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Research Article

Edmond W.H. Lee
Finite involution semigroups with infinite irredundant
bases of identities
Abstract: A basis of identities for an algebra is irredundant if each of its proper subsets fails to be a basis
for the algebra. The first known examples of finite involution semigroups with infinite irredundant bases are
exhibited. These involution semigroups satisfy several counterintuitive properties: their semigroup reducts
do not have irredundant bases, they share reducts with some other finitely based involution semigroups, and
they are direct products of finitely based involution semigroups.
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1 Introduction

1.1 Finite basis problem

A basis for an algebra A is a set of identities satisfied by A that axiomatizes all identities of A. An algebra is
finitely based if it has some finite basis. Finite groups [16], finite associative rings [7, 12], and finite Lie alge-
bras [1] are all finitely based. However, this result does not hold for all finite algebras; there exist groupoids
with as few as three elements that are not finitely based [5, 15]. In general, the finite basis problem for finite
algebras is undecidable [14], but the problem remains open when restricted to finite semigroups. The first
examples of non-finitely based finite semigroups [17] were discovered in the 1960s. Since then, the finite
basis problem for finite semigroups has been intensely investigated. For further information, refer to the
survey by Volkov [19].

1.2 Irredundant bases

A basis for an algebra A is irredundant if each of its proper subsets fails to be a basis for A. An algebra is
irredundantly based if it has some irredundant basis. It is clear that any finitely based algebra is irredun-
dantly based. As for non-finitely based finite algebras, there was initial hope that they all have irredundant
bases, but this was refuted by subsequent examples of non-irredundantly based finite semigroups [13, 18].
On the other hand, there also exist finite semigroups with infinite irredundant bases [4]. Apart from these
examples, not much is known about the irredundant basis property in general. The problem of deciding if
a non-finitely based finite algebra is irredundantly based remains open.

1.3 Involution semigroups

Recall that an involution semigroup is a pair (S, ∗), where the reduct S is a semigroup and x Ü→ x∗ is a unary
operation on S such that

(x∗)∗ = x and (xy)∗ = y∗x∗.
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588 | E.W.H. Lee, Finite involution semigroups with infinite irredundant bases of identities

Examples of involution semigroups include any group with inversion x Ü→ x−1 and the multiplicative semi-
group of all n × n matrices over any field with transposition x Ü→ x⊤. Compared with semigroups, even less
is known about involution semigroups with respect to the irredundant basis property. Presently, only one
finite involution semigroup is known to be non-irredundantly based [6]. Explicit examples of involution semi-
groups with infinite irredundant bases are unavailable. The objective of the present article is to exhibit the
first examples of such finite involution semigroups. These new examples, together with recently established
results [9, 10], demonstrate that an involution semigroup and its reduct can satisfy very contrasting equa-
tional properties.

1.4 Known results

The main examples of the present article are constructed from the cyclic group

ℤn = ⟨g !!!! g
n = 1⟩ = {1, g, g2, . . . , gn−1}

of order n ≥ 1 and the J -trivial semigroup

L = ⟨e, f !!!! e
2 = e, f2 = f, efe = 0⟩ = {0, e, f, ef, fe, fef}

of order six. The multiplication table of L is given as follows.

L 0 fef ef fe e f
0 0 0 0 0 0 0

fef 0 0 0 0 0 fef
ef 0 0 0 0 0 ef
fe 0 0 fef 0 fe fef
e 0 0 ef 0 e ef
f 0 fef fef fe fe f

Up to isomorphism, the semigroup L is one of only four non-finitely based semigroups of order six [11].
The direct product L × ℤn of L and ℤn is a non-finitely based semigroup [8], and this result was recently
generalized.

Theorem 1.1 ([9, Theorem 1.3]). For each n ≥ 1, the non-finitely based semigroup L × ℤn is non-irredundantly
based.

For each n ≥ 1, let sq(n) denote the set of all square roots of unity modulo n, that is,

sq(n) = {ℜ ∈ {1, 2, . . . , n} : ℜ2 ≡ 1 (mod n)}.

It is routinely checked that for eachℜ ∈ sq(n),

Zℜn = (ℤn,
ℜ) with x Ü→ xℜ

is an involution semigroup. Conversely, any involution semigroup with reduct ℤn is isomorphic to some Zℜn ,
so the number of such involution semigroups is

|sq(n)| =
{{{
{{{
{

2ø(n)+1 if n ≡ 0 (mod 8),

2ø(n)−1 if n ≡ ±2 (mod 8),

2ø(n) otherwise,

where ø(n) is the number of distinct prime factors of n ([3]). In particular, the inversion operation x Ü→ x−1

inℤn coincides with x Ü→ xn−1.
As for the semigroup L, it is the reduct of the involution semigroup

L = (L, ë),
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where ë interchanges ef and fe but fixes all other elements of L. In fact, up to isomorphism, L is the unique
involution semigroup with reduct L. Hence, the direct product of the involution semigroups L and Zℜn is

L × Zℜn = (L × ℤn,
∗) with (x, y)∗ = (xë, yℜ).

Consequently, up to isomorphism, thenumber of involution semigroupswith reductL × ℤn is precisely |sq(n)|.
The finite basis property of the involution semigroup L × Zℜn , whenℜ = 1, was recently established.

Theorem 1.2 ([10, Theorem 1.2]). For each n ≥ 1, the involution semigroup L × Z1n is finitely based and so is
irredundantly based.

1.5 Main result

In view of Theorem 1.2, what remains to be investigated is the involution semigroup L × Zℜn withℜ ∈ sq(n)\{1}.

Theorem 1.3. For each n ≥ 1 and ℜ ∈ sq(n)\{1}, the involution semigroup L × Zℜn has an infinite irredundant
basis and so is non-finitely based.

The results of Theorems 1.1–1.3 are summarized in Table 1.

L × ℤn L × Z
1
n L × Z

ℜ
n ,ℜ ∈ sq(n)\{1}

Finitely based No Yes No
Irredundantly based No Yes Yes

Table 1. Summary of Theorems 1.1–1.3.

Corollary 1.4. For each n ≥ 1 andℜ ∈ sq(n), the involution semigroup L × Zℜn is
(i) irredundantly based,
(ii) finitely based if and only ifℜ = 1.

Corollary 1.5. There exist finite examples of
(i) involution semigroups with infinite irredundant bases such that their reducts do not have such bases,
(ii) non-finitely based involution semigroups sharing the same reducts with finitely based involution semi-

groups,
(iii) non-finitely based involution semigroups that are direct products of finitely based involution semigroups.

Proof. Refer to Table 1 for examples of parts (i) and (ii). As for part (iii), the involution semigroup L × Zn−1n is
non-finitely based for all n ≥ 3, while the involution semigroups L and Zn−1n are finitely based.

Since all finitely based algebras are irredundantly based, no involution semigroup can provide a (YesNo)-column
in Table 1. Therefore, this table exhibits the most complicated scenario for a non-irredundantly based finite
semigroup S in the following sense: there exist involution semigroups (S, ∗) and (S, †)with reduct S such that
no two of S, (S, ∗), and (S, †) simultaneously satisfy the same finite basis property and irredundant basis
property. It is of interest to know if the most complicated scenario exists for an irredundantly based finite
semigroup.

Question 1.6. Is there an irredundantly based finite semigroup S, being the reduct of involution semigroups
(S, ∗) and (S, †), such that their finite basis property and irredundant basis property are described in one of
the following tables?

S (S, ∗) (S, †)

Finitely based Yes No No
Irredundantly based Yes Yes No

S (S, ∗) (S, †)

Finitely based No Yes No
Irredundantly based Yes Yes No
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1.6 Smaller examples

Although the order 6n of the irredundantly based involution semigroup L × Zℜn in Theorem 1.3 can be consid-
ered small, smaller examples are available. For each n ≥ 1, the subset

Ln = (L × {1}) ∪ ({0} × ℤn)

of L × ℤn has n + 5 elements. It is routinely verified that Ln is a subsemigroup of L × ℤn that is closed under
the unary operation (x, y)∗ Ü→ (xë, yℜ) of L × Zℜn . Hence, Lℜn = (Ln,

∗) is an involution subsemigroup of L × Zℜn
of order n + 5.

Lemma 1.7. For each n ≥ 1, the involution semigroups Lℜn and L × Zℜn satisfy the same identities.

Proof. The identities satisfied by L × Zℜn are vacuously satisfied by its involution subsemigroup Lℜn . Con-
versely, since

L × Zℜn = (L, ë) × (ℤn,
ℜ) ≅ (L × {1}, ∗) × ({0} × ℤn,

∗) ⊆ Lℜn × Lℜn ,

the identities satisfied by Lℜn are also satisfied by L × Zℜn .

Consequently, the involution semigroup L23 of order eight has an infinite irredundant basis; it is presently the
smallest known example. As for semigroups with infinite irredundant bases, the smallest example currently
known is of order nine [4].

Question 1.8. What is the smallest possible order of a semigroup or involution semigroup with infinite irre-
dundant basis?

1.7 Organization

There are seven sections in the present article. Notation and background material are given in Section 2.
Sections 3–6 are devoted to establishing an explicit infinite basis for the involution semigroup L × Zℜn . This
explicit basis is then shown in Section 7 to contain an infinite irredundant basis for L × Zℜn . Consequently, the
proof of Theorem 1.3 is complete.

2 Preliminaries
The free involution semigroup over a countably infinite alphabet A is the free semigroup (A ∪ A ∗)+ over
the disjoint union of A and A ∗ = {x∗ : x ∈ A }, with endowed unary operation ∗ defined by (x∗)∗ = x for
all x ∈ A and

(x1x2 ⋅ ⋅ ⋅ xm)
∗ = x∗

mx
∗
m−1 ⋅ ⋅ ⋅ x

∗
1

for all x1, x2, . . . , xm ∈ A ∪ A ∗. Elements ofA ∪ A ∗ are called letterswhile elements of (A ∪ A ∗)+ ∪ {⌀} are
calledwords. Words inA + ∪ {⌀} are called plain words. A word that is also a single letter is called a singleton.
Any word w ∈ (A ∪ A ∗)+ can be written in the form

w = x⊛11 x⊛22 ⋅ ⋅ ⋅ x⊛mm ,

where x1, x2, . . . , xm ∈ A and ⊛1, ⊛2, . . . , ⊛m ∈ {1, ∗}; the plain projection of such a word is the plain word

w = x1x2 ⋅ ⋅ ⋅ xm.

