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ABSTRACT 

The Lake Okeechobee (Lake O) watershed is a Floridian freshwater ecosystem that has been 

affected by the increased frequency and intensity of harmful cyanobacterial bloom (cyanoHAB) 

events occurring over recent decades. Lake O has several ecological and economic purposes such 

as providing habitats for various organisms and providing drinking water to urban communities 

surrounding the lake. Toxic cyanoHAB events are posing a threat to the ecosystem and economy 

of the lake due to the degradation of water quality. This study investigates how the microbial 

community structure within Lake O is affected by annual cyanobacterial harmful algal blooms 

over several years by assessing the dominant taxa, temporal patterns, and spatial patterns within 

the microbial communities and determining if cyanoHABs alter the microbial diversity in Lake O. 

Filtered surface water samples and public environmental data were collected from 21 routinely 

monitored sites within and connecting to Lake O from March 2019 to October 2021. DNA 

extraction, purification, and polymerase chain reactions on the V4 region of the 16S rRNA gene 

were used to create amplicon libraries for high-throughput sequencing on 541 samples, generating 

an average of over 40,000 reads per sample. After characterizing the dominant taxa within Lake 

O, the top four phyla include Proteobacteria, Bacteroidota, Cyanobacteria, and Actinobacteriota, 

which remained consistent across the sampling period. Microbial alpha diversity exhibited both 

spatial and temporal changes from year-to-year. The significant spatial differences observed across 

all three years suggested that there are stable biogeographical patterns within Lake O. Different 

environmental variables across the sampling period were found to drive beta diversity of the 

microbial communities in Lake O, with TN:TP ratio, turbidity, ammonia, total phosphate, nitrate 

+ nitrite, dissolved oxygen, and pH remaining consistent in all years. Microcystis relative 

abundance was found to influence the alpha and beta diversity of the microbial communities, 

decreasing alpha diversity, and decreasing correlating beta diversity as well. Microcystis relative 

abundance also correlated with several environmental factors including temperature, total depth, 

and nitrate + nitrite concentrations. After observing such strong correlations to Microcystis, a co-

occurrence network was created and has suggested that specific taxa may influence mutualistic or 

antagonistic relationships with Microcystis. 
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INTRODUCTION 

Cyanobacteria and Harmful algal blooms 

Cyanobacteria are photoautotrophic, gram-negative, prokaryotic bacteria that can be found 

within numerous environments all over the world, including some extreme environments (Gaysina 

et al., 2019; Mataloni and Komárek, 2004; Whitton and Potts, 2000a, b). Cyanobacteria contain 

chlorophyll a, a pigment that allows them to perform photosynthesis and produce oxygen as a 

product. It was due to this ability to photosynthesize that allowed cyanobacteria to spark the 

oxidation of Earth’s atmosphere around 3 billion years ago (Huisman et al., 2018). Cyanobacteria 

are often referred to as blue-green algae; however, they are not algae but true bacteria and were 

initially confused with being algae since they possessed the photosynthetic abilities and pigments 

like eukaryotic algae. In addition, cyanobacteria are not always blue green in color, as there are 

other species of cyanobacteria that exhibit various other colors such as numerous shades of green, 

red, and brown (Huisman et al., 2018; Stomp et al., 2007). 

Cyanobacteria are able to rapidly proliferate to form dense accumulations of biomass 

known as blooms (Larkin & Adams, 2007). Some of these cyanobacteria blooms can either be 

harmless or harmful to their surrounding environment. Cyanobacteria are primarily responsible for 

causing harmful blooms (cyanoHABs) in freshwater environments (Rosen et al., 2017). These 

cyanoHABs can result from water quality changes, which is primarily due to changes in nutrient 

levels. During photosynthesis, cyanobacteria utilize nutrients, such as carbon, potassium, iron, etc., 

along with solar energy to aid in their cell growth. However, nutrients must be present in a certain 

amount to promote cyanobacteria populations to bloom, if there is a deficiency in any of the 

nutrients then a bloom cannot occur (Markou et al., 2014). The nutrient level changes associated 

with degraded water quality are primarily attributed to the increase in nitrogen (N) and phosphorus 

(P) levels in the environment. Levels of N and P in freshwater ecosystems often serve as limiting 

nutrients and, when low, allow for good water quality and higher microbial diversity within the 

ecosystem (Facey, Apte, & Mitrovic, 2019). When there are high levels of N and P due to 

agricultural fertilizer runoff, these populations can bloom and create very dense mats on the 

surface. There are many other factors that produce favorable conditions for and exacerbate 

cyanobacterial blooms, including stagnant water and high temperatures (Paerl & Huisman, 2008). 
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CyanoHABs can further decrease water quality by producing cyanotoxins, water-soluble 

chemical metabolites that are toxic to the environment. Cyanotoxins are grouped into four groups: 

hepatotoxins, which attack the liver (microcystins and cylindrospermopsin); neurotoxins, which 

attack the nervous system (anatoxins and saxitoxins); dermatotoxins, which attack the skin 

(lyngbyatoxins and aplysiatoxin); and irritant toxins, which attack both skin and organs if contact 

is made (Wiegand & Pflugmacher, 2005; Williams et al., 2007; Bláha, Babica, & Maršálek, 2009). 

As these toxins reach high enough concentrations in these freshwater ecosystems, they can threaten 

the health of the organisms in and around those ecosystems and the ecosystem itself. For example, 

there have been a number of incidents where cyanotoxins from the cyanoHABs caused animal and 

human poisonings (Bláha, Babica, & Maršálek, 2009). These impacts are derived from the 

structure of these blooms. Both harmless and harmful blooms create thick, dense mats at the 

surface of the water. These mats prevent sunlight from penetrating into the water column, 

decreasing the light needed for photosynthetic organisms residing deeper in the water column. 

Additionally, when these blooms begin to decay, they create an anoxic environment as large 

amounts of dissolved oxygen are used up thus reducing the amount of dissolved oxygen that other 

organisms in the lake need to survive and causing many organisms to die (Anderson, 2009). These 

negative impacts caused by cyanoHABs can have severe impacts on ecosystem functioning, such 

as changes in biodiversity, bioaccumulation of cyanotoxins within organisms, and food web 

disturbances (Zamora-Barrios et al., 2019; McQuaid, 2019; Bláha, Babica, & Maršálek, 2009). 

Despite immense research on cyanobacterial blooms and the factors that drive them, they remain 

difficult to predict and mitigate, and there is much more to be studied on the triggers of cyanoHABs 

(Facey, Apte, & Mitrovic, 2019; Bowling, 1994). 

CyanoHABs in Lake Okeechobee, Florida 

CyanoHABs occur within many Floridian freshwater ecosystems, including Floridian 

lakes, rivers, streams, and canals. Toxin-producing cyanoHABs have been recorded in Florida’s 

freshwater systems and the adverse effects of these cyanoHABs appear to have increased over the 

decades (Myer et al., 2020). Lake Okeechobee is one freshwater ecosystem experiencing these 

increasing numbers of toxic cyanoHABs events. 

Also known as “Florida’s Inland Sea,” Lake Okeechobee is the largest lake in the 

southeastern United States and is located at the center of Florida’s Everglades ecosystem (Lecher, 
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2021). Lake Okeechobee was once larger and deeper flowing north to south and provided a 

constant water source to the Everglades ecosystem. However, beginning in the late 19th century, 

the size, depth, and direction of flow of the lake were permanently altered as a series of major 

drainage projects transformed the land around the lake to become a foundation for urban 

communities and agriculture (Lecher, 2021). These major drainage projects included the 

channelization of the Kissimmee River and the dredging of numerous canals (Lecher, 2021). The 

last major drainage project of Lake Okeechobee that is still managed today was the construction 

of the Herbert Hoover Dike in the 1930s to 1940s (U.S. Army Corps of Engineers, 2021). After 

the destruction and deaths caused by the storm surges and flooding from the 1920s hurricanes, the 

federal government passed the “Rivers and Harbors act of 1930” which demanded the construction 

of the 31-feet (9.4m) tall Hoover Dike to aid in the water flow management of Lake Okeechobee 

and further serve as flood protection for the communities residing around the lake (Lecher, 2021). 

Consequently, these water management projects greatly impacted the ecosystem and the water 

quality of the lake. Throughout the 1950s and 1960s, the water quality of Lake Okeechobee began 

to decline rapidly as the nutrient levels continually increased, primarily phosphorus levels, from 

agricultural land use (Canfield & Hoyer, 1988), thus further increasing the nutrient input of an 

already eutrophic environment that was initially limited in nitrogen rather than phosphorus 

(Missimer et al., 2021).  

As a result of the nutrient pollution and degrading water quality, cyanoHABs are a common 

occurrence in Lake Okeechobee, and in recent decades, these bloom events have increased in both 

abundance and prevalence (Rosen et al., 2017). The freshwater toxic cyanoHABs that occur in 

Florida are primarily caused by the genus Microcystis, but blooms caused by the genera 

Dolichospermum, and Cylindrospermopsis also occur. The toxins produced during blooms caused 

by these genera include microcystins, which are produced by Microcystis, some Dolichospermum 

species, and some Cylindrospermopsis species; anatoxin-a, which is produced by Dolichospermum 

and some Cylindrospermopsis species; saxitoxins, which is produced by Cylindrospermopsis; and 

cylindrospermopsin, which is produced by Cylindrospermopsis (Myer et al., 2020). In 2016, after 

a long period of rain and warm, sunny weather, massive toxic cyanoHABs formed in Lake 

Okeechobee, St. Lucie River, and Caloosahatchee River. Metcalf et al. (2018) documented that 

the dominant blooming species was Microcystis aeruginosa. In fact, Microcystis aeruginosa is one 

of the most common bloom-forming and microcystin-producing cyanobacterium in the lake and is 
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also found in freshwater ecosystems around the world (Harke, et al., 2016). For decades, there 

have been annual cyanoHAB events within the lake and neighboring rivers/canals, and it can only 

be assumed that these cyanoHAB events will further increase due to anthropogenic eutrophication 

and climate change (Huisman et al., 2018; Van Wichelen et al., 2016; Okello et al., 2010). 

Heterotrophic bacteria and cyanoHABs 

Traditionally, cyanoHABs are considered to be predominantly driven by abiotic factors 

(Rollwagen-Bollens et al., 2018; Visser et al., 2016; Paerl & Scott, 2010). However, Shen et al. 

(2011) documented that some heterotrophic bacterioplankton can coexist with these bloom-

forming cyanobacteria, which has led to speculation that the microbial community may also play 

a role during these cyanoHAB events (Wang et al., 2021; Van Wichelen et al., 2016). The 

interactions between photoautotrophic bacteria, which use sunlight and carbon dioxide, and 

heterotrophic bacteria, which consume organic material to obtain energy, play fundamental roles 

in aquatic ecosystems. As described by Zheng et al. (2018), heterotrophs utilize fixed carbon and 

other nutrients supplied by photoautotrophs and, in turn, provide these photoautotrophs with 

essential vitamins and amino acids. Synechococcus (Zheng et al., 2018) and Microcystis (Van 

Wichelen et al., 2016; Tu et al., 2019) colonies frequently contain heterotrophic bacteria, and the 

colonies obtained from nature contain heterotrophic bacteria communities as well.  

Certainly, there must be a diverse microbial community within Lake Okeechobee although 

there have not been any studies done to characterize this diverse community until recently 

(Krausfeldt et al., submitted). This microbial diversity could allow for the interaction of the bloom-

forming cyanobacteria before, during, and after cyanoHAB events within Lake Okeechobee. Some 

studies have been done to investigate what roles the microbial community may play in the overall 

development and maintenance of these cyanoHABs, suggesting that these microbes who thrive 

alongside the bloom-forming cyanobacteria may have an important impact on the cyanobacterial 

growth and populations (Eiler & Bertilsson, 2004; Sigee, 2005). Microbes can also aid in the 

degradation of the organic material produced by the bloom, which contributes to the anoxic 

conditions that follow bloom degradation (Anderson, 2009; Havens, 2007). 

When a cyanoHAB event occurs, there is essentially a proliferation of one species of 

bacteria that continues to multiply within the lake. As this cyanobacterial species continues to grow 

in abundance, the other bacterial species may become outnumbered or driven out of the area due 
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to competition of resources with the blooming cyanobacteria. The movement of bacteria out of the 

area would decrease the diversity of that area of the lake since there are now fewer species 

inhabiting that area of the lake. Ultimately, the local communities scattered across the lake show 

less diversity between them, thus exhibiting a decrease in microbial diversity throughout the lake. 

So, understanding the interactions between the microbial community and these bloom-forming 

cyanobacteria and how microbial diversity changes during cyanoHABs may provide scientists the 

knowledge of key factors driving or sustaining blooms, serve as a biological indicator, and may 

aid efforts to reduce or mitigate the occurrences of these blooms. 

High throughput sequencing of the 16S rRNA gene 

High-throughput sequencing (HTS) is used to comprehensively study microbial 

communities. HTS is the second generation of sequencing technology and has been the most used 

method of sequencing for over half a century (Zhu et al., 2014). The methods used within HTS 

have been modeled after the first generation of sequencing technology, Sanger sequencing, 

developed in 1977 by Frederick Sanger and his colleagues (Sanger et al., 1977). However, it was 

not until the development of HTS techniques that scientists began to understand various biological 

systems and the impacts of various conditions on organism microbiomes. 

As described by Byrne et al. (2018), the 16S rRNA gene encodes small subunit ribosomal 

RNA molecules of ribosomes, responsible for converting genetic code into functional cell 

components within an organism. Discovered by the works of Dubnau et al. in the 1960s and Woese 

and Fox in 1977, the 16S rRNA gene sequence in bacteria contains multiple conserved and highly 

variable regions (Dubnau et al., 1965; Woese & Fox, 1977). There are a total of nine variable 

regions found within the 16S rRNA gene (V1-V9), and they are widely used in the identification, 

classification, and phylogenetic analysis of various bacteria. Various studies have found that the 

V2 and V4 regions of the gene are best used for classification due to their low error rates. 

Additionally, the V3 region of the gene can identify the genus of pathogenic bacteria better than 

the V2 region. To properly detect these variable regions, various universal primers were created, 

and polymerase chain reactions (PCR) were used to amplify these regions (including the primers) 

to aid in identifying specific species of bacterium. 

Woese & Fox (1977) were the pioneers of using the 16S rRNA gene to aid in the 

phylogenetic analyses of bacterial and archaeal species. Within the past decade, these regions of 
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the 16S gene have also been used in large-scale genomic projects, including the human 

microbiome project (conducted to understand the human-body microbiome) and the Earth 

Microbiome Project (conducted to understand the microbiomes of the organisms that inhabit this 

planet). In the Microbiology and Genetics Laboratory at Nova Southeastern University’s Halmos 

College of Arts and Sciences (NSU HCAS), HTS is commonly used to analyze various 

microbiomes (Campbell, Fleisher, Sinigalliano, White, & Lopez, 2015; Donnelly, 2018; Easson & 

Lopez, 2019; Freed, 2018; Karns, 2017; O’Connell, Gao, McCorquodale, Fleisher, & Lopez, 

2018). 
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AIMS AND HYPOTHESES 

The primary objective of this study was to investigate how the structure of microbial 

communities within Lake Okeechobee is affected by annual cyanoHABs over several years. To 

address this, the alpha and beta diversity of the microbial community were examined using 

statistical analyses (as described in the methodology section below). The temporal and spatial 

trends were assessed in the microbial community of Lake Okeechobee by comparing the alpha and 

beta diversity values of the microbial communities across the years, months, seasons, stations, and 

ecological zones. 

This study was broken down further to address several aims and hypotheses: 

Aim 1. Compare the dominant taxa and species diversity (alpha and beta diversity) of the 

microbial communities in Lake Okeechobee across three years. 

H1: The dominant taxa and microbial diversity of Lake Okeechobee will remain the same across 

three years.  

Aim 2. Explore the spatial differences in alpha and beta diversity of the microbial 

communities within Lake Okeechobee across three years.  

H2: Spatial differences will be observed in the alpha and beta diversity of each year based on 

ecological zones and stations. 

Aim 3. Determine if cyanoHABs alter microbial diversity in Lake Okeechobee.  

H3: CyanoHABs will decrease the alpha and beta diversity of the microbial community within 

Lake Okeechobee. 
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METHODOLOGY 

Sample and environmental data collection  

Beginning in March of 2019, surface water samples were collected monthly by the South 

Florida Water Management District (SFWMD) at 21 routinely sampled stations. These stations 

included 19 stations dispersed within Lake Okeechobee, one station located near the W.P. Franklin 

Lock along the Caloosahatchee River (S79), and another station located near the St. Lucie River 

lock (Figure 1). After collection, the water samples were kept on ice and shipped overnight to the 

USGS Water Science Center in Orlando, Florida, where each sample was filtered through two 

0.22µm Sterivex filters (Millipore, SVGP01050), stored at -20°C, then transported on ice to the 

Microbiology and Genomics Lab at Nova Southeastern University (NSU) for further sample 

processing. This workflow of sample collection and processing was repeated until October of 

2021.  

 

Figure 2. Map of sampling stations found within and connected to Lake Okeechobee. 19 

stations are located within the lake while one is located within the Caloosahatchee River (S79). 
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Environmental data was collected from SFWMD’s environmental database, DBHYDRO, 

that contains hydrologic, meteorologic, hydrogeologic, and water quality data 

(http://my.sfwmd.gov/dbhydroplsql/show_dbkey_info.main_menu). Environmental variables that 

were collected include: chlorophyll a (chl a, µg/L), pheophytin a (µg/L), secchi disk depth (m), 

silica (mg/L), turbidity (NTU), sulfate (mg/L), alkalinity (as total CaCO3, mg/L), ammonia (NH4, 

mg/L), total depth (m), pH, dissolved oxygen (mg/L), nitrate+nitrite (NO3+NO2, mg/L), total 

phosphate (PO4, mg/L), temperature (temp, °Celsius), total nitrogen (TN, mg/L), total phosphorus 

(TP, mg/L), TN and TP ratio, and three toxins associated with cyanoHABs, Anatoxin-a (µg/L), 

Cylindrospermopsin (µg/L), and Microcystin (µg/L). Additional variables were also considered 

for each sample, including month (1-12), season (wet or dry), year (1-3), station (CLV10A, 

KISR0.0, L001, L004, L005, L006, L007, L008, LZ2, LZ25A, LZ30, LZ40, PALMOUT, 

PELBAY3, POLE3S, POLESOUT, RITTAE2, S308, S77, and S79), and ecological zone (inflow, 

nearshore, pelagic, or S79). To note, the wet and dry seasons of Florida were defined by NOAA, 

with the wet season occurring from May to October and the dry season occurring from November 

to April (U.S. Department of Commerce, n.d.). After retrieval, the environmental data was then 

corresponded to the collected samples for DNA extraction and sequencing. 

Sample Processing 

Once the collected samples were received at NSU, the sterivex filters were cut from their 

plastic tubing and DNA was extracted from the filters using the Qiagen® DNeasy® PowerLyzer® 

PowerSoil® kit (Qiagen, 12855-100) by following the manufacturer’s protocol. Negative controls 

in the form of blank ‘reagent-only’ extractions were also included to detect any DNA 

contamination within the reagents. Following successful DNA extractions, an 1.5% agarose gel 

underwent an agarose gel electrophoresis protocol to confirm the presence of intact DNA in each 

sample.  

Following the confirmation of intact DNA, a test polymerase chain reaction (PCR) was 

performed on each sample to confirm the successful amplification of PCR products. In short, a 

master mix was made using Invitrogen Platinum Hot Start PCR Master Mix (2X; ThermoFisher, 

13000014), nuclease-free water, and universal primers 515F and 806R. DNA was then added and 

underwent amplification in a thermal cycler following the Earth Microbiome Project (EMP) 16S 

Illumina Amplicon protocol (Caporaso, 2018). 515F and 806R primers are used to target and 
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amplify the V4 region of the 16S rRNA gene. A 1.5% agarose gel electrophoresis was also done 

to confirm the production of successful PCR products. To note, if the test PCR was unsuccessful—

evidence that the concentration of extracted DNA was low—the sample was concentrated using a 

CentriVap DNA Vacuum Concentrator (©Labconco, Cat. No. 7970010), ran through another test 

PCR, and ran again on a 1.5% agarose gel to verify successful amplification. With the successful 

production of PCR products, barcoded 515F and 806R primers were then used, with each sample 

receiving identical barcoded 515F primer sequences and unique barcoded 806R primer sequences. 

A final 1.5% agarose gel was run to confirm the successful barcoding of the samples. Afterwards, 

the samples are cleaned using a modified AMPure XP beads protocol (PCR purification with 

Beckman Coulter AMPure XP magnetic beads and the VIAFLO 96, 2020), quantified using Qubit 

3.0 and Qubit 4.0 Fluorometers (Life Technologies), and diluted to 4nM using nuclease-free water. 

The now-diluted barcoded samples were then pooled together and checked for quality and 

contamination using the Agilent TapeStation 4150 (Product #G2992AA). The final library pool 

was then loaded into the Illumina MiSeq system (Product #SY-410-1003) using the MiSeq 

Reagent Kit v3 at 600 cycles (Product #MS-102-3003) following a modified protocol.  

Sequence analysis   

The raw sequence data generated from the Illumina MiSeq system was transferred to a hard 

drive and initial bioinformatic analysis began within a command-line program known as QIIME2. 

QIIME2 (Quantitative Insights into Microbial Ecology, version 2022.2) is a next-generation, open-

source bioinformatics pipeline used for performing microbiome analysis from raw DNA sequence 

data (Bolyen et al., 2019). Within the QIIME2 environment, the forward and reverse read sequence 

data (in the form of FASTQ files) were paired and demultiplexed to produce the sequence reads 

for each sample. The sample sequences were then trimmed, checked for chimeras, and quality 

filtered (Q-scores > 29) using the DADA2 software package built into the QIIME2 prorgam. There 

was a total of 11 sequencing runs included within this study, thus the raw sequence data for each 

run underwent demultiplexing, trimming, and quality filtering before being merged as one dataset. 

Lastly, the merged sequencing data set was assigned taxonomy using the SILVA 138 classifier 

(silva-138-99-515-806-nb-classifier.qza). The resulting dataset was then cleaned to ensure it did 

not contain any unwanted ASVs. A rarefaction curve was created to determine the sequence read 

cut-off point for any samples that were not fully sequenced. Any ASVs that were found in the 
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negative controls were removed and the negative control samples were also removed from the 

sample pool. Any duplicate samples were removed by choosing the sample that obtained the most 

sequence reads and removing the other replicates. To ensure that the dataset contained no 

eukaryotes, ASVs that represented chloroplast or mitochondrial DNA were also removed. A final 

cleaning and normalization were performed using the ‘vegan’ package using the statistical 

computing language, R, in the RStudio software (version 4.2.0) where singletons, doubletons, and 

ASVs occurring less than 0.01% were removed. 

Batch Correction 

 Due to the large-scale nature of this study, the hundreds of samples that were sequenced 

could be affected by differences in sample preparation and data acquisition conditions, for 

example, different individuals working on the sample preparation, different reagent batches, or 

even changes in instrumentation (Cuklina, et al., 2021). This is known as the “batch effect” and 

can introduce noise that would in turn reduce the statistical power of the analyses (Cuklina, et al., 

2021). Taking this into consideration, the data was tested for any significant batch effects before 

moving on to further downstream analyses. The test was performed using the ‘MMUPHin’ and 

‘vegan’ packages in R. An ANOSIM was performed to determine if the variation in the data caused 

by batch were significant (p < 0.05). If significant differences caused by batch were found in the 

data, the package ‘MMUPHin’ was used to conduct a batch correction. 

Taxonomy analyses and visualization using QGIS 

 Taxonomic and statistical analyses were performed on the cleaned, normalized, batch 

corrected dataset using R. The ‘phyloseq’ package was used to determine the minimum, maximum, 

and average sequence read amounts, total number of unique ASVs, and number of unique phyla 

found in the data set. Top 10 taxa were calculated using packages ‘phyloseq’ and ‘microbiome’ 

and visualized using bar plots made using ‘ggplot2’ package for each year and station. QGIS, an 

analytical mapping software, was used to visualize the microbial community taxonomic 

distributions and patterns within Lake Okeechobee across the entire sampling period and within 

each year. An aerial satellite image of Lake Okeechobee was retrieved from Google Earth via the 

QGIS software and utilized as the raster layer. Point layers were created using the latitude and 

longitude coordinates retrieved from DBHYDRO for each station. Pie charts of the top 10 phyla 

found within each station were created for both the entire sampling period and within each year.  
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Diversity analyses  

Alpha diversity, which describes the number of different species and how evenly 

distributed they are within a particular community (Thukral, 2017), was assessed using the ‘vegan’ 

package and visualized using the ‘base’ and ‘ggplot2’ packages. Alpha diversity was measured by 

calculating the total number of species (species richness), species evenness (also known as Pielou’s 

evenness index) (J), Shannon diversity index (H), and inverse Simpson’s diversity index (inv. D). 

Shannon and inverse Simpson diversity indices take into consideration species richness and 

evenness when examining alpha diversity. Shannon diversity index assumes all species are 

represented and sampled randomly but can be less effective against rare species. The inverse 

Simpson index removes bias by pooling the total diversity so that the average of the pooled 

communities is greater than or equal to the diversity within communities (Lande, 1996). 

Differences between these alpha diversity indices were analyzed between samples. If the data was 

normally distributed, then an analysis of variance (ANOVA) was used, otherwise a Kruskal-Wallis 

test was to be used. If there were significant differences found, a pairwise Wilcoxon test (for 

Kruskal-Wallis analyses) or Tukey test (for ANOVA analyses) was used as a post-hoc test to 

determine where the differences lie.  

Beta diversity, which describes the differences between communities (Thukral, 2017), was 

assessed using the ‘vegan’ package and visualized using the ‘base’ and ‘ggplot2’ packages as well. 

Beta diversity was measured by calculating Bray-Curtis dissimilarity between sites. These distance 

matrices were then used to produce non-metric multidimensional scaling (nMDS) plots in R to 

further visualize the distances between sites. To create the nMDS plots, the relative abudance data 

was transformed using the “total” method found within the ‘decostand’ function in ‘vegan’. 

Functions ‘betadisper’ and ‘permutest’ in ‘vegan’, were used to calculate variances within each 

group and to determine if the variances differ by group. If the variances between groups were not 

significant, a permutational multivariate ANOVA (PERMANOVA) with 999 permutations was 

performed. If the variances between groups were significant, an analysis of similarity (ANOSIM) 

with 999 permutations was performed. Canonical correspondence analysis (CCA) was also 

performed using the ‘cca’ function in ‘vegan’ to detect the interactions between the selected 

environmental variables and ASVs. The function ‘envfit’ was then used to get the p-value of 
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correlation of each variable with overall bacterial communities and the p-value of each correlation 

between each ASV and all variables. Only significant (p<0.05) environmental variables with R2 

values higher than 0.3 were plotted as vectors overlaying the CCA plot. 

Venn diagram and co-occurrence network 

Using the ‘eulerr’ package in R, a venn diagram was made to compare core taxa that 

appeared across the years (1, 2, and 3). Core taxa included any ASVs that was detected in a relative 

abundance of at least 0.1% and in at least 75% of the samples. Afterwards, a co-occurrence 

network was created to further investigate what taxa could be co-occurring with the genus 

Microcystis. This was done using the package ‘Hmisc’ in R and Cytoscape (version 3.9.1) 

(Shannon, et al., 2003), a software used to create interactive networks. In R, a Pearson correlation 

matrix was created using the sample count data and making pairs of all 8,340 ASVs from the entire 

sampling period. The correlation matrix was then converted into a table format so that the 

individual R2 values and their associated p-values could be extracted between each interaction pair 

that was created. Only the significant interactions (p<0.05) and the strongest correlations (R2 > 0.7 

OR R2 < -0.7) were extracted from the table. This resulting table was then imported into Cytoscape 

(version 3.9.1) as a network, where it was filtered further to only include the network nodes and 

edges that interact with Microcystis. 

  



14 

 

RESULTS 

Sequencing statistics 

Across the sampling period (March 2019 to October 2021), there were a total of 59,862,979 

sequencing reads and 70,605 ASVs generated across all samples in this study. To determine the 

sequencing depth, or the total number of usable reads, that best represented the microbial 

communities of Lake O, total sequence reads were calculated for each sample and a rarefaction 

curve was generated to aid in determining the minimum sequence read cut-off point. The resulting 

rarefaction curve reached an inflection point at relatively 10,000 reads, thus, any samples that were 

below this amount were removed (Figure 2). As a result, 65,294 ASVs and 541 samples, with an 

average of 44,535 reads per sample, were used for further analysis (Table S1). Additional filtering 

for singletons, doubletons, and exceptionally low abundance ASVs (occurring less than 0.01%) 

was completed, resulting in 8,340 ASVs being utilized for further diversity analyses.  
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Figure 2. Rarefaction curve for number of sequencing reads versus number of ASVs to 

determine final samples for analysis. Each line represents one sample. Inflection point occurred 

at roughly 10,000 reads. 
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Dominant Phyla and Species diversity 

 The top ten phyla found in Lake O over the entire sampling period were Proteobacteria 

(24.7%), Bacteroidota (22.1%), Cyanobacteria (16.8%), Actinobacteriota (11.3%), 

Verrucomicrobiota (7.9%), Planctomycetota (6.8%), Bdellovibrionota (3.2%), Acidobacteriota 

(3.0%), Chloroflexi (2.2%), and Gemmatimonadota (1.9%) (Figure 3). The top ten phyla within 

each year varied within their makeups, with year 3 being the only year containing phylum 

Gemmatimonadota (Table 1, Figure 3). These phyla can also be seen within each station with 

Proteobacteria, Bacteroidota, and Cyanobacteria being the top three phyla found in each station 

(Figure 4). Additionally, when considering individual stations, the top 10 phyla also differed—

both within all years overall (Figure S1) and between each year (Figures S2-S4).  

 Year 1 was the only year that included the phylum SAR324_ clade (marine group B) within 

the top 10 phyla of only 2 stations, POLESOUT and S79 (Figure 5, Figure S2). Year 2 had 13 

unique phyla appear within the top 10 phyla of each station—one phylum short of years 1 and 3, 

both of which had 14 unique phyla each in their top 10 phyla across each station. Furthermore, 

year 2 was the only year that included the phylum Armatimonadota within the top 10 phyla 

occurring at only one station, KISSR0.0 (Figure 6, Figure S3). Year 2 also was the only year that 

did not have the phylum Myxococcota within the top 10 phyla of any station. Year 3 was the only 

year that included the phylum Patescibacteria within the top 10 phyla of only 2 stations, L004 and 

L006 (Figure 7, Figure S4). 

 

 

 



17 

 

 

 

 

 

 

Table 1. Average proportion and standard deviation of the relative abundances of the top 10 phyla 

in Lake Okeechobee by year.  

Phylum Year 1 (2019) Year 2 (2020) Year 3 (2021) 

Proteobacteria 0.236 ± 0.057 0.215 ± 0.073 0.226 ± 0.055 

Bacteroidota  0.217 ± 0.082 0.200 ± 0.071 0.196 ± 0.079 

Cyanobacteria  0.119 ± 0.096 0.169 ± 0.102 0.159 ± 0.098 

Actinobacteriota 0.105 ± 0.055 0.115 ± 0.041 0.099 ± 0.042 

Planctomycetota 0.071 ± 0.025 0.060 ± 0.026 0.063 ± 0.023 

Verrucomicrobiota 0.069 ± 0.031 0.068 ± 0.032 0.075 ± 0.031 

Bdellovibrionota 0.033 ± 0.018 0.022 ± 0.014 0.027 ± 0.014 

Acidobacteriota 0.029 ± 0.020 0.027 ± 0.018 0.029 ± 0.019 

Chloroflexi 0.021 ± 0.009 0.021 ± 0.009 0.021 ± 0.008 

Crenarchaeota 0.018 ± 0.028 0.018 ± 0.025 – 

Gemmatimonadota – – 0.019 ± 0.011 
 

 

Figure 3. Pie charts depicting the proportions of the top 10 phyla within each year. The numbers 

indicate the total relative abundance of the respective year. 
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Figure 4. Pie charts showing the top phyla found in each station in Lake O over the sampling period. 
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Figure 5. Pie charts showing the top phyla found in each station in Lake O within year 1 (2019). 
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Figure 6. Pie charts showing the top phyla found in each station in Lake O within year 2 (2020). 
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Figure 7. Pie charts showing the top phyla found in each station in Lake O within year 3 (2021). 
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Alpha diversity analyses  

Alpha diversity was calculated using the Shannon diversity index, species evenness, 

species richness, and inverse Simpson diversity index. Year 3 (2021) exhibited significantly higher 

species richness than the previous two years (2019 and 2020, respectively) (year 1 vs. year 3, p = 

0.0006; year 2 vs. year 3, p=0.0098) (Figure 8). Year 1 showed significantly higher species 

evenness throughout the microbial community compared to years 2 and 3, but year 2 was similar 

in species evenness compared to both years 1 and 3 (year 1 vs. year 2, p =0.042; year 1 vs. year 3, 

p=0.00013; year 2 vs. year 3, p=0.028) (Figure 8).  

Within each year, alpha diversity differed by month (Table 3). The trends over time 

appeared to be seasonal, and analysis comparing season within each year showed that evenness 

specifically differed in year 2 (p = 0.00084) and year 3 (p = 0.037) (Figures 9-11). Alpha diversity 

also differed by zones across years 1 and 3, with year 2 showing no differences within all alpha 

diversity measures (Table 3, Figures 12-14). Alpha diversity differed by station within each year 

as well, with year 1 showing no significant differences in species evenness, year 2 only showing 

differences in species evenness, and year 3 showing differences in all the alpha diversity measures 

(Table 4).  

Overall, the environmental variables measured did not strongly correlate to the alpha 

diversity in Lake O (Figure 15). Regarding species evenness, microcystin concentration showed 

the strongest correlation out of all the environmental variables (Pearson R2 = -0.49) (Figure 15). 

Other environmental variables that correlated to species evenness included ammonia (Pearson R2 

= 0.11), nitrate + nitrite (Pearson R2 = -0.10), and total phosphate (Pearson R2 = -0.11) (Figure 

15). Environmental variables that correlated to species richness include total nitrogen (Pearson R2 

= 0.17), TN:TP ratio (Pearson R2 = -0.13), and total phosphorus (Pearson R2 = 0.18) (Figure 15). 

The environmental variables that correlated to the diversity indices, Shannon and inverse Simpson, 

included microcystin (Pearson R2 , shannon = -0.23; inv. Simpson = -0.20), nitrate + nitrite 

(Pearson R2 , inv. Simpson = -0.10), total nitrogen (Pearson R2 , shannon = 0.13; inv. Simpson = 

0.17), total phosphorus (Pearson R2 , shannon = 0.06; inv. Simpson = 0.10) and total phosphate 

(Pearson R2 , inv. Simpson = -0.12) (Figure 15). There were no correlations between any of the 

alpha diversity measures and chlorophyll a, temperature, nor pH (Figure 15). Microcystis relative 

abundance had a srtong, negative correlation with species evenness (Pearson R2 = -0.72), with 
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additional negative correlations with Shannon diversity index (Pearson R2 = -0.23), and inverse 

Simpson diversity index (Pearson R2 = -0.22) (Figure 15). 

  

Figure 8. Alpha diversity comparison between years. Letters and colors represent the 

significant differences between each year; same letter and color indicate no differences and 

different letters and colors indicate significant differences are present (p < 0.05). Year 1 = 2019, 

Year 2 = 2020, and Year 3 = 2021. 
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Table 2. Kruskal-Wallis p-values for alpha diversity measure by month across each year. 

A star indicates that the p-value was significant (p < 0.05). 

Alpha Diversity 

measure 
Year 1 Year 2 Year 3 

Species richness (S) 0.0017* < 2.2e-16* 8.819e-08* 

Species evenness (J) 0.13 0.00025* 2.848e-05* 

Shannon Diversity 

Index (H) 
0.0024* < 2.2e-16* 8.126e-07* 

Inverse Simpson 

Diversity Index 

(inv.D) 

0.027* < 2.2e-16* 1.383e-05 

 

Figure 9. Alpha diversity measures across seasons in year 1. There were no significant differences 

between season and each alpha diversity measure. Tan = dry season; blue = wet season. Panels from left 

to right: species richness, Shannon diversity index, inverse Simpson index, and species evenness. 
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Figure 10. Alpha diversity measures across seasons in year 2. Significant differences were 

found in species evenness between seasons (p = 0.001). Tan = dry season; blue = wet season. 

Panels from left to right: species richness, Shannon diversity index, inverse Simpson index, and 

species evenness. 

Figure 11. Alpha diversity measures across seasons in year 3. Significant differences were 

found in species evenness between seasons (p = 0.001). Tan = dry season; blue = wet season. 

Panels from left to right: species richness, Shannon diversity index, inverse Simpson index, and 

species evenness. 
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Table 3. Kruskal-Wallis p-values for alpha diversity measure by zone across each year. A 

star indicates that the p-value was significant (p < 0.05). 

Alpha Diversity 

measure 
Year 1 Year 2 Year 3 

Species richness (S) 0.0073* 0.54 0.00040* 

Species evenness (J) 0.0033* 0.10 0.0015* 

Shannon Diversity 

Index (H) 
0.0082* 0.82 0.0020* 

Inverse Simpson 

Diversity Index 

(inv.D) 

0.035* 0.54 0.0034* 

 

Figure 12. Alpha diversity measures across zones in year 1. Green = Inflow zone; Beige = Nearshore 

zone; Light pink = Pelagic zone; Bright pink = zone S79. Panels from left to right: species richness, 

Shannon diversity index, inverse Simpson index, and species evenness. 
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Figure 13. Alpha diversity measures across zones in year 2. Green = Inflow zone; Beige = Nearshore 

zone; Light pink = Pelagic zone; Bright pink = zone S79. Panels from left to right: species richness, 

Shannon diversity index, inverse Simpson index, and species evenness. 

Figure 14. Alpha diversity measures across zones in year 3. Green = Inflow zone; Beige = Nearshore 

zone; Light pink = Pelagic zone; Bright pink = zone S79. Panels from left to right: species richness, 

Shannon diversity index, inverse Simpson index, and species evenness. 
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Table 4. Kruskal-Wallis p-values for alpha diversity measure by station across each year. 

A star indicates that the p-value was significant (p < 0.05).  

Alpha Diversity 

measure 
Year 1 Year 2 Year 3 

Species richness (S) 0.0054* 0.99 0.0091* 

Species evenness (J) 0.016a 0.0080* 0.0015* 

Shannon Diversity 

Index (H) 
0.0025* 0.88 0.0068* 

Inverse Simpson 

Diversity Index 

(inv.D) 

0.0028* 0.31 0.0017* 

aAlthough the p-value was significant, there were no differences found between the stations. 
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Figure 15. Correlation heat map between the environmental variables and the alpha 

diversity indices. Stars indicate the significance level; * = 0.05, ** = 0.01, *** = 0.001. No 

star indicates that the relationship is not significant. Alpha diversity measures can be found at 

the bottom of the heatmap: S = species richness, H = Shannon diversity index, J = species 

evenness, inv.D = inverse Simpson diversity index. TN.TP.ratio = ratio of total nitrogen and 

total phosphorus. 
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Venn diagram of core taxa between years 

 Each sampling year may have shared unique core taxa. To reiterate, core taxa is defined as 

any ASVs that were detected at a relative abundance of at least 0.1% and in at least 75% of the 

samples. A Venn diagram was created between each year, and it showed that all years shared 12 

core taxa (Figure 16). Years 1 and 2 did not have any core taxa that was unique to them, nor did 

they share any core taxa (Figure 16). Year 3, however, had 14 unique core taxa, shared 4 core taxa 

with year 2, and shared 2 core taxa with year 1 (Figure 16). The taxonomic information for each 

taxon placed in the venn diagram can be found in Table 5. It can be seen from the table that the 

phylum Cyanobacteria are only found in the core taxa shared between years 2 and 3 and within 

the unique core taxa of year 3 (Table 5). Verrucomicrobiota was the only phylum of heterotrophic 

bacteria found within the shared taxa between year 2 and year 3 (Figure 16, Table 5).  

 

Figure 16. Venn diagram of the number of shared core taxa between years across 

the sampling period. Year 1 = red; Year 2 = blue; Year 3 = green. Numbers represent 

the number of taxa. 
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Table 5. Core taxa comparisons between years (corresponding to venn diagram). Taxonomic 

information is structured by phylum, class, order, family, and genus. Dashes indicate that there 

were no shared taxa between specified years. 

 Taxonomic Information 

Year 1 Only –––– 

Year 2 Only –––– 

Year 3 Only 1. Actinobacteriota, Acidimicrobiia, Microtrichales, Ilumatobacteraceae, CL500-

29_marine_group 

2.  Actinobacteriota, Actinobacteria, Frankiales, Sporichthyaceae, 

3.  Actinobacteriota, MB-A2-108, MB-A2-108, MB-A2-108, MB-A2-108 

4.  Verrucomicrobiota, Verrucomicrobiae, Pedosphaerales, Pedosphaeraceae, SH3-11 

5.  Proteobacteria, Gammaproteobacteria 

6.  Proteobacteria, Gammaproteobacteria, Burkholderiales, Oxalobacteraceae, 

7.  Proteobacteria, Gammaproteobacteria, Gammaproteobacteria_Incertae_Sedis, 

Unknown_Family, Acidibacter 

8.  Proteobacteria, Gammaproteobacteria, JG36-TzT-191, JG36-TzT-191, JG36-TzT-

191 

9.  Proteobacteria, Gammaproteobacteria, Oceanospirillales, Pseudohongiellaceae, 

BIyi10 

10.  Bacteroidota, Bacteroidia, Sphingobacteriales, AKYH767, AKYH767 

11.  Bacteroidota, Bacteroidia, Sphingobacteriales, env.OPS_17, env.OPS_17 

12.  Bacteroidota, Bacteroidia, Sphingobacteriales, NS11-12_marine_group, NS11-

12_marine_group 

13.  Cyanobacteria, Cyanobacteriia, Synechococcales, Cyanobiaceae, Cyanobium_PCC-

6307 

14.  Gemmatimonadota, Gemmatimonadetes, Gemmatimonadales, Gemmatimonadaceae 

Years 1 & 2 –––– 

Years 1 & 3 1. Actinobacteriota, Actinobacteria, Frankiales, Sporichthyaceae, hgcI_clade 

2.  Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiales_Incertae_Sedis, 

uncultured 

Years 2 & 3 1. Verrucomicrobiota, Verrucomicrobiae, Opitutales, Opitutaceae, Opitutus 

2. Cyanobacteria, Cyanobacteriia, Synechococcales, Cyanobiaceae, Cyanobium_PCC-

6307 

3. Cyanobacteria, Cyanobacteriia, Synechococcales, Cyanobiaceae, Cyanobium_PCC-

6307 

4. Cyanobacteria, Cyanobacteriia, Synechococcales, Cyanobiaceae, Cyanobium_PCC-

6307 
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ALL years 1. Actinobacteriota, Acidimicrobiia, Microtrichales, Ilumatobacteraceae, CL500-

29_marine_group 

2. Actinobacteriota, Acidimicrobiia, Microtrichales, Ilumatobacteraceae, CL500-

29_marine_group 

3. Actinobacteriota, Acidimicrobiia, Microtrichales, Ilumatobacteraceae, CL500-

29_marine_group 

4. Actinobacteriota, Actinobacteria, Frankiales, Sporichthyaceae, hgcI_clade 

5. Bacteroidota, Bacteroidia, Chitinophagales, Saprospiraceae, Candidatus_Aquirestis 

6. Bacteroidota, Bacteroidia, Flavobacteriales, Crocinitomicaceae, Fluviicola 

7. Bacteroidota, Kapabacteria, Kapabacteriales, Kapabacteriales, Kapabacteriales 

8. Verrucomicrobiota, Verrucomicrobiae, Methylacidiphilales, Methylacidiphilaceae, 

uncultured 

9. Proteobacteria, Alphaproteobacteria, Rickettsiales, Rickettsiaceae, 

Candidatus_Megaira 

10. Chloroflexi, SL56_marine_group, SL56_marine_group, SL56_marine_group, 

SL56_marine_group 

11. Planctomycetota, Phycisphaerae, Phycisphaerales, Phycisphaeraceae, CL500-3 

12. Proteobacteria, Gammaproteobacteria, Burkholderiales, Burkholderiaceae, 

Limnobacter 

 



33 

 

Beta diversity analyses 

Beta diversity was calculated using Bray-Curtis dissimilarity. Following ANOSIM and 

PERMANOVA analyses, it was revealed that there were significant differences between stations 

(ANOSIM R = 0.1967; p = 0.01) across all sampling years. However, there were no significant 

differences in year (p = 0.75), season (p = 0.78), month (p = 0.91), nor zone (p = 0.19) across the 

sampling years. When investigating within each year, there were significant differences by station 

across each year (year 1, p = 0.001; year 2, p = 0.001; year 3, p = 0.001) and there were significant 

differences by zone within year 1 (p = 0.001) and year 3 (p = 0.001).  

Environmental variables were fitted onto a CCA plot through vectors to show which 

environmental variables may be driving the differences in the microbial community within the 

lake across the sampling period and within each year (Figures 18-21). The length of the vector is 

proportional to its importance and the angle between two vectors reflects the degree of correlation 

between variables (Sarker, et al., 2014). To reiterate, the environmental variable vectors that were 

included in the CCA plots exhibited a significant effect (p < 0.05) and correlation (Pearson R2 > 

0.3) on the microbial community of Lake O. Across all three years, the environmental variables 

accounted for about 14.47% of the variation within the microbial communities in Lake O and these 

variables included TN:TP ratio (Pearson R2 = 0.57), pH (Pearson R2 = 0.34), nitrate + nitrite 

(Pearson R2 = 0.55), dissolved oxygen (Pearson R2 = 0.43), turbidity (Pearson R2 = 0.42), total 

phosphate (“phosphate.ortho”; Pearson R2 = 0.48), and ammonia (Pearson R2 = 0.34) (Figure 18). 

In year 1, the environmental variables accounted for about 17.44% of the variation within the 

microbial communities in Lake O and these variables included TN:TP ratio (Pearson R2 = 0.65), 

pH (Pearson R2 = 0.51), nitrate + nitrite (Pearson R2 = 0.46), dissolved oxygen (Pearson R2 = 0.49), 

turbidity (Pearson R2 = 0.31), secchi disk depth (Pearson R2 = 0.30), and ammonia (Pearson R2 = 

0.60) (Figure 19). In year 2, the environmental variables accounted for about 17.26% of the 

variation within the microbial communities in Lake O and these variables included TN:TP ratio 

(Pearson R2 = 0.62), pH (Pearson R2 = 0.69), nitrate + nitrite (Pearson R2 = 0.55), dissolved oxygen 

(Pearson R2 = 0.51), turbidity (Pearson R2 = 0.52), total phosphate (“phosphate.ortho”; Pearson R2 

= 0.35), ammonia (Pearson R2 = 0.35), and chlorophyll a (Pearson R2 = 0.35) (Figure 20). In year 

3, the environmental variables accounted for about 20.69% of the variation within the microbial 

communities in Lake O and these variables included TN:TP ratio (Pearson R2 = 0.36), nitrate + 
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nitrite (Pearson R2 = 0.67), dissolved oxygen (Pearson R2 = 0.30), alkalinity (Pearson R2 = 0.31), 

temperature (Pearson R2 = 0.36), total phosphate (“phosphate.ortho”; Pearson R2 = 0.44), 

Microcystis relative abundance (Pearson R2 = 0.55), and chlorophyll a (Pearson R2 = 0.39) (Figure 

21). When comparing the environmental variables that influenced microbial community 

composition across the sampling years, year 1 was the only year in which secchi disk depth 

influenced microbial community composition (Figure 18). Total phosphate concentration and 

chlorophyll a concentration were environmental variables shared between year 2 and year 3 that 

were not included in year 1 that drove microbial community composition (Figures 19 and 20). The 

environmental variables unique to year 3 in driving the microbial community composition 

included alkalinity, temperature, and Microcystis abundance. 

Across the entire sampling period, the microbial community composition of year 3 was 

closely associated with total phosphate (“phosphate. ortho” in figure 18), nitrate + nitrite, and 

turbidity (Figure 18). In year 1 and year 3, nearshore and pelagic zones were similar in microbial 

community composition while inflow and S79 zones were similar in microbial community 

composition (Figures 19 and 21). In year 1, the microbial community composition of the nearshore 

and pelagic zones was driven mostly by nitrate + nitrite, turbidity, and TN:TP ratio, while the 

communities of the inflow and S79 zones were driven mostly by ammonia (Figure 19). In year 3, 

the microbial community composition of the nearshore and pelagic zones was driven by nitrate + 

nitrite, total phosphate, Microcystis abundance, chlorophyll-a, and temperature. The microbial 

community composition of the inflow and S79, however, doesn’t seem to be driven primarily by 

any of the environmental factors shown in the plot (Figure 22). Year 2 had significant differences 

between stations (Figure 20) and no significant differences between zones (Figure 21). However, 

each station is located within a certain ecological zone in the lake. Thus, to better interpret the 

station plot, the zone plot will be used. When looking at the zones of each station, the stations 

located in the nearshore and pelagic zones were clustered together and mostly driven by nitrate + 

nitrite concentrations, turbidity, with TN:TP ratio also driving microbial community within the 

nearshore zone (Figure 20 and figure 22). Stations located in the inflow and S79 zones were also 

clustered together but there were some stations from the pelagic and inflow zones that were driven 

by the same environmental variables (chlorophyll a, TN:TP ratio, and ammonia) (Figure 20 and 

figure 22). 
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Figure 17. CCA plot based on species composition of each sample over the sampling period by 

year. Arrows indicate the direction and magnitude of the environmental variables that showed a 

significant effect (p<0.05) and correlation (R2≥0.3). 
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Figure 18. CCA plot based on species composition of each sample in year 1 by zone. Arrows indicate 

the direction and magnitude of the environmental variables that showed a significant effect (p<0.05) and 

correlation (R2≥0.3). 



37 

 

 

 

  

Figure 19. CCA plot based on species composition of each sample in year 2 by station. Arrows 

indicate the direction and magnitude of the environmental variables that showed a significant effect 

(p<0.05) and correlation (R2≥0.3). 
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Figure 20. CCA plot based on species composition of each sample in year 2 by zone. Arrows indicate 

the direction and magnitude of the environmental variables that showed a significant effect (p<0.05) and 

correlation (R2≥0.3).  
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Figure 21. CCA plot based on species composition of each sample in year 3 by zone. Arrows indicate 

the direction and magnitude of the environmental variables that showed a significant effect (p<0.05) and 

correlation (R2≥0.3). 
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Co-occurrence network with Microcystis 

There was a total of 22 bacteria taxa that appeared to co-occur with the genus Microcystis 

(Figure 22). The network consisted of two clusters around Microcystis, one with 18 taxa and 

another with 4 taxa. Most of the bacteria fall under the phylum Proteobacteria with some occurring 

in other phyla such as Bacteroidota and Gemmatimonadota. The three strongest relationships 

shared with Microcystis were between uncultured bacteria belonging to the family Sutterallaceae 

(Pearson R = 0.836), the genus Pseudanabaena_PCC-7429 (Pearson R = 0.811), and the genus 

Silanimonas (Pearson R = 0.807). It is evident that the genus Microcystis co-occurs primarily with 

heterotrophic bacterial taxa, with only two relationships with other Cyanobacteria taxa (Figure 

22). 

  

Figure 22. Co-occurrence network of genera sharing a significantly strong positive correlation (p 

= 0.05; R2 > 0.7) with the genus Microcystis. Node color indicates the phylum corresponding to the 

genera shown. The numbers shown on the edges of the network signify the R2 values of the 

relationship. 
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Environmental variables over sampling period 

 After uncovering which environmental variables were in close association with the 

microbial community beta diversity, selected environmental variables were plotted against the 

sampling period (by month across the years) (Figures 23-34). The only environmental variable that 

stayed relative constant with minor changes across the sampling period was pH (Figure 29). 

However, there were several instances of decreased pH within year 2 and year 3 during the late 

summer to winter months (7-12) (Figure 29). TN:TP ratio and nitrate + nitrite concentration 

showed some seasonal changes (Figure 31 and Figure 28, respectively). TN:TP ratio showed a 

decrease during spring months (3-5) and began to increase into the summer months (6-7) across 

all three years. Year 1 experienced instances of the highest TN:TP ratio compared to year 2 and 

year 3 (Figure 31). Nitrate + nitrite concentrations showed an overall decrease in concentration 

during the summer months into early fall months (6-9) (Figure 28). Year 2 experienced several 

instances of the highest concentration of nitrate + nitrite compared to year 1 and year 3 (Figure 

28).  

Most of the remaining selected environmental variables displayed changes from year-to-

year. The total depth of Lake O was lower in year 1 while year 2 and year 3 experienced increasing 

average depths (Figure 33). Year 1 and year 3 experienced warmer water temperatures for a longer 

period compared to year 2, which exhibited a smoother transition between water temperature 

gradients across months (Figure 30). Ammonia concentrations remained constant in year 1, with 

only three instances being substantially higher than average (Figure 24a). Year 3 also portrayed 

the same pattern; however, there was only one instance where the concentration was substantially 

above average (Figure 24c). Year 2 showed the most instances that were above average 

concentrations compared to the other two years (Figure 24b). Both Microcystis relative abundance 

and microcystin concentration were higher during year 2 and year 3 and lowest during year 1 

(Figure 27 and Figure 26, respectively). Chlorophyll a concentration exhibited the same pattern—

with year 1 exhibiting lower concentrations than year 2 and year 3 (Figure 25). Year 1 and year 3 

exhibited an unstable increase-decrease cycle in total nitrogen concentration across the monthly 

averages, while year 2 experienced only two increase averages during March and November 

(Figure 32). Total phosphorus also experienced this pattern in concentration (Figure 23). The 
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average concentration of total phosphate stayed within the same range across the years until it 

began to decrease during July of year 3 (Figure 34).  

 

 

Figure 23. Scatterplot of total phosphorus concentrations (mg/L) over the sampling period. 

The black line depicts the average concentration per month across the years.  

 

 

 

Figure 24. Scatterplot of ammonia concentrations (mg/L) over the sampling period. The black 

line depicts the average concentration per month across the years.  
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Figure 25. Scatterplot of total chlorophyll a concentration (µg/L) over the sampling period. 

The black line depicts the average concentration per month across the years.  

 

 

 

Figure 26. Scatterplot of microcystin concentrations (µg/L) over the sampling period. The 

black line depicts the average concentration per month across the years.  
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Figure 27. Scatterplot of Microcystis relative abundance over the sampling period. The black 

line depicts the average abundance per month across the years.  

 

 

 

Figure 28. Scatterplot of nitrate + nitrite concentration (mg/L) over the sampling period. The 

black line depicts the average concentration per month across the years.  
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Figure 29. Scatterplot of surface water pH over the sampling period. The black line depicts 

the average pH per month across the years.  

 

 

 

Figure 30. Scatterplot of surface water temperature (°C) over the sampling period. The black 

line depicts the average temperature per month across the years.  
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Figure 31. Scatterplot of the ratio of total nitrogen and total phosphorus over the sampling 

period. The black line depicts the average ratio per month across the years.  

 

 

 

Figure 32. Scatterplot of total nitrogen concentrations (mg/L) over the sampling period. The 

black line depicts the average concentration per month across the years.  



47 

 

Figure 33. Scatterplot of the total depth (m) of the lake over the sampling period. The black 

line depicts the average depth per month across the years. 

 

 

Figure 34. Scatterplot of the total phosphate (mg/L) concentration over the sampling period. 

The black line depicts the average concentration per month across the years. 
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DISCUSSION 

Bloom effects on microbial community diversity  

Most of the cyanobacterial harmful algal bloom (cyanoHAB) research done on Lake 

Okeechobee (Lake O) primarily focuses on bloom management via the control of nutrients going 

into the lake. However, there is a growing amount of research suggesting that nutrient levels may 

not be the only factor influencing these blooms to occur so frequently (Wilhelm et al., 2020). There 

have not been many studies done on Lake O that assess how these cyanoHABs are affecting the 

other microbial communities within the lake during these blooms or how these other microbes 

could be influencing the blooms. The conclusions reached in this study provide a glimpse into the 

effects of cyanoHABs caused by Microcystis may have on the microbial community make-up 

within Lake O.  

This study has found that the diversity of microbial communities in Lake O are affected by 

the occurrence of Microcystis, one of the main cyanobacteria genera causing cyanoHABs both in 

Lake O and around the world. The microbial communities within Lake O appeared to show both 

temporal and spatial differences in diversity. However, more significant differences were found 

between stations and ecological zones within all three years together and between each year. This 

result was expected due to the different environmental conditions experienced by the ecological 

zones found throughout the lake. Microcystis is known to “lie-in-wait” for the proper 

environmental conditions that are favorable for their populations to proliferate and bloom; they 

even tend to overwinter in the sediments at the bottom of the lake until these conditions are present 

(Cai et al., 2021; Reynolds, 1973). Over the three sampling years (2019-2021), there was an 

evident increase in bloom intensity and longevity. The peak average relative abundance of 

Microcystis and the average concentration of microcystin could be seen increasing over the years 

with year 3 (2021) experiencing the highest abundance and concentration (Figures 27 and 26, 

respectively). There were also changes in environmental conditions within 2021 that may have 

contributed to the increase of bloom intensity. For instance, 2021 was seen to have warmer average 

temperatures and a lower TN:TP ratio during the months (May to July) that blooms occurred 

(Figures 30 and 31, respectively). Numerous studies have shown that cyanobacteria favor higher 

temperatures thus increasing their growth rates during warmer periods of the year (Wilhelm et al., 

2020; Paerl & Hulsman, 2008; Jöhnk K. D., et al., 2008; Reynolds, 2006). Xie et al. (2003) 
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uncovered that when Microcystis populations were exposed to sufficient amounts of nitrogen (N) 

but differing amounts of phosphorus (P), Microcystis blooms occurred only in the environments 

with higher P concentrations. However, as these blooms progressed, both N and P concentrations 

declined, hence resulting in lower TN:TP ratios. Therefore, as an increase in temperature 

influences the growth of Microcystis blooms, there is a decrease in TN:TP ratio due to the increases 

use of the nutrients in the water column. 

Beta diversity patterns of the microbial community composition 

There were some evident spatial patterns throughout the data. The spatial variables of 

interest in this study were the monitoring stations in the lake and the ecological zones of the lake. 

When looking at the ecological zones of the lake, there was an obvious coupling between the 

zones: the inflow zone was always coupled with the zone S79, and the pelagic zone was always 

coupled with the nearshore zone; giving the idea that these couples have similar microbial 

community composition. As mentioned in a previous study, although these zones exhibit differing 

physiochemical properties, these zones do not have clearly defined borders between them, hence 

these zones can be dynamic (Krausfeldt et al., submitted). The results of this study further 

supported this concept as 2020 (year 2) showed no significant differences between zone when 

2019 and 2021 (year 1 and year 3, respectively) did show significant differences; showing that 

there was less of a differentiation between zones in 2020 compared to the other years. However, 

the members of each coupling did not come to a surprise as the zone S79 is within the 

Caloosahatchee River, which has a mouth into the lake, so it is in contact with the inflow zone of 

the lake. Additionally, the pelagic and nearshore zones also come into contact with one another 

despite their physiochemical differences.  

Rare microbial taxa in Lake Okeechobee  

 The taxonomic make-up of Lake O was dominated primarily by four common bacterial 

phyla: Proteobacteria, Bacteroidota, Cyanobacteria, and Actinobacteriota (Table 1, Figure 3). 

These phyla appeared to change in distribution, along with the less-dominant taxa present, both 

temporally (Figure 3) and spatially (Figures 5-7). However, there were some phyla that irregular 

in both their distribution around the lake and their presence across the years. In 2019 (year 1), there 

was one phylum that appeared in the top phyla of only two stations within Lake O and was found 

in no other year—SAR324 (marine_clade group B). SAR324 is a novel phylum that has been 
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recently classified as its own phylum after initially being classified as “marine_clade group B” 

under the phylum Deltaproteobacteria (Malfertheiner et al., 2022; Parks et al., 2018; Pommier et 

al., 2005). SAR324 is known to be present only in marine environments; however, Malfertheiner 

and colleagues (2022) discovered that this phylum can also be found in terrestrial aquifers. 

(Malfertheiner et al., 2022) Lake O could possibly be subjected to saltwater intrusion (Prinos, 

2016; Barlow & Reichard, 2010), or the movement of seawater into freshwater aquifers, due to the 

water level being heavily managed. The SFWMD stated that saltwater intrusion is at a higher risk 

of occurring in Lake O starting at a depth of 10½ feet (or 3.2 meters) and compromising the 

Caloosahatchee lock at a starting depth of 9½ feet (or 2.9 meters) (SFWMD, “Impacts of Operating 

Lake Okeechobee at Lower Water Levels”). Yet, throughout the majority of 2019, the total depth 

of Lake O was sustained between about 1 and 3 meters (3.3 feet and 9.8 feet). These conditions 

put Lake O in the position of the increased risk of saltwater intrusion, especially at the 

Caloosahatchee River lock (station S79). Coincidentally, SAR324 appears as one of the dominant 

taxa in stations S79 and POLESOUT (Figure S2); thus, whether SAR324 appears due to saltwater 

intrusion, or it is naturally occurring in the terrestrial aquifer is unknown.  

A non-ubiquitous phylum that was found in 2020 and no other year was Armatimonadota 

(Figure S3). This phylum was part of the top phyla within the station, KISSR0.0, which is located 

in the inflow zone and the mouth of the Kissimmee River (Figure 1). Armatimonadota was 

originally known as candidate phylum OP10 before its reclassification into a new phylum by 

Hugenholtz and colleagues in 1998 (Hugenholtz et al., 1998b). Isolated sequences of 

Armatimonadota were isolated from a variety of environments such as aerobic and anaerobic 

wastewater treatment processes, contaminated and regular soil and sediments (Im et al., 2012). 

Lake O and its connecting rivers, St. Lucie, Kissimmee, Caloosahatchee, etc. all are experiencing 

nutrient pollution due to the agricultural and urban lands surrounding them. Furthermore, between 

2019 and 2020, there was an increase in the average concentrations of total phosphate (Figure 34), 

total nitrogen (Figure 32), nitrate + nitrite (Figure 28), and total phosphorus (Figure 23). Hence, it 

is unknown what kind of contamination occurred during the initial collection and isolation of the 

bacteria belonging to Armatimonadota, but there may be a connection with the increase in nutrient 

pollution and the presence of this phyla. 
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An additional non-ubiquitous phylum, Patescibacteria, appeared only in 2021 at two 

stations within the lake (Figure S4). Patescibacteria, formerly known as the ‘candidate phyla 

radiation’(CPR), included the discovery of an immense microbial diversion within the bacterial 

tree of life in 2016 (Herrman et al., 2019). However, in 2018, Parks et al. (2018) suggested 

classifying the CPR into a new phylum, Patescibacteria. There are 14 classes of bacteria known so 

far in this phylum and they all inhabit a range of environments including groundwater and other 

aquifer environments, freshwater sediments, and deep-sea sediments (Herrman et al., 2019; 

Proctor et al., 2018; Leon-Zayas et al., 2017; Luef et al., 2015; Brown et al., 2015). There is a 

high abundance of Patescibacteria that found in groundwater environments—making up around 

38% of the total microbiomes (Herrmann et al., 2019; Bruno et al., 2017; Kumar et al., 2017). In 

Lake O, Patescibacteria were found only in 2021 (year 3) at two stations, L004 and L006, both of 

which are in the pelagic zone of the lake. The pelagic zone is the deepest part of the lake but also 

experiences the most turbidity (Krausfeldt et al., submitted). The higher turbidity and reduced 

water clarity of the water column suggests that there may be sediment resuspension occurring 

within the pelagic zone (Krausfeldt et al., submitted), thus possibly allowing this phylum to be 

collected in surface waters.  

Bacterial co-occurrences with Microcystis 

It is well-known that Microcystis blooms are influenced by abiotic factors such as 

environmental variables and nutrient inputs of freshwater ecosystems. There has been increasing 

curiosity of how the heterotrophic bacterial community plays a role in the aggregation and 

proliferation of the colonies and how they could be maintaining these cyanobacterial harmful algal 

blooms (cyanoHABs) created by Microcystis. Studies have shown evidence that there are 

heterotrophic bacteria that live within and surrounding Microcystis colonies, with either 

mutualistic or antagonistic effects (Tu et al., 2019; Shen et al., 2011; Shi et al., 2009; Maruyama 

et al., 2003; Imamura et al., 2001; Pankow, 1986). As mentioned previously, several results in this 

study suggested that Microcystis can alter the microbial community of Lake O through 

cyanoHABs. Both Microcystis and its related toxin, microcystin, showed strong negative 

correlations to species evenness and species diversity (Figure 8). In year 3 (2021)—the year with 

the most intense blooms of the entire sampling period—Microcystis appeared as one of the 

strongest correlated variables, along with other environmental variables, to drive variation in the 
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microbial communities in Lake O (Figure 21). After revealing that Microcystis can alter the 

microbial communities, the curiosity of knowing who else can possibly be changing with 

Microcystis resulted in the creation of a co-occurrence network involving any bacteria that has 

appeared with this genus. The co-occurrence network showed 22 significantly strong positive 

correlations between Microcystis and other heterotrophic bacteria; with two exceptions being 

cyanobacteria (Pseudanabaena_PCC-7429 and Snowella_OTU37S04) (Figure 22). Although 

some negative correlations did exist between Microcystis and other bacteria, their relationships 

were not strong enough to document as strong correlations (R2 = -0.7 or less).  

