?el=1_x_8&enrichId=rgreq-2c6ca909c4014e9b2fe88bb067259a7a-XXX&enrichSource=Y292ZXJQYWdlOzI2NzE0OTUwMDtBUzoxNjgwNzU0MjkxNjMwMTFAMTQxNzA4MzcxMzk2Nw==
https://www.researchgate.net/publication/284674008_Sur_une_classe_de_polynomes?el=1_x_8&enrichId=rgreq-2c6ca909c4014e9b2fe88bb067259a7a-XXX&enrichSource=Y292ZXJQYWdlOzI2NzE0OTUwMDtBUzoxNjgwNzU0MjkxNjMwMTFAMTQxNzA4MzcxMzk2Nw==
https://www.researchgate.net/publication/284674008_Sur_une_classe_de_polynomes?el=1_x_8&enrichId=rgreq-2c6ca909c4014e9b2fe88bb067259a7a-XXX&enrichSource=Y292ZXJQYWdlOzI2NzE0OTUwMDtBUzoxNjgwNzU0MjkxNjMwMTFAMTQxNzA4MzcxMzk2Nw==


[13] M.X. He and P.E. Ricci, Differential equations of Appell polynomials via
the Factorization Method, J. Comput. Appl. Math., (in print).

[14] W. Specht, Die Lage der Nullstellen eines Polynoms III, Mathematische
Nachrichten, 16 (1957), 369–389.

[15] G. Bretti and P.E. Ricci, Euler polynomials and the related quadrature
rule, Georgian Math. J., 8 (2001), 447–453.

[16] F.B. Hildebrand, Analisi Numerica, Ambrosiana, Milano, 1967.

View publication statsView publication stats

https://www.researchgate.net/publication/242980131_Differential_equation_of_Appell_polynomials_via_the_factorization_method?el=1_x_8&enrichId=rgreq-2c6ca909c4014e9b2fe88bb067259a7a-XXX&enrichSource=Y292ZXJQYWdlOzI2NzE0OTUwMDtBUzoxNjgwNzU0MjkxNjMwMTFAMTQxNzA4MzcxMzk2Nw==
https://www.researchgate.net/publication/242980131_Differential_equation_of_Appell_polynomials_via_the_factorization_method?el=1_x_8&enrichId=rgreq-2c6ca909c4014e9b2fe88bb067259a7a-XXX&enrichSource=Y292ZXJQYWdlOzI2NzE0OTUwMDtBUzoxNjgwNzU0MjkxNjMwMTFAMTQxNzA4MzcxMzk2Nw==
https://www.researchgate.net/publication/245921878_Die_Lage_der_Nullstellen_eines_Polynoms_III?el=1_x_8&enrichId=rgreq-2c6ca909c4014e9b2fe88bb067259a7a-XXX&enrichSource=Y292ZXJQYWdlOzI2NzE0OTUwMDtBUzoxNjgwNzU0MjkxNjMwMTFAMTQxNzA4MzcxMzk2Nw==
https://www.researchgate.net/publication/245921878_Die_Lage_der_Nullstellen_eines_Polynoms_III?el=1_x_8&enrichId=rgreq-2c6ca909c4014e9b2fe88bb067259a7a-XXX&enrichSource=Y292ZXJQYWdlOzI2NzE0OTUwMDtBUzoxNjgwNzU0MjkxNjMwMTFAMTQxNzA4MzcxMzk2Nw==
https://www.researchgate.net/publication/251167782_Euler_polynomials_and_the_related_quadrature_rule?el=1_x_8&enrichId=rgreq-2c6ca909c4014e9b2fe88bb067259a7a-XXX&enrichSource=Y292ZXJQYWdlOzI2NzE0OTUwMDtBUzoxNjgwNzU0MjkxNjMwMTFAMTQxNzA4MzcxMzk2Nw==
https://www.researchgate.net/publication/251167782_Euler_polynomials_and_the_related_quadrature_rule?el=1_x_8&enrichId=rgreq-2c6ca909c4014e9b2fe88bb067259a7a-XXX&enrichSource=Y292ZXJQYWdlOzI2NzE0OTUwMDtBUzoxNjgwNzU0MjkxNjMwMTFAMTQxNzA4MzcxMzk2Nw==
https://www.researchgate.net/publication/267149500

	Nova Southeastern University
	NSUWorks
	1-1-2002

	On Quadrature Rules Associated with Appell Polynomials
	Gabriella Bretti
	Matthew He
	Paolo E. Ricci
	NSUWorks Citation


	tmp.1492525184.pdf.eU7iC

