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ABSTRACT 

The colonial zoanthid Palythoa caribaeorum (Cnidaria, Zoanthidea) 

(Duchassaing and Michelotti 1861) is a major benthic component of most 

Caribbean reefs and is an extremely aggressive spatial competitor (Suchanek and 

Green 1981). This study looks at annual visits to 16 permanent monitoring sites 

over 3 reef designations (Inshore Ridge Complex, Middle Reef, and Outer Reef) 

in Broward County, Florida from 2002-2006. The data obtained in this study fills 

an informational void regarding the role of zoanthids in the southeast Florida reef 

benthic community. The study was conducted in two parts. Part One used digital 

imagery analysis to quantify the spatial cover of the Palythoa population present 

across the study area. The highest percent live cover sites were located in the 

Inshore Ridge Complex, suggesting that the more dense Palythoa populations are 

close to shore. Part Two used digital analysis data to determine if it was possible 

to create a size class transition matrix model that could accurately model the 

population distribution of such a dynamic organism. To test the accuracy of the 

model, the predicted population distribution of the model and the actual observed 

distribution from the digital image analysis were analyzed. A Chi-square test 

determined that the model successfully predicted size class distribution frequency 

of all treatments (All Sites, High Cover Sites, Low Cover Sites, and the 3 reef 

tracts) for all years (2002-2006) with the exception of 3 (Low Cover, Middle 

Reef, and Outer Reef) of the 6 treatments in 2005. Southeast Florida experienced 

extremely severe hurricane seasons in 2004 and 2005, and the data suggests that 

the population distribution at the 3 lower cover (farther from shore) sites were 

disturbed. Sensitivity and elasticity analyses were run on appropriate results to 
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examme which size class transitions contribute most to population stability. 

Although it possesses the ability to outgrow stony corals (and almost all other 

sessile invertebrates), the current study suggests that the Palythoa population in 

southeast Florida is generally maintaining size rather than over-growing the reef 

community. With the knowledge gained from this study, we know that it is 

possible to accurately model the population dynamics present in the southeast 

Florida Palythoa population. 

111 



.... ----------------------------------
TABLE OF CONTENTS 

ABSTRACT n 

LIST OF FIGURES v 
V1l1 

IX 
LIST OF TABLES 
ACKNOWLEDGEMENTS 

1.0. INTRODUCTION 1 
1.1. Study Area: Sontheast Florida 2 
1.2. Natural History of Palythoa caribaeorum 5 

1.2.1. Taxonomic Description 5 
1.2.2. Reproduction 6 
1.2.3. Spatial Competition 8 
1.2.4. Population Size Regulation II 

1.3. Review of Transition Matrix Models and Their Associated Analyses 12 
1.3.1. Transition Matrix Models 12 
1.3.2. Sensitivity and Elasticity Analyses 15 

1.4. Study Goals 16 

2.0. METHODS AND MATERIALS 18 
2.1. Study Sites 18 
2.2. Data Collection 20 

2.2.1 Field Techniques 20 
2.2.2. Laboratory Techniques & Photographic Analysis 22 

2.2.2.1. Part One: General Palythoa Popnlation Dynamics 23 
2.2.2.2. Part Two: Transition Matrix Model 25 

2.2.2.2.1. Life Cycle Graph and General Matrix Model 25 
2.2.2.2.2. Colony Selection and Tracing 27 
2.2.2.2.3. Size Class Transition Probability Matrix 28 

3.0. RESULTS 
3.1. Part One: GeneralPalythoa Population Dynamics 
3.2. Part Two: Transition Matrix Model 

30 
30 
36 

4.0. DISCUSSION 51 
4.1. Part One: General Palythoa Population Dynamics 51 
4.2. Part Two: Transition Matrix Model 54 
4.3. Lessons Learned Including Limitations of the Study 59 
4.4. Recommendations for Future Requirements of Data and Duration 

of Monitoring Needed to Accurately Model Palythoa 60 

5.0. LITERATURE CITED 62 

APPENDIX - Flow Chart of Major Steps to Complete Part One and Part Two 69 

IV 



p 

LIST OF FIGURES 

Figure 1: The high-latitude reef communities of Broward County, Florida 3 

Figure 2: Broward County, FL habitat classifications for four "corridors" 

identified in the (Moyer et al. 2003) study. 4 

Figure 3: Southeast Florida counties with ocean outfalls (Koopman et al. 2006). 4 

Figure 4: Schematic cross section through Palythoa spp. 6 

Figure 5: LADS bathymetry data of Broward County, Florida showing the 

locations of the 16 permanent monitoring sites. 

Figure 6: Diver photographing 0.75m2 quadrats along a 30m2 transect. 

Figure 7: Example of a phototransect quadrat image. 

Figure 8: Screenshot of the image scaling and calibration process. 

Figure 9: Screenshot of the CPCe software, showing traced areas and lengths, 

outlined areas, and movable text boxes. 

Figure 10: Example images of increase in total Palythoa area (cm2) from 2002-2005 

19 

20 

21 

22 

23 

at site HB2 Quad #2 using CPCe software. 24 

Figure 11: Life cycle graph for Palythoa caribaeorum. 26 

Figure 12: The Hughes (1984) general size class transition probability model. 27 

Figure 13: Mean percent live cover of Palythoa by reef for all 16 sites. 35 

Figure 14: Percent live cover of Palythoa by site for all High Cover sites for each 

year (2002-2005). 

Figure 15: Percent live cover of Palythoa by site for all Low Cover sites for each 

year (2002-2005). 

35 

35 

Figure 16: Mean percent live cover of Palythoa for high and low percent cover sites. 36 

v 



p 

Figure 17: Observed number of individual colonies (abundance) for All sites in the 

size classes chosen to populate the transition matrix model. 

Figure 18: Observed colony frequencies in the size classes chosen to populate the 

transition matrices for High and Low Cover sites. 

Figure 19: Observed colony abundances in the size classes chosen to populate the 

transition matrices for the Inshore Ridge Complex, Middle Reef, and 

Outer Reef. 

Figure 20: Observed vs. predicted colony abundance in each size class per year for 

all sites. 

Figure 21: Observed vs. predicted colony abundance in each size class per year for 

High Cover sites. 

Figure 22: Observed vs. predicted colony abundance in each size class per year for 

Low Cover sites. 

Figure 23: Observed vs. predicted colony abundance in each size class per year for 

38 

38 

39 

43 

44 

44 

Inshore Ridge Complex sites. 45 

Figure 24: Observed vs. predicted colony abundance in each size class per year for 

Middle Reef sites. 45 

Figure 25: Observed vs. predicted colony abundance in each size class per year for 

Outer Reef sites. 

Figure 26: Eigenvalue sensitivity analysis of the mean Low Cover matrix. 

Figure 27: Eigenvalue sensitivity analysis of the mean Low Cover matrix­

scalar view. 

Figure 28: Eigenvalue elasticity analysis of the mean Low Cover matrix. 

VI 

46 

49 

49 

49 



p 

Figure 29: Eigenvalue elasticity analysis of the mean Low Cover rnatrix­

scalar view. 

Figure 30: Eigenvalue sensitivity analysis of the mean Middle Reefmatrix. 

Figure 31: Eigenvalue sensitivity analysis of the mean Middle Reef matrix­

scalar view. 

Figure 32: Eigenvalue elasticity analysis of the mean Middle Reef matrix. 

Figure 33: Eigenvalue elasticity analysis of the mean Middle Reef matrix­

scalar view. 

Figure 34: Eigenvalue sensitivity analysis of the mean Outer Reef matrix. 

Figure 35: Eigenvalue sensitivity analysis of the mean Outer Reef matrix­

scalar view. 

Figure 36: Eigenvalue elasticity analysis of the mean Outer Reef matrix. 

Figure 37: Eigenvalue elasticity analysis of the mean Outer Reef matrix­

scalar view. 

Figure 38: Comparison of Palythoa and stony coral mean percent live cover 

49 

49 

49 

50 

50 

50 

50 

50 

50 

(+lSD) for all 16 sites. 52 

Figure 39: High cover Palythoa vs. stony coral mean percent live cover by site. 53 

Figure 40: Low cover Palythoa vs. stony coral mean percent live cover by site. 53 

Vll 



LIST OF TABLES 

Table I: Coordinates, reef designations and depths for each of the 16 monitoring 

sites. 

Table 2: Dates ofthe 16 annual site visits. 

Table 3: Size class designations for the Palythoa colonies used to make the 

transition probability matrices. 

Table 4: Digital image analysis results for the 16 monitoring sites (2002-2005). 

Table 5: High and low percent live cover and reef designations for the 9 

Part Two study sites. 

Table 6: Total number (abundance) of colonies in the 7 assigned size-classes in 

each sampling year (2002-2006) for all 9 sites. 

Table 7: The number of colonies within· each transition year (e.g. 02-03) and their 

respective transition frequencies. 

Table 8: Transition frequency matrices of All sites for each transition year. 

Table 9: Mean transition frequencies for all sites (2002-2006). 

Table 10: Dominant eigenvalues for the mean transition matrices of all treatments. 

Table 11: Chi-square comparison of observed vs. predicted model results. 

Table 12: Site visits relative to the 2004 and 2005 high energy hurricane seasons. 

V1l1 

18 

21 

26 

31 

37 

37 

40 

41 

42 

42 

47 

56 



p 

ACKNOWLEDGEMENTS 

This work is dedicated to my parents, John and Arlene Walczak, who have been 
by my side every step of my life with an amazing amount oflove and support. I 

couldn't have asked for better parents, and I can't thank them enough. 

A HUGE thank you to my family; without them, this would have never been possible: 
My sisters Katie and Suzanne, my brother-in-law Brian, and my adopted sisters Patty and 

Raquel- I'm just so lucky to have such amazing and supportive siblings. Thanks for 
keeping me going through the rough times. 

I would also like to thank my advisors Dave, Bernhard, and Dick for all of their help in 
this process. 

And finally to Pete, my partner-in-crime whose patience I thoroughly tested in this 
process, but who stuck by me to the very end. You had to deal with me on a daily basis. 

I love you and can't thank you enough. 

Funding for this project provided in part by: 
Broward County Environmental Protection Department 

Special thanks to: 
Ken Banks, Vanessa Brinkhuis, Brian Buzkirk, Zamara & Dave Carmichael, Adrienne 
Carter, Chantal Collier, Missy Dore, Patty Edwards, Brian Ettinger, Danny Fahy, Lou 

Fisher, Lauren Floyd, Jessica Freeman, Liz Goergen, Tina Gwaltney, ShaUll Gill, Raquel 
Hernandez-Cruz, Erin Hodel, Lance Jordan, Kirk Kilfoyle, Lindsey Klink, Kevin Kohler, 

Jamie Monty, Alison Moulding, Peg Oellrich, Pat Quinn, Abby Renegar, Martha 
Robbart, Lance & Judy Robinson, Melissa Sathe, Nicole Stephens, Christine Testerman, 

Brian & V Walker, everyone at NCRII NSUOCI BC EPDI FDEP CRCP. 