Some of the heterotrophic bacteria genera that co-occur with Microcystis may indicate that 

there is a commensal relationship between them. Bradymonadales belongs to the phylum 

Desulfobacterota which is located under the phylum Deltaproteobacteria. Bradymonadales are 

predatory bacteria, which is broken up into two categories, obligatory and facultative (Mu et al.; 

2020). Mu and colleagues (2020) found that Bradymonadales displays unique living strategies that 

allow for these bacteria to present a novel method of predation: a transition between being obligate 

and facultative predators. Some of the main bacteria that are highly preyed on by Bradymonadales 

include Bacteroidetes, Flavobacteria, and Proteobacteria. Intriguingly, 11 of the 22 co-occurring 

bacteria with Microcystis belong to the phylum Proteobacteria with an additional two belonging 

to Bacteroidetes and Flavobacteria. Thus, Bradymonadales may be utilizing Microcystis colonies 

during the blooms as a feeding ground for its prey items. Bdellovibrio exovorus is another 

predatory bacteria species that was seen to co-exist with Microcystis. First described in 1963 

(Koval et al., 2013; Stolp & Starr, 1963), Bdellovibrio exovorus belongs to a group of like 

predatory bacteria known as Bdellovibrio and like organisms (BALOs) (Ezzedine et al., 2020). 

BALOs were the first records of predatory bacteria and continue to be used as a baseline for the 

discovery of novel predatory bacteria like Bradymonadales which was previously mentioned 

above. Similar to Bradymonadales, B. exovorus is also obligatory predators on primarily other 

Proteobacteria. However, it is important to note that some species of BALOs have been found to 

kill cyanobacterial cells. Caiola and Pellegrini (1984) found that BALOs were able to lyse 

Microcystis aeruginosa cells via penetration and proposed that these and other algicidal bacteria 

could be the reason for the dying out of cyanobacteria bloom events. 
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There were only two taxa that were not heterotrophic bacteria that shared strong positive 

correlations with Microcystis, genera Pseudanabaena_PCC-7429 and Snowella_OTU37S04, 

which are also part of the phylum Cyanobacteria. The genus Pseudanabaena is an epiphytic 

cyanobacterial taxon that is commonly found embedded within or attached to the mucilaginous 

sheath of Microcystis colonies (Li et al., 2020). Both taxa are frequently observed to be highly 

correlated during cyanoHABs and this study also provides evidence of this pattern (Li et al., 2020; 

Berry et al., 2017; Ilhe, 2008). In the 1980s, Pseudanabaena was primarily described as a parasitic 

organism to Microcystis colonies (Chang, 1985; Gorham et al., 1982). Further investigation was 

conducted regarding the interactions between Pseudanabaena and Microcystis, which investigated 

the interaction directly (Agha et al., 2016). Agha and colleagues (2016) discovered that 

Pseudanabaena is not selective on the species of Microcystis but on their mucilage structure. They 

also uncovered that Pseudanabaena is detrimental to Microcystis colonies both directly via cell 

lysis and indirectly via cell sedimentation. Thus, it may be possible that Pseudanabaena may also 

contribute to the dying out of cyanoHAB events. Conversely, although the genus Snowella was 

also found to be highly correlated to Microcystis in a previous study, not much is known about 

their ecology and their interaction with Microcystis (Mankiewicz‑Boczek & Font‑Nájera, 2022). 

Another interesting taxa that was highly correlated with Microcystis is the genera 

env.OP_17 (Figure 22). There is not much information solely about the bacterium env.OP_17, 

however, it is part of the order Sphingobacteriales and this order is known to be potential algicidal 

bacteria that favor the uptake of cyanobacterial excretions and decaying material 

(Mankiewicz‑Boczek & Font‑Nájera, 2022). Furthermore, Mankiewicz‑Boczek & Font‑Nájera 

(2022) found that env. OP_17 increased in abundance after a bloom, suggesting that this taxon 

might be a part of the “clean-up team” once a cyanoHAB dies out. Though this study presented 

results focused primarily on the highly correlated relationships between other bacteria and 

Microcystis in Lake O, there was another bacterial genus, Streptomyces, that is known to exhibit 

algicidal activity towards Microcystis that was present in microbial community of Lake O (Zhang 

et al., 2023). On the contrary, the genus Phenylobacterium—another taxon that was found with a 

high correlation with Microcystis (Figure 22)—was found to aid in the growth and dominance of 

toxic Microcystis strains during cyanoHAB events. As mentioned previously, there are toxic and 

non-toxic bloom-forming strains of Microcystis and in a study conducted by Zuo et al. (2021), 

they saw that Phenylobacterium was one of the few genera that strongly positively co-existed with 
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toxic strains of Microcystis. After further investigation in the field and in the laboratory, they found 

that there were three strains of Phenylobacterium that promoted the growth of these toxic strains 

of Microcystis, suggesting that Phenylobacterium may be a heterotrophic bacterium that could be 

aiding in the longevity of these blooms (Zuo et al., 2021). Unfortunately, there needs to be further 

investigation into the mechanisms by which Phenylobacterium interact with these toxic strains of 

Microcystis that allow Microcystis to remain dominant throughout the cyanoHAB event. 

Microcystis, temperature, pH, and nutrients 

 Although it is also important to investigate the biotic factors that influence cyanoHABs, 

such as the interactions between the blooming cyanobacteria and other microbes, there is still 

plenty of evidence of how abiotic factors influence cyanoHABs, and vice versa, all over the world. 

During this study, in addition to characterizing the microbial community of the lake, certain 

environmental variables were also collected to consider how these variables could be influencing 

these blooms along with the microbial community. Besides nutrient levels in the lake, one 

important physical characteristic that affects cyanoHABs is temperature. Temperature affects the 

growth of cyanobacterial species. In general, higher temperatures promote the growth of 

cyanobacteria, often temperatures that are above 25°C (Paerl & Huisman, 2008; Jöhnk et al.,2008; 

Reynolds, 2006). When temperatures increase, the water column becomes more stable and 

stratified since the increase in temperature weakens the amount of vertical mixing in the water 

column (Paerl & Huisman, 2008; Paerl & Fulton III, 2006; Reynolds, 2006; Husiman, Matthijs, & 

Visser, 2005). Microcystis aeruginosa, the dominant bloom-forming cyanobacteria species in 

Lake O, can take advantage of these more stratified conditions using their gas vesicles. The gas 

vesicles formed by M. aeruginosa give them the buoyancy they need to effectively migrate through 

the water column during favorable conditions, such as high temperatures and increased light 

availability (Dick et al., 2021; Huisman et al., 2018; Komárek, 2003). This buoyancy also provides 

M. aeruginosa the ability to form “mats” of biomass at the surface of the water; hence, cyanoHAB 

events tend to increase in frequency in the summer (You et al., 2017; Litchman et al., 2010). 

Across the sampling period, especially in 2021, temperatures reached between 25°C and 30°C 

each year from May through to September—around the same months where microcystin 

concentrations (Figure 26) and Microcystis relative abundances (Figure 27) were the highest 

(Figure 30). Certainly, global warming is becoming a concerning topic as increasing temperatures 



55 

 

are affecting the various environments of the planet. Further research should be done on Lake O 

and other lakes affected by cyanoHABs to look at the trend of bloom frequencies as the global 

temperature continues to rise over time. 

 In addition to increased water temperatures, pH is also known to be a factor associated with 

Microcystis blooms. This importance was evident as pH was included as an environmental factor 

driving the differences found in the microbial community composition across the sampling period 

(Figure 17). During a dense bloom, the cyanobacteria rapidly consume inorganic carbon (in the 

form of dissolved CO2) that is available in the upper water column, in turn increasing the pH of 

the surface water to above 9 (Ji et al., 2020; Wilhelm et al., 2020). Across the sampling period, 

there were an increasing number of instances where the surface water pH was measured above 9 

(Figure 29). With this increase in pH, the equilibrium of carbon in the water is shifted from 

inorganic carbon (dissolved CO2) to bicarbonate (HCO3
-) and carbonate (CO3

2-) (Ji et al., 2020; 

Huisman et al., 2018). Microcystis, although also adaptive to high concentrations of CO2 

concentrations, can utilize bicarbonate as a carbon source through the use of carbonic anhydrase 

found in cyanobacteria—further allowing these blooms to thrive during these alkaline conditions 

(Ji et al., 2020; Wilhelm et al., 2020; Huisman et al., 2018). Alkaline pH conditions also allow for 

the conversion of ammonium ions (NH4
+) to ammonia (NH3).  During the months where 

microcystin concentrations (Figure 26) and Microcystis relative abundances (Figure 27) were the 

highest (May to September), there was also an increase in ammonia during those months.  
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CONCLUSION 

 This study provides a glimpse into the effects of cyanoHABs within the microbial 

community of the Floridian freshwater lake, Lake Okeechobee. This study provides an initial look 

into the taxonomic classification of the dynamic microbial community of Lake O over several 

years and the spatial changes that were seen within these communities. We found that the 

cyanoHABs that have been commonly occurring in Lake O do in fact alter the microbial 

community composition of the lake. Further investigation of these changes within the microbial 

community composition yielded the identification of possible relationships between these 

microbial communities and Microcystis. With the identification of these possible relationships, 

future investigation should be conducted to see how the functions of these taxa are incorporated 

into their interaction with Microcystis. With that, we might be able to identify bacteria that may 

serve as possible bioindicators for these cyanoHAB events and aid in preventing or managing these 

recurring blooms in the lake.  

 Lake Okeechobee is indeed an essential part of south Florida’s ecosystems as it serves as 

a source of drinking water for nearby towns, irrigation for the agricultural lands surrounding the 

border of the lake, critical water supply for the environment, and as habitat for various organisms 

in the water and on the land (South Florida Water Management District (SFWMD)). With the 

degrading water quality of the lake, there is great concern for life both within and around the lake. 

To date, numerous studies have been conducted on reducing the nutrient loading into the lake 

(Canfield Jr. et al., 2021; Schelske, 1989; Canfield Jr. & Hoyer, 1988) and investigating the 

possible control of these recurring blooms (Pokrzywinski et al., 2022), primarily focusing on the 

cyanobacteria involved in these blooms. Not many studies have been done on Lake Okeechobee 

that explore the taxonomic structure, temporal distributions, and spatial distributions of the 

microbial communities before, during, and after annual cyanoHABs. Furthermore, whether the 

microbial community taxonomic structure, temporal and spatial distributions rebound after a 

bloom event also has yet to be studied.  

 To enable scientists to enhance their comprehension of the ongoing cyanoHABs in Lake 

Okeechobee and their interactions with the surrounding environment, particularly the microbial 

community, it is essential to fill these existing knowledge gaps. With that, scientists will be able 

to examine the variations in the diversity and trophic structure of the lake before, during, and after 
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the occurrence of these harmful blooms—bringing scientists closer to fully understanding the 

impact of cyanoHABs on Lake Okeechobee's microbial communities. 
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APPENDIX 

I. Sample read table 

Table S1. Final samples and their total amount of sequencing reads. 

Sample # of reads         

CLV10A_1_20 76,624 L007_5_20 14,306 PALMOUT_9_20 60,268 

CLV10A_1_21 46,642 L007_5_21 60,799 PALMOUT_9_21 17,598 

CLV10A_10_19 12,394 L007_6_19 25,096 PELBAY3_1_20 62,250 

CLV10A_10_20 76,075 L007_6_20 14,750 PELBAY3_1_21 32,522 

CLV10A_10_21 27,728 L007_6_21 36,790 PELBAY3_10_20 72,870 

CLV10A_11_19 31,983 L007_7_19 38,943 PELBAY3_10_21 53,021 

CLV10A_12_19 31,518 L007_7_21 50,726 PELBAY3_11_19 28,589 

CLV10A_12_20 46,448 L007_8_19 53,470 PELBAY3_11_20 49,393 

CLV10A_2_20 100,350 L007_8_20 36,822 PELBAY3_12_19 31,417 

CLV10A_2_21 23,458 L007_8_21 56,065 PELBAY3_12_20 46,412 

CLV10A_3_20 17,910 L007_9_19 13,578 PELBAY3_2_20 105,663 

CLV10A_3_21 52,702 L007_9_20 81,952 PELBAY3_2_21 27,543 

CLV10A_4_19 22,167 L007_9_21 51,459 PELBAY3_3_19 15,933 

CLV10A_4_20 23,094 L008_1_20 42,067 PELBAY3_3_21 43,612 

CLV10A_4_21 34,584 L008_10_20 71,738 PELBAY3_4_20 10,029 

CLV10A_5_19 21,015 L008_10_21 44,244 PELBAY3_4_21 28,973 

CLV10A_5_21 39,585 L008_11_19 29,332 PELBAY3_5_19 60,939 

CLV10A_6_19 33,664 L008_11_20 60,226 PELBAY3_5_20 21,305 

CLV10A_6_20 15,985 L008_12_19 20,267 PELBAY3_5_21 35,182 

CLV10A_6_21 53,886 L008_12_20 19,467 PELBAY3_6_19 50,764 

CLV10A_7_19 120,120 L008_2_20 58,702 PELBAY3_6_20 13,069 

CLV10A_7_20 20,116 L008_2_21 34,817 PELBAY3_6_21 36,587 

CLV10A_7_21 55,550 L008_3_19 33,247 PELBAY3_7_19 39,502 

CLV10A_8_19 98,094 L008_3_20 21,043 PELBAY3_7_20 16,049 

CLV10A_8_20 39,276 L008_3_21 79,741 PELBAY3_7_21 35,714 

CLV10A_8_21 46,501 L008_4_20 10,088 PELBAY3_8_19 43,571 

CLV10A_9_19 85,121 L008_4_21 38,117 PELBAY3_8_20 25,457 

CLV10A_9_20 82,088 L008_5_19 60,352 PELBAY3_8_21 35,761 

KISSR0.0_1_20 36,658 L008_5_20 11,508 PELBAY3_9_19 38,412 

KISSR0.0_10_20 98,425 L008_5_21 47,189 PELBAY3_9_20 71,440 

KISSR0.0_10_21 65,812 L008_6_19 25,457 POLE3S_1_20 30,299 

KISSR0.0_11_19 11,587 L008_6_20 13,623 POLE3S_1_21 31,623 

KISSR0.0_11_20 74,182 L008_6_21 47,807 POLE3S_10_20 73,885 

KISSR0.0_12_19 51,148 L008_7_19 49,147 POLE3S_10_21 53,517 

KISSR0.0_12_20 74,553 L008_7_20 15,851 POLE3S_11_20 36,478 

KISSR0.0_2_20 63,076 L008_7_21 48,710 POLE3S_12_19 24,108 

KISSR0.0_2_21 39,407 L008_8_19 59,179 POLE3S_12_20 31,633 

KISSR0.0_3_19 16,094 L008_8_20 41,239 POLE3S_2_20 35,025 

KISSR0.0_3_21 33,783 L008_8_21 41,213 POLE3S_2_21 34,632 

KISSR0.0_4_19 86,959 L008_9_19 18,340 POLE3S_3_19 14,424 

KISSR0.0_4_20 14,190 L008_9_20 78,876 POLE3S_3_21 57,108 

KISSR0.0_4_21 28,525 LZ2_1_20 53,511 POLE3S_4_20 21,753 

KISSR0.0_5_19 142,791 LZ2_10_20 72,031 POLE3S_4_21 30,637 
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KISSR0.0_5_20 11,072 LZ2_10_21 47,220 POLE3S_5_19 30,597 

KISSR0.0_5_21 45,548 LZ2_11_19 23,380 POLE3S_5_21 38,883 

KISSR0.0_6_20 25,235 LZ2_11_20 41,657 POLE3S_6_19 14,647 

KISSR0.0_6_21 61,426 LZ2_12_19 18,663 POLE3S_6_21 30,355 

KISSR0.0_7_19 15,071 LZ2_12_20 38,681 POLE3S_7_19 47,995 

KISSR0.0_7_21 60,634 LZ2_2_20 15,620 POLE3S_7_20 33,503 

KISSR0.0_8_19 126,671 LZ2_2_21 50,842 POLE3S_7_21 34,565 

KISSR0.0_8_20 56,130 LZ2_3_19 41,948 POLE3S_8_19 53,491 

KISSR0.0_8_21 73,235 LZ2_3_21 40,141 POLE3S_8_20 25,946 

KISSR0.0_9_19 63,718 LZ2_4_19 16,436 POLE3S_8_21 30,494 

KISSR0.0_9_20 94,116 LZ2_4_20 15,464 POLE3S_9_20 45,210 

KISSR0.0_9_21 40,703 LZ2_4_21 30,621 POLESOUT_1_20 79,181 

L001_1_20 69,121 LZ2_5_19 100,830 POLESOUT_10_20 105,561 

L001_10_20 62,372 LZ2_5_20 25,241 POLESOUT_10_21 46,118 

L001_10_21 40,366 LZ2_5_21 63,438 POLESOUT_11_19 33,973 

L001_11_19 23,869 LZ2_6_19 30,662 POLESOUT_11_20 46,080 

L001_11_20 38,398 LZ2_6_20 10,071 POLESOUT_12_20 50,735 

L001_12_19 30,015 LZ2_6_21 74,326 POLESOUT_2_20 36,634 

L001_12_20 25,130 LZ2_7_20 17,943 POLESOUT_2_21 33,648 

L001_2_20 20,447 LZ2_7_21 73,048 POLESOUT_3_19 18,616 

L001_2_21 41,243 LZ2_8_19 60,425 POLESOUT_3_21 46,797 

L001_3_19 55,974 LZ2_8_20 31,421 POLESOUT_4_19 97,611 

L001_3_20 33,450 LZ2_8_21 50,740 POLESOUT_4_20 15,640 

L001_3_21 47,455 LZ2_9_19 10,507 POLESOUT_4_21 26,357 

L001_4_19 62,834 LZ2_9_20 81,905 POLESOUT_5_19 25,865 

L001_4_20 16,301 LZ25A_1_20 60,637 POLESOUT_5_21 49,238 

L001_4_21 59,802 LZ25A_1_21 36,929 POLESOUT_6_19 14,811 

L001_5_19 65,666 LZ25A_10_20 83,654 POLESOUT_6_20 15,163 

L001_5_21 43,676 LZ25A_10_21 30,907 POLESOUT_6_21 65,067 

L001_6_19 55,827 LZ25A_11_19 17,080 POLESOUT_7_19 64,203 

L001_6_20 15,917 LZ25A_11_20 52,790 POLESOUT_7_20 25,430 

L001_6_21 66,222 LZ25A_12_19 16,615 POLESOUT_7_21 35,781 

L001_7_19 89,208 LZ25A_12_20 37,878 POLESOUT_8_19 50,673 

L001_7_20 21,657 LZ25A_2_20 51,477 POLESOUT_8_20 38,149 

L001_7_21 72,399 LZ25A_2_21 33,158 POLESOUT_8_21 67,504 

L001_8_19 150,654 LZ25A_3_19 12,262 POLESOUT_9_20 86,132 

L001_8_20 53,550 LZ25A_3_20 33,491 POLESOUT_9_21 48,871 

L001_8_21 49,305 LZ25A_3_21 46,665 RITTAE2_1_20 54,298 

L001_9_19 87,813 LZ25A_4_19 17,755 RITTAE2_1_21 48,316 

L001_9_20 70,594 LZ25A_4_20 31,183 RITTAE2_10_20 71,018 

L001_9_21 37,013 LZ25A_4_21 40,967 RITTAE2_10_21 51,779 

L004_1_20 94,846 LZ25A_5_20 19,997 RITTAE2_11_19 34,798 

L004_10_20 64,665 LZ25A_5_21 42,305 RITTAE2_11_20 72,037 

L004_10_21 34,233 LZ25A_6_19 15,634 RITTAE2_12_19 23,292 

L004_11_19 21,572 LZ25A_6_21 52,604 RITTAE2_12_20 27,845 

L004_11_20 56,382 LZ25A_7_19 56,424 RITTAE2_2_20 68,756 

L004_12_19 24,092 LZ25A_7_20 22,123 RITTAE2_2_21 24,529 

L004_12_20 29,549 LZ25A_7_21 32,884 RITTAE2_3_19 14,624 

L004_2_20 46,557 LZ25A_8_19 43,506 RITTAE2_3_20 43,584 
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L004_2_21 48,272 LZ25A_8_20 23,717 RITTAE2_3_21 41,907 

L004_3_19 31,177 LZ25A_9_19 42,993 RITTAE2_4_19 17,614 

L004_3_20 11,902 LZ25A_9_20 54,018 RITTAE2_4_20 20,993 

L004_3_21 56,711 LZ30_1_20 57,864 RITTAE2_4_21 30,636 

L004_4_20 16,779 LZ30_1_21 26,041 RITTAE2_5_21 41,138 

L004_4_21 41,409 LZ30_10_19 10,086 RITTAE2_6_19 26,345 

L004_5_19 27,050 LZ30_10_20 68,400 RITTAE2_6_21 46,329 

L004_6_20 22,960 LZ30_10_21 40,942 RITTAE2_7_19 38,362 

L004_6_21 43,553 LZ30_11_19 25,644 RITTAE2_7_21 46,134 

L004_7_20 60,488 LZ30_11_20 57,308 RITTAE2_8_19 107,571 

L004_7_21 45,275 LZ30_12_19 16,537 RITTAE2_8_20 28,133 

L004_8_19 93,248 LZ30_12_20 25,439 RITTAE2_8_21 42,628 

L004_8_20 54,394 LZ30_2_20 193,677 RITTAE2_9_20 43,811 

L004_8_21 58,656 LZ30_2_21 22,063 S308_1_20 40,604 

L004_9_19 64,591 LZ30_3_20 18,107 S308_1_21 52,580 

L004_9_20 104,024 LZ30_3_21 53,517 S308_10_19 14,110 

L005_1_20 45,496 LZ30_4_19 26,237 S308_10_20 75,491 

L005_10_20 81,641 LZ30_4_20 18,544 S308_11_19 47,368 

L005_10_21 55,821 LZ30_4_21 40,009 S308_11_20 66,475 

L005_11_19 23,774 LZ30_5_19 33,743 S308_12_19 16,025 

L005_11_20 47,251 LZ30_5_20 16,504 S308_12_20 49,384 

L005_12_19 23,328 LZ30_5_21 65,446 S308_2_20 85,800 

L005_12_20 48,266 LZ30_6_19 21,000 S308_2_21 35,427 

L005_2_20 27,477 LZ30_6_20 23,343 S308_3_19 25,070 

L005_2_21 39,338 LZ30_6_21 30,066 S308_3_20 32,080 

L005_3_19 22,299 LZ30_7_19 39,048 S308_3_21 40,605 

L005_3_21 41,506 LZ30_7_20 42,374 S308_4_19 87,900 

L005_4_19 24,271 LZ30_7_21 63,949 S308_4_20 23,923 

L005_4_20 21,645 LZ30_8_19 55,304 S308_4_21 32,531 

L005_4_21 35,763 LZ30_8_20 30,177 S308_5_19 29,336 

L005_5_19 81,630 LZ30_8_21 52,160 S308_5_20 16,791 

L005_5_21 58,292 LZ30_9_19 118,379 S308_5_21 75,525 

L005_6_19 15,663 LZ30_9_20 60,589 S308_6_19 103,414 

L005_6_20 16,835 LZ40_1_20 85,675 S308_6_20 19,425 

L005_6_21 68,739 LZ40_1_21 45,185 S308_6_21 78,761 

L005_7_19 60,728 LZ40_10_20 98,781 S308_7_19 46,758 

L005_7_20 15,387 LZ40_10_21 50,590 S308_7_20 17,488 

L005_7_21 32,169 LZ40_11_19 32,832 S308_8_20 54,558 

L005_8_19 38,863 LZ40_12_19 24,196 S308_9_19 11,619 

L005_8_20 48,457 LZ40_12_20 24,497 S308_9_20 79,367 

L005_8_21 50,637 LZ40_2_20 52,952 S77_1_20 37,138 

L005_9_19 68,266 LZ40_2_21 41,099 S77_10_19 13,226 

L005_9_20 65,398 LZ40_3_19 54,293 S77_10_20 59,970 

L005_9_21 34,062 LZ40_3_20 22,912 S77_10_21 92,000 

L006_1_20 121,402 LZ40_3_21 40,265 S77_11_19 12,042 

L006_1_21 52,987 LZ40_4_19 62,015 S77_12_19 18,217 

L006_10_20 69,771 LZ40_4_20 17,216 S77_12_20 68,352 

L006_10_21 42,768 LZ40_4_21 41,690 S77_2_20 62,899 

L006_11_19 38,256 LZ40_5_19 43,714 S77_2_21 69,613 
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L006_11_20 47,760 LZ40_5_20 34,480 S77_3_19 19,081 

L006_12_19 17,868 LZ40_5_21 32,484 S77_3_21 52,008 

L006_12_20 33,623 LZ40_6_19 17,476 S77_4_19 16,483 

L006_2_20 57,514 LZ40_6_20 19,539 S77_4_20 15,182 

L006_2_21 34,194 LZ40_6_21 62,535 S77_4_21 44,716 

L006_3_20 19,579 LZ40_7_19 46,131 S77_5_19 20,176 

L006_3_21 58,233 LZ40_7_20 19,153 S77_5_21 46,643 

L006_4_20 36,761 LZ40_7_21 51,159 S77_6_19 72,832 

L006_4_21 34,467 LZ40_8_19 50,468 S77_6_20 20,274 

L006_5_19 25,542 LZ40_8_20 39,749 S77_6_21 79,554 

L006_5_20 14,984 LZ40_8_21 51,857 S77_7_19 41,984 

L006_5_21 38,195 LZ40_9_19 29,685 S77_7_20 43,760 

L006_6_20 22,846 LZ40_9_20 113,292 S77_7_21 66,225 

L006_6_21 43,750 LZ40_9_21 68,220 S77_8_19 110,263 

L006_7_19 86,105 PALMOUT_1_20 54,149 S77_8_20 42,614 

L006_7_20 15,198 PALMOUT_1_21 36,386 S77_8_21 58,774 

L006_7_21 53,061 PALMOUT_10_20 47,151 S77_9_20 86,750 

L006_8_19 84,425 PALMOUT_10_21 37,175 S77_9_21 72,055 

L006_8_20 29,947 PALMOUT_11_19 51,800 S79_1_20 61,708 

L006_8_21 43,461 PALMOUT_12_19 24,689 S79_10_20 59,110 

L006_9_19 15,469 PALMOUT_12_20 74,662 S79_10_21 50,775 

L006_9_20 75,004 PALMOUT_2_20 73,824 S79_11_20 93,690 

L007_1_20 46,361 PALMOUT_2_21 33,631 S79_12_19 20,703 

L007_1_21 40,718 PALMOUT_3_19 40,431 S79_12_20 52,718 

L007_10_20 67,773 PALMOUT_3_21 54,149 S79_2_20 25,122 

L007_10_21 22,909 PALMOUT_4_19 18,118 S79_2_21 30,920 

L007_11_19 24,758 PALMOUT_4_20 14,841 S79_3_19 31,458 

L007_11_20 42,615 PALMOUT_4_21 39,178 S79_3_21 54,142 

L007_12_19 20,666 PALMOUT_5_20 18,801 S79_4_19 100,406 

L007_12_20 37,320 PALMOUT_5_21 55,075 S79_4_20 16,238 

L007_2_20 125,116 PALMOUT_6_19 75,209 S79_4_21 23,991 

L007_2_21 24,990 PALMOUT_6_20 24,379 S79_5_21 43,355 

L007_3_19 19,507 PALMOUT_6_21 42,458 S79_6_19 69,562 

L007_3_20 11,319 PALMOUT_7_19 25,724 S79_6_21 63,097 

L007_3_21 43,102 PALMOUT_7_20 14,861 S79_7_19 40,023 

L007_4_19 15,803 PALMOUT_7_21 53,459 S79_7_20 15,841 

L007_4_20 20,307 PALMOUT_8_19 45,322 S79_7_21 42,838 

L007_4_21 38,413 PALMOUT_8_20 23,660 S79_8_19 11,343 

L007_5_19 61,612 PALMOUT_8_21 39,399 S79_8_21 52,020 
    S79_9_20 50,447 
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II. Supplemental Figures 

Figure S1. Top 10 phyla within each station over the sampling period (2019-2021). 

 

Figure S2. Top 10 phyla within each station during year 1 (2019). 
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Figure S3. Top 10 phyla within each station during year 2 (2020). 

Figure S4. Top 10 phyla within each station during year 3 (2021). 
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Figure S5. Top 15 orders within each station over the sampling period (2019-2021). 
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Abstract 13 

The Lake Okeechobee (Lake O) watershed is a Floridian freshwater ecosystem that has 14 

been affected by the increased frequency and intensity of harmful cyanobacterial bloom 15 

(cyanoHAB) events occurring over recent decades. Toxic cyanoHAB events are posing a 16 

threat to the ecosystem and economy of the lake due to the degradation of water quality. This 17 

study investigates how the microbial community structure within Lake O is affected by 18 

annual cyanobacterial harmful algal blooms over several years by characterizing the 19 

microbial community of Lake O and determining if cyanoHABs alter the microbial diversity 20 

in Lake O. Filtered surface water samples and public environmental data were collected 21 

from 21 routinely monitored sites within and connecting to Lake O from March 2019 to 22 

October 2021. DNA extraction, purification, and polymerase chain reactions on the V4 23 

region of the 16S rRNA gene were used to create amplicon libraries for high-throughput 24 

sequencing on 541 samples, generating an average of over 40,000 reads per sample. After 25 

characterizing the dominant taxa within Lake O, the top four phyla include Proteobacteria, 26 

Bacteroidota, Cyanobacteria, and Actinobacteriota, which remained consistent across the 27 

sampling period. Microbial alpha diversity exhibited both spatial and temporal changes 28 

from year-to-year. The significant spatial differences observed across all three years suggest 29 

that there are stable biogeographical patterns within Lake O. Different environmental 30 

variables across the sampling period were found to drive beta diversity of the microbial 31 

communities in Lake O, with TN:TP ratio, turbidity, ammonia, total phosphate, nitrate + 32 

nitrite, dissolved oxygen, and pH remaining consistent in all years. Microcystis relative 33 

abundance was found to influence the alpha and beta diversity of the microbial communities, 34 

decreasing alpha diversity, and thus decreasing beta diversity as well. Microcystis relative 35 
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abundance also correlated with several environmental factors including temperature, total 36 

depth, and nitrate + nitrite concentrations. After observing such strong correlations to 37 

Microcystis, a co-occurrence network was created and has demonstrated that specific taxa 38 

may influence mutualistic or antagonistic relationships with Microcystis. 39 

Introduction 40 

Cyanobacteria are photoautotrophic, gram-negative, prokaryotic bacteria that can be found 41 

within numerous environments all over the world, including some extreme environments (Gaysina 42 

et al., 2019; Mataloni and Komárek, 2004; Whitton and Potts, 2000a, b). Cyanobacteria, despite 43 

being commonly referred to as blue green algae, are true bacteria that perform photosynthesis, as 44 

they contain chlorophyll a. Cyanobacteria are able to rapidly proliferate to form dense 45 

accumulations of biomass known as blooms (Larkin & Adams, 2007). Some of these cyanobacteria 46 

blooms can either be harmless or harmful to their surrounding environment. Cyanobacteria are 47 

primarily responsible for causing harmful blooms (cyanoHABs) in freshwater environments 48 

(Rosen et al., 2017). These cyanoHABs can result from water quality changes, which is primarily 49 

due to changes in nutrient levels especially in nitrogen (N) and phosphorus (P) levels. During 50 

photosynthesis, cyanobacteria utilize nutrients, such as carbon, potassium, iron, etc., along with 51 

solar energy to aid in their cell growth. However, nutrients must be present in a certain amount to 52 

promote cyanobacteria populations to bloom, if there is a deficiency in any of the nutrients then a 53 

bloom cannot occur (Markou et al., 2014). When there are high levels of N and P due to 54 

agricultural fertilizer runoff, these cyanobacteria populations can bloom and create very dense 55 

mats on the surface. There are many other factors that produce favorable conditions for and 56 

exacerbate cyanobacterial blooms, including stagnant water and high temperatures (Paerl & 57 

Huisman, 2008). 58 

CyanoHABs can further decrease water quality by producing cyanotoxins, water-soluble 59 

chemical metabolites that are toxic to the environment. Cyanotoxins can threaten the health of 60 

organisms in and around those ecosystems and the ecosystem itself. For example, there have been 61 

a number of incidents where cyanotoxins from the cyanoHABs caused animal and human 62 

poisonings (Bláha, Babica, & Maršálek, 2009). The thick, dense mats formed at the surface of the 63 

water also prevents sunlight from penetrating into the water column, decreasing the light needed 64 

for photosynthetic organisms residing deeper in the water column. Additionally, when these 65 

blooms begin to decay, they create an anoxic environment as large amounts of dissolved oxygen 66 

are used up thus reducing the amount of dissolved oxygen that other organisms in the lake need to 67 

survive and causing many organisms to die (Anderson, 2009). These negative impacts caused by 68 

cyanoHABs can have severe impacts on ecosystem functioning (Zamora-Barrios et al., 2019; 69 

McQuaid, 2019; Bláha, Babica, & Maršálek, 2009). Despite immense research on cyanobacterial 70 

blooms and the factors that drive them, they remain difficult to predict and mitigate, and there is 71 

much more to be studied on the triggers of cyanoHABs (Facey, Apte, & Mitrovic, 2019; Bowling, 72 

1994). 73 

Lake Okeechobee is the largest lake in the southeastern United States and is located at the 74 

center of Florida’s Everglades ecosystem (Lecher, 2021). Lake Okeechobee was once larger and 75 

deeper flowing north to south and provided a constant water source to the Everglades ecosystem. 76 

However, beginning in the late 19th century, the size, depth, and direction of flow of the lake were 77 

permanently altered as a series of major drainage projects (including the channelization of the 78 
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Kissimmee River, dredging of numerous canals, and construction of Hoover Dike) transformed 79 

the land around the lake to become a foundation for urban communities and agriculture (Lecher, 80 

2021). Consequently, these water management projects greatly impacted the ecosystem and the 81 

water quality of the lake. Throughout the 1950s and 1960s, the water quality of Lake Okeechobee 82 

began to decline rapidly as the nutrient levels continually increased, primarily phosphorus levels, 83 

from agricultural land use (Canfield & Hoyer, 1988), thus further increasing the nutrient input of 84 

an already eutrophic environment that was initially limited in nitrogen rather than phosphorus 85 

(Missimer et al., 2021).  86 

As a result of the nutrient pollution and degrading water quality, cyanoHABs are a common 87 

occurrence in Lake Okeechobee, and in recent decades, these bloom events have increased in both 88 

abundance and prevalence (Rosen et al., 2017). The freshwater toxic cyanoHABs that occur in 89 

Florida are primarily caused by the genus Microcystis, but blooms caused by the genera 90 

Dolichospermum, and Cylindrospermopsis also occur. The toxins produced during blooms caused 91 

by these genera include microcystins, anatoxin-a, saxitoxins, and cylindrospermopsin (Myer et al., 92 

2020). Metcalf et al. (2018) documented that the dominant blooming species in Lake Okeechobee 93 

was Microcystis aeruginosa. In fact, Microcystis aeruginosa is one of the most common bloom-94 

forming and microcystin-producing cyanobacterium in the lake and is also found in freshwater 95 

ecosystems around the world (Harke, et al., 2016).  96 

Traditionally, cyanoHABs are considered to be predominantly driven by abiotic factors 97 

(Rollwagen-Bollens et al., 2018; Visser et al., 2016; Paerl & Scott, 2010). However, Shen et al. 98 

(2011) documented that some heterotrophic bacterioplankton can coexist with these bloom-99 

forming cyanobacteria, which has led to speculation that the microbial community may also play 100 

a role during these cyanoHAB events (Wang et al., 2021; Van Wichelen et al., 2016). The 101 

interactions between photoautotrophic and heterotrophic bacteria play fundamental roles in aquatic 102 

ecosystems. As described by Zheng et al. (2018), heterotrophs utilize fixed carbon and other 103 

nutrients supplied by photoautotrophs and, in turn, provide these photoautotrophs with essential 104 

vitamins and amino acids. Synechococcus (Zheng et al., 2018) and Microcystis (Van Wichelen et 105 

al., 2016; Tu et al., 2019) colonies frequently contain heterotrophic bacteria, and the colonies 106 

obtained from nature contain heterotrophic bacteria communities as well.  107 

Certainly, there must be a diverse microbial community within Lake Okeechobee, yet, there 108 

has not been any studies done to characterize this diverse community until recently (Krausfeldt et 109 

al., submitted). This microbial diversity could allow for the interaction of the bloom-forming 110 

cyanobacteria before, during, and after cyanoHAB events within Lake Okeechobee. Some studies 111 

have been done to investigate what roles the microbial community may play in the overall 112 

development and maintenance of these cyanoHABs, suggesting that these microbes who thrive 113 

alongside the bloom-forming cyanobacteria may have an important impact on the cyanobacterial 114 

growth and populations (Eiler & Bertilsson, 2004; Sigee, 2005). These microbes can also aid in 115 

the degradation of the organic material produced by the bloom, which contributes to the anoxic 116 

conditions that follow bloom degradation (Anderson, 2009; Havens, 2007). Understanding the 117 

interactions between the microbial community and these bloom-forming cyanobacteria and how 118 

microbial diversity changes during cyanoHABs may provide scientists the knowledge of key 119 

factors driving or sustaining blooms, serve as a biological indicator, and may aid efforts to reduce 120 

or mitigate the occurrences of these blooms. 121 
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In this study, we used 16S rRNA high-throughput sequencing to investigate how the 122 

structure of microbial communities within Lake Okeechobee (Lake O) is affected by annual 123 

cyanoHABs over several years. An initial characterization of the microbial community of Lake 124 

Okeechobee (Lake O) was conducted to look at the taxa that inhabit the lake. Afterwards, diversity 125 

indices were used, along with Microcystis abundance and microcystin concentrations, to determine 126 

whether the cyanoHABs occurring in Lake O do, in fact, alter the microbial community of Lake 127 

O. 128 

Materials and Methods 129 

Sample and environmental data collection  130 

Beginning in March of 2019, surface water samples were collected monthly by the South 131 

Florida Water Management District (SFWMD) at 21 routinely sampled stations. These stations 132 

included 19 stations dispersed within Lake Okeechobee, one station located near the W.P. Franklin 133 

Lock along the Caloosahatchee River (S79), and another station located near the St. Lucie River 134 

lock (Figure 1). After collection, the water samples were kept on ice and shipped overnight to the 135 

USGS Water Science Center in Orlando, Florida, where each sample was filtered through two 136 

0.22µm Sterivex filters (Millipore, SVGP01050), stored at -20°C, then transported on ice to the 137 

Microbiology and Genomics Lab at Nova Southeastern University (NSU) for further sample 138 

processing. This workflow of sample collection and processing was repeated until October of 139 

2021.  140 

Environmental data was collected from SFWMD’s environmental database, DBHYDRO, 141 

that contains hydrologic, meteorologic, hydrogeologic, and water quality data 142 

(http://my.sfwmd.gov/dbhydroplsql/show_dbkey_info.main_menu). Environmental variables that 143 

were collected include: chlorophyll a (chl a, µg/L), pheophytin a (µg/L), secchi disk depth (m), 144 

silica (mg/L), turbidity (NTU), sulfate (mg/L), alkalinity (as total CaCO3, mg/L), ammonia (NH4, 145 

mg/L), total depth (m), pH, dissolved oxygen (mg/L), nitrate+nitrite (NO3+NO2, mg/L), total 146 

phosphate (PO4, mg/L), temperature (temp, °Celsius), total nitrogen (TN, mg/L), total phosphorus 147 

(TP, mg/L), TN and TP ratio, and three toxins associated with cyanoHABs, Anatoxin-a (µg/L), 148 

Cylindrospermopsin (µg/L), and Microcystin (µg/L). Additional variables were also considered 149 

for each sample, including month (1-12), season (wet or dry), year (1-3), station (CLV10A, 150 

KISR0.0, L001, L004, L005, L006, L007, L008, LZ2, LZ25A, LZ30, LZ40, PALMOUT, 151 

PELBAY3, POLE3S, POLESOUT, RITTAE2, S308, S77, and S79), and ecological zone (inflow, 152 

nearshore, pelagic, or S79). After retrieval, the environmental data was then corresponded to the 153 

collected samples for DNA extraction and sequencing. 154 

Sample Processing 155 

Once the collected samples were received at NSU, the sterivex filters were cut from their 156 

plastic tubing and DNA was extracted from the filters using the Qiagen® DNeasy® PowerLyzer® 157 

PowerSoil® kit (Qiagen, 12855-100) by following the manufacturer’s protocol. Negative controls 158 

in the form of blank ‘reagent-only’ extractions were also included to detect any DNA 159 

contamination within the reagents. Following successful DNA extractions, an 1.5% agarose gel 160 

underwent an agarose gel electrophoresis protocol to confirm the presence of intact DNA in each 161 

sample.  162 
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Following the confirmation of intact DNA, a test polymerase chain reaction (PCR) was 163 

performed on each sample to confirm the successful amplification of PCR products. In short, a 164 

master mix was made using Invitrogen Platinum Hot Start PCR Master Mix (2X; ThermoFisher, 165 

13000014), nuclease-free water, and universal primers 515F and 806R. DNA was then added and 166 

underwent amplification in a thermal cycler following the Earth Microbiome Project (EMP) 16S 167 

Illumina Amplicon protocol (Caporaso, 2018). 515F and 806R primers are used to target and 168 

amplify the V4 region of the 16S rRNA gene. A 1.5% agarose gel electrophoresis was also done 169 

to confirm the production of successful PCR products. To note, if the test PCR was unsuccessful—170 

evidence that the concentration of extracted DNA was low—the sample was concentrated using a 171 

CentriVap DNA Vacuum Concentrator (©Labconco, Cat. No. 7970010), ran through another test 172 

PCR, and ran again on a 1.5% agarose gel to verify successful amplification. With the successful 173 

production of PCR products, barcoded 515F and 806R primers were then used, with each sample 174 

receiving identical barcoded 515F primer sequences and unique barcoded 806R primer sequences. 175 

A final 1.5% agarose gel was run to confirm the successful barcoding of the samples. Afterwards, 176 

the samples are cleaned using a modified AMPure XP beads protocol (PCR purification with 177 

Beckman Coulter AMPure XP magnetic beads and the VIAFLO 96, 2020), quantified using Qubit 178 

3.0 and Qubit 4.0 Fluorometers (Life Technologies), and diluted to 4nM using nuclease-free water. 179 

The now-diluted barcoded samples were then pooled together and checked for quality and 180 

contamination using the Agilent TapeStation 4150 (Product #G2992AA). The final library pool 181 

was then loaded into the Illumina MiSeq system (Product #SY-410-1003) using the MiSeq 182 

Reagent Kit v3 at 600 cycles (Product #MS-102-3003) following a modified protocol.  183 

Sequence analysis   184 

The raw sequence data generated from the Illumina MiSeq system underwent initial 185 

bioinformatic analyses within a command-line program known as QIIME2. QIIME2 (Quantitative 186 

Insights into Microbial Ecology, version 2022.2) is a next-generation, open-source bioinformatics 187 

pipeline used for performing microbiome analysis from raw DNA sequence data (Bolyen et al., 188 

2019). Within the QIIME2 environment, the forward and reverse read sequence data (in the form 189 

of FASTQ files) were paired and demultiplexed to produce the sequence reads for each sample. 190 

The sample sequences were then trimmed, checked for chimeras, and quality filtered (Q-scores > 191 

29) using the DADA2 software package built into the QIIME2 prorgam. There was a total of 11 192 

sequencing runs included within this study, thus the raw sequence data for each run underwent 193 

demultiplexing, trimming, and quality filtering before being merged as one dataset. Lastly, the 194 

merged sequencing data set was assigned taxonomy using the SILVA 138 classifier (silva-138-99-195 

515-806-nb-classifier.qza). The resulting dataset was then cleaned to ensure it did not contain any 196 

unwanted ASVs. A rarefaction curve was created to determine the sequence read cut-off point for 197 

any samples that were not fully sequenced. Any ASVs that were found in the negative controls 198 

were removed and the negative control samples were also removed from the sample pool. Any 199 

duplicate samples were removed by choosing the sample that obtained the most sequence reads 200 

and removing the other replicates. To ensure that the dataset contained no eukaryotes, ASVs that 201 

represented chloroplast or mitochondrial DNA were also removed. A final cleaning and 202 

normalization were performed using the ‘vegan’ package using the statistical computing language, 203 

R, in the RStudio software (version 4.2.0) where singletons, doubletons, and ASVs occurring less 204 

than 0.01% were removed. 205 

Batch Correction 206 
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 Due to the large-scale nature of this study, the hundreds of samples that were sequenced 207 

could be affected by differences in sample preparation and data acquisition conditions, for 208 

example, different individuals working on the sample preparation, different reagent batches, or 209 

even changes in instrumentation (Cuklina, et al., 2021). This is known as the “batch effect” and 210 

can introduce noise that would in turn reduce the statistical power of the analyses (Cuklina, et al., 211 

2021). Taking this into consideration, the data was tested for any significant batch effects before 212 

moving on to further downstream analyses. The test was performed using the ‘MMUPHin’ and 213 

‘vegan’ packages in R. An ANOSIM was performed to determine if the variation in the data caused 214 

by batch were significant (p < 0.05). If significant differences caused by batch were found in the 215 

data, the package ‘MMUPHin’ was used to conduct a batch correction. 216 

Taxonomy analyses and visualization using QGIS 217 

 Taxonomic and statistical analyses were performed on the cleaned, normalized, batch 218 

corrected dataset using R. The ‘phyloseq’ package was used to determine the minimum, maximum, 219 

and average sequence read amounts, total number of unique ASVs, and number of unique phyla 220 

found in the data set. Top 10 taxa were calculated using packages ‘phyloseq’ and ‘microbiome’ 221 

and visualized using bar plots made using ‘ggplot2’ package for each year and station. QGIS, an 222 

analytical mapping software, was used to visualize the microbial community taxonomic 223 

distributions and patterns within Lake Okeechobee across the entire sampling period and within 224 

each year. An aerial satellite image of Lake Okeechobee was retrieved from Google Earth via the 225 

QGIS software and utilized as the raster layer. Point layers were created using the latitude and 226 

longitude coordinates retrieved from DBHYDRO for each station. Pie charts of the top 10 phyla 227 

found within each station were created for both the entire sampling period and within each year.  228 

 229 

Diversity analyses  230 

Alpha diversity, which describes the number of different species and how evenly distributed 231 

they are within a particular community, was assessed using the ‘vegan’ package and visualized 232 

using the ‘base’ and ‘ggplot2’ packages. Alpha diversity was measured by calculating the total 233 

number of species (species richness), species evenness (also known as Pielou’s evenness index) 234 

(J), Shannon diversity index (H), and inverse Simpson’s diversity index (inv. D). Differences 235 

between these alpha diversity indices were analyzed between samples. If the data was normally 236 

distributed, then an analysis of variance (ANOVA) would be used, otherwise a Kruskal-Wallis test 237 

was to be used. If there were significant differences found, a pairwise Wilcoxon test (for Kruskal-238 

Wallis analyses) or Tukey test (for ANOVA analyses) was used as a post-hoc test to determine 239 

where the differences lie.  240 

Beta diversity, which describes the differences between communities, was assessed using 241 

the ‘vegan’ package and visualized using the ‘base’ and ‘ggplot2’ packages as well. Beta diversity 242 

was measured by calculating Bray-Curtis dissimilarity between sites. These distance matrices were 243 

then used to produce non-metric multidimensional scaling (nMDS) plots in R to further visualize 244 

the distances between sites. To create the nMDS plots, the relative abudance data was transformed 245 

using the “total” method found within the ‘decostand’ function in ‘vegan’. Functions ‘betadisper’ 246 

and ‘permutest’ in ‘vegan’, were used to calculate variances within each group and to determine 247 

if the variances differ by group. If the variances between groups were not significant, a 248 
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permutational multivariate ANOVA (PERMANOVA) with 999 permutations was performed. If 249 

the variances between groups were significant, an analysis of similarity (ANOSIM) with 999 250 

permutations was performed. Canonical correspondence analysis (CCA) was also performed using 251 

the ‘cca’ function in ‘vegan’ to detect the interactions between the selected environmental 252 

variables and ASVs. The function ‘envfit’ was then used to get the p-value of correlation of each 253 

variable with overall bacterial communities and the p-value of each correlation between each ASV 254 

and all variables. Only significant (p<0.05) environmental variables with R2 values higher than 0.3 255 

were plotted as vectors overlaying the CCA plot. 256 

Venn diagram and Co-occurrence network 257 

Using the ‘eulerr’ package in R, a venn diagram was made to compare core taxa that 258 

appeared across the years (1, 2, and 3). Core taxa included any ASVs that was detected in a relative 259 

abundance of at least 0.1% and in at least 75% of the samples. Afterwards, a co-occurrence 260 

network was created to further investigate what taxa could be co-occurring with the genus 261 

Microcystis. This was done using the package ‘Hmisc’ in R and Cytoscape (version 3.9.1), a 262 

software used to create interactive networks. In R, a Pearson correlation matrix was created using 263 

the sample count data and making pairs of all 8,340 ASVs from the entire sampling period. The 264 

correlation matrix was then converted into a table format so that the individual R2 values and their 265 

associated p-values could be extracted between each interaction pair that was created. Only the 266 

significant interactions (p<0.05) and the strongest correlations (R2 > 0.7 OR R2 < -0.7) were 267 

extracted from the table. This resulting table was then imported into Cytoscape (version 3.9.1) as 268 

a network, where it was filtered further to only include the network nodes and edges that interact 269 

with Microcystis. 270 

Results 271 

Sequencing statistics 272 

Across the sampling period (March 2019 to October 2021), there were a total of 59,862,979 273 

sequencing reads and 70,605 ASVs generated across all samples in this study. To determine the 274 

sequencing depth, or the total number of usable reads, that best represented the microbial 275 

communities of Lake O, total sequence reads were calculated for each sample and a rarefaction 276 

curve was generated to aid in determining the minimum sequence read cut-off point. The resulting 277 

rarefaction curve reached an inflection point at relatively 10,000 reads, thus, any samples that were 278 

below this amount were removed (Figure 2). As a result, 65,294 ASVs and 541 samples, with an 279 

average of 44,535 reads per sample, were used for further analysis (Table S1). Additional filtering 280 

for singletons, doubletons, and exceptionally low abundance ASVs (occurring less than 0.01%) 281 

was completed, resulting in 8,340 ASVs being utilized for further diversity analyses.  282 

 283 
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 284 

  285 

Figure 2. Rarefaction curve for number of sequencing reads versus number of ASVs to 

determine final samples for analysis. Each line represents one sample. Inflection point occurred 

at roughly 10,000 reads. 
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Dominant Phyla and Species diversity 286 

 The top ten phyla found in Lake O over the entire sampling period were Proteobacteria 287 

(24.7%), Bacteroidota (22.1%), Cyanobacteria (16.8%), Actinobacteriota (11.3%), 288 

Verrucomicrobiota (7.9%), Planctomycetota (6.8%), Bdellovibrionota (3.2%), Acidobacteriota 289 

(3.0%), Chloroflexi (2.2%), and Gemmatimonadota (1.9%) (Figure 3). The top ten phyla within 290 

each year varied within their makeups, with year 3 being the only year containing phylum 291 

Gemmatimonadota (Table 1, Figure 3). These phyla can also be seen within each station with 292 

Proteobacteria, Bacteroidota, and Cyanobacteria being the top three phyla found in each station 293 

(Figure 4). Additionally, when considering individual stations, the top 10 phyla also differed—294 

both within all years overall (Figure S1) and between each year (Figures S2-S4).  295 

 Year 1 was the only year that included the phylum SAR324_ clade (marine group B) within 296 

the top 10 phyla of only 2 stations, POLESOUT and S79 (Figure 5, Figure S2). Year 2 had 13 297 

unique phyla appear within the top 10 phyla of each station—one phylum short of years 1 and 3, 298 

both of which had 14 unique phyla each in their top 10 phyla across each station. Furthermore, 299 

year 2 was the only year that included the phylum Armatimonadota within the top 10 phyla 300 

occurring at only one station, KISSR0.0 (Figure 6, Figure S3). Year 2 also was the only year that 301 

did not have the phylum Myxococcota within the top 10 phyla of any station. Year 3 was the only 302 

year that included the phylum Patescibacteria within the top 10 phyla of only 2 stations, L004 and 303 

L006 (Figure 7, Figure S4). 304 

 305 

 306 

 307 
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 311 

Table 1. Average proportion and standard deviation of the relative abundances of the top 10 phyla 

in Lake Okeechobee by year.  

Phylum Year 1 (2019) Year 2 (2020) Year 3 (2021) 

Proteobacteria 0.236 ± 0.057 0.215 ± 0.073 0.226 ± 0.055 

Bacteroidota  0.217 ± 0.082 0.200 ± 0.071 0.196 ± 0.079 

Cyanobacteria  0.119 ± 0.096 0.169 ± 0.102 0.159 ± 0.098 

Actinobacteriota 0.105 ± 0.055 0.115 ± 0.041 0.099 ± 0.042 

Planctomycetota 0.071 ± 0.025 0.060 ± 0.026 0.063 ± 0.023 

Verrucomicrobiota 0.069 ± 0.031 0.068 ± 0.032 0.075 ± 0.031 

Bdellovibrionota 0.033 ± 0.018 0.022 ± 0.014 0.027 ± 0.014 

Acidobacteriota 0.029 ± 0.020 0.027 ± 0.018 0.029 ± 0.019 

Chloroflexi 0.021 ± 0.009 0.021 ± 0.009 0.021 ± 0.008 

Crenarchaeota 0.018 ± 0.028 0.018 ± 0.025 – 

Gemmatimonadota – – 0.019 ± 0.011 
 

 

Figure 3. Pie charts depicting the proportions of the top 10 phyla within each year. The numbers 

indicate the total relative abundance of the respective year. 
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 316 

Figure 4. Pie charts showing the top phyla found in each station in Lake O over the sampling period. 
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 326 

Figure 5. Pie charts showing the top phyla found in each station in Lake O within year 1 (2019). 



86 

 

 327 

  328 

Figure 6. Pie charts showing the top phyla found in each station in Lake O within year 2 (2020). 
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  330 

Figure 7. Pie charts showing the top phyla found in each station in Lake O within year 3 (2021). 
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Alpha diversity analyses  331 

Alpha diversity was calculated using the Shannon diversity index, species evenness, 332 

species richness, and inverse Simpson diversity index. Year 3 (2021) exhibited significantly higher 333 

species richness than the previous two years (2019 and 2020, respectively) (year 1 vs. year 3, p = 334 

0.0006; year 2 vs. year 3, p=0.0098) (Figure 8). Year 1 showed significantly higher species 335 

evenness throughout the microbial community compared to years 2 and 3, but year 2 was similar 336 

in species evenness compared to both years 1 and 3 (year 1 vs. year 2, p =0.042; year 1 vs. year 3, 337 

p=0.00013; year 2 vs. year 3, p=0.028) (Figure 8).  338 

Within each year, alpha diversity differed by month (Table 3). The trends over time 339 

appeared to be seasonal, and analysis comparing season within each year showed that evenness 340 

specifically differed in year 2 (p = 0.00084) and year 3 (p = 0.037) (Figures 9-11). Alpha diversity 341 

also differed by zones across years 1 and 3, with year 2 showing no differences within all alpha 342 

diversity measures (Table 3, Figures 12-14). Alpha diversity differed by station within each year 343 

as well, with year 1 showing no significant differences in species evenness, year 2 only showing 344 

differences in species evenness, and year 3 showing differences in all the alpha diversity measures 345 

(Table 4).  346 

Overall, the environmental variables measured did not strongly correlate to the alpha 347 

diversity in Lake O (Figure 15). Regarding species evenness, microcystin concentration showed 348 

the strongest correlation out of all the environmental variables (Pearson R2 = -0.49) (Figure 15). 349 

Other environmental variables that correlated to species evenness included ammonia (Pearson R2 350 

= 0.11), nitrate + nitrite (Pearson R2 = -0.10), and total phosphate (Pearson R2 = -0.11) (Figure 351 

15). Environmental variables that correlated to species richness include total nitrogen (Pearson R2 352 

= 0.17), TN:TP ratio (Pearson R2 = -0.13), and total phosphorus (Pearson R2 = 0.18) (Figure 15). 353 

The environmental variables that correlated to the diversity indices, Shannon and inverse Simpson, 354 

included microcystin (Pearson R2 , shannon = -0.23; inv. Simpson = -0.20), nitrate + nitrite 355 

(Pearson R2 , inv. Simpson = -0.10), total nitrogen (Pearson R2 , shannon = 0.13; inv. Simpson = 356 

0.17), total phosphorus (Pearson R2 , shannon = 0.06; inv. Simpson = 0.10) and total phosphate 357 

(Pearson R2 , inv. Simpson = -0.12) (Figure 15). There were no correlations between any of the 358 

alpha diversity measures and chlorophyll a, temperature, nor pH (Figure 15). Microcystis relative 359 

abundance had a srtong, negative correlation with species evenness (Pearson R2 = -0.72), with 360 

additional negative correlations with Shannon diversity index (Pearson R2 = -0.23), and inverse 361 

Simpson diversity index (Pearson R2 = -0.22) (Figure 15). 362 
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  363 

Figure 8. Alpha diversity comparison between years. Letters and colors represent the 

significant differences between each year; same letter and color indicate no differences and 

different letters and colors indicate significant differences are present (p < 0.05). Year 1 = 2019, 

Year 2 = 2020, and Year 3 = 2021. 
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365 

Table 2. Kruskal-Wallis p-values for alpha diversity measure by month across each year. 

A star indicates that the p-value was significant (p < 0.05). 

Alpha Diversity 

measure 
Year 1 Year 2 Year 3 

Species richness (S) 0.0017* < 2.2e-16* 8.819e-08* 

Species evenness (J) 0.13 0.00025* 2.848e-05* 

Shannon Diversity 

Index (H) 
0.0024* < 2.2e-16* 8.126e-07* 

Inverse Simpson 

Diversity Index 

(inv.D) 

0.027* < 2.2e-16* 1.383e-05 

 

Figure 9. Alpha diversity measures across seasons in year 1. There were no significant differences 

between season and each alpha diversity measure. Tan = dry season; blue = wet season. Panels from left 

to right: species richness, Shannon diversity index, inverse Simpson index, and species evenness. 
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Figure 10. Alpha diversity measures across seasons in year 2. Significant differences were 

found in species evenness between seasons (p = 0.001). Tan = dry season; blue = wet season. 

Panels from left to right: species richness, Shannon diversity index, inverse Simpson index, and 

species evenness. 

Figure 11. Alpha diversity measures across seasons in year 3. Significant differences were 

found in species evenness between seasons (p = 0.001). Tan = dry season; blue = wet season. 

Panels from left to right: species richness, Shannon diversity index, inverse Simpson index, and 

species evenness. 
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 376 

Table 3. Kruskal-Wallis p-values for alpha diversity measure by zone across each year. A 

star indicates that the p-value was significant (p < 0.05). 

Alpha Diversity 

measure 
Year 1 Year 2 Year 3 

Species richness (S) 0.0073* 0.54 0.00040* 

Species evenness (J) 0.0033* 0.10 0.0015* 

Shannon Diversity 

Index (H) 
0.0082* 0.82 0.0020* 

Inverse Simpson 

Diversity Index 

(inv.D) 

0.035* 0.54 0.0034* 

 

Figure 12. Alpha diversity measures across zones in year 1. Green = Inflow zone; Beige = Nearshore 

zone; Light pink = Pelagic zone; Bright pink = zone S79. Panels from left to right: species richness, 

Shannon diversity index, inverse Simpson index, and species evenness. 
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Figure 13. Alpha diversity measures across zones in year 2. Green = Inflow zone; Beige = Nearshore 

zone; Light pink = Pelagic zone; Bright pink = zone S79. Panels from left to right: species richness, 

Shannon diversity index, inverse Simpson index, and species evenness. 

Figure 14. Alpha diversity measures across zones in year 3. Green = Inflow zone; Beige = Nearshore 

zone; Light pink = Pelagic zone; Bright pink = zone S79. Panels from left to right: species richness, 

Shannon diversity index, inverse Simpson index, and species evenness. 
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Table 4. Kruskal-Wallis p-values for alpha diversity measure by station across each year. 

A star indicates that the p-value was significant (p < 0.05).  