The first and last letters that occur in a word w are denoted by ⊳w and w⊲, respectively. The number of
times that a letter x occurs in a wordw is denoted by occ(x,w). The content of a wordw is defined to be the set

con(w) = {x ∈ A : occ(x,w) ≥ 1};
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this set is partitioned into the sets

sim(w) = {x ∈ A : occ(x,w) = 1} and non(w) = {x ∈ A : occ(x,w) ≥ 2}.

The letters in sim(w) are said to be simple in w while the letters in non(w) are said to be non-simple in w.
A word w is non-simple if some letter is non-simple in it, that is, non(w) ̸= ⌀. Two words w and w� are disjoint
if con(w) ∩ con(w�) = ⌀.

An identity is written as w ≈ w�, where w and w� are words. An involution semigroup S = (S, ∗) satisfies
an identity w ≈ w� if, for any substitution ÿ : A → S, the elements wÿ and w�ÿ of S are equal. An identity
w ≈ w� is deducible from a set Σ of identities, written Σ ⊢ w ≈ w�, if every involution semigroup that satisfies
all identities in Σ, satisfies w ≈ w� as well. Two sets of identities Σ1 and Σ2 are equivalent, written Σ1 ∼ Σ2,
if the deductions Σ1 ⊢ Σ2 and Σ2 ⊢ Σ1 hold. The set of all identities satisfied by an involution semigroup S is
denoted by id(S). A subset Σ of id(S) is a basis for S if Σ ⊢ id(S). An involution semigroup is finitely based if it
possesses a finite basis.

Lemma 2.1 ([10, Lemma 2.1]). If w ≈ w� ∈ id(L), then sim(w) = sim(w�) and non(w) = non(w�).

Lemma 2.2 ([10, Lemma 2.2]). For any w,w� ∈ A +, the involution semigroup Zℜn satisfies the identity w ≈ w�

if and only if occ(x,w) ≡ occ(x,w�) (mod n) for all x ∈ A .

3 An explicit basis for L × Zℜn
If n ∈ {1, 2}, then sq(n)\{1} = ⌀, so that L × Zℜn = L × Z1n is finitely based by Theorem 1.2. If n ≥ 3, then
n − 1 ∈ sq(n)\{1}, so that sq(n)\{1} ̸= ⌀. Therefore, for the remainder of the article, assume that n ≥ 3 and
ℜ ∈ sq(n)\{1} are fixed. Furthermore, the axioms

(xy)z ≈ x(yz), (x∗)∗ ≈ x, (xy)∗ ≈ y∗x∗ (inv)

of involution semigroups are assumed to hold in all deductions. In other words, for any set Σ of identities and
any identity w ≈ w�, the deduction {(inv)} ∪ Σ ⊢ w ≈ w� is simply written as Σ ⊢ w ≈ w�.

Theorem 3.1. The identities

xn+2 ≈ x2, xn+1yx ≈ xyx, xyxn+1 ≈ xyx, (3.1a)
x2yx ≈ xyx2, (3.1b)

xyxzx ≈ xzxyx, (3.1c)
(xn)∗ ≈ xn, (3.1d)

x∗h1x
∗ ≈ xℜh1x

ℜ, (3.1e)
x∗h1xh2x ≈ xℜh1xh2x, (3.1f)
xh1x

∗h2x ≈ xh1x
ℜh2x, (3.1g)

xh1xh2x
∗ ≈ xh1xh2x

ℜ, (3.1h)
x∗h1y

⊛1h2x
⊛2h3y

⊛3 ≈ xℜh1y
⊛1h2x

⊛2h3y
⊛3 , (3.1i)

x⊛1h1y
∗h2x
⊛2h3y

⊛3 ≈ x⊛1h1y
ℜh2x
⊛2h3y

⊛3 , (3.1j)
x⊛1h1y

⊛2h2x
∗h3y
⊛3 ≈ x⊛1h1y

⊛2h2x
ℜh3y
⊛3 , (3.1k)

x⊛1h1y
⊛2h2x

⊛3h3y
∗ ≈ x⊛1h1y

⊛2h2x
⊛3h3y

ℜ, (3.1l)
(h1xyh2)

n+1 ≈ (h1yxh2)
n+1, (3.1m)

xph1y
qh2xh3y ≈ yqh1x

ph2yh3x, 1 ≤ p, q ≤ n, (3.1n)
xh1yh2xh3y ≈ xynh1yh2xh3y, (3.1o)
xh1yh2xh3y ≈ ynxh1yh2xh3y, (3.1p)
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xh1yh2xh3y ≈ xh1x
nyh2xh3y, (3.1q)

xh1yh2xh3y ≈ xh1yx
nh2xh3y, (3.1r)

xh1yh2xh3y ≈ xh1yh2xy
nh3y, (3.1s)

xh1yh2xh3y ≈ xh1yh2y
nxh3y, (3.1t)

xh1yh2xh3y ≈ xh1yh2xh3x
ny, (3.1u)

xh1yh2xh3y ≈ xh1yh2xh3yx
n, (3.1v)

x(
m

∏
i=1

(yihiy
∗
i ))x∗ ≈ x(

1

∏
i=m

(yihiy
∗
i ))x∗, m ≥ 2, (3.1w)

where hi ∈ {⌀, ℎi} and ⊛i ∈ {1, ∗} constitute a basis for the involution semigroup L × Zℜn .

Lemma 3.2. The involution semigroup L × Zℜn satisfies identities (3.1).

Proof. It follows from [10, Lemma 3.2] that the involution semigroup L satisfies identities (3.1). Since the
group Zℜn satisfies the identities xn ≈ 1, x∗ ≈ xℜ, and xy ≈ yx, it is routinely shown that it also satisfies
identities (3.1).

Some restrictions on the identities satisfied by the involution semigroup L × Zℜn are established in Sections 4
and 5. The proof of Theorem 3.1 is then given in Section 6. The basis (3.1) is shown in Section 7 to contain an
infinite irredundant basis for L × Zℜn , hence completing the proof of Theorem 1.3.

4 Connected identities and sandwich identities
Recall that two words w1 and w2 are disjoint if con(w1) ∩ con(w2) = ⌀. A non-simple word is connected if it
cannot be decomposed into a product of two disjoint nonempty words. In other words, a non-simple word w
is connected if whenever w = w1w2 for some w1,w2 ∈ (A ∪ A ∗)+, then con(w1) ∩ con(w2) ̸= ⌀. An identity
w ≈ w� is connected if the words w and w� are connected. It is shown in Section 4.1 that the involution semi-
group L × Zℜn possesses a basis that consists entirely of connected identities. In Section 4.2, a special kind of
connected identities, called sandwich identities, is introduced. It is shown in Lemma 4.4 that the involution
semigroup L × Zℜn possesses a basis that consists of (3.1) and sandwich identities.

The results in the present section, together with those from Section 5, are required in Section 6 in the
proof of Theorem 3.1.

4.1 Connected identities

Lemma 4.1. Let w ≈ w� ∈ id(L × Zℜn ). Suppose that w = w1w2 for some disjoint words w1,w2 ∈ (A ∪ A ∗)+.
Then, w� = w�1w

�
2 for some disjoint words w�1,w

�
2 ∈ (A ∪ A ∗)+ such that w1 ≈ w�1,w2 ≈ w

�
2 ∈ id(L × Zℜn ). Conse-

quently, w is connected if and only if w� is connected.

Proof. This result has been established for the case ℜ = 1 ([10, Lemma 4.1]), but its proof is independent of
the value ofℜ. Hence, the present lemma holds.

Any word u ∈ (A ∪ A ∗)+ can be decomposed as

u =
m

∏
i=1
pi,

where p1, p2, . . . , pm ∈ (A ∪ A ∗)+ are pairwise disjoint words each of which is either a singleton or a con-
nected word. It is easily seen that this decomposition of u, called the natural decomposition of u, is unique.

Lemma 4.2. The involution semigroup L × Zℜn possesses a basis that consists entirely of connected identities.
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Proof. Let u ≈ u� be any identity from a basis Σ for L × Zℜn . Suppose that u = ∏m
i=1 pi is the natural decomposi-

tion of u. Then, it follows from Lemma 4.1 that u� can be decomposed as u� = ∏m
i=1 p

�
i with pi ≈ p�i ∈ id(L × Zℜn )

for all i.

Case 1: Theword pi is a singleton. Since pi ≈ p�i ∈ id(L), it follows fromLemma 2.1 that pi, p�i ∈ {x, x∗} for some
x ∈ A . But pi ≈ p�i ∈ id(Zℜn ) and x ≈ x∗ ∉ id(Zℜn ) imply that pi = p�i .

Case 2: The word pi is connected. Then, p�i is connected by Lemma 4.1.

Therefore, for each i, the identity pi ≈ p�i is either trivial or connected. Consequently, when the identity
u ≈ u� in Σ is replaced by the connected identities from {pi ≈ p

�
i : 1 ≤ i ≤ m}, the resulting set remains a basis

for L × Zℜn .

4.2 Sandwich identities

Let≺bea total order on thealphabetA . For anynonemptyfinite subsetX ofA ,writeX = {x1 ≺ x2 ≺ ⋅ ⋅ ⋅ ≺ xr}
to indicate that x1, x2, . . . , xr are all the letters of X with x1 ≺ x2 ≺ ⋅ ⋅ ⋅ ≺ xr. For such a set X , define

X ⊞ = {xc1
1 x

c2
2 ⋅ ⋅ ⋅ xcr

r : c1, c2, . . . , cr ∈ {1, 2, . . . , n}}.

The shortest word in X ⊞ is
⃗X = x1x2 ⋅ ⋅ ⋅ xr.

For any word w ∈ (A ∪ A ∗)+ such that con(w) = {x1 ≺ x2 ≺ ⋅ ⋅ ⋅ ≺ xr}, definemin(w) = x1.
A connected word s is called a sandwich if one of the following holds.

(S.1) s = xux∗ for some x ∈ A and u ∈ (A ∪ A ∗)+ ∪ {⌀} such that x ∉ con(u),
(S.2) s = x∗ux for some x ∈ A and u ∈ (A ∪ A ∗)+ ∪ {⌀} such that x ∉ con(u),
(S.3) s = x∏ℓ

i=1(ui ⃗X ) for some ℓ ≥ 1, finite nonempty X ⊆ A , x ∈ X ⊞, and ui ∈ (A ∪ A ∗)+ ∪ {⌀} such that
(a) ⃗X , u1, u2, . . . , uℓ are pairwise disjoint and
(b) if ℓ ≥ 2, then ui ̸= ⌀ for all i andmin(u1) ≺ min(u2) ≺ ⋅ ⋅ ⋅ ≺ min(uℓ).

