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Mirror Principle for Flag Manifolds

Vehbi Emrah Paksoy

Abstract

In this paper, using mirror principle developped by Lian, Liu and Yau [8, 9,

10, 11, 12, 13] we obtained the A and B series for the equivariant tangent bundles

over homogenous spaces using Chern polynomial. This is necessary to obtain re-

lated cohomology valued series for given arbitrary vector bundle and multiplicative

characteristic class. Moreover, this can be used as a valuable testing ground for

the theories which associates quantum cohomologies and J functions of non-abelian

quotient to abelian quotients via quantization.∗

1. Introduction

It is an interesting question to obtain A series for equivarant tangent bundles and
Chern Polynomials since this will be necessary to obtain A series for a general vector
bundle and multiplicative characteristic class. Now assume T is an algebraic torus and X

be a T-manifold with a T equivariant embedding in Y := Pm1 × · · · × Pml such that pull
backs of hyperplane classes H = (H1, . . . , Hl) generate H2(X,Q). We will use the same
notations for equivariant classes and their restriction to X. Let Ǩ ⊂ H2(X) be the set
of points in H2(X,Z)free in the dual of the closure of the Kähler cone of X. Ǩ is a semi-
group and defines a partial ordering � on H2(X,Q)free. Explicitly r � d iff d− r ∈ Ǩ.

If {Ȟj} is the dual basis for {Hi} in H2(X), r � d ⇔ d − r = d1Ȟ1 + · · ·+ dlȞl where
di, i = 1, . . . , l are nonnegative integers. Let X = F l(n) be the complete flag variety. The
first Chow ring A1(X) ∼= H2(X,Z) is generated by Si = c1(Lλi), i = 1, . . . , n − 1 and
λi is the dominant weight of torus action with λi = (1, . . . , 1, 0, . . . , 0) first i terms are

∗I would like to thank Bong H. Lian for his precious helps and guideance.
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1’s. Here, Lλi is the line bundle over X, associated the 1 dimensional representation with
respect to weight λi. For more on homogenous manifolds, one can consult [1, 2, 3, 14, 15].

2. Basics of Mirror Principle

We will define stable pointed map moduli for a general projective T space X, where
T is an algebraic torus acting on X. Let M0,n(d,X) be the degree d ∈ A1(X) arithmetic
genus 0, n−pointed stable map moduli stack with target X(see [4], [6]). Following [10], we
will not use the bar notation for compactification. A typical element can be represented
by (C, f, x1, . . . , xn). This moduli space has a ”virtual” fundamental class [M0.n(d,X)]
of dimension dimX + 〈c1(X), d〉+n−3 similar to the fundamental class in topology. For
more details for constructions, see [7].

Let V be a vector bundle on X. It induces a vector bundle Vd, d ∈ A1(X) on
M0,n(d,X) whose fiber at (C, f, x1, . . . , xn) is given by H0(C, f∗V ) ⊕H1(C, f∗V ). An-
other important construction is the graph space Md(X) for a projective T manifold X.
Md(X) is the moduli stack of degree (1, d) arithmetic genus 0, 0-pointed stable maps
with target P1 ×X. The standard action of C∗ on P1, together with the action of T on
X, induces an action of G = T × C∗ on Md(X). We will denote G-equivariant virtual
class by [Md(X)] ∈ AG

∗ (Md(X)), which has dimension 〈c1(X), d〉+ dimX.

C∗ fixed points of Md(X) plays an important role and will be described as

Fr := M0,1(r, X)×X M0,1(d− r, X).