Alpha Diversity 

measure 
Year 1 Year 2 Year 3 

Species richness (S) 0.0054* 0.99 0.0091* 

Species evenness (J) 0.016a 0.0080* 0.0015* 

Shannon Diversity 

Index (H) 
0.0025* 0.88 0.0068* 

Inverse Simpson 

Diversity Index 

(inv.D) 

0.0028* 0.31 0.0017* 

aAlthough the p-value was significant, there were no differences found between the stations. 
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Figure 15. Correlation heat map between the environmental variables and the alpha 

diversity indices. Stars indicate the significance level; * = 0.05, ** = 0.01, *** = 0.001. No 

star indicates that the relationship is not significant. Alpha diversity measures can be found at 

the bottom of the heatmap: S = species richness, H = Shannon diversity index, J = species 

evenness, inv.D = inverse Simpson diversity index. TN.TP.ratio = ratio of total nitrogen and 

total phosphorus. 
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Venn diagram of core taxa between years 384 

 Each sampling year may have shared unique core taxa. To reiterate, core taxa is defined as 385 

any ASVs that were detected at a relative abundance of at least 0.1% and in at least 75% of the 386 

samples. A Venn diagram was created between each year, and it showed that all years shared 12 387 

core taxa (Figure 16). Years 1 and 2 did not have any core taxa that was unique to them, nor did 388 

they share any core taxa (Figure 16). Year 3, however, had 14 unique core taxa, shared 4 core taxa 389 

with year 2, and shared 2 core taxa with year 1 (Figure 16). The taxonomic information for each 390 

taxon placed in the venn diagram can be found in Table 5. It can be seen from the table that the 391 

phylum Cyanobacteria are only found in the core taxa shared between years 2 and 3 and within 392 

the unique core taxa of year 3 (Table 5). Verrucomicrobiota was the only phylum of heterotrophic 393 

bacteria found within the shared taxa between year 2 and year 3 (Figure 16, Table 5).  394 

 395 

 396 

 397 

 

Figure 16. Venn diagram of the number of shared core taxa between years across the 

sampling period. Year 1 = red; Year 2 = blue; Year 3 = green. Numbers represent the 

number of taxa. 
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Table 5. Core taxa comparisons between years (corresponding to venn diagram). Taxonomic 398 

information is structured by phylum, class, order, family, and genus. Dashes indicate that there 399 

were no shared taxa between specified years. 400 

 Taxonomic Information 

Year 1 Only –––– 

Year 2 Only –––– 

Year 3 Only 
1. Actinobacteriota, Acidimicrobiia, Microtrichales, Ilumatobacteraceae, CL500-

29_marine_group 

2.  Actinobacteriota, Actinobacteria, Frankiales, Sporichthyaceae, 

3.  Actinobacteriota, MB-A2-108, MB-A2-108, MB-A2-108, MB-A2-108 

4.  Verrucomicrobiota, Verrucomicrobiae, Pedosphaerales, Pedosphaeraceae, SH3-11 

5.  Proteobacteria, Gammaproteobacteria 

6.  Proteobacteria, Gammaproteobacteria, Burkholderiales, Oxalobacteraceae, 

7.  Proteobacteria, Gammaproteobacteria, Gammaproteobacteria_Incertae_Sedis, 

Unknown_Family, Acidibacter 

8.  Proteobacteria, Gammaproteobacteria, JG36-TzT-191, JG36-TzT-191, JG36-TzT-

191 

9.  Proteobacteria, Gammaproteobacteria, Oceanospirillales, Pseudohongiellaceae, 

BIyi10 

10.  Bacteroidota, Bacteroidia, Sphingobacteriales, AKYH767, AKYH767 

11.  Bacteroidota, Bacteroidia, Sphingobacteriales, env.OPS_17, env.OPS_17 

12.  Bacteroidota, Bacteroidia, Sphingobacteriales, NS11-12_marine_group, NS11-

12_marine_group 

13.  Cyanobacteria, Cyanobacteriia, Synechococcales, Cyanobiaceae, Cyanobium_PCC-

6307 

14.  Gemmatimonadota, Gemmatimonadetes, Gemmatimonadales, Gemmatimonadaceae 

Years 1 & 2 –––– 

Years 1 & 3 1. Actinobacteriota, Actinobacteria, Frankiales, Sporichthyaceae, hgcI_clade 

2. Proteobacteria, Alphaproteobacteria, Rhizobiales, Rhizobiales_Incertae_Sedis, 

uncultured 

Years 2 & 3 1. Verrucomicrobiota, Verrucomicrobiae, Opitutales, Opitutaceae, Opitutus 

2. Cyanobacteria, Cyanobacteriia, Synechococcales, Cyanobiaceae, 

Cyanobium_PCC-6307 

3. Cyanobacteria, Cyanobacteriia, Synechococcales, Cyanobiaceae, 

Cyanobium_PCC-6307 

4. Cyanobacteria, Cyanobacteriia, Synechococcales, Cyanobiaceae, 

Cyanobium_PCC-6307 
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ALL years 1. Actinobacteriota, Acidimicrobiia, Microtrichales, Ilumatobacteraceae, CL500-

29_marine_group 

2. Actinobacteriota, Acidimicrobiia, Microtrichales, Ilumatobacteraceae, CL500-

29_marine_group 

3. Actinobacteriota, Acidimicrobiia, Microtrichales, Ilumatobacteraceae, CL500-

29_marine_group 

4. Actinobacteriota, Actinobacteria, Frankiales, Sporichthyaceae, hgcI_clade 

5. Bacteroidota, Bacteroidia, Chitinophagales, Saprospiraceae, 

Candidatus_Aquirestis 

6. Bacteroidota, Bacteroidia, Flavobacteriales, Crocinitomicaceae, Fluviicola 

7. Bacteroidota, Kapabacteria, Kapabacteriales, Kapabacteriales, Kapabacteriales 

8. Verrucomicrobiota, Verrucomicrobiae, Methylacidiphilales, 

Methylacidiphilaceae, uncultured 

9. Proteobacteria, Alphaproteobacteria, Rickettsiales, Rickettsiaceae, 

Candidatus_Megaira 

10. Chloroflexi, SL56_marine_group, SL56_marine_group, SL56_marine_group, 

SL56_marine_group 

11. Planctomycetota, Phycisphaerae, Phycisphaerales, Phycisphaeraceae, CL500-3 

12. Proteobacteria, Gammaproteobacteria, Burkholderiales, Burkholderiaceae, 

Limnobacter 

401 
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Beta diversity analyses 402 

Beta diversity was calculated using Bray-Curtis dissimilarity. Following ANOSIM and 403 

PERMANOVA analyses, it was revealed that there were significant differences between stations 404 

(ANOSIM R = 0.1967; p = 0.01) across all sampling years. However, there were no significant 405 

differences in year (p = 0.75), season (p = 0.78), month (p = 0.91), nor zone (p = 0.19) across the 406 

sampling years. When investigating within each year, there were significant differences by station 407 

across each year (year 1, p = 0.001; year 2, p = 0.001; year 3, p = 0.001) and there were significant 408 

differences by zone within year 1 (p = 0.001) and year 3 (p = 0.001).  409 

Environmental variables were fitted onto a CCA plot through vectors to show which 410 

environmental variables may be driving the differences in the microbial community within the 411 

lake across the sampling period and within each year (Figures 18-21). The length of the vector is 412 

proportional to its importance and the angle between two vectors reflects the degree of correlation 413 

between variables. (Sarker, et al., 2014) To reiterate, the environmental variable vectors that were 414 

included in the CCA plots exhibited a significant effect (p < 0.05) and correlation (Pearson R2 > 415 

0.3) on the microbial community of Lake O. Across all three years, the environmental variables 416 

accounted for about 14.47% of the variation within the microbial communities in Lake O and these 417 

variables included TN:TP ratio (Pearson R2 = 0.57), pH (Pearson R2 = 0.34), nitrate + nitrite 418 

(Pearson R2 = 0.55), dissolved oxygen (Pearson R2 = 0.43), turbidity (Pearson R2 = 0.42), total 419 

phosphate (“phosphate.ortho”; Pearson R2 = 0.48), and ammonia (Pearson R2 = 0.34) (Figure 18). 420 

In year 1, the environmental variables accounted for about 17.44% of the variation within the 421 

microbial communities in Lake O and these variables included TN:TP ratio (Pearson R2 = 0.65), 422 

pH (Pearson R2 = 0.51), nitrate + nitrite (Pearson R2 = 0.46), dissolved oxygen (Pearson R2 = 0.49), 423 

turbidity (Pearson R2 = 0.31), secchi disk depth (Pearson R2 = 0.30), and ammonia (Pearson R2 = 424 

0.60) (Figure 19). In year 2, the environmental variables accounted for about 17.26% of the 425 

variation within the microbial communities in Lake O and these variables included TN:TP ratio 426 

(Pearson R2 = 0.62), pH (Pearson R2 = 0.69), nitrate + nitrite (Pearson R2 = 0.55), dissolved oxygen 427 

(Pearson R2 = 0.51), turbidity (Pearson R2 = 0.52), total phosphate (“phosphate.ortho”; Pearson R2 428 

= 0.35), ammonia (Pearson R2 = 0.35), and chlorophyll a (Pearson R2 = 0.35) (Figure 20). In year 429 

3, the environmental variables accounted for about 20.69% of the variation within the microbial 430 

communities in Lake O and these variables included TN:TP ratio (Pearson R2 = 0.36), nitrate + 431 

nitrite (Pearson R2 = 0.67), dissolved oxygen (Pearson R2 = 0.30), alkalinity (Pearson R2 = 0.31), 432 

temperature (Pearson R2 = 0.36), total phosphate (“phosphate.ortho”; Pearson R2 = 0.44), 433 

Microcystis relative abundance (Pearson R2 = 0.55), and chlorophyll a (Pearson R2 = 0.39) (Figure 434 

21). When comparing the environmental variables that influenced microbial community 435 

composition across the sampling years, year 1 was the only year in which secchi disk depth 436 

influenced microbial community composition (Figure 18). Total phosphate concentration and 437 

chlorophyll a concentration were environmental variables shared between year 2 and year 3 that 438 

were not included in year 1 that drove microbial community composition (Figures 19 and 20). The 439 

environmental variables unique to year 3 in driving the microbial community composition 440 

included alkalinity, temperature, and Microcystis abundance. 441 

Across the entire sampling period, the microbial community composition of year 3 was 442 

closely associated with total phosphate (“phosphate. ortho” in figure 18), nitrate + nitrite, and 443 

turbidity (Figure 18). In year 1 and year 3, nearshore and pelagic zones were similar in microbial 444 

community composition while inflow and S79 zones were similar in microbial community 445 
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composition (Figures 19 and 21). In year 1, the microbial community composition of the nearshore 446 

and pelagic zones was driven mostly by nitrate + nitrite, turbidity, and TN:TP ratio, while the 447 

communities of the inflow and S79 zones were driven mostly by ammonia (Figure 19). In year 3, 448 

the microbial community composition of the nearshore and pelagic zones was driven by nitrate + 449 

nitrite, total phosphate, Microcystis abundance, chlorophyll-a, and temperature. The microbial 450 

community composition of the inflow and S79, however, doesn’t seem to be driven primarily by 451 

any of the environmental factors shown in the plot (Figure 22). Year 2 had significant differences 452 

between stations (Figure 20) and no significant differences between zones (Figure 21). However, 453 

each station is located within a certain ecological zone in the lake. Thus, to better interpret the 454 

station plot, the zone plot will be used. When looking at the zones of each station, the stations 455 

located in the nearshore and pelagic zones were clustered together and mostly driven by nitrate + 456 

nitrite concentrations, turbidity, with TN:TP ratio also driving microbial community within the 457 

nearshore zone (Figure 20 and figure 22). Stations located in the inflow and S79 zones were also 458 

clustered together but there were some stations from the pelagic and inflow zones that were driven 459 

by the same environmental variables (chlorophyll a, TN:TP ratio, and ammonia) (Figure 20 and 460 

figure 22). 461 

 462 
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  463 

Figure 17. CCA plot based on species composition of each sample over the sampling period by 

year. Arrows indicate the direction and magnitude of the environmental variables that showed a 

significant effect (p<0.05) and correlation (R2≥0.3). 
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  464 

Figure 18. CCA plot based on species composition of each sample in year 1 by zone. Arrows indicate 

the direction and magnitude of the environmental variables that showed a significant effect (p<0.05) and 

correlation (R2≥0.3). 
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 465 

 466 

  467 

Figure 19. CCA plot based on species composition of each sample in year 2 by station. Arrows 

indicate the direction and magnitude of the environmental variables that showed a significant effect 

(p<0.05) and correlation (R2≥0.3). 
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  468 

Figure 20. CCA plot based on species composition of each sample in year 2 by zone. Arrows indicate 

the direction and magnitude of the environmental variables that showed a significant effect (p<0.05) and 

correlation (R2≥0.3).  
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  469 

Figure 21. CCA plot based on species composition of each sample in year 3 by zone. Arrows indicate 

the direction and magnitude of the environmental variables that showed a significant effect (p<0.05) and 

correlation (R2≥0.3). 
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Co-occurrence network with Microcystis 470 

There was a total of 22 bacteria taxa that appeared to co-occur with the genus Microcystis 471 

(Figure 22). The network consisted of two clusters around Microcystis, one with 18 taxa and 472 

another with 4 taxa. Most of the bacteria fall under the phylum Proteobacteria with some occurring 473 

in other phyla such as Bacteroidota and Gemmatimonadota. The three strongest relationships 474 

shared with Microcystis were between uncultured bacteria belonging to the family Sutterallaceae 475 

(Pearson R = 0.836), the genus Pseudanabaena_PCC-7429 (Pearson R = 0.811), and the genus 476 

Silanimonas (Pearson R = 0.807). It is evident that the genus Microcystis co-occurs primarily with 477 

heterotrophic bacterial taxa, with only two relationships with other Cyanobacteria taxa (Figure 478 

22). 479 

  480 

Figure 22. Co-occurrence network of genera sharing a significantly strong positive correlation (p 

= 0.05; R2 > 0.7) with the genus Microcystis. Node color indicates the phylum corresponding to the 

genera shown. The numbers shown on the edges of the network signify the R2 values of the 

relationship. 
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Environmental variables over sampling period 481 

 After uncovering which environmental variables were in close association with the 482 

microbial community beta diversity, selected environmental variables were plotted against the 483 

sampling period (by month across the years) (Figures 23-34). The only environmental variable that 484 

stayed relative constant with minor changes across the sampling period was pH (Figure 29). 485 

However, there were several instances of decreased pH within year 2 and year 3 during the late 486 

summer to winter months (7-12) (Figure 29). TN:TP ratio and nitrate + nitrite concentration 487 

showed some seasonal changes (Figure 31 and Figure 28, respectively). TN:TP ratio showed a 488 

decrease during spring months (3-5) and began to increase into the summer months (6-7) across 489 

all three years. Year 1 experienced instances of the highest TN:TP ratio compared to year 2 and 490 

year 3 (Figure 31). Nitrate + nitrite concentrations showed an overall decrease in concentration 491 

during the summer months into early fall months (6-9) (Figure 28). Year 2 experienced several 492 

instances of the highest concentration of nitrate + nitrite compared to year 1 and year 3 (Figure 493 

28).  494 

Most of the remaining selected environmental variables displayed changes from year-to-495 

year. The total depth of Lake O was lower in year 1 while year 2 and year 3 experienced increasing 496 

average depths (Figure 33). Year 1 and year 3 experienced warmer water temperatures for a longer 497 

period compared to year 2, which exhibited a smoother transition between water temperature 498 

gradients across months (Figure 30). Ammonia concentrations remained constant in year 1, with 499 

only three instances being substantially higher than average (Figure 24a). Year 3 also portrayed 500 

the same pattern; however, there was only one instance where the concentration was substantially 501 

above average (Figure 24c). Year 2 showed the most instances that were above average 502 

concentrations compared to the other two years (Figure 24b). Both Microcystis relative abundance 503 

and microcystin concentration were higher during year 2 and year 3 and lowest during year 1 504 

(Figure 27 and Figure 26, respectively). Chlorophyll a concentration exhibited the same pattern—505 

with year 1 exhibiting lower concentrations than year 2 and year 3 (Figure 25). Year 1 and year 3 506 

exhibited an unstable increase-decrease cycle in total nitrogen concentration across the monthly 507 

averages, while year 2 experienced only two increase averages during March and November 508 

(Figure 32). Total phosphorus also experienced this pattern in concentration (Figure 23). The 509 

average concentration of total phosphate stayed within the same range across the years until it 510 

began to decrease during July of year 3 (Figure 34).  511 

 512 
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 513 

Figure 23. Scatterplot of total phosphorus concentrations (mg/L) over the sampling period. 514 

The black line depicts the average concentration per month across the years.  515 

 516 

 517 

 518 

519 
Figure 24. Scatterplot of ammonia concentrations (mg/L) over the sampling period. The black 520 

line depicts the average concentration per month across the years.  521 
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522 
Figure 25. Scatterplot of total chlorophyll a concentration (µg/L) over the sampling period. 523 

The black line depicts the average concentration per month across the years.  524 

 525 

 526 

 527 

528 
Figure 26. Scatterplot of microcystin concentrations (µg/L) over the sampling period. The 529 

black line depicts the average concentration per month across the years.  530 
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531 
Figure 27. Scatterplot of Microcystis relative abundance over the sampling period. The black 532 

line depicts the average abundance per month across the years.  533 

 534 

 535 

 536 

537 
Figure 28. Scatterplot of nitrate + nitrite concentration (mg/L) over the sampling period. The 538 

black line depicts the average concentration per month across the years.  539 
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540 
Figure 29. Scatterplot of surface water pH over the sampling period. The black line depicts 541 

the average pH per month across the years.  542 

 543 

 544 

 545 

546 
Figure 30. Scatterplot of surface water temperature (°C) over the sampling period. The black 547 

line depicts the average temperature per month across the years.  548 
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549 
Figure 31. Scatterplot of the ratio of total nitrogen and total phosphorus over the sampling 550 

period. The black line depicts the average ratio per month across the years.  551 

 552 

 553 

 554 

555 
Figure 32. Scatterplot of total nitrogen concentrations (mg/L) over the sampling period. The 556 

black line depicts the average concentration per month across the years.  557 
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558 
Figure 33. Scatterplot of the total depth (m) of the lake over the sampling period. The black 559 

line depicts the average depth per month across the years. 560 

 561 

 562 

563 
Figure 34. Scatterplot of the total phosphate (mg/L) concentration over the sampling period. 564 

The black line depicts the average concentration per month across the years. 565 

Discussion 566 

Bloom effects on microbial community diversity  567 

Most of the cyanobacterial harmful algal bloom (cyanoHAB) research done on Lake 568 

Okeechobee (Lake O) primarily focuses on bloom management via the control of nutrients going 569 

into the lake. However, there is a growing amount of research suggesting that nutrient levels may 570 
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not be the only factor influencing these blooms to occur so frequently (Wilhelm et al., 2020). There 571 

have not been many studies done on Lake O that assess how these cyanoHABs are affecting the 572 

other microbial communities within the lake during these blooms or how these other microbes 573 

could be influencing the blooms. The conclusions reached in this study provide a glimpse into the 574 

effects of cyanoHABs caused by Microcystis may have on the microbial community make-up 575 

within Lake O.  576 

This study has found that the diversity of microbial communities in Lake O are affected by 577 

the occurrence of Microcystis, one of the main cyanobacteria genera causing cyanoHABs both in 578 

Lake O and around the world. The microbial communities within Lake O appeared to show both 579 

temporal and spatial differences in diversity. However, more significant differences were found 580 

between stations and ecological zones within all three years together and between each year. This 581 

result was expected due to the different environmental conditions experienced by the ecological 582 

zones found throughout the lake. Microcystis is known to “lie-in-wait” for the proper 583 

environmental conditions that are favorable for their populations to proliferate and bloom; they 584 

even tend to overwinter in the sediments at the bottom of the lake until these conditions are present 585 

(Cai et al., 2021; Reynolds, 1973). Over the three sampling years (2019-2021), there was an 586 

evident increase in bloom intensity and longevity. The peak average relative abundance of 587 

Microcystis and the average concentration of microcystin could be seen increasing over the years 588 

with year 3 (2021) experiencing the highest abundance and concentration (Figures 27 and 26, 589 

respectively). There were also changes in environmental conditions within 2021 that may have 590 

contributed to the increase of bloom intensity. For instance, 2021 was seen to have warmer average 591 

temperatures and a lower TN:TP ratio during the months (May to July) that blooms occurred 592 

(Figures 30 and 31, respectively). Numerous studies have shown that cyanobacteria favor higher 593 

temperatures thus increasing their growth rates during warmer periods of the year (Wilhelm et al., 594 

2020; Paerl & Hulsman, 2008; Jöhnk K. D., et al., 2008; Reynolds, 2006). Xie et al. (2003) 595 

uncovered that when Microcystis populations were exposed to sufficient amounts of nitrogen (N) 596 

but differing amounts of phosphorus (P), Microcystis blooms occurred only in the environments 597 

with higher P concentrations. However, as these blooms progressed, both N and P concentrations 598 

declined, hence resulting in lower TN:TP ratios. Therefore, as an increase in temperature 599 

influences the growth of Microcystis blooms, there is a decrease in TN:TP ratio due to the increases 600 

use of the nutrients in the water column. 601 

Beta diversity patterns of the microbial community composition 602 

There were some evident spatial patterns throughout the data. The spatial variables of interest 603 

in this study were the monitoring stations in the lake and the ecological zones of the lake. When 604 

looking at the ecological zones of the lake, there was an obvious coupling between the zones: the 605 

inflow zone was always coupled with the zone S79, and the pelagic zone was always coupled with 606 

the nearshore zone; giving the idea that these couples have similar microbial community 607 

composition. As mentioned in a previous study, although these zones exhibit differing 608 

physiochemical properties, these zones do not have clearly defined borders between them, hence 609 

these zones can be dynamic (Krausfeldt et al., submitted). The results of this study further 610 

supported this concept as 2020 (year 2) showed no significant differences between zone when 611 

2019 and 2021 (year 1 and year 3, respectively) did show significant differences; showing that 612 

there was less of a differentiation between zones in 2020 compared to the other years. However, 613 

the members of each coupling did not come to a surprise as the zone S79 is within the 614 
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Caloosahatchee River, which has a mouth into the lake, so it is in contact with the inflow zone of 615 

the lake. Additionally, the pelagic and nearshore zones also come into contact with one another 616 

despite their physiochemical differences.  617 

Rare microbial taxa in Lake Okeechobee  618 

 The taxonomic make-up of Lake O was dominated primarily by four common bacterial 619 

phyla: Proteobacteria, Bacteroidota, Cyanobacteria, and Actinobacteriota (Table 1, Figure 3). 620 

These phyla appeared to change in distribution, along with the less-dominant taxa present, both 621 

temporally (Figure 3) and spatially (Figures 5-7). However, there were some phyla that irregular 622 

in both their distribution around the lake and their presence across the years. In 2019 (year 1), there 623 

was one phylum that appeared in the top phyla of only two stations within Lake O and was found 624 

in no other year—SAR324 (marine_clade group B). SAR324 is a novel phylum that has been 625 

recently classified as its own phylum after initially being classified as “marine_clade group B” 626 

under the phylum Deltaproteobacteria (Malfertheiner et al., 2022; Parks et al., 2018; Pommier et 627 

al., 2005). SAR324 is known to be present only in marine environments; however, Malfertheiner 628 

and colleagues (2022) discovered that this phylum can also be found in terrestrial aquifers. 629 

(Malfertheiner et al., 2022) Lake O could possibly be subjected to saltwater intrusion (Prinos, 630 

2016; Barlow & Reichard, 2010), or the movement of seawater into freshwater aquifers, due to the 631 

water level being heavily managed. The SFWMD stated that saltwater intrusion is at a higher risk 632 

of occurring in Lake O starting at a depth of 10½ feet (or 3.2 meters) and compromising the 633 

Caloosahatchee lock at a starting depth of 9½ feet (or 2.9 meters) (SFWMD, “Impacts of Operating 634 

Lake Okeechobee at Lower Water Levels”). Yet, throughout the majority of 2019, the total depth 635 

of Lake O was sustained between about 1 and 3 meters (3.3 feet and 9.8 feet). These conditions 636 

put Lake O in the position of the increased risk of saltwater intrusion, especially at the 637 

Caloosahatchee River lock (station S79). Coincidentally, SAR324 appears as one of the dominant 638 

taxa in stations S79 and POLESOUT (Figure S2); thus, whether SAR324 appears due to saltwater 639 

intrusion, or it is naturally occurring in the terrestrial aquifer is unknown.  640 

A non-ubiquitous phylum that was found in 2020 and no other year was Armatimonadota 641 

(Figure S3). This phylum was part of the top phyla within the station, KISSR0.0, which is located 642 

in the inflow zone and the mouth of the Kissimmee River (Figure 1). Armatimonadota was 643 

originally known as candidate phylum OP10 before its reclassification into a new phylum by 644 

Hugenholtz and colleagues in 1998 (Hugenholtz et al., 1998b). Isolated sequences of 645 

Armatimonadota were isolated from a variety of environments such as aerobic and anaerobic 646 

wastewater treatment processes, contaminated and regular soil and sediments (Im et al., 2012). 647 

Lake O and its connecting rivers, St. Lucie, Kissimmee, Caloosahatchee, etc. all are experiencing 648 

nutrient pollution due to the agricultural and urban lands surrounding them. Furthermore, between 649 

2019 and 2020, there was an increase in the average concentrations of total phosphate (Figure 34), 650 

total nitrogen (Figure 32), nitrate + nitrite (Figure 28), and total phosphorus (Figure 23). Hence, it 651 

is unknown what kind of contamination occurred during the initial collection and isolation of the 652 

bacteria belonging to Armatimonadota, but there may be a connection with the increase in nutrient 653 

pollution and the presence of this phyla. 654 

An additional non-ubiquitous phylum, Patescibacteria, appeared only in 2021 at two stations 655 

within the lake (Figure S4). Patescibacteria, formerly known as the ‘candidate phyla 656 

radiation’(CPR), included the discovery of an immense microbial diversion within the bacterial 657 
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tree of life in 2016 (Herrman et al., 2019). However, in 2018, Parks et al. (2018) suggested 658 

classifying the CPR into a new phylum, Patescibacteria. There are 14 classes of bacteria known so 659 

far in this phylum and they all inhabit a range of environments including groundwater and other 660 

aquifer environments, freshwater sediments, and deep-sea sediments (Herrman et al., 2019; 661 

Proctor et al., 2018; Leon-Zayas et al., 2017; Luef et al., 2015; Brown et al., 2015). There is a 662 

high abundance of Patescibacteria that found in groundwater environments—making up around 663 

38% of the total microbiomes (Herrmann et al., 2019; Bruno et al., 2017; Kumar et al., 2017). In 664 

Lake O, Patescibacteria were found only in 2021 (year 3) at two stations, L004 and L006, both of 665 

which are in the pelagic zone of the lake. The pelagic zone is the deepest part of the lake but also 666 

experiences the most turbidity (Krausfeldt et al., submitted). The higher turbidity and reduced 667 

water clarity of the water column suggests that there may be sediment resuspension occurring 668 

within the pelagic zone (Krausfeldt et al., submitted), thus possibly allowing this phylum to be 669 

collected in surface waters.  670 

Bacterial co-occurrences with Microcystis 671 

It is well-known that Microcystis blooms are influenced by abiotic factors such as 672 

environmental variables and nutrient inputs of freshwater ecosystems. There has been increasing 673 

curiosity of how the heterotrophic bacterial community plays a role in the aggregation and 674 

proliferation of the colonies and how they could be maintaining these cyanobacterial harmful algal 675 

blooms (cyanoHABs) created by Microcystis. Studies have shown evidence that there are 676 

heterotrophic bacteria that live within and surrounding Microcystis colonies, with either 677 

mutualistic or antagonistic effects (Tu et al., 2019; Shen et al., 2011; Shi et al., 2009; Maruyama 678 

et al., 2003; Imamura et al., 2001; Pankow, 1986). As mentioned previously, several results in this 679 

study suggested that Microcystis can alter the microbial community of Lake O through 680 

cyanoHABs. Both Microcystis and its related toxin, microcystin, showed strong negative 681 

correlations to species evenness and species diversity (Figure 8). In year 3 (2021)—the year with 682 

the most intense blooms of the entire sampling period—Microcystis appeared as one of the 683 

strongest correlated variables, along with other environmental variables, to drive variation in the 684 

microbial communities in Lake O (Figure 21). After revealing that Microcystis can alter the 685 

microbial communities, the curiosity of knowing who else can possibly be changing with 686 

Microcystis resulted in the creation of a co-occurrence network involving any bacteria that has 687 

appeared with this genus. The co-occurrence network showed 22 significantly strong positive 688 

correlations between Microcystis and other heterotrophic bacteria; with two exceptions being 689 

cyanobacteria (Pseudanabaena_PCC-7429 and Snowella_OTU37S04) (Figure 22). Although 690 

some negative correlations did exist between Microcystis and other bacteria, their relationships 691 

were not strong enough to document as strong correlations (R2 = -0.7 or less).  692 

Some of the heterotrophic bacteria genera that co-occur with Microcystis may indicate that 693 

there is a commensal relationship between them. Bradymonadales belongs to the phylum 694 

Desulfobacterota which is located under the phylum Deltaproteobacteria. Bradymonadales are 695 

predatory bacteria, which is broken up into two categories, obligatory and facultative (Mu et al.; 696 

2020). Mu and colleagues (2020) found that Bradymonadales displays unique living strategies that 697 

allow for these bacteria to present a novel method of predation: a transition between being obligate 698 

and facultative predators. Some of the main bacteria that are highly preyed on by Bradymonadales 699 

include Bacteroidetes, Flavobacteria, and Proteobacteria. Intriguingly, 11 of the 22 co-occurring 700 

bacteria with Microcystis belong to the phylum Proteobacteria with an additional two belonging 701 
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to Bacteroidetes and Flavobacteria. Thus, Bradymonadales may be utilizing Microcystis colonies 702 

during the blooms as a feeding ground for its prey items. Bdellovibrio exovorus is another 703 

predatory bacteria species that was seen to co-exist with Microcystis. First described in 1963 704 

(Koval et al., 2013; Stolp & Starr, 1963), Bdellovibrio exovorus belongs to a group of like 705 

predatory bacteria known as Bdellovibrio and like organisms (BALOs) (Ezzedine et al., 2020). 706 

BALOs were the first records of predatory bacteria and continue to be used as a baseline for the 707 

discovery of novel predatory bacteria like Bradymonadales which was previously mentioned 708 

above. Similar to Bradymonadales, B. exovorus is also obligatory predators on primarily other 709 

Proteobacteria. However, it is important to note that some species of BALOs have been found to 710 

kill cyanobacterial cells. Caiola and Pellegrini (1984) found that BALOs were able to lyse 711 

Microcystis aeruginosa cells via penetration and proposed that these and other algicidal bacteria 712 

could be the reason for the dying out of cyanobacteria bloom events. 713 

There were only two taxa that were not heterotrophic bacteria that shared strong positive 714 

correlations with Microcystis, genera Pseudanabaena_PCC-7429 and Snowella_OTU37S04, 715 

which are also part of the phylum Cyanobacteria. The genus Pseudanabaena is an epiphytic 716 

cyanobacterial taxon that is commonly found embedded within or attached to the mucilaginous 717 

sheath of Microcystis colonies (Li et al., 2020). Both taxa are frequently observed to be highly 718 

correlated during cyanoHABs and this study also provides evidence of this pattern (Li et al., 2020; 719 

Berry et al., 2017; Ilhe, 2008). In the 1980s, Pseudanabaena was primarily described as a parasitic 720 

organism to Microcystis colonies (Chang, 1985; Gorham et al., 1982). Further investigation was 721 

conducted regarding the interactions between Pseudanabaena and Microcystis, which investigated 722 

the interaction directly (Agha et al., 2016). Agha and colleagues (2016) discovered that 723 

Pseudanabaena is not selective on the species of Microcystis but on their mucilage structure. They 724 

also uncovered that Pseudanabaena is detrimental to Microcystis colonies both directly via cell 725 

lysis and indirectly via cell sedimentation. Thus, it may be possible that Pseudanabaena may also 726 

contribute to the dying out of cyanoHAB events. Conversely, although the genus Snowella was 727 

also found to be highly correlated to Microcystis in a previous study, not much is known about 728 

their ecology and their interaction with Microcystis (Mankiewicz‑Boczek & Font‑Nájera, 2022). 729 

Another interesting taxa that was highly correlated with Microcystis is the genera env.OP_17 730 

(Figure 22). There is not much information solely about the bacterium env.OP_17, however, it is 731 

part of the order Sphingobacteriales and this order is known to be potential algicidal bacteria that 732 

favor the uptake of cyanobacterial excretions and decaying material (Mankiewicz‑Boczek & 733 

Font‑Nájera, 2022). Furthermore, Mankiewicz‑Boczek & Font‑Nájera (2022) found that env. 734 

OP_17 increased in abundance after a bloom, suggesting that this taxon might be a part of the 735 

“clean-up team” once a cyanoHAB dies out. Though this study presented results focused primarily 736 

on the highly correlated relationships between other bacteria and Microcystis in Lake O, there was 737 

another bacterial genus, Streptomyces, that is known to exhibit algicidal activity towards 738 

Microcystis that was present in microbial community of Lake O (Zhang et al., 2023). On the 739 

contrary, the genus Phenylobacterium—another taxon that was found with a high correlation with 740 

Microcystis (Figure 22)—was found to aid in the growth and dominance of toxic Microcystis 741 

strains during cyanoHAB events. As mentioned previously, there are toxic and non-toxic bloom-742 

forming strains of Microcystis and in a study conducted by Zuo et al. (2021), they saw that 743 

Phenylobacterium was one of the few genera that strongly positively co-existed with toxic strains 744 

of Microcystis. After further investigation in the field and in the laboratory, they found that there 745 

were three strains of Phenylobacterium that promoted the growth of these toxic strains of 746 
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Microcystis, suggesting that Phenylobacterium may be a heterotrophic bacterium that could be 747 

aiding in the longevity of these blooms (Zuo et al., 2021). Unfortunately, there needs to be further 748 

investigation into the mechanisms by which Phenylobacterium interact with these toxic strains of 749 

Microcystis that allow Microcystis to remain dominant throughout the cyanoHAB event. 750 

Microcystis, temperature, pH, and nutrients 751 

 Although it is also important to investigate the biotic factors that influence cyanoHABs, 752 

such as the interactions between the blooming cyanobacteria and other microbes, there is still 753 

plenty of evidence of how abiotic factors influence cyanoHABs, and vice versa, all over the world. 754 

During this study, in addition to characterizing the microbial community of the lake, certain 755 

environmental variables were also collected to consider how these variables could be influencing 756 

these blooms along with the microbial community. Besides nutrient levels in the lake, one 757 

important physical characteristic that affects cyanoHABs is temperature. Temperature affects the 758 

growth of cyanobacterial species. In general, higher temperatures promote the growth of 759 

cyanobacteria, often temperatures that are above 25°C (Paerl & Huisman, 2008; Jöhnk et al.,2008; 760 

Reynolds, 2006). When temperatures increase, the water column becomes more stable and 761 

stratified since the increase in temperature weakens the amount of vertical mixing in the water 762 

column (Paerl & Huisman, 2008; Paerl & Fulton III, 2006; Reynolds, 2006; Husiman, Matthijs, & 763 

Visser, 2005). Microcystis aeruginosa, the dominant bloom-forming cyanobacteria species in 764 

Lake O, can take advantage of these more stratified conditions using their gas vesicles. The gas 765 

vesicles formed by M. aeruginosa give them the buoyancy they need to effectively migrate through 766 

the water column during favorable conditions, such as high temperatures and increased light 767 

availability (Dick et al., 2021; Huisman et al., 2018; Komárek, 2003). This buoyancy also provides 768 

M. aeruginosa the ability to form “mats” of biomass at the surface of the water; hence, cyanoHAB 769 

events tend to increase in frequency in the summer (You et al., 2017; Litchman et al., 2010). 770 

Across the sampling period, especially in 2021, temperatures reached between 25°C and 30°C 771 

each year from May through to September—around the same months where microcystin 772 

concentrations (Figure 26) and Microcystis relative abundances (Figure 27) were the highest 773 

(Figure 30). Certainly, global warming is becoming a concerning topic as increasing temperatures 774 

are affecting the environments of the planet. Further research should be done on Lake O and other 775 

lakes affected by cyanoHABs to look at the trend of bloom frequencies as the global temperature 776 

continues to rise over time. 777 

 In addition to rising temperatures, pH is also known to be a factor associated with 778 

Microcystis blooms. This importance was evident as pH was included as an environmental factor 779 

driving the differences found in the microbial community composition across the sampling period 780 

(Figure 17). During a dense bloom, the cyanobacteria rapidly consume inorganic carbon (in the 781 

form of dissolved CO¬¬2) that is available in the upper water column, in turn increasing the pH 782 

of the surface water to above 9 (Ji et al., 2020; Wilhelm et al., 2020). Across the sampling period, 783 

there were an increasing number of instances where the surface water pH was measured above 9 784 

(Figure 29). With this increase in pH, the equilibrium of carbon in the water is shifted from 785 

inorganic carbon (dissolved CO¬¬2) to bicarbonate (HCO3-) and carbonate (CO32-) (Ji et al., 786 

2020; Huisman et al., 2018). Microcystis, although also adaptive to high concentrations of CO2 787 

concentrations, can utilize bicarbonate as a carbon source through the use of carbonic anhydrase 788 

found in cyanobacteria—further allowing these blooms to thrive during these alkaline conditions 789 

(Ji et al., 2020; Wilhelm et al., 2020; Huisman et al., 2018). Alkaline pH conditions also allow for 790 
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the conversion of ammonium ions (NH4+) to ammonia (NH3).  During the months where 791 

microcystin concentrations (Figure 26) and Microcystis relative abundances (Figure 27) were the 792 

highest (May to September), there was also an increase in ammonia during those months. 793 

Conclusion 794 

This study provides a glimpse into the effects of cyanoHABs within the microbial 795 

community of the freshwater lake, Lake Okeechobee. This study provides an initial look into the 796 

taxonomic classification of the dynamic microbial community of Lake O over several years and 797 

the spatial changes that were seen within these communities. We found that the cyanoHABs that 798 

have been commonly occurring in Lake O do in fact alter the microbial community composition 799 

of the lake. Further investigation of these changes within the microbial community composition 800 

yielded the identification of possible relationships between these microbial communities and 801 

Microcystis. With the identification of these possible relationships, future investigation should be 802 

conducted to see how the functions of these taxa are incorporated into their interaction with 803 

Microcystis. With that, we might be able to identify bacteria that may serve as possible 804 

bioindicators for these cyanoHAB events and aid in preventing or managing these recurring 805 

blooms in the lake.  806 

 Lake Okeechobee is indeed an essential part of south Florida’s ecosystems as it serves as 807 

a source of drinking water for nearby towns, irrigation for the agricultural lands surrounding the 808 

border of the lake, critical water supply for the environment, and as habitat for various organisms 809 

in the water and on the land (South Florida Water Management District (SFWMD)). With the 810 

degrading water quality of the lake, there is great concern for life both within and around the lake. 811 

To date, numerous studies have been conducted on reducing the nutrient loading into the lake 812 

(Canfield Jr. et al., 2021; Schelske, 1989; Canfield Jr. & Hoyer, 1988) and investigating the 813 

possible control of these recurring blooms (Pokrzywinski et al., 2022), primarily focusing on the 814 

cyanobacteria involved in these blooms. Not many studies have been done on Lake Okeechobee 815 

that explore the taxonomic structure, temporal distributions, and spatial distributions of the 816 

microbial communities before, during, and after annual cyanoHABs. Furthermore, whether the 817 

microbial community taxonomic structure, temporal and spatial distributions rebound after a 818 

bloom event also has yet to be studied.  819 

 To enable scientists to enhance their comprehension of the ongoing cyanoHABs in Lake 820 

Okeechobee and their interactions with the surrounding environment, particularly the microbial 821 

community, it is essential to fill these existing knowledge gaps. With that scientists will be able to 822 

examine the variations in the diversity and trophic structure of the lake before, during, and after 823 

the occurrence of these harmful blooms—bringing scientists closer to fully understanding the 824 

impact of cyanoHABs on Lake Okeechobee's microbial communities. 825 
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IV. R Script

 

###### BATCH CORRECTION & ASSOCIATED ANALYSES ###### 

 

##First had to go through and manually assign batches to the samples within the 

##metadata file (based on mapping files) 

## 10 KNOWN SEQUENCING RUNS IN TOTAL (an unknown sequence run making 11 "UNK") 

 

###### SET WORKING DIRECTORY AND SEED #### 

setwd("F:/Paise_Thesis/LakeO_Data/2019-2021_LakeO_Data/Analyses/LakeO_BatchCorrected/Analyses_Corrected") 

#or setwd("/Volumes/PaiseSSD-T7/Paise_Thesis/LakeO_Data/2019-

2021_LakeO_Data/Analyses/LakeO_BatchCorrected/Analyses_Corrected") for use on the lab computer 

set.seed(1998)\ 

 

###### Packages ###### 

library(vegan) 

library(ggplot2) 

library(tidyverse) 

library(reshape2) 

library(BiocManager) 

library(MMUPHin) 

 

#updating BiocManager and installing mmuphin 

# if (!require("BiocManager", quietly = TRUE)) 

#   install.packages("BiocManager") 

# BiocManager::install(version = "3.16") 

# BiocManager::install("MMUPHin") 

 

###### Creating relative abundance data ###### 

set.seed(1998) 

dat<-read.csv("feature_Y123_nobcmASVs-nobelow10korDupes.csv", header=TRUE, row.names = 1) 

dat<-data.matrix(dat) 

typeof(dat) #"integer" 

dat <- t(dat) 

row.names(dat) # row names should now be the sample names 

metadata <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

typeof(metadata) ## "list" 

dat <- as.data.frame(dat) 

typeof(dat) 

common.rownames <- intersect(rownames(dat), rownames(metadata)) 

dat <- dat[common.rownames,] 

metadata <- metadata[common.rownames,] 

all.equal(rownames(dat),rownames(metadata)) 

otu.abund<-which(colSums(dat)>2) 

dat.dom<-dat[,otu.abund] #dominant taxa 

dat.pa<-decostand(dat.dom, method ="pa") #presence/absence data 

dat.otus.01per<-which(colSums(dat.pa) > (0.01*nrow(dat.pa))) 

dat.01per<-dat.dom[,dat.otus.01per] #removed ASVs that occur less than 0.1%; 8,340 taxa present 

dat.otus.001per<-which(colSums(dat.pa) > (0.001*nrow(dat.pa))) 

dat.001per<-dat.dom[,dat.otus.001per] #removed ASVs that occur less than 0.01%; 44,623 taxa present 

                                      #increases the number of ASVs - includes more "microdiversity"  

dat.ra<-decostand(dat.01per, method = "total") #relative abundance of >1% taxa 

 

###### ANOSIM by Sequencing Batch ###### 

set.seed(1998) 

##create relative abundance table in above code 

##create Bray-Curtis dissimilarity distance matrix 

ra.bc.dist<-vegdist(dat.ra, method = "bray") 

 

##betadisper calculates dispersion (variances) within each group  

dis.Batch <- betadisper(ra.bc.dist,metadata$Batch) 

 

##permutest determines if the variances differ by groups (If differences are SIGNIFICANT - use ANOSIM 

##                                                        if not use PERMANOVA (adonis)) 

permutest(dis.Batch, pairwise=TRUE, permutations=999) 

#           Df Sum Sq  Mean Sq      F N.Perm Pr(>F)     

# Groups     10 1.0196 0.101957 10.832    999  0.001 ***   SIGNIFICANT - USE ANOSIM!! 

# Residuals 530 4.9886 0.009413                          

# --- 

 

# Pairwise comparisons: 
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#   (Observed p-value below diagonal, permuted p-value above diagonal) 

# ELIZA2    ELIZA23     ELIZA3       LO22      LO310     LO8382       NOAA      PAIS1      PAIS2      PAIS3   

UNK 

# ELIZA2             2.5800e-01 2.2800e-01 4.0000e-03 1.0000e-03 2.8000e-02 7.0300e-01 5.4400e-01 2.0000e-02 

2.0000e-03 0.001 

# ELIZA23 2.4836e-01            2.9000e-02 4.5000e-02 1.0000e-03 9.7000e-02 3.1600e-01 4.7000e-01 1.6100e-01 

4.9000e-02 0.001 

# ELIZA3  1.9314e-01 2.3483e-02            3.0000e-03 1.0000e-03 6.0000e-03 4.5400e-01 1.1300e-01 3.0000e-03 

1.0000e-03 0.001 

# LO22    4.2982e-03 4.4251e-02 1.9370e-03            1.1800e-01 9.9300e-01 7.5000e-02 1.0000e-02 5.1900e-01 

7.1500e-01 0.005 

# LO310   1.4327e-04 5.5957e-04 8.7490e-06 1.2846e-01            1.8300e-01 3.0000e-03 1.0000e-03 3.1000e-02 

4.1000e-02 0.966 

# LO8382  2.2967e-02 9.5642e-02 4.8732e-03 9.9098e-01 1.8031e-01            1.1600e-01 3.4000e-02 6.0500e-01 

7.5900e-01 0.029 

# NOAA    7.1430e-01 3.1669e-01 4.7882e-01 7.6250e-02 3.0428e-03 1.0361e-01            5.3600e-01 1.1600e-01 

7.0000e-02 0.001 

# PAIS1   5.5294e-01 4.9884e-01 9.5982e-02 8.2362e-03 2.4554e-04 3.9403e-02 5.4000e-01            5.3000e-02 

4.0000e-03 0.001 

# PAIS2   1.9845e-02 1.6321e-01 2.9914e-03 5.0465e-01 2.4943e-02 5.7184e-01 1.0857e-01 4.4072e-02            

7.0500e-01 0.002 

# PAIS3   1.6726e-03 4.7249e-02 1.0649e-03 6.9056e-01 3.8967e-02 7.4158e-01 7.1715e-02 3.8772e-03 7.0437e-01            

0.001 

# UNK     6.1433e-14 3.1874e-10 7.8632e-11 4.5319e-03 9.6747e-01 2.3258e-02 3.6162e-05 3.0384e-14 5.3552e-05 

3.8664e-05       

 

##ANOSIM - determining if the differences between two or more groups are significant.  

## The ANOSIM statistic “R” compares the mean of ranked dissimilarities between groups to 

## the mean of ranked dissimilarities within groups. An R value close to “1" suggests  

## dissimilarity between groups while an R value close to “0” suggests an even distribution of 

## high and low ranks within and between groups” 

## the higher the R value, the more dissimilar your groups are in terms of microbial community composition. 

 

anosim(ra.bc.dist, metadata$Batch, permutations = 999) 

# ANOSIM statistic R: 0.1486 

# Significance: 0.001 

 

anosim(ra.bc.dist, metadata$Batch, permutations = 9999) 

# ANOSIM statistic R: 0.1486 

# Significance: 0.0001 

 

## Conclusion? There are significantly weak differences between batches so the 

## data needs to be batch corrected and ALL analyses redone. 

 

###### BATCH CORRECTION ###### 

set.seed(1998) 

library(MMUPHin) 

library(vegan) 

 

## Loading in feature- and metadata 

dat <- read.csv("feature_Y123_nobcmASVs-nobelow10korDupes.csv", header=TRUE, row.names = 1) 

dat <- data.matrix(dat) 

typeof(dat) #"integer" 

dat <- t(dat) #transposing data matrix 

row.names(dat) # row names should now be the sample names 

metadata <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

typeof(metadata) ## "list" 

dat <- as.data.frame(dat) 

typeof(dat) 

common.rownames <- intersect(rownames(dat), rownames(metadata)) 

dat <- dat[common.rownames,] 

metadata <- metadata[common.rownames,] 

all.equal(rownames(dat),rownames(metadata)) #TRUE 

 

## Batch Correction (following Harvard tutorial) 

#looking at how many samples are in each batch 

table(metadata$Batch) 

# ELIZA2 ELIZA23  ELIZA3   LO22   LO310   LO8382    NOAA   PAIS1   PAIS2   PAIS3   UNK  

#   62      50      11      38      20      20       6      98      40      72     124  

 

#Adjusting (removing) batch effect 

#taxa should be rows in feature table and samples should be rows in metadata 

#feature table should be a matrix while metadata should be a dataframe 

fit_adjust_batch <- adjust_batch(feature_abd = t(dat),  

                                 batch = "Batch",  

                                 data = metadata) 
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Lake_abd_adj <- fit_adjust_batch$feature_abd_adj #now adjusted feature table MATRIX 

Lake_abd_adj <- as.data.frame(Lake_abd_adj) #converting to data frame 

write.csv(Lake_abd_adj, "feature_Y123_ADJUSTED.csv") #saving as csv 

 

 

###### Creating a rarefaction curve on the read counts ###### 

library(vegan) 

 

#load in data with NO blank samples or blank ASVs 

rardat<-read.csv("feature_Y123_noblanksorbASVs.csv", header=TRUE, row.names=1, sep=',')  

 

#as you can see the samples are in columns and need to be in the rows so we need to flip or transpose the file 

#transpose the data to rows  

trans.rardat <- t(rardat) 

## check file to make sure it worked  

trans.rardat[1:5,1:5] #shows rows 1 through 5 and the samples should now be the rows 

##making the transformed data matrix into main 

rardat <- trans.rardat 

##changing back into data frame instead of matrix (transforming the data frame turned it into a matrix) 

rardat <-as.data.frame(rardat) 

#check data file to make sure it looks okay  

View(rardat) 

 

rowSums(rardat) #sums the value of each row in the data frame 

 

#### Creating the rarefaction curve 

#count the number of species within each sample 

S <- specnumber(rardat) 

raremax <- min(rowSums(rardat)) ## takes the sample with the lowest sample size which is 0 in this dataset 

 

#creating color palette for curve 

colors() ## lists the color names that are built into R 

cc <- palette() 

palette(c(cc,"purple","brown"))    ## creating the color ramp for the plot 

cc <- palette() 

 

#plotting the rarefaction curves 

## auto removes samples that have no reads 

pars <- expand.grid() 

Hklim <- rarecurve(rardat, step = 2000, sample=raremax, col = cc, label = TRUE, main="Rarefaction Curve for Lake 

O read counts",  

          cex= 0.14, cex.axis= 0.7, cex.lab= 1, xlim=c(0,100000), xlab = "# of Reads", ylab = "# of ASVs", tidy 

= T) 

 

#### #### 

 

 

 

###### ANALYSES ON BATCH CORRECTED DATA ###### 

###### SET WORKING DIRECTORY AND SEED #### 

setwd("F:/Paise_Thesis/LakeO_Data/2019-2021_LakeO_Data/Analyses/LakeO_BatchCorrected/Analyses_Corrected") 

#or setwd("/Volumes/PaiseSSD-T7/Paise_Thesis/LakeO_Data/2019-

2021_LakeO_Data/Analyses/LakeO_BatchCorrected/Analyses_Corrected") 

#for use on the lab computer 

set.seed(1998) 

 

###### PACKAGES ###### 

library(phyloseq) 

library(vegan) 

library(ggplot2) 

library(tidyverse) 

library(RVAideMemoire) 

library(DESeq2) 

library(corrplot) 

library(multcompView) 

library(pgirmess) 

library(data.table) 

library(microbiome) 

library(BiocManager) 

library(ggthemes) 

library(gplots) 

library(RColorBrewer) 

library(co-occur) 

library(visNetwork) 

library(Hmisc) 

library(cowplot) 
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library(reshape2) 

library(sjmisc) 

library(MASS) 

library(scales) 

library(forcats) 

library(leaflet) 

library(eulerr) 

library(microbiomeutilities) 

 

##Installing packages 

BiocManager::install("DESeq2") 

BiocManager::install("lefser") 

BiocManager::install("ALDEx2") 

BiocManager::install("ANCOMBC") 

BiocManager::install("phyloseq") 

BiocManager::install("microbiome") 

BiocManager::install("microbiomeutilities") 

 

##Had to install using binaries (3/9/23 on iMAC) 

install.packages("tibble", type="binary") 

install.packages("Hmisc", type="binary") 

 

## Notes on packages: 

# pgirmess = Kruskal-Wallis Test 

# RVAideMemoire = PERMANOVA 

# cowplot = making multiple plots using ggplots objects 

 

###### Prepping data for analyses ##### 

 

### import feature-table data ###  

##change to csv or import as a tsv using read.table function 

dat<-read.csv("feature_Y123_ADJUSTED.csv", header=TRUE, row.names = 1) ## do not add "header =" or "row.names =" 

for merging  

# 561 samples; 65294 taxa  

 

dat<-data.matrix(dat) ##if data is not recognized as a data.frame numeric  

typeof(dat) #"integer" 

#check data file to make sure it looks okay  

 

 

#as you can see the samples are in columns and need to be in the rows so we need to flip or transpose the file 

#transpose the data to rows  

trans.dat <- t(dat) 

 

## check file to make sure it worked  

trans.dat[1:5,1:5] #shows rows 1 through 5 and the samples should now be the rows 

 

 

##set transposed data to main data variable  

dat <-trans.dat 

row.names(dat) # row names should now be the sample names 

 

### import metadata ### 

###(if you intend to do any statistical analyses in R) 

##If not skip to refining and normalizing steps  

metadata <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

 

##should read "list" 

typeof(metadata) ## "list" 

dat <- as.data.frame(dat) ## had to change dat back into a data frame to check for matching rows 

typeof(dat) ## "list" 

 

##check to make sure the sample names match and are correct 

common.rownames <- intersect(rownames(dat), rownames(metadata)) 

##541 rows are in common (20 S80 samples NOT included) 

 

##if there are any rows that do not match, they will not be included in the statistical analysis or relative 

abundance tables 

dat <- dat[common.rownames,] 

metadata <- metadata[common.rownames,] 

 

##check that all rows match 

all.equal(rownames(dat),rownames(metadata)) #TRUE so yes they all match 

dat[1:5,1:3] ## double-checking that everything looks good 
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##merging the working feature and taxonomy tables 

feat <- dat 

tax <- read.csv("taxonomy_Y123_edited&cleaned.csv") 

feattax <- merge.data.frame(feat, tax, by= "FeatureID", all.x=TRUE, all.y = TRUE) 

write.csv(feattax, "feat-tax_Y123_cleaned.csv") 

 

 

## CONTINUE HERE IF YOU ARE IGNORING METADATA ### 

## refining and normalizing data # 

##remove singletons and doubletons -  ASVs that only show up once or twice  

##this can be modified or removed if desired. Depends on what you want to know  

library(vegan) 

 

otu.abund<-which(colSums(dat)>2) 

dat.dom<-dat[,otu.abund] #46838 taxa 

 

##all this will get rid of ASVs that appear less than a certain percent in the data  

##this is not always something that you should do depending on your question.  

dat.pa<-decostand(dat.dom, method ="pa")  #"pa" = standardization method that scales your data to 

presence/absence (0/1) 

##remove ASVs that occur <0.01 *** 

dat.otus.01per<-which(colSums(dat.pa) > (0.01*nrow(dat.pa))) 

dat.01per<-dat.dom[,dat.otus.01per] 

# 8,340 taxa 

write.csv(as.data.frame(t(dat.01per)), "feature_Y123_0.01per.csv") 

 

##remove ASVs that occur <0.001 ---> increases the number of ASVs - includes more "micro-diversity"  

dat.otus.001per<-which(colSums(dat.pa) > (0.001*nrow(dat.pa))) 

dat.001per<-dat.dom[,dat.otus.001per] 

# 46,838 taxa 

 

## relative abundance --> normalization ## 

dat.ra<-decostand(dat.01per, method = "total") #"total" = standardization method that divides your data by 

margin total (def. margin = 1) 

 

##export relative abundance table(s) 

write.csv(dat.ra, "relative-abundance_Y123.csv") 

 

## SHORTCUT WITH NO EXPLANATIONS 

## re-creating relative abundance table 

set.seed(1998) 

dat<-read.csv("feature_Y123_ADJUSTED.csv", header=TRUE, row.names = 1) 

dat<-data.matrix(dat) 

typeof(dat)  

dat <- t(dat) 

row.names(dat)  

metadata <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

typeof(metadata)  

dat <- as.data.frame(dat) 

typeof(dat) 

common.rownames <- intersect(rownames(dat), rownames(metadata)) 

dat <- dat[common.rownames,] 

metadata <- metadata[common.rownames,] 

all.equal(rownames(dat),rownames(metadata)) 

otu.abund<-which(colSums(dat)>2) 

dat.dom<-dat[,otu.abund]  

dat.pa<-decostand(dat.dom, method ="pa") 

dat.otus.01per<-which(colSums(dat.pa) > (0.01*nrow(dat.pa))) 

dat.01per<-dat.dom[,dat.otus.01per] 

dat.otus.001per<-which(colSums(dat.pa) > (0.001*nrow(dat.pa))) 

dat.001per<-dat.dom[,dat.otus.001per] 

dat.ra<-decostand(dat.01per, method = "total")  

 

 

###### Merging relative abundance with taxonomy and getting averages ###### 

Yr1 <- read.csv("Year1_RA.csv") 

Yr2 <- read.csv("Year2_RA.csv") 

Yr3 <- read.csv("Year3_RA.csv") 

tax <- read.csv("taxonomy_Y123_edited&cleaned.csv") 

Yr1t <- merge.data.frame(Yr1,tax,by= "FeatureID", all.x = TRUE) 

Yr2t <- merge.data.frame(Yr2,tax,by= "FeatureID", all.x = TRUE) 

Yr3t <- merge.data.frame(Yr3,tax,by= "FeatureID", all.x = TRUE) 

write.csv(Yr1t, "Year1_RA.csv") 

write.csv(Yr2t, "Year2_RA.csv") 

write.csv(Yr3t, "Year3_RA.csv") 
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### Average and St.dev abundance of each phylum in each year 

library(tidyverse) 

 

## Year 1 

#first merge data with matching taxonomy and load csv 

Yr1 <- read.csv("Year1_RA.csv", row.names = 1) 

#Sum by phylum across samples 

physumY1 <- Yr1 %>%  

  group_by(Phylum) %>%  

  summarise(across(where(is.numeric), sum)) 

#Average phylum across samples 

Y1mean <- apply(physumY1[,-1], 1, mean, na.rm=TRUE) 

#Standard deviation across samples  

Y1std <- apply(physumY1[,-1], 1, sd, na.rm=TRUE) 

#merge average and st.dev with rows 

Y1avsd <- as.data.frame(cbind(physumY1$Phylum,Y1mean, Y1std)) 

#Renaming columns and saving as csv 

colnames(Y1avsd)[1] ="Phylum" 

colnames(Y1avsd)[2] ="Average" 

colnames(Y1avsd)[3] ="Stand.Dev" 

write.csv(Y1avsd, "Year1_AvSD-UPDATED.csv") 

#Extract top 10 phyla and save as csv 

top101 <- names(top10phy.names.Y1) 

Y1avsd10 <- filter(Y1avsd, 

                   Y1avsd$Phylum %in% top101)   

write.csv(Y1avsd10, "Year1_AvSD_TOP10-UPDATED.csv") 

 

## Year 2 

Yr2 <- read.csv("Year2_RA.csv", row.names = 1) 

#Sum by phylum across samples 

physumY2 <- Yr2 %>%  

  group_by(Phylum) %>%  

  summarise(across(where(is.numeric), sum)) 

#Average phylum across samples 

Y2mean <- apply(physumY2[,-1], 1, mean, na.rm=TRUE) 

#Standard deviation across samples  

Y2std <- apply(physumY2[,-1], 1, sd, na.rm=TRUE) 

#merge average and st.dev with rows 

Y2avsd <- as.data.frame(cbind(physumY2$Phylum,Y2mean, Y2std)) 

#Renaming columns and saving as csv 

colnames(Y2avsd)[1] ="Phylum" 

colnames(Y2avsd)[2] ="Average" 

colnames(Y2avsd)[3] ="Stand.Dev" 

write.csv(Y2avsd, "Year2_AvSD-UPDATED.csv") 

#Extract top 10 phyla and save as csv 

top102 <- names(top10phy.names.Y2) 

Y2avsd10 <- filter(Y2avsd, 

                   Y2avsd$Phylum %in% top102)   

write.csv(Y2avsd10, "Year2_AvSD_TOP10-UPDATED.csv") 

 

## Year 3 

Yr3 <- read.csv("Year3_RA.csv", row.names = 1) 

#Sum by phylum across samples 

physumY3 <- Yr3 %>%  

  group_by(Phylum) %>%  

  summarise(across(where(is.numeric), sum)) 

#Average phylum across samples 

Y3mean <- apply(physumY3[,-1], 1, mean, na.rm=TRUE) 

#Standard deviation across samples  

Y3std <- apply(physumY3[,-1], 1, sd, na.rm=TRUE) 

#merge average and st.dev with rows 

Y3avsd <- as.data.frame(cbind(physumY3$Phylum,Y3mean, Y3std)) 

#Renaming columns and saving as csv 

colnames(Y3avsd)[1] ="Phylum" 

colnames(Y3avsd)[2] ="Average" 

colnames(Y3avsd)[3] ="Stand.Dev" 

write.csv(Y3avsd, "Year3_AvSD-UPDATED.csv") 

#Extract top 10 phyla and save as csv 

top103 <- names(top10phy.names.Y3) 

Y3avsd10 <- filter(Y3avsd, 

                   Y3avsd$Phylum %in% top103)   

write.csv(Y3avsd10, "Year3_AvSD_TOP10-UPDATED.csv") 

 

# Merge all years together and save as csv 

#Original lists 

#put all data frames into list 
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Y123avstd <- list(Y1avsd, Y2avsd, Y3avsd) 

#merge all data frames in list 

all <- Y123avstd %>% reduce(full_join, by='Phylum') 

#renaming columns 

colnames(all)[2] ="Y1mean" 

colnames(all)[3] ="Y1std" 

colnames(all)[4] ="Y2mean" 

colnames(all)[5] ="Y2std" 

colnames(all)[6] ="Y3mean" 

colnames(all)[7] ="Y3std" 

 

#Top 10 lists 

Y123avstd10 <- list(Y1avsd10, Y2avsd10, Y3avsd10) 

top10 <- Y123avstd10 %>% reduce(full_join, by='Phylum') 

colnames(top10)[2] ="Y1mean" 

colnames(top10)[3] ="Y1std" 

colnames(top10)[4] ="Y2mean" 

colnames(top10)[5] ="Y2std" 

colnames(top10)[6] ="Y3mean" 

colnames(top10)[7] ="Y3std" 

 

#Save as csvs 

write.csv(all, "Year123_AvSD.csv") 

write.csv(top10, "Year123_AvSD_TOP10.csv") 

 

###### Separating feature table by Station (CSVs) ###### 

CLV <- as.data.frame(t(dat.ra[grep("^CLV10A", rownames(dat.ra)),])) 

KISS <- as.data.frame(t(dat.ra[grep("^KISSR0.0", rownames(dat.ra)),])) 

L1 <- as.data.frame(t(dat.ra[grep("^L001", rownames(dat.ra)),])) 

L4 <- as.data.frame(t(dat.ra[grep("^L004", rownames(dat.ra)),])) 

L5 <- as.data.frame(t(dat.ra[grep("^L005", rownames(dat.ra)),])) 

L6 <- as.data.frame(t(dat.ra[grep("^L006", rownames(dat.ra)),])) 

L7 <- as.data.frame(t(dat.ra[grep("^L007", rownames(dat.ra)),])) 

L8 <- as.data.frame(t(dat.ra[grep("^L008", rownames(dat.ra)),])) 

LZ2 <- as.data.frame(t(dat.ra[grep("^LZ2_", rownames(dat.ra)),])) 

Z25A <- as.data.frame(t(dat.ra[grep("^LZ25A", rownames(dat.ra)),])) 

Z30 <- as.data.frame(t(dat.ra[grep("^LZ30", rownames(dat.ra)),])) 

Z40 <- as.data.frame(t(dat.ra[grep("^LZ40", rownames(dat.ra)),])) 

PALM <- as.data.frame(t(dat.ra[grep("^PALMOUT", rownames(dat.ra)),])) 

PEL <- as.data.frame(t(dat.ra[grep("^PELBAY3", rownames(dat.ra)),])) 

POLE3S <- as.data.frame(t(dat.ra[grep("^POLE3S", rownames(dat.ra)),])) 

PO <- as.data.frame(t(dat.ra[grep("^POLESOUT", rownames(dat.ra)),])) 

RIT <- as.data.frame(t(dat.ra[grep("^RITTAE2", rownames(dat.ra)),])) 

S308 <- as.data.frame(t(dat.ra[grep("^S308", rownames(dat.ra)),])) 

S77 <- as.data.frame(t(dat.ra[grep("^S77", rownames(dat.ra)),])) 

S79 <- as.data.frame(t(dat.ra[grep("^S79", rownames(dat.ra)),])) 

 

#S80 not included in adjusted dataset 

 

###### Separating feature table by Year then Station (CSVs) ###### 

dat1 <- as.data.frame(t(dat.ra[grep("_19$", rownames(dat.ra)),])) 

dat2 <- as.data.frame(t(dat.ra[grep("_20$", rownames(dat.ra)),])) 

dat3 <- as.data.frame(t(dat.ra[grep("_21$", rownames(dat.ra)),])) 

write.csv(dat1,"feature_Y1r_ADJUSTED.csv") 

write.csv(dat2,"feature_Y2r_ADJUSTED.csv") 

write.csv(dat3,"feature_Y3r_ADJUSTED.csv") 

dat1 <- as.data.frame(t(dat1)) 

dat2 <- as.data.frame(t(dat2)) 

dat3 <- as.data.frame(t(dat3)) 

 

#Year 1 Stations 

CLV <- as.data.frame(t(dat1[grep("^CLV10A", rownames(dat1)),])) 

KISS <- as.data.frame(t(dat1[grep("^KISSR0.0", rownames(dat1)),])) 

L1 <- as.data.frame(t(dat1[grep("^L001", rownames(dat1)),])) 

L4 <- as.data.frame(t(dat1[grep("^L004", rownames(dat1)),])) 

L5 <- as.data.frame(t(dat1[grep("^L005", rownames(dat1)),])) 

L6 <- as.data.frame(t(dat1[grep("^L006", rownames(dat1)),])) 

L7 <- as.data.frame(t(dat1[grep("^L007", rownames(dat1)),])) 

L8 <- as.data.frame(t(dat1[grep("^L008", rownames(dat1)),])) 

LZ2 <- as.data.frame(t(dat1[grep("^LZ2_", rownames(dat1)),])) 

Z25A <- as.data.frame(t(dat1[grep("^LZ25A", rownames(dat1)),])) 

Z30 <- as.data.frame(t(dat1[grep("^LZ30", rownames(dat1)),])) 

Z40 <- as.data.frame(t(dat1[grep("^LZ40", rownames(dat1)),])) 

PALM <- as.data.frame(t(dat1[grep("^PALMOUT", rownames(dat1)),])) 

PEL <- as.data.frame(t(dat1[grep("^PELBAY3", rownames(dat1)),])) 

POLE3S <- as.data.frame(t(dat1[grep("^POLE3S", rownames(dat1)),])) 
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PO <- as.data.frame(t(dat1[grep("^POLESOUT", rownames(dat1)),])) 

RIT <- as.data.frame(t(dat1[grep("^RITTAE2", rownames(dat1)),])) 

S308 <- as.data.frame(t(dat1[grep("^S308", rownames(dat1)),])) 

S77 <- as.data.frame(t(dat1[grep("^S77", rownames(dat1)),])) 

S79 <- as.data.frame(t(dat1[grep("^S79", rownames(dat1)),])) 

 

#Year 2 Stations 

CLV <- as.data.frame(t(dat2[grep("^CLV10A", rownames(dat2)),])) 

KISS <- as.data.frame(t(dat2[grep("^KISSR0.0", rownames(dat2)),])) 

L1 <- as.data.frame(t(dat2[grep("^L001", rownames(dat2)),])) 

L4 <- as.data.frame(t(dat2[grep("^L004", rownames(dat2)),])) 

L5 <- as.data.frame(t(dat2[grep("^L005", rownames(dat2)),])) 

L6 <- as.data.frame(t(dat2[grep("^L006", rownames(dat2)),])) 

L7 <- as.data.frame(t(dat2[grep("^L007", rownames(dat2)),])) 

L8 <- as.data.frame(t(dat2[grep("^L008", rownames(dat2)),])) 

LZ2 <- as.data.frame(t(dat2[grep("^LZ2_", rownames(dat2)),])) 

Z25A <- as.data.frame(t(dat2[grep("^LZ25A", rownames(dat2)),])) 

Z30 <- as.data.frame(t(dat2[grep("^LZ30", rownames(dat2)),])) 

Z40 <- as.data.frame(t(dat2[grep("^LZ40", rownames(dat2)),])) 

PALM <- as.data.frame(t(dat2[grep("^PALMOUT", rownames(dat2)),])) 