Specifically, for any k ∈ {1, 2, 3}, a sandwich from (S.k) is said to be of type (S.k). The level of the sandwich
in (S.3) is the number ℓ, while the level of any sandwich in (S.1) and (S.2) is defined to be one.

Remark 4.3. In (S.3), due to (b), the only case in which any of u1, u2, . . . , uℓ can be empty is when ℓ = 1 and
u1 = ⌀, that is, s = x ⃗X .

An identity s ≈ s� is a sandwich identity if the words s and s� are sandwiches. Denote by

idSan(L × Z
ℜ
n )

the set of all sandwich identities satisfied by the involution semigroup L × Zℜn .

Lemma 4.4. The set {(3.1)} ∪ idSan(L × Z
ℜ
n ) constitutes a basis for the involution semigroup L × Zℜn .

Recall from Lemma 4.2 that the set idC(L × Z
ℜ
n ) of all connected identities from id(L × Zℜn ) constitutes a basis

for L × Zℜn . As shown in Lemma 3.2, the involution semigroup L × Zℜn satisfies identities (3.1), so that the set
{(3.1)} ∪ idC(L × Z

ℜ
n ) is also a basis for L × Zℜn . It is shown in Lemma 4.7 that identities (3.1) can be used to

convert any connected word into a sandwich. Lemma 4.4 thus follows.

Lemma 4.5 ([10, Lemma 4.5]). The following identities are deducible from (3.1):

(
r

∏
i=1

xci
i )h(

r

∏
i=1

xi)
2

≈ (
r

∏
i=1

xci+1
i )h(

r

∏
i=1

xi), ci ≥ 1, r ≥ 1, (4.1a)

(
r

∏
i=1

xci
i )(

r

∏
i=1

xi)h(
r

∏
i=1

xi) ≈ (
r

∏
i=1

xci+1
i )h(

r

∏
i=1

xi), ci ≥ 1, r ≥ 1, (4.1b)

where h ∈ {⌀, ℎ}.
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Lemma 4.6. Suppose that w is any connected word. Then, identities (3.1) can be used to convert w into some
word w� such that ⊳w� = w�⊲.

Proof. Suppose that ⊳w ̸= w⊲. Then, since the word w is connected, there exist distinct letters x1, . . . , xr ∈ A

occurring in w in the overlapping manner

? ?? ?? ?? ?? ?
⋅ ⋅ ⋅
⋅ ⋅ ⋅

w = x⊛11 a1x
⊛2
2 a2x
⊛�1
1 b1x

⊛3
3 a3x
⊛�2
2 b2x

⊛4
4 a4x
⊛�3
3 b3 ⋅ ⋅ ⋅ x

⊛r
r arx
⊛�r−1
r−1 br−1x

⊛�r
r ,

where ai, bi ∈ (A ∪ A ∗)+ ∪ {⌀} and ⊛i, ⊛�i ∈ {1, ∗}. (Note that ai follows x⊛ii while bi follows x⊛
�
i

i .) Then, identi-
ties {(3.1b), (3.1i), (3.1j), (3.1k), (3.1l)} can be used to convert w into

xp1
1 a1x

p2
2 a2x1b1x

p3
3 a3x2b2x

p4
4 a4x3b3 ⋅ ⋅ ⋅ x

pr
r arxr−1br−1xr,

where pi, qi ≥ 1. Hence,

w
(3.1)
≈ xp1

1 a1x
p2
2 a2x1b1x

p3
3 a3x2b2x

p4
4 a4x3b3 ⋅ ⋅ ⋅ x

pr
r arxr−1br−1xr

(3.1v)
≈ xp1

1 a1x
p2
2 a2x1b1x

p3
3 a3x2x

n
1b2x

p4
4 a4x3b3 ⋅ ⋅ ⋅ x

pr
r arxr−1br−1xr

(3.1v)
≈ xp1

1 a1x
p2
2 a2x1b1x

p3
3 a3x2x

n
1b2x

p4
4 a4x3x

n
1b3 ⋅ ⋅ ⋅ x

pr
r arxr−1br−1xr

...
(3.1v)
≈ xp1

1 a1x
p2
2 a2x1b1x

p3
3 a3x2x

n
1b2x

p4
4 a4x3x

n
1b3 ⋅ ⋅ ⋅ x

pr
r arxr−1x

n
1br−1xr

(3.1v)
≈ xp1

1 a1x
p2
2 a2x1b1x

p3
3 a3x2x

n
1b2x

p4
4 a4x3x

n
1b3 ⋅ ⋅ ⋅ x

pr
r arxr−1x

n
1br−1xrx

n
1

= w�,

where ⊳w� = x1 = w�⊲.

Lemma 4.7. Suppose that w is any connected word. Then, identities (3.1) can be used to convert w into some
sandwich s with sim(w) = sim(s) and non(w) = non(s).

Proof. By Lemma 4.5, it su�ces to convert the word w, using identities (3.1) and (4.1), into some sandwich s
with sim(w) = sim(s) and non(w) = non(s). By Lemma 4.6, it can be assumed that x1 = ⊳w = w⊲. Then, w can
be written as

w = x⊛01
m1

∏
i=1

(w1, ix
⊛i
1 ),

where m1 ≥ 1, ⊛i ∈ {1, ∗}, and w1, i ∈ (A ∪ A ∗)+ ∪ {⌀} with x1 ∉ con(w1, i) for all i. If m1 = 1, then w is either
x1w1,1x1, x1w1,1x

∗
1 , x∗

1w1,1x1, or x∗
1w1,1x

∗
1 ; the first three words are sandwiches while identities (3.1) can be

used to convert the fourth word into a sandwich of type (S.3), that is,

x∗
1w1,1x

∗
1

(3.1e)
≈ xℜ

1 w1,1x
ℜ
1

(3.1b)
≈ x2ℜ−1

1 w1,1x1
(3.1a)
≈ xc

1w1,1x1,

where c ∈ {1, 2, . . . , n} is such that c ≡ 2ℜ − 1 (mod n). Therefore, assume thatm1 ≥ 2, so that identities (3.1e)–
(3.1h) can be used to replace any x∗

1 by xℜ
1 .

Suppose that w1, i and w1,j are not disjoint with i ̸= j, say x2 ∈ con(w1, i) ∩ con(w1,j). Then,

w = x1h1x
⊛�1
2 h2x1h3x

⊛�2
2 h4x1

for some hi ∈ (A ∪ A ∗)+ ∪ {⌀} and ⊛�i ∈ {1, ∗}. Identities (3.1i)–(3.1l) can first be used to replace any x∗
2 by xℜ

2
and identities (3.1o)–(3.1v) can thenbeused to perform the replacement (x1, x2) Ü→ (x1x

n
2 , x

n
1x2). The resulting

word is of the form
xc0,1
1 xc0,2

2

m2

∏
i=1

(w2,i x
ci,1
1 xci,2

2 ),
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wherem2 ≥ 2, ci,j ≥ 1, andw2, i ∈ (A ∪ A ∗)+ ∪ {⌀}with x1, x2 ∉ con(w2, i) for all i. Similarly, ifw2, i andw2,j are
not disjoint with i ̸= j, say x3 ∈ con(w2, i) ∩ con(w2,j), then identities (3.1i)–(3.1l) can first be used to replace any
x∗
3 by xℜ

3 and identities (3.1o)–(3.1v) can then be used to perform the replacement (xci,2
2 , x3) Ü→ (xci,2

2 xn
3 , x

n
1x

n
2x3).

The resulting word is of the form
xc0,1
1 xc0,2

2 xc0,3
3

m3

∏
i=1

(w3, i x
ci,1
1 xci,2

2 xci,3
3 ),

where m3 ≥ 2, ci,j ≥ 1, and w3, i ∈ (A ∪ A ∗)+ ∪ {⌀} with x1, x2, x3 ∉ con(w3, i) for all i. This can be repeated
until a word of the form

xc0,1
1 xc0,2

2 ⋅ ⋅ ⋅ xc0,r
r

mr

∏
i=1

(wr,i x
ci,1
1 xci,2

2 ⋅ ⋅ ⋅ xci,r
r )

is obtained, wheremr ≥ 2, ci,j ≥ 1, andwr,1,wr,2, . . . ,wr, mr
∈ (A ∪ A ∗)+ ∪ {⌀} are pairwise disjoint wordswith

x1, x2, . . . , xr ∉ con(wr,i) for all i. It is easily seen that identities (3.1a) and (3.1b) can be used to convert thisword
into

w� = xc1
1 x

c2
2 ⋅ ⋅ ⋅ xcr

r

mr

∏
i=1

(wr,i x1x2 ⋅ ⋅ ⋅ xr),

where 1 ≤ ci ≤ n. Let ð denote the permutation on {1, 2, . . . , r} such that
x1ð ≺ x2ð ≺ ⋅ ⋅ ⋅ ≺ xrð.

Then,

w�
(3.1a)
≈ xc1

1 x
c2
2 ⋅ ⋅ ⋅ xcr

r wr,1x1x2 ⋅ ⋅ ⋅ xr

mr

∏
i=2

(wr, i(x1x2 ⋅ ⋅ ⋅ xr)
n+1)

(3.1n)
≈ xc1ð

1ðx
c2ð
2ð ⋅ ⋅ ⋅ xcrð

rðwr,1x1ðx2ð ⋅ ⋅ ⋅ xrð

mr

∏
i=2

(wr, i(x1x2 ⋅ ⋅ ⋅ xr)
n+1)

(3.1m)
≈ xc1ð

1ðx
c2ð
2ð ⋅ ⋅ ⋅ xcrð

rðwr,1x1ðx2ð ⋅ ⋅ ⋅ xrð

mr

∏
i=2

(wr, i(x1ðx2ð ⋅ ⋅ ⋅ xrð)
n+1)

(3.1a)
≈ xc1ð

1ðx
c2ð
2ð ⋅ ⋅ ⋅ xcrð

rð

mr

∏
i=1

(wr, ix1ðx2ð ⋅ ⋅ ⋅ xrð).