For any (C1, f1, x1) × (C2, f2, x2) ∈ Fr we can obtain an element in Md(X) by gluing
C1 and C2 to P1 at 0 and ∞ respectively. New curve C will be mapped to P1 × X as
follows: Map P1 identically P1 and contract C1, C2 to 0,∞. Map Ci by fi and contract
P1 to the point f1(x1) = f2(x2). This defines an element (C, f) ∈Md(X). Observe that
F0 = M0,1(d,X) = Fd but they will be imbedded in Md(X) in two different ways. For
F0, we glue the marked point to 0 and glue the marked point to ∞ for Fd in P1. We
will denote inclusion maps ir : Fr ↪→ Md(X). Note that each Fr has an evaluation map
eXr : Fr → X sending each point to the common image of the marked points in X. Here
are some other notations which will be used.

• Let Lr be the universal line bundle on M0,1(r, X) which is the tangent line at the
marked point.
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• We have natural forgetting and projection maps

ρ : M0,1(d,X)→M0,0(d,X), ν : Md(X)→ M0,0(d,X) ,(see [8], [9]).

with the commutative diagram

F0 = M0,1(d,X)
i0 ��

ρ

���������������
Md(X)

ν

��
M0,0(d,X)

. (1)

• Let α be the weight of the standard C∗ action on P1. Denote by AT
∗ (X)(α) the

algebra obtained from the polynomial algebra AT
∗(X)[α] by localizing with respect

to all invertible elements. For an element β ∈ AT
∗ (X)(α) we let β be the class

obtained by α �→ −α in β. Introduce formal variables ζ = (ζ1, . . . , ζm) such that
ζi = −ζi, ∀i. Let R = C[T ∗][α], where T ∗ is the dual of the Lie algebra of T. When
we consider a multiplicative class like the Chern polynomial cT(x) =

∑r
i=0 cix

i, we
extend the ground field to C(x).

• For each d let ϕ : Md(X) → Wd be G-equivariant map into smooth manifold
(or orbifold) Wd such that C∗ fixed point components in Wd are G- invariant
submanifolds Yr satisfying ϕ−1(Yr) = Fr. Construction of such maps and spaces
are given in [8, 9]. In particular, for a smooth manifold X let

τ : X → Pm1 × · · · × Pml := Y

be an equivariant projective embedding inducing an isomorphism A1(X) � A1(Y ).
Then we have a G- equivariant embedding Md(X)→ Md(Y ) and we can construct
G- equivariant map Md(Y ) → Wd := Nd1 × · · · × Ndl with Ndi � P(mi+1)di+mi

which are linear sigma models for Pmi ( see [8]). Therefore we obtain the map

ϕ : Md(X)→Wd,

satisfying the above condition. Let κa be the equivariant hyperplane class in Wd

which is pulled back from Nda ; and denote the equivariant hyperplane class on Y by
Ha, also pulled back from Pma to Y . Let Yr , 0 � r � d be C∗ fixed point components
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of Wd which are G-equivariantly isomorphic to Y = Y0 and jr : Yr ↪→ Wd be the
inclusion map. We have j∗rκa = Ha + 〈r, Ha〉α.
Consider the commutative diagram

Fr

e

��

ir �� Md(X)

ϕ

��
Yr

jr �� Wd.

The following proposition helps us to carry the computations to Wd from Md(X)
which is easier to deal with.

Proposition 2.1 ([10], Lemma 3.2) Given ω ∈ A∗
G
(Md(X)) we have the following

equality on Yr � Y for 0 � r � d.

j∗rϕ∗(ω ∩ [Md(X)])
eG(Yr/Wd)

= e∗
( i∗r ∩ [Fr]vir

eG(Fr/Md(X))

)
.

✷

For d = (d1, . . . , dl), r = (r1 . . . , rl) � d we have

eG(Yr/Wd) =
l∏
a=1

ma∏
i=0

da∏
k=0
k �=ra

(Ha − ua,i − (k − ra)α),

where ui,a are T weights of Pma .

Note that a class φ ∈ H2
T
(X) has a G-equivariant extension φ̂ ∈ H2

G
(Wd) determined by

j∗r φ̂ = φ+ 〈φ, r〉α by localization theorem. We denote by 〈H2
T
(X)〉 the ring generated by

H2
T
(X) and Rd the ring generated by their lifts. So we have the following definition from

[10].