CPCe software and general advice: 

Kevin Kohler 

Reef habitats and depth profIle for Broward County figure and 
LADS bathymetry data maps courtesy of: 

Dr. Brian Walker 

IX 



p 

1.0. INTRODUCTION 

The colonial zoanthid Palythoa caribaeorum (Cnidaria, Zoanthidea) 

(Duchassaing and Michelotti 1861) is a major benthic component of most Caribbean 

reefs and is an extremely aggressive spatial competitor (Suchanek and Green 1981). P. 

caribaeorum competition strategies and population dynamics have received attention in 

other locations such as the US Virgin Islands (Suchanek and Green 1981), Panama 

(Sebens 1982, Fadlallah et al. 1984), Venezuela (Bastidas and Bone 1996), Brazil 

(Acosta et al. 2001, 2005, Perez et al. 2005), and even the Florida Keys (Mueller 1992; 

Raywick and Mueller 1997), but only one other study has looked at the P. caribaeorum 

population in Palm Beach, Broward and Miami-Dade counties in southeast Florida. 

Kemp et al. (2006) compared the thermal bleaching response of P. caribaeorum colonies 

from three discrete regions in south Florida. 

This study is focused on one (somewhat atypical) species, and it fills a void of 

information regarding the role of zoanthids in the benthic community of SE Florida. This 

study also addresses the data and duration of monitoring needed to accurately model the 

dynamics of such a key component of the" benthic community. Understanding if 

population changes are constant (or just as importantly, if they are not constant) will help 

to decipher the dynamics present in the Palythoa community of southeast Florida. It is 

necessary to examine community dynamics in order to eventually identify how individual 

species may be affecting one another. Too often, monitoring programs are content with 

documenting fluctuations in abundance; it remains unclear whether any of these data are 

useful for understanding species-specific dynamics. My study should be combined with 

other local research and knowledge in order to create a comprehensive community 
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ecology prediction model. An ecosystem-wide holistic model of the local benthic 

community could prove to be a very valuable tool for resource managers. 

1.1. Study Area: Southeast Florida 

North of the Florida Keys reef tract, the southeast Florida reef system extends 

approximately 170 km from Miami-Dade through Broward, Palm Beach, and Martin 

Counties (Collier et al. 2007). Collier et al. (2007) estimates that Florida's shallow­

water (defined as less than 18 meters (m) or 60 feet (ft) in depth) coral reef habitat 

spans 30,801 square kilometers (km2), of which approximately 41km2 is located within 

the current study area. Particularly in Broward County, the reef tract is composed of 

three, increasingly deeper, shore-parallel, linear reef terraces, (Inner, Middle, and Outer 

Reefs) and an Inshore Ridge Complex; .located inshore of the Inner reef (Figure I) 

(Moyer et al. 2003; Banks et al. 2007; Walker et al. 2007). These high-latitude reef 

communities are comprised of coral reefs, and colonized hardbottom or pavement, 

where the biota present generally consists of variable popUlations of stony corals, 

ocotocorals, sponges, zoanthids, and macroaigae (Figure 2) (Moyer et al. 2003; Collier 

et al. 2007). 

The southeast Florida reef system is directly offshore a densely populated and 

urbanized area and is subjected to extensive anthropogenic impacts (Collier et al. 

2007), but has no current management plan. Recreational lise (e.g. fishing and diving), 

coastal construction (e.g. beach nourishments, port maintenance and expansion), and 

land based sources of pollution (e.g. sewer and treated wastewater outfall pipes, and 

tidal exchanges through inlets), have impacted the reefs. In 2005 alone, 396 million 

2 



gallons per day (MGD) of sewer and secondarily treated wastewater from the six active 

outfall pipes was introduced into the water column near these viable reef communities 

(Koopman et al. 2006). The three outfall pipes (Boca Raton, Broward/North, and 

Hollywood) located in (or near to) the study area account for approximately 140 MGD 

of this nutrient laden wastewater (Figure 3). 

Generally, scleractinian (stony) corals receive the most attention in SE Florida 

reef studies, even though this group contributes less cover (2-3%) than other sessile 

invertebrates (Gilliam et al. 2005). Functional groups such as sponges, gorgonians, and 

zoanthids often dominate over stony corals for spatial cover in SE Florida (Goldberg 

1973; Jaap 1984; Moyer et al. 2003), yet receive comparatively less attention . 

.• ' , 

_ -14 _ _ 15 
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-.~ ~-S1 " lS 

Figure 1: Laser Airborne Depth Sounder (LADS) bathymetry data of Broward 
County showing the high-latitude reef communities consisting of 3 parallel, 
linear reef habitats (Inner, Middle, and Outer Reefs). Inshore of the Inner Reef 
is a series of shallow, nearshore ridges (Inshore Ridge Complex). Note: Depth 
orofile increases with distance offshore. 
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Figure 2: Broward County, FL habitat classifications for four "corridors" identified in 
the Moyer et al. (2003) study showing the Inner Reef as zoanthid and algae-dominated. 

Figure 3: Southeast Florida counties with ocean 
outfalls (Koopman et al. 2006). 
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1.2. Natural History of Palythoa caribaeorum 

1.2.1. Taxonomic Description 

Current taxonomic descriptions of the genus Palythoa are outdated, and most 

zoanthid researchers agree that Palythoa caribaeorum and Palythoa mammillosa are 

probably the same species (Sebens 1982; Gleibs et al. 1995; Haywick and Mueller 

1997). For this study, I consider them to be synonymous (possibly morphotypes) and 

will therefore refer to them as the more common Palythoa caribaeorum. 

P. caribaeorum (hereafter referred to as Palythoa) colonies are small yellow­

browu conjoined polyps that form sheets over the substratum (Sebens 1982; Haywick 

and Mueller 1997). The polyp diameter (5-10mm) and colony thickness (5-30+mm) 

are both highly variable (Haywick and Mueller 1997) and according to Sebens (1982) 

polyp size is generally a colony characteristic and may be related to habitat. Palythoa 

commonly inhabits reefs in the Atlantic and Caribbean seas from central Florida to as 

far south as Sao Palo, Brazil (Goreau 1959; Kinzie 1973; Sebens 1977, 1982; 

Suchanek and Green 1981; Acosta et al. 2001, 2005). Mainly found in shallow reef 

habitats, Palythoa forms distinctive, monospecific mats that often dominate available 

substrate (Fadlallah et al. 1984; Mueller 1992). Their small polyp size, conjoined 

polyp colony formation and ability to retain carbonate sediment in their body walls 

(Figure 4) allows them to survive in high energy areas where strong currents and 

storm waves frequently disrupt the community (Koehl 1977; Suchanek and Green 

1981 ; Jackson and Hughes 1985; Done 1992; Haywick and Mueller 1997). Their 

shared column wall morphology and small po1Y]Js creates a regular surfaced colony 

that is capable of minimizing the damaging drag of water flow (Koehl 1977). 
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According to Fadlallah et al. (1984) the lack of a hard skeletal structure limits 

zoaothids to lateral growth over the substrate. 

1
1 1 cm 

Tentacles 

<:> 

Polyp 

o ~ 00 o? . 0 ... C • • 

• ..0 0 Gut '" Mesogle;" :)_ 
o 0 0" 0 
0' 00 0 0 0 .. .,. 0 

... 0 .. .: 0.00 0 .. 0 .... 00 
::>·00···.0'" , p 

... l ', 

., ' .' ! 1 " ' Reef substrate 

Surface sediment 

Figure 4: Schematic cross section through Palythoa spp. showing conjoined polyps 
and how they form a sheet over the substratum. Note assimilated sediment 
throughout the tissue (Haywick aod Mueller 1997). 

Although zoanthids do not directly contribute to reef formation, Palythoa 

colonies have similar architecture aod' nutritional resources as scleractiniao corals 

(Sebens 1977; Karlson 1981; Sebens 1982; Suchanek aod Green 1981). Palythoa 

colonies rely on both autotrophic aod heterotrophic nutrition (Sebens 1977). Sebens 

(1977) showed that Palythoa is diel in nature, aod primarily feeds on zooplankton 

between dusk aod dawn while utilizing their zooxaothellae for photosynthesis during 

the day. Palythoa are very sensitive to environmental conditions and are commonly 

the first to exhibit bleaching, thus they may be useful as a quantitative indicator of 

bleaching events (Mueller 1992; Kemp et al. 2006). 

1.2.2. Reproduction 

Palythoa utilizes both sexual aod asexual reproduction (Karlson 1981) in 

population size maintenaoce, though asexual reproduction is by far the better 
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understood process in wanthids (Cooke 1976; Karlson 1986a, 1986b; Karlson 1991; 

Acosta et aL 1998; Acosta and Sammarco 2000a, 2000b; Acosta et aL 2001, 2005 ; 

Boscolo and Silveira 2005). Acosta et aL (200 I) reports that asexual reproduction in 

zoanthids is achieved through fission and fragmentation. Fission, defined by 

Neufeldt (1997) is "a form of asexual reproduction ... in which the parent organism 

divides into two or more appropriately equal parts, each becoming an independent 

individual" and is primarily endogenous and results in the production of ramets 

(Acosta et aL 2001). Acosta et al. (2005) examined asexual reproduction by fission in 

the formation of crevices throughout the Palythoa colony. Hughes and Jackson 

(1985) found that partial colony mortality and fission in clonal organisms may 

increase the number of colonies as much as or more than sexual reproduction. On the 

other hand, Hughes (1989) defines fragmentation as "the reproductive process by 

which a live portion of a colony becomes divided into one or more parts by processes 

exogenous to the organism", with parts becoming physically separated from the 

parent colony, and with each having the potential to grow into a complete organism 

(Highsmith 1982; Acosta et at. 2001). Fragmentation can occur by either biotic 

factors such as predation, disease, etc. that cause tissue isolation, or by physical 

factors such as storms, currents or tides (Karlson 1983; Hughes 1989; Acosta et al. 

1998; Acosta and Sammarco 2000a, 2000b; Acosta 2001). Acosta (2001) observed a 

much higher rate of biotic fragmentation in shallow water due to disease, which in 

itself may be caused by the physical stress factor of increased wave energy. Asexual 

processes appear to be facilitated by recurrent physical disturbances such as severe 

7 



p 

storms and hurricanes (Highsmith 1981; Tunnicliffe 1981; Karlson 1983), both of 

which are exceedingly common in southeast Florida. 

Sexual reproduction in zoanthids is complicated, and its contribution to 

population maintenance is not very well understood (Karlson 1981). Palythoa 

colonies contain both male and female polyps, but most colonies are female 

dominated (Fadlallah et al. 1984; Ryland 1997; Boscolo and Silveira 2005). A small 

percentage of the individual polyps can also be hermaphroditic (Boscolo and Silveira 

2005). Colonies utilize broadcast spawning with external fertilization (a planktonic 

larval stage) (Babcock and Ryland 1990). Spawning has been correlated with 

seasonal variations of environmental conditions such as the start of the wet season in 

Panama (Fadlallah et al. 1984). In Brazil, although egg release was found to be 

continuous, sperm release was only dQcumented for six months (December to May) 

(Boscolo and Silveira 2005). Boscolo and Silveira (2005) found that the central 

regions of the colonies are the most fertile, while the edge regions showed a higher 

percentage of sterile polyps. These sterile polyps "may be indicative of the 

importance of asexual division in these colonial organisms" (Fadlallah et al. 1984). 

As more research concentrates on the population dynamics of zoanthids, sexual 

reproduction may prove to be an underestimated process in population dynamics. 