In summary, identities (3.1) can be used to convert w into a word of the form

s = x
ℓ

∏
i=1

(ui ⃗X ),

where ℓ ≥ 1, X = {x1 ≺ x2 ≺ ⋅ ⋅ ⋅ ≺ xr} ⊆ A , x = xc1
1 x

c2
2 ⋅ ⋅ ⋅ xcr

r ∈ X ⊞, and ui ∈ (A ∪ A ∗)+ ∪ {⌀} are such that
⃗X , u1, u2, . . . , uℓ are pairwise disjoint. Let c�i be the number in {1, 2, . . . , n} such that ci + 1 ≡ c�i (mod n).

If u1 = ⌀, then

s = xc1
1 x

c2
2 ⋅ ⋅ ⋅ xcr

r
⃗X u2 ⃗X

ℓ

∏
i=3

(ui ⃗X )
(4.1b)
≈ xc1+1

1 xc2+1
2 ⋅ ⋅ ⋅ xcr+1

r u2 ⃗X
ℓ

∏
i=3

(ui ⃗X )
(3.1a)
≈ xc�1

1 x
c�2
2 ⋅ ⋅ ⋅ xc�r

r u2 ⃗X
ℓ

∏
i=3

(ui ⃗X )

and if uj = ⌀ for some j ∈ {2, 3, . . . , ℓ}, then

s = xc1
1 x

c2
2 ⋅ ⋅ ⋅ xcr

r (
j−1

∏
i=1

(ui ⃗X )) ⃗X (
ℓ

∏
i=j+1

(ui ⃗X ))

(4.1a)
≈ xc1+1

1 xc2+1
2 ⋅ ⋅ ⋅ xcr+1

r (
j−1

∏
i=1

(ui ⃗X ))(
ℓ

∏
i=j+1

(ui ⃗X ))

(3.1a)
≈ xc�1

1 x
c�2
2 ⋅ ⋅ ⋅ xc�r

r (
j−1

∏
i=1

(ui ⃗X ))(
ℓ

∏
i=j+1

(ui ⃗X )).

Hence, for any i, if the factor ui is empty, then the ⃗X that follows it can be “combined” with the prefix x.
Therefore, it can further be assumed that either
(A) s = x ⃗X or
(B) ui ̸= ⌀ for all i.
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If (A) holds, then the word s is a sandwich of type (S.3). Hence, assume that (B) holds. It remains to show
that if ℓ ≥ 2, then identities (3.1) can be used to rearrange the factors u1, u2, . . . , uℓ, so that s satisfies (S.3)(b)
and is a sandwich of type (S.3). To interchange uj and uj+1 for any j ≥ 2, identity (3.1c) can clearly be used. To
interchange u1 and u2,

s
(3.1a)
≈ xu1 ⃗X u2 ⃗X ⃗X ⃗X

n−1 ℓ

∏
i=3

(ui ⃗X )

(3.1b)
≈ ⃗X u1 ⃗X u2 ⃗X x ⃗X

n−1 ℓ

∏
i=3

(ui ⃗X )

(3.1c)
≈ ⃗X u2 ⃗X u1 ⃗X x ⃗X

n−1 ℓ

∏
i=3

(ui ⃗X )

(3.1b)
≈ xu2 ⃗X u1 ⃗X ⃗X ⃗X

n−1 ℓ

∏
i=3

(ui ⃗X )

(3.1a)
≈ xu2 ⃗X u1 ⃗X

ℓ

∏
i=3

(ui ⃗X ).

Throughout this proof, identities (3.1) have been used to convert the wordw into a sandwich s. Therefore,
w ≈ s ∈ id(L) by Lemma 3.2, so that sim(w) = sim(s) and non(w) = non(s) by Lemma 2.1.

5 Restrictions on sandwich identities
The present section establishes some properties of sandwich identities satisfied by the involution semi-
group L × Zℜn . In Section 5.1, it is shown that any two sandwiches that form such an identity must share the
same type and level. In Section 5.2, refined identities are introduced; these are identities formed by certain
sandwiches of level one. It is shown in Lemma 5.8 that refined identities satisfied by the involution semigroup
L × Zℜn are of very specific form.

The results established in the present section are required in Section 6 in the proof of Theorem 3.1.

5.1 Type of sandwiches forming sandwich identities

Lemma 5.1. Suppose that s ≈ s� ∈ idSan(L × Z
ℜ
n ), where s = xux∗ is the sandwich in (S.1). Then, s� = xu�x∗ for

some u� ∈ (A ∪ A ∗)+ ∪ {⌀} with x ∉ con(u) = con(u�). Consequently, s is of type (S.1) if and only if s� is of
type (S.1).

Proof. Let ÿ : A → L denote the substitution given by

zÿ =
{
{
{

fe if z = x,

e otherwise.

Then, sÿ = fef = s�ÿ. It follows that
s�ÿ = fe ⋅ e ⋅ e ⋅ ⋅ ⋅ e ⋅ ef,

whence s� = xu�x∗ for someu� ∈ (A ∪A ∗)+∪{⌀}withx ∉ con(u�). Furthermore, con(s) = con(s�)by Lemma 2.1,
so that x ∉ con(u) = con(u�).

Lemma 5.2. Suppose that s ≈ s� ∈ idSan(L × Z
ℜ
n ), where s = x∗ux is the sandwich in (S.2). Then, s� = x∗u�x for

some u� ∈ (A ∪ A ∗)+ ∪ {⌀} with x ∉ con(u) = con(u�). Consequently, s is of type (S.2) if and only if s� is of
type (S.2).

Proof. This is symmetric to Lemma 5.1.
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Lemma 5.3. Suppose that s ≈ s� ∈ idSan(L × Z
ℜ
n ), where

s = x
ℓ

∏
i=1

(ui ⃗X )

is the sandwich in (S.3). Then,

s� = x
ℓ

∏
i=1

(u�i ⃗X )

for some u�1, u
�
2, . . . , u

�
ℓ ∈ (A ∪ A ∗)+ ∪ {⌀} such that con(ui) = con(u�i ) for all i. Consequently, s is of type (S.3) if

and only if s� is of type (S.3).

Proof. Following the proof of [10, Lemma 5.3], there holds

s� = y
ℓ

∏
i=1

(u�i ⃗X )

for some y ∈ X ⊞ and u�1, u�2, . . . , u�ℓ ∈ (A ∪ A ∗)+ ∪ {⌀} such that con(ui) = con(u�i ) for all i. Since

X ∩ con(u1 ⋅ u2 ⋅ ⋅ ⋅ uℓ) = ⌀

by (S.3)(a) and s ≈ s� ∈ id(Zℜn ), where ℤn has a unit element, Zℜn satisfies the identity x ⃗X
ℓ
≈ y ⃗X

ℓ obtained
from s ≈ s� by retaining the letters in X . Since x ⃗X

ℓ
, y ⃗X

ℓ
∈ A +, it follows from Lemma 2.2 that x = y.

Lemma 5.4. Suppose that s ≈ s� ∈ idSan(L × Z
ℜ
n ), where

s = x
ℓ

∏
i=1

(ui ⃗X ) and s� = x
ℓ

∏
i=1

(u�i ⃗X )

are the sandwiches of type (S.3) in Lemma 5.3. Then,

{(3.1), s ≈ s�} ∼ {(3.1)} ∪ {xuix ≈ xu�ix : 1 ≤ i ≤ ℓ}.

Proof. For each i ∈ {1, 2, . . . , ℓ}, let ÿi : A → A + denote the substitution given by

zÿi =
{
{
{

z if z ∈ con(ui) = con(u�i ),

xn otherwise.

Note that for any w ∈ (A ∪ A ∗)+ such that w and ui are disjoint, the image wÿi belongs to {xn, (xn)∗}+. There-
fore, identity (3.1d) can be used to convert wÿi into the plain word wÿi in {xn}+. Hence, by (S.3)(a),

x(sÿi)x = x((xu1 ⃗X ⋅ ⋅ ⋅ ui−1 ⃗X )ÿi)ui(( ⃗X ui+1 ⃗X ⋅ ⋅ ⋅ uℓ ⃗X )ÿi)x

(3.1d)
≈ x((xu1 ⃗X ⋅ ⋅ ⋅ ui−1 ⃗X )ÿi)ui(( ⃗X ui+1 ⃗X ⋅ ⋅ ⋅ uℓ ⃗X )ÿi)x

(3.1a)
≈ xuix,

so that (3.1) ⊢ x(sÿi)x ≈ xuix. Similarly, the deduction (3.1) ⊢ x(s�ÿi)x ≈ xu�ix holds. Thus, the deduction
{(3.1), s ≈ s�} ⊢ xuix ≈ xu�ix holds. Conversely,

s = xc1
1 x

c2
2 ⋅ ⋅ ⋅ xcr

r u1 ⃗X
ℓ

∏
i=2

(ui ⃗X )

(3.1t)
≈ xc1

1 x
c2
2 ⋅ ⋅ ⋅ xcr

r u1x
n
r

⃗X
ℓ

∏
i=2

(ui ⃗X )

≈ xc1
1 x

c2
2 ⋅ ⋅ ⋅ xcr

r u
�
1x

n
r

⃗X
ℓ

∏
i=2

(u�i ⃗X ) by xuix ≈ xu�ix

(3.1t)
≈ s�.

Therefore, the deduction {(3.1)} ∪ {xuix ≈ xu�ix : 1 ≤ i ≤ ℓ} ⊢ s ≈ s� holds.
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5.2 Refined identities

By Lemmas 5.1–5.3, any identity in idSan(L × Z
ℜ
n ) is formed by a pair of sandwiches that share the same type

and level. Therefore, it is unambiguous todefine the typeand levelof a sandwich identity s ≈ s� in idSan(L × Z
ℜ
n )

to be, respectively, the type and level shared by the sandwiches s and s�. The present subsection investigates
identities in idSan(L × Z

ℜ
n ) of level one.

Consider a word r of the form

r = x(
k

∏
i=1
pi)x⊛, (5.1)

where k ≥ 1, x ∈ A , ⊛ ∈ {1, ∗}, and pi ∈ (A ∪ A ∗)+ are such that x, p1, p2, . . . , pk are pairwise disjoint. Note
that depending on⊛, theword r is a level one sandwich of type (S.1) or (S.3). This sandwich is said to be refined
if it satisfies both that
(R.1) each pi is either a singleton or a sandwich and
(R.2) if p1, p2, . . . , pk are all sandwiches with k ≥ 2, thenmin(p1) ≺ min(pk).
An identity r ≈ r� is a refined identity if the words r and r� are refined sandwiches. Denote by

idRef(L × Z
ℜ
n )

the set of all refined identities satisfied by the involution semigroup L × Zℜn .