PEL <- as.data.frame(t(dat2[grep("^PELBAY3", rownames(dat2)),])) 

POLE3S <- as.data.frame(t(dat2[grep("^POLE3S", rownames(dat2)),])) 

PO <- as.data.frame(t(dat2[grep("^POLESOUT", rownames(dat2)),])) 

RIT <- as.data.frame(t(dat2[grep("^RITTAE2", rownames(dat2)),])) 

S308 <- as.data.frame(t(dat2[grep("^S308", rownames(dat2)),])) 

S77 <- as.data.frame(t(dat2[grep("^S77", rownames(dat2)),])) 

S79 <- as.data.frame(t(dat2[grep("^S79", rownames(dat2)),])) 

 

#Year 3 Stations 

CLV <- as.data.frame(t(dat3[grep("^CLV10A", rownames(dat3)),])) 

KISS <- as.data.frame(t(dat3[grep("^KISSR0.0", rownames(dat3)),])) 

L1 <- as.data.frame(t(dat3[grep("^L001", rownames(dat3)),])) 

L4 <- as.data.frame(t(dat3[grep("^L004", rownames(dat3)),])) 

L5 <- as.data.frame(t(dat3[grep("^L005", rownames(dat3)),])) 

L6 <- as.data.frame(t(dat3[grep("^L006", rownames(dat3)),])) 

L7 <- as.data.frame(t(dat3[grep("^L007", rownames(dat3)),])) 

L8 <- as.data.frame(t(dat3[grep("^L008", rownames(dat3)),])) 

LZ2 <- as.data.frame(t(dat3[grep("^LZ2_", rownames(dat3)),])) 

Z25A <- as.data.frame(t(dat3[grep("^LZ25A", rownames(dat3)),])) 

Z30 <- as.data.frame(t(dat3[grep("^LZ30", rownames(dat3)),])) 

Z40 <- as.data.frame(t(dat3[grep("^LZ40", rownames(dat3)),])) 

PALM <- as.data.frame(t(dat3[grep("^PALMOUT", rownames(dat3)),])) 

PEL <- as.data.frame(t(dat3[grep("^PELBAY3", rownames(dat3)),])) 

POLE3S <- as.data.frame(t(dat3[grep("^POLE3S", rownames(dat3)),])) 

PO <- as.data.frame(t(dat3[grep("^POLESOUT", rownames(dat3)),])) 

RIT <- as.data.frame(t(dat3[grep("^RITTAE2", rownames(dat3)),])) 

S308 <- as.data.frame(t(dat3[grep("^S308", rownames(dat3)),])) 

S77 <- as.data.frame(t(dat3[grep("^S77", rownames(dat3)),])) 

S79 <- as.data.frame(t(dat3[grep("^S79", rownames(dat3)),])) 

 

 

###### TOP 10 TAXA BAR CHART - ALL YEARS TOGETHER ###### 

asvdat <- as.data.frame(t(dat.ra)) 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

#Merging metadata, taxonomy, and ASV tables into one phyloseq object 

physeq <- phyloseq(ASV,TAX,META) 

#Use transform functions from microbiome package 

transform <- microbiome::transform 

#Merge rare taxa in to "Other" 

physeq_transform <- transform(physeq, "compositional") 

ASV  # 8,340 taxa & 541 samples 

TAX  # 8,340 taxa by 7 tax. ranks 

META # 541 samples by 42 sample variables 

 

### Basic stats of seq. reads  

#Check number of microbes observed in each sample 

sample_sums(physeq) 

##Basic stats for reads of samples 

sum(sample_sums(physeq)) 

#Total reads = 24,093,755 
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mean(sample_sums(physeq)) 

#Mean = 44,535.59 

min(sample_sums(physeq)) 

#Min= 10,029 

max(sample_sums(physeq)) 

#Max = 193,655 

sd(sample_sums(physeq)) 

#Stan.Dev = 24,782.95 

ntaxa(physeq) 

#Total ASVs = 65,294 

 

physeq 

# phyloseq-class experiment-level object 

# otu_table()   OTU Table:         [ 8340 taxa and 541 samples ] 

# sample_data() Sample Data:       [ 541 samples by 42 sample variables ] 

# tax_table()   Taxonomy Table:    [ 8340 taxa by 7 taxonomic ranks ] 

 

##Retrieves the unique taxonomic ranks observed in the data set 

##[#] = rank (starting from Domain and onward DPCOFGS) 

get_taxa_unique(physeq, taxonomic.rank=rank_names(physeq)[7], errorIfNULL=TRUE) 

#Unique Domains = 4 

#Unique Phyla = 56 

#Unique Classes = 142 

#Unique Orders = 351 

#Unique Families = 508 

#Unique Genera = 728 

#Unique Species = 317 

 

## make sure there is a phyloseq object which includes the data, metadata, and taxonomy ## 

 

## Aggregating by Taxa levels 

phyPhy <- aggregate_taxa(physeq, 'Phylum') 

phyClass <- aggregate_taxa(physeq, 'Class') 

phyOrd <- aggregate_taxa(physeq, 'Order') 

phyGen <- aggregate_taxa(physeq, 'Genus') 

LakeOPhy <- as.data.frame(taxa_sums(phyPhy)) 

LakeOClass <- as.data.frame(taxa_sums(phyClass)) 

LakeOOrd <- as.data.frame(taxa_sums(phyOrd)) 

LakeOGenus <- as.data.frame(taxa_sums(phyGen)) 

#Saving each table as CSV 

write.csv(LakeOPhy, "LakeOPhylaTotals.csv") 

write.csv(LakeOClass, "LakeOClassesTotals.csv") 

write.csv(LakeOOrd, "LakeOOrdersTotals.csv") 

write.csv(LakeOGenus, "LakeOGeneraTotals.csv") 

 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names <- sort(tapply(taxa_sums(physeq_transform), tax_table(physeq_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

## write.csv(top10phy.names, "Top10PhylaLakeO.csv") 

# Proteobacteria       Bacteroidota      Cyanobacteria   Actinobacteriota  Verrucomicrobiota    Planctomycetota    

Acidobacteriota  

# 121.550676         110.168874          81.682736          57.976055          38.301827          34.610471          

15.164802  

# Bdellovibrionota        Chloroflexi    Gemmatimonadota  

# 14.615002          11.278973           9.640009  

#Cut down the physeq data to only the top 10 Phyla 

top10phyla <- subset_taxa(physeq_transform, Phylum %in% names(top10phy.names)) 

 

## Plotting taxa stacked bar based on Zone 

LakePhylaZ <- plot_bar(top10phyla, x="Zone", y="Abundance", fill="Phylum") 

LakePhylaZ <- LakePhylaZ +  

  geom_bar(aes(fill=Phylum), stat="identity", position="fill", width = 0.96)+   #width=0.96 removes any space 

between bars 

  ggtitle("Top 10 Phyla in Lake Okeechobee by Zone - March 2019 to October 2021")+ 

  facet_grid(.~Year, scales = "free",  

             labeller = as_labeller(c('1'='Year 1 (2019)', 

                                      '2'='Year 2 (2020)', 

                                      '3'='Year 3 (2021)')))+   #scales=free -> allows ggplot to change the axes 

for the data shown in each facet 

  theme_light()+                                                #labeller -> changing the labels of the grid 

  theme(axis.text.x = element_text(angle = 90, vjust = 0.28))+   #vjust= moves the x-axis text labels 

  theme(plot.title = element_text(color="navyblue", size=14, face="bold.italic", hjust = 0.5))+   #hjust= 0.5 

centers the title 

  theme(legend.title = element_text(face="italic")) 

##Changing the color (by changing the default in ggplot2 [from HELP]) 
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LakeOTop10 <- c("#2bcaf4","#24630e","#edc427","#1f60aa","#333333", 

                         "#41ea27","#806bb4","#5f421b","#f08539","#ff9eed") 

                         ## listed by phyla in alphabetical order 

withr::with_options(list(ggplot2.discrete.fill = LakeOTop10, ggplot2.discrete.colour = 

LakeOTop10),print(LakePhylaZ)) 

 

###### Top 10 phyla each year (CSVs) ###### 

#Subsetting original ASV table by year 

Y1r <- dat.ra[grep("_19$", rownames(dat.ra)),] 

Y2r <- dat.ra[grep("_20$", rownames(dat.ra)),] 

Y3r <- dat.ra[grep("_21$", rownames(dat.ra)),] 

write.csv(t(Y1), "Year1_RA.csv") 

write.csv(t(Y2), "Year2_RA.csv") 

write.csv(t(Y3), "Year3_RA.csv") 

 

# OR 

 

#Load in data if already exported to CSVs 

Y1r <- read.csv("Year1_RA.csv", row.names = 1) 

Y2r <- read.csv("Year2_RA.csv", row.names = 1) 

Y3r <- read.csv("Year3_RA.csv", row.names = 1) 

 

#Top 10 phyla in each year 

##Year 1 

asvdat <- Y1r 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyY1<- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

phyY1_transform <- transform(phyY1, "compositional") 

### Assigning Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.Y1 <- sort(tapply(taxa_sums(phyY1_transform), tax_table(phyY1_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

top10phy.names.Y1 

# Proteobacteria       Bacteroidota      Cyanobacteria   Actinobacteriota    Planctomycetota  Verrucomicrobiota   

Bdellovibrionota  

# 37.118712             34.048403          18.633005          16.562391          11.084878          10.877789           

5.230602  

# Acidobacteriota        Chloroflexi      Crenarchaeota  

# 4.481436                3.249468           2.864711  

#Cut down the physeq data to only the top 10 Phyla 

top10phylaY1 <- subset_taxa(phyY1_transform, Phylum %in% names(top10phy.names.Y1)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaY1 <- as.data.frame(top10phy.names.Y1) 

colnames(topphylaY1)[1] ="Abundance" 

write.csv(topphylaY1, "Top10Phyla_Year1.csv") 

 

##Year 2 

asvdat <- Y2r 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyY2<- phyloseq(ASV,TAX,META) 

phyY2_transform <- transform(phyY2, "compositional") 

### Assigning Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.Y2 <- sort(tapply(taxa_sums(phyY2_transform), tax_table(phyY2_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaY2 <- subset_taxa(phyY2_transform, Phylum %in% names(top10phy.names.Y2)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaY2 <- as.data.frame(top10phy.names.Y2) 

colnames(topphylaY2)[1] ="Abundance" 

write.csv(topphylaY2, "Top10Phyla_Year2.csv") 

 

##Year 3 
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asvdat <- Y3r 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyY3<- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

phyY3_transform <- transform(phyY3, "compositional") 

### Assigning Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.Y3 <- sort(tapply(taxa_sums(phyY3_transform), tax_table(phyY3_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaY3 <- subset_taxa(phyY3_transform, Phylum %in% names(top10phy.names.Y3)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaY3 <- as.data.frame(top10phy.names.Y3) 

colnames(topphylaY3)[1] ="Abundance" 

write.csv(topphylaY3, "Top10Phyla_Year3.csv") 

 

 

###### Top 10 by Stations (CSVs) - ALL YEARS TOGETHER ###### 

 

## Use sample name order from Metadata file to keep samples in chronological order  

#Note: psmelt() turns phyloseq object into a large dataframe that is in LONG format 

 

## CLV10A 

asvdat <- CLV 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyCLV <- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

phyCLV_transform <- transform(phyCLV, "compositional") 

### Assigning Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.CLV <- sort(tapply(taxa_sums(phyCLV_transform), tax_table(phyCLV_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaCLV <- subset_taxa(phyCLV_transform, Phylum %in% names(top10phy.names.CLV)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaCLV <- as.data.frame(top10phy.names.CLV) 

colnames(topphylaCLV)[1] ="Abundance" 

write.csv(topphylaCLV, "Top10Phyla_CLV.csv") 

 

 

## KISSR0.0 - (Firmicutes removed-> KISSR0.0_3_20) 

asvdat <- KISS 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyKISS <- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

phyKISS_transform <- transform(phyKISS, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.KISS <- sort(tapply(taxa_sums(phyKISS_transform), tax_table(phyKISS_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaKISS <- subset_taxa(phyKISS_transform, Phylum %in% names(top10phy.names.KISS)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaKISS <- as.data.frame(top10phy.names.KISS) 

colnames(topphylaKISS)[1] ="Abundance" 

write.csv(topphylaKISS, "Top10Phyla_KISS.csv") 
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## L001  

asvdat <- L1 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyL1 <- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

phyL1_transform <- transform(phyL1, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.L1 <- sort(tapply(taxa_sums(phyL1_transform), tax_table(phyL1_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaL1 <- subset_taxa(phyL1_transform, Phylum %in% names(top10phy.names.L1)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaL1 <- as.data.frame(top10phy.names.L1) 

colnames(topphylaL1)[1] ="Abundance" 

write.csv(topphylaL1, "Top10Phyla_L001.csv") 

 

 

## L004  

asvdat <- L4 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyL4 <- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

phyL4_transform <- transform(phyL4, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.L4 <- sort(tapply(taxa_sums(phyL4_transform), tax_table(phyL4_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaL4 <- subset_taxa(phyL4_transform, Phylum %in% names(top10phy.names.L4)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaL4 <- as.data.frame(top10phy.names.L4) 

colnames(topphylaL4)[1] ="Abundance" 

write.csv(topphylaL4, "Top10Phyla_L004.csv") 

 

 

## L005 (Firmicutes removed-> L005_3_20) 

asvdat <- L5 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyL5 <- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

phyL5_transform <- transform(phyL5, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.L5 <- sort(tapply(taxa_sums(phyL5_transform), tax_table(phyL5_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaL5 <- subset_taxa(phyL5_transform, Phylum %in% names(top10phy.names.L5)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaL5 <- as.data.frame(top10phy.names.L5) 

colnames(topphylaL5)[1] ="Abundance" 

write.csv(topphylaL5, "Top10Phyla_L005.csv") 

 

 

## L006 

asvdat <- L6 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 
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asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyL6 <- phyloseq(ASV,TAX,META) 

phyL6_transform <- transform(phyL6, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.L6 <- sort(tapply(taxa_sums(phyL6_transform), tax_table(phyL6_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaL6 <- subset_taxa(phyL6_transform, Phylum %in% names(top10phy.names.L6)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaL6 <- as.data.frame(top10phy.names.L6) 

colnames(topphylaL6)[1] ="Abundance" 

write.csv(topphylaL6, "Top10Phyla_L006.csv") 

 

 

## L007 

asvdat <- L7 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyL7 <- phyloseq(ASV,TAX,META) 

phyL7_transform <- transform(phyL7, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.L7 <- sort(tapply(taxa_sums(phyL7_transform), tax_table(phyL7_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaL7 <- subset_taxa(phyL7_transform, Phylum %in% names(top10phy.names.L7)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaL7 <- as.data.frame(top10phy.names.L7) 

colnames(topphylaL7)[1] ="Abundance" 

write.csv(topphylaL7, "Top10Phyla_L007.csv") 

 

## L008 

asvdat <- L8 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyL8 <- phyloseq(ASV,TAX,META) 

phyL8_transform <- transform(phyL8, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.L8 <- sort(tapply(taxa_sums(phyL8_transform), tax_table(phyL8_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaL8 <- subset_taxa(phyL8_transform, Phylum %in% names(top10phy.names.L8)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaL8 <- as.data.frame(top10phy.names.L8) 

colnames(topphylaL8)[1] ="Abundance" 

write.csv(topphylaL8, "Top10Phyla_L008.csv") 

 

## LZ25A  

asvdat <- Z25A 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phy25A <- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

phy25A_transform <- transform(phy25A, "compositional") 

## Top 10 Phyla 
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#Sort Phylum by abundance and pick the top 10 

top10phy.names.25A <- sort(tapply(taxa_sums(phy25A_transform), tax_table(phy25A_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phyla25A <- subset_taxa(phy25A_transform, Phylum %in% names(top10phy.names.25A)) 

#Saving names and proportions as a data frame then saving as csv 

topphyla25A <- as.data.frame(top10phy.names.25A) 

colnames(topphyla25A)[1] ="Abundance" 

write.csv(topphyla25A, "Top10Phyla_LZ25A.csv") 

 

## LZ2 (Firmicutes contam. removed LZ2_3_20) 

asvdat <- LZ2 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyLZ2 <- phyloseq(ASV,TAX,META) 

phyLZ2_transform <- transform(phyLZ2, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.LZ2 <- sort(tapply(taxa_sums(phyLZ2_transform), tax_table(phyLZ2_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaLZ2 <- subset_taxa(phyLZ2_transform, Phylum %in% names(top10phy.names.LZ2)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaLZ2 <- as.data.frame(top10phy.names.LZ2) 

colnames(topphylaLZ2)[1] ="Abundance" 

write.csv(topphylaLZ2, "Top10Phyla_LZ2.csv") 

 

## LZ30 

asvdat <- Z30 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phy30 <- phyloseq(ASV,TAX,META) 

phy30_transform <- transform(phy30, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.30 <- sort(tapply(taxa_sums(phy30_transform), tax_table(phy30_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phyla30 <- subset_taxa(phy30_transform, Phylum %in% names(top10phy.names.30)) 

#Saving names and proportions as a data frame then saving as csv 

topphyla30 <- as.data.frame(top10phy.names.30) 

colnames(topphyla30)[1] ="Abundance" 

write.csv(topphyla30, "Top10Phyla_LZ30.csv") 

 

## LZ40  

asvdat <- Z40 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phy40 <- phyloseq(ASV,TAX,META) 

phy40_transform <- transform(phy40, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.40 <- sort(tapply(taxa_sums(phy40_transform), tax_table(phy40_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phyla40 <- subset_taxa(phy40_transform, Phylum %in% names(top10phy.names.40)) 

#Saving names and proportions as a data frame then saving as csv 

topphyla40 <- as.data.frame(top10phy.names.40) 

colnames(topphyla40)[1] ="Abundance" 

write.csv(topphyla40, "Top10Phyla_LZ40.csv") 
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## PALMOUT (Firmicutes contam. removed PALMOUT_3_20) 

asvdat <- PALM 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyPALM <- phyloseq(ASV,TAX,META) 

phyPALM_transform <- transform(phyPALM, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.PALM <- sort(tapply(taxa_sums(phyPALM_transform), tax_table(phyPALM_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaPALM <- subset_taxa(phyPALM_transform, Phylum %in% names(top10phy.names.PALM)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaPALM <- as.data.frame(top10phy.names.PALM) 

colnames(topphylaPALM)[1] ="Abundance" 

write.csv(topphylaPALM, "Top10Phyla_PALM.csv") 

 

## PELBAY3 - DONE ON 11/12/22 

asvdat <- PEL 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyPEL <- phyloseq(ASV,TAX,META) 

phyPEL_transform <- transform(phyPEL, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.PEL <- sort(tapply(taxa_sums(phyPEL_transform), tax_table(phyPEL_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaPEL <- subset_taxa(phyPEL_transform, Phylum %in% names(top10phy.names.PEL)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaPEL <- as.data.frame(top10phy.names.PEL) 

colnames(topphylaPEL)[1] ="Abundance" 

write.csv(topphylaPEL, "Top10Phyla_PEL.csv") 

 

## POLE3S - DONE ON 11/12/22 (Firmicutes contam. removed POLE3S_3_20) 

asvdat <- POLE3S 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyPOLE3S <- phyloseq(ASV,TAX,META) 

phyPOLE3S_transform <- transform(phyPOLE3S, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.POLE3S <- sort(tapply(taxa_sums(phyPOLE3S_transform), tax_table(phyPOLE3S_transform)[, "Phylum"], 

sum), TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaPOLE3S <- subset_taxa(phyPOLE3S_transform, Phylum %in% names(top10phy.names.POLE3S)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaPOLE3S <- as.data.frame(top10phy.names.POLE3S) 

colnames(topphylaPOLE3S)[1] ="Abundance" 

write.csv(topphylaPOLE3S, "Top10Phyla_POLE3S.csv") 

 

## POLESOUT - DONE ON 11/12/22 (Firmicutes contam. removed POLESOUT_3_20) 

asvdat <- PO 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyPO <- phyloseq(ASV,TAX,META) 
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phyPO_transform <- transform(phyPO, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.PO <- sort(tapply(taxa_sums(phyPO_transform), tax_table(phyPO_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaPO <- subset_taxa(phyPO_transform, Phylum %in% names(top10phy.names.PO)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaPO <- as.data.frame(top10phy.names.PO) 

colnames(topphylaPO)[1] ="Abundance" 

write.csv(topphylaPO, "Top10Phyla_PO.csv") 

 

## RITTAE2 - DONE ON 11/12/22 (Firmicutes contam. removed RITTAE2_3_20) 

asvdat <- RIT 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyRIT <- phyloseq(ASV,TAX,META) 

phyRIT_transform <- transform(phyRIT, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.RIT <- sort(tapply(taxa_sums(phyRIT_transform), tax_table(phyRIT_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaRIT <- subset_taxa(phyRIT_transform, Phylum %in% names(top10phy.names.RIT)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaRIT <- as.data.frame(top10phy.names.RIT) 

colnames(topphylaRIT)[1] ="Abundance" 

write.csv(topphylaRIT, "Top10Phyla_RIT.csv") 

 

## S308  

asvdat <- S308 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyS308 <- phyloseq(ASV,TAX,META) 

phyS308_transform <- transform(phyS308, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.S308 <- sort(tapply(taxa_sums(phyS308_transform), tax_table(phyS308_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaS308 <- subset_taxa(phyS308_transform, Phylum %in% names(top10phy.names.S308)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaS308 <- as.data.frame(top10phy.names.S308) 

colnames(topphylaS308)[1] ="Abundance" 

write.csv(topphylaS308, "Top10Phyla_S308.csv") 

 

## S77  (Firmicutes contam. removed S77_3_20) 

asvdat <- S77 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyS77 <- phyloseq(ASV,TAX,META) 

phyS77_transform <- transform(phyS77, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.S77 <- sort(tapply(taxa_sums(phyS77_transform), tax_table(phyS77_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaS77 <- subset_taxa(phyS77_transform, Phylum %in% names(top10phy.names.S77)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaS77 <- as.data.frame(top10phy.names.S77) 

colnames(topphylaS77)[1] ="Abundance" 
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write.csv(topphylaS77, "Top10Phyla_S77.csv") 

 

## S79 (Firmicutes contam. removed S79_3_20) 

asvdat <- S79 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyS79 <- phyloseq(ASV,TAX,META) 

phyS79_transform <- transform(phyS79, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.S79 <- sort(tapply(taxa_sums(phyS79_transform), tax_table(phyS79_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaS79 <- subset_taxa(phyS79_transform, Phylum %in% names(top10phy.names.S79)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaS79 <- as.data.frame(top10phy.names.S79) 

colnames(topphylaS79)[1] ="Abundance" 

write.csv(topphylaS79, "Top10Phyla_S79.csv") 

 

###### Plotting Taxonomy Bar plots using phyloseq - ALL YEARS TOGETHER ###### 

#Defining the initial plot  

CLV <- plot_bar(top10phylaCLV, x="Sample", y="Abundance", fill = "Phylum") 

#Reordering the samples so they plot in chronological order 

CLV$data$Sample <- as.factor(CLV$data$Sample) #Assigning the samples as factors so I can manually put the levels 

in order 

levels(CLV$data$Sample) #making sure each sample name is a level (should be 28 levels) 

#Samples ARE NOT in chronological order here 

CLV$data$Sample <- factor(CLV$data$Sample, 

levels=c("CLV10A_4_19","CLV10A_5_19","CLV10A_6_19","CLV10A_7_19","CLV10A_8_19", 

                                                    

"CLV10A_9_19","CLV10A_10_19","CLV10A_11_19","CLV10A_12_19","CLV10A_1_20", 

                                                    

"CLV10A_2_20","CLV10A_3_20","CLV10A_4_20","CLV10A_6_20","CLV10A_7_20", 

                                                    

"CLV10A_8_20","CLV10A_9_20","CLV10A_10_20","CLV10A_12_20","CLV10A_1_21", 

                                                    

"CLV10A_2_21","CLV10A_3_21","CLV10A_4_21","CLV10A_5_21","CLV10A_6_21", 

                                                    "CLV10A_7_21","CLV10A_8_21","CLV10A_10_21")) 

levels(CLV$data$Sample) #Samples ARE in chronological order now  

#Customizing the plot using ggplot2's geom_bar 

CLV +  

  geom_bar(aes(color=Phylum, fill=Phylum), stat="identity", position="fill", width = 0.96)+   #width=0.96 

removes any space between bars 

  ggtitle("Top 10 Phyla at CLV10A - March 2019 to October 2021")+ 

  facet_grid(.~Year, scales = "free",  

             labeller = as_labeller(c('1'='Year 1 (2019)', 

                                      '2'='Year 2 (2020)', 

                                      '3'='Year 3 (2021)')))+   #scales=free -> allows ggplot to change the axes 

for the data shown in each facet 

  theme_light()+                                                #labeller -> changing the labels of the grid 

  theme(axis.text.x = element_text(angle = 90, vjust = 0.28))+   #vjust= moves the x-axis text labels 

  theme(plot.title = element_text(color="navyblue", size=14, face="bold.italic", hjust = 0.5))+   #hjust= 0.5 

centers the title 

  theme(legend.title = element_text(face="italic")) 

#facet_grid - splits up the graph into the variable specified 

#position=fill - bars go up to 1.00, while position=stack - bar shows actual abundance (bars don't line up)  

 

#Defining the initial plot  

KISS <- plot_bar(top10phylaKISS, x="Sample", y="Abundance", fill = "Phylum") 

#Reordering the samples so they plot in chronological order 

KISS$data$Sample <- as.factor(KISS$data$Sample) 

levels(KISS$data$Sample) 

KISS$data$Sample <- factor(KISS$data$Sample, 

levels=c("KISSR0.0_3_19","KISSR0.0_4_19","KISSR0.0_5_19","KISSR0.0_7_19","KISSR0.0_8_19","KISSR0.0_9_19", 

                                                      

"KISSR0.0_11_19","KISSR0.0_12_19","KISSR0.0_1_20","KISSR0.0_2_20","KISSR0.0_4_20", 

                                                      

"KISSR0.0_5_20","KISSR0.0_6_20","KISSR0.0_8_20","KISSR0.0_9_20","KISSR0.0_10_20","KISSR0.0_11_20", 

                                                      

"KISSR0.0_12_20","KISSR0.0_2_21","KISSR0.0_3_21","KISSR0.0_4_21","KISSR0.0_5_21","KISSR0.0_6_21", 
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"KISSR0.0_7_21","KISSR0.0_8_21","KISSR0.0_9_21","KISSR0.0_10_21")) 

levels(KISS$data$Sample)  

#Customizing the plot using ggplot2's geom_bar 

KISS +  

  geom_bar(aes(color=Phylum, fill=Phylum), stat="identity", position="fill", width = 0.98)+  

  ggtitle("Top 10 Phyla at KISSR0.0 - March 2019 to October 2021")+ 

  facet_grid(.~Year, scales = "free", labeller = as_labeller(c('1'='Year 1 (2019)', 

                                                               '2'='Year 2 (2020)', 

                                                               '3'='Year 3 (2021)')))+ 

  theme_light()+ 

  theme(axis.text.x = element_text(angle = 90, vjust = 0.28))+ 

  theme(plot.title = element_text(color="navyblue", size=14, face="bold.italic", hjust = 0.5))+ 

  theme(legend.title = element_text(face="italic")) 

 

#Defining the initial plot  

L1 <- plot_bar(top10phylaL1, x="Sample", y="Abundance", fill = "Phylum") 

#Reordering the samples so they plot in chronological order 

L1$data$Sample <- as.factor(L1$data$Sample) 

levels(L1$data$Sample) 

L1$data$Sample <- factor(L1$data$Sample, 

levels=c("L001_3_19","L001_4_19","L001_5_19","L001_6_19","L001_7_19","L001_8_19","L001_9_19", 

                                                  

"L001_11_19","L001_12_19","L001_1_20","L001_2_20","L001_3_20","L001_4_20", 

                                                  

"L001_6_20","L001_7_20","L001_8_20","L001_9_20","L001_10_20","L001_11_20", 

                                                  

"L001_12_20","L001_2_21","L001_3_21","L001_4_21","L001_5_21","L001_6_21", 

                                                  "L001_7_21","L001_8_21","L001_9_21","L001_10_21")) 

levels(L1$data$Sample)  

#Customizing the plot using ggplot2's geom_bar 

L1 +  

  geom_bar(aes(color=Phylum, fill=Phylum), stat="identity", position="fill", width = 0.98)+ 

  ggtitle("Top 10 Phyla at L001 - March 2019 to October 2021")+ 

  facet_grid(.~Year, scales = "free", labeller = as_labeller(c('1'='Year 1 (2019)', 

                                                               '2'='Year 2 (2020)', 

                                                               '3'='Year 3 (2021)')))+ 

  theme_light()+ 

  theme(axis.text.x = element_text(angle = 90, vjust = 0.28))+ 

  theme(plot.title = element_text(color="navyblue", size=14, face="bold.italic", hjust = 0.5))+ 

  theme(legend.title = element_text(face="italic")) 

 

#Defining the initial plot  

L4 <- plot_bar(top10phylaL4, x="Sample", y="Abundance", fill = "Phylum") 

#Reordering the samples so they plot in chronological order 

L4$data$Sample <- as.factor(L4$data$Sample) 

levels(L4$data$Sample) 

L4$data$Sample <- factor(L4$data$Sample, levels=c("L004_3_19","L004_5_19","L004_8_19","L004_9_19", 

                                                  

"L004_11_19","L004_12_19","L004_1_20","L004_2_20","L004_3_20","L004_4_20", 

                                                  

"L004_6_20","L004_7_20","L004_8_20","L004_9_20","L004_10_20","L004_11_20", 

                                                  "L004_12_20","L004_2_21","L004_3_21","L004_4_21","L004_6_21", 

                                                  "L004_7_21","L004_8_21","L004_10_21")) 

levels(L4$data$Sample)  

#Customizing the plot using ggplot2's geom_bar 

L4 +  

  geom_bar(aes(color=Phylum, fill=Phylum), stat="identity", position="fill", width = 0.98)+ 

  ggtitle("Top 10 Phyla at L004 - March 2019 to October 2021")+ 

  facet_grid(.~Year, scales = "free", labeller = as_labeller(c('1'='Year 1 (2019)', 

                                                               '2'='Year 2 (2020)', 

                                                               '3'='Year 3 (2021)')))+ 

  theme_light()+ 

  theme(axis.text.x = element_text(angle = 90, vjust = 0.28))+ 

  theme(plot.title = element_text(color="navyblue", size=14, face="bold.italic", hjust = 0.5))+ 

  theme(legend.title = element_text(face="italic")) 

## Top 10 Classes - 12/01/22 

#Sort Class by abundance and pick the top 10 

top10class.names.L4 <- sort(tapply(taxa_sums(phyL4_transform), tax_table(phyL4_transform)[, "Class"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 classes 

top10classL4 <- subset_taxa(phyL4_transform, Class %in% names(top10class.names.L4)) 

#Saving names and proportions as a data frame then saving as csv 

topclassL4 <- as.data.frame(top10class.names.L4) 

colnames(topclassL4)[1] ="Abundance" 

write.csv(topclassL4, "Top10Classes_L004.csv") 
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### Plotting the graph -PHYLUM 

#Defining the initial plot  

L4c <- plot_bar(top10classL4, x="Sample", y="Abundance", fill = "Class") 

#Reordering the samples so they plot in chronological order 

L4c$data$Sample <- as.factor(L4c$data$Sample) 

levels(L4c$data$Sample) 

L4c$data$Sample <- factor(L4c$data$Sample, levels=c("L004_3_19","L004_5_19","L004_8_19","L004_9_19", 

                                                    

"L004_11_19","L004_12_19","L004_1_20","L004_2_20","L004_3_20","L004_4_20", 

                                                    

"L004_6_20","L004_7_20","L004_8_20","L004_9_20","L004_10_20","L004_11_20", 

                                                    

"L004_12_20","L004_2_21","L004_3_21","L004_4_21","L004_6_21", 

                                                    "L004_7_21","L004_8_21","L004_10_21")) 

levels(L4c$data$Sample)  

#Customizing the plot using ggplot2's geom_bar 

L4c +  

  geom_bar(aes(color=Class, fill=Class), stat="identity", position="fill", width = 0.98)+ 

  ggtitle("Top 10 Classes at L004 - March 2019 to October 2021")+ 

  facet_grid(.~Year, scales = "free", labeller = as_labeller(c('1'='Year 1 (2019)', 

                                                               '2'='Year 2 (2020)', 

                                                               '3'='Year 3 (2021)')))+ 

  theme_light()+ 

  theme(axis.text.x = element_text(angle = 90, vjust = 0.28))+ 

  theme(plot.title = element_text(color="navyblue", size=14, face="bold.italic", hjust = 0.5))+ 

  theme(legend.title = element_text(face="italic")) 

 

#Defining the initial plot  

L5 <- plot_bar(top10phylaL5, x="Sample", y="Abundance", fill = "Phylum") 

#Reordering the samples so they plot in chronological order 

L5$data$Sample <- as.factor(L5$data$Sample) 

levels(L5$data$Sample) 

L5$data$Sample <- factor(L5$data$Sample, 

levels=c("L005_3_19","L005_4_19","L005_5_19","L005_6_19","L005_7_19","L005_8_19","L005_9_19", 

                                                  "L005_11_19","L005_12_19","L005_1_20","L005_2_20","L005_4_20", 

                                                  

"L005_6_20","L005_7_20","L005_8_20","L005_9_20","L005_10_20","L005_11_20", 

                                                  

"L005_12_20","L005_2_21","L005_3_21","L005_4_21","L005_5_21","L005_6_21", 

                                                  "L005_7_21","L005_8_21","L005_9_21","L005_10_21")) 

levels(L5$data$Sample)  

#Customizing the plot using ggplot2's geom_bar 

L5 +  

  geom_bar(aes(color=Phylum, fill=Phylum), stat="identity", position="fill", width = 0.98)+ 

  ggtitle("Top 10 Phyla at L005 - March 2019 to October 2021")+ 

  facet_grid(.~Year, scales = "free", labeller = as_labeller(c('1'='Year 1 (2019)', 

                                                               '2'='Year 2 (2020)', 

                                                               '3'='Year 3 (2021)')))+ 

  theme_light()+ 

  theme(axis.text.x = element_text(angle = 90, vjust = 0.28))+ 

  theme(plot.title = element_text(color="navyblue", size=14, face="bold.italic", hjust = 0.5))+ 

  theme(legend.title = element_text(face="italic")) 

 

#Defining the initial plot  

L6 <- plot_bar(top10phylaL6, x="Sample", y="Abundance", fill = "Phylum") 

#Reordering the samples so they plot in chronological order 

L6$data$Sample <- as.factor(L6$data$Sample) 

levels(L6$data$Sample) 

L6$data$Sample <- factor(L6$data$Sample, levels=c("L006_5_19","L006_7_19","L006_8_19","L006_9_19", 

                                                  

"L006_11_19","L006_12_19","L006_1_20","L006_2_20","L006_3_20","L006_4_20", 

                                                  

"L006_5_20","L006_6_20","L006_7_20","L006_8_20","L006_9_20","L006_10_20","L006_11_20", 

                                                  

"L006_12_20","L006_1_21","L006_2_21","L006_3_21","L006_4_21","L006_5_21","L006_6_21", 

                                                  "L006_7_21","L006_8_21","L006_10_21")) 

levels(L6$data$Sample)  

#Customizing the plot using ggplot2's geom_bar 

L6 +  

  geom_bar(aes(color=Phylum, fill=Phylum), stat="identity", position="fill", width = 0.98)+ 

  ggtitle("Top 10 Phyla at L006 - March 2019 to October 2021")+ 

  facet_grid(.~Year, scales = "free", labeller = as_labeller(c('1'='Year 1 (2019)', 

                                                               '2'='Year 2 (2020)', 

                                                               '3'='Year 3 (2021)')))+ 

  theme_light()+ 

  theme(axis.text.x = element_text(angle = 90, vjust = 0.28))+ 
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  theme(plot.title = element_text(color="navyblue", size=14, face="bold.italic", hjust = 0.5))+ 

  theme(legend.title = element_text(face="italic")) 

 

### Plotting the graph 

#Defining the initial plot  

L7 <- plot_bar(top10phylaL7, x="Sample", y="Abundance", fill = "Phylum") 

#Reordering the samples so they plot in chronological order 

L7$data$Sample <- as.factor(L7$data$Sample) 

levels(L7$data$Sample) 

L7$data$Sample <- factor(L7$data$Sample, 

levels=c("L007_3_19","L007_4_19","L007_5_19","L007_6_19","L007_7_19","L007_8_19","L007_9_19", 

                                                  

"L007_11_19","L007_12_19","L007_1_20","L007_2_20","L007_3_20","L007_4_20","L007_5_20", 

                                                  "L007_6_20","L007_8_20","L007_9_20","L007_10_20","L007_11_20", 

                                                  

"L007_12_20","L007_1_21","L007_2_21","L007_3_21","L007_4_21","L007_5_21","L007_6_21", 

                                                  "L007_7_21","L007_8_21","L007_9_21","L007_10_21")) 

levels(L7$data$Sample)  

#Customizing the plot using ggplot2's geom_bar 

L7 +  

  geom_bar(aes(color=Phylum, fill=Phylum), stat="identity", position="fill", width = 0.98)+ 

  ggtitle("Top 10 Phyla at L007 - March 2019 to October 2021")+ 

  facet_grid(.~Year, scales = "free", labeller = as_labeller(c('1'='Year 1 (2019)', 

                                                               '2'='Year 2 (2020)', 

                                                               '3'='Year 3 (2021)')))+ 

  theme_light()+ 

  theme(axis.text.x = element_text(angle = 90, vjust = 0.28))+ 

  theme(plot.title = element_text(color="navyblue", size=14, face="bold.italic", hjust = 0.5))+ 

  theme(legend.title = element_text(face="italic")) 

 

### Plotting the graph 

#Defining the initial plot  

L8 <- plot_bar(top10phylaL8, x="Sample", y="Abundance", fill = "Phylum") 

#Reordering the samples so they plot in chronological order 

L8$data$Sample <- as.factor(L8$data$Sample) 

levels(L8$data$Sample) 

L8$data$Sample <- factor(L8$data$Sample, 

levels=c("L008_3_19","L008_5_19","L008_6_19","L008_7_19","L008_8_19","L008_9_19", 

                                                  

"L008_11_19","L008_12_19","L008_1_20","L008_2_20","L008_3_20","L008_4_20","L008_5_20", 

                                                  

"L008_6_20","L008_7_20","L008_8_20","L008_9_20","L008_10_20","L008_11_20", 

                                                  

"L008_12_20","L008_2_21","L008_3_21","L008_4_21","L008_5_21","L008_6_21", 

                                                  "L008_7_21","L008_8_21","L008_10_21")) 

levels(L8$data$Sample) 

#Customizing the plot using ggplot2's geom_bar 

L8 +  

  geom_bar(aes(color=Phylum, fill=Phylum), stat="identity", position="fill", width = 0.98)+ 

  ggtitle("Top 10 Phyla at L008 - March 2019 to October 2021")+ 

  facet_grid(.~Year, scales = "free", labeller = as_labeller(c('1'='Year 1 (2019)', 

                                                               '2'='Year 2 (2020)', 

                                                               '3'='Year 3 (2021)')))+ 

  theme_light()+ 

  theme(axis.text.x = element_text(angle = 90, vjust = 0.28))+ 

  theme(plot.title = element_text(color="navyblue", size=14, face="bold.italic", hjust = 0.5))+ 

  theme(legend.title = element_text(face="italic")) 

 

### Plotting the graph 

#Defining the initial plot  

Z25A <- plot_bar(top10phyla25A, x="Sample", y="Abundance", fill = "Phylum") 

#Reordering the samples so they plot in chronological order 

Z25A$data$Sample <- as.factor(Z25A$data$Sample) 

levels(Z25A$data$Sample) 

Z25A$data$Sample <- factor(Z25A$data$Sample, 

levels=c("LZ25A_3_19","LZ25A_4_19","LZ25A_6_19","LZ25A_7_19","LZ25A_8_19","LZ25A_9_19", 

                                                      

"LZ25A_11_19","LZ25A_12_19","LZ25A_1_20","LZ25A_2_20","LZ25A_3_20","LZ25A_4_20", 

                                                      

"LZ25A_5_20","LZ25A_7_20","LZ25A_8_20","LZ25A_9_20","LZ25A_10_20","LZ25A_11_20", 

                                                      

"LZ25A_12_20","LZ25A_1_21","LZ25A_2_21","LZ25A_3_21","LZ25A_4_21","LZ25A_5_21","LZ25A_6_21", 

                                                      "LZ25A_7_21","LZ25A_10_21")) 

levels(Z25A$data$Sample) 

#Customizing the plot using ggplot2's geom_bar 

Z25A +  
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  geom_bar(aes(color=Phylum, fill=Phylum), stat="identity", position="fill", width = 0.98)+ 

  ggtitle("Top 10 Phyla at LZ25A - March 2019 to October 2021")+ 

  facet_grid(.~Year, scales = "free", labeller = as_labeller(c('1'='Year 1 (2019)', 

                                                               '2'='Year 2 (2020)', 

                                                               '3'='Year 3 (2021)')))+ 

  theme_light()+ 

  theme(axis.text.x = element_text(angle = 90, vjust = 0.28))+ 

  theme(plot.title = element_text(color="navyblue", size=14, face="bold.italic", hjust = 0.5))+ 

  theme(legend.title = element_text(face="italic")) 

 

### Plotting the graph 

#Defining the initial plot  

LZ2 <- plot_bar(top10phylaLZ2, x="Sample", y="Abundance", fill = "Phylum") 

#Reordering the samples so they plot in chronological order 

LZ2$data$Sample <- as.factor(LZ2$data$Sample) 

levels(LZ2$data$Sample) 

LZ2$data$Sample <- factor(LZ2$data$Sample, 

levels=c("LZ2_3_19","LZ2_4_19","LZ2_5_19","LZ2_6_19","LZ2_8_19","LZ2_9_19", 

                                                    "LZ2_11_19","LZ2_12_19","LZ2_1_20","LZ2_2_20","LZ2_4_20", 

                                                    

"LZ2_5_20","LZ2_6_20","LZ2_7_20","LZ2_8_20","LZ2_9_20","LZ2_10_20","LZ2_11_20", 

                                                    

"LZ2_12_20","LZ2_2_21","LZ2_3_21","LZ2_4_21","LZ2_5_21","LZ2_6_21", 

                                                    "LZ2_7_21","LZ2_8_21","LZ2_10_21")) 

levels(LZ2$data$Sample) 

#Customizing the plot using ggplot2's geom_bar 

LZ2 +  

  geom_bar(aes(color=Phylum, fill=Phylum), stat="identity", position="fill", width = 0.98)+ 

  ggtitle("Top 10 Phyla at LZ2 - March 2019 to October 2021")+ 

  facet_grid(.~Year, scales = "free", labeller = as_labeller(c('1'='Year 1 (2019)', 

                                                               '2'='Year 2 (2020)', 

                                                               '3'='Year 3 (2021)')))+ 

  theme_light()+ 

  theme(axis.text.x = element_text(angle = 90, vjust = 0.28))+ 

  theme(plot.title = element_text(color="navyblue", size=14, face="bold.italic", hjust = 0.5))+ 

  theme(legend.title = element_text(face="italic")) 

 

 

### Plotting the graph 

#Defining the initial plot  

Z30 <- plot_bar(top10phyla30, x="Sample", y="Abundance", fill = "Phylum") 

#Reordering the samples so they plot in chronological order 

Z30$data$Sample <- as.factor(Z30$data$Sample) 

levels(Z30$data$Sample) 

Z30$data$Sample <- factor(Z30$data$Sample, 

levels=c("LZ30_4_19","LZ30_5_19","LZ30_6_19","LZ30_7_19","LZ30_8_19","LZ30_9_19","LZ30_10_19", 

                                                    

"LZ30_11_19","LZ30_12_19","LZ30_1_20","LZ30_2_20","LZ30_3_20","LZ30_4_20","LZ30_5_20", 

                                                    

"LZ30_6_20","LZ30_7_20","LZ30_8_20","LZ30_9_20","LZ30_10_20","LZ30_11_20", 

                                                    

"LZ30_12_20","LZ30_1_21","LZ30_2_21","LZ30_3_21","LZ30_4_21","LZ30_5_21","LZ30_6_21", 

                                                    "LZ30_7_21","LZ30_8_21","LZ30_10_21")) 

levels(Z30$data$Sample) 

#Customizing the plot using ggplot2's geom_bar 

Z30 +  

  geom_bar(aes(color=Phylum, fill=Phylum), stat="identity", position="fill", width = 0.98)+ 

  ggtitle("Top 10 Phyla at LZ30 - March 2019 to October 2021")+ 

  facet_grid(.~Year, scales = "free", labeller = as_labeller(c('1'='Year 1 (2019)', 

                                                               '2'='Year 2 (2020)', 

                                                               '3'='Year 3 (2021)')))+ 

  theme_light()+ 

  theme(axis.text.x = element_text(angle = 90, vjust = 0.28))+ 

  theme(plot.title = element_text(color="navyblue", size=14, face="bold.italic", hjust = 0.5))+ 

  theme(legend.title = element_text(face="italic")) 

 

### Plotting the graph 

#Defining the initial plot  

Z40 <- plot_bar(top10phyla40, x="Sample", y="Abundance", fill = "Phylum") 

#Reordering the samples so they plot in chronological order 

Z40$data$Sample <- as.factor(Z40$data$Sample) 

levels(Z40$data$Sample) 

Z40$data$Sample <- factor(Z40$data$Sample, 

levels=c("LZ40_3_19","LZ40_4_19","LZ40_5_19","LZ40_6_19","LZ40_7_19","LZ40_8_19","LZ40_9_19", 

                                                    

"LZ40_11_19","LZ40_12_19","LZ40_1_20","LZ40_2_20","LZ40_3_20","LZ40_4_20", 
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"LZ40_5_20","LZ40_6_20","LZ40_7_20","LZ40_8_20","LZ40_9_20","LZ40_10_20", 

                                                    

"LZ40_12_20","LZ40_1_21","LZ40_2_21","LZ40_3_21","LZ40_4_21","LZ40_5_21","LZ40_6_21", 

                                                    "LZ40_7_21","LZ40_8_21","LZ40_9_21","LZ40_10_21")) 

levels(Z40$data$Sample) 

#Customizing the plot using ggplot2's geom_bar 

Z40 +  

  geom_bar(aes(color=Phylum, fill=Phylum), stat="identity", position="fill", width = 0.98)+ 

  ggtitle("Top 10 Phyla at LZ40 - March 2019 to October 2021")+ 

  facet_grid(.~Year, scales = "free", labeller = as_labeller(c('1'='Year 1 (2019)', 

                                                               '2'='Year 2 (2020)', 

                                                               '3'='Year 3 (2021)')))+ 

  theme_light()+ 

  theme(axis.text.x = element_text(angle = 90, vjust = 0.28))+ 

  theme(plot.title = element_text(color="navyblue", size=14, face="bold.italic", hjust = 0.5))+ 

  theme(legend.title = element_text(face="italic")) 

 

### Plotting the graph 

#Defining the initial plot  

PALM <- plot_bar(top10phylaPALM, x="Sample", y="Abundance", fill = "Phylum") 

#Reordering the samples so they plot in chronological order 

PALM$data$Sample <- as.factor(PALM$data$Sample) 

levels(PALM$data$Sample) 

PALM$data$Sample <- factor(PALM$data$Sample, 

levels=c("PALMOUT_3_19","PALMOUT_4_19","PALMOUT_6_19","PALMOUT_7_19","PALMOUT_8_19", 

                                                      

"PALMOUT_11_19","PALMOUT_12_19","PALMOUT_1_20","PALMOUT_2_20","PALMOUT_4_20", 

                                                      

"PALMOUT_5_20","PALMOUT_6_20","PALMOUT_7_20","PALMOUT_8_20","PALMOUT_9_20","PALMOUT_10_20", 

                                                      

"PALMOUT_12_20","PALMOUT_1_21","PALMOUT_2_21","PALMOUT_3_21","PALMOUT_4_21","PALMOUT_5_21","PALMOUT_6_21", 

                                                      

"PALMOUT_7_21","PALMOUT_8_21","PALMOUT_9_21","PALMOUT_10_21")) 

levels(PALM$data$Sample) 

 

#Customizing the plot using ggplot2's geom_bar 

PALM +  

  geom_bar(aes(color=Phylum, fill=Phylum), stat="identity", position="fill", width = 0.98)+ 

  ggtitle("Top 10 Phyla at PALMOUT - March 2019 to October 2021")+ 

  facet_grid(.~Year, scales = "free", labeller = as_labeller(c('1'='Year 1 (2019)', 

                                                               '2'='Year 2 (2020)', 

                                                               '3'='Year 3 (2021)')))+ 

  theme_light()+ 

  theme(axis.text.x = element_text(angle = 90, vjust = 0.28))+ 

  theme(plot.title = element_text(color="navyblue", size=14, face="bold.italic", hjust = 0.5))+ 

  theme(legend.title = element_text(face="italic")) 

 

### Plotting the graph 

#Defining the initial plot  

PEL <- plot_bar(top10phylaPEL, x="Sample", y="Abundance", fill = "Phylum") 

#Reordering the samples so they plot in chronological order 

PEL$data$Sample <- as.factor(PEL$data$Sample) 

levels(PEL$data$Sample) 

PEL$data$Sample <- factor(PEL$data$Sample, 

levels=c("PELBAY3_3_19","PELBAY3_5_19","PELBAY3_6_19","PELBAY3_7_19","PELBAY3_8_19","PELBAY3_9_19", 

                                                    

"PELBAY3_11_19","PELBAY3_12_19","PELBAY3_1_20","PELBAY3_2_20","PELBAY3_4_20","PELBAY3_5_20", 

                                                    

"PELBAY3_6_20","PELBAY3_7_20","PELBAY3_8_20","PELBAY3_9_20","PELBAY3_10_20","PELBAY3_11_20", 

                                                    

"PELBAY3_12_20","PELBAY3_1_21","PELBAY3_2_21","PELBAY3_3_21","PELBAY3_4_21","PELBAY3_5_21","PELBAY3_6_21", 

                                                    "PELBAY3_7_21","PELBAY3_8_21","PELBAY3_10_21")) 

levels(PEL$data$Sample)  

#Customizing the plot using ggplot2's geom_bar 

PEL +  

  geom_bar(aes(color=Phylum, fill=Phylum), stat="identity", position="fill", width = 0.98)+ 

  ggtitle("Top 10 Phyla at PELBAY3 - March 2019 to October 2021")+ 

  facet_grid(.~Year, scales = "free", labeller = as_labeller(c('1'='Year 1 (2019)', 

                                                               '2'='Year 2 (2020)', 

                                                               '3'='Year 3 (2021)')))+ 

  theme_light()+ 

  theme(axis.text.x = element_text(angle = 90, vjust = 0.28))+ 

  theme(plot.title = element_text(color="navyblue", size=14, face="bold.italic", hjust = 0.5))+ 

  theme(legend.title = element_text(face="italic")) 
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### Plotting the graph 

#Defining the initial plot  

POLE3S <- plot_bar(top10phylaPOLE3S, x="Sample", y="Abundance", fill = "Phylum") 

#Reordering the samples so they plot in chronological order 

POLE3S$data$Sample <- as.factor(POLE3S$data$Sample) 

levels(POLE3S$data$Sample) 

POLE3S$data$Sample <- factor(POLE3S$data$Sample, 

levels=c("POLE3S_3_19","POLE3S_5_19","POLE3S_6_19","POLE3S_7_19","POLE3S_8_19", 

                                                          

"POLE3S_12_19","POLE3S_1_20","POLE3S_2_20","POLE3S_4_20", 

                                                          

"POLE3S_7_20","POLE3S_8_20","POLE3S_9_20","POLE3S_10_20","POLE3S_11_20", 

                                                          

"POLE3S_12_20","POLE3S_1_21","POLE3S_2_21","POLE3S_3_21","POLE3S_4_21","POLE3S_5_21","POLE3S_6_21", 

                                                          "POLE3S_7_21","POLE3S_8_21","POLE3S_10_21")) 

levels(POLE3S$data$Sample)  

#Customizing the plot using ggplot2's geom_bar and exporting as PNG file 

png("Top10PhylaPOLE3S.png", width = 885, height = 575) # creates a named png file in your working directory 

POLE3S +  

  geom_bar(aes(color=Phylum, fill=Phylum), stat="identity", position="fill", width = 0.98)+ 

  ggtitle("Top 10 Phyla at POLE3S - March 2019 to October 2021")+ 

  facet_grid(.~Year, scales = "free", labeller = as_labeller(c('1'='Year 1 (2019)', 

                                                               '2'='Year 2 (2020)', 

                                                               '3'='Year 3 (2021)')))+ 

  theme_light()+ 

  theme(axis.text.x = element_text(angle = 90, vjust = 0.28))+ 

  theme(plot.title = element_text(color="navyblue", size=14, face="bold.italic", hjust = 0.5))+ 

  theme(legend.title = element_text(face="italic")) 

dev.off() #stops writing to the png file and saves it 

 

### Plotting the graph 

#Defining the initial plot  

PO <- plot_bar(top10phylaPO, x="Sample", y="Abundance", fill = "Phylum") 

#Reordering the samples so they plot in chronological order 

PO$data$Sample <- as.factor(PO$data$Sample) 

levels(PO$data$Sample) 

PO$data$Sample <- factor(PO$data$Sample, 

levels=c("POLESOUT_3_19","POLESOUT_4_19","POLESOUT_5_19","POLESOUT_6_19","POLESOUT_7_19","POLESOUT_8_19", 

                                                  

"POLESOUT_11_19","POLESOUT_1_20","POLESOUT_2_20","POLESOUT_4_20", 

                                                  

"POLESOUT_6_20","POLESOUT_7_20","POLESOUT_8_20","POLESOUT_9_20","POLESOUT_10_20","POLESOUT_11_20", 

                                                  

"POLESOUT_12_20","POLESOUT_2_21","POLESOUT_3_21","POLESOUT_4_21","POLESOUT_5_21","POLESOUT_6_21", 

                                                  

"POLESOUT_7_21","POLESOUT_8_21","POLESOUT_9_21","POLESOUT_10_21")) 

levels(PO$data$Sample) 

#Customizing the plot using ggplot2's geom_bar 

png("Top10PhylaPOLESOUT.png", width = 885, height = 575) 

PO +  

  geom_bar(aes(color=Phylum, fill=Phylum), stat="identity", position="fill", width = 0.98)+ 

  ggtitle("Top 10 Phyla at POLESOUT - March 2019 to October 2021")+ 

  facet_grid(.~Year, scales = "free", labeller = as_labeller(c('1'='Year 1 (2019)', 

                                                               '2'='Year 2 (2020)', 

                                                               '3'='Year 3 (2021)')))+ 

  theme_light()+ 

  theme(axis.text.x = element_text(angle = 90, vjust = 0.28))+ 

  theme(plot.title = element_text(color="navyblue", size=14, face="bold.italic", hjust = 0.5))+ 

  theme(legend.title = element_text(face="italic")) 

dev.off() 

 

### Plotting the graph 

#Defining the initial plot  

RIT <- plot_bar(top10phylaRIT, x="Sample", y="Abundance", fill = "Phylum") 

#Reordering the samples so they plot in chronological order 

RIT$data$Sample <- as.factor(RIT$data$Sample) 

levels(RIT$data$Sample) 

RIT$data$Sample <- factor(RIT$data$Sample, 

levels=c("RITTAE2_3_19","RITTAE2_4_19","RITTAE2_6_19","RITTAE2_7_19","RITTAE2_8_19", 

                                                    

"RITTAE2_11_19","RITTAE2_12_19","RITTAE2_1_20","RITTAE2_2_20","RITTAE2_4_20", 

                                                    

"RITTAE2_8_20","RITTAE2_9_20","RITTAE2_10_20","RITTAE2_11_20", 

                                                    

"RITTAE2_12_20","RITTAE2_1_21","RITTAE2_2_21","RITTAE2_3_21","RITTAE2_4_21","RITTAE2_5_21","RITTAE2_6_21", 

                                                    "RITTAE2_7_21","RITTAE2_8_21","RITTAE2_10_21")) 
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levels(RIT$data$Sample) 

#Customizing the plot using ggplot2's geom_bar 

png("Top10PhylaRITTAE2.png", width = 885, height = 575) 

RIT +  

  geom_bar(aes(color=Phylum, fill=Phylum), stat="identity", position="fill", width = 0.98)+ 

  ggtitle("Top 10 Phyla at RITTAE2 - March 2019 to October 2021")+ 

  facet_grid(.~Year, scales = "free", labeller = as_labeller(c('1'='Year 1 (2019)', 

                                                               '2'='Year 2 (2020)', 

                                                               '3'='Year 3 (2021)')))+ 

  theme_light()+ 

  theme(axis.text.x = element_text(angle = 90, vjust = 0.28))+ 

  theme(plot.title = element_text(color="navyblue", size=14, face="bold.italic", hjust = 0.5))+ 

  theme(legend.title = element_text(face="italic")) 

dev.off() 

 

### Plotting the graph 

#Defining the initial plot  

S308 <- plot_bar(top10phylaS308, x="Sample", y="Abundance", fill = "Phylum") 

#Reordering the samples so they plot in chronological order 

S308$data$Sample <- as.factor(S308$data$Sample) 

levels(S308$data$Sample) 

S308$data$Sample <- factor(S308$data$Sample, 

levels=c("S308_3_19","S308_4_19","S308_5_19","S308_6_19","S308_7_19","S308_9_19","S308_10_19", 

                                                      

"S308_11_19","S308_12_19","S308_1_20","S308_2_20","S308_3_20","S308_4_20","S308_5_20", 

                                                      

"S308_6_20","S308_7_20","S308_8_20","S308_9_20","S308_10_20","S308_11_20", 

                                                      

"S308_12_20","S308_1_21","S308_2_21","S308_3_21","S308_4_21","S308_5_21","S308_6_21")) 

levels(S308$data$Sample) 

#Customizing the plot using ggplot2's geom_bar 

png("Top10PhylaS308.png", width = 885, height = 575) 

S308 +  

  geom_bar(aes(color=Phylum, fill=Phylum), stat="identity", position="fill", width = 0.98)+ 

  ggtitle("Top 10 Phyla at S308 - March 2019 to October 2021")+ 

  facet_grid(.~Year, scales = "free", labeller = as_labeller(c('1'='Year 1 (2019)', 

                                                               '2'='Year 2 (2020)', 

                                                               '3'='Year 3 (2021)')))+ 

  theme_light()+ 

  theme(axis.text.x = element_text(angle = 90, vjust = 0.28))+ 

  theme(plot.title = element_text(color="navyblue", size=14, face="bold.italic", hjust = 0.5))+ 

  theme(legend.title = element_text(face="italic")) 

dev.off() 

 

### Plotting the graph 

#Defining the initial plot  

S77 <- plot_bar(top10phylaS77, x="Sample", y="Abundance", fill = "Phylum") 

#Reordering the samples so they plot in chronological order 

S77$data$Sample <- as.factor(S77$data$Sample) 

levels(S77$data$Sample) 

S77$data$Sample <- factor(S77$data$Sample, 

levels=c("S77_3_19","S77_4_19","S77_5_19","S77_6_19","S77_7_19","S77_8_19","S77_10_19", 

                                                    "S77_11_19","S77_12_19","S77_1_20","S77_2_20","S77_4_20", 

                                                    "S77_6_20","S77_7_20","S77_8_20","S77_9_20","S77_10_20", 

                                                    

"S77_12_20","S77_2_21","S77_3_21","S77_4_21","S77_5_21","S77_6_21", 

                                                    "S77_7_21","S77_8_21","S77_9_21","S77_10_21")) 

levels(S77$data$Sample) 

#Customizing the plot using ggplot2's geom_bar 

png("Top10PhylaS77.png", width = 885, height = 575) 

S77 +  

  geom_bar(aes(color=Phylum, fill=Phylum), stat="identity", position="fill", width = 0.98)+ 

  ggtitle("Top 10 Phyla at S77 - March 2019 to October 2021")+ 

  facet_grid(.~Year, scales = "free", labeller = as_labeller(c('1'='Year 1 (2019)', 

                                                               '2'='Year 2 (2020)', 

                                                               '3'='Year 3 (2021)')))+ 

  theme_light()+ 

  theme(axis.text.x = element_text(angle = 90, vjust = 0.28))+ 

  theme(plot.title = element_text(color="navyblue", size=14, face="bold.italic", hjust = 0.5))+ 

  theme(legend.title = element_text(face="italic")) 

dev.off() 

 

### Plotting the graph 

#Defining the initial plot  

S79 <- plot_bar(top10phylaS79, x="Sample", y="Abundance", fill = "Phylum") 

#Reordering the samples so they plot in chronological order 
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S79$data$Sample <- as.factor(S79$data$Sample) 

levels(S79$data$Sample) 

S79$data$Sample <- factor(S79$data$Sample, 

levels=c("S79_3_19","S79_4_19","S79_6_19","S79_7_19","S79_8_19","S79_12_19", 

                                                    "S79_1_20","S79_2_20","S79_4_20", 

                                                    "S79_7_20","S79_9_20","S79_10_20","S79_11_20", 

                                                    

"S79_12_20","S79_2_21","S79_3_21","S79_4_21","S79_5_21","S79_6_21", 

                                                    "S79_7_21","S79_8_21","S79_10_21")) 

levels(S79$data$Sample) 

#Customizing the plot using ggplot2's geom_bar 

png("Top10PhylaS79.png", width = 885, height = 575) 

S79 +  

  geom_bar(aes(color=Phylum, fill=Phylum), stat="identity", position="fill", width = 0.98)+ 

  ggtitle("Top 10 Phyla at S79 - March 2019 to October 2021")+ 

  facet_grid(.~Year, scales = "free", labeller = as_labeller(c('1'='Year 1 (2019)', 

                                                               '2'='Year 2 (2020)', 

                                                               '3'='Year 3 (2021)')))+ 

  theme_light()+ 

  theme(axis.text.x = element_text(angle = 90, vjust = 0.28))+ 

  theme(plot.title = element_text(color="navyblue", size=14, face="bold.italic", hjust = 0.5))+ 

  theme(legend.title = element_text(face="italic")) 

dev.off() 

 

 

###### Top 10 by Stations each Year - exporting CSVs ###### 

#### Year 1 

## CLV10A 

asvdat <- CLV 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyCLV <- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

phyCLV_transform <- transform(phyCLV, "compositional") 

### Assigning Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.CLV <- sort(tapply(taxa_sums(phyCLV_transform), tax_table(phyCLV_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaCLV <- subset_taxa(phyCLV_transform, Phylum %in% names(top10phy.names.CLV)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaCLV <- as.data.frame(top10phy.names.CLV) 

colnames(topphylaCLV)[1] ="Abundance" 

write.csv(topphylaCLV, "Top10Phyla_CLV_Y1.csv") 

 

## KISSR0.0 - (Firmicutes removed-> KISSR0.0_3_20) 

asvdat <- KISS 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyKISS <- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

phyKISS_transform <- transform(phyKISS, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.KISS <- sort(tapply(taxa_sums(phyKISS_transform), tax_table(phyKISS_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaKISS <- subset_taxa(phyKISS_transform, Phylum %in% names(top10phy.names.KISS)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaKISS <- as.data.frame(top10phy.names.KISS) 

colnames(topphylaKISS)[1] ="Abundance" 

write.csv(topphylaKISS, "Top10Phyla_KISS_Y1.csv") 

 

## L001  

asvdat <- L1 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 
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meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyL1 <- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

phyL1_transform <- transform(phyL1, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.L1 <- sort(tapply(taxa_sums(phyL1_transform), tax_table(phyL1_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaL1 <- subset_taxa(phyL1_transform, Phylum %in% names(top10phy.names.L1)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaL1 <- as.data.frame(top10phy.names.L1) 

colnames(topphylaL1)[1] ="Abundance" 

write.csv(topphylaL1, "Top10Phyla_L001_Y1.csv") 

 

## L004  

asvdat <- L4 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyL4 <- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

phyL4_transform <- transform(phyL4, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.L4 <- sort(tapply(taxa_sums(phyL4_transform), tax_table(phyL4_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaL4 <- subset_taxa(phyL4_transform, Phylum %in% names(top10phy.names.L4)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaL4 <- as.data.frame(top10phy.names.L4) 

colnames(topphylaL4)[1] ="Abundance" 

write.csv(topphylaL4, "Top10Phyla_L004_Y1.csv") 

 

## L005 (Firmicutes removed-> L005_3_20) 

asvdat <- L5 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyL5 <- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

phyL5_transform <- transform(phyL5, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.L5 <- sort(tapply(taxa_sums(phyL5_transform), tax_table(phyL5_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaL5 <- subset_taxa(phyL5_transform, Phylum %in% names(top10phy.names.L5)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaL5 <- as.data.frame(top10phy.names.L5) 

colnames(topphylaL5)[1] ="Abundance" 

write.csv(topphylaL5, "Top10Phyla_L005_Y1.csv") 

 