1.2.3. Spatial competition 

In shallow reef environments with high recruitment and growth rates of the 

varIOus colonizers, competition is particularly important (Connell 1983; Schoener 

1983). Sessile invertebrates use many different strategies in the competition for 
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substrate (Jackson 1977). Palythoa generally "acquire and dominate space by killing 

or directly hindering the growth of its competitors both by physical (i.e. growing 

directly over nearby corals or invertebrates) and chemical means" (Suchanek and 

Green 1981). When presented with a spatial opportunity, Palythoa has a fast initial 

growth rate (Bastidas and Bone 1996), but once the space is consumed, instead of 

continuing to grow, the growth rate is suspended (Bastidas and Bone 1996). 

Members of the genus Palythoa contain a very potent neuro-toxin (Palytoxin or PTX) 

which is speculated to be used as an antifeedant in predatorial defense and possibly as 

an allomone in spatial competition (Scheuer 1964; Moore and Scheuer 1971; Attaway 

and Ciereszko 1974; Sebens 1981 ; Suchanek and Green 1981; Fox 1982; Beress et al. 

1983; Gleibs et al. 1995; Raywick and Mueller 1997). Isman (1993) defines an 

antifeedant as a defense chemical which inhibits feeding, but which is also classified 

as an allomone. An allomone is a chemical messenger between species that is 

beneficial to its producer and detrimental to its recipient (Brown et al. 1970). 

Although predation is not considered to be an important factor controlling 

Palythoa populations, Attaway and Ciereszko (1974) found that the eggs of Jamaican 

Palythoa mammillosa colonies were highly (PTX) toxic. Also noted is that overall 

colony toxicity shows seasonal variations (with maximum toxicity reached in the 

summer months of June, July, and August) as well as habitat variations (Attaway and 

Ciereszko 1974). The only observed predator is the flIeworm, Hermodice 

carunculata, which has been observed feeding on physically injured colonies 

(Suchanek and Green 1981 ; Sebens 1981). It has also been observed that H. 

carunculata feeds on certain bands of disease on scleractinian corals (Miller pers. 
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comm.), it may prove to be that frrewonns are acquiring the PTX (and the coral 

disease agents) to supplement their own predatorial defense mechanisms, rather than 

for its nutritional value. 

Another fonn of territorial (as well as predatorial) defense is Palythoa's 

ability to retain sediment in its body walls (Sebens 1981; Suchanek and Green 1981; 

Fadlallah et al. 1984; Haywick and Mueller 1997). The sediment allows the colonies 

to survive in very high energy zones by acting as a stabilizer against high wave 

energy, as well as being highly unappealing to predators (Haywick and Mueller 

1997). 

Due to its high growth rates (linear growth = 2.5 - 4.0 rnm/day) and lack of 

predators, Palythoa is an extremely aggressive competitor for space (Suchanek and 

Green 1981; Bastidas and Bone 1996;. Mueller 1992). With the exceptions of the 

encrusting gorgonian Erythropodium caribaeorum (Karlson 1980; Brazeau and 

Lasker 1992) and the colonial tunicate Trididemnum solidum (Birkeland et al. 1981), 

Palythoa has been shown to be capable of overgrowing most other sessile 

invertebrates (Karlson 1980; Sebens 1981; Suchanek and Green 1981). Palythoa's 

competitive abilities haven't been studied in southeastern Florida. Future studies will 

need to take into account that short-tenn studies lack the ability to identify all factors 

that might contribute to the patterns observed (Sebens 1981; Bastidas and Bone 

\996). 
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1.2.4. Population size regulation 

Fast growing organisms such as zoanthids and sponges can have a competitive 

edge over stony corals when nutrient supply is high (Buss and Jackson 1981; Goreau 

1992; Hallock et al. 1993; McCook 1999; Holmes 2000). Lapointe et al. (2002) 

believe that Palythoa is an indicator of nutrient enrichment, and that reduced stony 

coral cover is significantly correlated with an increased Palythoa population. Costa 

(2001) also believes that Palythoa are the organisms most adapted to take advantage 

of an increase in nutrient concentrations in coastal areas. The estimated 41km2 of 

shallow reef habitat in Broward County is constantly influenced by coastal run-off, 

tidal exchanges from Port Everglades and approximately 140 MGD of treated 

wastewater. With suitable substrate and excessive nutrients available, the question 

now raised is why isn't Palythoa taking over the reefs in southeast Florida since they 

seem to be in such a prime location for domination? Previous research suggests that 

Palythoa is capable of overgrowing most scleractinian corals, so there must be some 

unknown limiting factor keeping the population regulated. One possibility is that it is 

rare for sessile assemblages to be completely hierarchial (Buss and Jackson 1979) due 

to similar competitive abilities between species (Sousa 1984; Connell and Keough 

1985). Sebens (1982) stated that it may be competition with other encrusting 

organisms or zoanthids that affects Palythoa's distribution. Another possible 

explanation is that a population equilibrium maximum exists, at which point the 

population will focus its energy on maintenance, rather than growth (Tanner 1997). 

Tanner (1997) showed that density has "an obvious negative impact on Palythoa 

colonies ... " where the " ... main effects of increasing density are an increase in fusion 
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rates, and a decrease in fission rates". Tanner (1997) also found that large colonies 

had substantially lower growth rates at the higher densities. Mortality, on the other 

hand, was unaffected by density, and recruitment was only marginally enhanced at 

intermediate densities (Tanner 1997). Palythoa population size is most likely 

regulated by fission and/or fusion when density reaches this unknown population 

equilibrium maximum (Tanner 1997). 

1.3. Review of Transition Matrix Models and Their Associated Analyses 

1.3.1. Transition Matrix Models 

The ultimate size of a sessile invertebrate population is determined by its 

fertility and mortality cycles (Bierzychudek 1982). Once these birth and death 

patterns have been identified, it is possible to predict changes in population structure 

through time, and examine the potential effects of those changes on the population 

(Bierzychudek 1982). Population projection (also known as transition) matrix models 

are an increasingly valuable tool for the evaluation of size class, age, or stage 

structured population dynamics (Hughes ·1984; Hughes and Connell 1987; van 

Groenendael et al. 1988; Babcock 1991; Caswell 1997a and 1997b; Bierzychudek 

1999). Population growth transition matrix models were first introduced by P.H. 

Leslie (1945, 1948). The Leslie model uses age-specific fecundity and survival rates 

to predict the eventual age structure of a population. "These models specify a matrix 

of transition probabilities between different size classes, age classes, or stages in a 

population from time t to time t+ I" (Bierzychudek 1999). The population 

(equilibrium) growth rate, lambda (A), is a function of the entries of the population-
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projection matrix, and can be used to assess the overall health of the population 

(Horvitz et al. 1997; Caswell 2001; Bierzychudek 1999). According to Bierzychudek 

(1999), "repeated iterations of a matrix can provide a projection of a population's 

equilibrium growth rate (under certain assumptions)". Finding the equilibrium 

growth rate will determine if the population will grow (or shrink) at a constant rate 

(Hughes 1984). A lambda value greater than 1.0 denotes a population capable of 

exponential growth, a value equal to one signifies stability, while a lambda between 

one and zero indicates that the population is in decline to eventual extinction (Hughes 

1984). Also, a population with a high growth rate (/.. > 1.0) is expected to exhibit an 

increased density and may eventually reach a population size at which density 

becomes a major factor in development (Bierzychudek 1999). 

The major assumption of the L.eslie model is that the population will grow or 

decline at a completely constant and linear rate, while preserving a stable age 

distribution (Hughes 1984). For a size class transition matrix, a population's stable 

age distribution is defined as the point at which each size class is changing by the 

factor /.. each time period (Bierzychudek 1999). Caswell (1989) makes the point that 

this kind of model should be considered a projection since stochastic changes in a 

population's environment make it highly unlikely that the vital rates measured for a 

population will in fact remain constant over time (Bierzychudek 1999). Keyfitz 

(1972) states that a projection is what would happen to a population if all assumptions 

and vital rates were constant, instead of forecasting what will happen. In 1965, 

Lefkovitch adapted the standard Leslie matrix model to eliminate any assumptions of 

relationship between an organism's size and age, thus presenting a model based on 
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stages. This was a biologically necessary step since, for most individuals, age is 

impossible to determine by observation alone, but given a known history of the 

species, a stage could be more readily identified (Lefkovitch 1965). For example, a 

human's age could at least be estimated by observing their current stage (e.g. baby, 

child, teenager, or adult). 

Stages can usually be identified in most species, but zoanthids are similar to 

scleractinian corals in that their growth is not strictly limited to a planar axis and their 

size does not necessarily reflect their age (Jackson and Hughes 1985). This makes it 

exceedingly difficult to estimate an individual's age or stage without having 

observations from the inception of the original parent colony(ies). Even if the parent 

colonies were known, Palythoa's ability to divide one colony into several "daughter" 

clone colonies (and fuse back together. again) creates huge variations in size between 

individuals in the same age class (Hughes 1984). These variations can easily lead to 

an overestimate of survivorship since it is incredibly difficult (if not impossible) to 

distinguish between a new recruit and a rejuvenating individual (Mertz and Boyce 

1956; Hughes and Jackson 1980; Hughes 1984). Therefore, a size-class transition 

matrix model is the only suitable model for examining Palythoa population dynamics. 

Additionally, transition matrix models (such as the Lefkovitch model) need to 

take into account shrinkage, growth, and non-growth. Non-growth represents a stage 

that does not progress/develop into whichever stage is next, but rather maintains its 

current size. The Hughes (1984) size-class transition matrix model takes all of these 

considerations into account but also includes asexual fragmentation and partial 

mortality. The Hughes model was used as the basis for this study. 
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In a size-class transition matrix model, a matrix M is constructed of the 

probabilities (a) of one size class (i), transitioning to another size class (;), which is 

written as aij (i.e. if a colony in size class 1 was to transition into size class 7 it would 

be written as (17). The vector (v) represents the number of individual colonies in 

each size class at time t (Bierzychudek 1982). Thus resulting in a matrix M(t) 

multiplied by the vector (v) which provides the "probabilities of transition" between 

differing size classes at the time interval (t, t+ 1) (Bierzychudek 1982, 1999). By 

evaluating the matrix, a population's equilibrium (or stable) growth rate ()..) can 

(under certain assumptions) be ascertained because, in the terminology of linear 

algebra, the growth rate ()..) is the dominant eigenvalue of the matrix (Leslie 1945; 

Caswell 1989; Bierzychudek 1999; Case 2000). 

1.3.2. Sensitivity and Elasticity Analyses 

Critical life history stages can be identified by investigating a transition 

probabilities matrix with sensitivity and elasticity analyses (Bierzychudek 1999). 

Sensitivity and elasticity values are a function of the specific entries in the transition 

matrix (Bierzychudek 1999; Caswell 2000) and can be used to "predict the response 

of lambda to changes, of any size, in any or all of the parameters" (Caswell 1978, 

200 I). By identifying the transitions that contribute the most to the dynamics of a 

population, we know what to focus on for future research. 

The sensitivity is the slope of log lambda as a function of aij and is an integral 

part of demographic analysis importance using).. as a measure of population growth 

rate and of fitness (Caswell 1978; Caswell and Trevisan 1994; Caswell 2000; Caswell 
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2001; Caswell et al. 2004). Caswell (2001) reports that "elasticity is the slope oflog 

lambda as a function of log crij". For any single matrix, the elasticities of A. measure 

the proportional contribution of the matrix entries to population growth and sum to 1 

(de Kroon et al. 1986; Caswell 1989; Mesterton-Gibbons 1993; de Matos and Matos 

1998; Benton and Grant 1999; Mills et al. 1999; de Kroon et al. 2000; Grant and 

Benton 2000; Heppell et al. 2000; Ehrlen et al. 200 I). 