Definition 2.2 Let Γ ∈ H∗
T
(Y ). A list P : Pd ∈ H∗

G
(Wd), d � 0 is an Γ- Euler data on

if

Γ · j∗rPd = j∗0Pr · j∗0Pd−r.

64



PAKSOY

An immediate observation is when we apply τ∗ we get

τ∗Γ · τ∗j∗rPd = τ∗j∗0Pr · τ∗j∗0Pd−r

There is an interesting construction for linear sigma models for a toric variety X( see
[9, 10] ).

Whenever t = (t1, . . . , tl) formal variable we let d · t =
∑

diti,

κ · t = ∑
κata, H · t = ∑

Hata.
Fix a T equivariant multiplicative class bT and an equivariant vector bundle V =

V + ⊕ V − where V ± are convex and concave bundles on X. We will assume Ω = bT(V
+)

bT(V−)

is a well defined class on X. For such a vector bundle we have

Vd →M0,0(d,X), Ud →Md(X)

where Ud = ν∗Vd. Define the linear maps

ivirr : A∗
G(Md(X)) −→ AT

∗ (X)(α)

ivirr ω := (eXr )∗(
i∗rω ∩ [Fr]

eG(Fr/Md(X))
).

For a given concavex bundle V on X and bT, we put

AV,bT(t) = A(t) := e−H·t/α∑
d

Ade
d·t

Ad := ivir0 ν∗bT (Vd),

where A0 = Ω and the sum is taken over all d = (d1, . . . , dl) ∈ Zl+. We call A(t) the A

series associated to V and bT. In particular, if we specialize bT to the unit class, we have

I(t) = e−H·t/α∑
d

Ide
d·t, Id = ivir0 1d. (2)

Here 1d is the unit class in Md(X).

Definition 2.3 Let Ω ∈ A∗
T
(X) be invertible. We call a power series of the form

B(t) := e−H·t/α∑
d

Bde
d·t, Bd ∈ AT

∗ (X)(α)
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an Ω - Euler series if

∑
0�r�d

∫
X

Ω−1 ∩Br ·Bd−re(H+rα)·ζ ∈ R[[ζ]]

for all d.

Proposition 2.4 AV,bT(t) = A(t) is an Euler series

Proof. Cf. [10], corr.3.9. ✷

Theorem 2.5 ([10], Thm 3.11) Let P : Pd be an ΓEuler data. Then

B(t) = e−H·t/α∑
d

τ∗j∗0Pd ∩ Ide
d·t

is an τ∗Γ Euler series. ✷

Recall that we have a commutative diagram of maps which read ν ◦ i0 = ρ. So we can
write

Ad = (e0)X∗ (
ρ∗bT(Vd) ∩ [M0,1(d,X)]

eG(F0/Md(X))
).

We can also compute eG(Fr/Md(X)) explicitely for 0 � r � d. Although the G equiv-
ariant Euler class of the normal bundle of F0 in Md(X), that is NF0/Md(X), will be used
mostly, following lemma gives such a class for every C∗ -fixed point component in Md(X).

Lemma 2.6 ([8],[10]) For r �= 0, d

eG(Fr/Md(X)) = α(α+ p∗0c1(Lr))α(α− p∗∞c1(Ld−r))

For r=0,d

eG(F0/Md(X)) = α(α− c1(Ld)), eG(Fd/Md(X)) = α(α+ c1(Ld))

where p0 : Fr →M0,1(r, X) and p∞ : Fr →M0,1(d− r, X) are projections. ✷
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Corollary 2.7 If we denote the degree of α in a class ω ∈ AT
∗ (X)(α) by degαω then

degαAd ≤ −2.

Proof. We have

Ad = (e0)X∗ (
ρ∗bT(Vd) ∩ [M0,1(d,X)]

eG(F0/Md(X))
) = (e0)X∗ (

ρ∗bT(Vd) ∩ [M0,1(d,X)]
α(α− c1(Ld))

)

by previous lemma. So degαAd ≤ −2 ✷

In particular, when Id is concerned, we have a better estimate for α degree.