Lemma 5.5. Suppose that s ≈ s� ∈ idSan(L × Z
ℜ
n ). Then, there exists some finite subset Σ of idRef(L × Z

ℜ
n ) such

that the equivalence {(3.1), s ≈ s�} ∼ {(3.1)} ∪ Σ holds. Furthermore, each identity r ≈ r� in Σ can be chosen so
that |sim(r)| ≤ |sim(s)| and |non(r)| ≤ |non(s)|.

Proof. There are three cases depending on the type of the sandwich identity s ≈ s�.

Case 1: The word s ≈ s� is of type (S.1). Then, by Lemma 5.1,
s = xux∗ and s� = xu�x∗

for some x ∈ A and u, u� ∈ (A ∪ A ∗)+ ∪ {⌀} such that x ∉ con(u) = con(u�). If con(u) = con(u�) = ⌀, then
the identity s ≈ s� is trivial, so that the result holds with Σ = ⌀. Hence, assume that con(u) = con(u�) ̸= ⌀.
In what follows, it is shown that identities (3.1) can be used to convert s into some refined sandwich r.
Similarly, identities (3.1) can be used to convert s� into some refined sandwich r�. Hence, the equivalence
{(3.1), s ≈ s�} ∼ {(3.1), r ≈ r�} holds. Since the deduction (3.1) ⊢ s ≈ r holds, it follows from Lemma 3.2 that
s ≈ r ∈ id(L), whence |sim(r)| = |sim(s)| and |non(r)| = |non(s)| by Lemma 2.1.

Let u = ∏k
i=1 pi be the natural decomposition of u, so that x, p1, p2, . . . , pk are pairwise disjoint and each pi

is either a singletonor a connectedword. ByLemma4.7, identities (3.1) canbeused to convert any connectedpi
into some sandwich si with sim(pi) = sim(si) and non(pi) = non(si). Therefore, it can be assumed that s satis-
fies (R.1). If s also satisfies (R.2), then s is already refined. Hence, suppose that s does not satisfy (R.2), that is,
p1, p2, . . . , pk are all sandwicheswith k ≥ 2, butmin(p1) ⊀ min(pk). Then,min(pk) ≺ min(p1) because p1 and pk
are disjoint. Let x1 be the first letter of pi. If pi is of type (S.1), then pi = x1wx

∗
1 for some w ∈ (A ∪ A ∗)+ ∪ {⌀}.

If pi is of type (S.2), then pi = x∗
1wx1 for some w ∈ (A ∪ A ∗)+ ∪ {⌀}, so that

pi
(inv)
≈ x∗

1w(x
∗
1 )

∗.

If pi is of type (S.3), then
pi = xc1

1 x
c2
2 ⋅ ⋅ ⋅ xcr

r wx1x2 ⋅ ⋅ ⋅ xr

for some w ∈ (A ∪ A ∗)+ ∪ {⌀} and X = {x1 ≺ x2 ≺ ⋅ ⋅ ⋅ ≺ xr} ⊆ A , so that

pi
(3.1a)
≈ xn

1pi
(3.1v)
≈ xn

1pix
n
1

(3.1h)
≈ xn

1pix
n−ℜ
1 x∗

1 .

Therefore, regardless of type, there exist ℎi ∈ A ∪ A ∗ and wi ∈ (A ∪ A ∗)+ ∪ {⌀} such that pi
(3.1)
≈ ℎiwiℎ

∗
i .

Hence,

s = x(
k

∏
i=1
pi)x∗ (3.1)

≈ x(
k

∏
i=1

(ℎiwiℎ
∗
i ))x∗ (3.1w)

≈ x(
1

∏
i=k

(ℎiwiℎ
∗
i ))x∗ (3.1)

≈ x(
1

∏
i=k
pi)x∗.

Sincemin(pk) ≺ min(p1), the word r = x(∏1
i=k pi)x

∗ is the required refined sandwich.
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Case 2: The word s ≈ s� is of type (S.2). Then, by Lemma 5.2,

s = x∗ux and s� = x∗u�x

for some x ∈ A and u, u� ∈ (A ∪ A ∗)+ ∪ {⌀} such that x ∉ con(u) = con(u�). It is clear that the equivalence
{(3.1), s ≈ s�} ∼ {(3.1), xux∗ ≈ xu�x∗} holds. Since xux∗ ≈ xu�x∗ is a sandwich identity of type (S.1), the result
follows from Case 1.

Case 3: The word s ≈ s� is of type (S.3). Then, by Lemma 5.3,

s = x
ℓ

∏
i=1

(ui ⃗X ) and s� = x
ℓ

∏
i=1

(u�i ⃗X )

for some ℓ ≥ 1, finite nonempty X ⊆ A , x ∈ X ⊞, and ui, u�i ∈ (A ∪ A ∗)+ ∪ {⌀} such that con(ui) = con(u�i )
for each i and ⃗X , u1, u2, . . . , uℓ are pairwise disjoint. By Lemma 5.4, the equivalence
(A) {(3.1), s ≈ s�} ∼ {(3.1)} ∪ {xuix ≈ xu�ix : 1 ≤ i ≤ ℓ}
holds. It is easily seen that
(B) |sim(xuix)| ≤ |sim(s)| and |non(xuix)| ≤ |non(s)| for all i.
For each i, the arguments in Case 1 can be repeated to show that the equivalence
(C) {(3.1), xuix ≈ xu�ix} ∼ {(3.1), ri ≈ r�i}
holds for some ri ≈ r�i ∈ idRef(L × Z

ℜ
n ) such that

(D) |sim(ri)| = |sim(xuix)| and |non(ri)| = |non(xuix)|.
Hence, the equivalence {(3.1), s ≈ s�} ∼ {(3.1)} ∪ {ri ≈ r

�
i : 1 ≤ i ≤ ℓ}holds by (A) and (C),where |sim(ri)| ≤ |sim(s)|

and |non(ri)| ≤ |non(s)| by (B) and (D).

Lemma 5.6 ([8, Lemma 13]). Let w ≈ w� ∈ id(L), where w,w� ∈ A +. Suppose that w belongs to

P↑k = {xq1yt1
1 y

t2
2 ⋅ ⋅ ⋅ ytk

k x
q2 : qi ≥ 1, tj ≥ 2}

for some k ≥ 2. Then, w� belongs to eitherP↑k or

P↓k = {xq1ytk
k y

tk−1
k−1 ⋅ ⋅ ⋅ y

t1
1 x

q2 : qi ≥ 1, tj ≥ 2}.

Lemma 5.7. Let x ∈A and let s, s� be sandwiches with x ∉ con(s) = con(s�). Suppose that xsx ≈ xs�x ∈ id(L × Zℜn ).
Then, s ≈ s� ∈ id(L × Zℜn ).

Proof. This result has been established for the case ℜ = 1 ([10, Lemma 5.8]), but its proof is independent of
the value ofℜ. Hence, the present lemma holds.

Lemma 5.8. Suppose that r ≈ r� ∈ idRef(L × Z
ℜ
n ), where

r = x(
k

∏
i=1
pi)x⊛

is the refined sandwich in (5.1). Then,

r� = x(
k

∏
i=1
p�i)x⊛

for some p�1, p
�
2, . . . , p

�
k ∈ (A ∪ A ∗)+ such that x, p�1, p

�
2, . . . , p

�
k are pairwise disjoint, con(pi) = con(p�i ) for all i,

and each p�i is either a singleton or a sandwich. Furthermore, for each i,
(i) pi and p�i are either both singletons or both sandwiches,
(ii) if pi and p�i are both singletons, then pi = p�i ,
(iii) if pi and p�i are both sandwiches, then pi ≈ p�i ∈ idSan(L × Z

ℜ
n ).

Proof. It follows from the assumption and Lemmas 5.1–5.3 that r� = xu�x⊛ for some u� ∈ (A ∪ A ∗)+ such that
(A) x ∉ con(u�) = con(p1 ⋅ p2 ⋅ ⋅ ⋅ pk).
Let u� = ∏k�

i=1 p
�
i be the natural decomposition of u�, so that

r� = x(
k�

∏
i=1
p�i)x⊛,
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where
(B) each p�i is either a singleton or a sandwich and x, p�1, p

�
2, . . . , p

�
k� are pairwise disjoint.

It is first shown that k = k� and con(pi) = con(p�i ) for all i.
Let ÿ : A → A + denote the substitution given by

zÿ =
{
{
{

yn
i if z ∈ con(pi),

xn otherwise.

Note that for any w ∈ (A ∪ A ∗)+, the image wÿ belongs to

(A ÿ ∪ (A ÿ)∗)+ = {xn, yn
1 , y

n
2 , . . . , y

n
k , (x

n)∗, (yn
1 )

∗, (yn
2 )

∗, . . . , (yn
k)

∗}+.

Therefore, identity (3.1d) can be used to convert wÿ into the plain word wÿ in {xn, yn
1 , y

n
2 , . . . , y

n
k}
+. Hence,

rÿ
(3.1d)
≈ rÿ = xn(

k

∏
i=1

yn|pi|
i )xn and r�ÿ (3.1d)

≈ r�ÿ = xn(
k�

∏
i=1
p�iÿ)xn.

Since rÿ ≈ r�ÿ ∈ id(L) and rÿ ∈ P↑k, Lemma 5.6 implies that r�ÿ ∈ P↑k ∪P↓k, that is,
(C) xn(∏k�

i=1 p
�
iÿ)x

n ∈ P↑k ∪P↓k.
Furthermore, since

con(p�iÿ) ⊆ con(u�ÿ)
(A)
= con((p1p2 ⋅ ⋅ ⋅ pk)ÿ) = {y1, y2, . . . , yk},

it follows that
(D) con(p�iÿ) ⊆ {y1, y2, . . . , yk} for each i ∈ {1, 2, . . . , k�}.
Recall that each p�i is either a singleton or a sandwich. If p�i is a singleton, then clearly con(p�iÿ) = {yj}
for some j. Suppose that p�i is a sandwich. Then, p�i is connected, so that p�iÿ is a connected factor of
r�ÿ ∈ P↑k ∪P↓k. The connected factors of words inP↑k ∪P↓k are

xq1yt1
1 y

t2
2 ⋅ ⋅ ⋅ ytk

k x
q2 , xq1ytk

k y
tk−1
k−1 ⋅ ⋅ ⋅ y

t1
1 x

q2 , qi ≥ 1, tj ≥ 2,

and
xt, yt

1, y
t
2, . . . , y

t
k, t ≥ 2.