Neither analysis is better suited, less bias, or more accurate than the other, 

rather, they are different ways of looking at a perturbation of the matrix model. For 

instance, if a transition probability value were increased from zero to a small positive 

number the sensitivity indicates what would happen to lambda while the elasticity 

would indicate what proportion of that change contributes to lambda (see van 

Groenendael et al. 1994) (Horvitz et aI.1997). 

1.4. Study Goals 

The current study has two main goals, and was conducted in two parts. The first 

goal (Part One) is to use digital imagery to quantify the spatial cover of Palythoa and 

provide a general overview of the Palythoa population present across the study area. 

This information fills an informational void regarding the role of zoanthids in the 

benthic community of SE Florida. 

The second goal (Part Two) is use· digital analysis data to determine if it is 

possible to create an accurate size class transition matrix model for Palythoa. The 

model is then tested by comparing the predicted outcomes of the model with observed 

outcomes from the digital image analysis. Any statistically significant differences 
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between the observed and predicted observations are examined and subsequent 

sensitivity and elasticity analyses were run on the appropriate results. Finally, I 

assessed the data and duration of monitoring needed for future studies, and explored 

any limitations of the current study. 
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2.0. METHODS AND MATERIALS 

201. Study Sites 

Data were collected from 16 permanent reef monitoring sites established for the 

Broward County Annual Monitoring Project in southeast Florida (Table I, Figures 1 & 

5) (Gilliam et al. 2006, 2007). Each site consists of a belt quadrat transect marked with 

21 stainless steel pins fixed in the substrate, one meter apart (± 1.0 cm). Transect pins 

were arranged linearly running generally in a north/south direction. The quadrat in the 

northeast corner of each transect was assigned quadrat # 1 in order to keep the quadrats 

consistent. Transect analysis at each site is consistent with methodology described by 

Dodge et al. (1982), with 30m' of bottom being analyzed per transect (O.75m' x 40 

quadrats). 

Table 1: Coordinates, reef designations, and depths for each of the 16 monitoring sites. 

SITE REEF DEPTH LATITUDE LONGITUDE 
(ft) (ddommm) (ddommm) 

HH2 Inshore Ridge Complex 19 2600.694 N 8006.757 W 

JUL6 Inshore Ridge Complex 12 2604.912N 8006.222 W 

FfL4 Inshore Ridge Complex 20 2608.208 N 8005.844 W 

FfLS Inshore Ridge Complex 25 2608.985 N 8005.8toW 

FfLl Inshore Ridge Complex 19 2609.534 N 8005.747 W 

POMP4 Inshore Ridge Complex 20 2612.732 N 8005.201 W 

POMPl Inshore Ridge Complex 20 26 11.435 N 8005.225 W 

JULl Middle Reef 40 2600.301 N 8005.8 13 W 

POMP2 Middle Reef 48 26 11.328 N 8004.803 W 

RB2 Middle Reef ·35 26 16.535 N 8004.262 W 

DB2 Middle Reef 37 2618.628 N 8004.026 W 

BOCAl Middle Reef 30 2620.803 N 8003.883 W 

POMP6 Middle Reef 52 2614.566N 8004.398 W 

JUL8 Outer Reef 50 2604.995N 80 05.099 W 

POMPJ Outer Reef 51 2611.214N 8004.365 W 

HB3 Outer Reef 49 2616.425N 8003.818 W 
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Figure 5: LADS bathymetry data of Broward County, Florida showing the locations of 
the 16 permanent monitoring sites. Monitoring site locations are shown as labeled dots. 
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2.2. Data Collection 

2.2.1. Field Techniques 

Using SCUBA, images of each traosect quadrat were taken using a digital 

camera (Olympus 5060 with Ikelite housing) fitted with a wide aogle lens (equivalent 

to a conventional 20mm lens) attached to a 0.75m2 quadrat framer (Figure 6). Tags 

with the site code, quadrat number (1-40) aod date were attached to the framer 

(Figure 7) and included in each image for reference. Two divers were used to control 

the camera and framer positioning. The dates of the annual visits for 2002-2006 cao 

be found in Table 2. 

Figure 6: Diver photographing 0.75m2 quadrats along a 30m2 traosect. 
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Figure 7: Example of a phototransect quadrat image with Palythoa cover. 
Note site code (FTIA), quadrat number (#39) and date (Sept 21). 

Table 2: Dates of the 16 annual site visits (Note: Site FTLS was added to the project in 
2003). 

DATE DATE DATE DATE DATE 
Site COMPLETED COMPLETED COMPLETED COMPLETED COMPLETED 

2002 2003 " 2004 200S 2006 

HH2 16 Sep 2002 10 Sep 2003 18 Aug 2004 07 Feb 2006 24 Aug 2006 

JUL6 23 Oct 2002 13 Oct 2003 14 Oct 2004 09 Dec 2005 24 Aug 2006 

ITL4 25 Oct 2002 18 Sep 2003 03 Nov 2004 13 Jan 2006 11 Oc.2006 

ITLS NlA 25 Nov 2003 03 Nov 2004 14 Oct 2005 13 Oct 2006 

FILl 02 Oct 2002 20 Oc. 2003 30 Aug 2004 14 Oc. 2005 06 Sop 2006 

POMP4 09 Oct 2002 20 Oct 2003 19 Aug 2004 20 Dec 2005 11 Oct 2006 

POMPl 07 Oct 2002 30 Sep 2003 01 Dec 2004 l7Fcb2006 25 Aug 2006 

JULl 16 Sep 2002 10 Sep 2003 18 Aug 2004 07 Feb 2006 24 Aug 2006 

POMP2 09 Oct 2002 01 Oct 2003 19 Aug 2004 09 Dec 2005 11 Oct 2006 

HB2 07 Oct 2002 30 Sep 2003 19 Aug 2004 01 Sep 2005 25 Aug 2006 

DB2 08 Oct 2002 IS Sep 2003 19 Oct 2004 12 Oct 2005 09 Oct 2006 

BOCAI 22 Oct 2002 IS Oc. 2003 31 Aug 2004 15 Sep 2005 08 Sep 2006 

POMP6 02 Oc.2002 02 Oct 2003 30 Aug 2004 13 Jan 2006 06 Sep 2006 

JUL8 16Sep2oo2 10 Sep 2003 18 Aug 2004 07 Feb 2006 24 Aug 2006 

POMP3 07 Oct 2002 18 Sop 2003 19 Oct 2004 01 Sep 2005 2S Aug 2006 

HB3 08 Oct 2002 IS Sep 2003 26 Oct 2004 12 Oct 2005 09 Oct 2006 
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2.2.2. Laboratory Techniques and Photographic Analysis: 

The digital images of each site were analyzed using Coral Point Count with 

Excel™ extensions (CPCe). Although the monitoring project has 25 sites, 9 of those 

sites were removed from this study because the sites either did not have Palythoa 

cover for at least one sampling period, or the image sets were incomplete or 

unsuitable for image analysis. CPCe's scaling calibration (Figure 8) and area trace 

options (Figure 9) were used to accurately determine the planar area of the Palythoa 

colonies (Kohler and Gill 2006). Care was taken to not include anything outside of 

the frame, dead spots in the colonies, or any area where another species had 

overgrown Palythoa. 

Enter spanned di$t~e: 110 I em 

Calculate) 

Figure 8: Screenshot of the image scaling and calibration process (Kohler and Gill, 
2006) 
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Figure 9: Screenshot of the CPCe software, showing traced areas and lengths, 
outlined areas, and movable text boxes. The areas of traced regions can be saved 
as bitmapped images. 

2.2.2.1. Part I: General Palythoa population dynamics 

For all 16 sites, the total live Palythoa colony area (cm2) of each 

individual transect quad (1-40) within each site was calculated. Additionally, the 

total cover area (cm2) and percent live cover were determined for each site. All 

sites were analyzed in this way for each sampling year (2002-2005) resulting in a 

mean percent live cover and the yearly change in percent live cover (Figure 10). 

The data was then grouped into one of six treatments: All Sites (All), High 

Cover (HC), Low Cover (LC), Inshore .Ridge Complex (IRC), Middle Reef (MR), 

and Outer Reef (OR) (Note: Although monitoring sites exist on the Inner Reef, they 

were not included in the present study due to incomplete data). Single factor 

ANOVA's were run to test for significance within reefs among years and among 

reefs within years. Parametric ANOVA relies on the assumption of normally 
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distributed data and constant variance between groups (sites or years). In order to 

address tbese assumptions, Palythoa cover data was arcsine transformed prior to 

statistical analyses. 

2004 2005 
Total cover in quad: 924.71 em' Total cover in quad: 1102.6 em' 

Figure 10: Example images of increase in total Palythoa area (cm2) from 2002-2005 at 
site HB2 Quad #2 using CPCe software. Note: Colonies are outlined in red; individual 
colony areas (cm2) are listed in white boxes. 
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2.2.2.2. Part 2: Transition Matrix Model 

2.2.2.2.1. Life Cycle Graph and General Matrix Model 

In order to understand the complex dynamics of Palythoa, a life cycle 

graph was created (Figure 11). "A life-cycle graph describes the transitions an 

individual can make, during a projection interval, among the i-state categories that 

define its life cycle" (Tuljapurkar and Caswell 1997). Arrow directions represent 

"the contributions from one stage to another resulting from the movement of 

individuals from one stage to another (e.g., by growth, or aging) or from 

production of new individuals (e.g., by birth)" for a determined projection interval 

(Tuljapurkar and Caswell 1997). The general matrix model entries correlate to 

the coefficient associated with each of the movements or transitions between 

stages in the life cycle graph. When looking at a general size-class transition 

matrix model (Figure 12), "probabilities below the diagonal represent net growth 

into a larger size class. The diagonal describes the likelihood of an individual 

remaining in the same size class, either through a slowing down in growth rates, 

or a balance between growth and shrinkage. Finally, probabilities above the 

diagonal represent contributions to a smaller size class, i.e., through shrinkage, 

fragmentation, or sexual reproduction" (Hughes 1984). Following the Hughes 

(1984) general graph model (Figure 12), I created a life cycle graph for Palythoa 

using a projection interval of one year; and seven separate "nodes" (also known as 

size classes; see Table 3) (Caswell 1989). 
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Figure 11: Life cycle graph for Palythoa caribaeorum. Nodes/Size Classes: n] = recruit, 
n2 = small juvenile, n3 = juvenile, n4 = intermediate, n5 = small adult, n6 = adult, and n7 = 

super adult. Arrows represent the possibilities of transitions between each size class. 

Table 3: Size class designations for the Palythoa colonies used to make the transition 
probability matrices. Size classes were determined by personal observations and the 
approximate equal distribution over those seven size classes of the 85 colonies selected 
for the study. 

Size Class Area (em') Description 

1 O-lOcm2 Recruit 
2 11-3Ocm2 Small Juvenile 
3 3l-50cm2 Juvenile 
4 51-100cm2 Intermediate 
5 IOI-3OOcm2 Small Adult 
6 301-600cm2 Adult 
7 601+cm2 Super Adult 
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Figure 12: The Hughes (1984) general size class transition probability model 
showing how transition nodes from the life cycle graph represent transition 
frequencies values in the matrices. 