## L006 

asvdat <- L6 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyL6 <- phyloseq(ASV,TAX,META) 
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phyL6_transform <- transform(phyL6, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.L6 <- sort(tapply(taxa_sums(phyL6_transform), tax_table(phyL6_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaL6 <- subset_taxa(phyL6_transform, Phylum %in% names(top10phy.names.L6)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaL6 <- as.data.frame(top10phy.names.L6) 

colnames(topphylaL6)[1] ="Abundance" 

write.csv(topphylaL6, "Top10Phyla_L006_Y1.csv") 

 

## L007 

asvdat <- L7 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyL7 <- phyloseq(ASV,TAX,META) 

phyL7_transform <- transform(phyL7, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.L7 <- sort(tapply(taxa_sums(phyL7_transform), tax_table(phyL7_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaL7 <- subset_taxa(phyL7_transform, Phylum %in% names(top10phy.names.L7)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaL7 <- as.data.frame(top10phy.names.L7) 

colnames(topphylaL7)[1] ="Abundance" 

write.csv(topphylaL7, "Top10Phyla_L007_Y1.csv") 

 

## L008 

asvdat <- L8 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyL8 <- phyloseq(ASV,TAX,META) 

phyL8_transform <- transform(phyL8, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.L8 <- sort(tapply(taxa_sums(phyL8_transform), tax_table(phyL8_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaL8 <- subset_taxa(phyL8_transform, Phylum %in% names(top10phy.names.L8)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaL8 <- as.data.frame(top10phy.names.L8) 

colnames(topphylaL8)[1] ="Abundance" 

write.csv(topphylaL8, "Top10Phyla_L008_Y1.csv") 

 

## LZ25A  

asvdat <- Z25A 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phy25A <- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

phy25A_transform <- transform(phy25A, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.25A <- sort(tapply(taxa_sums(phy25A_transform), tax_table(phy25A_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phyla25A <- subset_taxa(phy25A_transform, Phylum %in% names(top10phy.names.25A)) 

#Saving names and proportions as a data frame then saving as csv 

topphyla25A <- as.data.frame(top10phy.names.25A) 
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colnames(topphyla25A)[1] ="Abundance" 

write.csv(topphyla25A, "Top10Phyla_LZ25A_Y1.csv") 

 

## LZ2 (Firmicutes contam. removed LZ2_3_20) 

asvdat <- LZ2 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyLZ2 <- phyloseq(ASV,TAX,META) 

phyLZ2_transform <- transform(phyLZ2, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.LZ2 <- sort(tapply(taxa_sums(phyLZ2_transform), tax_table(phyLZ2_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaLZ2 <- subset_taxa(phyLZ2_transform, Phylum %in% names(top10phy.names.LZ2)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaLZ2 <- as.data.frame(top10phy.names.LZ2) 

colnames(topphylaLZ2)[1] ="Abundance" 

write.csv(topphylaLZ2, "Top10Phyla_LZ2_Y1.csv") 

 

## LZ30 

asvdat <- Z30 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phy30 <- phyloseq(ASV,TAX,META) 

phy30_transform <- transform(phy30, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.30 <- sort(tapply(taxa_sums(phy30_transform), tax_table(phy30_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phyla30 <- subset_taxa(phy30_transform, Phylum %in% names(top10phy.names.30)) 

#Saving names and proportions as a data frame then saving as csv 

topphyla30 <- as.data.frame(top10phy.names.30) 

colnames(topphyla30)[1] ="Abundance" 

write.csv(topphyla30, "Top10Phyla_LZ30_Y1.csv") 

 

## LZ40  

asvdat <- Z40 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phy40 <- phyloseq(ASV,TAX,META) 

phy40_transform <- transform(phy40, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.40 <- sort(tapply(taxa_sums(phy40_transform), tax_table(phy40_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phyla40 <- subset_taxa(phy40_transform, Phylum %in% names(top10phy.names.40)) 

#Saving names and proportions as a data frame then saving as csv 

topphyla40 <- as.data.frame(top10phy.names.40) 

colnames(topphyla40)[1] ="Abundance" 

write.csv(topphyla40, "Top10Phyla_LZ40_Y1.csv") 

 

## PALMOUT (Firmicutes contam. removed PALMOUT_3_20) 

asvdat <- PALM 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 
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TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyPALM <- phyloseq(ASV,TAX,META) 

phyPALM_transform <- transform(phyPALM, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.PALM <- sort(tapply(taxa_sums(phyPALM_transform), tax_table(phyPALM_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaPALM <- subset_taxa(phyPALM_transform, Phylum %in% names(top10phy.names.PALM)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaPALM <- as.data.frame(top10phy.names.PALM) 

colnames(topphylaPALM)[1] ="Abundance" 

write.csv(topphylaPALM, "Top10Phyla_PALM_Y1.csv") 

 

## PELBAY3 - DONE ON 11/12/22 

asvdat <- PEL 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyPEL <- phyloseq(ASV,TAX,META) 

phyPEL_transform <- transform(phyPEL, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.PEL <- sort(tapply(taxa_sums(phyPEL_transform), tax_table(phyPEL_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaPEL <- subset_taxa(phyPEL_transform, Phylum %in% names(top10phy.names.PEL)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaPEL <- as.data.frame(top10phy.names.PEL) 

colnames(topphylaPEL)[1] ="Abundance" 

write.csv(topphylaPEL, "Top10Phyla_PEL_Y1.csv") 

 

## POLE3S (Firmicutes contam. removed POLE3S_3_20) 

asvdat <- POLE3S 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyPOLE3S <- phyloseq(ASV,TAX,META) 

phyPOLE3S_transform <- transform(phyPOLE3S, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.POLE3S <- sort(tapply(taxa_sums(phyPOLE3S_transform), tax_table(phyPOLE3S_transform)[, "Phylum"], 

sum), TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaPOLE3S <- subset_taxa(phyPOLE3S_transform, Phylum %in% names(top10phy.names.POLE3S)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaPOLE3S <- as.data.frame(top10phy.names.POLE3S) 

colnames(topphylaPOLE3S)[1] ="Abundance" 

write.csv(topphylaPOLE3S, "Top10Phyla_POLE3S_Y1.csv") 

 

## POLESOUT (Firmicutes contam. removed POLESOUT_3_20) 

asvdat <- PO 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyPO <- phyloseq(ASV,TAX,META) 

phyPO_transform <- transform(phyPO, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.PO <- sort(tapply(taxa_sums(phyPO_transform), tax_table(phyPO_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaPO <- subset_taxa(phyPO_transform, Phylum %in% names(top10phy.names.PO)) 
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#Saving names and proportions as a data frame then saving as csv 

topphylaPO <- as.data.frame(top10phy.names.PO) 

colnames(topphylaPO)[1] ="Abundance" 

write.csv(topphylaPO, "Top10Phyla_PO_Y1.csv") 

 

## RITTAE2 (Firmicutes contam. removed RITTAE2_3_20) 

asvdat <- RIT 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyRIT <- phyloseq(ASV,TAX,META) 

phyRIT_transform <- transform(phyRIT, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.RIT <- sort(tapply(taxa_sums(phyRIT_transform), tax_table(phyRIT_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaRIT <- subset_taxa(phyRIT_transform, Phylum %in% names(top10phy.names.RIT)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaRIT <- as.data.frame(top10phy.names.RIT) 

colnames(topphylaRIT)[1] ="Abundance" 

write.csv(topphylaRIT, "Top10Phyla_RIT_Y1.csv") 

 

## S308  

asvdat <- S308 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyS308 <- phyloseq(ASV,TAX,META) 

phyS308_transform <- transform(phyS308, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.S308 <- sort(tapply(taxa_sums(phyS308_transform), tax_table(phyS308_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaS308 <- subset_taxa(phyS308_transform, Phylum %in% names(top10phy.names.S308)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaS308 <- as.data.frame(top10phy.names.S308) 

colnames(topphylaS308)[1] ="Abundance" 

write.csv(topphylaS308, "Top10Phyla_S308_Y1.csv") 

 

## S77  (Firmicutes contam. removed S77_3_20) 

asvdat <- S77 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyS77 <- phyloseq(ASV,TAX,META) 

phyS77_transform <- transform(phyS77, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.S77 <- sort(tapply(taxa_sums(phyS77_transform), tax_table(phyS77_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaS77 <- subset_taxa(phyS77_transform, Phylum %in% names(top10phy.names.S77)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaS77 <- as.data.frame(top10phy.names.S77) 

colnames(topphylaS77)[1] ="Abundance" 

write.csv(topphylaS77, "Top10Phyla_S77_Y1.csv") 

 

## S79 (Firmicutes contam. removed S79_3_20) 

asvdat <- S79 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 
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taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyS79 <- phyloseq(ASV,TAX,META) 

phyS79_transform <- transform(phyS79, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.S79 <- sort(tapply(taxa_sums(phyS79_transform), tax_table(phyS79_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaS79 <- subset_taxa(phyS79_transform, Phylum %in% names(top10phy.names.S79)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaS79 <- as.data.frame(top10phy.names.S79) 

colnames(topphylaS79)[1] ="Abundance" 

write.csv(topphylaS79, "Top10Phyla_S79_Y1.csv") 

 

#### Year 2 

## CLV10A 

asvdat <- CLV 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyCLV <- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

phyCLV_transform <- transform(phyCLV, "compositional") 

### Assigning Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.CLV <- sort(tapply(taxa_sums(phyCLV_transform), tax_table(phyCLV_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaCLV <- subset_taxa(phyCLV_transform, Phylum %in% names(top10phy.names.CLV)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaCLV <- as.data.frame(top10phy.names.CLV) 

colnames(topphylaCLV)[1] ="Abundance" 

write.csv(topphylaCLV, "Top10Phyla_CLV_Y2.csv") 

 

## KISSR0.0 - (Firmicutes removed-> KISSR0.0_3_20) 

asvdat <- KISS 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyKISS <- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

phyKISS_transform <- transform(phyKISS, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.KISS <- sort(tapply(taxa_sums(phyKISS_transform), tax_table(phyKISS_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaKISS <- subset_taxa(phyKISS_transform, Phylum %in% names(top10phy.names.KISS)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaKISS <- as.data.frame(top10phy.names.KISS) 

colnames(topphylaKISS)[1] ="Abundance" 

write.csv(topphylaKISS, "Top10Phyla_KISS_Y2.csv") 

 

## L001  

asvdat <- L1 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyL1 <- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

phyL1_transform <- transform(phyL1, "compositional") 



159 

 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.L1 <- sort(tapply(taxa_sums(phyL1_transform), tax_table(phyL1_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaL1 <- subset_taxa(phyL1_transform, Phylum %in% names(top10phy.names.L1)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaL1 <- as.data.frame(top10phy.names.L1) 

colnames(topphylaL1)[1] ="Abundance" 

write.csv(topphylaL1, "Top10Phyla_L001_Y2.csv") 

 

## L004  

asvdat <- L4 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyL4 <- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

phyL4_transform <- transform(phyL4, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.L4 <- sort(tapply(taxa_sums(phyL4_transform), tax_table(phyL4_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaL4 <- subset_taxa(phyL4_transform, Phylum %in% names(top10phy.names.L4)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaL4 <- as.data.frame(top10phy.names.L4) 

colnames(topphylaL4)[1] ="Abundance" 

write.csv(topphylaL4, "Top10Phyla_L004_Y2.csv") 

 

## L005 (Firmicutes removed-> L005_3_20) 

asvdat <- L5 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyL5 <- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

phyL5_transform <- transform(phyL5, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.L5 <- sort(tapply(taxa_sums(phyL5_transform), tax_table(phyL5_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaL5 <- subset_taxa(phyL5_transform, Phylum %in% names(top10phy.names.L5)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaL5 <- as.data.frame(top10phy.names.L5) 

colnames(topphylaL5)[1] ="Abundance" 

write.csv(topphylaL5, "Top10Phyla_L005_Y2.csv") 

 

## L006 

asvdat <- L6 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyL6 <- phyloseq(ASV,TAX,META) 

phyL6_transform <- transform(phyL6, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.L6 <- sort(tapply(taxa_sums(phyL6_transform), tax_table(phyL6_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaL6 <- subset_taxa(phyL6_transform, Phylum %in% names(top10phy.names.L6)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaL6 <- as.data.frame(top10phy.names.L6) 
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colnames(topphylaL6)[1] ="Abundance" 

write.csv(topphylaL6, "Top10Phyla_L006_Y2.csv") 

 

## L007 

asvdat <- L7 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyL7 <- phyloseq(ASV,TAX,META) 

phyL7_transform <- transform(phyL7, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.L7 <- sort(tapply(taxa_sums(phyL7_transform), tax_table(phyL7_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaL7 <- subset_taxa(phyL7_transform, Phylum %in% names(top10phy.names.L7)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaL7 <- as.data.frame(top10phy.names.L7) 

colnames(topphylaL7)[1] ="Abundance" 

write.csv(topphylaL7, "Top10Phyla_L007_Y2.csv") 

 

## L008 

asvdat <- L8 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyL8 <- phyloseq(ASV,TAX,META) 

phyL8_transform <- transform(phyL8, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.L8 <- sort(tapply(taxa_sums(phyL8_transform), tax_table(phyL8_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaL8 <- subset_taxa(phyL8_transform, Phylum %in% names(top10phy.names.L8)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaL8 <- as.data.frame(top10phy.names.L8) 

colnames(topphylaL8)[1] ="Abundance" 

write.csv(topphylaL8, "Top10Phyla_L008_Y2.csv") 

 

## LZ25A  

asvdat <- Z25A 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phy25A <- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

phy25A_transform <- transform(phy25A, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.25A <- sort(tapply(taxa_sums(phy25A_transform), tax_table(phy25A_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phyla25A <- subset_taxa(phy25A_transform, Phylum %in% names(top10phy.names.25A)) 

#Saving names and proportions as a data frame then saving as csv 

topphyla25A <- as.data.frame(top10phy.names.25A) 

colnames(topphyla25A)[1] ="Abundance" 

write.csv(topphyla25A, "Top10Phyla_LZ25A_Y2.csv") 

 

## LZ2 (Firmicutes contam. removed LZ2_3_20) 

asvdat <- LZ2 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 
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ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyLZ2 <- phyloseq(ASV,TAX,META) 

phyLZ2_transform <- transform(phyLZ2, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.LZ2 <- sort(tapply(taxa_sums(phyLZ2_transform), tax_table(phyLZ2_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaLZ2 <- subset_taxa(phyLZ2_transform, Phylum %in% names(top10phy.names.LZ2)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaLZ2 <- as.data.frame(top10phy.names.LZ2) 

colnames(topphylaLZ2)[1] ="Abundance" 

write.csv(topphylaLZ2, "Top10Phyla_LZ2_Y2.csv") 

 

## LZ30 

asvdat <- Z30 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phy30 <- phyloseq(ASV,TAX,META) 

phy30_transform <- transform(phy30, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.30 <- sort(tapply(taxa_sums(phy30_transform), tax_table(phy30_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phyla30 <- subset_taxa(phy30_transform, Phylum %in% names(top10phy.names.30)) 

#Saving names and proportions as a data frame then saving as csv 

topphyla30 <- as.data.frame(top10phy.names.30) 

colnames(topphyla30)[1] ="Abundance" 

write.csv(topphyla30, "Top10Phyla_LZ30_Y2.csv") 

 

## LZ40  

asvdat <- Z40 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phy40 <- phyloseq(ASV,TAX,META) 

phy40_transform <- transform(phy40, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.40 <- sort(tapply(taxa_sums(phy40_transform), tax_table(phy40_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phyla40 <- subset_taxa(phy40_transform, Phylum %in% names(top10phy.names.40)) 

#Saving names and proportions as a data frame then saving as csv 

topphyla40 <- as.data.frame(top10phy.names.40) 

colnames(topphyla40)[1] ="Abundance" 

write.csv(topphyla40, "Top10Phyla_LZ40_Y2.csv") 

 

## PALMOUT (Firmicutes contam. removed PALMOUT_3_20) 

asvdat <- PALM 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyPALM <- phyloseq(ASV,TAX,META) 

phyPALM_transform <- transform(phyPALM, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.PALM <- sort(tapply(taxa_sums(phyPALM_transform), tax_table(phyPALM_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 
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top10phylaPALM <- subset_taxa(phyPALM_transform, Phylum %in% names(top10phy.names.PALM)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaPALM <- as.data.frame(top10phy.names.PALM) 

colnames(topphylaPALM)[1] ="Abundance" 

write.csv(topphylaPALM, "Top10Phyla_PALM_Y2.csv") 

 

## PELBAY3 - DONE ON 11/12/22 

asvdat <- PEL 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyPEL <- phyloseq(ASV,TAX,META) 

phyPEL_transform <- transform(phyPEL, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.PEL <- sort(tapply(taxa_sums(phyPEL_transform), tax_table(phyPEL_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaPEL <- subset_taxa(phyPEL_transform, Phylum %in% names(top10phy.names.PEL)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaPEL <- as.data.frame(top10phy.names.PEL) 

colnames(topphylaPEL)[1] ="Abundance" 

write.csv(topphylaPEL, "Top10Phyla_PEL_Y2.csv") 

 

## POLE3S (Firmicutes contam. removed POLE3S_3_20) 

asvdat <- POLE3S 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyPOLE3S <- phyloseq(ASV,TAX,META) 

phyPOLE3S_transform <- transform(phyPOLE3S, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.POLE3S <- sort(tapply(taxa_sums(phyPOLE3S_transform), tax_table(phyPOLE3S_transform)[, "Phylum"], 

sum), TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaPOLE3S <- subset_taxa(phyPOLE3S_transform, Phylum %in% names(top10phy.names.POLE3S)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaPOLE3S <- as.data.frame(top10phy.names.POLE3S) 

colnames(topphylaPOLE3S)[1] ="Abundance" 

write.csv(topphylaPOLE3S, "Top10Phyla_POLE3S_Y2.csv") 

 

## POLESOUT (Firmicutes contam. removed POLESOUT_3_20) 

asvdat <- PO 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyPO <- phyloseq(ASV,TAX,META) 

phyPO_transform <- transform(phyPO, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.PO <- sort(tapply(taxa_sums(phyPO_transform), tax_table(phyPO_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaPO <- subset_taxa(phyPO_transform, Phylum %in% names(top10phy.names.PO)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaPO <- as.data.frame(top10phy.names.PO) 

colnames(topphylaPO)[1] ="Abundance" 

write.csv(topphylaPO, "Top10Phyla_PO_Y2.csv") 

 

## RITTAE2 (Firmicutes contam. removed RITTAE2_3_20) 

asvdat <- RIT 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 
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asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyRIT <- phyloseq(ASV,TAX,META) 

phyRIT_transform <- transform(phyRIT, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.RIT <- sort(tapply(taxa_sums(phyRIT_transform), tax_table(phyRIT_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaRIT <- subset_taxa(phyRIT_transform, Phylum %in% names(top10phy.names.RIT)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaRIT <- as.data.frame(top10phy.names.RIT) 

colnames(topphylaRIT)[1] ="Abundance" 

write.csv(topphylaRIT, "Top10Phyla_RIT_Y2.csv") 

 

## S308  

asvdat <- S308 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyS308 <- phyloseq(ASV,TAX,META) 

phyS308_transform <- transform(phyS308, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.S308 <- sort(tapply(taxa_sums(phyS308_transform), tax_table(phyS308_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaS308 <- subset_taxa(phyS308_transform, Phylum %in% names(top10phy.names.S308)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaS308 <- as.data.frame(top10phy.names.S308) 

colnames(topphylaS308)[1] ="Abundance" 

write.csv(topphylaS308, "Top10Phyla_S308_Y2.csv") 

 

## S77  (Firmicutes contam. removed S77_3_20) 

asvdat <- S77 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyS77 <- phyloseq(ASV,TAX,META) 

phyS77_transform <- transform(phyS77, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.S77 <- sort(tapply(taxa_sums(phyS77_transform), tax_table(phyS77_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaS77 <- subset_taxa(phyS77_transform, Phylum %in% names(top10phy.names.S77)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaS77 <- as.data.frame(top10phy.names.S77) 

colnames(topphylaS77)[1] ="Abundance" 

write.csv(topphylaS77, "Top10Phyla_S77_Y2.csv") 

 

## S79 (Firmicutes contam. removed S79_3_20) 

asvdat <- S79 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyS79 <- phyloseq(ASV,TAX,META) 

phyS79_transform <- transform(phyS79, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 
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top10phy.names.S79 <- sort(tapply(taxa_sums(phyS79_transform), tax_table(phyS79_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaS79 <- subset_taxa(phyS79_transform, Phylum %in% names(top10phy.names.S79)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaS79 <- as.data.frame(top10phy.names.S79) 

colnames(topphylaS79)[1] ="Abundance" 

write.csv(topphylaS79, "Top10Phyla_S79_Y2.csv") 

 

#### Year 3 

## CLV10A 

asvdat <- CLV 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyCLV <- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

phyCLV_transform <- transform(phyCLV, "compositional") 

### Assigning Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.CLV <- sort(tapply(taxa_sums(phyCLV_transform), tax_table(phyCLV_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaCLV <- subset_taxa(phyCLV_transform, Phylum %in% names(top10phy.names.CLV)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaCLV <- as.data.frame(top10phy.names.CLV) 

colnames(topphylaCLV)[1] ="Abundance" 

write.csv(topphylaCLV, "Top10Phyla_CLV_Y3.csv") 

 

## KISSR0.0 - (Firmicutes removed-> KISSR0.0_3_20) 

asvdat <- KISS 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyKISS <- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

phyKISS_transform <- transform(phyKISS, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.KISS <- sort(tapply(taxa_sums(phyKISS_transform), tax_table(phyKISS_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaKISS <- subset_taxa(phyKISS_transform, Phylum %in% names(top10phy.names.KISS)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaKISS <- as.data.frame(top10phy.names.KISS) 

colnames(topphylaKISS)[1] ="Abundance" 

write.csv(topphylaKISS, "Top10Phyla_KISS_Y3.csv") 

 

## L001  

asvdat <- L1 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyL1 <- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

phyL1_transform <- transform(phyL1, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.L1 <- sort(tapply(taxa_sums(phyL1_transform), tax_table(phyL1_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaL1 <- subset_taxa(phyL1_transform, Phylum %in% names(top10phy.names.L1)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaL1 <- as.data.frame(top10phy.names.L1) 
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colnames(topphylaL1)[1] ="Abundance" 

write.csv(topphylaL1, "Top10Phyla_L001_Y3.csv") 

 

## L004  

asvdat <- L4 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyL4 <- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

phyL4_transform <- transform(phyL4, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.L4 <- sort(tapply(taxa_sums(phyL4_transform), tax_table(phyL4_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaL4 <- subset_taxa(phyL4_transform, Phylum %in% names(top10phy.names.L4)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaL4 <- as.data.frame(top10phy.names.L4) 

colnames(topphylaL4)[1] ="Abundance" 

write.csv(topphylaL4, "Top10Phyla_L004_Y3.csv") 

 

## L005 (Firmicutes removed-> L005_3_20) 

asvdat <- L5 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyL5 <- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

phyL5_transform <- transform(phyL5, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.L5 <- sort(tapply(taxa_sums(phyL5_transform), tax_table(phyL5_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaL5 <- subset_taxa(phyL5_transform, Phylum %in% names(top10phy.names.L5)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaL5 <- as.data.frame(top10phy.names.L5) 

colnames(topphylaL5)[1] ="Abundance" 

write.csv(topphylaL5, "Top10Phyla_L005_Y3.csv") 

 

## L006 

asvdat <- L6 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyL6 <- phyloseq(ASV,TAX,META) 

phyL6_transform <- transform(phyL6, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.L6 <- sort(tapply(taxa_sums(phyL6_transform), tax_table(phyL6_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaL6 <- subset_taxa(phyL6_transform, Phylum %in% names(top10phy.names.L6)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaL6 <- as.data.frame(top10phy.names.L6) 

colnames(topphylaL6)[1] ="Abundance" 

write.csv(topphylaL6, "Top10Phyla_L006_Y3.csv") 

 

## L007 

asvdat <- L7 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 
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taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyL7 <- phyloseq(ASV,TAX,META) 

phyL7_transform <- transform(phyL7, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.L7 <- sort(tapply(taxa_sums(phyL7_transform), tax_table(phyL7_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaL7 <- subset_taxa(phyL7_transform, Phylum %in% names(top10phy.names.L7)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaL7 <- as.data.frame(top10phy.names.L7) 

colnames(topphylaL7)[1] ="Abundance" 

write.csv(topphylaL7, "Top10Phyla_L007_Y3.csv") 

 

## L008 

asvdat <- L8 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyL8 <- phyloseq(ASV,TAX,META) 

phyL8_transform <- transform(phyL8, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.L8 <- sort(tapply(taxa_sums(phyL8_transform), tax_table(phyL8_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaL8 <- subset_taxa(phyL8_transform, Phylum %in% names(top10phy.names.L8)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaL8 <- as.data.frame(top10phy.names.L8) 

colnames(topphylaL8)[1] ="Abundance" 

write.csv(topphylaL8, "Top10Phyla_L008_Y3.csv") 

 

## LZ25A  

asvdat <- Z25A 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phy25A <- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

phy25A_transform <- transform(phy25A, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.25A <- sort(tapply(taxa_sums(phy25A_transform), tax_table(phy25A_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phyla25A <- subset_taxa(phy25A_transform, Phylum %in% names(top10phy.names.25A)) 

#Saving names and proportions as a data frame then saving as csv 

topphyla25A <- as.data.frame(top10phy.names.25A) 

colnames(topphyla25A)[1] ="Abundance" 

write.csv(topphyla25A, "Top10Phyla_LZ25A_Y3.csv") 

 

## LZ2 (Firmicutes contam. removed LZ2_3_20) 

asvdat <- LZ2 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyLZ2 <- phyloseq(ASV,TAX,META) 

phyLZ2_transform <- transform(phyLZ2, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 
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top10phy.names.LZ2 <- sort(tapply(taxa_sums(phyLZ2_transform), tax_table(phyLZ2_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaLZ2 <- subset_taxa(phyLZ2_transform, Phylum %in% names(top10phy.names.LZ2)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaLZ2 <- as.data.frame(top10phy.names.LZ2) 

colnames(topphylaLZ2)[1] ="Abundance" 

write.csv(topphylaLZ2, "Top10Phyla_LZ2_Y3.csv") 

 

## LZ30 

asvdat <- Z30 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phy30 <- phyloseq(ASV,TAX,META) 

phy30_transform <- transform(phy30, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.30 <- sort(tapply(taxa_sums(phy30_transform), tax_table(phy30_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phyla30 <- subset_taxa(phy30_transform, Phylum %in% names(top10phy.names.30)) 

#Saving names and proportions as a data frame then saving as csv 

topphyla30 <- as.data.frame(top10phy.names.30) 

colnames(topphyla30)[1] ="Abundance" 

write.csv(topphyla30, "Top10Phyla_LZ30_Y3.csv") 

 

## LZ40  

asvdat <- Z40 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phy40 <- phyloseq(ASV,TAX,META) 

phy40_transform <- transform(phy40, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.40 <- sort(tapply(taxa_sums(phy40_transform), tax_table(phy40_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phyla40 <- subset_taxa(phy40_transform, Phylum %in% names(top10phy.names.40)) 

#Saving names and proportions as a data frame then saving as csv 

topphyla40 <- as.data.frame(top10phy.names.40) 

colnames(topphyla40)[1] ="Abundance" 

write.csv(topphyla40, "Top10Phyla_LZ40_Y3.csv") 

 

## PALMOUT (Firmicutes contam. removed PALMOUT_3_20) 

asvdat <- PALM 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyPALM <- phyloseq(ASV,TAX,META) 

phyPALM_transform <- transform(phyPALM, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.PALM <- sort(tapply(taxa_sums(phyPALM_transform), tax_table(phyPALM_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaPALM <- subset_taxa(phyPALM_transform, Phylum %in% names(top10phy.names.PALM)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaPALM <- as.data.frame(top10phy.names.PALM) 

colnames(topphylaPALM)[1] ="Abundance" 

write.csv(topphylaPALM, "Top10Phyla_PALM_Y3.csv") 

 

## PELBAY3 - DONE ON 11/12/22 
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asvdat <- PEL 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyPEL <- phyloseq(ASV,TAX,META) 

phyPEL_transform <- transform(phyPEL, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.PEL <- sort(tapply(taxa_sums(phyPEL_transform), tax_table(phyPEL_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaPEL <- subset_taxa(phyPEL_transform, Phylum %in% names(top10phy.names.PEL)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaPEL <- as.data.frame(top10phy.names.PEL) 

colnames(topphylaPEL)[1] ="Abundance" 

write.csv(topphylaPEL, "Top10Phyla_PEL_Y3.csv") 

 

## POLE3S (Firmicutes contam. removed POLE3S_3_20) 

asvdat <- POLE3S 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyPOLE3S <- phyloseq(ASV,TAX,META) 

phyPOLE3S_transform <- transform(phyPOLE3S, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.POLE3S <- sort(tapply(taxa_sums(phyPOLE3S_transform), tax_table(phyPOLE3S_transform)[, "Phylum"], 

sum), TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaPOLE3S <- subset_taxa(phyPOLE3S_transform, Phylum %in% names(top10phy.names.POLE3S)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaPOLE3S <- as.data.frame(top10phy.names.POLE3S) 

colnames(topphylaPOLE3S)[1] ="Abundance" 

write.csv(topphylaPOLE3S, "Top10Phyla_POLE3S_Y3.csv") 

 

## POLESOUT (Firmicutes contam. removed POLESOUT_3_20) 

asvdat <- PO 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyPO <- phyloseq(ASV,TAX,META) 

phyPO_transform <- transform(phyPO, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.PO <- sort(tapply(taxa_sums(phyPO_transform), tax_table(phyPO_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaPO <- subset_taxa(phyPO_transform, Phylum %in% names(top10phy.names.PO)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaPO <- as.data.frame(top10phy.names.PO) 

colnames(topphylaPO)[1] ="Abundance" 

write.csv(topphylaPO, "Top10Phyla_PO_Y3.csv") 

 

## RITTAE2 (Firmicutes contam. removed RITTAE2_3_20) 

asvdat <- RIT 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyRIT <- phyloseq(ASV,TAX,META) 

phyRIT_transform <- transform(phyRIT, "compositional") 
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## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.RIT <- sort(tapply(taxa_sums(phyRIT_transform), tax_table(phyRIT_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaRIT <- subset_taxa(phyRIT_transform, Phylum %in% names(top10phy.names.RIT)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaRIT <- as.data.frame(top10phy.names.RIT) 

colnames(topphylaRIT)[1] ="Abundance" 

write.csv(topphylaRIT, "Top10Phyla_RIT_Y3.csv") 

 

## S308  

asvdat <- S308 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyS308 <- phyloseq(ASV,TAX,META) 

phyS308_transform <- transform(phyS308, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.S308 <- sort(tapply(taxa_sums(phyS308_transform), tax_table(phyS308_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaS308 <- subset_taxa(phyS308_transform, Phylum %in% names(top10phy.names.S308)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaS308 <- as.data.frame(top10phy.names.S308) 

colnames(topphylaS308)[1] ="Abundance" 

write.csv(topphylaS308, "Top10Phyla_S308_Y3.csv") 

 

## S77  (Firmicutes contam. removed S77_3_20) 

asvdat <- S77 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyS77 <- phyloseq(ASV,TAX,META) 

phyS77_transform <- transform(phyS77, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.S77 <- sort(tapply(taxa_sums(phyS77_transform), tax_table(phyS77_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaS77 <- subset_taxa(phyS77_transform, Phylum %in% names(top10phy.names.S77)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaS77 <- as.data.frame(top10phy.names.S77) 

colnames(topphylaS77)[1] ="Abundance" 

write.csv(topphylaS77, "Top10Phyla_S77_Y3.csv") 

 

## S79 (Firmicutes contam. removed S79_3_20) 

asvdat <- S79 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

phyS79 <- phyloseq(ASV,TAX,META) 

phyS79_transform <- transform(phyS79, "compositional") 

## Top 10 Phyla 

#Sort Phylum by abundance and pick the top 10 

top10phy.names.S79 <- sort(tapply(taxa_sums(phyS79_transform), tax_table(phyS79_transform)[, "Phylum"], sum), 

TRUE)[1:10] 

#Cut down the physeq data to only the top 10 Phyla 

top10phylaS79 <- subset_taxa(phyS79_transform, Phylum %in% names(top10phy.names.S79)) 

#Saving names and proportions as a data frame then saving as csv 

topphylaS79 <- as.data.frame(top10phy.names.S79) 

colnames(topphylaS79)[1] ="Abundance" 

write.csv(topphylaS79, "Top10Phyla_S79_Y3.csv") 
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###### Top 10 Phyla by Station - ALL 3 YEARS ###### 

### You need tidyverse package in order to do this 

 

## Loading in each station on their own (make sure the two columns in the csv is labeled 'Phylum' 'Station 

Name') 

CLV <- read.csv("Top10Phyla_CLV.csv") 

KISS <- read.csv("Top10Phyla_KISS.csv") 

L1 <- read.csv("Top10Phyla_L001.csv") 

L4 <- read.csv("Top10Phyla_L004.csv") 

L5 <- read.csv("Top10Phyla_L005.csv") 

L6 <- read.csv("Top10Phyla_L006.csv") 

L7 <- read.csv("Top10Phyla_L007.csv") 

L8 <- read.csv("Top10Phyla_L008.csv") 

LZ2 <- read.csv("Top10Phyla_LZ2.csv") 

Z25A <- read.csv("Top10Phyla_LZ25A.csv") 

Z30 <- read.csv("Top10Phyla_LZ30.csv") 

Z40 <- read.csv("Top10Phyla_LZ40.csv") 

PALM <- read.csv("Top10Phyla_PALM.csv") 

PEL <- read.csv("Top10Phyla_PEL.csv") 

POLE3S <- read.csv("Top10Phyla_POLE3S.csv") 

PO <- read.csv("Top10Phyla_PO.csv") 

RIT <- read.csv("Top10Phyla_RIT.csv") 

S308 <- read.csv("Top10Phyla_S308.csv") 

S77 <- read.csv("Top10Phyla_S77.csv") 

S79 <- read.csv("Top10Phyla_S79.csv") 

## Creating a list of the stations 

Stations <- list(CLV, KISS, L1, L4, L5, L6, L7, L8, LZ2, Z25A, Z30, Z40, PALM, 

                 PEL, POLE3S, PO, RIT, S308, S77, S79) 

## Merging all of the data frames in the list (USES TIDYVERSE) 

Station_merge <- Stations %>% reduce(full_join, by= "Phylum") 

Station_merge[is.na(Station_merge)] = 0  #replacing the NAs with zeros 

## Saving merged data frame as CSV 

write.csv(Station_merge, "Top10Phyla-Stations.csv") 

 

 

## Testing to see if I can create a stacked bar chart using the merged station data frame 

## Converting the data frame into long format (which converts it into a tibble) 

S_tibble <-Station_merge %>% pivot_longer(cols=c(2:21),names_to= "Station",values_to= "Abundance") 

write.csv(S_tibble, "StationPhyla_long.csv") 

# ## Reloading in previous data frame (went into excel and replaced NA with 0) 

# StationPhyla <- read.csv("StationPhyla_long.csv", header = T) or SKIP AND GO TO NEXT LINE!! 

StationPhyla <- S_tibble 

 

## Plotting using custom colors 

Top10Station <- ggplot(StationPhyla, aes(fill=Phylum, x=Abundance, y=Station)) +  

  geom_bar(position='fill', stat='identity')+      #position="fill" creates a stacked bar plot with abundance as 

a percentage 

  theme_minimal()+ 

  labs(x='Abundance', y='Stations', title='Top Phyla Found in Lake Okeechobee by Station')+ 

  theme(plot.title = element_text(color="navyblue", size=14, face="bold.italic", hjust = 0.5))+ 

  theme(legend.title = element_text(face="italic")) 

Top10Stat <- c("#2bcaf4","#24630e","#000080","#edc427","#1f60aa","#333333","#d841ad", 

                        "#41ea27","red3","#806bb4","#cbcc8f","#5f421b","#f08539","#ff9eed") 

                        ## listed by phyla in alphabetical order 

withr::with_options(list(ggplot2.discrete.fill = Top10Stat),print(Top10Station)) 

 

###### Top 10 Phyla by Station - EACH YEAR ###### 

### You need tidyverse package in order to do this 

 

##Year 1 

CLV <- read.csv("Top10Phyla_CLV_Y1.csv") 

KISS <- read.csv("Top10Phyla_KISS_Y1.csv") 

L1 <- read.csv("Top10Phyla_L001_Y1.csv") 

L4 <- read.csv("Top10Phyla_L004_Y1.csv") 

L5 <- read.csv("Top10Phyla_L005_Y1.csv") 

L6 <- read.csv("Top10Phyla_L006_Y1.csv") 

L7 <- read.csv("Top10Phyla_L007_Y1.csv") 

L8 <- read.csv("Top10Phyla_L008_Y1.csv") 

LZ2 <- read.csv("Top10Phyla_LZ2_Y1.csv") 

Z25A <- read.csv("Top10Phyla_LZ25A_Y1.csv") 

Z30 <- read.csv("Top10Phyla_LZ30_Y1.csv") 

Z40 <- read.csv("Top10Phyla_LZ40_Y1.csv") 

PALM <- read.csv("Top10Phyla_PALM_Y1.csv") 

PEL <- read.csv("Top10Phyla_PEL_Y1.csv") 

POLE3S <- read.csv("Top10Phyla_POLE3S_Y1.csv") 
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PO <- read.csv("Top10Phyla_PO_Y1.csv") 

RIT <- read.csv("Top10Phyla_RIT_Y1.csv") 

S308 <- read.csv("Top10Phyla_S308_Y1.csv") 

S77 <- read.csv("Top10Phyla_S77_Y1.csv") 

S79 <- read.csv("Top10Phyla_S79_Y1.csv") 

## Creating a list of the stations 

Stations <- list(CLV, KISS, L1, L4, L5, L6, L7, L8, LZ2, Z25A, Z30, Z40, PALM, 

                 PEL, POLE3S, PO, RIT, S308, S77, S79) 

## Merging all of the data frames in the list (USES TIDYVERSE) 

Station_merge <- Stations %>% reduce(full_join, by= "Phylum") 

Station_merge[is.na(Station_merge)] = 0  #replacing the NAs with zeros 

## Saving merged data frame as CSV 

write.csv(Station_merge, "Top10Phyla-Stations_Y1.csv") 

 

 

## Testing to see if I can create a stacked bar chart using the merged station data frame 

## Converting the data frame into long format (which converts it into a tibble) 

S_tibble <-Station_merge %>% pivot_longer(cols=c(2:21),names_to= "Station",values_to= "Abundance") 

write.csv(S_tibble, "StationPhyla_long_Y1.csv") 

# StationPhyla <- read.csv("StationPhyla_long_Y1.csv", header = T) or SKIP AND GO TO NEXT LINE!! 

StationPhyla <- S_tibble 

 

## Plotting using custom colors 

Top10Station <- ggplot(StationPhyla, aes(fill=Phylum, x=Abundance, y=Station)) +  

  geom_bar(position='fill', stat='identity')+      #position="fill" creates a stacked bar plot with abundance as 

a percentage 

  theme_minimal()+ 

  labs(x='Abundance', y='Stations', title='Top Phyla Found in Lake Okeechobee by Station - Year 1')+ 

  theme(plot.title = element_text(color="navyblue", size=14, face="bold.italic", hjust = 0.5))+ 

  theme(legend.title = element_text(face="italic")) 

Top10Stat <- c("#2bcaf4","#24630e","#edc427","#1f60aa","#333333","#d841ad", 

                        "#41ea27","red3","#806bb4","#cbcc8f","#5f421b","#f08539","purple4","#ff9eed") 

                        ## listed by phyla in alphabetical order 

withr::with_options(list(ggplot2.discrete.fill = Top10Stat),print(Top10Station)) 

 

##Year 2 

CLV <- read.csv("Top10Phyla_CLV_Y2.csv") 

KISS <- read.csv("Top10Phyla_KISS_Y2.csv") 

L1 <- read.csv("Top10Phyla_L001_Y2.csv") 

L4 <- read.csv("Top10Phyla_L004_Y2.csv") 

L5 <- read.csv("Top10Phyla_L005_Y2.csv") 

L6 <- read.csv("Top10Phyla_L006_Y2.csv") 

L7 <- read.csv("Top10Phyla_L007_Y2.csv") 

L8 <- read.csv("Top10Phyla_L008_Y2.csv") 

LZ2 <- read.csv("Top10Phyla_LZ2_Y2.csv") 

Z25A <- read.csv("Top10Phyla_LZ25A_Y2.csv") 

Z30 <- read.csv("Top10Phyla_LZ30_Y2.csv") 

Z40 <- read.csv("Top10Phyla_LZ40_Y2.csv") 

PALM <- read.csv("Top10Phyla_PALM_Y2.csv") 

PEL <- read.csv("Top10Phyla_PEL_Y2.csv") 

POLE3S <- read.csv("Top10Phyla_POLE3S_Y2.csv") 

PO <- read.csv("Top10Phyla_PO_Y2.csv") 

RIT <- read.csv("Top10Phyla_RIT_Y2.csv") 

S308 <- read.csv("Top10Phyla_S308_Y2.csv") 

S77 <- read.csv("Top10Phyla_S77_Y2.csv") 

S79 <- read.csv("Top10Phyla_S79_Y2.csv") 

## Creating a list of the stations 

Stations <- list(CLV, KISS, L1, L4, L5, L6, L7, L8, LZ2, Z25A, Z30, Z40, PALM, 

                 PEL, POLE3S, PO, RIT, S308, S77, S79) 

## Merging all of the data frames in the list (USES TIDYVERSE) 

Station_merge <- Stations %>% reduce(full_join, by= "Phylum") 

Station_merge[is.na(Station_merge)] = 0  #replacing the NAs with zeros 

## Saving merged data frame as CSV 

write.csv(Station_merge, "Top10Phyla-Stations_Y2.csv") 

 

 

## Testing to see if I can create a stacked bar chart using the merged station data frame 

## Converting the data frame into long format (which converts it into a tibble) 

S_tibble <-Station_merge %>% pivot_longer(cols=c(2:21),names_to= "Station",values_to= "Abundance") 

write.csv(S_tibble, "StationPhyla_long_Y2.csv") 

# StationPhyla <- read.csv("StationPhyla_long_Y2.csv", header = T) or SKIP AND GO TO NEXT LINE!! 

StationPhyla <- S_tibble 

 

## Plotting using custom colors 

Top10Station <- ggplot(StationPhyla, aes(fill=Phylum, x=Abundance, y=Station)) +  
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  geom_bar(position='fill', stat='identity')+      #position="fill" creates a stacked bar plot with abundance as 

a percentage 

  theme_minimal()+ 

  labs(x='Abundance', y='Stations', title='Top Phyla Found in Lake Okeechobee by Station - Year 2')+ 

  theme(plot.title = element_text(color="navyblue", size=14, face="bold.italic", hjust = 0.5))+ 

  theme(legend.title = element_text(face="italic")) 

Top10Stat <- c("#2bcaf4","#24630e","#000080","#edc427","#1f60aa","#333333","#d841ad", 

                        "#41ea27","red3","#806bb4","#5f421b","#f08539","#ff9eed") 

                        ## listed by phyla in alphabetical order 

withr::with_options(list(ggplot2.discrete.fill = Top10Stat),print(Top10Station)) 

 

##Year 3 

CLV <- read.csv("Top10Phyla_CLV_Y3.csv") 

KISS <- read.csv("Top10Phyla_KISS_Y3.csv") 

L1 <- read.csv("Top10Phyla_L001_Y3.csv") 

L4 <- read.csv("Top10Phyla_L004_Y3.csv") 

L5 <- read.csv("Top10Phyla_L005_Y3.csv") 

L6 <- read.csv("Top10Phyla_L006_Y3.csv") 

L7 <- read.csv("Top10Phyla_L007_Y3.csv") 

L8 <- read.csv("Top10Phyla_L008_Y3.csv") 

LZ2 <- read.csv("Top10Phyla_LZ2_Y3.csv") 

Z25A <- read.csv("Top10Phyla_LZ25A_Y3.csv") 

Z30 <- read.csv("Top10Phyla_LZ30_Y3.csv") 

Z40 <- read.csv("Top10Phyla_LZ40_Y3.csv") 

PALM <- read.csv("Top10Phyla_PALM_Y3.csv") 

PEL <- read.csv("Top10Phyla_PEL_Y3.csv") 

POLE3S <- read.csv("Top10Phyla_POLE3S_Y3.csv") 

PO <- read.csv("Top10Phyla_PO_Y3.csv") 

RIT <- read.csv("Top10Phyla_RIT_Y3.csv") 

S308 <- read.csv("Top10Phyla_S308_Y3.csv") 

S77 <- read.csv("Top10Phyla_S77_Y3.csv") 

S79 <- read.csv("Top10Phyla_S79_Y3.csv") 

## Creating a list of the stations 

Stations <- list(CLV, KISS, L1, L4, L5, L6, L7, L8, LZ2, Z25A, Z30, Z40, PALM, 

                 PEL, POLE3S, PO, RIT, S308, S77, S79) 

## Merging all of the data frames in the list (USES TIDYVERSE) 

Station_merge <- Stations %>% reduce(full_join, by= "Phylum") 

Station_merge[is.na(Station_merge)] = 0  #replacing the NAs with zeros 

## Saving merged data frame as CSV 

write.csv(Station_merge, "Top10Phyla-Stations_Y3.csv") 

 

 

## Testing to see if I can create a stacked bar chart using the merged station data frame 

## Converting the data frame into long format (which converts it into a tibble) 

S_tibble <-Station_merge %>% pivot_longer(cols=c(2:21),names_to= "Station",values_to= "Abundance") 

write.csv(S_tibble, "StationPhyla_long_Y3.csv") 

# StationPhyla <- read.csv("StationPhyla_long_Y3.csv", header = T) or SKIP AND GO TO NEXT LINE!! 

StationPhyla <- S_tibble 

 

## Plotting using custom colors 

Top10Station <- ggplot(StationPhyla, aes(fill=Phylum, x=Abundance, y=Station)) +  

  geom_bar(position='fill', stat='identity')+      #position="fill" creates a stacked bar plot with abundance as 

a percentage 

  theme_minimal()+ 

  labs(x='Abundance', y='Stations', title='Top Phyla Found in Lake Okeechobee by Station - Year 3')+ 

  theme(plot.title = element_text(color="navyblue", size=14, face="bold.italic", hjust = 0.5))+ 

  theme(legend.title = element_text(face="italic")) 

Top10Stat <- c("#2bcaf4","#24630e","#edc427","#1f60aa","#333333","#d841ad", 

                        "#41ea27","red3","#806bb4","#cbcc8f","#a97548","#5f421b","#f08539","#ff9eed") 

                        ## listed by phyla in alphabetical order 

withr::with_options(list(ggplot2.discrete.fill = Top10Stat),print(Top10Station)) 

 

 

###### Top 15 Orders in Year 3 by Station ###### 

##Merge feature table with taxonomy and save 

dat.Y3 <- read.csv("feature_Y3r_ADJUSTED.csv") 

tax <- read.csv("taxonomy_Y123_edited&cleaned.csv") 

Yr3t <- merge.data.frame(dat.Y3,tax,by= "FeatureID", all.x = TRUE) 

write.csv(Yr3t, "feature_Y3r_ADJUSTED_tax.csv") 

 

##Load feature/tax table 

dat.Y3 <- as.data.frame(t(read.csv("feature_Y3r_ADJUSTED_tax.csv", row.names = 1))) 

 

##Separate Station and create master list of top 15 

CLV <- as.data.frame(t(dat.Y3[grep("^CLV10A", rownames(dat.Y3)),])) 

KISS <- as.data.frame(t(dat.Y3[grep("^KISSR0.0", rownames(dat.Y3)),])) 
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L1 <- as.data.frame(t(dat.Y3[grep("^L001", rownames(dat.Y3)),])) 

L4 <- as.data.frame(t(dat.Y3[grep("^L004", rownames(dat.Y3)),])) 

L5 <- as.data.frame(t(dat.Y3[grep("^L005", rownames(dat.Y3)),])) 

L6 <- as.data.frame(t(dat.Y3[grep("^L006", rownames(dat.Y3)),])) 

L7 <- as.data.frame(t(dat.Y3[grep("^L007", rownames(dat.Y3)),])) 

L8 <- as.data.frame(t(dat.Y3[grep("^L008", rownames(dat.Y3)),])) 

LZ2 <- as.data.frame(t(dat.Y3[grep("^LZ2_", rownames(dat.Y3)),])) 

Z25A <- as.data.frame(t(dat.Y3[grep("^LZ25A", rownames(dat.Y3)),])) 

Z30 <- as.data.frame(t(dat.Y3[grep("^LZ30", rownames(dat.Y3)),])) 

Z40 <- as.data.frame(t(dat.Y3[grep("^LZ40", rownames(dat.Y3)),])) 

PALM <- as.data.frame(t(dat.Y3[grep("^PALMOUT", rownames(dat.Y3)),])) 

PEL <- as.data.frame(t(dat.Y3[grep("^PELBAY3", rownames(dat.Y3)),])) 

POLE3S <- as.data.frame(t(dat.Y3[grep("^POLE3S", rownames(dat.Y3)),])) 

PO <- as.data.frame(t(dat.Y3[grep("^POLESOUT", rownames(dat.Y3)),])) 

RIT <- as.data.frame(t(dat.Y3[grep("^RITTAE2", rownames(dat.Y3)),])) 

S308 <- as.data.frame(t(dat.Y3[grep("^S308", rownames(dat.Y3)),])) 

S77 <- as.data.frame(t(dat.Y3[grep("^S77", rownames(dat.Y3)),])) 

S79 <- as.data.frame(t(dat.Y3[grep("^S79", rownames(dat.Y3)),])) 

 

##Assigning top 15 orders by Station 

## CLV10A 

asvdat <- CLV 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

ordCLV <- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

ordCLV_transform <- transform(ordCLV, "compositional") 

### Assigning Top 15 ord 

#Sort Order by abundance and pick the top 15 

top15ord.names.CLV <- sort(tapply(taxa_sums(ordCLV_transform), tax_table(ordCLV_transform)[, "Order"], sum), 

TRUE)[1:15] 

#Cut down the phyloseq data to only the top 15 ord 

top15ordCLV <- subset_taxa(ordCLV_transform, Order %in% names(top15ord.names.CLV)) 

#Saving names and proportions as a data frame then saving as csv 

topordCLV <- as.data.frame(top15ord.names.CLV) 

colnames(topordCLV)[1] ="Abundance" 

write.csv(topordCLV, "Top15Ord_CLV.csv") 

 

 

## KISSR0.0 - (Firmicutes removed-> KISSR0.0_3_20) 

asvdat <- KISS 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

ordKISS <- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

ordKISS_transform <- transform(ordKISS, "compositional") 

## Top 15 ord 

#Sort Order by abundance and pick the top 15 

top15ord.names.KISS <- sort(tapply(taxa_sums(ordKISS_transform), tax_table(ordKISS_transform)[, "Order"], sum), 

TRUE)[1:15] 

#Cut down the phyloseq data to only the top 15 ord 

top15ordKISS <- subset_taxa(ordKISS_transform, Order %in% names(top15ord.names.KISS)) 

#Saving names and proportions as a data frame then saving as csv 

topordKISS <- as.data.frame(top15ord.names.KISS) 

colnames(topordKISS)[1] ="Abundance" 

write.csv(topordKISS, "Top15Ord_KISS.csv") 

 

 

## L001  

asvdat <- L1 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 
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META <- sample_data(meta) 

ordL1 <- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

ordL1_transform <- transform(ordL1, "compositional") 

## Top 15 ord 

#Sort Order by abundance and pick the top 15 

top15ord.names.L1 <- sort(tapply(taxa_sums(ordL1_transform), tax_table(ordL1_transform)[, "Order"], sum), 

TRUE)[1:15] 

#Cut down the phyloseq data to only the top 15 ord 

top15ordL1 <- subset_taxa(ordL1_transform, Order %in% names(top15ord.names.L1)) 

#Saving names and proportions as a data frame then saving as csv 

topordL1 <- as.data.frame(top15ord.names.L1) 

colnames(topordL1)[1] ="Abundance" 

write.csv(topordL1, "Top15Ord_L001.csv") 

 

 

## L004  

asvdat <- L4 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

ordL4 <- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

ordL4_transform <- transform(ordL4, "compositional") 

## Top 15 ord 

#Sort Order by abundance and pick the top 15 

top15ord.names.L4 <- sort(tapply(taxa_sums(ordL4_transform), tax_table(ordL4_transform)[, "Order"], sum), 

TRUE)[1:15] 

#Cut down the phyloseq data to only the top 15 ord 

top15ordL4 <- subset_taxa(ordL4_transform, Order %in% names(top15ord.names.L4)) 

#Saving names and proportions as a data frame then saving as csv 

topordL4 <- as.data.frame(top15ord.names.L4) 

colnames(topordL4)[1] ="Abundance" 

write.csv(topordL4, "Top15Ord_L004.csv") 

 

 

## L005 (Firmicutes removed-> L005_3_20) 

asvdat <- L5 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

ordL5 <- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

ordL5_transform <- transform(ordL5, "compositional") 

## Top 15 ord 

#Sort Order by abundance and pick the top 15 

top15ord.names.L5 <- sort(tapply(taxa_sums(ordL5_transform), tax_table(ordL5_transform)[, "Order"], sum), 

TRUE)[1:15] 

#Cut down the phyloseq data to only the top 15 ord 

top15ordL5 <- subset_taxa(ordL5_transform, Order %in% names(top15ord.names.L5)) 

#Saving names and proportions as a data frame then saving as csv 

topordL5 <- as.data.frame(top15ord.names.L5) 

colnames(topordL5)[1] ="Abundance" 

write.csv(topordL5, "Top15Ord_L005.csv") 

 

 

## L006 

asvdat <- L6 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

ordL6 <- phyloseq(ASV,TAX,META) 

ordL6_transform <- transform(ordL6, "compositional") 

## Top 15 ord 
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#Sort Order by abundance and pick the top 15 

top15ord.names.L6 <- sort(tapply(taxa_sums(ordL6_transform), tax_table(ordL6_transform)[, "Order"], sum), 

TRUE)[1:15] 

#Cut down the phyloseq data to only the top 15 ord 

top15ordL6 <- subset_taxa(ordL6_transform, Order %in% names(top15ord.names.L6)) 

#Saving names and proportions as a data frame then saving as csv 

topordL6 <- as.data.frame(top15ord.names.L6) 

colnames(topordL6)[1] ="Abundance" 

write.csv(topordL6, "Top15Ord_L006.csv") 

 

 

## L007 

asvdat <- L7 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

ordL7 <- phyloseq(ASV,TAX,META) 

ordL7_transform <- transform(ordL7, "compositional") 

## Top 15 ord 

#Sort Order by abundance and pick the top 15 

top15ord.names.L7 <- sort(tapply(taxa_sums(ordL7_transform), tax_table(ordL7_transform)[, "Order"], sum), 

TRUE)[1:15] 

#Cut down the phyloseq data to only the top 15 ord 

top15ordL7 <- subset_taxa(ordL7_transform, Order %in% names(top15ord.names.L7)) 

#Saving names and proportions as a data frame then saving as csv 

topordL7 <- as.data.frame(top15ord.names.L7) 

colnames(topordL7)[1] ="Abundance" 

write.csv(topordL7, "Top15Ord_L007.csv") 

 

## L008 

asvdat <- L8 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

ordL8 <- phyloseq(ASV,TAX,META) 

ordL8_transform <- transform(ordL8, "compositional") 

## Top 15 ord 

#Sort Order by abundance and pick the top 15 

top15ord.names.L8 <- sort(tapply(taxa_sums(ordL8_transform), tax_table(ordL8_transform)[, "Order"], sum), 

TRUE)[1:15] 

#Cut down the phyloseq data to only the top 15 ord 

top15ordL8 <- subset_taxa(ordL8_transform, Order %in% names(top15ord.names.L8)) 

#Saving names and proportions as a data frame then saving as csv 

topordL8 <- as.data.frame(top15ord.names.L8) 

colnames(topordL8)[1] ="Abundance" 

write.csv(topordL8, "Top15Ord_L008.csv") 

 

## LZ25A  

asvdat <- Z25A 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

ord25A <- phyloseq(ASV,TAX,META) 

transform <- microbiome::transform 

ord25A_transform <- transform(ord25A, "compositional") 

## Top 15 ord 

#Sort Order by abundance and pick the top 15 

top15ord.names.25A <- sort(tapply(taxa_sums(ord25A_transform), tax_table(ord25A_transform)[, "Order"], sum), 

TRUE)[1:15] 

#Cut down the phyloseq data to only the top 15 ord 

top15ord25A <- subset_taxa(ord25A_transform, Order %in% names(top15ord.names.25A)) 

#Saving names and proportions as a data frame then saving as csv 

topord25A <- as.data.frame(top15ord.names.25A) 

colnames(topord25A)[1] ="Abundance" 
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write.csv(topord25A, "Top15Ord_LZ25A.csv") 

 

## LZ2 (Firmicutes contam. removed LZ2_3_20) 

asvdat <- LZ2 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

ordLZ2 <- phyloseq(ASV,TAX,META) 

ordLZ2_transform <- transform(ordLZ2, "compositional") 

## Top 15 ord 

#Sort Order by abundance and pick the top 15 

top15ord.names.LZ2 <- sort(tapply(taxa_sums(ordLZ2_transform), tax_table(ordLZ2_transform)[, "Order"], sum), 

TRUE)[1:15] 

#Cut down the phyloseq data to only the top 15 ord 

top15ordLZ2 <- subset_taxa(ordLZ2_transform, Order %in% names(top15ord.names.LZ2)) 

#Saving names and proportions as a data frame then saving as csv 

topordLZ2 <- as.data.frame(top15ord.names.LZ2) 

colnames(topordLZ2)[1] ="Abundance" 

write.csv(topordLZ2, "Top15Ord_LZ2.csv") 

 

## LZ30 

asvdat <- Z30 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

ord30 <- phyloseq(ASV,TAX,META) 

ord30_transform <- transform(ord30, "compositional") 

## Top 15 ord 

#Sort Order by abundance and pick the top 15 

top15ord.names.30 <- sort(tapply(taxa_sums(ord30_transform), tax_table(ord30_transform)[, "Order"], sum), 

TRUE)[1:15] 

#Cut down the phyloseq data to only the top 15 ord 

top15ord30 <- subset_taxa(ord30_transform, Order %in% names(top15ord.names.30)) 

#Saving names and proportions as a data frame then saving as csv 

topord30 <- as.data.frame(top15ord.names.30) 

colnames(topord30)[1] ="Abundance" 

write.csv(topord30, "Top15Ord_LZ30.csv") 

 

## LZ40  

asvdat <- Z40 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

ord40 <- phyloseq(ASV,TAX,META) 

ord40_transform <- transform(ord40, "compositional") 

## Top 15 ord 

#Sort Order by abundance and pick the top 15 

top15ord.names.40 <- sort(tapply(taxa_sums(ord40_transform), tax_table(ord40_transform)[, "Order"], sum), 

TRUE)[1:15] 

#Cut down the phyloseq data to only the top 15 ord 

top15ord40 <- subset_taxa(ord40_transform, Order %in% names(top15ord.names.40)) 

#Saving names and proportions as a data frame then saving as csv 

topord40 <- as.data.frame(top15ord.names.40) 

colnames(topord40)[1] ="Abundance" 

write.csv(topord40, "Top15Ord_LZ40.csv") 

 

## PALMOUT (Firmicutes contam. removed PALMOUT_3_20) 

asvdat <- PALM 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 
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META <- sample_data(meta) 

ordPALM <- phyloseq(ASV,TAX,META) 

ordPALM_transform <- transform(ordPALM, "compositional") 

## Top 15 ord 

#Sort Order by abundance and pick the top 15 

top15ord.names.PALM <- sort(tapply(taxa_sums(ordPALM_transform), tax_table(ordPALM_transform)[, "Order"], sum), 

TRUE)[1:15] 

#Cut down the phyloseq data to only the top 15 ord 

top15ordPALM <- subset_taxa(ordPALM_transform, Order %in% names(top15ord.names.PALM)) 

#Saving names and proportions as a data frame then saving as csv 

topordPALM <- as.data.frame(top15ord.names.PALM) 

colnames(topordPALM)[1] ="Abundance" 

write.csv(topordPALM, "Top15Ord_PALM.csv") 

 

## PELBAY3 - DONE ON 11/12/22 

asvdat <- PEL 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

ordPEL <- phyloseq(ASV,TAX,META) 

ordPEL_transform <- transform(ordPEL, "compositional") 

## Top 15 ord 

#Sort Order by abundance and pick the top 15 

top15ord.names.PEL <- sort(tapply(taxa_sums(ordPEL_transform), tax_table(ordPEL_transform)[, "Order"], sum), 

TRUE)[1:15] 

#Cut down the phyloseq data to only the top 15 ord 

top15ordPEL <- subset_taxa(ordPEL_transform, Order %in% names(top15ord.names.PEL)) 

#Saving names and proportions as a data frame then saving as csv 

topordPEL <- as.data.frame(top15ord.names.PEL) 

colnames(topordPEL)[1] ="Abundance" 

write.csv(topordPEL, "Top15Ord_PEL.csv") 

 

## POLE3S - DONE ON 11/12/22 (Firmicutes contam. removed POLE3S_3_20) 

asvdat <- POLE3S 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

ordPOLE3S <- phyloseq(ASV,TAX,META) 

ordPOLE3S_transform <- transform(ordPOLE3S, "compositional") 

## Top 15 ord 

#Sort Order by abundance and pick the top 15 

top15ord.names.POLE3S <- sort(tapply(taxa_sums(ordPOLE3S_transform), tax_table(ordPOLE3S_transform)[, "Order"], 

sum), TRUE)[1:15] 

#Cut down the phyloseq data to only the top 15 ord 

top15ordPOLE3S <- subset_taxa(ordPOLE3S_transform, Order %in% names(top15ord.names.POLE3S)) 

#Saving names and proportions as a data frame then saving as csv 

topordPOLE3S <- as.data.frame(top15ord.names.POLE3S) 

colnames(topordPOLE3S)[1] ="Abundance" 

write.csv(topordPOLE3S, "Top15Ord_POLE3S.csv") 

 

## POLESOUT - DONE ON 11/12/22 (Firmicutes contam. removed POLESOUT_3_20) 

asvdat <- PO 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

ordPO <- phyloseq(ASV,TAX,META) 

ordPO_transform <- transform(ordPO, "compositional") 

## Top 15 ord 

#Sort Order by abundance and pick the top 15 

top15ord.names.PO <- sort(tapply(taxa_sums(ordPO_transform), tax_table(ordPO_transform)[, "Order"], sum), 

TRUE)[1:15] 

#Cut down the phyloseq data to only the top 15 ord 

top15ordPO <- subset_taxa(ordPO_transform, Order %in% names(top15ord.names.PO)) 

#Saving names and proportions as a data frame then saving as csv 
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topordPO <- as.data.frame(top15ord.names.PO) 

colnames(topordPO)[1] ="Abundance" 

write.csv(topordPO, "Top15Ord_PO.csv") 

 

## RITTAE2 - DONE ON 11/12/22 (Firmicutes contam. removed RITTAE2_3_20) 

asvdat <- RIT 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

ordRIT <- phyloseq(ASV,TAX,META) 

ordRIT_transform <- transform(ordRIT, "compositional") 

## Top 15 ord 

#Sort Order by abundance and pick the top 15 

top15ord.names.RIT <- sort(tapply(taxa_sums(ordRIT_transform), tax_table(ordRIT_transform)[, "Order"], sum), 

TRUE)[1:15] 

#Cut down the phyloseq data to only the top 15 ord 

top15ordRIT <- subset_taxa(ordRIT_transform, Order %in% names(top15ord.names.RIT)) 

#Saving names and proportions as a data frame then saving as csv 

topordRIT <- as.data.frame(top15ord.names.RIT) 

colnames(topordRIT)[1] ="Abundance" 

write.csv(topordRIT, "Top15Ord_RIT.csv") 

 

## S308  

asvdat <- S308 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

ordS308 <- phyloseq(ASV,TAX,META) 

ordS308_transform <- transform(ordS308, "compositional") 

## Top 15 ord 

#Sort Order by abundance and pick the top 15 

top15ord.names.S308 <- sort(tapply(taxa_sums(ordS308_transform), tax_table(ordS308_transform)[, "Order"], sum), 

TRUE)[1:15] 

#Cut down the phyloseq data to only the top 15 ord 

top15ordS308 <- subset_taxa(ordS308_transform, Order %in% names(top15ord.names.S308)) 

#Saving names and proportions as a data frame then saving as csv 

topordS308 <- as.data.frame(top15ord.names.S308) 

colnames(topordS308)[1] ="Abundance" 

write.csv(topordS308, "Top15Ord_S308.csv") 

 

## S77  (Firmicutes contam. removed S77_3_20) 

asvdat <- S77 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

ordS77 <- phyloseq(ASV,TAX,META) 

ordS77_transform <- transform(ordS77, "compositional") 