Proposition 2.8 ∀d, degαId ≤ min(−2,−〈c1(X), d〉).
Proof. If 〈c1(X), d〉 ≤ 2, then previous corollary gives the result. So assume
〈c1(X), d〉 > 2.Recall that the class [M0,1(d,X)] is of dimension s = exp.dimM0,1(d,X) =
〈c1(X), d〉 + dimX − 2. Set c = c1(Ld) then ck ∩ [M0,1(d,X)] is of dimension s − k and
so e∗(ck ∩ [M0,1(d,X)]) ∈ AT

s−k(X). But this group is zero unless s− k ≤ dimX hence
k ≥ s− dimX = 〈c1(X), d〉 − 2. By the lemma , we have

Id =
∑

k≥〈c1(X),d〉−2

1
αk+2

e∗(ck ∩ [M0,1(d,X)])

hence the proposition follows. ✷

Most of the time, computing A(t) directly from the definition is quite difficult. Never-
theless, provided that some conditions are satisfied it is possible to compute the A-series
up to some special operation called ”Mirror Transformation”; cf. [8],[10]. The main idea
of the process is to consider another special series, which we call B series, and if some
analytic conditions are satisfied we can get the A series from this B series by mirror
transform. We will now give more explanations.

Definition 2.9 A projective T manifold X is called a balloon manifold if the fixed point
set XT is finite and if for p ∈ XT the weights of the isotropic representation TpX are
pairwise linearly independent. The second condition is known as the GKM condition.[5]

We will assume that the balloon manifold has the property that if p, q ∈ XT such that
i∗pc = i∗qc, ∀c ∈ A1

T
(X) then p = q. If two fixed points p, q in X are connected by a T
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invariant 2-sphere we call the sphere a balloon and denote it by pq. Balloon manifolds
are examined in more detail in [9]

Definition 2.10 Two Euler series A,B are linked if every balloon pq in X and every
d = δ[pq] � 0 the function (Ad −Bd)|p ∈ C(T ∗)(α) is regular at α = λ/δ where λ is the
weight on the tangent line Tp(pq) ⊂ TpX.

Let B(t) := e−H·t/α∑
d τ

∗j∗0Pd ∩ Ide
d·t be an Ω = τ∗Γ- Euler series obtained from a

Γ-Euler data P : Pd. The following theorem is adapted from [10] (thm 4.5 and corrollary
4.6).

Theorem 2.11 Suppose that at α = λ/δ and F = (P1, fδ, 0) ∈ F0 we have i∗pτ
∗j∗0Pd =

i∗F ρ
∗bT(Vd) for all d = δ[pq]. Then B(t) is linked to AV,bT(t).
Now we state a theorem which relates two Euler series in the previous setting by

what we call a mirror transform. Assume B(t) = eH·t/α∑
d τ

∗j∗0Pd ∩ Ide
d·t where τ∗j∗0Pd

satisfies the assertion of the previous theorem. In addition assume for all d we have

τ∗j∗0Pd = Ωα〈c1(X),d〉(a+ (a
′
+ a

′′ ·H)α−1 + . . . .)

for some a, a
′
, a

′′ ∈ C(T ∗) depending on d. Note also that Id can be expanded as

Id = α−〈c1(X),d〉(b+ (b
′
+ b

′′ ·H)α−1 + . . . .)

for some b, b
′
, b

′′ ∈ C(T ∗) also depending on d. Then we have the following theorem

Theorem 2.12 Suppose AV,bT(t), B(t) are as in the previous theorem and the above as-
sumptions hold. Then there exist power series f ∈ R[[et1 , . . . , etm ]], g = (g1, . . . , gm), gj ∈
R[[et1 , . . . , etm ]] without constant terms such that

AV,bT(t+ g) = ef/αB(t).