2.2.2.2.2. Colony selection and tracing 

Nine sites were selected from the original 16 sites (Part One) based on 

both their distribution over each of the three reef classifications and the presence 

of Palythoa throughout all sampling Reriods. Individual colonies were identified 

from each of those nine sites, and were traced and tracked for all five annual 

sampling periods (2002-2006). Selection of the colonies included their proximity 

to the framer center (colonies in the center of the quad were preferred over any 

that touched the edges, or went outside of the quad), as well as the relief (colonies 
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that were growing on a flat surface were chosen over any growing on relief or that 

might be perpendicular to the substrate). If any of the colonies asexually divided, 

their ramets were also tracked for all five years. Each colony was traced using 

CPCe to determine their individual area (cm2) values. The colonies were assigned 

a size class number based on their area (cm2) (Table 3). 

2.2.2.2.3. Size Class Transition Probability Matrix 

The creation of the following matrices and subsequent analyses were done 

using MATLAB® R2006a. In order to fully understand the demography and 

dynamics of Palythoa, a size class transition model was used. "This approach is 

appropriate for dealing with zoanthid populations because these tropical 

cnidarians are long-lived, fission is . common, survivorship is size-dependent, and 

age and size are decoupled as determinants of life history" (Karlson 1988, 1991). 

A size class transition model makes several important assumptions that have 

direct bearings on the parameterization of the model: 

1) Population density plays no. role in the population's growth rate 

(Bierzychudek 1999). 

2) All individuals within the stages are equal; therefore, no information 

regarding individual colony-fate is entered. 

3) Over the modeled time-sequence, the model acts as a single-step 

Markov chain, which means that outcomes t+ 1 are always dependent on 

outcomes at t, independent of t (i.e. the matrix must predict as correctly 

at step 2 as at step 1000) (Usher 1979). If this isn't the case, a possible 

biological explanation would be density dependence or altered 

environment, which leads to different survivabilities in the classes. In 

such a case, several matrices may be necessary. 
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I used the seven "nodes" (or size class designations; Table 3) from the life 

cycle graph (Figure 11) and followed the Hughes (1984) example to predict the 

change in the number of individual colonies within a single cohort (i.e. size class). 

I grouped the highest percent cover (HC) sites (>1%) as well as the low cover 

(LC) sites «I %) for each year. I also grouped the sites into their respective reef 

tracts (Inshore Ridge Complex (IRC), Middle Reef (MR), and Outer Reef (OR)), 

in order to look at any cross shelf variation. For each treatment (e.g. All, HC, LC, 

IRC, MR, OR), I found the mean matrix of all years (2002-06). 

In a perfect situation with no variability, the vector (v) (number of the 

colonies in a size class per year) of any given year when multiplied by the mean 

matrix should result in the following year's vector (vector 2003 * Mean matrix 

2002-06 = vector 2004). I then compared the distribution of the observed (from 

digital image analysis) vs. model predicted vectors for each year using a chi-

square test (Zar 1999). 

Finally, once the distributions were examined, the dominant eigenvalue 

was found for the mean matrix of each treatment. Using those values, the 

sensitivity and elasticity analyses were run in order to identify the elements in the 

matrix that when changed would influence the model's outcome the most (Tanner 

et al. 1994). I then addressed any unexplained stochastic variability as well as the 

assumptions of the model and their biological meaning (Hughes 1984). 

SEE APPENDIX FOR: 
FLOW CHART OF MAJOR STEPS TO COMPLETE PART ONE AND PART TWO 
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3.0. RESULTS 

3.1. Part One: General Palythoa population dynamics 

These results provide a general overview of the extent of the Palythoa 

population on southeast Florida's reefs. Data was collected from 30m2 belt transects at 

16 sites situated over the three reef classifications off of Broward County, FL for a 

period of 4 years (2002-2005). Using the information in Table 4, the mean percent live 

cover was calculated using the total Palythoa live cover (cm2) per 30m2 transect. 

Overall mean (±1 SD) Palythoa cover for all years was 2.27 ± 0.09%. 

Although no significant difference was determined (p > 0.05, ANOVA) for the 

mean percent live cover either within reefs among years or among reefs within years 

(Figure 13), the Inshore Ridge Complex had two of the three highest percent live cover 

sites for all years. Those three sites (FTL4, HB2, JUL6) had particularly high mean (±1 

SD) covers of 16.1 ± 0.63%, 5.4 ± 0.87% and 4.8 ± 0.38% respectively. The mean 

percent live cover of those three sites (8.8 ± 5.5%) for 2002 - 2005 is greater than the 

remaining 13 sites combined (0.8 ± 0.83%). The sites were grouped into High Cover 

sites (percent live cover >1%) and Low Cover sites «1%) (Figures 14 & 15) and 

although it does not lend itself to statistical comparison, the mean percent live covers 

(+ISD) for both High Cover and Low Cover sites were compared in Figure 16. 
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Site Sample Year Sire Sample Year Site Sample Year L Site Sample Year 
, 2t~2 ,., '00' '''' lIDl ,., ,~, "" ,., ,~, ,~, lll~ 

,. 
'"' !." '''' "0' 

,,"u' Mu(elll') """(om') Am!"",) AIa(em') Quad~ An.(CI!I") ArM (em') AreI(CIJI') ,,",,{em') Quad I "" ... ""(00') Area (em') Anl(cm') .. dil Are-(em') ""(00') Areo.{clll') Arco (cm') 

1 
, , 1278.89 996.23 lJ6S.72 146M3 , ''',95 646.26 S2S,()9 4(19.1 1 1 '" 346.36 176.45 391.35 , I , I .~ 117.22 16.14 9.32 , 9SQ.19 1050037 1226.00 1038.81 , ... , , ga~,49 S38.00 919,~6 1072,44 , 1474.n 2733.62 2926.62 2102.19 , ....... 28.46 4(},47 IS6,QII 

• • • MHO 1:l6.l.S6 J1!W.IO 1162,52 • _U! 

• • • 117.39 111.12 186.26 [ lo\.6 1 • ,.., 601.39 nU2 72l.1!I 

• % • 147131 IW).2l B71.26 2124.60 • I01.S2 .... ~.m n n • , , I,.,. 1159.54 Im.os '''ill , 461.7S .. 12. ,,"'. 371.14 , 57.n 7S,j6 n." 
• • • ""~I 191.ll 359.45 ISI .. I • 8OJ'i 111.'111 109.62 , , , [ DIl lon 1127.44 981.1~ m.n , IOU' 116.12 15.21 

" " 10 1006.90 IUUl 1271.13 10111.4 1 " 10).74 29.58 31.26 

U U U 1ll.92 !~9." 2>6.78 100,17 I U ~2 .• 9 lJ.S8 2U4 , 
" 11 247.03 494.66 ]80.~1 443.93 11 II~J . 11 117U9 1240.71 107l.ti6 

:1 
" u " 7).10 108.[8 42.16 211.36 U 1641.64 180X.99 1535.89 14tH] " " " l!XIsm 11 10.03 2914.l~ )009.96 " 271 4.62 2317.65 2271.86 2859.\ 1 " 

" " lJl.12 280,\5 363.34 4H61 " 1166.94 76<4.9~ 1268.74 t4U08 " 96.29 ~1.66 7UX 

" " " 67.10 " nL .S8 19U5 ""'.40 

" " .9.S9 1M7 16.23 1~.24 " 114!." lM9.G4 137439 1ll7.67 " 
" " [OLSO 9Ul 119.&2 \47.90 

. 
" 911.)) tOU.19 1l53..53 1186.36 II 30.71 " .N 17U6 

" " 18-'13 \4.61 ll.S9 ..... " lJ.f7:79 3336.)9 "' ..... l409.4\ " 270.64 U2.66 n,.., 
" H 7.Sl.l 1 "'OJ, 6'.15.42 HUg " l l lU4 12SMI 2&61.45 mU9 • 
U U 15.12 " !JUS 2)9.64 263.62 ZlB\ U 

II U I IO.!9 12UI 137.044 IS7.!KI U 219.91 m.41 222.9! m.ll U 28.71 14.0\ 31.67 

" " " 452.12 52934 184.83 894.39 " 
" " " 40\ .46 18.4S 27.45 61.5~ " " " " 67.\8 13l.15 87.74 73.95 " .. " 201.26 171.99 223.25 179.s.. " 26M7 228.119 246.9S 102.64 " " Il.~ 5M3 "-U " .... Il 74U9 w ,n Ho.!J9 " 96Ul l lR61 1427.45 ~.49 " 97.74 124.73 16:l.11 

H D IM.17 29195 12lI.fJ(I """ • 106135 IOIUI IOllJ~ lotOJolO " 21.96-

" " '''"' 1>27.51 4119.01 "". " 11106.19 1941.19 21:10.411 2 12).40 " " .. ... " "''' 297.G2 )0$.64 .. ,I." 19.08 , .... '.m " " " " .. " 169G.12 1S34.Ui 17lJ51 ISll.SI " l!.71 51.14 

" " 57.41 1'J'.I.l I 17(1.22 97.10 n ["mol9 IU9.l1 1393.7<1 1416.62 " 
" " 2\6.21 25&.16 126.12 102.12 " 44])9J4 3501.82 4262.09 432122 I " ,. ,. ,. 8~8.J6 !09S.1~ 1fl4.4.S2 112~.SS 

I " 
" 310.22 335.03 m.04 J50.0Ii " " m1.37 mO.9! 1~IZJ4 IS9S .!XI " ,. ,. ,. mHO 1303.49 142Z.51 H92.4H " 
" " " 21Sll.69 112i.7R Zt33.l6 214S . \2 " 
" " 91.911 97.16 12t1.S1 147.60 " 1&61.11 2(126.] 1 II!9SJ9 117.27 " 
" ]]4.00 nl" 111.29 2.lUl " 2QlU1 ''''''' ""' .~ 2On.l0 " 11"'.!9 1 ~19.25 ISS2.1? 1410.41 " II .. lU I 11.03 l4.S) 26.SS II 1%632 l ilt.O) ",.. ... III us .. 

T.eNAnI.( .... 424.21 ...... m Ji .... u "~""I"I'(n.') UlUM l~l5lA7 Imu.4 " .. ". II.J Ana (t8') .*'-'7 U)9).H 511 U .1I 44i' 7l.T.! r ..... ...... ,.~ "" j :."'.,. I 2#1.1;) ~7~ 

THaI 'to C..,.rr 1.14 0.11 1.11 '.n TttaI % c.YI'I" U. '.n ( <11 53. THaI % C'l'Ir IUt 16.B '''' 
,,,. It· , •• ~·,~l' . ~ .... I I.n : '.iil t .• 

31 

.... "';"""'!i'~r7.:' # ... - ~~~;f; 



Table 4: Continued. 
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Table 4: Continued. 
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Mean Percent Live Cover of Palythoa by Reef (2002-2005) 

002002 00 2003 02004 I!J 2005 

Inshore Ridge Complex 
(n~ 7) 

Middle Reef (n 0=6) Outer Reef (n=J) Overall (n~ 16) 

Figure 13: Mean percent live cover (untransformed) of Palythoa by reef for all 16 sites. 
Error bars reflect one standard deviation. 
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Percent Live Cover of Palythoa for all High Cover Sites 
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Figure 14: Percent live cover (untransformed) of Palythoa by site for al1 High Cover 
(> 1 %) sites for each year (2002-2005). 
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Figure 15: Percent live cover (untransformed) of Palythoa by site for all Low Cover 
«1 %) sites for each year (2002-2005). Note scale change from Figure 14. 
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Palythoa Mean Percent Live Cover for IDgb vs. Low Cover Sites (2002-2005) 

"'High(_) iii Low (1F1l) 
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Figure 16: Mean percent live cover (nntransforrned) of Palythoa for High and Low Cover 
sites. Error bars reflect one standard deviation. 