## Top 15 ord 

#Sort Order by abundance and pick the top 15 

top15ord.names.S77 <- sort(tapply(taxa_sums(ordS77_transform), tax_table(ordS77_transform)[, "Order"], sum), 

TRUE)[1:15] 

#Cut down the phyloseq data to only the top 15 ord 

top15ordS77 <- subset_taxa(ordS77_transform, Order %in% names(top15ord.names.S77)) 

#Saving names and proportions as a data frame then saving as csv 

topordS77 <- as.data.frame(top15ord.names.S77) 

colnames(topordS77)[1] ="Abundance" 

write.csv(topordS77, "Top15Ord_S77.csv") 

 

## S79 (Firmicutes contam. removed S79_3_20) 

asvdat <- S79 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 
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ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

ordS79 <- phyloseq(ASV,TAX,META) 

ordS79_transform <- transform(ordS79, "compositional") 

## Top 15 ord 

#Sort Order by abundance and pick the top 15 

top15ord.names.S79 <- sort(tapply(taxa_sums(ordS79_transform), tax_table(ordS79_transform)[, "Order"], sum), 

TRUE)[1:15] 

#Cut down the phyloseq data to only the top 15 ord 

top15ordS79 <- subset_taxa(ordS79_transform, Order %in% names(top15ord.names.S79)) 

#Saving names and proportions as a data frame then saving as csv 

topordS79 <- as.data.frame(top15ord.names.S79) 

colnames(topordS79)[1] ="Abundance" 

write.csv(topordS79, "Top15Ord_S79.csv") 

 

 

## Creating a list of the stations 

CLV <- read.csv("Top15Ord_CLV.csv") 

KISS <- read.csv("Top15Ord_KISS.csv") 

L1 <- read.csv("Top15Ord_L001.csv") 

L4 <- read.csv("Top15Ord_L004.csv") 

L5 <- read.csv("Top15Ord_L005.csv") 

L6 <- read.csv("Top15Ord_L006.csv") 

L7 <- read.csv("Top15Ord_L007.csv") 

L8 <- read.csv("Top15Ord_L008.csv") 

LZ2 <- read.csv("Top15Ord_LZ2.csv") 

Z25A <- read.csv("Top15Ord_LZ25A.csv") 

Z30 <- read.csv("Top15Ord_LZ30.csv") 

Z40 <- read.csv("Top15Ord_LZ40.csv") 

PALM <- read.csv("Top15Ord_PALM.csv") 

PEL <- read.csv("Top15Ord_PEL.csv") 

POLE3S <- read.csv("Top15Ord_POLE3S.csv") 

PO <- read.csv("Top15Ord_PO.csv") 

RIT <- read.csv("Top15Ord_RIT.csv") 

S308 <- read.csv("Top15Ord_S308.csv") 

S77 <- read.csv("Top15Ord_S77.csv") 

S79 <- read.csv("Top15Ord_S79.csv") 

## Creating a list of the stations (fix in Excel before moving on!) 

Stations <- list(CLV, KISS, L1, L4, L5, L6, L7, L8, LZ2, Z25A, Z30, Z40, PALM, 

                 PEL, POLE3S, PO, RIT, S308, S77, S79) 

## Merging all of the data frames in the list (USES TIDYVERSE) 

Station_merge <- Stations %>% reduce(full_join, by= "Order") 

Station_merge[is.na(Station_merge)] = 0  #replacing the NAs with zeros 

Station_merge[5,1] <- "NA" #renaming a cell in the dataframe 

## Saving merged data frame as CSV 

write.csv(Station_merge, "Top15Order-Stations_Y3.csv") 

 

 

## Testing to see if I can create a stacked bar chart using the merged station data frame 

## Converting the data frame into long format (which converts it into a tibble) 

S_tibble <-Station_merge %>% pivot_longer(cols=c(2:21),names_to= "Station",values_to= "Abundance") 

write.csv(S_tibble, "StationOrders_long_Y3.csv") 

# StationOrd <- read.csv("StationPhyla_long_Y3.csv", header = T) or SKIP AND GO TO NEXT LINE!! 

StationOrd <- S_tibble 

 

## Plotting using custom colors 

Top15Station <- ggplot(StationOrd, aes(fill=Order, x=Abundance, y=Station)) +  

  geom_bar(position='fill', stat='identity')+      #position="fill" creates a stacked bar plot with abundance as 

a percentage 

  theme_minimal()+ 

  labs(x='Abundance', y='Stations', title='Top Orders Found in Lake Okeechobee by Station - Year 3')+ 

  theme(plot.title = element_text(color="navyblue", size=14, face="bold.italic", hjust = 0.5))+ 

  theme(legend.title = element_text(face="italic")) 

Top15Stat <- c("#000000","#004949","#009292","#ff6db6","#ffb6db", 

                               "#78C675","#006ddb","#b66dff","#6db6ff","#b6dbff", 

                               "#920000","#924900","#db6d00","navy","#ffff6d",  

                        "antiquewhite2", "#1D91C0", "#67005F", "khaki3", "#CB181D",  

                        "#A6D854", "#F46D43", "#A6CEE3", "#FD8D3C", "#490092", "#999999") 

## 15-color palette, colorlblind friendly 

withr::with_options(list(ggplot2.discrete.fill = Top15Stat),print(Top15Station)) 

 

 

###### Environmental variable - Scatter plots by Year ###### 

library(ggplot2) 

library(cowplot) 
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#Loading in metadata 

metadata <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

#Subsetting metadata table by year 

met1 <- metadata[grep("_19$", rownames(metadata)),] 

met2 <- metadata[grep("_20$", rownames(metadata)),] 

met3 <- metadata[grep("_21$", rownames(metadata)),] 

write.csv(met1, "Metadata_BATCH_Y1.csv") 

write.csv(met2, "Metadata_BATCH_Y2.csv") 

write.csv(met3, "Metadata_BATCH_Y3.csv") 

 

### PLOTTING  

#Chlorophyll a 

ch1 <- ggplot(met1, aes(x = as.factor(Month), y = Chlorophyll.a)) + 

  geom_jitter(size = 2, color = "green4", width = 0.25)+ 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = "Chlorophyll a (ug/L)")+ 

  ylim(-25, 150)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 1 - 2019") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

ch2 <- ggplot(met2, aes(x = as.factor(Month), y = Chlorophyll.a)) + 

  geom_jitter(size = 2, color = "green4", width = 0.25) + 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = NULL)+ 

  ylim(-25, 150)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 2 - 2020") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

ch3 <- ggplot(met3, aes(x = as.factor(Month), y = Chlorophyll.a)) + 

  geom_jitter(size = 2, color = "green4", width = 0.25) + 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = NULL)+ 

  ylim(-25, 150)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 3 - 2021") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

#Viewing all plots in one graph and saving as png 

png(file="Chla_scatter.png", width=1406, height=573, bg="transparent") 

plot_grid(ch1, ch2, ch3, ncol = 3, labels = "AUTO") 

graphics.off() 

 

 

#Total Phosphorus  

tp1 <- ggplot(met1, aes(x = as.factor(Month), y = Phosphate.Total)) + 

  geom_jitter(size = 2, color = "darkred", width = 0.25)+ 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = "Total Phosphorus (mg/L)")+ 

  ylim(0, 0.5)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 1 - 2019") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

tp2 <- ggplot(met2, aes(x = as.factor(Month), y = Phosphate.Total)) + 
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  geom_jitter(size = 2, color = "darkred", width = 0.25) + 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = NULL)+ 

  ylim(0, 0.5)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 2 - 2020") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

tp3 <- ggplot(met3, aes(x = as.factor(Month), y = Phosphate.Total)) + 

  geom_jitter(size = 2, color = "darkred", width = 0.25) + 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = NULL)+ 

  ylim(0, 0.5)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 3 - 2021") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

#Viewing all plots in one graph and saving png 

png(file="TP_scatter.png", width=1406, height=573, bg="transparent") 

plot_grid(tp1, tp2, tp3, ncol = 3, labels = "AUTO") 

graphics.off() 

 

#Nitrate + Nitrite 

tn1 <- ggplot(met1, aes(x = as.factor(Month), y = Nitrate.Nitrite)) + 

  geom_jitter(size = 2, color = "dodgerblue2", width = 0.25) + 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = "Nitrate + Nitrite (mg/L)")+ 

  ylim(-0.2, 0.6)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 1 - 2019") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

tn2 <- ggplot(met2, aes(x = as.factor(Month), y = Nitrate.Nitrite)) + 

  geom_jitter(size = 2, color = "dodgerblue2", width = 0.25) + 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = NULL)+ 

  ylim(-0.2, 0.6)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 2 - 2020") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

tn3 <- ggplot(met3, aes(x = as.factor(Month), y = Nitrate.Nitrite)) + 

  geom_jitter(size = 2, color = "dodgerblue2", width = 0.25)+ 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = NULL)+ 

  ylim(-0.2, 0.6)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 3 - 2021") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

#Viewing all plots in one graph and saving png 
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png(file="Nit_scatter.png", width=1406, height=573, bg="transparent") 

plot_grid(tn1, tn2, tn3, ncol = 3, labels = "AUTO") 

graphics.off() 

 

#Ammonia 

a1 <- ggplot(met1, aes(x = as.factor(Month), y = Ammonia)) + 

  geom_jitter(size = 2, color = "mediumpurple3", width = 0.25) + 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = "Ammonia (mg/L)")+ 

  ylim(-0.2, 0.8)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 1 - 2019") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

a2 <- ggplot(met2, aes(x = as.factor(Month), y = Ammonia)) + 

  geom_jitter(size = 2, color = "mediumpurple3", width = 0.25) + 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = NULL)+ 

  ylim(-0.2, 0.8)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 2 - 2020") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

a3 <- ggplot(met3, aes(x = as.factor(Month), y = Ammonia)) + 

  geom_jitter(size = 2, color = "mediumpurple3", width = 0.25) + 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = NULL)+ 

  ylim(-0.2, 0.8)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 3 - 2021") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

#Viewing all plots in one graph and saving png 

png(file="Ammonia_scatter.png", width=1406, height=573, bg="transparent") 

plot_grid(a1, a2, a3, ncol = 3, labels = "AUTO") 

graphics.off() 

 

#Temperature 

t1 <- ggplot(met1, aes(x = as.factor(Month), y = Temperature)) + 

  geom_jitter(size = 2, color = "sienna", width = 0.25)+ 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = "Temperature (°C)")+ 

  ylim(0, 35)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 1 - 2019") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

t2 <- ggplot(met2, aes(x = as.factor(Month), y = Temperature)) + 

  geom_jitter(size = 2, color = "sienna", width = 0.25) + 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = NULL)+ 

  ylim(0, 35)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 
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  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 2 - 2020") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

t3 <- ggplot(met3, aes(x = as.factor(Month), y = Temperature)) + 

  geom_jitter(size = 2, color = "sienna", width = 0.25) + 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = NULL)+ 

  ylim(0, 35)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 3 - 2021") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

#Viewing all plots in one graph  

png(file="Temp_scatter.png", width=1406, height=573, bg="transparent") 

plot_grid(t1, t2, t3, ncol = 3, labels = "AUTO") 

graphics.off() 

 

#Microcystin.LR 

m1 <- ggplot(met1, aes(x = as.factor(Month), y = Microcystin.LR)) + 

  geom_jitter(size = 2, color = "hotpink3", width = 0.25) + 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = "Microcystin (ug/L)")+ 

  ylim(-10, 55)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 1 - 2019") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

m2 <- ggplot(met2, aes(x = as.factor(Month), y = Microcystin.LR)) + 

  geom_jitter(size = 2, color = "hotpink3", width = 0.25) + 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = NULL)+ 

  ylim(-10, 55)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 2 - 2020") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

m3 <- ggplot(met3, aes(x = as.factor(Month), y = Microcystin.LR)) + 

  geom_jitter(size = 2, color = "hotpink3", width = 0.25) + 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = NULL)+ 

  ylim(-10, 55)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 3 - 2021") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

#Viewing all plots in one graph and saving png 

png(file="MicrocystinLR_scatter.png", width=1406, height=573, bg="transparent") 

plot_grid(m1, m2, m3, ncol = 3, labels = "AUTO") 

graphics.off() 

 

#pH 

p1 <- ggplot(met1, aes(x = as.factor(Month), y = pH)) + 

  geom_jitter(size = 2, color = "darkorange", width = 0.25)+ 

  stat_summary(fun=mean, aes(group=1), geom="line", 
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               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = "pH")+ 

  ylim(0, 11)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 1 - 2019") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

p2 <- ggplot(met2, aes(x = as.factor(Month), y = pH)) + 

  geom_jitter(size = 2, color = "darkorange", width = 0.25) + 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = NULL)+ 

  ylim(0, 11)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 2 - 2020") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

p3 <- ggplot(met3, aes(x = as.factor(Month), y = pH)) + 

  geom_jitter(size = 2, color = "darkorange", width = 0.25) + 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = NULL)+ 

  ylim(0, 11)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 3 - 2021") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

#Viewing all plots in one graph  

png(file="PH_scatter.png", width=1406, height=573, bg="transparent") 

plot_grid(p1, p2, p3, ncol = 3, labels = "AUTO") 

graphics.off() 

 

#Total Nitrogen 

tn4 <- ggplot(met1, aes(x = as.factor(Month), y = Total.Nitrogen)) + 

  geom_jitter(size = 2, color = "navy", width = 0.25)+ 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = "Total Nitrogen (mg/L)")+ 

  ylim(0, 4)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 1 - 2019") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

tn5 <- ggplot(met2, aes(x = as.factor(Month), y = Total.Nitrogen)) + 

  geom_jitter(size = 2, color = "navy", width = 0.25) + 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = NULL)+ 

  ylim(0, 4)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 2 - 2020") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

tn6 <- ggplot(met3, aes(x = as.factor(Month), y = Total.Nitrogen)) + 

  geom_jitter(size = 2, color = "navy", width = 0.25) + 

  stat_summary(fun=mean, aes(group=1), geom="line", 
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               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = NULL)+ 

  ylim(0, 4)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 3 - 2021") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

#Viewing all plots in one graph  

png(file="TotN_scatter.png", width=1406, height=573, bg="transparent") 

plot_grid(tn4, tn5, tn6, ncol = 3, labels = "AUTO") 

graphics.off() 

 

#TN:TP 

np1 <- ggplot(met1, aes(x = as.factor(Month), y = TN.TP.ratio)) + 

  geom_jitter(size = 2, color = "lightsalmon2", width = 0.25)+ 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = "TN : TP")+ 

  ylim(0, 46)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 1 - 2019") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

np2 <- ggplot(met2, aes(x = as.factor(Month), y = TN.TP.ratio)) + 

  geom_jitter(size = 2, color = "lightsalmon2", width = 0.25) + 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = NULL)+ 

  ylim(0, 46)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 2 - 2020") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

np3 <- ggplot(met3, aes(x = as.factor(Month), y = TN.TP.ratio)) + 

  geom_jitter(size = 2, color = "lightsalmon2", width = 0.25) + 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = NULL)+ 

  ylim(0, 46)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 3 - 2021") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

#Viewing all plots in one graph  

png(file="TNTP_scatter.png", width=1406, height=573, bg="transparent") 

plot_grid(np1, np2, np3, ncol = 3, labels = "AUTO") 

graphics.off() 

 

#Total Depth 

d1 <- ggplot(met1, aes(x = as.factor(Month), y = TotalDepth)) + 

  geom_jitter(size = 2, color = "cornsilk4", width = 0.25)+ 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = "Total Depth (m)")+ 

  ylim(0, 6)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 1 - 2019") +  
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  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

d2 <- ggplot(met2, aes(x = as.factor(Month), y = TotalDepth)) + 

  geom_jitter(size = 2, color = "cornsilk4", width = 0.25) + 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = NULL)+ 

  ylim(0, 6)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 2 - 2020") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

d3 <- ggplot(met3, aes(x = as.factor(Month), y = TotalDepth)) + 

  geom_jitter(size = 2, color = "cornsilk4", width = 0.25) + 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = NULL)+ 

  ylim(0, 6)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 3 - 2021") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

#Viewing all plots in one graph and saving as png 

png(file="Depth_scatter.png", width=1406, height=573, bg="transparent") 

plot_grid(d1, d2, d3, ncol = 3, labels = "AUTO") 

graphics.off() 

 

#Total Phosphate  

tph1 <- ggplot(met1, aes(x = as.factor(Month), y = Phosphate.Ortho)) + 

  geom_jitter(size = 2, color = "grey35", width = 0.25)+ 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = "Total Phosphate (mg/L)")+ 

  ylim(-0.01, 0.25)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 1 - 2019") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

tph2 <- ggplot(met2, aes(x = as.factor(Month), y = Phosphate.Ortho)) + 

  geom_jitter(size = 2, color = "grey35", width = 0.25) + 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = NULL)+ 

  ylim(-0.01, 0.25)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 2 - 2020") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

tph3 <- ggplot(met3, aes(x = as.factor(Month), y = Phosphate.Ortho)) + 

  geom_jitter(size = 2, color = "grey35", width = 0.25) + 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = NULL)+ 

  ylim(-0.01, 0.25)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 3 - 2021") +  
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  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

#Viewing all plots in one graph and saving png 

png(file="TPhos_scatter.png", width=1406, height=573, bg="transparent") 

plot_grid(tph1, tph2, tph3, ncol = 3, labels = "AUTO") 

graphics.off() 

 

###### Viewing Microcystis RA over time ###### 

#Loading in metadata 

metadata <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

#Subsetting metadata table by year 

met1 <- metadata[grep("_19$", rownames(metadata)),] 

met2 <- metadata[grep("_20$", rownames(metadata)),] 

met3 <- metadata[grep("_21$", rownames(metadata)),] 

 

#Plotting 

mc1 <- ggplot(met1, aes(x = as.factor(Month), y = Microcystis.Abundance)) + 

  geom_jitter(size = 1.8, color = "darkcyan", width = 0.25)+ 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = "Microcystis Relative Abundance")+ 

  ylim(-0.01, 0.1)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 1 - 2019") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

mc2 <- ggplot(met2, aes(x = as.factor(Month), y = Microcystis.Abundance)) + 

  geom_jitter(size = 1.8, color = "darkcyan", width = 0.25) + 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = NULL)+ 

  ylim(-0.01, 0.1)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 2 - 2020") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

mc3 <- ggplot(met3, aes(x = as.factor(Month), y = Microcystis.Abundance)) + 

  geom_jitter(size = 1.8, color = "darkcyan", width = 0.25) + 

  stat_summary(fun=mean, aes(group=1), geom="line", 

               colour="black", linewidth= 0.7)+ 

  theme_grey()+ 

  labs(x = "Month", y = NULL)+ 

  ylim(-0.01, 0.1)+ 

  theme(legend.position="none")+ 

  theme(axis.title = element_text(size = 15,face = "bold"))+ 

  theme(axis.text = element_text(size = 14))+ 

  labs(title = "Year 3 - 2021") +  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5)) 

 

#Viewing all plots in one graph  

png(file="Microcystis_scatter.png", width=1406, height=573, bg="transparent") 

plot_grid(mc1, mc2, mc3, ncol = 3, labels = "AUTO") 

graphics.off() 

 

###### Alpha Diversity - Measures ######  

#### alpha diversity: the species richness that occurs within a given area within a region 

#### that is smaller than the entire distribution of the species (Moore, 2013) 

#### uses the relative abundance data 

 

###Diversity by Sample (MAKE SURE YOU ONLY HAVE vegan INSTALLED!!) 

# Species richness: 

S <- as.data.frame(specnumber(dat.01per)) 

colnames(S)[1] ="Species Richness" 

## Species richness: the number of species within a region (Moore, 2013) 

#No. individuals: 

N <- as.data.frame(rowSums(dat.01per)) 
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colnames(N)[1] ="No. of Individuals" 

#Shannon-Weiner Diversity: 

H <- as.data.frame(diversity(dat.ra), index="shannon") 

colnames(H)[1] ="Shannon Diverisity Index" 

## Shannon index: a measure of the information content of a community rather than of the particular species 

##               that is present (Moore, 2013) [species richness index] 

## strongly influenced by species richness and by rare species (so sample size is negligible) 

#Pielou's Evenness: 

J = H/log(S) 

colnames(J)[1] ="Species Evenness" 

## Pielou's evenness: an index that measures diversity along with the species richness 

## Formula - J = H/log(S) (aka Shannon evenness index) 

## evenness = the count of individuals of each species in an area; 0 is no evenness & 1 is complete evenness  

#Simpson's Diversity (1/D) (inverse): 

inv.D <- as.data.frame(diversity(dat.ra, index="inv")) 

colnames(inv.D)[1] ="inverse Simpson Diversity Index" 

## gives the Simpson index the property of increasing as diversity increases (the dominance of 

## a few species decreases) 

 

#Combine data together into a single new data frame, export as CSV 

diversitybysample <- cbind(S, N, H, J,inv.D) 

write.csv(diversitybysample, "AlphaDiversityBATCH.csv") 

 

#merging with metadata table and export as csv (edited OUTSIDE of R in Excel) 

diversitybysample <- read.csv("AlphaDiversityBATCH.csv", row.names = 1) 

met <- read.csv("Metadata-Diversity_BATCH.csv", row.names = 1) 

adivmet <- cbind(diversitybysample,met) 

write.csv(adivmet,"Metadata-Diversity_BATCH.csv") 

 

###### Alpha Diversity Stats. - ALL YEARS TOGETHER ###### 

# Packages Used 

library(vegan) 

library(stats) 

library(ggplot2) 

library(ggfortify) 

 

#### Alpha Diversities analyses 

metadata <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

 

#### Testing Statistical Significance 

## Normality - Shapiro Test (only done on NUMERIC data) 

## p <= 0.05 = H0 REJECTED -> DATA IS NOT NORMAL  

## p > 0.05 = H0 ACCEPTED -> DATA IS NORMAL 

## Attempted to transform twice using log and sqrt 

 

#Alpha Diversity Variables 

shapiro.test(metadata$S) #NOT NORMAL 

#W = 0.97921, p-value = 5.777e-07 

shapiro.test(metadata$N) #NOT NORMAL 

#W = 0.91551, p-value < 2.2e-16 

shapiro.test(metadata$H) #NOT NORMAL 

#W = 0.96059, p-value = 7.456e-11 

shapiro.test(metadata$J) #NOT NORMAL 

#W = 0.72606, p-value < 2.2e-16 

shapiro.test(metadata$inv.D) #NOT NORMAL 

#W = 0.9247, p-value = 8.049e-16 

 

 

 

## NOT NORMAL -> Transformations also didn't work -> Non-parametric test (KRUSKAL-WALLIS) 

library(pgirmess) 

library(multcompView) 

 

#### Hypothesis 1 Comparisons (Diversity & Year) 

# Kruskal Wallis: Nonparametric Data (not normal) 

## Pairwise Wilcox Test - calculate pairwise comparisons between group levels  

##                        with corrections for multiple testing (non-parametric) 

 

kruskal.test(metadata$S ~ metadata$Year) 

#Kruskal-Wallis chi-squared = 13.385, df = 2, p-value = 0.00124 (< 0.05; reject null - significant) 

pairwise.wilcox.test(metadata$S, metadata$Year, p.adjust.method = "fdr") #Difference between year 1 and 3 & year 

2 and 3 

kmc <- kruskalmc(metadata$S ~ metadata$Year) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 
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names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#  1   2   3  

# "a" "a" "b"  

 

kruskal.test(metadata$N ~ metadata$Year) 

#Kruskal-Wallis chi-squared = 19.73, df = 2, p-value = 5.196e-05 (< 0.05; reject null - significant) 

pairwise.wilcox.test(metadata$N, metadata$Year, p.adjust.method = "fdr") #Difference between year 1 and 3 & year 

2 and 3 

kmc <- kruskalmc(metadata$N ~ metadata$Year) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#  1   2   3  

# "a" "a" "b"  

 

 

kruskal.test(metadata$H ~ metadata$Year) 

#Kruskal-Wallis chi-squared = 8.5305, df = 2, p-value = 0.01405 (< 0.05; reject null - significant) 

pairwise.wilcox.test(metadata$H, metadata$Year, p.adjust.method = "fdr") #Difference between year 2 and 3 

kmc <- kruskalmc(metadata$H ~ metadata$Year) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#  1   2   3  

# "ab" "a" "b"  

 

kruskal.test(metadata$J ~ metadata$Year) 

#Kruskal-Wallis chi-squared = 16.987, df = 2, p-value = 0.0002048 (< 0.05; reject null - significant) 

pairwise.wilcox.test(metadata$J, metadata$Year, p.adjust.method = "fdr") #Difference between year 1 and 2 & 1 

and 3 

kmc <- kruskalmc(metadata$J ~ metadata$Year) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#  1   2   3  

# "a" "ab" "b"  

 

kruskal.test(metadata$inv.D ~ metadata$Year) 

#Kruskal-Wallis chi-squared = 16.987, df = 2, p-value = 0.0002048 (< 0.05; reinv.Dect null - significant) 

pairwise.wilcox.test(metadata$inv.D, metadata$Year, p.adjust.method = "fdr") #Difference between year 1 and 2 & 

1 and 3 

kmc <- kruskalmc(metadata$inv.D ~ metadata$Year) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#  1   2   3  

# "a" "b" "a"  

 

 

## Plotting boxplots of alpha diversity by year 

# Creating pdf for the plots to populate 

pdf("AlphaDiverisityPlots.pdf") 
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par(mfrow=c(2,2)) 

par(mar=c(5,6,2,2)+0.1) 

# plot each boxplot on its own page 

boxplot(S~Year, data=metadata, horizontal = F, las=1, ylab = "", xlab = "") 

title(xlab="Year", line = 3, cex.lab=1.15) 

title(ylab="Species Richness (S)", line=4.25, cex.lab=1.15) 

text(y=1500, x=3, labels="b", col="blue", cex=1.2) 

text(y=1420, x=2, labels="a", col="red", cex=1.2)        # labeling which groups are significantly different 

than the other  

text(y=1585, x=1, labels="a", col="red", cex=1.2) 

 

par(mar=c(5,4.5,2,2)+0.1) 

boxplot(H~Year, data=metadata, horizontal = F, las=1, ylab = "", xlab = "") 

title(xlab="Year", line = 3, cex.lab=1.15) 

title(ylab="Shannon Diversity Index (H)", line=2.8, cex.lab=1.15) 

text(y=4, x=3, labels="b", col="blue", cex=1.2) 

text(y=3.4, x=2, labels="a", col="red", cex=1.2)         

text(y=3.6, x=1, labels="ab", col="purple", cex=1.2) 

 

boxplot(J~Year, data=metadata, horizontal = F, las=1, ylab = "", xlab = "") 

title(xlab="Year", line = 3, cex.lab=1.15) 

title(ylab="Species Evenness (J)", line=3, cex.lab=1.15) 

text(y=0.73, x=3, labels="b", col="blue", cex=1.2) 

text(y=0.685, x=2, labels="ab", col="purple", cex=1.2)         

text(y=0.73, x=1, labels="a", col="red", cex=1.2) 

 

par(mar=c(5,6,2,2)+0.1) 

boxplot(inv.D~Year, data=metadata, horizontal = F, las=1, ylab = "", xlab = "") 

title(xlab="Year", line = 3, cex.lab=1.15) 

title(ylab="inverse Simpson Diversity Index (inv.D)", line=3.6, cex.lab=1.15) 

text(y=440, x=3, labels="a", col="red", cex=1.2) 

text(y=420, x=2, labels="b", col="blue", cex=1.2)         

text(y=340, x=1, labels="a", col="red", cex=1.2) 

 

boxplot(N~Year, data=metadata, horizontal = F, las=1, ylab = "", xlab = "") 

title(xlab="Year", line = 3, cex.lab=1.15) 

title(ylab="No. of Individuals (N)", line=4.25, cex.lab=1.15) 

text(y=90000, x=3, labels="b", col="blue", cex=1.2) 

text(y=130000, x=2, labels="a", col="red", cex=1.2)         

text(y=160000, x=1, labels="a", col="red", cex=1.2) 

 

# stop saving to pdf  

dev.off() 

 

###### Alpha Diversity by Year ###### 

Y1 <- metadata[grep("_19$", rownames(metadata)),] 

Y2 <- metadata[grep("_20$", rownames(metadata)),] 

Y3 <- metadata[grep("_21$", rownames(metadata)),] 

## Packages 

library(pgirmess) 

library(multcompView) 

library(vegan) 

 

###### Differences by ZONE - Richness, Shannon, inv. Simpson, Evenness #### 

# Boxplot colors by zone (4 different zones so 4 different colors) 

Zones <- c("palegreen3","wheat2","rosybrown1","violetred2") 

 

 

#Year 1 

kruskal.test(Y1$S ~ Y1$Zone) 

#Kruskal-Wallis chi-squared = 12.026, df = 3, p-value = 0.007295 

pairwise.wilcox.test(Y1$S, Y1$Zone, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y1$S ~ Y1$Zone) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

# Inflow  Nearshore   Pelagic     S79  

#  "ab"       "a"       "b"      "ab" 

 

kruskal.test(Y1$H ~ Y1$Zone) 

#Kruskal-Wallis chi-squared = 11.77, df = 3, p-value = 0.008214 



191 

 

pairwise.wilcox.test(Y1$H, Y1$Zone, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y1$H ~ Y1$Zone) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

# Inflow Nearshore   Pelagic       S79  

# "ab"       "a"       "b"      "ab"  

 

kruskal.test(Y1$inv.D ~ Y1$Zone) 

#Kruskal-Wallis chi-squared = 8.5961, df = 3, p-value = 0.03517 

pairwise.wilcox.test(Y1$inv.D, Y1$Zone, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y1$inv.D ~ Y1$Zone) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

# Inflow Nearshore   Pelagic   S79  

# "a"       "a"       "a"      "a"  -> NO DIFFERENCES 

 

kruskal.test(Y1$J ~ Y1$Zone) 

#Kruskal-Wallis chi-squared = 13.726, df = 3, p-value = 0.003303 

pairwise.wilcox.test(Y1$J, Y1$Zone, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y1$J ~ Y1$Zone) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

# Inflow Nearshore   Pelagic    S79  

# "a"       "b"      "ab"      "ab"  

 

## Plotting all the Year 1 boxplots on one graph 

par(mfrow = c(1,4)) 

#plotting the boxplots for each alpha diversity variable 

boxplot(S~Zone, data=Y1, las=1, col= Zones, ylab = "Species Richness") 

boxplot(H~Zone, data=Y1, las=1,col= Zones, ylab = "Shannon Diversity Index") 

boxplot(inv.D~Zone, data=Y1, las=1,col= Zones, ylab = "inverse Simpson Diversity Index") 

boxplot(J~Zone, data=Y1, las=1,col= Zones, ylab = "Evenness") 

#Creating main title 

mtext("Alpha Diversity by Zone - Year 1", side = 3, line = - 2.4, outer = TRUE, cex = 1.4) 

 

 

#Year 2 - NO SIGINIFICANT DIFFERENCES! 

kruskal.test(Y2$S ~ Y2$Zone) 

#Kruskal-Wallis chi-squared = 2.1354, df = 3, p-value = 0.5448 

pairwise.wilcox.test(Y2$S, Y2$Zone, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y2$S ~ Y2$Zone) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#NO SIGNIFICANT DIFFERENCES FOUND!! 

 

kruskal.test(Y2$H ~ Y2$Zone) 

#Kruskal-Wallis chi-squared = 0.90469, df = 3, p-value = 0.8243 

pairwise.wilcox.test(Y2$H, Y2$Zone, p.adjust.method = "fdr") 

kmc <- kruskalmc(Y2$H ~ Y2$Zone) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 
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names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#NO SIGNIFICANT DIFFERENCES FOUND!! 

 

kruskal.test(Y2$inv.D ~ Y2$Zone) 

#Kruskal-Wallis chi-squared = 2.1509, df = 3, p-value = 0.5417 

pairwise.wilcox.test(Y2$inv.D, Y2$Zone, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y2$inv.D ~ Y2$Zone) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#NO SIGNIFICANT DIFFERENCES FOUND!! 

 

kruskal.test(Y2$J ~ Y2$Zone) 

#Kruskal-Wallis chi-squared = 6.2334, df = 3, p-value = 0.1008 

pairwise.wilcox.test(Y2$J, Y2$Zone, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y2$J ~ Y2$Zone) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#NO SIGNIFICANT DIFFERENCES FOUND!! 

 

## Plotting all the Year 2 boxplots on one graph 

par(mfrow = c(1,4)) 

#plotting the boxplots for each alpha diversity variable 

boxplot(S~Zone, data=Y2, las=1, col= Zones, ylab = "Species Richness") 

boxplot(H~Zone, data=Y2, las=1,col= Zones, ylab = "Shannon Diversity Index") 

boxplot(inv.D~Zone, data=Y2, las=1,col= Zones, ylab = "inverse Simpson Diversity Index") 

boxplot(J~Zone, data=Y2, las=1,col= Zones, ylab = "Evenness") 

#Creating main title 

mtext("Alpha Diversity by Zone - Year 2", side = 3, line = - 2.4, outer = TRUE, cex = 1.4) 

 

 

#Year 3 

kruskal.test(Y3$S ~ Y3$Zone) 

#Kruskal-Wallis chi-squared = 18.21, df = 3, p-value = 0.0003981 

pairwise.wilcox.test(Y3$S, Y3$Zone, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y3$S ~ Y3$Zone) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

# Inflow Nearshore   Pelagic    S79  

# "a"       "b"       "a"       "b"  

 

kruskal.test(Y3$H ~ Y3$Zone) 

#Kruskal-Wallis chi-squared = 14.781, df = 3, p-value = 0.002014 

pairwise.wilcox.test(Y3$H, Y3$Zone, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y3$H ~ Y3$Zone) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

# Inflow Nearshore   Pelagic    S79  

#  "a"       "b"      "ab"      "ab"  
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kruskal.test(Y3$inv.D ~ Y3$Zone) 

#Kruskal-Wallis chi-squared = 13.68, df = 3, p-value = 0.003374 

pairwise.wilcox.test(Y3$inv.D, Y3$Zone, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y3$inv.D ~ Y3$Zone) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#Inflow Nearshore   Pelagic    S79  

# "a"       "b"       "b"      "ab"  

 

kruskal.test(Y3$J ~ Y3$Zone) 

#Kruskal-Wallis chi-squared = 15.472, df = 3, p-value = 0.001454 

pairwise.wilcox.test(Y3$J, Y3$Zone, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y3$J ~ Y3$Zone) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#Inflow Nearshore   Pelagic   S79  

#"a"       "b"       "b"      "ab"  

 

## Plotting all the Year 3 boxplots on one graph 

par(mfrow = c(1,4)) 

#plotting the boxplots for each alpha diversity variable 

boxplot(S~Zone, data=Y3, las=1, col= Zones, ylab = "Species Richness") 

boxplot(H~Zone, data=Y3, las=1,col= Zones, ylab = "Shannon Diversity Index") 

boxplot(inv.D~Zone, data=Y3, las=1,col= Zones, ylab = "inverse Simpson Diversity Index") 

boxplot(J~Zone, data=Y3, las=1,col= Zones, ylab = "Evenness") 

#Creating main title 

mtext("Alpha Diversity by Zone - Year 3", side = 3, line = -2.4, outer = TRUE, cex = 1.4) 

 

###### Differences by SEASON - Richness, Shannon, inv. Simpson, Evenness #### 

# Boxplot colors by season (2 seasons so 2 different colors) 

Seasons <- c("lemonchiffon2","royalblue1") 

 

#Year 1 - NO SIGNIFICANT DIFFERENCES ALL AROUND! 

kruskal.test(Y1$S ~ Y1$Season) 

#Kruskal-Wallis chi-squared = 0.10935, df = 1, p-value = 0.7409 

pairwise.wilcox.test(Y1$S, Y1$Season, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y1$S ~ Y1$Season) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#NO SIGINIFICANT DIFFERENCES FOUND!! 

 

kruskal.test(Y1$H ~ Y1$Season) 

#Kruskal-Wallis chi-squared = 0.18617, df = 1, p-value = 0.6661 

pairwise.wilcox.test(Y1$H, Y1$Season, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y1$H ~ Y1$Season) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#NO SIGINIFICANT DIFFERENCES FOUND!! 

 

kruskal.test(Y1$inv.D ~ Y1$Season) 

#Kruskal-Wallis chi-squared = 0.16256, df = 1, p-value = 0.6868 
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pairwise.wilcox.test(Y1$inv.D, Y1$Season, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y1$inv.D ~ Y1$Season) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#NO SIGINIFICANT DIFFERENCES FOUND!! 

 

kruskal.test(Y1$J ~ Y1$Season) 

#Kruskal-Wallis chi-squared = 1.5322, df = 1, p-value = 0.2158 

pairwise.wilcox.test(Y1$J, Y1$Season, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y1$J ~ Y1$Season) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#NO SIGINIFICANT DIFFERENCES FOUND!! 

 

## Plotting all the Year 1 boxplots on one graph 

par(mfrow = c(1,4)) 

#plotting the boxplots for each alpha diversity variable 

boxplot(S~Season, data=Y1, las=1, col= Seasons, ylab = "Species Richness") 

boxplot(H~Season, data=Y1, las=1,col= Seasons, ylab = "Shannon Diversity Index") 

boxplot(inv.D~Season, data=Y1, las=1,col= Seasons, ylab = "inverse Simpson Diversity Index") 

boxplot(J~Season, data=Y1, las=1,col= Seasons, ylab = "Evenness") 

#Creating main title 

mtext("Alpha Diversity by Season - Year 1", side = 3, line = - 2.4, outer = TRUE, cex = 1.4) 

 

#Year 2 - Difference found in evenness 

kruskal.test(Y2$S ~ Y2$Season) 

#Kruskal-Wallis chi-squared = 0.0066879, df = 1, p-value = 0.9348 

pairwise.wilcox.test(Y2$S, Y2$Season, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y2$S ~ Y2$Season) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#NO SIGINIFICANT DIFFERENCES FOUND!! 

 

kruskal.test(Y2$H ~ Y2$Season) 

#Kruskal-Wallis chi-squared = 0.018269, df = 1, p-value = 0.8925 

pairwise.wilcox.test(Y2$H, Y2$Season, p.adjust.method = "fdr") 

kmc <- kruskalmc(Y2$H ~ Y2$Season) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#NO SIGINIFICANT DIFFERENCES FOUND!! 

 

kruskal.test(Y2$inv.D ~ Y2$Season) 

#Kruskal-Wallis chi-squared = 0.17949, df = 1, p-value = 0.6718 

pairwise.wilcox.test(Y2$inv.D, Y2$Season, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y2$inv.D ~ Y2$Season) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 
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let # significant letters for the multiple comparison test 

#NO SIGINIFICANT DIFFERENCES FOUND!! 

 

kruskal.test(Y2$J ~ Y2$Season) 

#Kruskal-Wallis chi-squared = 11.159, df = 1, p-value = 0.0008365 

pairwise.wilcox.test(Y2$J, Y2$Season, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y2$J ~ Y2$Season) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

# dry  wet 

# "a"  "b" 

 

## Plotting all the Year 2 boxplots on one graph 

par(mfrow = c(1,4)) 

#plotting the boxplots for each alpha diversity variable 

boxplot(S~Season, data=Y2, las=1, col= Seasons, ylab = "Species Richness") 

boxplot(H~Season, data=Y2, las=1,col= Seasons, ylab = "Shannon Diversity Index") 

boxplot(inv.D~Season, data=Y2, las=1,col= Seasons, ylab = "inverse Simpson Diversity Index") 

boxplot(J~Season, data=Y2, las=1,col= Seasons, ylab = "Evenness") 

#Creating main title 

mtext("Alpha Diversity by Season - Year 2", side = 3, line = - 2.4, outer = TRUE, cex = 1.4) 

 

 

#Year 3 - Differences found in evenness 

kruskal.test(Y3$S ~ Y3$Season) 

#Kruskal-Wallis chi-squared = 2.0537, df = 1, p-value = 0.1518 

pairwise.wilcox.test(Y3$S, Y3$Season, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y3$S ~ Y3$Season) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#NO SIGINIFICANT DIFFERENCES FOUND!!  

 

kruskal.test(Y3$H ~ Y3$Season) 

#Kruskal-Wallis chi-squared = 0.075109, df = 1, p-value = 0.784 

pairwise.wilcox.test(Y3$H, Y3$Season, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y3$H ~ Y3$Season) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#NO SIGINIFICANT DIFFERENCES FOUND!!  

 

kruskal.test(Y3$inv.D ~ Y3$Season) 

#Kruskal-Wallis chi-squared = 0.41548, df = 1, p-value = 0.5192 

pairwise.wilcox.test(Y3$inv.D, Y3$Season, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y3$inv.D ~ Y3$Season) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#NO SIGINIFICANT DIFFERENCES FOUND!!  

 

kruskal.test(Y3$J ~ Y3$Season) 

#Kruskal-Wallis chi-squared = 4.3677, df = 1, p-value = 0.03663 

pairwise.wilcox.test(Y3$J, Y3$Season, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y3$J ~ Y3$Season) # multiple-comparison test 
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kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

# dry  wet 

# "a"  "b"   

 

## Plotting all the Year 3 boxplots on one graph 

par(mfrow = c(1,4)) 

#plotting the boxplots for each alpha diversity variable 

boxplot(S~Season, data=Y3, las=1, col= Seasons, ylab = "Species Richness") 

boxplot(H~Season, data=Y3, las=1,col= Seasons, ylab = "Shannon Diversity Index") 

boxplot(inv.D~Season, data=Y3, las=1,col= Seasons, ylab = "inverse Simpson Diversity Index") 

boxplot(J~Season, data=Y3, las=1,col= Seasons, ylab = "Evenness") 

#Creating main title 

mtext("Alpha Diversity by Season - Year 3", side = 3, line = -2.4, outer = TRUE, cex = 1.4) 

 

###### Differences by STATION - Richness, Shannon, inv. Simpson, Evenness #### 

# Boxplot colors by station 

## Expanding the color palette using color ramp 

library(RColorBrewer) 

nb.cols <- 20 #defines the number of colors you want 

Stations <- colorRampPalette(brewer.pal(12, "Paired"))(nb.cols) #now the color ramp has 20 colors 

 

 

#Year 1 

kruskal.test(Y1$S ~ Y1$Station) 

#Kruskal-Wallis chi-squared = 38.321, df = 19, p-value = 0.0054 

pairwise.wilcox.test(Y1$S, Y1$Station, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y1$S ~ Y1$Station) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

# CLV10A KISSR0.0    L001     L004     L005     L006     L007     L008      LZ2    LZ25A     LZ30     LZ40  

PALMOUT  PELBAY3   POLE3S  

# "ab"     "ab"      "a"     "ab"     "ab"     "ab"     "ab"     "ab"     "ab"     "ab"     "ab"     "ab"     

"ab"     "ab"      "b"  

# POLESOUT  RITTAE2     S308      S77      S79  

#     "ab"     "ab"     "ab"     "ab"     "ab"  

 

kruskal.test(Y1$H ~ Y1$Station) 

#Kruskal-Wallis chi-squared = 40.886, df = 19, p-value = 0.002499 

pairwise.wilcox.test(Y1$H, Y1$Station, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y1$H ~ Y1$Station) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

# CLV10A KISSR0.0    L001     L004     L005     L006     L007     L008      LZ2    LZ25A     LZ30     LZ40  

PALMOUT  PELBAY3   POLE3S  

# "ab"     "ab"      "a"     "ab"     "ab"     "ab"      "b"     "ab"     "ab"      "b"     "ab"     "ab"     

"ab"     "ab"      "b"  

# POLESOUT  RITTAE2     S308      S77      S79  

# "ab"      "b"         "ab"     "ab"     "ab"  

 

kruskal.test(Y1$inv.D ~ Y1$Station) 

#Kruskal-Wallis chi-squared = 40.482, df = 19, p-value = 0.002827 

pairwise.wilcox.test(Y1$inv.D, Y1$Station, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y1$inv.D ~ Y1$Station) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 
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# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

# CLV10A KISSR0.0   L001     L004     L005     L006     L007     L008      LZ2    LZ25A     LZ30     LZ40  

PALMOUT  PELBAY3   POLE3S  

# "ab"     "ab"      "a"     "ab"     "ab"     "b"     "b"     "ab"     "ab"      "b"     "ab"     "ab"     "ab"     

"ab"      "b"  

# POLESOUT  RITTAE2     S308      S77      S79  

# "ab"     "b"         "ab"     "ab"     "ab"  

 

kruskal.test(Y1$J ~ Y1$Station) 

#Kruskal-Wallis chi-squared = 34.478, df = 19, p-value = 0.01613 

pairwise.wilcox.test(Y1$J, Y1$Station, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y1$J ~ Y1$Station) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#NO SIGNIFICANT DIFFERENCES FOUND!! 

 

## Plotting all the Year 1 boxplots on one graph 

par(mfrow = c(1,4)) 

#plotting the boxplots for each alpha diversity variable 

boxplot(S~Station, data=Y1, las=2, col= Stations, ylab = "Species Richness", xlab = "", cex.axis = 0.88) 

boxplot(H~Station, data=Y1, las=2,col= Stations, ylab = "Shannon Diversity Index", xlab = "", cex.axis = 0.88) 

boxplot(inv.D~Station, data=Y1, las=2,col= Stations, ylab = "inverse Simpson Diversity Index", xlab = "", 

cex.axis = 0.88) 

boxplot(J~Station, data=Y1, las=2,col= Stations, ylab = "Evenness", xlab = "", cex.axis = 0.88) 

#Creating main title 

mtext("Alpha Diversity by Station - Year 1", side = 3, line = - 2.4, outer = TRUE, cex = 1.4) 

 

 

#Year 2 - Differences found in evenness 

kruskal.test(Y2$S ~ Y2$Station) 

#Kruskal-Wallis chi-squared = 7.7969, df = 19, p-value = 0.9886 

pairwise.wilcox.test(Y2$S, Y2$Station, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y2$S ~ Y2$Station) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#NO SIGNIFICANT DIFFERENCES FOUND!! 

 

kruskal.test(Y2$H ~ Y2$Station) 

#Kruskal-Wallis chi-squared = 12.192, df = 19, p-value = 0.8772 

pairwise.wilcox.test(Y2$H, Y2$Station, p.adjust.method = "fdr") 

kmc <- kruskalmc(Y2$H ~ Y2$Station) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#NO SIGNIFICANT DIFFERENCES FOUND!! 

 

kruskal.test(Y2$inv.D ~ Y2$Station) 

#Kruskal-Wallis chi-squared = 21.503, df = 19, p-value = 0.3097 

pairwise.wilcox.test(Y2$inv.D, Y2$Station, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y2$inv.D ~ Y2$Station) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 
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                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#NO SIGNIFICANT DIFFERENCES FOUND!! 

 

kruskal.test(Y2$J ~ Y2$Station) 

#Kruskal-Wallis chi-squared = 36.956, df = 19, p-value = 0.008036 

pairwise.wilcox.test(Y2$J, Y2$Station, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y2$J ~ Y2$Station) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

# CLV10A KISSR0.0     L001     L004     L005     L006     L007     L008      LZ2    LZ25A     LZ30  

# "ab"     "ab"      "a"     "ab"     "ab"     "ab"     "ab"     "ab"     "ab"     "ab"     "ab"  

# LZ40  PALMOUT  PELBAY3   POLE3S POLESOUT  RITTAE2     S308      S77      S79  

# "b"     "ab"     "ab"     "ab"     "ab"     "ab"     "ab"     "ab"     "ab"  

 

## Plotting all the Year 2 boxplots on one graph 

par(mfrow = c(1,4)) 

#plotting the boxplots for each alpha diversity variable 

boxplot(S~Station, data=Y2, las=2, col= Stations, ylab = "Species Richness", xlab = "", cex.axis = 0.88) 

boxplot(H~Station, data=Y2, las=2,col= Stations, ylab = "Shannon Diversity Index", xlab = "", cex.axis = 0.88) 

boxplot(inv.D~Station, data=Y2, las=2,col= Stations, ylab = "inverse Simpson Diversity Index", xlab = "", 

cex.axis = 0.88) 

boxplot(J~Station, data=Y2, las=2,col= Stations, ylab = "Evenness", xlab = "", cex.axis = 0.88) 

#Creating main title 

mtext("Alpha Diversity by Station - Year 2", side = 3, line = -2.4, outer = TRUE, cex = 1.4) 

 

 

 

#Year 3 

kruskal.test(Y3$S ~ Y3$Station) 

#Kruskal-Wallis chi-squared = 36.513, df = 19, p-value = 0.009123 

pairwise.wilcox.test(Y3$S, Y3$Station, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y3$S ~ Y3$Station) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

# CLV10A KISSR0.0    L001     L004     L005     L006     L007     L008      LZ2    LZ25A     LZ30     LZ40  

PALMOUT  PELBAY3   POLE3S  

# "ab"     "ab"      "a"     "ab"     "ab"     "ab"     "ab"     "ab"     "ab"     "ab"     "ab"     "ab"     

"ab"     "ab"     "ab"  

# POLESOUT  RITTAE2     S308      S77      S79  

# "ab"     "ab"         "ab"     "ab"      "b"  

 

kruskal.test(Y3$H ~ Y3$Station) 

#Kruskal-Wallis chi-squared = 37.551, df = 19, p-value = 0.006766 

pairwise.wilcox.test(Y3$H, Y3$Station, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y3$H ~ Y3$Station) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

# CLV10A KISSR0.0     L001     L004     L005     L006     L007     L008      LZ2    LZ25A     LZ30     LZ40  

PALMOUT  PELBAY3   POLE3S  

# "ab"     "ab"        "a"     "ab"     "ab"     "ab"      "b"     "ab"     "ab"     "ab"     "ab"     "ab"     

"ab"     "ab"     "ab"  

# POLESOUT  RITTAE2     S308      S77      S79  

# "ab"     "ab"         "ab"     "ab"     "ab"  

 

kruskal.test(Y3$inv.D ~ Y3$Station) 

#Kruskal-Wallis chi-squared = 42.098, df = 19, p-value = 0.001719 

pairwise.wilcox.test(Y3$inv.D, Y3$Station, p.adjust.method = "fdr")  
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kmc <- kruskalmc(Y3$inv.D ~ Y3$Station) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

# CLV10A KISSR0.0     L001     L004     L005     L006     L007     L008      LZ2    LZ25A     LZ30     LZ40  

PALMOUT  PELBAY3   POLE3S  

# "ab"      "ab"        "a"     "ab"     "ab"     "ab"      "b"   "ab"      "ab"     "ab"     "ab"     "ab"     

"ab"     "ab"     "ab"  

# POLESOUT  RITTAE2     S308      S77      S79  

# "ab"     "ab"         "ab"     "ab"     "ab"  

 

kruskal.test(Y3$J ~ Y3$Station) 

#Kruskal-Wallis chi-squared = 42.614, df = 19, p-value = 0.001463 

pairwise.wilcox.test(Y3$J, Y3$Station, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y3$J ~ Y3$Station) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

# CLV10A KISSR0.0     L001     L004     L005     L006     L007     L008      LZ2    LZ25A     LZ30  

# "ab"     "ab"      "a"     "ab"     "ab"     "ab"      "b"     "ab"     "ab"     "ab"     "ab"  

# LZ40  PALMOUT  PELBAY3   POLE3S POLESOUT  RITTAE2     S308      S77      S79  

# "ab"     "ab"     "ab"     "ab"     "ab"     "ab"     "ab"     "ab"     "ab"  

 

## Plotting all the Year 3 boxplots on one graph 

par(mfrow = c(1,4)) 

#plotting the boxplots for each alpha diversity variable 

boxplot(S~Station, data=Y3, las=2, col= Stations, ylab = "Species Richness", xlab = "", cex.axis = 0.88) 

boxplot(H~Station, data=Y3, las=2,col= Stations, ylab = "Shannon Diversity Index", xlab = "", cex.axis = 0.88) 

boxplot(inv.D~Station, data=Y3, las=2,col= Stations, ylab = "inverse Simpson Diversity Index", xlab = "", 

cex.axis = 0.88) 

boxplot(J~Station, data=Y3, las=2,col= Stations, ylab = "Evenness", xlab = "", cex.axis = 0.88) 

#Creating main title 

mtext("Alpha Diversity by Station - Year 3", side = 3, line = - 2.4, outer = TRUE, cex = 1.4) 

 

###### Differences by MONTH - Richness, Shannon, inv. Simpson, Evenness #### 

# Boxplot colors by month (different for each year) 

Year1col <- c("lightgoldenrod1","goldenrod1","green3","cadetblue2","dodgerblue2", 

                               "mediumpurple2","lightpink1","tan","sienna","seashell3") 

Year2col <- c("firebrick2","darkorange1","lightgoldenrod1","goldenrod1","green3", 

                          "cadetblue2","dodgerblue2","mediumpurple2","lightpink1", 

                          "tan","sienna","seashell3") 

Year3col <- c("firebrick2","darkorange1","lightgoldenrod1","goldenrod1","green3", 

                          "cadetblue2","dodgerblue2","mediumpurple2","lightpink1", 

                          "tan") 

#Year 1 

kruskal.test(Y1$S ~ Y1$Month) 

#Kruskal-Wallis chi-squared = 26.535, df = 9, p-value = 0.001669 

pairwise.wilcox.test(Y1$S, Y1$Month, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y1$S ~ Y1$Month) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#   3     4     5     6     7     8     9    10    11    12  

# "ab" "abc" "abc"   "a" "abc"   "c" "abc" "abc"  "bc" "abc"  

 

kruskal.test(Y1$H ~ Y1$Month) 

#Kruskal-Wallis chi-squared = 25.593, df = 9, p-value = 0.002381 

pairwise.wilcox.test(Y1$H, Y1$Month, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y1$H ~ Y1$Month) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 
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test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#   3    4    5    6    7    8    9   10   11   12  

# "ab" "ab" "ab"  "a" "ab" "ab" "ab" "ab"  "b" "ab"  

 

kruskal.test(Y1$inv.D ~ Y1$Month) 

#Kruskal-Wallis chi-squared = 18.778, df = 9, p-value = 0.02715 

pairwise.wilcox.test(Y1$inv.D, Y1$Month, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y1$inv.D ~ Y1$Month) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#NO SIGNIFICANT DIFFERENCES FOUND!! 

 

kruskal.test(Y1$J ~ Y1$Month) 

#Kruskal-Wallis chi-squared = 13.89, df = 9, p-value = 0.1263 

pairwise.wilcox.test(Y1$J, Y1$Month, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y1$J ~ Y1$Month) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#NO SIGNIFICANT DIFFERENCES FOUND!! 

 

## Plotting all the Year 1 boxplots on one graph 

#defining plotting area as one row and 4 columns 

par(mfrow = c(1,4)) 

#plotting the boxplots for each alpha diversity variable 

boxplot(S~Month, data=Y1, las=1, col= Year1col, ylab = "Species Richness") 

boxplot(H~Month, data=Y1, las=1,col= Year1col, ylab = "Shannon Diversity Index") 

boxplot(inv.D~Month, data=Y1, las=1,col= Year1col, ylab = "inverse Simpson Diversity Index") 

boxplot(J~Month, data=Y1, las=1,col= Year1col, ylab = "Evenness") 

#Creating main title 

mtext("Alpha Diversity by Month - Year 1", side = 3, line = -2.4, outer = TRUE, cex = 1.4) 

 

 

#Year 2 

kruskal.test(Y2$S ~ Y2$Month) 

#Kruskal-Wallis chi-squared = 144.03, df = 11, p-value < 2.2e-16 

pairwise.wilcox.test(Y2$S, Y2$Month, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y2$S ~ Y2$Month) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

# 1      2      3      4      5      6      7      8      9     10     11     12  

# "abc"  "abc"    "d"   "de"    "d"    "d"  "ade" "abce"   "bc"    "b"    "b" "acde"  

 

kruskal.test(Y2$H ~ Y2$Month) 

#Kruskal-Wallis chi-squared = 131.82, df = 11, p-value < 2.2e-16 

pairwise.wilcox.test(Y2$H, Y2$Month, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y2$H ~ Y2$Month) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 
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let # significant letters for the multiple comparison test 

# 1     2     3     4     5     6     7     8     9    10    11    12  

# "ab"  "ab"   "c"  "cd"  "cd"  "cd" "acd"  "ab"  "ab"  "ab"   "b"  "ad"  

 

kruskal.test(Y2$inv.D ~ Y2$Month) 

#Kruskal-Wallis chi-squared = 104.87, df = 11, p-value < 2.2e-16 

pairwise.wilcox.test(Y2$inv.D, Y2$Month, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y2$inv.D ~ Y2$Month) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

# 1     2     3     4     5     6     7     8     9    10    11    12  

# "a"   "a"   "b"  "bc"  "bc"  "bc" "abc"   "a"   "a"   "a"   "a"  "ac"  

 

kruskal.test(Y2$J ~ Y2$Month) 

#Kruskal-Wallis chi-squared = 34.984, df = 11, p-value = 0.0002494 

pairwise.wilcox.test(Y2$J, Y2$Month, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y2$J ~ Y2$Month) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#   1    2    3    4    5    6    7    8    9   10   11   12  

# "ab"  "a" "ab" "ab" "ab"  "b" "ab" "ab" "ab" "ab"  "b" "ab"  

 

## Plotting all the Year 2 boxplots on one graph 

par(mfrow = c(1,4)) 

#plotting the boxplots for each alpha diversity variable 

boxplot(S~Month, data=Y2, las=1, col= Year2col, ylab = "Species Richness") 

boxplot(H~Month, data=Y2, las=1,col= Year2col, ylab = "Shannon Diversity Index") 

boxplot(inv.D~Month, data=Y2, las=1,col= Year2col, ylab = "inverse Simpson Diversity Index") 

boxplot(J~Month, data=Y2, las=1,col= Year2col, ylab = "Evenness") 

#Creating main title 

mtext("Alpha Diversity by Month - Year 2", side = 3, line = - 2.4, outer = TRUE, cex = 1.4) 

 

 

#Year 3 

kruskal.test(Y3$S ~ Y3$Month) 

#Kruskal-Wallis chi-squared = 50.462, df = 9, p-value = 8.819e-08 

pairwise.wilcox.test(Y3$S, Y3$Month, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y3$S ~ Y3$Month) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#   1     2     3     4     5     6     7     8     9    10  

# "ab"   "c"   "a"  "ab" "abc"  "bc"  "bc"  "bc" "abc"  "ab"  

 

kruskal.test(Y3$H ~ Y3$Month) 

#Kruskal-Wallis chi-squared = 45.298, df = 9, p-value = 8.126e-07 

pairwise.wilcox.test(Y3$H, Y3$Month, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y3$H ~ Y3$Month) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#    1     2     3     4     5     6     7     8     9    10  

# "abc"   "a"   "b" "abc"  "ac"   "a" "abc" "abc" "abc"  "bc"    
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kruskal.test(Y3$inv.D ~ Y3$Month) 

#Kruskal-Wallis chi-squared = 38.56, df = 9, p-value = 1.383e-05 

pairwise.wilcox.test(Y3$inv.D, Y3$Month, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y3$inv.D ~ Y3$Month) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#   1    2    3    4    5    6    7    8    9   10  

# "ab"  "a"  "b" "ab" "ab"  "a" "ab" "ab" "ab"  "b"  

 

kruskal.test(Y3$J ~ Y3$Month) 

#Kruskal-Wallis chi-squared = 36.807, df = 9, p-value = 2.848e-05 

pairwise.wilcox.test(Y3$J, Y3$Month, p.adjust.method = "fdr")  

kmc <- kruskalmc(Y3$J ~ Y3$Month) # multiple-comparison test 

kmc # comparisons TRUE= significantly different or FALSE= not significantly different 

# To look for homogeneous groups, and give each group a code (letter): 

test <- kmc$dif.com$difference # select logical vector 

names(test) <- row.names(kmc$dif.com)# add comparison names 

# create a list with "homogeneous groups" coded by letter 

let <- multcompLetters(test, compare="<", threshold=0.05, 

                       Letters=c(letters, LETTERS, "."),reversed = FALSE) 

let # significant letters for the multiple comparison test 

#   1    2    3    4    5    6    7    8    9   10  

# "ab"  "a"  "b" "ab" "ab" "ab" "ab"  "b" "ab"  "b"  

 

## Plotting all the Year 3 boxplots on one graph 

par(mfrow = c(1,4)) 

#plotting the boxplots for each alpha diversity variable 

boxplot(S~Month, data=Y3, las=1, col= Year3col, ylab = "Species Richness") 

boxplot(H~Month, data=Y3, las=1,col= Year3col, ylab = "Shannon Diversity Index") 

boxplot(inv.D~Month, data=Y3, las=1,col= Year3col, ylab = "inverse Simpson Diversity Index") 

boxplot(J~Month, data=Y3, las=1,col= Year3col, ylab = "Evenness") 

#Creating main title 

mtext("Alpha Diversity by Month - Year 3", side = 3, line = -2.4, outer = TRUE, cex = 1.4) 

 

 

 

###### Correlation of alpha diversity measures and chlorophyll a ###### 

metadata <- read.csv("Metadata-Diversity_BATCH.csv", row.names = 1) 

par(mfrow=c(2,2)) 

#Shannon vs. Chl.a 

#calculating correlation (-1 to 0 to +1; negatively correlated to none to positively correlated) 

cor.test(metadata$Chlorophyll.a, metadata$H, method ="pearson") 

#t = -0.74435, df = 539, p-value = 0.457, Pearson coeff. = -0.03204502 <- NOT SIGNIFICANT 

#plotting them against each other 

plot(metadata$Chlorophyll.a, metadata$H, pch = 19, col = "gray52", xlab = "", ylab = "") 

# Adding text 

title(main="Shannon Diversity vs Chlorophyll-a Correlation", 

      xlab = "Chlorophyll a (ug/L)", 

      ylab = "Shannon Diversity Index") 

#inv.Simpson vs. Chl.a  

cor.test(metadata$Chlorophyll.a, metadata$inv.D, method ="pearson") 

# t = 1.1217, df = 539, p-value = 0.2625, Pearson coeff. = 0.04825728 <- NOT SIGNIFICANT 

plot(metadata$Chlorophyll.a, metadata$inv.D, pch = 19, col = "gray52", xlab = "", ylab = "") 

title(main="inverse Simpson Diversity vs Chlorophyll-a Correlation", 

      xlab = "Chlorophyll a (ug/L)", 

      ylab = "inverse Simpson Diversity Index") 

#Richness vs. Chl.a 

cor.test(metadata$Chlorophyll.a, metadata$S, method ="pearson") 

# t = 0.49649, df = 539, p-value = 0.6198, Pearson coeff. = 0.0213804 <- NOT SIGNIFICANT 

plot(metadata$Chlorophyll.a, metadata$S, pch = 19, col = "gray52", xlab = "", ylab = "") 

title(main="Species Richness vs Chlorophyll-a Correlation", 

      xlab = "Chlorophyll a (ug/L)", 

      ylab = "Species Richness") 

#Evenness vs. Chl.a 

cor.test(metadata$Chlorophyll.a, metadata$J, method ="pearson") 

# t = -1.9153, df = 539, p-value = 0.05599, Pearson coeff. = -0.08221648   <- NOT SIGNIFICANT 

plot(metadata$Chlorophyll.a, metadata$J, pch = 19, col = "gray52", xlab = "", ylab = "") 

title(main="Evenness vs Chlorophyll-a Correlation", 

      xlab = "Chlorophyll a (ug/L)", 

      ylab = "Evenness") 
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###### Correlation of Microcystis  vs. Chl a (and Microcystin LR) ###### 

metadata <- read.csv("Metadata-Diversity_BATCH.csv", row.names = 1) 

## Chl a 

#calculating correlation (-1 to 0 to +1; negatively correlated to no correlation to positively correlated) 

cor.test(metadata$Chlorophyll.a, metadata$Microcystis.Abundance, method ="pearson") 

# t = 5.4696, df = 539, p-value = 6.914e-08, Pearson coeff. = 0.229314    -> weakly positive (SIGNIFICANT)        

#plotting them against each other 

plot(metadata$Microcystis.Abundance, metadata$Chlorophyll.a, pch = 19, xlab = "", ylab = "") 

lines(lowess(metadata$Microcystis.Abundance, metadata$Chlorophyll.a), col = 2, lwd = 2) 

# Adding text 

title(main="Microcystis Relative Abundance vs Chlorophyll-a Correlation", 

      xlab = "Microcystis Relative Abundance", 

      ylab = "Chlorophyll a (ug/L)") 

text(0.063,136,"Pearson R: 0.23", cex=1.05) 

## Microcystin 

cor.test(metadata$Microcystin.LR, metadata$Microcystis.Abundance, method ="pearson") 

# t = 17.318, df = 539, p-value < 2.2e-16, Pearson coeff. = 0.5979055     -> positive (SIGNIFICANT)        

#plotting them against each other 

plot(metadata$Microcystis.Abundance, metadata$Microcystin.LR, pch = 19, xlab = "", ylab = "") 

lines(lowess(metadata$Microcystis.Abundance, metadata$Microcystin.LR), col = 2, lwd = 2) 