Proof. see [10] . ✷

There is an explicit method to compute A(t) = AV,bT(t) in full generality on any
balloon manifold X for arbitrary V, bT. Computations are in terms of some T representa-
tions. Observe that by the previous theorems, it is useful to understand the structure of
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i∗F ρ
∗bT(Vd) and obtain an Euler series, satisfying the conditions specified in the previous

theorem, so we can compute A series up to mirror transformation. Now we will discuss
some part of the method given in [10] to compute A(t).

Recall that Vd → M0,1(d,X) is a vector bundle with fiber at (C, f, x) is given by
H0(C, f∗V )⊕H1(C, f∗V ). Then for a vector bundle V onX and F = (P1, fδ, 0), d = δ[pq]
we have a T representation

i∗F ρ
∗(Vd) = H0(C, f∗V ) ⊕H1(C, f∗V ),

which is the value of bT for a trivial bundle over a point. So the method uses the T

representations of related bundles on each balloon pq � P1

Let V be any T equivariant vector bundle on X and let

0 −→ VN −→ · · · −→ V1 −→ V −→ 0

be an equivariant resolution. Then by Euler-Poincaré Principal,

[H0(P1, f∗
δ V )]− [H1(P1, f∗

δ V )] =
∑
a

(−1)a+1([H0(P1 , f∗
δ Va)]− [H1(P1, f∗

δ Va)]).

Now, suppose each Va is a direct sum of T equivariant line bundles. Then each summand
L will contribute to [H0(P1, f∗

δ Va)]− [H1(P1, f∗
δ Va)] the representations

c1(L)|p − kλ/δ , k = 0, . . . , lδ or

c1(L)|p + kλ/δ , k = 1, . . . ,−lδ − 1,

depending on the sign of l = 〈c1, [pq]〉. For l ≥ 0, we get the first and for l < 0 we have
the second kind of contribution.

3. A- series for Fl(n)

Let X=F l(n) be a complete flag vaiety. A1(X) is generated by Si = c1(Lλi), i =
1, . . . , n− 1 and λi is the dominant weight λi = (1, . . . , 1︸ ︷︷ ︸

i

, 0, . . . , 0). Note that these are

Schubert polynomials. Let d = (d1, . . . , dn−1) be a class of a curve in the Kähler cone.

Since Kähler cone of X is generated by d =
∑n−1
i=1 diŠi where {Ši} forms a dual basis
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for {Si}. These are the Poincaré duals of the Schubert polynomials. Now consider

F l(n) τ−−−−→ Pm1 × · · · × Pmn−1 j0−−−−→ Wd := Nd1 × · · · ×Ndn−1 ,

where j0 is the imbedding of Pm1 × · · · × Pmn−1 as a C∗ fixed point component of
Wd; and for 0 � r � d, all fixed point components are T equivariantly isomorphic to
Pm1 × · · ·× Pmn−1 . τ is the Plucker embedding. Here Ndi � P(mi+1)di+mi and Wd is the
linear sigma model. Finally,mi =

(
n
i

)−1. Let Hi be the equivariant hyperplane classes in
Pm1×· · ·×Pmn−1 . Pull back of eachHi gives the corresponding Si. There exists G=C∗×T

-equivariant hyperplane classes κi in Wd with the property that j∗rκi = Hi+ 〈Hi, r〉α for
0 � r � d. By the pull back of τ ◦ j0, these κi are taken to Si. Again, we are using the
same notation for equivalent and ordinary cohomology. We will compute the A series of
F l(n) for T equivariant tangent bundle and Chern polynomial.

Lemma 3.1 Let [pq] be a class of balloon joining p, q. Then

〈ya, [pq]〉 =
∫

[pq]�P1
ya =




1 if i ≥ a

0 if a �= i, j

−1 if j = a,

where p = ω, q = ω(ij) ∈ Sn are permutations representing the fixed points and (ij) is a
transposition.