3.2. Part 2: Transition Matrix Model 

The second part of the stndy tracked 85 colonies and their isolates from 9 of the 

original 16 stndy sites from 2002-2006 (Table 5). So, as the first step, colony 

abnndance was connted each year respective to the size-class bins that were to be used 

in the projection matrix (Table 6). When the abnndance of each size class was graphed 

over the entire investigated time-span, an overall trend showed decline in all size 

classes (Figure 17). This could be seen as an indication of overall population reduction, 

which made the investigation of the population's A, (overall population growth rate) 

important. Figures 18 & 19 show the same results broken out into High & Low Cover 

(Figure 18) and Inshore Ridge Complex, Middle Reef and Outer Reef (Figure 19). 
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Table 5: High and low percent live cover, and reef designations for the nine Part Two 
study sites. 

Middle Reef HB2 5.4± 0.87% 

Overall 7.1 ± 

Low Cover Sites 

Table 6: Total number (abundance) of colonies in the 7 assigned size classes in each 
sampling year (2002-2006) for all 9 sites. The columns refer to size classes described in 
Table 3 

I I 2 3 4 5 6 7 

2002 16 18 14 18 14 8 5 

2003 18 15 21 12 17 6 7 

2004 19 17 17 14 17 7 10 

2005 35 20 11 18 20 6 8 

2006 40 26 13 14 18 6 10 
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Observed Colony Abundance for each Size Class 
for All Sites (2002-2006) 
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Figure 17: Observed number of individual colonies ( abundance) for All sites 
in the size classes chosen to populate the transition matrix model. 

Observed Colony Abundance for each Size Class (2002-2006) 
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Figure 18: Observed colony abundance in the size classes chosen to populate 
the transition matrices for High and Low Cover sites. 
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Observed Colony Abundance for each Size Class (2002-2006) 

Inner Reef Complex (0-3) 
25r-------------------------~------------------__, 
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Size Classes 

Middle Reef (0=-3) 
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Figure 19: Observed colony abundances in the size classes chosen to populate the 
transition matrices for the Inshore Ridge Complex, Middle Reef, and Outer Reef. 

Bearing the aforementioned model assumption constraints m mind, the 

transitions among the chosen sIze classes were evaluated for the eventual 

parameterization of the matrix model. Table 7 shows the number of colonies within 

each transition year (e.g. 02-03) and their respective transition frequencies among size 

classes (i.e. the percentage of how many originally' available colonies in size class i 

changed into size class i+ lover a single time interval). 
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Table 7: The transition year columns (e.g. 02-03, 03-04, etc.) represent the number of 
colonies present in each size class transition (e.g. all, a2h etc.) within each transition year 
while their respective transition frequencies columns represent the percentage of how 
many originally available colonies in size class i changed into size class i+ lover a single 
time interval (all). 

ALL SITES COLONY SIZE CLASS CHANGE OVER YEARS 
Size Clals Transition Transition Transition Transition 

Tran-sitions 02-03 Freouenc\' 03-04 Froouencv 04,,05 FreQuencv 05·06 Freouencv 

• 10 0.63 20 0.17 24 0.80 41 0.82 
-;;: 3 0.19 5 0.19 2 0.07 9 0.18 
." .. 3 0.19 0.00 0.00 0.00 

• 0.00 I 0.04 1 0.03 0.00 

• 0.00 0.00 2 0.07 0.00 
a., 0.00 0.00 0.00 0.00 
a- 0.00 0.00 1 0.03 O.O~_ 

SUM I • U 30 SO 
. -;;: 4 0.21 2 0.12 5 0.25 7 0.30 

a •• 11 O-,S 9 0-'3 12 0.60 12 0-'2 
a 4 0.21 6 0.35 3 0.15 2 0.09 
Co. 0.00 0.00 0.00 2 0.09 

• 0.00 0.00 0.00 0.00 .. , 0.00 0.00 0.00 0.00 
-;;: 0.00 0.00 0.00 0.00 
o;l" 1 to " 241 23 
0 2 0.13 3 0.14 3 0.18 2 0.18 
u=- 3 0.]9 2 0.10 2 0.12 1 0.09 

• 8 0.50 8 0.38 6 0.35 5 0.4S -n.: 3 0.19 5 0.24 6 0.35 3 0.27 
au 0.00 2 0.10 0.00 0.00 

--;;: 0.00 I 0.05 0.00 0.00 
a •• 0.00 0,00 0.00 0.00 

sr).! 16 II 17 11 .... 3 0,17 I O.OS 2 0.14 3 0.16 
~ 0.00 I 0.08 I 0.07 I 0.05 .... 4 0.22 I 0.08 1 0.07 2 0.11 ... 7 0.39 5 0.38 6 0.43 10 0-'3 ... 4 0.22 4 0.31 4 0.29 3 0.16 
--;;: 0.00 0.00 0.00 0.00 .... 0.00 1 0.08 0.00 0.00 
~U1II 18 \) .. l' ... 0.00 2 0.12 I 0.06 3 0.15 
--;;:: 0.00 0.00 I 0.06 0.00 
0- 1 0.07 0.00 0.00 1 0.05 

--;;: 2 0.13 2 0.12 5 0.28 0.00 .... 12 0.80 9 0.53 10 0.56 12 0.60 
--,;: 0.00 4 0.24 1 0.06 3 0.15 

Lor ' 0.00 0.00 0.00 1 0.05 
Sl'\l 15 10 18 10 ... 1 0.11 1 0.17 0.00 0.00 
--;;: 0.00 0.00 0.00 0.00 
~. 0.00 0.00 1 0.14 0.00 

--;;: 0.00 0.00 0.00 0.00 .... 1 0.11 1 0.17 3 0.43 2 0.33 
--;;: 5 0-'6 2 0.33 3 0.43 3 0.50 - 2 0.22 2 0.33 0.00 1 0.17 
Sl :\I 9 6 • 6 .... 0.00 0.00 0.00 0.00 
--;;: 0.00 0.00 0.00 0.00 .... 0.00 0.00 0.00 0.00 
--;;: 0.00 0.00 0.00 0.00 .... 0.00 1 0.14 1· 0.10 0.00 
--;;: 0.00 0.00 2 0.20 0.00 
-,;:; 5 1.00 6 0.86 7 0.70 8 1.00 

!)lJl\1 ; , 111 ~ 
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From Table 7, four matrices were produced, one for each transition year (2002-

3,2003-4,2004-5,2005-6; Table 8). The mean of all transitions over all years of these 

four matrices was used to build an overall projection matrix (Table 9). 

Table 8: Transition frequency matrices of All sites for each transition year. 

. I I r·· -:.. ~.;-c . I --~ - -~-~ 
~ - .. - .i , fr:": ) 'J ' ;":--- -_ • - TlI--- _. ""-~-- --- -------- - -- = ~-- - - ---

... 1 2 3 . 4 5 6 7 

. 1 0.63 0.19 0.19 0.00 0.00 0.00 0.00 

2 0.21 0.58 O.ll 0.00 0.00 0.00 0.00 

. 3 0.13 0.19 0.50 0.19 0.00 0.00 0.00 

4 0.17 0.00 0.22 0.39 0.22 0.00 0.00 

5 0.00 0.00 0.07 0.13 0.80 0.00 0.00 

6 0.11 0.00 0.00 0.00 0.11 0.56 0.22 

7 0.00 0.00 0.00 0.00 0.00 0.00 1.00 
~ -. - '''- ~-.,...,," ...... ~ . ,,-_. . . ----- T -~=-, 'i _ =.L ___ '_ ._ _ _ _ r~ , _ , ;_ ~~ ~~ _ _ -=-=-. _ 1;- -

_-=----- _ =-or- ~ 

1 2 3 4 5 6 7 

1 0.77 0.19 0.00 0.04 0.00 0.00 0.00 

1 0.12 0.53 0.35 0.00 0.00 0.00 0.00 

3 0.14 0.10 0.38 . 0.24 0.10 0.05 0.00 

4 0.08 0.08 0.08 0.38 0.31 0.00 0.08 

5 0.12 0.00 0.00 0.12 0.53 0.24 0.00 

6 0.17 0.00 0.00 0.00 0.17 0.33 0.33 

7 0.00 0.00 0.00 0.00 0.14 0.00 0.86 - " , - -~~ - ... -... -~ --J II I I.II_~ ."--~'~-. ':" ) '·~-----I--~-.--r 
_.-.:~~:~--v- - .. ~~---=----=- - ~- '===.' 

1 2 3 4 5 6 7 

1 0.80 0.07 0.00 . 0.03 0.07 0.00 0.03 

2 0.25 0.60 0.15 0.00 0.00 0.00 0.00 

3 0.18 0.12 0.35 0.35 0.00 0.00 0.00 

4 0.14 0.07 0.07 0.43 0.29 0.00 0.00 

5 0.06 0.06 0.00 0.28 0.56 0.06 0.00 

6 0.00 0.00 0.14 0.00 0.43 0.43 0.00 

7 0.00 0.00 0.00 0.00 0.10 0.20 0.70 

~ l ~(~;~~-'=-~-:':J_ ~=-~ -==~~~:_=-:~I 
1 2 3 4 5 6 7 

1 0.82 0.18 0.00 0.00 0.00 0.00 0.00 

2 0.30 0.52 0.09 0.09 0.00 0.00 0.00 

3 0.18 0.09 0.45 0.27 0.00 0.00 0.00 

4 0.16 0.05 0.11 0.53 0.16 0.00 0.00 

5 0.15 0.00 0.05 0.00 0.60 0.15 0.05 

6 0.00 0.00 0.00 0.00 0.33 0.50 0.17 

7 0.00 0.00 0.00 0.00 0.00 0.00 1.00 
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Table 9: Mean transition frequencies for All sites (2002-2006). 

0.56 0.20 0.02 0.00 0.00 0.00 

0.05 0.12 0.43 0.25 0.00 0.02 

7 0.00 0.00 

Using Matlab®, the dominant eigenvalue (A) was obtained from the mean 

(2002-2006) matrix (e.g. Table 9) for all treatments (All, HC, LC, IRC, MR, OR) 

(Table 10). Since all treatments resulte<,i in a lambda value equal to or near 1.00, this 

would suggest that the Palythoa population in southeast Florida is stable (neither 

growing nor shrinking) (Figure 17). 

Table 10: Dominant eigenvalues (lambda values) for the mean transition matrices 
of all treatments 

Lambda Values for Mean Matrices 

Treatment l 
All Sites 1.00 . 

Hil!h Cover 1.00 . 
Low Cover 0.99 

Inshore Ridl!e Complex 1.00 

Middle Reef .. 0.99 

Outer Reef 1.00 
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Since a base assumption of stage-based models is that a single matrix can 

predict population growth at any arbitrary time-step, I used this matrix to test whether it 

could indeed correctly predict the population vectors of the known (observed) 

following years (population vectors in Table 6) (Figures 20-25). A standard chi-square 

test was run for each treatment (e.g. All, HC, LC, IRC, MR, OR) each year to 

determine if there were any significant differences between the distribution of the 

observed (from digital analysis) and predicted (from the model) results. The results and 

any significant differences are found in Table II. Any significant differences were 

examined in order to determine any factors that may have impacted the results. 