But since x ∉ con(p�iÿ) by (D), the word p�iÿ can only be one of yt
1, y

t
2, . . . , y

t
k, so that con(p�iÿ) = {yj} for some j.

Hence, regardless of whether p�i is a singleton or a sandwich,
(E) con(p�iÿ) = {yj} for some j.
It follows that con(p�i ) ⊆ con(pj) for some j. By a symmetric argument, the inclusion con(pj) ⊆ con(p�m) holds
for somem, so that con(p�i ) ⊆ con(pj) ⊆ con(p�m). Since thewords p�i and p�m are either equal or disjoint, p�i = p�m
is the only possibility, whence con(p�i ) = con(pj). It has just been shown that for each i ∈ {1, 2, . . . , k�}, there
exists some j ∈ {1, 2, . . . , k} such that con(p�i ) = con(pj). Since con(p1 ⋅ p2 ⋅ ⋅ ⋅ pk) = con(p�1 ⋅ p

�
2 ⋅ ⋅ ⋅ p

�
k� ) by (A), it

follows that
(F) k = k� and
(G) there exists a one-to-one correspondence between

con(p1), con(p2), . . . , con(pk) and con(p�1), con(p�2), . . . , con(p�k).

Furthermore, (C) and (F) imply that either

xn(
k

∏
i=1
p�iÿ)xn ∈ P↑k or xn(

k

∏
i=1
p�iÿ)xn ∈ P↓k.

It thus follows from (E) that either
(H) (con(p�1), con(p�2), . . . , con(p�k)) = (con(p1), con(p2), . . . , con(pk)) or
(H’) (con(p�1), con(p�2), . . . , con(p�k)) = (con(pk), con(pk−1), . . . , con(p1)).
Now Lemma 2.1 implies that
(I) sim(r) = sim(r�) and non(r) = non(r�).
If k = 1, then (H) clearly holds, so assume that k ≥ 2.
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Case 1: The words p1, p2, . . . , pk are all sandwiches. Then, in view of (B) and (I), either (H) or (H’) implies
that p�1, p�2, . . . , p�k are also sandwiches. Hence, (H) must hold by (R.2).

Case 2: The word pi is a singleton for some i. Then, pi ∈ {y, y∗} for some y ∈ sim(r). It follows from either (H)
or (H’) that con(p�j) = {y} for some j, whence p�j ∈ {y, y∗} by (I). If pi ̸= p�j, so that (pi, p�j) ∈ {(y, y∗), (y∗, y)},
then since the group Zℜn satisfies r ≈ r� and has a unit element, it also satisfies the identity y∗ ≈ y; this is
impossible because g∗ = gℜ ̸= g. Therefore, pi = p�j ∈ {y, y∗}. Now since k ≥ 2, either 1 < i or i < k. By symme-
try, assume that 1 < i. Let ö : A → L denote the substitution given by

zö =

{{{{{{
{{{{{{
{

e if z ∈ con(p1 ⋅ p2 ⋅ ⋅ ⋅ pi−1),

ef if z = y and pi = y,

fe if z = y and pi = y∗,

f otherwise.

Then,

rö = (x ⋅ p1 ⋅p2 ⋅ ⋅ ⋅pi−1 ⋅ pi ⋅ pi+1 ⋅ ⋅ ⋅ pk ⋅ x)ö

= f ⋅ e ⋅ e ⋅ ⋅ ⋅ e ⋅ ef ⋅ f ⋅ ⋅ ⋅ f ⋅ f (5.2)
= fef.

If (H’) holds, then r�ö is the product (5.2) in reverse order, that is,

r�ö = f ⋅ f ⋅ ⋅ ⋅ f ⋅ ef ⋅ e ⋅ e ⋅ ⋅ ⋅ e ⋅ f = 0.

But this is impossible, so that (H’) cannot hold. Therefore, (H) must hold.
Hence, (H) holds in any case. It then follows from (B) and (I) that (i) and (ii) hold. It remains to verify

that (iii) also holds. Suppose that pi and p�i are sandwiches. Let ÷ : A → A denote the substitution given by

z÷ =
{
{
{

z if z ∈ con(pi) = con(p�i ),

xn otherwise.

Then, the deductions (3.1a) ⊢ {x(r÷)x ≈ xpix, x(r
�÷)x ≈ xp�ix} hold, so that the deduction {(3.1a), r ≈ r�} ⊢

xpix ≈ xp�ixalsoholds. It now follows fromLemma3.2 thatxpix ≈ xp�ix ∈ id(L × Zℜn ). Hence,pi ≈ p�i ∈ id(L × Zℜn )
by Lemma 5.7.

6 Proof of Theorem 3.1
In this section, the following statement is established for eachm ≥ 1.
(§m) If s ≈ s� ∈ idSan(L × Z

ℜ
n ) with |non(s)| ≤ m, then (3.1) ⊢ s ≈ s�.

Hence, the deduction (3.1) ⊢ idSan(L × Z
ℜ
n ) holds. It follows from Lemma 4.4 that the deduction

{(3.1)} ∪ idSan(L × Z
ℜ
n ) ⊢ id(L × Zℜn )

holds. Therefore, the proof of Theorem 3.1 is complete.

Lemma 6.1. The statement (§1) holds.

Proof. Suppose that s ≈ s� ∈ idSan(L × Z
ℜ
n ) with |non(s)| = 1. Then, by Lemma 5.5, there exists some finite

Σ ⊆ idRef(L × Z
ℜ
n ) such that

(A) {(3.1), s ≈ s�} ∼ {(3.1)} ∪ Σ and
(B) each r ≈ r� ∈ Σ satisfies |sim(r)| ≤ |sim(s)| and |non(r)| ≤ |non(s)| = 1.
Consider any r ≈ r� ∈ Σ. Generality is not lost by assuming that r = x(∏k

i=1 pi)x
⊛ is the refined sandwich

in (5.1). Then, Lemma 5.8 implies that r� = x(∏k
i=1 p

�
i )x
⊛ for some p�i ∈ (A ∪ A ∗)+ such that con(pi) = con(p�i )
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for all i. Since 1 = |non(r)| = |non(r�)| by (B) and Lemma 2.1, it follows from (i) and (ii) of Lemma 5.8 that pi
and p�i are the same singleton. Hence, the identity r ≈ r� is trivial.

Since the identity r ≈ r� is arbitrary in Σ, every identity in Σ is trivial. The deduction (3.1) ⊢ s ≈ s� thus
follows from (A).

Lemma 6.2. Suppose that the statement (§m) holds. Then, the statement (§m+1) also holds.

Proof. Suppose that s ≈ s� ∈ idSan(L × Z
ℜ
n ) with |non(s)| = m + 1. Then, by Lemma 5.5, there exists some finite

Σ ⊆ idRef(L × Z
ℜ
n ) such that

(A) {(3.1), s ≈ s�} ∼ {(3.1)} ∪ Σ and
(B) each r ≈ r� ∈ Σ satisfies |sim(r)| ≤ |sim(s)| and |non(r)| ≤ |non(s)| = m + 1.
Consider any r ≈ r� ∈ Σ. Generality is not lost by assuming that r = x(∏k

i=1 pi)x
⊛ is the refined sandwich

in (5.1). Then, Lemma 5.8 implies that r� = x(∏k
i=1 p

�
i )x
⊛ for some p�i ∈ (A ∪ A ∗)+ such that con(pi) = con(p�i )

for all i. By (i) of Lemma 5.8, the words pi and p�i are both singletons or both sandwiches.

Case 1: The words pi and p�i are singletons. Then, one has pi = p�i by (ii) of Lemma 5.8, so that the deduction
(3.1) ⊢ pi ≈ p�i holds vacuously.

Case 2: The words pi and p�i are both sandwiches. Then, pi ≈ p�i ∈ idSan(L × Z
ℜ
n ) by (iii) of Lemma 5.8. Since

|non(pi)| < |non(r)| ≤ m + 1 by (B), the deduction (3.1) ⊢ pi ≈ p�i follows from (§m).

Therefore, the deduction (3.1) ⊢ pi ≈ p�i holds in any case. Since

r = x(
k

∏
i=1
pi)x⊛

(3.1)
≈ x(

k

∏
i=1
p�i)x⊛ = r�,

the deduction (3.1) ⊢ r ≈ r� also holds. The identity r ≈ r� is arbitrary in Σ, so that (3.1) ⊢ Σ. Consequently, the
deduction (3.1) ⊢ s ≈ s� follows from (A).

7 Irredundant basis property

7.1 Terms, identities, and deducibility

The set TA of terms over A is the smallest set that satisfies all of the following:
∙ A ⊆ TA ,
∙ if t1, t2 ∈ TA , then t1t2 ∈ TA ,
∙ if t ∈ TA , then t∗ ∈ TA .
The subterms of a term t are defined as follows:
∙ t is a subterm of t,
∙ if t1t2 is a subterm of t, where t1, t2 ∈ TA , then t1 and t2 are subterms of t,
∙ if u∗ is a subterm of t, where u ∈ TA , then u is a subterm of t.

Remark 7.1. Note the following.
(i) The inclusion (A ∪ A ∗)+ ⊂ TA holds.
(ii) The identities (inv) can be used to convert any term t ∈ TA into a unique word in (A ∪ A ∗)+; denote this

unique word by ⌊t⌋.
(iii) If u is a subterm of a term t ∈ TA , then either ⌊u⌋ or ⌊u∗⌋ is a factor of the word ⌊t⌋.

For the remainder of this article, identities t ≈ t� are formed by terms t, t� ∈ TA . An identity w ≈ w� formed
by words w,w� ∈ (A ∪ A ∗)+ is called a word identity. The objective of Sections 3–6 was to prove that iden-
tities (3.1) constitute a basis for the involution semigroup L × Zℜn . In view of (ii) of Remark 7.1, this task was
achievable by working mainly with word identities. However, the situation is di�erent in the present section,
where the goal is to
(‡) extract from (3.1) an infinite irredundant basis for L × Zℜn ;
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see Theorem 7.4. Each identity from this extracted basis is shown to be undeducible from all other identities
in the basis, and this involves examining deduction sequences that generally contain terms instead of only
words. Working with only word identities is thus insu�cient.