Proof. We know that (pq) � X
ω(ij)
ω � P1, Richardson variety and ya = c1(Lγa ), γa =

(0, . . . , 1︸ ︷︷ ︸
a

, 0, . . . , 0) is a weight of T. Then

〈ya, [pq]〉 = 〈c1(L∗
γi
), [pq]〉 = 〈c1(O(γa,i − γa,j)), [pq]〉 = γa,i − γa,j ,

where γa,i means the i-th entry of γa. So considering possibilities we obtain the lemma. ✷

Recall that in the equivariant Grothendieck group, we have

[TF l(n)] =
n∑
i=1

[U∗
n−1 ⊗ Sχi ]−

n−1∑
i=1

[U∗
i ⊗ Ui] +

n−2∑
i=1

[U∗
i ⊗ Ui+1]. (3)
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We know that Lχi = Ui/Ui−1, i = 1, . . . , n− 1. Of course we are using induced bundles
for T -action without changing the notation. Then we have

0 −→ U1 −→ U2 −→ U2/U1 −→ 0

short exact sequence. So in Grothendieck group [U2] = [Lχ1 ] + [Lχ2 ]. We can proceed

for i = 1, . . . , n − 1 and obtain [Ui] =
∑i
j=1[Lχj ]. Since the duality of vector bundles

yields an involution [V ] �→ [V ∗] in Grothendieck group. We have [U∗
i ] =

∑i
j=1[L

∗
χi
]. So

equation (3) can be decomposed further to be

[TF l(n)] =
n∑
i=1

n−1∑
a=1

[L∗
χa
⊗ Sχi ]−

n−1∑
i=1

∑
1≤a,b≤i

[L∗
χa
⊗ Lχb ] +

n−2∑
i=1

∑
1≤a≤i

1≤b≤i+1

[L∗
χa
⊗ Lχb ].

So we obtained a decomposition of T equivariant tangent bundle into line bundles
in Grothendieck group. Therefore given a balloon pq ∈ F l(n) and d = δ[pq] together
with F = (P1, fδ, 0) ∈ M0,1(F l(n), d) we have for V = TF l(n) the representation
R = [H0(P1, f∗

δ V )]− [H1(P1, f∗
δ V )] is equal to

R =
n∑
i=1

n−1∑
a=1

[H0(P1, f∗
δ (L

∗
χa
⊗ Sχi))]− [H1(P1, f∗

δ (L
∗
χa
⊗ Sχi ))] (4)

−
n−1∑
i=1

∑
1≤a,b≤i

[H0(P1, f∗
δ (L

∗
χa
⊗ Lχb))]− [H1(P1 , f∗

δ (L
∗
χa
⊗ Lχb))]

+
n−2∑
i=1

∑
1≤a≤i

1≤b≤i+1

[H0(P1, f∗
δ (L

∗
χa
⊗ Lχb))]− [H1(P1, f∗

δ (L
∗
χa
⊗ Lχb))].

Considering (4), and using the method of [10], we can compute i∗ρ(F )bT(Vd) for equivariant
Chern polynomial. We will consider three cases.

Case 1) [H0(P1, f∗
δ (L

∗
χa
⊗ Lχb))]− [H1(P1, f∗

δ (L
∗
χa
⊗Lχb ))], 1 ≤ a ≤ i, 1 ≤ b ≤ i+ 1.

Note c1(L∗
χa
⊗ Lχb)|p = (ya − yb)|p = uω(a) − uω(b), ω ∈ Sn corresponds to p and

i∗pya = uω(a)([15]). We also have

lab = 〈L∗
χa
⊗ Lχb , [pq]〉 = 〈ya − yb, [pq]〉 = 〈O(λs − λt), [pq]〉 = λs − λt,
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where λ = χb −χa and pq � X
ω(st)
ω , q = ω(st). So as in lemma (3.1) we can compute lab.