All Sites Observed vs. Predicted Size Class Abundances for 2003 ., 

, 
Size Classes 

r---- Ob/;crvcd 1 

1_ Predicted . 

All Sites Observed vs. Predicted Si:lle Clllss Abundances for 1005 

Size Classes 

All Sites Observed Vi. Predicted Sile Uass Abundances for 2004 

'",~--------F-"===i! 

Size Classes 

All Sites Ob8erved vs. Predicted SIR Oass AbIUdIDCCI for 2006 

Size Classes 

Figure 20: Observed vs. predicted colony abundance in each size class per year for All 
sites. 

43 

I , 



- "'"-" 
_ Predicted 

j " 
~ " ~ 

! 
~ " 

Size Classes 

High Cover Observed VII. Predicted Si2le Oan Abuudances for 2005 

w;,-~----~-------,~~==c 
_ Ob.crvcd 
_ PreWctcd 

Size CIQSses 

High Cover Observed VI. Predicted Si;!ll aas. Abundances fur 2004 

j 
• • 
~ 

J 

" 

.of .1 
'LJ 
" I 

DUh d , , , 
Size Classes 

Size Classes 

_ Obsorvcd 
_ PredlclOd ' 

II II 
• , 

Figure 21: Observed vs. predicted colony abundance in each size class per year for the 
High Cover sites. 
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lAIw Cover Observed vs. Predicted Sill! Oall! Abundances for 2006 

Figure 22: Observed vs. predicted colony abundance in each size class per year for Low 
Cover sites. 
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Insbore Ridge Complex ObJerved VII. Predicted 
Sl:lle aas. Abundances for 2003 

Size Classes 

Insbore Ridge Complex Observed VII. Predicted 
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Figure 23: Observed vs. predicted colony 
Inshore Ridge Complex sites. 
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Figure 24: Observed vs. predicted colony abundance ill each size class per year for 
Middle Reef sites. 
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Outer Reef Observed vs. Predicted Sbr aass Abundance. fur 2004 

Size ClllSses 

" 

Size Classes 

Figure 25: Observed vs. predicted colony abundance in each size class per year for Outer 
Reef sites. 
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Table II: Chi-square comparison of observed vs. predicted model results for All, 
High Cover, Low Cover, Inshore Ridge Complex, Middle Reef, and Outer Reef sites 
(2003-2006). For DF= 6, a X2 = 12.592, therefore any p-value > 12.592 represents a 
significant difference in distribution (value denoted with an asterisk). 

.' Chi-Square Results " 

DF=6 P-value 
. All Sites . 

2003 4,647 
2004 3.124 
2005 10.004 
2006 4.181 

B il!:h Cover 
2003 2.100 
2004 2.192 
2005 6.897 
2006 5.708 

LowCover . 
2003 0.736 
2004 5.450 
2005 14.340* 
2006 1.878 

Inshore Rid!le Com' lex 
2003 1.750 
2004 5.167 
2005 9.292 
2006 5.478 

Middle Reef 
2003 2,149 
2004 2.381 
2005 13.917* 
2006 2.790 

Outer Reef 
2003 1.154 
2004 2.686 
2005 23.293* 
2006 2.967 
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When originally creating my model I chose not to include any density variables. 

Since the results of the chi square test showed that only the lower cover sites had 

significant differences from the model, I presumed that it implied that the high cover 

sites were density-dependent, and so therefore were not affected by the same 

environmental variations as the lower cover sites. Thus, since the density-dependent 

high cover sites violate the assumptions of my model, if I were to run the final 

sensitivity and elasticity analyses the results may not be accurate. So, in order to 

determine which size class transitions contribute the most to the dynamics of the 

population, the sensitivity and elasticity analyses were run only on the mean matrices of 

the treatments that had significant difference between the distribution of the observed 

and predicted vectors (Le, MR, OR) (Figures 26-37). Figures 26-37 are graphical 

representations of the resulting matrices ;md should be read accordingly. For example, 

Figures 26 and 27 represent the same data set (i.e. the results of the sensitivity analysis 

for the mean low cover matrix) and in both figures, the top left comer (in Figure 26-

dark blue, and Figure 27- lime green) represents the transition from size class I to size 

class 1 or all. The major difference is that Figure 27 is the scalar view (i.e. the log) of 

Figure 26. This was done in order to give a different view of the results and their 

significance. Any similarities or differences in the results of the analyses between 

treatments were examined and are explained in the discussion. 
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Mem Low CDftI" Sem1t1rity 

Figure 26: Eigenvalue sensitivity 
analysis of the mean Low Cover matrix. 

Melin LIJIII" Cllftr Elasticity 

Figure 28: Eigenvalue elasticity analysis 
of the mean Low Cover matrix. 

Me.Middle ReelSmslti"rity 

Figure 30: Eigenvalue sensitivity 
analysis of the mean Middle Reef 
matrix. 
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Figure 27: Eigenvalue sensitivity 
analysis of the mean Low Cover matrix­
scalar view. 
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Figure 29: Eigenvalue elasticity analysis 
of the mean Low Cover matrix- scalar 
view. 

Mean Middle ReefSensithity 

Figure 31: Eigenvalue sensitivity 
analysis of the mean Middle Reef 
matrix-scalar view. 
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Figure 32: Eigenvalue elasticity analysis 
of the mean Middle Reef matrix. 
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Figure 34: Eigenvalue sensitivity 
analysis of the mean Outer Reef matrix. 
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Figure 36: Eigenvalue elasticity analysis 
of the mean Outer Reef matrix. 
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Figure 33: Eigenvalue elasticity analysis 
of the mean Middle Reefmatrix- scalar 
VIew. 
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Figure 35: Eigenvalue sensitivity 
analysis of the mean Outer Reef matrix­
scalar view. 
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4.0. DISCUSSION 

The zoanthid Palythoa caribaeorum population dynamics have been analyzed to 

assess the current community in the southeast Florida reef system. In order for this 

project to be valuable to local resource managers, temporal and spatial changes in 

Palythoa were examined. This study was conducted in two parts. 

4.1. Part One: General Palythoa population dynamics 

The goal of Part One was to use digital imagery analysis to quantify the spatial 

cover of Palythoa and provide a general overview of the Palythoa population present 

across the study area (2002-2005). These results fill a void of information regarding 

the distribution of zoanthids in southeast Florida. 

The results of the Moyer et al. (2003) paper (Figure 2) suggest the Inner Reef 

is zoanthid and algae-dominated. The study attempted to classify a large area, and I 

believe it may have led to an over simplification of the community present on the Inner 

Reef. The results of this study show that although no Inner Reef sites were included in 

this study, there is no indication of zoanthid domination on southeast Florida reefs. 

Interestingly, the Inshore Ridge Complex had 2 of the 3 highest Palythoa cover sites for 

all four sampling periods (2002-05) (Figure 13). Those three sites (FTL4, HB2, JUL6) 

had particularly high average individual covers, but the current study design does not 

allow for any hypotheses as to why these are the most populated sites. 

By using digital image analysis, I determined that there was no significant 

change in Palythoa percent live cover from 2002-2005. This is of importance because 
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although Palythoa has been reported as an aggressive spatial competitor, the results 

show that the population is actually maintaining size in southeast Florida. 

A common perception in southeast Florida is that Palythoa may have a 

negative effect on stony corals, so I compared my Palythoa population data to the 

historical stony coral mean percent live data from the Broward County Yearly 

Monitoring Project in southeast Florida (Gilliam et al. 2006, 2007) for all 16 sites 

(2002-2005) (Figures 38-40). When the mean percent live covers were compared for 

all sites, stony coral cover was greater than Palythoa each year. For the majority of 

both the High and Low cover sites, stony corals had a higher mean percent live cover 

than Palythoa each year (2002-05). Both populations seem to be maintaining size 

which suggests stabilization in the system. 

Palythoa vs. Coral Mean Percent Live Cover of All Sites (2002-2005) 
~ 

12 o Palythoa 13 Stony Corals 

" ;. 10 '" 
Overall (0=16) 

U 
~~ 8 =~ 
1l'" 

6 ~~ 

"+ ~~ 

= = 4 

" ::;: 2 

0 

2002 2003 2004 2005 

Figure 38: Comparison of Palythoa and stoll}' coral mean percent live cover (+ISD) for 
all 16 sites. 
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Figure 39: High cover Palythoa vs. stony coral mean percent live cover by site (n = 6). 

Low Cover Palythoa vs. Stony Coral Mean Pen:ent Live Cover by Site (2002-2005) 
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Figure 40: Low cover Palythoa vs. stony coral mean percent live cover by site (n = 10). 

These results suggest that even though the reefs in southeast Florida seem to be 

such a prime location for Palythoa to dominate, the Palythoa population is simply 

maintaining size. With high growth rates, a lack of predation, and the potent 

neurotoxin PTX, Palythoa should have been able to out grow/compete the majority of 

its spatial competitors (Karlson 1980; Suchanek and Green 1981; Sebens 1982). The 

relatively low live covers for the majority of the study sites suggest that there is an 

unknown regulatory factor (e.g. nutrient, spatial, etc.) involved. With an estimated 

41km2 of shallow reef habitat in Broward County and 140 MGD of nutrient-laden 

treated wastewater pumped into (or near to) the study area (Koopman et al. 2006), this 
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seems to challenge the Lapointe et al. (2002) theory that heavy nutrient loading leads to 

uncontrolled Palythoa growth. Although factors such as disease and bleaching were 

not captured in this data set, it may prove that they and/or an unknown self-regulated 

population size are factors in keeping the Palythoa population size from dominating 

southeast Florida. 

4.2. Part Two: Transition Matrix Model 

The goal of Part Two was to use digital analysis to determine if it was 

possible to create an accurate stage transition matrix model for Palythoa. The model 

was then tested by comparing the predicted model results with the observed results 

from the digital image analysis . Any statistically significant differences between the 

observed and predicted observations were examined and the subsequent sensitivity and 

elasticity analyses were run on the appropriate results. Finally, I provided 

recommendations for the data and duration of monitoring needed for future studies, and 

explored any limitations of the current study. 

Accurate predictive models of ecological communities are greatly needed 

(Keddy, 1992). The scientific community has only in the last 25 years begun to 

recognize the importance of modeling as a way to accurately predict the future states of 

communities (Keddy, 1992). So, in order to begin to understand the complex and 

stochastic population dynamics of Palythoa, it was necessary to look at these data on 

another level then just the population density of individuals. First, I created stage-based 

transition matrices for the years 2002-2006 (e.g. 2002-03, 2003-04, etc.). By taking the 

mean of all four transition matrices, I was able to determine the population growth rate 
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(A= 1.0) for the overall population. This suggests that the population is maintaining size 

since a lambda value equal to 1.0 signifies stability (Hughes 1984), which agrees with 

the Part One results that the Paly/hoa population is maintaining size, rather than 

growing or shrinking. 