Due to (‡), the concept of deducibility of identities, first defined in Section 2, has to be treated more
formally. An identity x ≈ y is directly deducible from an identity u ≈ v if there exists some substitution
ÿ : A → TA such that uÿ is a subterm of x, and replacing this subterm of x with vÿ results in the term y.
By Birkho�’s completeness theorem of equational logic [2], an identity x ≈ y is deducible from a set Σ of
identities if there exists a sequence

x = t1, t2, . . . , tr = y

of terms, where each identity ti ≈ ti+1 is directly deducible from some identity in Σ.
Recall that the number of times a letter x ∈ A occurs in a word w ∈ (A ∪ A ∗)+ is denoted by occ(x,w).

The number of times x ∈A occurs in a term t ∈ TA is occ(x, ⌊t⌋). For instance, if t = x(y∗x2)∗(zx∗y)∗∈ TA , then

⌊t⌋ = x(x∗)2yy∗xz∗ = x3y2xz,

so that occ(x, ⌊t⌋) = 4, occ(y, ⌊t⌋) = 2, and occ(z, ⌊t⌋) = 1. The following result is easily seen to hold.

Lemma 7.2. Suppose that t ≈ t� is any identity deducible from (inv). Then, one has ⌊t⌋ = ⌊t�⌋.

7.2 Identities (3.1w)

For eachm ≥ 2, let
Bm = {(b1, b2, . . . , bm) : b1, b2, . . . , bm ∈ {0, 1}}

denote the set of all binary vectors of dimensionm. The vectors in Bm are lexicographically ordered by < as

(b1, b2, . . . , bm) < (b�1, b
�
2, . . . , b

�
m)

if there exists a least ℓ ∈ {1, 2, . . . , m} such that bℓ < b�ℓ and bi = b�i for any i < ℓ. If V = (b1, b2, . . . , bm) ∈ Bm, then
the dual of V is äV = (bm, bm−1, . . . , b1). If äV = V, then V is a palindrome. The set Bm can be partitioned into the
three subsets

B=m = {V ∈ Bm : V = äV}, B<m = {V ∈ Bm : V < äV}, B>m = {V ∈ Bm : V > äV}.

Each vector V = (b1, b2, . . . , bm) ∈ Bm is associated with the words

V↑ = x(
m

∏
i=1

(yiℎ
bi
i y

∗
i ))x∗ = x ⋅ y1ℎ

b1
1 y

∗
1 ⋅ y2ℎ

b2
2 y

∗
2 ⋅ ⋅ ⋅ ymℎ

bm
m y∗

m ⋅ x∗,

V↓ = x(
1

∏
i=m

(yiℎ
bi
i y

∗
i ))x∗ = x ⋅ ymℎ

bm
m y∗

m ⋅ ym−1ℎ
bm−1
m−1y

∗
m−1 ⋅ ⋅ ⋅ y1ℎ

b1
1 y

∗
1 ⋅ x∗,

where ℎ0i = ⌀ and ℎ1i = ℎi. Note that

⋃
m≥2

{V↑ ≈ V↓ : V ∈ Bm} = {(3.1w)}.

In Section 7.3, some identities from (3.1w) are chosen to form an irredundant basis for the involution semi-
group L × Zℜn . But for each m ≥ 2, the identities in {V↑ ≈ V↓ : V ∈ Bm} are not irredundant; if V is not a palin-
drome, then V and äV are distinct vectors such that the associated identities V↑ ≈ V↓ and (äV)↑ ≈ (äV)↓ are
equivalent. This redundancy can be eliminated by choosing identities V↑ ≈ V↓ with V taken from only B=m
or B<m. Hence, the equivalence

(3.1w) ∼ ⋃
m≥2

{V↑ ≈ V↓ : V ∈ B=m ∪ B<m}

holds, where no two identities on the right are equivalent.
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Lemma 7.3. Let V = (b1, b2, . . . , bm) ∈ Bm. Suppose that V↑ ≈ w ∈ id(L × Zℜn ) for some word w ∈ (A ∪ A ∗)+.
Then, either w = V↑ or w = V↓.

Proof. By Lemma 2.1,
(A) sim(w) = {ℎb11 , ℎ

b2
2 , . . . , ℎ

bm
m } and non(w) = {x, y1, y2, . . . , ym}.

Let ÿ : A → L denote the substitution given by

zÿ =
{
{
{

fe if z = x,

e otherwise.

Then, V↑ÿ = fef = wÿ, so that wÿ is a product of the form fe ⋅ e ⋅ e ⋅ ⋅ ⋅ e ⋅ ef, whence
(B) w = xux∗ for some u ∈ (A ∪ A ∗)+ such that x ∉ con(u).
Consider any fixed i ∈ {1, 2, . . . , m}. Let ö : A → L denote the substitution given by

zö =
{{{
{{{
{

fe if z = yi,

e if z = ℎi,

f otherwise.

Then, V↑ö = fef = wö.
There are two cases to consider.

Case 1. If bi = 1, then ℎi ∈ sim(w) by (A), so that

wö = f ⋅ f ⋅ ⋅ ⋅ f ⋅ fe ⋅ e ⋅ ef ⋅ f ⋅ f ⋅ ⋅ ⋅ f.

Hence, (A) and (B) imply that w = xu1yiℎ
⊛
i y

∗
i u2x

∗ for some ⊛ ∈ {1, ∗} and u1, u2 ∈ (A ∪ A ∗)+ ∪ {⌀} such
that x, yi, ℎi ∉ con(u1 ⋅ u2). Since V↑ ≈ w ∈ id(Zℜn ) and Zℜn has a unit element, it follows that ℎi ≈ ℎ⊛i ∈ id(Zℜn ).
But g ̸= g∗ in Zℜn , so that ⊛ = 1. Thus w = xu1yiℎ

1
i y

∗
i u2x

∗ = xu1yiℎ
bi
i y

∗
i u2x

∗.

Case 2. If bi = 0, then ℎi ∉ con(w) by (A), so that

wö = f ⋅ f ⋅ ⋅ ⋅ f ⋅ fe ⋅ ef ⋅ f ⋅ f ⋅ ⋅ ⋅ f.

Hence, (A) and (B) imply that w = xu1yiy
∗
i u2x

∗ = xu1yiℎ
bi
i y

∗
i u2x

∗ for some u1, u2 ∈ (A ∪ A ∗)+ ∪ {⌀} such
that x, yi ∉ con(u1 ⋅ u2).

Therefore, in any case,w=xu1yiℎ
bi
i y

∗
i u2x

∗ for someu1, u2 ∈(A ∪A ∗)+∪{⌀} such thatx, yi, ℎi ∉con(u1 ⋅ u2).
Since i is arbitrary, it follows that w = xvx∗, where v is a product of y1ℎ

b1
1 y

∗
1 , y2ℎ

b2
2 y

∗
2 , . . . , ymℎ

bm
m y∗

m in some
order. Let ð denote the permutation on {1, 2, . . . , m} such that

w = x(
m

∏
i=1

(yiðℎ
bið
ið y

∗
ið))x

∗.

Let ÷ : A → A + denote the substitution given by

z÷ =
{
{
{

yn
i if z ∈ {yi, ℎi},

xn otherwise.

Then,
V↑÷

(3.1a), (3.1d)
≈ xn(

m

∏
i=1

yn
i )xn ∈ P↑m and w÷ (3.1a), (3.1d)

≈ xn(
m

∏
i=1

yn
ið)xn.

Since xn(∏m
i=1 y

n
i )x

n ≈ xn(∏m
i=1 y

n
ið)x

n ∈ id(L × Zℜn ), it follows from Lemma 5.6 that xn(∏m
i=1 y

n
ið)x

n ∈ P↑m ∪P↓m,
whence

(1ð, 2ð, . . . , mð) ∈ {(1, 2, . . . , m), (m,m − 1, . . . , 1)}.

Consequently, either w = V↑ or w = V↓.
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7.3 An irredundant basis from (3.1)

Theorem 7.4. An infinite irredundant basis for the involution semigroup L × Zℜn can be formed from the identi-
ties in (3.1).

Recall from Section 7.2 that identities (3.1w) and

Ω = ⋃
m≥2

{V↑ ≈ V↓ : V ∈ B=m ∪ B<m}

are equivalent. Since the setΘ = {(3.1a), (3.1b), . . . , (3.1v)} is finite, it follows from Theorem 3.1 thatΘ contains
some minimal subset Θmin such that Θmin ∪ Ω is a basis for the involution semigroup L × Zℜn . Let

V�x = (b1, b2, . . . , bm) ∈ B
=
m ∪ B<m

be a fixed vector. In the remainder of this subsection, it is shown that the identity

V↑�x ≈ V↓�x

inΩ is not deducible from
{(inv)} ∪ Θmin ∪ (Ω\{V↑�x ≈ V↓�x}). (7.1)

Since Ω is infinite, the set Θmin ∪ Ω is an infinite irredundant basis for the involution semigroup L × Zℜn .
This completes the proof of Theorem 7.4.

Seeking a contradiction, suppose that the identity V↑�x ≈ V↓�x is deducible from identities (7.1). Then, there
exists a sequence

V↑�x = t1, t2, . . . , tr = V↓�x

of terms, where each identity ti ≈ ti+1 is directly deducible from some identity ui ≈ vi in (7.1). If every iden-
tity ui ≈ vi is from (inv), then it follows from Lemma 7.2 that V↑�x = ⌊ti⌋ for all i, whence the contradiction
V↑�x = ⌊tr⌋ = V↓�x is obtained. Therefore, some ui ≈ vi is not from (inv); let ℓ ≥ 1 be the least possible index such
that uℓ ≈ vℓ is not from (inv). Then,
(I) uℓ ≈ vℓ is from Θmin ∪ (Ω\{V↑�x ≈ V↓�x})
while u1 ≈ v1, u2 ≈ v2, . . . , uℓ−1 ≈ vℓ−1 are from (inv), whence
(II) V↑�x ≈ tℓ is deducible from (inv).
In what follows, it is shown that the identity uℓ ≈ vℓ belongs to neither Θmin nor Ω\{V↑�x ≈ V↓�x}; this and (I)
imply the required contradiction.

Lemma 7.5. The following hold.
(i) ⌊tℓ⌋ = V↑�x.
(ii) The word ⌊tℓ⌋ does not contain any of the factors

x⊛1h1x
⊛1 , (7.2a)

x⊛1h1x
⊛2h2x

⊛3 , (7.2b)
x⊛1h1y

⊛2h2x
⊛3h3y

⊛4 , (7.2c)
x⊛1h1y

⊛2h2z
⊛3h3z

⊛4h4y
⊛5h5x

⊛6 , (7.2d)
x⊛1h1y

⊛2h2z
⊛3 t⊛4h3y

⊛5h4x
⊛6 , (7.2e)

where x, y, z, t ∈ A , hi ∈ (A ∪ A ∗)+ ∪ {⌀}, and ⊛i ∈ {1, ∗}.