# Adding text 

title(main="Microcystis Relative Abundance vs Microcystin (ug/L) Correlation", 

      xlab = "Microcystis Relative Abundance", 

      ylab = "Microcystin (ug/L)") 

text(0.063,45,"Pearson R: 0.60", cex=1.05) 

 

###### Alpha Diversity vs Microcystis Abundance ###### 

metadata <- read.csv("Metadata-Diversity_BATCH.csv", row.names = 1) 

##Scatter plots 

par(mfrow = c(2,2), mar = c(4, 4, 3, 3)) ## all plots on one graph 

plot(metadata$Microcystis.Abundance, metadata$S, pch = 19, xlab= "Microcystis Relative Abundance", 

     ylab = "Species Richness") 

lines(lowess(metadata$Microcystis.Abundance, metadata$S), col = 2, lwd = 2) 

title(main="Species richness vs Microcystis Relative Abundance", cex.main = 1) 

 

plot(metadata$Microcystis.Abundance, metadata$H, pch = 19, xlab= "Microcystis Relative Abundance", 

     ylab = "Shannon Diversity Index") 

lines(lowess(metadata$Microcystis.Abundance, metadata$H), col = 2, lwd = 2) 

text(0.062,6,"Pearson's r = -0.23", cex=0.9) 

title(main="Shannon Diversity vs Microcystis Relative Abundance", cex.main = 1) 

 

plot(metadata$Microcystis.Abundance, metadata$J, pch = 19, xlab= "Microcystis Relative Abundance", 

     ylab = "Evenness") 

lines(lowess(metadata$Microcystis.Abundance, metadata$J), col = 2, lwd = 2) 

text(0.062,0.88,"Pearson's r = -0.72", cex=0.9) 

title(main="Species Evenness vs Microcystis Relative Abundance", cex.main = 1) 

 

plot(metadata$Microcystis.Abundance, metadata$inv.D, pch = 19, xlab= "Microcystis Relative Abundance", 

     ylab = "inverse Simpson Diversity Index") 

lines(lowess(metadata$Microcystis.Abundance, metadata$inv.D), col = 2, lwd = 2) 

text(0.062,400,"Pearson's r = -0.22", cex=0.9) 

title(main="inverse Simpson Diversity vs Microcystis Relative Abundance", cex.main = 1) 

 

 

## Looking at the correlations 

cor.test(metadata$Microcystis.Abundance, metadata$S, method ="pearson") 

#t = 1.4678, df = 539, Pearson coeff. = 0.0630954 , p-value = 0.1427 -> NOT SIGNIFICANT (NO CORRELATION) 

cor.test(metadata$Microcystis.Abundance, metadata$H, method ="pearson") 

#t = -5.5028, df = 539, Pearson coeff. = -0.2306343, p-value = 5.785e-08 -> SIGNIFICANT (NEG. CORRELATION) 

cor.test(metadata$Microcystis.Abundance, metadata$J, method ="pearson") 

#t = -24.34, df = 539, Pearson coeff. = -0.7236151, p-value < 2.2e-16 -> SIGNIFICANT (NEG. CORRELATION) 

cor.test(metadata$Microcystis.Abundance, metadata$inv.D, method ="pearson") 

#t = -5.3297, df = 539, Pearson coeff. = -0.2237471, p-value = 1.448e-07 -> SIGNIFICANT (NEG. CORRELATION) 

 

###### Alpha Diversity vs Environmental Variables - Scatter plots ###### 

metadata <- read.csv("Metadata-Diversity_BATCH.csv", row.names = 1) 

##Scatter plots 

par(mfrow = c(2,2), mar = c(4, 4, 3, 3)) ## all plots on one graph 

 

#Chlorophyll a 

par(mfrow = c(2,2), mar = c(4, 4, 3, 3)) ## all plots on one graph 

plot(metadata$Chlorophyll.a, metadata$S, pch = 19, xlab= "Chlorophyll a (ug/L)", 

     ylab = "Species Richness", col="grey54") 

title(main="Species richness vs Chlorophyll a (ug/L)", cex.main = 1) 

plot(metadata$Chlorophyll.a, metadata$H, pch = 19, xlab= "Chlorophyll a (ug/L)", 
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     ylab = "Shannon Diversity Index", col="grey54") 

title(main="Shannon Diversity vs Chlorophyll a (ug/L)", cex.main = 1) 

plot(metadata$Chlorophyll.a, metadata$J, pch = 19, xlab= "Chlorophyll a (ug/L)", 

     ylab = "Evenness", col="grey54") 

title(main="Species Evenness vs Chlorophyll a (ug/L)", cex.main = 1) 

plot(metadata$Chlorophyll.a, metadata$inv.D, pch = 19, xlab= "Chlorophyll a (ug/L)", 

     ylab = "inverse Simpson Diversity Index", col="grey54") 

title(main="inverse Simpson Diversity vs Chlorophyll a (ug/L)", cex.main = 1) 

 

#Ammonia 

par(mfrow = c(2,2), mar = c(4, 4, 3, 3)) ## all plots on one graph 

plot(metadata$Ammonia, metadata$S, pch = 19, xlab= "Ammonia (mg/L)", 

     ylab = "Species Richness", col="grey54") 

title(main="Species richness vs Ammonia (mg/L)", cex.main = 1) 

plot(metadata$Ammonia, metadata$H, pch = 19, xlab= "Ammonia (mg/L)", 

     ylab = "Shannon Diversity Index", col="grey54") 

title(main="Shannon Diversity vs Ammonia (mg/L)", cex.main = 1) 

plot(metadata$Ammonia, metadata$J, pch = 19, xlab= "Ammonia (mg/L)", 

     ylab = "Evenness") 

lines(lowess(metadata$Ammonia, metadata$J), col = 2, lwd = 2) 

text(0.68,0.8,"Pearson's r = 0.11", cex=0.9) 

title(main="Species Evenness vs Ammonia (mg/L)", cex.main = 1) 

plot(metadata$Ammonia, metadata$inv.D, pch = 19, xlab= "Ammonia (mg/L)", 

     ylab = "inverse Simpson Diversity Index", col="grey54") 

title(main="inverse Simpson Diversity vs Ammonia (mg/L)", cex.main = 1) 

 

#Nitrate(ite) 

par(mfrow = c(2,2), mar = c(4, 4, 3, 3)) ## all plots on one graph 

plot(metadata$Nitrate.Nitrite, metadata$S, pch = 19, xlab= "Nitrate + Nitrite (mg/L)", 

     ylab = "Species Richness", col="grey54") 

title(main="Species richness vs Nitrate + Nitrite (mg/L)", cex.main = 1) 

plot(metadata$Nitrate.Nitrite, metadata$H, pch = 19, xlab= "Nitrate + Nitrite (mg/L)", 

     ylab = "Shannon Diversity Index", col="grey54") 

title(main="Shannon Diversity vs Nitrate + Nitrite (mg/L)", cex.main = 1) 

plot(metadata$Nitrate.Nitrite, metadata$J, pch = 19, xlab= "Nitrate + Nitrite (mg/L)", 

     ylab = "Evenness") 

lines(lowess(metadata$Nitrate.Nitrite, metadata$J), col = 2, lwd = 2) 

text(0.5,0.7,"Pearson's r = -0.10", cex=0.9) 

title(main="Species Evenness vs Nitrate + Nitrite (mg/L)", cex.main = 1) 

plot(metadata$Nitrate.Nitrite, metadata$inv.D, pch = 19, xlab= "Nitrate + Nitrite (mg/L)", 

     ylab = "inverse Simpson Diversity Index") 

lines(lowess(metadata$Nitrate.Nitrite, metadata$inv.D), col = 2, lwd = 2) 

text(0.52,400,"Pearson's r = -0.10", cex=0.9) 

title(main="inverse Simpson Diversity vs Nitrate + Nitrite (mg/L)", cex.main = 1) 

 

#Total Phosphorus 

par(mfrow = c(2,2), mar = c(4, 4, 3, 3)) ## all plots on one graph 

plot(metadata$Phosphate.Total, metadata$S, pch = 19, xlab= "Total Phosphorus (mg/L)", 

     ylab = "Species Richness") 

lines(lowess(metadata$Phosphate.Total, metadata$S), col = 2, lwd = 2) 

text(0.45,1750,"Pearson's r = 0.18", cex=0.9) 

title(main="Species richness vs Total Phosphorus (mg/L)", cex.main = 1) 

plot(metadata$Phosphate.Total, metadata$H, pch = 19, xlab= "Total Phosphorus (mg/L)", 

     ylab = "Shannon Diversity Index") 

lines(lowess(metadata$Phosphate.Total, metadata$H), col = 2, lwd = 2) 

text(0.44,6.4,"Pearson's r = 0.06", cex=0.9) 

title(main="Shannon Diversity vs Total Phosphorus (mg/L)", cex.main = 1) 

plot(metadata$Phosphate.Total, metadata$J, pch = 19, xlab= "Total Phosphorus (mg/L)", 

     ylab = "Evenness", col="grey54") 

title(main="Species Evenness vs Total Phosphorus (mg/L)", cex.main = 1) 

plot(metadata$Phosphate.Total, metadata$inv.D, pch = 19, xlab= "Total Phosphorus (mg/L)", 

     ylab = "inverse Simpson Diversity Index") 

lines(lowess(metadata$Phosphate.Total, metadata$inv.D), col = 2, lwd = 2) 

text(0.44,400,"Pearson's r = 0.10", cex=0.9) 

title(main="inverse Simpson Diversity vs Total Phosphorus (mg/L)", cex.main = 1) 

 

#Microcystin 

par(mfrow = c(2,2), mar = c(4, 4, 3, 3)) ## all plots on one graph 

plot(metadata$Microcystin.LR, metadata$S, pch = 19, xlab= "Microcystin (ug/L)", 

     ylab = "Species Richness", col="grey54") 

title(main="Species richness vs Microcystin (ug/L)", cex.main = 1) 

plot(metadata$Microcystin.LR, metadata$H, pch = 19, xlab= "Microcystin (ug/L)", 

     ylab = "Shannon Diversity Index") 

lines(lowess(metadata$Microcystin.LR, metadata$H), col = 2, lwd = 2) 

text(48,6.2,"Pearson's r = -0.23", cex=0.9) 

title(main="Shannon Diversity vs Microcystin (ug/L)", cex.main = 1) 
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plot(metadata$Microcystin.LR, metadata$J, pch = 19, xlab= "Microcystin (ug/L)", 

     ylab = "Evenness") 

lines(lowess(metadata$Microcystin.LR, metadata$J), col = 2, lwd = 2) 

text(48,0.88,"Pearson's r = -0.49", cex=0.9) 

title(main="Species Evenness vs Microcystin (ug/L)", cex.main = 1) 

plot(metadata$Microcystin.LR, metadata$inv.D, pch = 19, xlab= "Microcystin (ug/L)", 

     ylab = "inverse Simpson Diversity Index") 

lines(lowess(metadata$Microcystin.LR, metadata$inv.D), col = 2, lwd = 2) 

text(46,375,"Pearson's r = -0.20", cex=0.9) 

title(main="inverse Simpson Diversity vs Microcystin (ug/L)", cex.main = 1) 

 

#Temperature 

par(mfrow = c(2,2), mar = c(4, 4, 3, 3)) ## all plots on one graph 

plot(metadata$Temperature, metadata$S, pch = 19, xlab= "Temperature (°C)", 

     ylab = "Species Richness", col="grey54") 

title(main="Species richness vs Temperature (°C)", cex.main = 1) 

plot(metadata$Temperature, metadata$H, pch = 19, xlab= "Temperature (°C)", 

     ylab = "Shannon Diversity Index", col="grey54") 

title(main="Shannon Diversity vs Temperature (°C)", cex.main = 1) 

plot(metadata$Temperature, metadata$J, pch = 19, xlab= "Temperature (°C)", 

     ylab = "Evenness", col="grey54") 

title(main="Species Evenness vs Temperature (°C)", cex.main = 1) 

plot(metadata$Temperature, metadata$inv.D, pch = 19, xlab= "Temperature (°C)", 

     ylab = "inverse Simpson Diversity Index", col="grey54") 

title(main="inverse Simpson Diversity vs Temperature (°C)", cex.main = 1) 

 

#Total Nitrogen 

par(mfrow = c(2,2), mar = c(4, 4, 3, 3)) ## all plots on one graph 

plot(metadata$Total.Nitrogen, metadata$S, pch = 19, xlab= "Total Nitrogen (mg/L)", 

     ylab = "Species Richness") 

lines(lowess(metadata$Total.Nitrogen, metadata$S), col = 2, lwd = 2) 

text(3.15,1750,"Pearson's r = 0.17", cex=0.9) 

title(main="Species richness vs Total Nitrogen (mg/L)", cex.main = 1) 

plot(metadata$Total.Nitrogen, metadata$H, pch = 19, xlab= "Total Nitrogen (mg/L)", 

     ylab = "Shannon Diversity Index") 

lines(lowess(metadata$Total.Nitrogen, metadata$H), col = 2, lwd = 2) 

text(3,6.8,"Pearson's r = 0.13", cex=0.9) 

title(main="Shannon Diversity vs Total Nitrogen (mg/L)", cex.main = 1) 

plot(metadata$Total.Nitrogen, metadata$J, pch = 19, xlab= "Total Nitrogen (mg/L)", 

     ylab = "Evenness", col="grey54") 

title(main="Species Evenness vs Total Nitrogen (mg/L)", cex.main = 1) 

plot(metadata$Total.Nitrogen, metadata$inv.D, pch = 19, xlab= "Total Nitrogen (mg/L)", 

     ylab = "inverse Simpson Diversity Index") 

lines(lowess(metadata$Total.Nitrogen, metadata$inv.D), col = 2, lwd = 2) 

text(3.1,440,"Pearson's r = 0.17", cex=0.9) 

title(main="inverse Simpson Diversity vs Total Nitrogen (mg/L)", cex.main = 1) 

 

#pH 

par(mfrow = c(2,2), mar = c(4, 4, 3, 3)) ## all plots on one graph 

plot(metadata$pH, metadata$S, pch = 19, xlab= "pH", 

     ylab = "Species Richness") 

lines(lowess(metadata$pH, metadata$S), col = 2, lwd = 2) 

text(2,1730,"Pearson's r = -0.13", cex=0.9) 

title(main="Species richness vs pH", cex.main = 1) 

plot(metadata$pH, metadata$H, pch = 19, xlab= "pH", 

     ylab = "Shannon Diversity Index") 

lines(lowess(metadata$pH, metadata$H), col = 2, lwd = 2) 

text(2,6.4,"Pearson's r = -0.15", cex=0.9) 

title(main="Shannon Diversity vs pH", cex.main = 1) 

plot(metadata$pH, metadata$J, pch = 19, xlab= "pH", 

     ylab = "Evenness") 

lines(lowess(metadata$pH, metadata$J), col = 2, lwd = 2) 

text(2,0.74,"Pearson's r = -0.11", cex=0.9) 

title(main="Species Evenness vs pH", cex.main = 1) 

plot(metadata$pH, metadata$inv.D, pch = 19, xlab= "pH", 

     ylab = "inverse Simpson Diversity Index") 

lines(lowess(metadata$pH, metadata$inv.D), col = 2, lwd = 2) 

text(2,400,"Pearson's r = -0.16", cex=0.9) 

title(main="inverse Simpson Diversity vs pH", cex.main = 1) 

 

#TN:TP 

par(mfrow = c(2,2), mar = c(4, 4, 3, 3)) ## all plots on one graph 

plot(metadata$TN.TP.ratio, metadata$S, pch = 19, xlab= "TN : TP", 

     ylab = "Species Richness") 

lines(lowess(metadata$TN.TP.ratio, metadata$S), col = 2, lwd = 2) 

text(40,1780,"Pearson's r = -0.13", cex=0.9) 
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title(main="Species richness vs TN : TP", cex.main = 1) 

plot(metadata$TN.TP.ratio, metadata$H, pch = 19, xlab= "TN : TP", 

     ylab = "Shannon Diversity Index", col="grey54") 

title(main="Shannon Diversity vs TN : TP", cex.main = 1) 

plot(metadata$TN.TP.ratio, metadata$J, pch = 19, xlab= "TN : TP", 

     ylab = "Evenness", col="grey54") 

title(main="Species Evenness vs TN : TP", cex.main = 1) 

plot(metadata$TN.TP.ratio, metadata$inv.D, pch = 19, xlab= "TN : TP", 

     ylab = "inverse Simpson Diversity Index", col="grey54") 

title(main="inverse Simpson Diversity vs TN : TP", cex.main = 1) 

 

#Total Phosphate 

par(mfrow = c(2,2), mar = c(4, 4, 3, 3)) ## all plots on one graph 

plot(metadata$Phosphate.Ortho, metadata$S, pch = 19, xlab= "Total Phosphate (mg/L)", 

     ylab = "Species Richness", col="grey54") 

title(main="Species richness vs Total Phosphate", cex.main = 1) 

plot(metadata$Phosphate.Ortho, metadata$H, pch = 19, xlab= "Total Phosphate (mg/L)", 

     ylab = "Shannon Diversity Index", col="grey54") 

title(main="Shannon Diversity vs Total Phosphate", cex.main = 1) 

plot(metadata$Phosphate.Ortho, metadata$J, pch = 19, xlab= "Total Phosphate (mg/L)", 

     ylab = "Evenness") 

lines(lowess(metadata$Phosphate.Ortho, metadata$J), col = 2, lwd = 2) 

text(0.17,0.82,"Pearson's r = -0.11", cex=0.9) 

title(main="Species Evenness vs Total Phosphate", cex.main = 1) 

plot(metadata$Phosphate.Ortho, metadata$inv.D, pch = 19, xlab= "Total Phosphate (mg/L)", 

     ylab = "inverse Simpson Diversity Index") 

lines(lowess(metadata$Phosphate.Ortho, metadata$inv.D), col = 2, lwd = 2) 

text(0.17,400,"Pearson's r = -0.12", cex=0.9) 

title(main="inverse Simpson Diversity vs Total Phosphate", cex.main = 1) 

 

 

###### Alpha Diversity vs Environmental Variables - Correlation Heat map ###### 

library(corrplot) 

library(reshape2) 

 

#load in metadata 

metadata <- read.csv("Metadata-Diversity_BATCH.csv", row.names = 1) 

 

#Making a dataframe with only env. variables and a-div measures 

alphaenv <- metadata[, c(7:24,33,36:38,40:42)]  

#changing some column names 

colnames(alphaenv)[8] ="Pheophytin-a" 

colnames(alphaenv)[9] ="Chlorophyll-a" 

colnames(alphaenv)[12] ="Nitrate + Nitrite" 

colnames(alphaenv)[13] ="Total.Phosphate" 

colnames(alphaenv)[14] ="Total.Phosphorus" 

colnames(alphaenv)[19] ="Microcystin" 

colnames(alphaenv)[20] ="Anatoxin-a" 

 

#Before making heatmap, we must first calculate the correlation coefficient  

#between each variable using cor() and then transform the results into a usable  

#format using the melt() function from the reshape2 package 

 

#calculate correlation coefficients, rounded to 2 decimal places 

envcor <- round(cor(alphaenv), 2) #this a correlation matrix 

testRes <- cor.mtest(alphaenv, conf.level = 0.95) #generates a table of p-values 

 

#creating heatmap 

corrplot(envcor,  

         type = "lower", 

         method = 'color', 

         col = COL2('BrBG', 10), 

         p.mat = testRes$p, 

         insig = 'label_sig', 

         pch.cex = 0.98, 

         pch.col = 'grey8', 

         sig.level = c(0.001, 0.01, 0.05), 

         order = 'original', 

         number.cex = 0.8, 

         tl.col = 'black', 

         cl.ratio = 0.2,  

         tl.srt = 45) 

 

 

###### Beta Diversity - Creating Bray Curtis matrix ################# 

## re-creating relative abundance table 
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set.seed(1998) 

dat<-read.csv("feature_Y123_ADJUSTED.csv", header=TRUE, row.names = 1) 

dat<-data.matrix(dat) 

typeof(dat) 

dat <- t(dat) 

row.names(dat) 

metadata <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

typeof(metadata)  

dat <- as.data.frame(dat) 

typeof(dat) 

common.rownames <- intersect(rownames(dat), rownames(metadata)) 

dat <- dat[common.rownames,] 

metadata <- metadata[common.rownames,] 

all.equal(rownames(dat),rownames(metadata)) 

otu.abund<-which(colSums(dat)>2) 

dat.dom<-dat[,otu.abund]  

dat.pa<-decostand(dat.dom, method ="pa") 

dat.otus.01per<-which(colSums(dat.pa) > (0.01*nrow(dat.pa))) 

dat.01per<-dat.dom[,dat.otus.01per] 

dat.otus.001per<-which(colSums(dat.pa) > (0.001*nrow(dat.pa))) 

dat.001per<-dat.dom[,dat.otus.001per] 

dat.ra<-decostand(dat.01per, method = "total")  

 

#use relative abundance table created 

#creating Bray-Curtis dissimilarity distance matrix 

ra.bc.dist<-vegdist(dat.ra, method = "bray") 

 

#Separating into the different years 

Y1r <- dat.ra[grep("_19$", rownames(dat.ra)),] 

Y2r <- dat.ra[grep("_20$", rownames(dat.ra)),] 

Y3r <- dat.ra[grep("_21$", rownames(dat.ra)),] 

ra.bc.d.Y1<-vegdist(Y1r, method = "bray") 

ra.bc.d.Y2<-vegdist(Y2r, method = "bray") 

ra.bc.d.Y3<-vegdist(Y3r, method = "bray") 

metadata <-read.csv("Metadata-Diversity_BATCH.csv", row.names = 1) 

 

 

 

###### Plotting NMDS by Year - 2D ###### 

nmds2d <- metaMDS(ra.bc.dist,k=2,autotransform = F,trymax=20) 

#Dimensions = 2 

#Stress = 0.1705273  

stressplot(nmds2d) 

#Shepard plot "shows scatter around the regression between the inter-point  

#distances in the final configuration (i.e., the distances between each pair of communities)  

#against their original dissimilarities" 

 

 

#Fitting environmental vectors to NMDS plot 

ef.cca<- envfit(cca.p,metadata[,c(7,8,16)]) 

ef.cca$vectors$pvals 

 

nmds.plot <- ordiplot(nmds2d,display="sites") 

## Adding ellipses to group years 

ordihull(nmds.plot,groups=metadata$Year,draw="lines",col=c("tomato3","steelblue3","springgreen3")) 

##adjust colors to match each year, pch=20 makes it bullet points  

points(nmds.plot,"sites", pch=20, col= "tomato4", select = metadata$Year == "1") 

points(nmds.plot,"sites", pch=20, col= "steelblue4", select = metadata$Year == "2") 

points(nmds.plot,"sites", pch=20, col= "springgreen4", select = metadata$Year == "3") 

##Add Stress Value 

text(1.2,1.5,"2D Stress: 0.17", cex=0.9) 

##Adding legend 

legend("topleft",legend= c("Year 1","Year 2", "Year 3"),  

       title = "Year", 

       col=c("tomato4","steelblue4","springgreen4"),  

       pch=19, cex=1) 

##Adding title 

title(main="nMDS of Relative Abundances by Year") 

#NMDS by Season 

nmds.plot <- ordiplot(nmds2d,display="sites") 

ordihull(nmds.plot,groups=metadata$Season,draw="lines",col = c("sienna4","royalblue3")) 

points(nmds.plot,"sites", pch=20, col= "sienna4", select = metadata$Season == "dry") 

points(nmds.plot,"sites", pch=20, col= "royalblue3", select = metadata$Season == "wet") 

text(1.2,1.5,"2D Stress: 0.17", cex=0.9) 

legend("topleft",legend= c("dry","wet"),  

       title = "Season", 
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       col=c("sienna4","royalblue3"),  

       pch=19, cex=1) 

title(main="nMDS of Relative Abundances by Season")  

#NMDS by Zone 

nmds.plot <- ordiplot(nmds2d,display="sites") 

ordihull(nmds.plot,groups=metadata$Zone,draw="lines",col = 

c("palegreen3","wheat4","cornflowerblue","violetred2")) 

points(nmds.plot,"sites", pch=20, col= "palegreen3", select = metadata$Zone == "Inflow") 

points(nmds.plot,"sites", pch=20, col= "wheat4", select = metadata$Zone == "Nearshore") 

points(nmds.plot,"sites", pch=20, col= "cornflowerblue", select = metadata$Zone == "Pelagic") 

points(nmds.plot,"sites", pch=20, col= "violetred2", select = metadata$Zone == "S79") 

text(1.2,1.5,"2D Stress: 0.17", cex=0.9) 

legend("topleft",legend= c("Inflow","Nearshore","Pelagic", "S79"),  

       title = "Zone", 

       col=c("palegreen3","wheat4","cornflowerblue","violetred2"),  

       pch=19, cex=1) 

title(main="nMDS of Relative Abundances by Zone") 

#NMDS by Month 

nmds.plot <- ordiplot(nmds2d,display="sites") 

ordihull(nmds.plot,groups=metadata$Month,draw="lines",col=c("firebrick2","darkorange1","gray34","goldenrod2","gr

een3","cadetblue2","dodgerblue2", 

                                                                       

"mediumpurple2","hotpink","tan","sienna","purple4")) 

points(nmds.plot,"sites", pch=19, col= "firebrick2", select = metadata$Month == "1") 

points(nmds.plot,"sites", pch=19, col= "darkorange1", select = metadata$Month == "2") 

points(nmds.plot,"sites", pch=19, col= "gray34", select = metadata$Month == "3") 

points(nmds.plot,"sites", pch=19, col= "goldenrod2", select = metadata$Month == "4") 

points(nmds.plot,"sites", pch=19, col= "green3", select = metadata$Month == "5") 

points(nmds.plot,"sites", pch=19, col= "cadetblue2", select = metadata$Month == "6") 

points(nmds.plot,"sites", pch=19, col= "dodgerblue2", select = metadata$Month == "7") 

points(nmds.plot,"sites", pch=19, col= "mediumpurple2", select = metadata$Month == "8") 

points(nmds.plot,"sites", pch=19, col= "hotpink", select = metadata$Month == "9") 

points(nmds.plot,"sites", pch=19, col= "tan", select = metadata$Month == "10") 

points(nmds.plot,"sites", pch=19, col= "sienna", select = metadata$Month == "11") 

points(nmds.plot,"sites", pch=19, col= "purple4", select = metadata$Month == "12") 

text(1.8,1.5,"2D Stress: 0.17", cex=0.9) 

legend("topleft",legend= c("1","2","3","4","5", "6","7","8","9","10","11","12"), title = "Month", 

       col=c("firebrick2","darkorange1","gray34","goldenrod2","green3","cadetblue2","dodgerblue2", 

                         "mediumpurple2","hotpink","tan","sienna","purple4"), pch=19,ncol=2, cex=0.88) 

title(main="nMDS of Relative Abundances by Month") 

#NMDS by Station 

nmds.plot <- ordiplot(nmds2d,display="sites") 

ordihull(nmds.plot,groups=metadata$Station,draw="lines",col=c("#A6CEE3","#579CC7","#3688AD", 

                                                                      "#8BC395","#89CB6C", 

                                                                      "#40A635","#919D5F", 

                                                                      "#F99392","#EB494A", 

                                                                      "#E83C2D","#F79C5D", 

                                                                      "#FDA746","#FE8205", 

                                                                      "#E39970", "#BFA5CF", 

                                                                      "#8861AC","#917099", 

                                                                      "#E7E099","#DEB969", 

                                                                      "#B15928")) 

points(nmds.plot,"sites", pch=19, col= "#A6CEE3", select = metadata$Station == "CLV10A") 

points(nmds.plot,"sites", pch=19, col= "#579CC7", select = metadata$Station == "KISSR0.0") 

points(nmds.plot,"sites", pch=19, col= "#3688AD", select = metadata$Station == "L001") 

points(nmds.plot,"sites", pch=19, col= "#8BC395", select = metadata$Station == "L004") 

points(nmds.plot,"sites", pch=19, col= "#89CB6C", select = metadata$Station == "L005") 

points(nmds.plot,"sites", pch=19, col= "#40A635", select = metadata$Station == "L006") 

points(nmds.plot,"sites", pch=19, col= "#919D5F", select = metadata$Station == "L007") 

points(nmds.plot,"sites", pch=19, col= "#F99392", select = metadata$Station == "L008") 

points(nmds.plot,"sites", pch=19, col= "#EB494A", select = metadata$Station == "LZ2") 

points(nmds.plot,"sites", pch=19, col= "#E83C2D", select = metadata$Station == "LZ25A") 

points(nmds.plot,"sites", pch=19, col= "#F79C5D", select = metadata$Station == "LZ30") 

points(nmds.plot,"sites", pch=19, col= "#FDA746", select = metadata$Station == "LZ40") 

points(nmds.plot,"sites", pch=19, col= "#FE8205", select = metadata$Station == "PALMOUT") 

points(nmds.plot,"sites", pch=19, col= "#E39970", select = metadata$Station == "PELBAY3") 

points(nmds.plot,"sites", pch=19, col= "#BFA5CF", select = metadata$Station == "POLE3S") 

points(nmds.plot,"sites", pch=19, col= "#8861AC", select = metadata$Station == "POLESOUT") 

points(nmds.plot,"sites", pch=19, col= "#917099", select = metadata$Station == "RITTAE2") 

points(nmds.plot,"sites", pch=19, col= "#E7E099", select = metadata$Station == "S308") 

points(nmds.plot,"sites", pch=19, col= "#DEB969", select = metadata$Station == "S77")                                               

points(nmds.plot,"sites", pch=19, col= "#B15928", select = metadata$Station == "S79") 

text(1.8,1.5,"2D Stress: 0.17", cex=0.9) 

legend("topleft",legend= c("CLV10A","KISSR0.0","L001","L004","L005","L006","L007", 

                           "L008","LZ2","LZ25A","LZ30","LZ40","PALMOUT","PELBAY3", 

                           "POLE3S","POLESOUT","RITTAE2","S308","S77","S79"),title = "Station", 
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       col=c("#A6CEE3","#579CC7","#3688AD","#8BC395","#89CB6C","#40A635","#919D5F",  

                      "#F99392","#EB494A","#E83C2D","#F79C5D","#FDA746","#FE8205", 

                      "#E39970","#BFA5CF","#8861AC","#917099","#E7E099","#DEB969", 

                      "#B15928"),ncol=2,pch=19, cex=0.74) 

title(main="nMDS of Relative Abundances by Station") 

 

#Statistics 

anosim(ra.bc.dist, metadata$Year, permutations = 999, distance = "bray") 

# ANOSIM statistic R: -0.003354  

# Significance: 0.748 -> NOT SIGNIFICANT 

anosim(ra.bc.dist, metadata$Season, permutations = 999, distance = "bray") 

# ANOSIM statistic R: -0.004122  

# Significance: 0.78  -> NOT SIGNIFICANT 

anosim(ra.bc.dist, metadata$Month, permutations = 999, distance = "bray") 

# ANOSIM statistic R: -0.00777   

# Significance: 0.913 -> NOT SIGNIFICANT 

anosim(ra.bc.dist, metadata$Zone, permutations = 999, distance = "bray") 

# ANOSIM statistic R: 0.01493 

# Significance: 0.191 -> NOT SIGNIFICANT 

anosim(ra.bc.dist, metadata$Station, permutations = 999, distance = "bray") 

# ANOSIM statistic R: 0.1967 

# Significance: 0.001 

 

###### Plotting NMDS separated by Year - 2D ONLY #### 

###Year 1 

nmdsY1 <- metaMDS(ra.bc.d.Y1,k=2,autotransform = F,trymax=20) 

# Dimensions: 2  

# Stress: 0.1672539  

stressplot(nmdsY1) 

#Base Plot and title 

nmds.plot.Y1 <- ordiplot(nmdsY1,display="sites") 

title(main="nMDS of Relative Abundances - Year 1") 

text(1,1.5,"2D Stress: 0.17", cex=0.9) 

 

#Month 

ordihull(nmds.plot.Y1,groups=met1$Month,draw="lines",col=c("gray34","goldenrod2","green3","cadetblue2","dodgerbl

ue2", 

                                                                     

"mediumpurple2","hotpink","tan","sienna","purple4")) 

points(nmds.plot.Y1,"sites", pch=19, col= "gray34", select = met1$Month == "3") 

points(nmds.plot.Y1,"sites", pch=19, col= "goldenrod2", select = met1$Month == "4") 

points(nmds.plot.Y1,"sites", pch=19, col= "green3", select = met1$Month == "5") 

points(nmds.plot.Y1,"sites", pch=19, col= "cadetblue2", select = met1$Month == "6") 

points(nmds.plot.Y1,"sites", pch=19, col= "dodgerblue2", select = met1$Month == "7") 

points(nmds.plot.Y1,"sites", pch=19, col= "mediumpurple2", select = met1$Month == "8") 

points(nmds.plot.Y1,"sites", pch=19, col= "hotpink", select = met1$Month == "9") 

points(nmds.plot.Y1,"sites", pch=19, col= "tan", select = met1$Month == "10") 

points(nmds.plot.Y1,"sites", pch=19, col= "sienna", select = met1$Month == "11") 

points(nmds.plot.Y1,"sites", pch=19, col= "purple4", select = met1$Month == "12") 

text(1,1.5,"2D Stress: 0.17", cex=0.9) 

legend("topleft",legend= c("3","4","5", "6","7","8","9","10","11","12"),  

       title = "Month",ncol=2, col=c("gray34","goldenrod2","green3","cadetblue2", 

                                     "dodgerblue2","mediumpurple2","hotpink", 

                                     "tan","sienna","purple4"),  

                                                                                          pch=19, cex=0.92) 

title(main="nMDS of Relative Abundances by Month - Year 1") 

                                                                      

                                                                      

#Season 

nmds.plot.Y1 <- ordiplot(nmdsY1,display="sites") 

ordihull(nmds.plot.Y1,groups=met1$Season,draw="lines",col = c("sienna4","royalblue3")) 

points(nmds.plot.Y1,"sites", pch=19, col= "sienna4", select = met1$Season == "dry") 

points(nmds.plot.Y1,"sites", pch=19, col= "royalblue3", select = met1$Season == "wet") 

text(1,1.5,"2D Stress: 0.17", cex=0.9) 

legend("topleft",legend= c("dry","wet"), title = "Season",  

       col=c("sienna4","royalblue3"), pch=19, cex=0.92) 

title(main="nMDS of Relative Abundances by Season - Year 1") 

                                                                      

#Zone 

nmds.plot.Y1 <- ordiplot(nmdsY1,display="sites") 

ordihull(nmds.plot.Y1,groups=met1$Zone,draw="lines",col = 

c("palegreen3","wheat4","cornflowerblue","violetred2")) 

points(nmds.plot.Y1,"sites", pch=19, col= "palegreen3", select = met1$Zone == "Inflow") 

points(nmds.plot.Y1,"sites", pch=19, col= "wheat4", select = met1$Zone == "Nearshore") 

points(nmds.plot.Y1,"sites", pch=19, col= "cornflowerblue", select = met1$Zone == "Pelagic") 

points(nmds.plot.Y1,"sites", pch=19, col= "violetred2", select = met1$Zone == "S79") 
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text(1,1.5,"2D Stress: 0.17", cex=0.9) 

legend("topleft",legend= c("Inflow","Nearshore","Pelagic", "S79"), 

       title = "Zone",col=c("palegreen3","wheat4","mediumblue","violetred2"),  

       pch=19, cex=0.92) 

title(main="nMDS of Relative Abundances by Zone - Year 1") 

                                                                      

#Station 

nmds.plot.Y1 <- ordiplot(nmdsY1,display="sites") 

ordihull(nmds.plot.Y1,groups=met1$Station,draw="lines",col=c("#A6CEE3","#579CC7","#3688AD", 

                                                                        "#8BC395","#89CB6C", 

                                                                        "#40A635","#919D5F", 

                                                                        "#F99392","#EB494A", 

                                                                        "#E83C2D","#F79C5D", 

                                                                        "#FDA746","#FE8205", 

                                                                        "#E39970", "#BFA5CF", 

                                                                        "#8861AC","#917099", 

                                                                        "#E7E099","#DEB969", 

                                                                        "#B15928")) 

points(nmds.plot.Y1,"sites", pch=19, col= "#A6CEE3", select = met1$Station == "CLV10A") 

points(nmds.plot.Y1,"sites", pch=19, col= "#579CC7", select = met1$Station == "KISSR0.0") 

points(nmds.plot.Y1,"sites", pch=19, col= "#3688AD", select = met1$Station == "L001") 

points(nmds.plot.Y1,"sites", pch=19, col= "#8BC395", select = met1$Station == "L004") 

points(nmds.plot.Y1,"sites", pch=19, col= "#89CB6C", select = met1$Station == "L005") 

points(nmds.plot.Y1,"sites", pch=19, col= "#40A635", select = met1$Station == "L006") 

points(nmds.plot.Y1,"sites", pch=19, col= "#919D5F", select = met1$Station == "L007") 

points(nmds.plot.Y1,"sites", pch=19, col= "#F99392", select = met1$Station == "L008") 

points(nmds.plot.Y1,"sites", pch=19, col= "#EB494A", select = met1$Station == "LZ2") 

points(nmds.plot.Y1,"sites", pch=19, col= "#E83C2D", select = met1$Station == "LZ25A") 

points(nmds.plot.Y1,"sites", pch=19, col= "#F79C5D", select = met1$Station == "LZ30") 

points(nmds.plot.Y1,"sites", pch=19, col= "#FDA746", select = met1$Station == "LZ40") 

points(nmds.plot.Y1,"sites", pch=19, col= "#FE8205", select = met1$Station == "PALMOUT") 

points(nmds.plot.Y1,"sites", pch=19, col= "#E39970", select = met1$Station == "PELBAY3") 

points(nmds.plot.Y1,"sites", pch=19, col= "#BFA5CF", select = met1$Station == "POLE3S") 

points(nmds.plot.Y1,"sites", pch=19, col= "#8861AC", select = met1$Station == "POLESOUT") 

points(nmds.plot.Y1,"sites", pch=19, col= "#917099", select = met1$Station == "RITTAE2") 

points(nmds.plot.Y1,"sites", pch=19, col= "#E7E099", select = met1$Station == "S308") 

points(nmds.plot.Y1,"sites", pch=19, col= "#DEB969", select = met1$Station == "S77")                                               

points(nmds.plot.Y1,"sites", pch=19, col= "#B15928", select = met1$Station == "S79") 

text(1,1.5,"2D Stress: 0.17", cex=0.9) 

legend("topleft",legend= c("CLV10A","KISSR0.0","L001","L004","L005","L006","L007", 

                           "L008","LZ2","LZ25A","LZ30","LZ40","PALMOUT","PELBAY3", 

                           "POLE3S","POLESOUT","RITTAE2","S308","S77","S79"),title = "Station", 

       col=c("#A6CEE3","#579CC7","#3688AD","#8BC395","#89CB6C","#40A635","#919D5F",  

                      "#F99392","#EB494A","#E83C2D","#F79C5D","#FDA746","#FE8205", 

                      "#E39970","#BFA5CF","#8861AC","#917099","#E7E099","#DEB969", 

                      "#B15928"),ncol=2,pch=19, cex=0.72) 

title(main="nMDS of Relative Abundances by Station - Year 1") 

                                                                                                                                              

### Year 2 

nmdsY2 <- metaMDS(ra.bc.d.Y2,k=2,autotransform = F,trymax=20) 

# Dimensions: 2  

# Stress: 0.1773041   

stressplot(nmdsY2) 

#Base Plot and title 

nmds.plot.Y2 <- ordiplot(nmdsY2,display="sites") 

title(main="nMDS of Relative Abundances - Year 2") 

 

 

#Month 

nmds.plot.Y2 <- ordiplot(nmdsY2,display="sites") 

ordihull(nmds.plot.Y2,groups=met2$Month,draw="lines",col=c("firebrick2","darkorange1","gray34","goldenrod2","gre

en3","cadetblue2","dodgerblue2", 

                                                                         

"mediumpurple2","hotpink","tan","sienna","purple4")) 

points(nmds.plot.Y2,"sites", pch=19, col= "firebrick2", select = met2$Month == "1") 

points(nmds.plot.Y2,"sites", pch=19, col= "darkorange1", select = met2$Month == "2") 

points(nmds.plot.Y2,"sites", pch=19, col= "gray34", select = met2$Month == "3") 

points(nmds.plot.Y2,"sites", pch=19, col= "goldenrod2", select = met2$Month == "4") 

points(nmds.plot.Y2,"sites", pch=19, col= "green3", select = met2$Month == "5") 

points(nmds.plot.Y2,"sites", pch=19, col= "cadetblue2", select = met2$Month == "6") 

points(nmds.plot.Y2,"sites", pch=19, col= "dodgerblue2", select = met2$Month == "7") 

points(nmds.plot.Y2,"sites", pch=19, col= "mediumpurple2", select = met2$Month == "8") 

points(nmds.plot.Y2,"sites", pch=19, col= "hotpink", select = met2$Month == "9") 

points(nmds.plot.Y2,"sites", pch=19, col= "tan", select = met2$Month == "10") 

points(nmds.plot.Y2,"sites", pch=19, col= "sienna", select = met2$Month == "11") 

points(nmds.plot.Y2,"sites", pch=19, col= "purple4", select = met2$Month == "12") 
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text(1.8,1.4,"2D Stress: 0.18", cex=0.9) 

legend("topleft",legend= c("1","2","3","4","5", "6","7","8","9","10","11","12"), title = "Month", 

       col=c("firebrick2","darkorange1","gray34","goldenrod2","green3","cadetblue2","dodgerblue2", 

                         "mediumpurple2","hotpink","tan","sienna","purple4"), pch=19,ncol=2, cex=0.88) 

title(main="nMDS of Relative Abundances by Month - Year 2") 

                                                                          

#Season 

nmds.plot.Y2 <- ordiplot(nmdsY2,display="sites") 

ordihull(nmds.plot.Y2,groups=met2$Season,draw="lines",col = c("sienna4","royalblue3")) 

points(nmds.plot.Y2,"sites", pch=19, col= "sienna4", select = met2$Season == "dry") 

points(nmds.plot.Y2,"sites", pch=19, col= "royalblue3", select = met2$Season == "wet") 

text(1.8,1.4,"2D Stress: 0.18", cex=0.9) 

legend("topleft",legend= c("dry","wet"),  title = "Season",col=c("sienna4","royalblue3"),  pch=19, cex=0.92) 

title(main="nMDS of Relative Abundances by Season - Year 2") 

                                                                          

#Zone 

nmds.plot.Y2 <- ordiplot(nmdsY2,display="sites") 

ordihull(nmds.plot.Y2,groups=met2$Zone,draw="lines",col = 

c("palegreen3","wheat4","cornflowerblue","violetred2")) 

points(nmds.plot.Y2,"sites", pch=19, col= "palegreen3", select = met2$Zone == "Inflow") 

points(nmds.plot.Y2,"sites", pch=19, col= "wheat4", select = met2$Zone == "Nearshore") 

points(nmds.plot.Y2,"sites", pch=19, col= "cornflowerblue", select = met2$Zone == "Pelagic") 

points(nmds.plot.Y2,"sites", pch=19, col= "violetred2", select = met2$Zone == "S79") 

text(1.8,1.4,"2D Stress: 0.18", cex=0.9) 

legend("topleft",legend= c("Inflow","Nearshore","Pelagic", "S79"), title = "Zone", 

       col=c("palegreen3","wheat4","mediumblue","violetred2"), pch=19, cex=0.92) 

title(main="nMDS of Relative Abundances by Zone - Year 2") 

                                                                          

#Station 

nmds.plot.Y2 <- ordiplot(nmdsY2,display="sites") 

ordihull(nmds.plot.Y2,groups=met2$Station,draw="lines",col=c("#A6CEE3","#579CC7","#3688AD","#8BC395","#89CB6C","

#40A635","#919D5F","#F99392","#EB494A","#E83C2D","#F79C5D","#FDA746","#FE8205","#E39970","#BFA5CF","#8861AC","#9

17099","#E7E099","#DEB969","#B15928")) 

points(nmds.plot.Y2,"sites", pch=19, col= "#A6CEE3", select = met2$Station == "CLV10A") 

points(nmds.plot.Y2,"sites", pch=19, col= "#579CC7", select = met2$Station == "KISSR0.0") 

points(nmds.plot.Y2,"sites", pch=19, col= "#3688AD", select = met2$Station == "L001") 

points(nmds.plot.Y2,"sites", pch=19, col= "#8BC395", select = met2$Station == "L004") 

points(nmds.plot.Y2,"sites", pch=19, col= "#89CB6C", select = met2$Station == "L005") 

points(nmds.plot.Y2,"sites", pch=19, col= "#40A635", select = met2$Station == "L006") 

points(nmds.plot.Y2,"sites", pch=19, col= "#919D5F", select = met2$Station == "L007") 

points(nmds.plot.Y2,"sites", pch=19, col= "#F99392", select = met2$Station == "L008") 

points(nmds.plot.Y2,"sites", pch=19, col= "#EB494A", select = met2$Station == "LZ2") 

points(nmds.plot.Y2,"sites", pch=19, col= "#E83C2D", select = met2$Station == "LZ25A") 

points(nmds.plot.Y2,"sites", pch=19, col= "#F79C5D", select = met2$Station == "LZ30") 

points(nmds.plot.Y2,"sites", pch=19, col= "#FDA746", select = met2$Station == "LZ40") 

points(nmds.plot.Y2,"sites", pch=19, col= "#FE8205", select = met2$Station == "PALMOUT") 

points(nmds.plot.Y2,"sites", pch=19, col= "#E39970", select = met2$Station == "PELBAY3") 

points(nmds.plot.Y2,"sites", pch=19, col= "#BFA5CF", select = met2$Station == "POLE3S") 

points(nmds.plot.Y2,"sites", pch=19, col= "#8861AC", select = met2$Station == "POLESOUT") 

points(nmds.plot.Y2,"sites", pch=19, col= "#917099", select = met2$Station == "RITTAE2") 

points(nmds.plot.Y2,"sites", pch=19, col= "#E7E099", select = met2$Station == "S308") 

points(nmds.plot.Y2,"sites", pch=19, col= "#DEB969", select = met2$Station == "S77") 

points(nmds.plot.Y2,"sites", pch=19, col= "#B15928", select = met2$Station == "S79") 

text(1.8,1.4,"2D Stress: 0.18", cex=0.9) 

legend("topleft",legend= c("CLV10A","KISSR0.0","L001","L004","L005", 

                               "L006","L007","L008","LZ2","LZ25A","LZ30","LZ40", 

                               "PALMOUT","PELBAY3","POLE3S","POLESOUT","RITTAE2", 

                               "S308","S77","S79"),title = "Station",  

       col=c("#A6CEE3","#579CC7","#3688AD","#8BC395","#89CB6C","#40A635","#919D5F", 

                      "#F99392","#EB494A","#E83C2D","#F79C5D","#FDA746","#FE8205", 

                      "#E39970", "#BFA5CF","#8861AC","#917099","#E7E099","#DEB969", 

                      "#B15928"),pch=19, ncol=2,cex=0.64) 

title(main="nMDS of Relative Abundances by Station - Year 2") 

                                                                                                                                                  

### Year 3 

nmdsY3 <- metaMDS(ra.bc.d.Y3,k=2,autotransform = F,trymax=20) 

# Dimensions: 2  

# Stress: 0.1471427  

stressplot(nmdsY3) 

#Base Plot and title 

nmds.plot.Y3 <- ordiplot(nmdsY3,display="sites") 

title(main="nMDS of Relative Abundances - Year 3") 

 

 

 

#Month 
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nmds.plot.Y3 <- ordiplot(nmdsY3,display="sites") 

ordihull(nmds.plot.Y3,groups=met3$Month,draw="lines",col=c("firebrick2","darkorange1","gray34","goldenrod2","gre

en3","cadetblue2","dodgerblue2","mediumpurple2","hotpink","tan")) 

points(nmds.plot.Y3,"sites", pch=19, col= "firebrick2", select = met3$Month == "1") 

points(nmds.plot.Y3,"sites", pch=19, col= "darkorange1", select = met3$Month == "2") 

points(nmds.plot.Y3,"sites", pch=19, col= "gray34", select = met3$Month == "3") 

points(nmds.plot.Y3,"sites", pch=19, col= "goldenrod2", select = met3$Month == "4") 

points(nmds.plot.Y3,"sites", pch=19, col= "green3", select = met3$Month == "5") 

points(nmds.plot.Y3,"sites", pch=19, col= "cadetblue2", select = met3$Month == "6") 

points(nmds.plot.Y3,"sites", pch=19, col= "dodgerblue2", select = met3$Month == "7") 

points(nmds.plot.Y3,"sites", pch=19, col= "mediumpurple2", select = met3$Month == "8") 

points(nmds.plot.Y3,"sites", pch=19, col= "hotpink", select = met3$Month == "9") 

points(nmds.plot.Y3,"sites", pch=19, col= "tan", select = met3$Month == "10") 

text(-0.85,1.3,"2D Stress: 0.15", cex=0.9) 

legend("topright",legend= c("1","2","3","4","5", "6","7","8","9","10"), 

       title = "Month", 

       

col=c("firebrick2","darkorange1","gray34","goldenrod2","green3","cadetblue2","dodgerblue2","mediumpurple2","hotp

ink","tan"),  

       pch=19, ncol=2,cex=1) 

title(main="nMDS of Relative Abundances by Month - Year 3") 

                                                                          

#Season 

nmds.plot.Y3 <- ordiplot(nmdsY3,display="sites") 

ordihull(nmds.plot.Y3,groups=met3$Season,draw="lines",col = c("sienna4","royalblue3")) 

points(nmds.plot.Y3,"sites", pch=19, col= "sienna4", select = met3$Season == "dry") 

points(nmds.plot.Y3,"sites", pch=19, col= "royalblue3", select = met3$Season == "wet") 

text(-0.85,1.3,"2D Stress: 0.15", cex=0.9) 

legend("topright",legend= c("dry","wet"), title = "Season",col=c("sienna4","royalblue3"),pch=19, cex=1.4) 

title(main="nMDS of Relative Abundances by Season - Year 3") 

                                                                          

#Zone 

nmds.plot.Y3 <- ordiplot(nmdsY3,display="sites") 

ordihull(nmds.plot.Y3,groups=met3$Zone,draw="lines",col = 

c("palegreen3","wheat4","cornflowerblue","violetred2")) 

points(nmds.plot.Y3,"sites", pch=19, col= "palegreen3", select = met3$Zone == "Inflow") 

points(nmds.plot.Y3,"sites", pch=19, col= "wheat4", select = met3$Zone == "Nearshore") 

points(nmds.plot.Y3,"sites", pch=19, col= "cornflowerblue", select = met3$Zone == "Pelagic") 

points(nmds.plot.Y3,"sites", pch=19, col= "violetred2", select = met3$Zone == "S79") 

text(-0.85,1.3,"2D Stress: 0.15", cex=0.9) 

legend("topright",legend= c("Inflow","Nearshore","Pelagic", "S79"),title = "Zone", 

       col=c("palegreen3","wheat4","mediumblue","violetred2"),pch=19, cex=0.9) 

title(main="nMDS of Relative Abundances by Zone - Year 3") 

                                                                          

#Station 

nmds.plot.Y3 <- ordiplot(nmdsY3,display="sites") 

ordihull(nmds.plot.Y3,groups=met3$Station,draw="lines",col=c("#A6CEE3","#579CC7","#3688AD","#8BC395","#89CB6C","

#40A635","#919D5F","#F99392","#EB494A","#E83C2D","#F79C5D","#FDA746","#FE8205","#E39970", 

"#BFA5CF","#8861AC","#917099","#E7E099","#DEB969","#B15928")) 

points(nmds.plot.Y3,"sites", pch=19, col= "#A6CEE3", select = met3$Station == "CLV10A") 

points(nmds.plot.Y3,"sites", pch=19, col= "#579CC7", select = met3$Station == "KISSR0.0") 

points(nmds.plot.Y3,"sites", pch=19, col= "#3688AD", select = met3$Station == "L001") 

points(nmds.plot.Y3,"sites", pch=19, col= "#8BC395", select = met3$Station == "L004") 

points(nmds.plot.Y3,"sites", pch=19, col= "#89CB6C", select = met3$Station == "L005") 

points(nmds.plot.Y3,"sites", pch=19, col= "#40A635", select = met3$Station == "L006") 

points(nmds.plot.Y3,"sites", pch=19, col= "#919D5F", select = met3$Station == "L007") 

points(nmds.plot.Y3,"sites", pch=19, col= "#F99392", select = met3$Station == "L008") 

points(nmds.plot.Y3,"sites", pch=19, col= "#EB494A", select = met3$Station == "LZ2") 

points(nmds.plot.Y3,"sites", pch=19, col= "#E83C2D", select = met3$Station == "LZ25A") 

points(nmds.plot.Y3,"sites", pch=19, col= "#F79C5D", select = met3$Station == "LZ30") 

points(nmds.plot.Y3,"sites", pch=19, col= "#FDA746", select = met3$Station == "LZ40") 

points(nmds.plot.Y3,"sites", pch=19, col= "#FE8205", select = met3$Station == "PALMOUT") 

points(nmds.plot.Y3,"sites", pch=19, col= "#E39970", select = met3$Station == "PELBAY3") 

points(nmds.plot.Y3,"sites", pch=19, col= "#BFA5CF", select = met3$Station == "POLE3S") 

points(nmds.plot.Y3,"sites", pch=19, col= "#8861AC", select = met3$Station == "POLESOUT") 

points(nmds.plot.Y3,"sites", pch=19, col= "#917099", select = met3$Station == "RITTAE2") 

points(nmds.plot.Y3,"sites", pch=19, col= "#E7E099", select = met3$Station == "S308") 

points(nmds.plot.Y3,"sites", pch=19, col= "#DEB969", select = met3$Station == "S77") 

points(nmds.plot.Y3,"sites", pch=19, col= "#B15928", select = met3$Station == "S79") 

text(-0.85,1.3,"2D Stress: 0.15", cex=0.9) 

legend("topright",legend= c("CLV10A","KISSR0.0","L001","L004","L005","L006", 

                           "L007","L008","LZ2","LZ25A","LZ30","LZ40","PALMOUT", 

                           "PELBAY3","POLE3S","POLESOUT","RITTAE2","S308","S77","S79"), 

       title = "Station",col=c("#A6CEE3","#579CC7","#3688AD","#8BC395","#89CB6C", 

                                        "#40A635","#919D5F","#F99392","#EB494A", 

                                        "#E83C2D","#F79C5D","#FDA746","#FE8205", 
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                                        "#E39970","#BFA5CF","#8861AC","#917099", 

                                        "#E7E099","#DEB969","#B15928"),  

                                        ncol=2,pch=19, cex=0.8) 

title(main="nMDS of Relative Abundances by Station - Year 3")                                                                                                                                                  

 

###### Beta Diversity Stat. Analyses for each year ###### 

##betadisper calculates dispersion (variances) within each group  

 

#Loading in metadata 

metadata <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

#Subsetting metadata table by year 

met1 <- metadata[grep("_19$", rownames(metadata)),] 

met2 <- metadata[grep("_20$", rownames(metadata)),] 

met3 <- metadata[grep("_21$", rownames(metadata)),] 

 

#Year 1 

dis.Z1 <-betadisper(ra.bc.d.Y1,met1$Zone) 

dis.S1 <-betadisper(ra.bc.d.Y1,met1$Season) 

dis.St1 <-betadisper(ra.bc.d.Y1,met1$Station) 

dis.M1 <-betadisper(ra.bc.d.Y1,met1$Month) 

#Year 2 

dis.Z2 <-betadisper(ra.bc.d.Y2,met2$Zone) 

dis.S2 <-betadisper(ra.bc.d.Y2,met2$Season) 

dis.St2 <-betadisper(ra.bc.d.Y2,met2$Station) 

dis.M2 <-betadisper(ra.bc.d.Y2,met2$Month) 

#Year 3 

dis.Z3 <-betadisper(ra.bc.d.Y3,met3$Zone) 

dis.S3 <-betadisper(ra.bc.d.Y3,met3$Season) 

dis.St3 <-betadisper(ra.bc.d.Y3,met3$Station) 

dis.M3 <-betadisper(ra.bc.d.Y3,met3$Month) 

 

##permutest determines if the variances differ by groups (If differences are SIGNIFICANT - use ANOSIM 

##                                                        if not use PERMANOVA (adonis)) 

#Year 1 

permutest(dis.Z1, pairwise=TRUE, permutations=999) 

#            Df Sum Sq  Mean Sq      F N.Perm Pr(>F) 

# Groups      3 0.0448 0.014934 1.4207    999  0.238 -> NOT SIGNIFICANT 

# Residuals 153 1.6082 0.010511   

# --- 

 

permutest(dis.S1, pairwise=TRUE, permutations=999) 

#            Df  Sum Sq   Mean Sq      F N.Perm Pr(>F) 

# Groups      1 0.00001 0.0000127 0.0013    999  0.968 -> NOT SIGNIFICANT 

# Residuals 155 1.45375 0.0093790                         

# --- 

   

permutest(dis.M1, pairwise=TRUE, permutations=999) 

#            Df  Sum Sq   Mean Sq      F N.Perm Pr(>F) 

# Groups      9 0.07056 0.0078398 0.7765    999  0.651 -> NOT SIGNIFICANT 

# Residuals 147 1.48410 0.0100959                           

# --- 

  

permutest(dis.St1, pairwise=TRUE, permutations=999) 

#            Df  Sum Sq  Mean Sq      F N.Perm Pr(>F) 

# Groups     19 0.28943 0.015233 1.1881    999  0.279 -> NOT SIGNIFICANT 

# Residuals 137 1.75652 0.012821 

 

 

## USE PERMANOVA/adonis!! 

 

 

##PERMANOVA - determining if the differences between two or more groups are significant 

adonis2(ra.bc.d.Y1~met1$Station, permutations = 999) 

#               Df SumOfSqs      R2      F Pr(>F)     

# met1$Station  19   10.764 0.23512 2.2165  0.001 *** 

# Residual     137   35.016 0.76488                   

# Total        156   45.779 1.00000 

# ___ 

#Pairwise perMANOVA to see what sites have the differences 

Y1Stat <- pairwise.perm.manova(ra.bc.d.Y1, met1$Station,nperm = 999,p.method = "fdr") 

# Get p-values in a dataframe 

Y1Stp <- Y1Stat$p.value 

# Convert the data to a table 

m <- as.data.frame(Y1Stp) 

# Plot p-values 

library(gplots) 
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ggballoonplot(m,  

            main ="p.values",  

            xlab ="",  

            ylab="", 

            label = T, label.size=0.6, #adds the p value number to the plot 

            show.margins = F) 

ggballoonplot( 

  m, main = "Year 1 by Station - p-value comparison", 

  size = "value", 

  size.range = c(1, 10), 

  shape = 21, 

  color = "black", 

  fill = "value", 

  show.label = F, legend = ggplot2::lims(0.05,0.8), 

  font.label = list(size = 6, color = "black"), 

  rotate.x.text = TRUE, 

  ggtheme = theme_minimal()) 

#________________________________________  

 

adonis2(ra.bc.d.Y1~met1$Season, permutations = 999) 

#              Df SumOfSqs      R2      F Pr(>F) 

# met1$Season   1    0.244 0.00533 0.8308  0.672 -> NOT SIGNIFICANT 

# Residual    155   45.535 0.99467               

# Total       156   45.779 1.00000  

 

adonis2(ra.bc.d.Y1~met1$Zone, permutations = 999) 

#            Df SumOfSqs      R2      F Pr(>F)     

# met1$Zone   3    1.791 0.03911 2.0759  0.001 *** 

# Residual  153   43.989 0.96089                   

# Total     156   45.779 1.00000  

# ___ 

#PerMANOVA to see what sites have the differences 

Y1Zone <- pairwise.perm.manova(ra.bc.d.Y1, met1$Zone,nperm = 999,p.method = "fdr") 

# Significant differences found between all zones 

 

adonis2(ra.bc.d.Y1~met1$Month, permutations = 999) 

#             Df SumOfSqs      R2      F Pr(>F) 

# met1$Month   1    0.157 0.00342 0.5322  0.994 -> NOT SIGNIFICANT 

# Residual   155   45.622 0.99658               

# Total      156   45.779 1.00000    

 

 

#Year 2 

permutest(dis.Z2, pairwise=TRUE, permutations=999) 

#            Df  Sum Sq  Mean Sq     F N.Perm Pr(>F)    

# Groups      3 0.17468 0.058226 6.558    999  0.002 ** 

# Residuals 206 1.82900 0.008879                        

# --- 

#  

# Pairwise comparisons: 

#   (Observed p-value below diagonal, permuted p-value above diagonal) 

#              Inflow  Nearshore    Pelagic   S79 

# Inflow               2.2100e-01 3.1000e-02 0.018 

# Nearshore 2.2085e-01            3.6200e-01 0.002 

# Pelagic   1.9483e-02 3.3873e-01            0.001 

# S79       2.3672e-02 8.2715e-04 3.5696e-05     

permutest(dis.S2, pairwise=TRUE, permutations=999) 

#            Df  Sum Sq   Mean Sq     F N.Perm Pr(>F) 

# Groups      1 0.00219 0.0021948 0.258    999  0.614 

# Residuals 208 1.76932 0.0085063                       

# --- 

permutest(dis.M2, pairwise=TRUE, permutations=999) 

#            Df  Sum Sq   Mean Sq      F N.Perm Pr(>F) 

# Groups     11 0.05232 0.0047561 0.5497    999  0.858 

# Residuals 198 1.71297 0.0086514 

permutest(dis.St2, pairwise=TRUE, permutations=999) 

#            Df  Sum Sq  Mean Sq      F N.Perm Pr(>F)     

# Groups     19 0.67528 0.035541 2.8946    999  0.001 *** 

# Residuals 190 2.33290 0.012278    

 

## USE ANOSIM FOR ZONE AND STATION, USE PERMANOVA FOR SEASON AND MONTH!! 

 

 

##ANOSIM - determining if the differences between two or more groups are significant 

anosim(ra.bc.d.Y2,met2$Zone, permutations = 999, distance = "bray") 

# ANOSIM statistic R: 0.01148  
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# Significance: 0.314 -> NOT SIGINFICANT 

 

anosim(ra.bc.d.Y2,met2$Station, permutations = 999, distance = "bray") 

# ANOSIM statistic R: 0.2535  

# Significance: 0.001 

Y2Stat <- pairwise.perm.manova(ra.bc.d.Y2, met2$Station,nperm = 999,p.method = "fdr") 

 

##PERMANOVA 

adonis2(ra.bc.d.Y2~met2$Month, permutations = 999) 

#             Df SumOfSqs    R2      F Pr(>F) 

# met2$Month   1    0.184 0.003 0.6265  0.945 -> NOT SIGINFICANT 

# Residual   208   61.122 0.997               

# Total      209   61.306 1.000  

adonis2(ra.bc.d.Y2~met2$Season, permutations = 999) 

#              Df SumOfSqs      R2      F Pr(>F) 

# met2$Season   1    0.172 0.00281 0.5857  0.977 -> NOT SIGINFICANT 

# Residual    208   61.134 0.99719               

# Total       209   61.306 1.00000    

 

#Year 3 

permutest(dis.Z3, pairwise=TRUE, permutations=999) 

#            Df  Sum Sq  Mean Sq      F N.Perm Pr(>F)    

# Groups      3 0.18912 0.063039 5.1907    999  0.007 ** 

# Residuals 170 2.06459 0.012145                       

# --- 

# Pairwise comparisons: 

#   (Observed p-value below diagonal, permuted p-value above diagonal) 

#              Inflow  Nearshore    Pelagic   S79 

# Inflow               0.01000000 0.16800000 0.463 

# Nearshore 0.01207560            0.00100000 0.068 

# Pelagic   0.15407191 0.00012197            0.975 

# S79       0.46792457 0.05697194 0.96831209   

permutest(dis.S3, pairwise=TRUE, permutations=999) 

#            Df  Sum Sq  Mean Sq      F N.Perm Pr(>F)   

# Groups      1 0.03421 0.034209 3.3793    999  0.074 . -> NOT SIGNIFICANT 

# Residuals 172 1.74117 0.010123                         

# --- 

permutest(dis.M3, pairwise=TRUE, permutations=999) 

#            Df  Sum Sq   Mean Sq      F N.Perm Pr(>F) 

# Groups      9 0.06587 0.0073193 0.7267    999  0.721 -> NOT SIGNIFICANT  

# Residuals 164 1.65174 0.0100716  

permutest(dis.St3, pairwise=TRUE, permutations=999) 

#            Df  Sum Sq  Mean Sq     F N.Perm Pr(>F)    

# Groups     19 0.70017 0.036851 3.009    999  0.003 ** 

# Residuals 154 1.88604 0.012247 

 

## USE ANOSIM FOR ZONE AND STATION, USE PERMANOVA FOR SEASON AND MONTH!! 

 

 

##ANOSIM - determining if the differences between two or more groups are significant 

anosim(ra.bc.d.Y3,met3$Zone, permutations = 999, distance = "bray") 

# ANOSIM statistic R: 0.4239 

# Significance: 0.001 

Y3Zone <- pairwise.perm.manova(ra.bc.d.Y3, met3$Zone,nperm = 999,p.method = "fdr") 

# Significant differences found between all zones 

 

anosim(ra.bc.d.Y3,met3$Station, permutations = 999, distance = "bray") 

# ANOSIM statistic R: 0.2877 

# Significance: 0.001 

Y3Stat <- pairwise.perm.manova(ra.bc.d.Y3, met3$Station,nperm = 999,p.method = "fdr") 

 

##PERMANOVA 

adonis2(ra.bc.d.Y3~met3$Season, permutations = 999) 

#              Df SumOfSqs      R2      F Pr(>F) 

# met3$Season   1    0.265 0.00598 1.0348   0.33 -> NOT SIGNIFICANT 

# Residual    172   44.122 0.99402               

# Total       173   44.387 1.00000   

adonis2(ra.bc.d.Y3~met3$Month, permutations = 999) 

#             Df SumOfSqs      R2      F Pr(>F) 

# met3$Month   1    0.193 0.00434 0.7504  0.735 -> NOT SIGNIFICANT 

# Residual   172   44.195 0.99566               

# Total      173   44.387 1.00000  

 

 

###### Beta Diversity - Stat. Analyses - ALL YEARS TOGETHER ###### 

set.seed(1998) 
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##betadisper calculates dispersion (variances) within each group  

#values should be non-significant in order to use PERMANOVA 

dis.Zone <-betadisper(ra.bc.dist,metadata$Zone) 

dis.Season <-betadisper(ra.bc.dist,metadata$Season) 

dis.Year <-betadisper(ra.bc.dist,metadata$Year) 

dis.Station <-betadisper(ra.bc.dist,metadata$Station) 

dis.Month <-betadisper(ra.bc.dist,metadata$Month) 

 

##permutest determines if the variances differ by groups (If differences are SIGNIFICANT - use ANOSIM 

##                                                        if not use PERMANOVA (adonis)) 

permutest(dis.Zone, pairwise=TRUE, permutations=999) 

#            Df Sum Sq  Mean Sq      F N.Perm Pr(>F)     

# Groups      3 0.1605 0.053487 5.3955    999  0.001 *** 

# Residuals 537 5.3235 0.009913  

# --- 

# Pairwise comparisons: 

# (Observed p-value below diagonal, permuted p-value above diagonal) 

#              Inflow Nearshore   Pelagic   S79 

# Inflow              0.0030000 0.5910000 0.051 

# Nearshore 0.0025931           0.0010000 0.713 

# Pelagic   0.5842551 0.0011149           0.057 

# S79       0.0309406 0.7291803 0.0427081  

permutest(dis.Season, pairwise=TRUE, permutations=999) 

#            Df Sum Sq   Mean Sq      F N.Perm Pr(>F) 

# Groups      1 0.0038 0.0037558 0.4045    999  0.532 -> NOT SIGNIFICANT 

# Residuals 539 5.0041 0.0092840                           

# --- 

permutest(dis.Year, pairwise=TRUE, permutations=999) 

#            Df Sum Sq   Mean Sq      F N.Perm Pr(>F) 

# Groups      2 0.0042 0.0021079 0.2258    999  0.809 -> NOT SIGNIFICANT 

# Residuals 538 5.0226 0.0093358     

# --- 

permutest(dis.Station, pairwise=TRUE, permutations=999) #look at pairwise in R (very large) 

#            Df Sum Sq  Mean Sq      F N.Perm Pr(>F)     

# Groups     19 1.0197 0.053670 5.1682    999  0.001 *** 

# Residuals 521 5.4105 0.010385      

permutest(dis.Month, pairwise=TRUE, permutations=999) 

#            Df Sum Sq   Mean Sq      F N.Perm Pr(>F) 

# Groups     11 0.0580 0.0052772 0.5639    999  0.851 -> NOT SIGNIFICANT 

# Residuals 529 4.9508 0.0093589                      

# --- 

 

 

## USE ANOSIM FOR ZONE AND STATION AND USE PERMANOVA FOR SEASON, YEAR, AND MONTH 

 

 

##ANOSIM - determining if the differences between two or more groups are significant.  