In order to test the accuracy of the model, the predicted results of the model and 

the actual observed results from the digital image analysis were analyzed using a 

standard chi-square test. The only significant differences between the observed and 

predicted vector chi-square results were for the Low Cover, Middle Reef, and Outer 

Reef sites in 2005. This may be explained by the severe high energy hurricane seasons 

that southeast Florida experienced in 2004 and 2005. Crossing directly over the reefs, 

Hurricanes Francis (August 25th 
- September 8th

) and Jeanne (September 13th 
- 28th

) 

both made landfall in Broward County, FL in 2004. In 2005, Hurricanes Katrina 

(August 23m - 30th
) and Wilma (October 17th _25 th

) hit south Florida, and although they 

did not directly cross the reefs of the study area, they are two of the six most intense 

storms ever recorded in the Atlantic basin. In 2004, five of the nine sites were sampled 

after the hurricanes passed, and all of the sites in 2005 were sampled either between 

hurricanes or after both had passed. Palythoa's reaction to the disturbances was 

obvious as was the year that it took to regain population stability/equilibrium. This was 

shown by the significant difference between the observed and expected outcomes of the 

model for the Low Cover, Middle Reef, and Outer Reef in 2005, but not in 2006. The 

data suggests that the lower cover Palythoa population didn't regain full normal 

distribution again until the 2006 sampling period. The most interesting aspect of these 

results is that only the Low Cover sites and deeper (Middle and Outer) reefs were 
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significantly impacted. Initially, this seems counter intuitive, because one would 

expect the shallower reefs (which received the majority of the brunt of the storm's 

energy) to have been impacted the most. But, Palythoa normally thrives in high-energy 

shallow areas; their conjoined polyp colony formation and ability to retain carbonate 

sediment in their body walls allows Palythoa to minimize the damaging drag of water 

flow. The High Cover sites and Inshore Ridge Complex may have taken the brunt of 

the wave action, but because of the sheer density of the population, they seemed to have 

faired better than the individual colonies in the Low Cover sites and deeper (Middle 

and Outer) reefs. The exact mechanisms involved with the hurricanes that resulted in 

such a large size class distribution disturbance (e.g. high energy waves 

damaging/stressing the colonies, lack of nutrition, turbidity, etc.) are unknown. Rather, 

my conclusion is that the model was ac~urate and sensitive enough to pick up a large-

scale disturbance. In future work, the components of the study design and model will 

need to be fme-tuned to determine if it is possible to show small scale disturbances. 

Table 12: Site visits relative to the 2004 and 2005 high energy hurricane seasons. 
Asterisks denote sites that were visited post hurricanes Frances and Jeanne in 2004 and 

·th b h· K · d W·lm ft b th h d d el er etween UITlcanes atrmaan I aora er 0 a I passe. 

Reef Site 
2004 Date 2005 Date 
Completecl Completed 

Inshore Ridge Complex JUL6 14 Oct 2004* 09 Dec 2005* 
Inshore Ridge Complex FTL4 03 Nov 2004* 13 Jan 2006* 
Inshore Ridge CompJex FTLl 30 Aug 2004 14 Oct 2005* 

Middle Reef POMP2 19 Aug 2004 09 Dec 2005* 
Middle Reef HB2 19 Aug 2004 01 Sep 2005* 
Middle Reef DB2 19 Oct 2004* 12 Oct 2005* 
Outer Reef JUL8 18 Aug 2004 07 Feb 2006* 
Outer Reef POMP3 19 Oct 2004* 01 Sep 2005* 
Outer Reef HB3 26 Oct 2004* 12 Oct 2005* 
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Assumptions were made as to the variable conditions of the Palylhoa population 

in southeast Florida. The most important assumption was that population density plays 

no role in the population's dynamics. A population with a high growth rate (A> 1.0) is 

predicted to exhibit an increased density (thus exhibit density dependence) 

(Bierzychudek, 1999). "There is a constant need for simple but general functions to 

describe density dependent processes; simple so that their properties may be determined 

analytically and general so that they are capable of describing the varied forms in which 

density dependence may occur" (Bellows 1981). The matrix model is ideally simple 

and general, but one of the main constraint assumptions of the model is that the 

population in question conforms to a single-step Markov process. A Markov process is 

a mathematical model of probabilistic processes, which generate random sequences of 

outcomes to certain probabilities. The b!isic premise of a Markov process is that if the 

outcomes of all of the first t-n events of a series of events are known, then the 

probabilities of outcomes in the I-th experiments are also known. This means that step 

(1+ I) is uniquely defmed by step (I). The size of t must not matter (thus, dependence of 

t+ 1 on t must be same after 10,000 steps as after 1). In short, transition probabilities 

must be totally stable. The results of the chi-square test suggest that this is not the case 

in the High Cover and Inshore Ridge Complex (and subsequently the mean of All) 

Palythoa sites. In general, Palythoa colonies have a fast initial growth rate, but as 

density increases, growth decreases (Tamler 1997). For the All, High Cover and 

Inshore Ridge Complex treatments, I observed super-adult (600+ cm2) colonies that 

maintained size over the four transition periods. The increased frequency of stable size 

super-adult colonies and the lack of major change in the population distribution after 
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the hurricanes passed suggest that density dependence is restricting the growth of the 

population. This dependence on large colonies violates the assumption of a simple 

Markov process, because the likelihood of transition from large into small decreases 

with t (i.e. as the habitat gets fuller). Therefore, the All, High Cover and Inshore Ridge 

Complex treatment models were excluded from the final sensitivity and elasticity 

analyses. 

The results of the sensitivity and elasticity analyses for the Low Cover, Middle 

and Outer Reef treatments all showed that the stability of the Palythoa population in 

southeast Florida is dependant on the smaller size class loop transitions. Looking at 

each analysis individually, the Low Cover results show that growth (e.g. (124) is 

important, while two Middle (e.g. (12\ and (131), and one Outer Reef (e.g. (152) transitions 

show that shrinkage is important. Oyerall, it appears that although the Palythoa 

population in southeast Florida is mostly maintaining size (loop), there is a tendency for 

periodic shrinkage. 

4.3. Lessons Learned InclndIng Limitations of the Study 

The size class transition matrix model works and is accurate. The sensitivity 

and elasticity analyses showed that population growth and shrinkage in the smaller size 

classes in the lower cover sites are the most important to popUlation maintenance. One 

consideration is that this model does not contain any information on sexual 

reproduction, yet the population is somehow stable (shown by all lambda values equal 

to or near to 1.0). A future study would need to be specifically designed to answer the 

question of where the recruits are going. 
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The infonnation obtained in this study would not have been possible by in situ 

data collection alone. But, the data set used (Broward County Yearly Monitoring) was 

not designed for this kind of manipulation. Increased efficiency and integration of 

monitoring efforts (such as photographic and video methods) are becoming 

increasingly important to optimize diver time in the water (Kohler and Gill 2006). 

Often, biological studies are confmed to good weather days and funding, but by using 

digital images that were taken at the same time as the in situ observational data, more 

infonnation can be obtained from the data set than what was originally collected. There 

is no problem when the additional infonnation confonns to the constraints of the 

original study design, but problems arise when the data is manipulated outside of that 

design. For example, in the case of the current study, Palythoa does not appear to have 

any impact on stony coral percent live cpver; however the data did not allow for any 

kind of statistical comparison between the two populations. 

4.4. Recommendations for Future Requirements of Data and Duration of 
Monitoring Needed to Accurately Model Palythoa 

It is still unclear why or how Palythoa is maintaining size in southeast Florida. 

So, as part of this study, I have recommendations for the data and duration of 

monitoring needed in future studies to accurately model the dynamics of Palythoa. 

"Realistic predictions about clonal struc~re will require extensive knowledge of 

population history (e.g., the magnitude, frequency, and specific effects of past 

disturbances, variation in the biological and physical processes controlling nonnal 

recruitment rates, and the occurrence of episodic recruitment or mass mortality events)" 

(Karlson 1991). Research on Palythoa is additionally challenging because it is unusual 
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in its ability to fluidly move between size classes as well its ability to incorporate new 

recruits and old ramets into mature colonies. For example, if a new recruit could 

immediately join a mature reproductive super-adult, then it would greatly affect the 

overall dynamics of the population by producing a constant reproductive (either asexual 

or sexual) state in the majority of the population. This is normally unrealistic for other 

species, but it seems that it is possible (and common) for Palythoa. Karlson (l991) 

states that the extremely long genet life spans may make it impossible to know the 

complete history of a population. It may not be possible to know the complete history, 

but by focusing future research on the most important size class transitions identified in 

the current study, the knowledge gained may well prove to be helpful. That being said, 

annual sampling periods are acceptable when focused only on less dynamic species, but 

especially for such an aggressive and dypamic competitor like Palythoa, observing the 

colonies only once a year greatly limits the information that can be obtained from 

analysis. 

In the future, to truly understand what is happening in the population, a study 

focusing on Palythoa should include a longer duration of monitoring with appropriately 

designed sampling periods (e.g. more than once a year, seasonally focused, etc.). For 

example if the study were to focus on spatial competition, data could be collected 

monthly, but a study involving the tracking of an individual's age or stage would need 

observations from the inception of the original parent colony(ies), and therefore would 

need a more frequent sampling period. Additionally, factors such as density impacts 

(Tanner 1999; Caswell et al. 2004), environmental fluctuations (e.g. severe storm years) 

(Lirman 2003), sexual reproduction, disease (Acosta 1999), or bleaching events that are 
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common to the local Palythoa population need to be addressed in the study design. The 

Gill (2006) thesis showed that image-based methodology is best used for intricate 

growth measurements and colony fate tracking while diver methodology is best for 

percent cover and recruitment studies. Combining image and diver-based methodology 

to form a comprehensive look at the major factors affecting the population is the only 

way to accurately assess the dynamics present in the population. "Though long-term 

studies of many individuals are expensive and laborious, they are the only way to 

acquire data of the quality that transition matrix models require" (Bierzychudek 1999). 

Palythoa is an important component of the southeast Florida coral reef 

community. Although it possesses the ability to outgrow stony corals (and almost all 

other sessile invertebrates), the data from the current study suggests that the Palythoa 

population is actually maintaining size rllther than over-growing the community. With 

the knowledge gained from this study, we now know that it is possible to accurately 

model the population dynamics present in the southeast Florida Palythoa population. 

This study represents an initial glimpse of the dynamics involved in the Palythoa 

population of southeast Florida, but in order to form a comprehensive model more 

appropriately designed population dynamic studies must be completed. As research 

furthers our understanding of how these communities interact this information may be 

valuable to resource managers. Future research needs to look at all inhabitants, rather 

than focusing on individual components (e.g. stony corals). 
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APPENDIX 

Flow Chart of Major Steps to Complete Part One and Part Two 

Use CPCe to trace 
digital images 

PART ONE 

-J).. 
Total in quad live cover (cm') for each site 

-J).. 
Determine mean percent live cover 

by year and reef 

-J).. 
Transform data and run ANDV As 

PART TWO 

-J).. 
Track 85 individual colonies area (cm') 

-J).. 
Assign size class designations 

by area = observed vectors 

D ··l-J)..·· ti h eternnne size c ass transitions or eae 
transition year 

Results in size class transition frequencies 

-J).. 
Transition frequencies get entered into 4 matrices 

(one for each transition year: 2002-03, 2003-04, etc.) 

-J).. 
Average of the 4 transition matrices = Mean 

matrix 

Use Matlab® to determine dominant 
eigenvalue (aka: population growth rate) 

Population growth rate determines 
stability of population 

69 

Multiply observed vector * Mean matrix 
=- Next year's vector 

Chi-square test for distribution 

-J).. 
Sensitivity and Elasticity Analyses 
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