[Correction added after online publication 11 September 2015: For the readers convenience equation (7.2a) has
been changed from x⊛1h1x

⊛2 to x⊛1h1x
⊛1 .]

Proof. Part (i) follows from (II) and the observationmade in (ii) of Remark 7.1, while part (ii) is a consequence
of part (i).

Since the identity tℓ ≈ tℓ+1 is directly deducible from uℓ ≈ vℓ, there exists some substitution ÿ : A → TA such
that uℓÿ is a subterm of tℓ.
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Lemma 7.6. The identity uℓ ≈ vℓ cannot be from Θmin.

Proof. Suppose that uℓ ≈ vℓ is an identity from (3.1i)–(3.1v). Then,

uℓ = h0x
⊛1h1y

⊛2h2x
⊛3h3y

⊛4h4

for some hi ∈ (A ∪ A ∗)+ ∪ {⌀} and ⊛i ∈ {1, ∗}. Let z ∈ con(⌊xÿ⌋) and t ∈ con(⌊yÿ⌋), so that

⌊uℓÿ⌋ = ⌊h0ÿ⌋ (⋅ ⋅ ⋅ z
⊛�1 ⋅ ⋅ ⋅ )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

⌊(xÿ)⊛1 ⌋

⌊h1ÿ⌋ (⋅ ⋅ ⋅ t
⊛�2 ⋅ ⋅ ⋅ )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

⌊(yÿ)⊛2 ⌋

⌊h2ÿ⌋ (⋅ ⋅ ⋅ z
⊛�3 ⋅ ⋅ ⋅ )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

⌊(xÿ)⊛3 ⌋

⌊h3ÿ⌋ (⋅ ⋅ ⋅ t
⊛�4 ⋅ ⋅ ⋅ )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

⌊(yÿ)⊛4 ⌋

⌊h4ÿ⌋

for some ⊛�i ∈ {1, ∗}. Since uℓÿ is a subterm of tℓ, as observed in (iii) of Remark 7.1, either ⌊uℓÿ⌋ or ⌊(uℓÿ)∗⌋
is a factor of the word ⌊tℓ⌋, whence ⌊tℓ⌋ contains a factor of the form (7.2c). But this is impossible by (ii) of
Lemma 7.5.

If uℓ ≈ vℓ is an identity from (3.1a)–(3.1h), then a similar argument shows that the word ⌊tℓ⌋ contains
a factor of the form (7.2a) or (7.2b). This is again impossible by (ii) of Lemma 7.5.

Lemma 7.7. The identity uℓ ≈ vℓ cannot be fromΩ\{V↑�x ≈ V↓�x}.

Proof. It su�ces to assume that the identity uℓ ≈ vℓ belongs toΩ and then show that it is precisely V↑�x ≈ V↓�x.
Suppose thatuℓ ≈ vℓ is the identity W↑ ≈ W↓ inΩ,where W = (c1, c2, . . . , cn) ∈ B

=
n ∪ B<n for some n ≥ 2. Then, either

uℓÿ = W↑ÿ or uℓÿ = W↓ÿ is a subterm of tℓ; by symmetry, it su�ces to assume that

uℓÿ = W↑ÿ = (xÿ)(
n

∏
i=1

((yiÿ)(ℎ
ci
i ÿ)(yiÿ)

∗))(xÿ)∗

is a subterm of tℓ.
Suppose that the word ⌊xÿ⌋ is non-singleton. Then, ⌊xÿ⌋ = ⋅ ⋅ ⋅ x1x2 ⋅ ⋅ ⋅ for some x1, x2 ∈ A . Choose any

q ∈ con(⌊y1ÿ⌋). Then,

⌊W↑ÿ⌋ = ⌊xÿ⌋⌊y1ÿ⌋⌊ℎ
c1
1 ÿ⌋⌊(y1ÿ)

∗⌋ ⋅ ⋅ ⋅ ⌊(xÿ)∗⌋

= (⋅ ⋅ ⋅ x⊛11 x⊛22 ⋅ ⋅ ⋅ )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
⌊xÿ⌋

(⋅ ⋅ ⋅ q⊛3 ⋅ ⋅ ⋅ )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
⌊y1ÿ⌋

⌊ℎc11 ÿ⌋ (⋅ ⋅ ⋅ q
⊛4 ⋅ ⋅ ⋅ )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

⌊(y1ÿ)∗⌋

⋅ ⋅ ⋅ (⋅ ⋅ ⋅ x⊛52 x⊛61 ⋅ ⋅ ⋅ )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
⌊(xÿ)∗⌋

for some ⊛i ∈ {1, ∗}. Since W↑ÿ is a subterm of tℓ, as observed in (iii) of Remark 7.1, either ⌊W↑ÿ⌋ or ⌊(W↑ÿ)∗⌋ is
a factor of the word ⌊tℓ⌋, whence ⌊tℓ⌋ contains a factor of the form (7.2b) or (7.2d), depending on whether or
not the letters x1, x2, and q are distinct. But this is impossible by (ii) of Lemma 7.5. Therefore,
(A) the word ⌊xÿ⌋ is a singleton.

Suppose that the word ⌊yiÿ⌋ is non-singleton. Then, ⌊yiÿ⌋ = ⋅ ⋅ ⋅ x1x2 ⋅ ⋅ ⋅ for some x1, x2 ∈ A . Choose any
q ∈ con(⌊xÿ⌋). Then,

⌊W↑ÿ⌋ = ⌊xÿ⌋ ⋅ ⋅ ⋅ ⌊yiÿ⌋⌊ℎ
ci
i ÿ⌋⌊(yiÿ)

∗⌋ ⋅ ⋅ ⋅ ⌊(xÿ)∗⌋

= (⋅ ⋅ ⋅ q⊛1 ⋅ ⋅ ⋅ )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
⌊xÿ⌋

⋅ ⋅ ⋅ (⋅ ⋅ ⋅ x⊛21 x⊛32 ⋅ ⋅ ⋅ )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
⌊yiÿ⌋

⌊ℎcii ÿ⌋ (⋅ ⋅ ⋅ x
⊛4
2 x⊛51 ⋅ ⋅ ⋅ )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
⌊(yiÿ)∗⌋

⋅ ⋅ ⋅ (⋅ ⋅ ⋅ q⊛6 ⋅ ⋅ ⋅ )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
⌊(xÿ)∗⌋

for some ⊛j ∈ {1, ∗}. Since W↑ÿ is a subterm of tℓ, by (iii) of Remark 7.1, either ⌊W↑ÿ⌋ or ⌊(W↑ÿ)∗⌋ is a factor of the
word ⌊tℓ⌋, whence ⌊tℓ⌋ contains a factor of the form (7.2b) or (7.2d), depending onwhether or not the letters x1,
x2, and q are distinct. But this is impossible by (ii) of Lemma 7.5. Therefore,
(B) the word ⌊yiÿ⌋ is a singleton.

Suppose that ci = 1 and ⌊ℎcii ÿ⌋ is non-singleton. Then, ⌊ℎcii ÿ⌋ = ⋅ ⋅ ⋅ x1x2 ⋅ ⋅ ⋅ for some x1, x2 ∈ A . Choose
any q ∈ con(⌊xÿ⌋) and t ∈ con(⌊yiÿ⌋). Then,

⌊W↑ÿ⌋ = ⌊xÿ⌋ ⋅ ⋅ ⋅ ⌊yiÿ⌋⌊ℎ
ci
i ÿ⌋⌊(yiÿ)

∗⌋ ⋅ ⋅ ⋅ ⌊(xÿ)∗⌋

= (⋅ ⋅ ⋅ q⊛1 ⋅ ⋅ ⋅ )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
⌊xÿ⌋

⋅ ⋅ ⋅ (⋅ ⋅ ⋅ t⊛2 ⋅ ⋅ ⋅ )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
⌊yiÿ⌋

(⋅ ⋅ ⋅ x⊛31 x⊛42 ⋅ ⋅ ⋅ )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
⌊ℎcii ÿ⌋

(⋅ ⋅ ⋅ t⊛5 ⋅ ⋅ ⋅ )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
⌊(yiÿ)∗⌋

⋅ ⋅ ⋅ (⋅ ⋅ ⋅ q⊛6 ⋅ ⋅ ⋅ )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
⌊(xÿ)∗⌋

for some ⊛j ∈ {1, ∗}. Since W↑ÿ is a subterm of tℓ, by (iii) of Remark 7.1, either ⌊W↑ÿ⌋ or ⌊(W↑ÿ)∗⌋ is a factor of the
word ⌊tℓ⌋, whence ⌊tℓ⌋ contains a subterm of the form (7.2b), (7.2d), or (7.2e), depending on whether or not the
letters x1, x2, q, and t are distinct. But this is impossible by (ii) of Lemma 7.5. Therefore,
(C) if ci = 1, then the word ⌊ℎcii ÿ⌋ is a singleton.
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Now since uℓÿ = W↑ÿ is a subterm of tℓ, by (iii) of Remark 7.1, either ⌊W↑ÿ⌋ or ⌊(W↑ÿ)∗⌋ is a factor of the
word ⌊tℓ⌋ = V↑�x, where

⌊W↑ÿ⌋ = ⌊xÿ⌋(
n

∏
i=1

(⌊yiÿ⌋⌊ℎ
ci
i ÿ⌋⌊(yiÿ)

∗⌋))⌊(xÿ)∗⌋

and
⌊(W↑ÿ)∗⌋ = ⌊xÿ⌋(

1

∏
i=n

(⌊yiÿ⌋⌊(ℎ
ci
i ÿ)

∗⌋⌊(yiÿ)
∗⌋))⌊(xÿ)∗⌋.

Therefore, (A)–(C) imply thatm = n and either V↑�x = ⌊W↑ÿ⌋ or V↑�x = ⌊(W↑ÿ)∗⌋. It follows that V↑�x ≈ V↓�x coincides
with the identity W↑ ≈ W↓ and so also the identity uℓ ≈ vℓ.

Acknowledgement: The author would like to thank the anonymous referees for helpful suggestions, and Igor
Dolinka and Marcel G. Jackson for very fruitful discussions.
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