## The ANOSIM statistic “R” compares the mean of ranked dissimilarities between groups to 

## the mean of ranked dissimilarities within groups. An R value close to “1" suggests  

## dissimilarity between groups while an R value close to “0” suggests an even distribution of 

## high and low ranks within and between groups” 

## the higher the R value, the more dissimilar your groups are in terms of microbial community composition. 

 

anosim(ra.bc.dist, metadata$Zone, permutations = 999, distance = "bray") 

# ANOSIM statistic R: 0.01493  

# Significance: 0.205 -> NOT SIGNIFICANT 

anosim(ra.bc.dist, metadata$Station, permutations = 999, distance = "bray") 

# ANOSIM statistic R: 0.1967  

# Significance: 0.001  

 

##PERMANOVA 

adonis2(ra.bc.dist~metadata$Month, permutations = 999) 

#                 Df SumOfSqs      R2     F Pr(>F) 

# metadata$Month   1    0.195 0.00127 0.683  0.909 -> NOT SIGNIFICANT 

# Residual       539  154.113 0.99873              

# Total          540  154.309 1.00000   

adonis2(ra.bc.dist~metadata$Year, permutations = 999) 

#                Df SumOfSqs      R2      F Pr(>F) 

# metadata$Year   1    0.171 0.00111 0.5987  0.974 -> NOT SIGNIFICANT 

# Residual      539  154.137 0.99889               

# Total         540  154.309 1.00000  

adonis2(ra.bc.dist~metadata$Season, permutations = 999) 

#                  Df SumOfSqs      R2      F Pr(>F) 

# metadata$Season   1    0.204 0.00132 0.7127  0.881 -> NOT SIGNIFICANT 

# Residual        539  154.105 0.99868               
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# Total           540  154.309 1.00000     

 

## USE MANTEL TEST FOR CONTINUOUS VARIABLES 

##Mantel tests are correlation tests that determine the correlation between two  

##matrices (rather than two variables). A significant Mantel test will tell you 

##that the distances between samples in one matrix are correlated with the distances  

##between samples in the other matrix. Therefore, as the distance between samples  

##increases with respect to one matrix, the distances between the same samples also  

##increases in the other matrix 

 

#abundance dissim. matrix 

dist.abund <- ra.bc.dist 

#Microcystis/Bloom distance using euclidean 

MA <- metadata$Microcystis.Abundance 

CHL <- metadata$Chlorophyll.a 

dist.MA <- dist(MA, method = "euclidean") 

dist.CHL <- dist(CHL, method = "euclidean") 

 

#Mantel test - Microcystis 

mantel(dist.abund, dist.MA, method = "spearman", permutations = 999) 

# Mantel statistic r: 0.008024 

# Significance: 0.4 -> NOT SIGINIFCANT 

 

#Mantel test -  Chlorophyll a 

mantel(dist.abund, dist.CHL, method = "spearman", permutations = 999) 

# Mantel statistic r: 0.01756  

# Significance: 0.225 -> NOT SIGNIFICANT 

 

##Plotting beta diversity against significant variables  

#create vectors of matrices 

cc <- as.vector(dist.CHL) 

mm <- as.vector(dist.MA) 

aa <- as.vector(dist.abund) 

#new data frame with vectorized distance matrices 

mat <- data.frame(cc,aa,mm) 

#PLOT - Chlorophyll a 

ggplot(mat, aes(y = aa, x = cc)) +  

  geom_point(size = 2, alpha = 0.75, colour = "black",shape = 21) +  

  labs(x = "Chlorophyll a (ug/L)", y = "Bray-Curtis Dissimilarity") +  

  theme( axis.text.x = element_text(face = "bold",colour = "black", size = 12),  

         axis.text.y = element_text(face = "bold", size = 11, colour = "black"),  

         axis.title= element_text(face = "bold", size = 14, colour = "black"),  

         panel.background = element_blank(),  

         panel.border = element_rect(fill = NA, colour = "black")) 

#PLOT - Microcystis 

ggplot(mat, aes(y = aa, x = mm)) +  

  geom_point(size = 2, alpha = 0.75, colour = "black",shape = 21) + 

  labs(x = "Microcystis Relative Abundance", y = "Bray-Curtis Dissimilarity") +  

  theme( axis.text.x = element_text(face = "bold",colour = "black", size = 12),  

         axis.text.y = element_text(face = "bold", size = 11, colour = "black"),  

         axis.title= element_text(face = "bold", size = 14, colour = "black"),  

         panel.background = element_blank(),  

         panel.border = element_rect(fill = NA, colour = "black")) 

 

 

 

###### Venn Diagram of ASVs (Year, Zone, Season) ###### 

##Packages  

library(eulerr) 

library(microbiome) 

library(microbiomeutilities) 

#library(devtools) ##used to install microbiome utilities package 

#devtools::install_github('microsud/microbiomeutilities') ## only run if need to install package 

 

 

 

## Making phyloseq objects (WHOLE DATA SET) 

asvdat <- as.data.frame(t(dat.01per)) #species has to be rows so the df was transformed 

taxdat <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE, row.names = 1) 

meta <- read.csv("Metadata-Diversity_BATCH.csv", header = TRUE, row.names = 1) 

asvmat <- data.matrix(asvdat) 

taxmat <- as.matrix(taxdat) # use as.matrix NOT as.data.matrix as the data will convert the data into numbers 

ASV <- otu_table(asvmat, taxa_are_rows = TRUE) 

TAX <- tax_table(taxmat) 

META <- sample_data(meta) 

pseq <- phyloseq(ASV,TAX,META) 
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# simple way to count number of samples in each group 

table(meta(pseq)$Year, useNA = "always") 

##  

##   1       2        3    <NA>  

##  157     210     174      0 

table(meta(pseq)$Zone, useNA = "always") 

##  

# Inflow  Nearshore   Pelagic     S79       <NA>  

#   107       131       281        22         0  

table(meta(pseq)$Season, useNA = "always") 

##  

##  dry     wet   <NA>  

##  247     294     0 

 

#convert to relative abundance 

transform <- microbiome::transform 

pseq_rel <- transform(pseq, "compositional") 

 

#Make a list of Years 

years <- unique(as.character(meta(pseq_rel)$Year)) 

print(years) 

# [1] "1" "2" "3" 

 

#Make a list of Zones 

zones <- unique(as.character(meta(pseq_rel)$Zone)) 

print(zones) 

# [1] "Inflow"    "Pelagic"   "Nearshore" "S79"   

 

#Make a list of Seasons 

seasons <- unique(as.character(meta(pseq_rel)$Season)) 

print(seasons) 

# [1] "dry" "wet" 

 

#### YEAR 

#Write a for loop to go through each of the years  

#one by one and combine identified core taxa into a list. 

list_core <- c() # an empty object to store information 

 

for (n in years){ # for each variable n in Year 

  #print(paste0("Identifying Core Taxa for ", n)) 

   

  ps.sub <- subset_samples(pseq_rel, Year == n) # Choose sample from Year by n 

   

  core_m <- core_members(ps.sub, # ps.sub is phyloseq selected with only samples from g  

                         detection = 0.001,  

                         prevalence = 0.75) 

  print(paste0("No. of core taxa in ", n, " : ", length(core_m))) # print core taxa identified in each year. 

  list_core[[n]] <- core_m # add to a list core taxa for each group. 

  #print(list_core) 

} 

# [1] "No. of core taxa in 1 : 14" 

# [1] "No. of core taxa in 2 : 16"        WHOLE DATASET 

# [1] "No. of core taxa in 3 : 32" 

 

 

##Adding taxa information 

print(list_core) # can see that its the ASV id w/ NO taxa info 

 

taxa_names(pseq_rel)[1:5] #shows ASV id 

# [1] "0885965c051f3034c0e28043193bc5d2" "51e00e866016fba8a19581249b811ec4" 

# [3] "dfd3874c0e70ae177e8cdc4fb6961e7d" "ac879ef0bc703ee2637bc55f0ef97afc" 

# [5] "41714fa1a258e8098d51d03a1e1b3304" 

 

#format names and checking 

pseq_rel_f <- format_to_besthit(pseq_rel) 

taxa_names(pseq_rel_f)[1:5] 

 

#rerun 'for' loop with better taxa information 

for (n in years){  

  ps.sub <- subset_samples(pseq_rel_f, Year == n) 

  core_m <- core_members(ps.sub,  

                         detection = 0.001, 

                         prevalence = 0.75) 

  print(paste0("No. of core taxa in ", n, " : ", length(core_m)))  
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  list_core[[n]] <- core_m  

} 

print(list_core) #shows ASV id with taxa information 

#converting lists to dfs and saving as CSVs 

Year1VennTaxa <- as.data.frame(list_core[["1"]]) 

Year2VennTaxa <- as.data.frame(list_core[["2"]]) 

Year3VennTaxa <- as.data.frame(list_core[["3"]]) 

write.csv(Year1VennTaxa, "CoreTaxaYear1-Venn.csv") 

write.csv(Year2VennTaxa, "CoreTaxaYear2-Venn.csv") 

write.csv(Year3VennTaxa, "CoreTaxaYear3-Venn.csv") 

 

###Comparing venn diagram packages to see which to use (1.31.23) 

##Plotting venn diagram using eulerr  

plot(venn(list_core),fills = c("tomato3", "steelblue3", "springgreen3")) 

 

#### ZONE 

list_core <- c() 

for (n in zones){ 

  ps.sub <- subset_samples(pseq_rel_f, Zone == n) 

  core_m <- core_members(ps.sub, 

                         detection = 0.001, 

                         prevalence = 0.75) 

  print(paste0("No. of core taxa in ", n, " : ", length(core_m))) 

  list_core[[n]] <- core_m 

} 

# [1] "No. of core taxa in Inflow : 15" 

# [1] "No. of core taxa in Pelagic : 45" 

# [1] "No. of core taxa in Nearshore : 31" 

# [1] "No. of core taxa in S79 : 33" 

 

print(list_core) #shows ASV id with taxa information 

 

#converting lists to dfs and saving as CSVs 

InflowVennTaxa <- as.data.frame(list_core[["Inflow"]]) 

NearVennTaxa <- as.data.frame(list_core[["Nearshore"]]) 

PelVennTaxa <- as.data.frame(list_core[["Pelagic"]]) 

S79VennTaxa <- as.data.frame(list_core[["S79"]]) 

write.csv(InflowVennTaxa, "CoreTaxaInflow-Venn.csv") 

write.csv(NearVennTaxa, "CoreTaxaNear-Venn.csv") 

write.csv(PelVennTaxa, "CoreTaxaPelagic-Venn.csv") 

write.csv(S79VennTaxa, "CoreTaxaS79-Venn.csv") 

 

##Plotting venn diagram 

plot(venn(list_core),fills = c("palegreen3","cornflowerblue","wheat4","violetred2")) 

 

##Plotting venn diagram using VennDiagram 

#downfall - creates a png file for the venn diagram BUT there is a workaround to view it in R 

#         - does not allow for less than 4 variables 

install.packages("VennDiagram") 

# Helper function to display Venn diagram 

display_venn <- function(x, ...){ 

  library(VennDiagram) 

  grid.newpage() 

  venn_object <- venn.diagram(x, filename = NULL, ...) 

  grid.draw(venn_object) 

} 

display_venn( 

  list_core, 

  category.names = c("Inflow" , "Pelagic" , "Nearshore", "S79"), 

  # Circles 

  lwd = 2, 

  lty = 'blank', 

  fill = c("palegreen3","cornflowerblue","wheat4","violetred2"), 

  # Numbers 

  cex = 1, 

  # Set names 

  cat.cex = 1.26, 

  cat.fontface = "bold", 

  cat.default.pos = "outer", 

  cat.dist = c(0.055, 0.055, 0.1, 0.1) 

) 

 

#### SEASON 

list_core <- c() 

for (n in seasons){ 

  ps.sub <- subset_samples(pseq_rel_f, Season == n) 
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  core_m <- core_members(ps.sub, 

                         detection = 0.001, 

                         prevalence = 0.75) 

  print(paste0("No. of core taxa in ", n, " : ", length(core_m))) 

  list_core[[n]] <- core_m 

} 

# [1] "No. of core taxa in dry : 29" 

# [1] "No. of core taxa in wet : 17" 

 

print(list_core) #shows ASV id with taxa information 

#converting lists to dfs and saving as CSVs 

DryVennTaxa <- as.data.frame(list_core[["dry"]]) 

WetVennTaxa <- as.data.frame(list_core[["wet"]]) 

write.csv(DryVennTaxa, "CoreTaxaDry-Venn.csv") 

write.csv(WetVennTaxa, "CoreTaxaWet-Venn.csv") 

 

##Plotting venn diagram 

plot(venn(list_core),fills = c("lemonchiffon2","royalblue1")) 

 

##Core line plots 

# Determine core microbiota across various abundance/prevalence thresholds with  

# the blanket analysis (Salonen et al. CMI, 2012) based on various signal and  

# prevalences. 

 

# With compositional (relative) abundances 

det <- c(0, 0.1, 0.5, 2, 5, 20)/100 

prevalences <- seq(.05, 1, .05) 

 

plot_core(pseq_rel_f, prevalences = prevalences,  

          detections = det, plot.type = "lineplot") +  

  xlab("Relative Abundance (%)") +  

  theme_bw() 

 

##Core heatmaps 

# This visualization method has been used for instance in Intestinal microbiome  

# landscaping: Insight in community assemblage and implications for microbial  

# modulation strategies. Shetty et al. FEMS Microbiology Reviews fuw045, 2017. 

 

#Note that you can order the taxa on the heatmap with the order.taxa argument. 

 

# Core with compositionals: 

prevalences <- seq(.05, 1, .05) 

detections <- round(10^seq(log10(1e-2), log10(.2), length = 10), 3) 

 

#Deletes "ASV" from taxa_names, e.g. ASV1 --> 1 

#taxa_names(ps.m3.rel) = taxa_names(ps.m3.rel) %>% str_replace("ASV", "") 

# Also define gray color palette 

gray <- gray(seq(0,1,length=5)) 

 

p1 <- plot_core(pseq_rel_f, 

                plot.type = "heatmap", 

                colours = gray, 

                prevalences = prevalences, 

                detections = detections, min.prevalence = .05) + 

  xlab("Detection Threshold (Relative Abundance (%))") 

 

p1 <- p1 + theme_bw() + ylab("ASVs") 

p1 

 

 

###### CCA Analysis - Overall and Year-to-Year ###### 

set.seed(1998) 

#ALL YEARS 

ccamodel <- cca(dat.ra~., metadata[,c(7:37)]) #run 1 

# If VIF>10, the variable presents colinearity with another or other variables.  

# In that case, delete the variable from initial dataset and redo the analysis. 

# VIF = 1 for completely independent variables,and values above 10 or 20  

# (depending on your taste) are regarded as highly multicollinear (dependent on others). 

 

ccamodel <- cca(dat.ra~., metadata[,c(7:19,21:24,31,33)]) #run 2 

anova.cca(finalmodel, by="terms") 

#                          Df ChiSquare       F Pr(>F)     

#   SecchiDiskDepth         1    0.1574  9.9667  0.001 *** 

#   Silica                  1    0.0667  4.2218  0.001 *** 

#   Sulfate                 1    0.0552  3.4962  0.001 *** 
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#   Temperature             1    0.1163  7.3647  0.001 *** 

#   Turbidity               1    0.1578  9.9912  0.001 *** 

#   Alkalinity              1    0.1466  9.2843  0.001 *** 

#   Ammonia                 1    0.1299  8.2251  0.006 **  

#   Pheophytin.a            1    0.0678  4.2934  0.001 *** 

#   Chlorophyll.a           1    0.1273  8.0613  0.001 *** 

#   TotalDepth              1    0.0952  6.0274  0.001 *** 

#   DissolvedOxygen         1    0.0584  3.6952  0.004 **  

#   Nitrate.Nitrite         1    0.0654  4.1389  0.001 *** 

#   Phosphate.Ortho         1    0.0530  3.3573  0.001 *** 

#   pH                      1    0.0321  2.0298  0.014 *   

#   Total.Nitrogen          1    0.0360  2.2828  0.004 **  

#   TN.TP.ratio             1    0.0677  4.2882  0.001 *** 

#   Microcystis.Abundance   1    0.1738 11.0048  0.001 *** 

#   Microcystin.LA          1    0.0144  0.9097  0.383   -> REMOVE   

#   Microcystin.LR          1    0.0243  1.5367  0.038 *   

#   Residual              521    8.2273                  

# ---     

 

ccamodel <- cca(dat.ra~., metadata[,c(7:19,21:24,33)]) #run 3  

finalmodel<- ordistep(ccamodel, scope=formula(ccamodel)) 

vif.cca(finalmodel) ## everything is under 10 

finalmodel ## Note that "Total Inertia" is the total variance in species (observations matrix) distributions.  

## "Constrained Inertia" is the variance explained by the environmental variables (gradients matrix).  

## The "Proportion" values represent the percentages of variance of species distributions explained   

## by Constrained (environmental) and Unconstrained variables. Eigenvalues of constrained and  

## unconstrained axes represent the amount of variance explained by each CCA axis (graphs usually  

## present the first two constrained axes, so take a look at their values). 

#Total Inertia = total variance in species (observdistributions 

#Unconstrained Inertia = the variance explained by the environmental variables 

 

#               Inertia Proportion Rank 

# Total           9.872      1.000      

# Constrained     1.629      0.165   18 

# Unconstrained   8.243      0.835  522 

# Inertia is scaled Chi-square 

 

R2.adj.cca <- RsquareAdj(finalmodel)  

# adjusting the R-squared value: The adjusted R2 tells you the percentage of  

# variation explained by only the independent variables that actually affect  

# the dependent variable 

#indicates how well terms fit a curve or line, but adjusts for the number of terms in a model 

R2.adj.cca 

# r.squared: 0.173352 

# adj.r.squared: 0.1446893 

 

# Testing the significance of the CCA model 

anova.cca(finalmodel) #should be significant 

#           Df ChiSquare      F Pr(>F)     

# Model     18    1.6290 5.7307  0.001 *** 

# Residual 522    8.2434                   

# ---     

 

# Testing the significance of terms (environmental variables) 

anova.cca(finalmodel, by="terms") 

#                          Df ChiSquare       F Pr(>F)     

#   SecchiDiskDepth         1    0.1574  9.9663  0.001 *** 

#   Silica                  1    0.0667  4.2216  0.001 *** 

#   Sulfate                 1    0.0552  3.4961  0.001 *** 

#   Temperature             1    0.1163  7.3644  0.001 *** 

#   Turbidity               1    0.1578  9.9908  0.001 *** 

#   Alkalinity              1    0.1466  9.2839  0.001 *** 

#   Ammonia                 1    0.1299  8.2248  0.003 **  

#   Pheophytin.a            1    0.0678  4.2932  0.001 *** 

#   Chlorophyll.a           1    0.1273  8.0610  0.001 *** 

#   TotalDepth              1    0.0952  6.0272  0.001 *** 

#   DissolvedOxygen         1    0.0584  3.6951  0.002 **  

#   Nitrate.Nitrite         1    0.0654  4.1387  0.001 *** 

#   Phosphate.Ortho         1    0.0530  3.3572  0.002 **  

#   pH                      1    0.0321  2.0297  0.008 **  

#   Total.Nitrogen          1    0.0360  2.2827  0.003 **  

#   TN.TP.ratio             1    0.0677  4.2880  0.001 *** 

#   Microcystis.Abundance   1    0.1738 11.0044  0.001 *** 

#   Microcystin.LR          1    0.0225  1.4273  0.064 .   -> Make sure to specify that it had a p-value of 0.06 

#   Residual              522    8.2434                    

# --- 
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summary(finalmodel) 

 

## Correlation between the significant environmental variables 

cor(metadata[,c(7:19,21:24,33)], method ="pearson") 

#create pairs plot to see the correlation statistics between each variable 

library(psych) 

pairs.panels(metadata[,c(7:19,21:24,33)]) 

 

 

 

#Year-by-year 

#Year 1 

ccamodel <- cca(Y1r~., met1[,c(7:37)]) #run1 

ccamodel <- cca(Y1r~., met1[,c(7:18,21,23,24,28)]) #run2 

finalmodel<- ordistep(ccamodel, scope=formula(ccamodel)) 

vif.cca(finalmodel) 

finalmodel 

#               Inertia Proportion Rank 

# Total          8.5646     1.0000      

# Constrained    2.0371     0.2379   14 

# Unconstrained  6.5275     0.7621  142 

# Inertia is scaled Chi-square  

# 588 species (variables) deleted due to missingness 

 

R2.adj.cca <- RsquareAdj(finalmodel)  

R2.adj.cca 

# r.squared:0.2591125 

# adj.r.squared: 0.1743835 

 

# Testing the significance of the CCA model 

anova.cca(finalmodel) 

#           Df ChiSquare      F Pr(>F)     

# Model     16    2.2068 3.0372  0.001 *** 

# Residual 140    6.3578                   

# --- 

 

# Testing the significance of terms (environmental variables) 

anova.cca(finalmodel, by="terms") 

# Microcystin             1    0.0339 0.7469  0.746  -> NOT SIG.   

 

#create pairs plot to see the correlation statistics between each variable 

library(psych) 

pairs.panels(met1[,c(7:18,21,23,24)]) 

 

 

#Year 2 

ccamodel <- cca(Y2r~., met2[,c(7:37)]) #run1 

ccamodel <- cca(Y2r~., met2[,c(7:19,21:24,28,31,33,36,37)]) #run2 

finalmodel<- ordistep(ccamodel, scope=formula(ccamodel)) 

vif.cca(finalmodel) 

finalmodel 

#               Inertia Proportion Rank 

# Total          9.3746     1.0000      

# Constrained    2.3486     0.2505   22 

# Unconstrained  7.0260     0.7495  187 

# Inertia is scaled Chi-square  

 

 

R2.adj.cca <- RsquareAdj(finalmodel)  

R2.adj.cca 

# r.squared:0.2593453 

# adj.r.squared:0.172592 

 

 

anova.cca(finalmodel) 

#           Df ChiSquare      F Pr(>F)     

# Model     22    2.3486 2.8413  0.001 *** 

# Residual 187    7.0260                   

# --- 

 

 

 

#create pairs plot to see the correlation statistics between each variable 

library(psych) 

pairs.panels(met2[,c(7:19,21:24,28,31,33,36,37)]) 
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#Year 3 

ccamodel <- cca(Y3r~., met3[,c(7:37)]) #run1 

ccamodel <- cca(Y3r~., met3[,c(7:10,12:19,21,23,24,31,33)]) #run2 

finalmodel<- ordistep(ccamodel, scope=formula(ccamodel)) 

vif.cca(finalmodel) 

finalmodel 

#               Inertia Proportion Rank 

# Total          6.9434     1.0000      

# Constrained    1.9044     0.2743   15 

# Unconstrained  5.0390     0.7257  158 

# Inertia is scaled Chi-square  

# 669 species (variables) deleted due to missingness 

 

 

R2.adj.cca <- RsquareAdj(finalmodel)  

R2.adj.cca 

# r.squared: 0.2852408 

# adj.r.squared: 0.2068729 

 

 

anova.cca(finalmodel) 

#           Df ChiSquare      F Pr(>F)     

# Model     17    1.9617 3.6136  0.001 *** 

# Residual 156    4.9817                  

# --- 

 

 

#create pairs plot to see the correlation statistics between each variable 

library(psych) 

pairs.panels(met3[,c(7:10,12:19,21,23,24,31,33)]) 

 

 

###### Plotting CCAs ###### 

cca.p <- plot(finalmodel,type = "none") 

 

#Fitting of the environmental variables to the CCA plot 

ef.cca<- envfit(cca.p,met3[,c(7:10,12:19,21,23,24,31,33)]) 

#Creating R2 threshold for vectors (found function code on research gate) 

#Function: select.envfit - Setting r2 cutoff values to display in an  

#                          ordination.r.select<-0.3 # correlation threshold,  

#                          see function below 

#__FUNCTION: select.envfit__# 

# function (select.envfit) filters the resulting list of function (envfit) based on their p values. This allows 

to display only significant values in the final plot. 

# just run this 

select.envfit<-function(fit, r.select){ #needs two sorts of input: fit= result of envfit, r.select= numeric, 

correlation minimum threshold 

  for (i in 1:length(fit$vectors$r)) { #run for-loop through the entire length of the column r in object 

fit$vectors$r starting at i=1 

    if (fit$vectors$r[i]<r.select) { #Check wether r<r.select, i.e. if the correlation is weaker than the 

threshold value. Change this Parameter for r-based selection 

      fit$vectors$arrows[i,]=NA #If the above statement is TRUE, i.e. r is smaller than r.select, then the 

coordinates of the vectors are set to NA, so they cannot be displayed 

      i=i+1 #increase the running parameter i from 1 to 2, i.e. check the next value in the column until every 

value has been checked 

    } #close if-loop 

  } #close for-loop 

  return(fit) #return fit as the result of the function 

} #close the function 

 

#Running select function on actual data 

ef.cca<- select.envfit(ef.cca, 0.3) #selecting from a weak positive correlation and stronger 

 

 

## R2 VALUES 

#All years  

# SecchiDiskDepth           Silica               Sulfate           Temperature             Turbidity  

# 0.27094972            0.07374569            0.05479263            0.12495445            0.42287517  

# Alkalinity               Ammonia          Pheophytin.a         Chlorophyll.a            TotalDepth  

# 0.25428886            0.33806540            0.05730124            0.23852181            0.21004233  

# DissolvedOxygen       Nitrate.Nitrite       Phosphate.Ortho           pH              Total.Nitrogen  

# 0.42767606            0.54789964            0.47798414            0.34217550            0.05233525  

# TN.TP.ratio   Microcystis.Abundance        Microcystin.LR  
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# 0.57227444            0.03451549            0.03085789  

 

#Year 1 

# SecchiDiskDepth           Silica               Sulfate           Temperature             Turbidity  

# 0.304765766           0.059737589           0.006162602           0.025615940           0.314931560  

# Alkalinity               Ammonia          Pheophytin.a         Chlorophyll.a            TotalDepth  

# 0.210544801           0.597196549           0.054743998           0.175220168           0.220000596  

# DissolvedOxygen       Nitrate.Nitrite             pH             TN.TP.ratio    Microcystis.Abundance  

# 0.485019703           0.462306509           0.514576526           0.652323571           0.004472664  

# Microcystin  

# 0.006837999  

 

#Year 2 

# SecchiDiskDepth          Silica               Sulfate           Temperature             Turbidity  

# 0.18704153            0.07288965            0.14544517            0.14922633            0.52276802  

# Alkalinity               Ammonia          Pheophytin.a         Chlorophyll.a            TotalDepth  

# 0.25794197            0.35220927            0.08725580            0.35052294            0.18683669  

# DissolvedOxygen       Nitrate.Nitrite       Phosphate.Ortho           pH              Total.Nitrogen  

# 0.51390253            0.54838242            0.34838408            0.68891135            0.01746031  

# TN.TP.ratio   Microcystis.Abundance        Microcystin        Microcystin.LA        Microcystin.LR  

# 0.62322767            0.01788581            0.00223627            0.02135175            0.03884635  

# Anatoxin.a    Cylindrospermopsin  

# 0.04925972            0.03583364  

 

#Year 3 

# SecchiDiskDepth           Silica               Sulfate           Temperature            Alkalinity  

# 0.12798686            0.14790446            0.16111518            0.36344282            0.30968020  

# Ammonia             Pheophytin.a         Chlorophyll.a            TotalDepth       DissolvedOxygen  

# 0.18427317            0.09774378            0.38622539            0.20853791            0.30090864  

# Nitrate.Nitrite       Phosphate.Ortho           pH                TN.TP.ratio   Microcystis.Abundance  

# 0.67163554            0.44076153            0.11917088            0.36285678            0.55155892  

# Microcystin.LA        Microcystin.LR  

# 0.03009204            0.38899517  

 

#Microcystin LR strongly correlated to Microcystis abundance so removing that vector 

ef.cca$vectors$arrows["Microcystin.LR",]=NA 

 

 

#Setting up base plot 

#ALL Years 

par(mar=c(5.1, 6.1, 3.1, 4.1)) 

plot(finalmodel,type = "none") 

abline(h = 0, v = 0, col = "white", lwd = 2) 

box() 

#Year 1 

par(mar=c(5.1, 6.1, 3.1, 4.1)) 

plot(finalmodel,type = "none") 

abline(h = 0, v = 0, col = "white", lwd = 2) 

box() 

#Year 2 

par(mar=c(5.1, 6.1, 3.1, 4.1)) 

plot(finalmodel,type = "none") 

abline(h = 0, v = 0, col = "white", lwd = 2) 

box() 

#Year 3 

par(mar=c(5.1, 6.1, 3.1, 4.1)) 

plot(finalmodel,type = "none") 

abline(h = 0, v = 0, col = "white", lwd = 2) 

box() 

 

 

#Adding the points  

 

#Year 

#Adding the points  

points(cca.p,"sites", pch=19, col= "goldenrod3", select = metadata$Year == "1") 

points(cca.p,"sites", pch=19, col= "mediumpurple2", select = metadata$Year == "2") 

points(cca.p,"sites", pch=19, col= "springgreen4", select = metadata$Year == "3") 

#Plotting envfit vectors 

plot(ef.cca, col = "black", p.max=0.05) 

#Add legend (click to place legend on the outside of the plot) & Title 

legend(locator(1),legend=c("1","2", "3"),  

       col=c("goldenrod3","mediumpurple2", "springgreen4"), pch=19, cex=1.2,  

       title = "Year") 

title(main="Years 1 - 3 (2019 - 2021)") 
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#Zone 

points(cca.p,"sites", pch=19, col= "palegreen3", select = met3$Zone == "Inflow") 

points(cca.p,"sites", pch=19, col= "cornflowerblue", select = met3$Zone == "Pelagic") 

points(cca.p,"sites", pch=19, col= "wheat4", select = met3$Zone == "Nearshore") 

points(cca.p,"sites", pch=19, col= "violetred2", select = met3$Zone == "S79") 

#Plotting envfit vectors 

plot(ef.cca, col = "black", p.max=0.05) 

#Add legend (click to place legend on the outside of the plot) & Title 

legend(locator(1),legend=c("Inflow","Nearshore","Pelagic","S79"),  

       col=c("palegreen3","wheat4","cornflowerblue","violetred2"), pch=19, cex=1.2,  

       title = "Ecological Zone") 

title(main="Years 1 - 3 (2019 - 2021)") 

title(main="Year 1 - 2019") 

title(main="Year 2 - 2020") 

title(main="Year 3 - 2021") 

#Season 

#Adding the points  

points(cca.p,"sites", pch=19, col= "lemonchiffon3", select = met3$Season == "dry") 

points(cca.p,"sites", pch=19, col= "royalblue1", select = met3$Season == "wet") 

#Plotting envfit vectors 

plot(ef.cca, col = "black", p.max=0.05) 

#Add legend (click to place legend on the outside of the plot) & Title 

legend(locator(1),legend=c("Dry","Wet"),  

       col=c("lemonchiffon3","royalblue1"), pch=19, cex=1.2, title = "Season") 

title(main="Years 1 - 3 (2019 - 2021)") 

title(main="Year 1 - 2019") 

title(main="Year 2 - 2020") 

title(main="Year 3 - 2021") 

 

#Month 

#Adding the points  

points(cca.p,"sites", pch=19, col= "firebrick2", select = met3$Month == "1") 

points(cca.p,"sites", pch=19, col= "darkorange1", select = met3$Month == "2") 

points(cca.p,"sites", pch=19, col= "gray38", select = met3$Month == "3") 

points(cca.p,"sites", pch=19, col= "goldenrod1", select = met3$Month == "4") 

points(cca.p,"sites", pch=19, col= "green4", select = met3$Month == "5") 

points(cca.p,"sites", pch=19, col= "cadetblue2", select = met3$Month == "6") 

points(cca.p,"sites", pch=19, col= "dodgerblue2", select = met3$Month == "7") 

points(cca.p,"sites", pch=19, col= "mediumpurple2", select = met3$Month == "8") 

points(cca.p,"sites", pch=19, col= "hotpink", select = met3$Month == "9") 

points(cca.p,"sites", pch=19, col= "tan", select = met3$Month == "10") 

points(cca.p,"sites", pch=19, col= "saddlebrown", select = met3$Month == "11") 

points(cca.p,"sites", pch=19, col= "purple4", select = met3$Month == "12") 

#Plotting envfit vectors 

plot(ef.cca, col = "black", p.max=0.05) 

#Add legend (click to place legend on the outside of the plot) & Title 

legend(locator(1),legend= c("3","4","5","6","7","8","9","10","11","12"),  

       title = "Month",ncol = 2, 

       col=c("gray34","goldenrod2","green3", 

                         "cadetblue2","dodgerblue2","mediumpurple2","hotpink","tan","saddlebrown","purple4"),  

                         pch=19, cex=1.2) 

legend(locator(1),legend= c("1","2","3","4","5","6","7","8","9","10","11","12"),  

       title = "Month",ncol = 2, 

       col=c("firebrick2","darkorange1","gray34","goldenrod2","green3", 

                         "cadetblue2","dodgerblue2","mediumpurple2","hotpink","tan","saddlebrown","purple4"),  

                         pch=19, cex=1.2) 

legend(locator(1),legend= c("1","2","3","4","5","6","7","8","9","10"),  

       title = "Month",ncol = 2, 

       col=c("firebrick2","darkorange1","gray34","goldenrod2","green3", 

                         "cadetblue2","dodgerblue2","mediumpurple2","hotpink","tan"),  

                         pch=19, cex=1.2) 

title(main="Years 1 - 3 (2019 - 2021)") 

title(main="Year 1 - 2019") 

title(main="Year 2 - 2020") 

title(main="Year 3 - 2021") 

#Station 

#Adding the points  

points(cca.p,"sites", pch=19, col= "#A6CEE3", select = met3$Station == "CLV10A") 

points(cca.p,"sites", pch=19, col= "#579CC7", select = met3$Station == "KISSR0.0") 

points(cca.p,"sites", pch=19, col= "#3688AD", select = met3$Station == "L001") 

points(cca.p,"sites", pch=19, col= "#8BC395", select = met3$Station == "L004") 

points(cca.p,"sites", pch=19, col= "#89CB6C", select = met3$Station == "L005") 

points(cca.p,"sites", pch=19, col= "#40A635", select = met3$Station == "L006") 

points(cca.p,"sites", pch=19, col= "#919D5F", select = met3$Station == "L007") 

points(cca.p,"sites", pch=19, col= "#F99392", select = met3$Station == "L008") 

points(cca.p,"sites", pch=19, col= "#EB444A", select = met3$Station == "LZ2") 
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points(cca.p,"sites", pch=19, col= "red", select = met3$Station == "LZ25A") 

points(cca.p,"sites", pch=19, col= "#F79C5D", select = met3$Station == "LZ30") 

points(cca.p,"sites", pch=19, col= "#FDA746", select = met3$Station == "LZ40") 

points(cca.p,"sites", pch=19, col= "#FE8205", select = met3$Station == "PALMOUT") 

points(cca.p,"sites", pch=19, col= "#E39970", select = met3$Station == "PELBAY3") 

points(cca.p,"sites", pch=19, col= "#BFA5CF", select = met3$Station == "POLE3S") 

points(cca.p,"sites", pch=19, col= "#8861AC", select = met3$Station == "POLESOUT") 

points(cca.p,"sites", pch=19, col= "violet", select = met3$Station == "RITTAE2") 

points(cca.p,"sites", pch=19, col= "#E7E099", select = met3$Station == "S308") 

points(cca.p,"sites", pch=19, col= "#DEB969", select = met3$Station == "S77") 

points(cca.p,"sites", pch=19, col= "#B15928", select = met3$Station == "S79") 

#Plotting envfit vectors 

plot(ef.cca, col = "black", p.max=0.05) 

#Add legend (click to place legend on the outside of the plot) & Title 

legend(locator(1),legend= c("CLV10A","KISSR0.0","L001","L004","L005","L006","L007", 

                            "L008","LZ2","LZ25A","LZ30","LZ40","PALMOUT","PELBAY3", 

                            "POLE3S","POLESOUT","RITTAE2","S308","S77","S79"), 

       title = "Station",ncol=2, 

       col=c("#A6CEE3","#579CC7","#3688AD","#8BC395","#89CB6C","#40A635","#919D5F", 

                      "#F99392","#EB444A","red","#F79C5D","#FDA746","#FE8205","#E39970", 

                      "#BFA5CF","#8861AC","violet","#E7E099","#DEB969","#B15928"),  

                      pch=19, cex=0.9) 

title(main="Years 1 - 3 (2019 - 2021)") 

title(main="Year 1 - 2019") 

title(main="Year 2 - 2020") 

title(main="Year 3 - 2021") 

 

 

###### Differential Abundance Analysis - DESEQ2 ###### 

## USING DESEQ2 (following lashlock github tutorial) 

library(DESeq2) 

 

##Differences between years 

#load in data WITHOUT rownames 

years <- read.csv("feature_Y123_0.01per.csv") 

met <- read.csv("Metadata-Diversity_BATCH.csv") 

#turning Year into a factor (since it may be read as a number) 

met$Year <- as.factor(met$Year) 

 

##Constructing Deseq2 object from data frame 

dds <- DESeqDataSetFromMatrix(countData=years,  

                              colData=met,  

                              design=~Year, tidy = TRUE) 

#Design specifies how the counts from each gene depend on our variables in the metadata 

#For this dataset the factor we care about is the Zone 

#tidy=TRUE argument = tells DESeq2 to output the results table with row names as a first #column called 'row. 

 

 

#let's see what this object looks like 

dds 

# class: DESeqDataSet  

# dim: 8340 541  

# metadata(1): version 

# assays(1): counts 

# rownames(8340): 0885965c051f3034c0e28043193bc5d2 51e00e866016fba8a19581249b811ec4 ... 

# f9fe4768ad3ef514b97950516e4af5b2 fe2896a859ec05fd0b600b2f633a3bc7 

# rowData names(0): 

#   colnames(541): KISSR0.0_3_19 L001_3_19 ... S77_10_21 S79_10_21 

# colData names(43): Sample Month ... J inv.D 

 

 

##Running the DESeq function 

dds <- DESeq(dds) 

#Error in estimateSizeFactorsForMatrix(counts(object),locfunc =  

#locfunc,: every gene contains at least one zero, cannot compute log geometric 

#means -> got this error so going to add a pseudocount of 1 to eliminate zeroes 

#         (may add bias to the data according to vegan HELP) 

 

##Adding pseudocount of 1 to feature table 

#looking at the structure of the data frame 

str(years) 

#first column is a character so don't include in the transformation 

 

#Adding 1 excluding the first column (ASV column) 

years[-1] <- years[-1] + 1 
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##Retrying the constructing DESeq object and running the DESeq function 

dds <- DESeqDataSetFromMatrix(countData=years,  

                              colData=met,  

                              design=~Year, tidy = TRUE) 

dds <- DESeq(dds) 

 

##What just happen? 

#estimateSizeFactors 

#This calculates the relative library depth of each sample  

 

#estimateDispersions 

#estimates the dispersion of counts for each gene  

 

#nbinomWaldTest 

#calculates the significance of coefficients in a Negative Binomial GLM using the size and dispersion outputs 

 

 

##Looking at the results table 

res31 <- results(dds) 

res31 #looking at the results table 

# log2 fold change (MLE): Year 3 vs 1  

# Wald test p-value: Year 3 vs 1  

# DataFrame with 8340 rows and 6 columns 

#                                   baseMean log2FoldChange     lfcSE      stat     pvalue      padj 

#                                    <numeric>      <numeric> <numeric> <numeric>  <numeric> <numeric> 

# 0885965c051f3034c0e28043193bc5d2   1.17377      0.2149733  0.152042  1.413911  0.1573881        NA 

# 51e00e866016fba8a19581249b811ec4   1.14815      0.0699605  0.157170  0.445127  0.6562281        NA 

# dfd3874c0e70ae177e8cdc4fb6961e7d   1.22257      0.0762662  0.152455  0.500255  0.6168956 0.7984313 

# ac879ef0bc703ee2637bc55f0ef97afc   1.24454      0.3709705  0.155215  2.390037  0.0168467 0.0805026 

# 41714fa1a258e8098d51d03a1e1b3304   1.20327     -0.3581498  0.149734 -2.391912  0.0167608 0.0802964 

 

 

##NOTE: If there are more than 2 levels for the variable – as is the case 

##for Year w/ 3 levels – results will extract the results table for a comparison  

##of the last level over the first level (so year 3 vs year 1) 

 

 

##Other comparisons 

res23 <- results(dds, contrast = c("Year", "3", "2") ) 

res23 

# log2 fold change (MLE): Year 3 vs 2  

# Wald test p-value: Year 3 vs 2  

# DataFrame with 8340 rows and 6 columns 

#                                   baseMean log2FoldChange     lfcSE      stat      pvalue        padj 

#                                   <numeric>      <numeric> <numeric> <numeric>   <numeric>   <numeric> 

# 0885965c051f3034c0e28043193bc5d2   1.17377      0.2169855  0.140908  1.539912   0.1235819          NA 

# 51e00e866016fba8a19581249b811ec4   1.14815     -0.0866411  0.142640 -0.607409   0.5435795          NA 

# dfd3874c0e70ae177e8cdc4fb6961e7d   1.22257     -0.0207447  0.139635 -0.148564   0.8818978   0.9376288 

# ac879ef0bc703ee2637bc55f0ef97afc   1.24454      0.3451806  0.142798  2.417259   0.0156379   0.0690231 

# 41714fa1a258e8098d51d03a1e1b3304   1.20327     -0.0463689  0.146971 -0.315496   0.7523851          NA 

 

res12 <- results(dds, contrast = c("Year", "1", "2") ) 

res12  

# log2 fold change (MLE): Year 1 vs 2  

# Wald test p-value: Year 1 vs 2  

# DataFrame with 8340 rows and 6 columns 

#                                   baseMean log2FoldChange     lfcSE       stat    pvalue      padj 

#                                   <numeric>      <numeric> <numeric>  <numeric> <numeric> <numeric> 

# 0885965c051f3034c0e28043193bc5d2   1.17377     0.00201214  0.150700  0.0133519 0.9893470        NA 

# 51e00e866016fba8a19581249b811ec4   1.14815    -0.15660154  0.149012 -1.0509325 0.2932896        NA 

# dfd3874c0e70ae177e8cdc4fb6961e7d   1.22257    -0.09701090  0.145892 -0.6649517 0.5060814  0.726901 

# ac879ef0bc703ee2637bc55f0ef97afc   1.24454    -0.02578994  0.155971 -0.1653507 0.8686680  0.941353 

# 41714fa1a258e8098d51d03a1e1b3304   1.20327     0.31178087  0.141655  2.2009921 0.0277366  0.116155 

 

##Saving all comparisons as CSVs 

write.csv(res31, "DESEQ-Y13_results.csv") 

write.csv(res23, "DESEQ-Y23_results.csv") 

write.csv(res12, "DESEQ-Y12_results.csv") 

 

 

#Visualizing using Volcano plots 

##Volcano Plot 

par(mfrow=c(1,3)) 

#Year 3 vs Year 1 

# Make a basic volcano plot 
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with(res31, plot(log2FoldChange, -log10(pvalue), pch=20, main="Year 3 vs. Year 1", xlim=c(-2,2))) 

# Add colored points: red = padj<0.05 AND log2FC >1, black = pdj>0.05 

with(subset(res31, padj<.05 & abs(log2FoldChange)>1), points(log2FoldChange, -log10(pvalue), pch=20, col="red")) 

with(subset(res31, padj>.05), points(log2FoldChange, -log10(pvalue), pch=20, col="black")) 

 

#Year 3 vs Year 2 

# Make a basic volcano plot 

with(res23, plot(log2FoldChange, -log10(pvalue), pch=20, main="Year 3 vs. Year 2", xlim=c(-3,3))) 

# Add colored points: red = padj<0.05 AND log2FC >1, black = pdj>0.05 

with(subset(res23, padj<.05 & abs(log2FoldChange)>1), points(log2FoldChange, -log10(pvalue), pch=20, col="red")) 

with(subset(res23, padj>.05), points(log2FoldChange, -log10(pvalue), pch=20, col="black")) 

 

#Year 1 vs Year 2 

# Make a basic volcano plot 

with(res12, plot(log2FoldChange, -log10(pvalue), pch=20, main="Year 1 vs. Year 2", xlim=c(-3,3))) 

# Add colored points: red = padj<0.05 AND log2FC >1, black = pdj>0.05 

with(subset(res12, padj<.05 & abs(log2FoldChange)>1), points(log2FoldChange, -log10(pvalue), pch=20, col="red")) 

with(subset(res12, padj>.05), points(log2FoldChange, -log10(pvalue), pch=20, col="black")) 

 

##PCA 

#First we need to transform the raw count data 

#vst function will perform variance stabilizing transformation 

par(mfrow=c(1,1)) 

vsdata <- vst(dds, blind=FALSE) #using the DESEQ2 plotPCA function we can  

#look at how our samples group by treatment 

plotPCA(vsdata, intgroup="Year")+ 

  labs(title = "Years 1-3 (2019-2021)")+  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5))  

 

 

#### Differences in Zone for EACH YEAR 

#loading in data 

Y1 <- dat.01per[grep("_19$", rownames(dat.01per)),] 

Y2 <- dat.01per[grep("_20$", rownames(dat.01per)),] 

Y3 <- dat.01per[grep("_21$", rownames(dat.01per)),] 

write.csv(t(Y1), "feature_Y1_0.01per.csv") 

write.csv(t(Y2), "feature_Y2_0.01per.csv") 

write.csv(t(Y3), "feature_Y3_0.01per.csv") 

 

 

##Differences found in Zone of Year 1 

Y1 <- read.csv("feature_Y1_0.01per.csv") 

met1 <- read.csv("Metadata_BATCH_Y1.csv") 

 

##Adding pseudocount of 1 

Y1[-1] <- Y1[-1] + 1 

 

##Constructing Deseq2 object and running DESeq function 

dds <- DESeqDataSetFromMatrix(countData=Y1,  

                              colData=met1,  

                              design=~Zone, tidy = TRUE) 

dds <- DESeq(dds) 

 

##Retrieving results tables for each comparison 

resIP <- results(dds, contrast = c("Zone", "Inflow", "Pelagic") ) 

resIN <- results(dds, contrast = c("Zone", "Inflow", "Nearshore") ) 

resNP <- results(dds, contrast = c("Zone", "Nearshore", "Pelagic") ) 

resNS <- results(dds, contrast = c("Zone", "Nearshore", "S79") ) 

resPS <- results(dds, contrast = c("Zone", "Pelagic", "S79") ) 

resSI <- results(dds) 

 

##Saving all comparisons as CSVs 

write.csv(resIP, "DESEQ-Y1IP_results.csv") 

write.csv(resIN, "DESEQ-Y1IN_results.csv") 

write.csv(resNP, "DESEQ-Y1NP_results.csv") 

write.csv(resNS, "DESEQ-Y1NS_results.csv") 

write.csv(resPS, "DESEQ-Y1PS_results.csv") 

write.csv(resSI, "DESEQ-Y1SI_results.csv") 

 

##Volcano Plots  

par(mfrow=c(2,3)) 

#Inflow vs Pelagic 

with(resIP, plot(log2FoldChange, -log10(pvalue), pch=20, main="Inflow vs. Pelagic", xlim=c(-6,6))) 

with(subset(resIP, padj<.05 & abs(log2FoldChange)>1), points(log2FoldChange, -log10(pvalue), pch=20, col="red")) 

with(subset(resIP, padj>.05), points(log2FoldChange, -log10(pvalue), pch=20, col="black")) 
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#Inflow vs Nearshore 

with(resIN, plot(log2FoldChange, -log10(pvalue), pch=20, main="Inflow vs. Nearshore", xlim=c(-6,6))) 

with(subset(resIN, padj<.05 & abs(log2FoldChange)>1), points(log2FoldChange, -log10(pvalue), pch=20, col="red")) 

with(subset(resIN, padj>.05), points(log2FoldChange, -log10(pvalue), pch=20, col="black")) 

 

#Nearshore vs. Pelagic 

with(resNP, plot(log2FoldChange, -log10(pvalue), pch=20, main="Nearshore vs. Pelagic", xlim=c(-4,4))) 

with(subset(resNP, padj<.05 & abs(log2FoldChange)>1), points(log2FoldChange, -log10(pvalue), pch=20, col="red")) 

with(subset(resNP, padj>.05), points(log2FoldChange, -log10(pvalue), pch=20, col="black")) 

 

#Nearshore vs. S79 

with(resNS, plot(log2FoldChange, -log10(pvalue), pch=20, main="Nearshore vs. S79", xlim=c(-8,8))) 

with(subset(resNS, padj<.05 & abs(log2FoldChange)>1), points(log2FoldChange, -log10(pvalue), pch=20, col="red")) 

with(subset(resNS, padj>.05), points(log2FoldChange, -log10(pvalue), pch=20, col="black")) 

 

#Pelagic vs. S79 

with(resPS, plot(log2FoldChange, -log10(pvalue), pch=20, main="Pelagic vs. S79", xlim=c(-8,8))) 

with(subset(resPS, padj<.05 & abs(log2FoldChange)>1), points(log2FoldChange, -log10(pvalue), pch=20, col="red")) 

with(subset(resPS, padj>.05), points(log2FoldChange, -log10(pvalue), pch=20, col="black")) 

 

#S79 vs Inflow 

with(resSI, plot(log2FoldChange, -log10(pvalue), pch=20, main="S79 vs. Inflow", xlim=c(-7,7))) 

with(subset(resSI, padj<.05 & abs(log2FoldChange)>1), points(log2FoldChange, -log10(pvalue), pch=20, col="red")) 

with(subset(resSI, padj>.05), points(log2FoldChange, -log10(pvalue), pch=20, col="black")) 

 

##PCA 

par(mfrow=c(1,1)) 

vsdata <- vst(dds, blind=FALSE) 

plotPCA(vsdata, intgroup="Zone")+ 

  labs(title = "Year 1 - Ecological zones")+  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5))  

 

##Year 2 Zone (No significant differences found but doing it anyway) 

Y2 <- read.csv("feature_Y2_0.01per.csv") 

met2 <- read.csv("Metadata_BATCH_Y2.csv") 

 

##Adding pseudocount of 1 

Y2[-1] <- Y2[-1] + 1 

 

##Constructing Deseq2 object and running DESeq function 

dds <- DESeqDataSetFromMatrix(countData=Y2,  

                              colData=met2,  

                              design=~Zone, tidy = TRUE) 

dds <- DESeq(dds) 

 

##Retrieving results tables for each comparison 

resIP <- results(dds, contrast = c("Zone", "Inflow", "Pelagic") ) 

resIN <- results(dds, contrast = c("Zone", "Inflow", "Nearshore") ) 

resNP <- results(dds, contrast = c("Zone", "Nearshore", "Pelagic") ) 

resNS <- results(dds, contrast = c("Zone", "Nearshore", "S79") ) 

resPS <- results(dds, contrast = c("Zone", "Pelagic", "S79") ) 

resSI <- results(dds) 

 

##Saving all comparisons as CSVs 

write.csv(resIP, "DESEQ-Y2IP_results.csv") 

write.csv(resIN, "DESEQ-Y2IN_results.csv") 

write.csv(resNP, "DESEQ-Y2NP_results.csv") 

write.csv(resNS, "DESEQ-Y2NS_results.csv") 

write.csv(resPS, "DESEQ-Y2PS_results.csv") 

write.csv(resSI, "DESEQ-Y2SI_results.csv") 

 

##Volcano Plots  

par(mfrow=c(2,3)) 

#Inflow vs Pelagic 

with(resIP, plot(log2FoldChange, -log10(pvalue), pch=20, main="Inflow vs. Pelagic", xlim=c(-5,5))) 

with(subset(resIP, padj<.05 & abs(log2FoldChange)>1), points(log2FoldChange, -log10(pvalue), pch=20, col="red")) 

with(subset(resIP, padj>.05), points(log2FoldChange, -log10(pvalue), pch=20, col="black")) 

 

#Inflow vs Nearshore 

with(resIN, plot(log2FoldChange, -log10(pvalue), pch=20, main="Inflow vs. Nearshore", xlim=c(-6,6))) 

with(subset(resIN, padj<.05 & abs(log2FoldChange)>1), points(log2FoldChange, -log10(pvalue), pch=20, col="red")) 

with(subset(resIN, padj>.05), points(log2FoldChange, -log10(pvalue), pch=20, col="black")) 

 

#Nearshore vs. Pelagic 
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with(resNP, plot(log2FoldChange, -log10(pvalue), pch=20, main="Nearshore vs. Pelagic", xlim=c(-6,6))) 

with(subset(resNP, padj<.05 & abs(log2FoldChange)>1), points(log2FoldChange, -log10(pvalue), pch=20, col="red")) 

with(subset(resNP, padj>.05), points(log2FoldChange, -log10(pvalue), pch=20, col="black")) 

 

#Nearshore vs. S79 

with(resNS, plot(log2FoldChange, -log10(pvalue), pch=20, main="Nearshore vs. S79", xlim=c(-7,7))) 

with(subset(resNS, padj<.05 & abs(log2FoldChange)>1), points(log2FoldChange, -log10(pvalue), pch=20, col="red")) 

with(subset(resNS, padj>.05), points(log2FoldChange, -log10(pvalue), pch=20, col="black")) 

 

#Pelagic vs. S79 

with(resPS, plot(log2FoldChange, -log10(pvalue), pch=20, main="Pelagic vs. S79", xlim=c(-7,7))) 

with(subset(resPS, padj<.05 & abs(log2FoldChange)>1), points(log2FoldChange, -log10(pvalue), pch=20, col="red")) 

with(subset(resPS, padj>.05), points(log2FoldChange, -log10(pvalue), pch=20, col="black")) 

 

#S79 vs Inflow 

with(resSI, plot(log2FoldChange, -log10(pvalue), pch=20, main="S79 vs. Inflow", xlim=c(-7,7))) 

with(subset(resSI, padj<.05 & abs(log2FoldChange)>1), points(log2FoldChange, -log10(pvalue), pch=20, col="red")) 

with(subset(resSI, padj>.05), points(log2FoldChange, -log10(pvalue), pch=20, col="black")) 

 

##PCA 

par(mfrow=c(1,1)) 

vsdata <- vst(dds, blind=FALSE) 

plotPCA(vsdata, intgroup="Zone")+ 

  labs(title = "Year 2 - Ecological zones")+  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5))  

 

##Differences found in Zone of Year 3 

Y3 <- read.csv("feature_Y3_0.01per.csv") 

met3 <- read.csv("Metadata_BATCH_Y3.csv") 

 

##Adding pseudocount of 1 

Y3[-1] <- Y3[-1] + 1 

 

##Constructing Deseq2 object and running DESeq function 

dds <- DESeqDataSetFromMatrix(countData=Y3,  

                              colData=met3,  

                              design=~Zone, tidy = TRUE) 

dds <- DESeq(dds) 

 

##Retrieving results tables for each comparison 

resIP <- results(dds, contrast = c("Zone", "Inflow", "Pelagic") ) 

resIN <- results(dds, contrast = c("Zone", "Inflow", "Nearshore") ) 

resNP <- results(dds, contrast = c("Zone", "Nearshore", "Pelagic") ) 

resNS <- results(dds, contrast = c("Zone", "Nearshore", "S79") ) 

resPS <- results(dds, contrast = c("Zone", "Pelagic", "S79") ) 

resSI <- results(dds) 

 

##Saving all comparisons as CSVs 

write.csv(resIP, "DESEQ-Y3IP_results.csv") 

write.csv(resIN, "DESEQ-Y3IN_results.csv") 

write.csv(resNP, "DESEQ-Y3NP_results.csv") 

write.csv(resNS, "DESEQ-Y3NS_results.csv") 

write.csv(resPS, "DESEQ-Y3PS_results.csv") 

write.csv(resSI, "DESEQ-Y3SI_results.csv") 

 

##Volcano Plots  

par(mfrow=c(2,3)) 

#Inflow vs Pelagic 

with(resIP, plot(log2FoldChange, -log10(pvalue), pch=20, main="Inflow vs. Pelagic", xlim=c(-5,5))) 

with(subset(resIP, padj<.05 & abs(log2FoldChange)>1), points(log2FoldChange, -log10(pvalue), pch=20, col="red")) 

with(subset(resIP, padj>.05), points(log2FoldChange, -log10(pvalue), pch=20, col="black")) 

 

#Inflow vs Nearshore 

with(resIN, plot(log2FoldChange, -log10(pvalue), pch=20, main="Inflow vs. Nearshore", xlim=c(-6,6))) 

with(subset(resIN, padj<.05 & abs(log2FoldChange)>1), points(log2FoldChange, -log10(pvalue), pch=20, col="red")) 

with(subset(resIN, padj>.05), points(log2FoldChange, -log10(pvalue), pch=20, col="black")) 

 

#Nearshore vs. Pelagic 

with(resNP, plot(log2FoldChange, -log10(pvalue), pch=20, main="Nearshore vs. Pelagic", xlim=c(-7,7))) 

with(subset(resNP, padj<.05 & abs(log2FoldChange)>1), points(log2FoldChange, -log10(pvalue), pch=20, col="red")) 

with(subset(resNP, padj>.05), points(log2FoldChange, -log10(pvalue), pch=20, col="black")) 

 

#Nearshore vs. S79 

with(resNS, plot(log2FoldChange, -log10(pvalue), pch=20, main="Nearshore vs. S79", xlim=c(-6,6))) 

with(subset(resNS, padj<.05 & abs(log2FoldChange)>1), points(log2FoldChange, -log10(pvalue), pch=20, col="red")) 
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with(subset(resNS, padj>.05), points(log2FoldChange, -log10(pvalue), pch=20, col="black")) 

 

#Pelagic vs. S79 

with(resPS, plot(log2FoldChange, -log10(pvalue), pch=20, main="Pelagic vs. S79", xlim=c(-7,7))) 

with(subset(resPS, padj<.05 & abs(log2FoldChange)>1), points(log2FoldChange, -log10(pvalue), pch=20, col="red")) 

with(subset(resPS, padj>.05), points(log2FoldChange, -log10(pvalue), pch=20, col="black")) 

 

#S79 vs Inflow 

with(resSI, plot(log2FoldChange, -log10(pvalue), pch=20, main="S79 vs. Inflow", xlim=c(-7,7))) 

with(subset(resSI, padj<.05 & abs(log2FoldChange)>1), points(log2FoldChange, -log10(pvalue), pch=20, col="red")) 

with(subset(resSI, padj>.05), points(log2FoldChange, -log10(pvalue), pch=20, col="black")) 

 

##PCA 

par(mfrow=c(1,1)) 

vsdata <- vst(dds, blind=FALSE) 

plotPCA(vsdata, intgroup="Zone")+ 

  labs(title = "Year 3 - Ecological zones")+  

  theme(plot.title.position = "panel")+ 

  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5))  

 

###### Species Co-occurrence (Correlations) ###### 

library(Hmisc)  

 

#All Years 

x<-read.csv("feature_Y123_0.01per.csv", header=TRUE, row.names=1) 

x<-t(x) 

y<-rcorr(as.matrix(x, type = c("pearson")))  ## or spearman (pearson may be best here) 

yR<-y$r  

yP<-y$P  

 

flattenCorrMatrix <- function(cormat, pmat) { 

  ut <- upper.tri(cormat) 

  data.frame( 

    row = rownames(cormat)[row(cormat)[ut]], 

    column = rownames(cormat)[col(cormat)[ut]], 

    corr =(cormat)[ut], 

    p = pmat[ut] 

  ) 

} 

corr_data<-flattenCorrMatrix(y$r, y$P)   

 

#Note: 

# Sort in R or in excel... may want to only keep significant correlations that are  

# to Microcystis specifically to keep it simple. then retain R2 values that are the  

# highest (>0.9 or <-0.9 -- you can change that if you want.) <- cut off will have  

# to be 0.3 since that's the highest  

 

# Use these values to create network in Cytoscape to visualize the correlations of taxa  

# to Microcystis.  

 

#Excluding any non-significant correlations (including zeros) and exporting 

corr_data <- corr_data[order(corr_data$p),] #sort from smallest to largest 

corr_sig <- corr_data[corr_data$p < 0.05, ] #Subsetting data to ONLY include significant correlations 

write.csv(corr_sig, "LakeOCorrelationsSigONLY.csv") 

 

#Created network in Cytoscape, merging nodes with taxonomy 

node <- read.csv("LakeOCorrelations_Nodes.csv") 

tax <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE) 

merged <- merge(node,tax, by="FeatureID") 

write.csv(merged,"LakeOCorrelations_NodeTaxa.csv") 

#Microcystis with corr = 0.7 and up, merging with taxonomy 

node <- read.csv("Microcystis Network-0.7+_Node.csv") 

tax <- read.csv("taxonomy_Y123_edited&cleaned.csv", header = TRUE) 

merged <- merge(node,tax, by="FeatureID") 

write.csv(merged,"LakeOCorrelations_Microcystis0.7NodeTaxa.csv") 

 

 

#### #### 
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