Namely assuming a < b we obtain

lab =




0 if s, t �= a, b

−1 if t = a or s = b

1 if s = a, t �= b or s = b, t �= a

2 if s = a, t = b,

and for b < a we have

lab =




0 if s, t �= a, b

−1 if s = b and t �= a or s = a, t �= b

1 if s = a or t = b

−2 if s = b, t = a

for 1 ≤ a ≤ i, 1 ≤ b ≤ i+1, 1 ≤ i ≤ n−2. This contributes as (x+c1(L∗
χa
⊗Lχb )|p−kλ/δ)

for lab ≥ 0, k = 0, . . . , labδ and (x+c1(L∗
χa
⊗Lχb )|p+kλ/δ) for lab < 0, k = 1, . . . ,−labδ−1

and eventually we get

∏
lab≥0

∏labδ
k=0(x+ c1(L∗

χa
⊗ Lχb)|p − kλ/δ)∏

lab<0

∏−labδ−1
k=1 (x+ c1(L∗

χa
⊗ Lχb)|p + kλ/δ)

..

Case 2) −[H0(P1 , f∗
δ (L

∗
χa
⊗ Lχb))]− [H1(P1, f∗

δ (L
∗
χa
⊗ Lχb ))], 1 ≤ a, b ≤ n− 1.

Similarly, i∗p(ya − yb) = uω(a)−ω(b) and set

lab = 〈c1(L∗
χa
⊗ Lχb), [pq]〉,

which can be computed as before and we obtain

∏
lab<0

−labδ−1∏
k=1

(x+ c1(L∗
χa
⊗ Lχb)|p + kλ/δ)

∏
lab≥0

labδ∏
k=0

(x+ c1(L∗
χa
⊗ Lχb)|p − kλ/δ)

because of the negative sign in front.
Case 3) [H0(P1, f∗

δ (L
∗
χa
⊗Sχi ))]− [H1(P1, f∗

δ (L
∗
χa
⊗Sχi ))], 1 ≤ i ≤ n, 1 ≤ a ≤ n−1.
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This time we have c1(L∗
χa
⊗ Sχi)|p = uω(a) − ui and

la = 〈c1(L∗
χa
⊗ Sχi ), [pq]〉.

The contribution will be

∏
la≥0

laδ∏
k=0

(x+ c1(L∗
χa
⊗ Sχi )|p − kλ/δ)

∏
la<0

−la−1∏
i=1

(x+ c1(L∗
χa
⊗ Sχi )|p + kλ/α)

.

Combining all of the above we obtain the next theorem.

Theorem 3.2 Let X = F l(n), F = (P1, fδ, 0) with d = δ[pq] for a balloon pq ⊂ X where

p = ω, q = ω(jn) and pq � X
ω(jn)
ω . Then at α = λ/δ

i∗ρ(F )bT(Vd) =
n∏
i=1

n−1∏
a=1

∏
la≥0

laδ∏
k=0

(x + c1(L∗
χa
⊗ Sχi)|p − kλ/δ)

∏
la<0

−la−1∏
i=1

(x+ c1(L∗
χa
⊗ Sχi)|p + kλ/α)

·
n−1∏
i=1

∏
1≤a,b≤i

∏
lab<0

−labδ−1∏
k=1

(x+ c1(L∗
χa
⊗ Lχb)|p + kλ/δ)

∏
lab≥0

labδ∏
k=0

(x+ c1(L∗
χa
⊗ Lχb)|p − kλ/δ)

·
n−2∏
i=1

∏
1≤a≤i

1≤b≤i+1

∏
lab≥0

labδ∏
k=0

(x+ c1(L∗
χa
⊗ Lχb )|p − kλ/δ)

∏
lab<0

−labδ−1∏
k=1

(x+ c1(L∗
χa
⊗ Lχb )|p + kλ/δ)

.

✷
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For d =
∑

diŠi, in A∗
G
(Wd) define

Qd =
n∏
i=1

n−1∏
a=1

∏
da−da−1≥0

da−da−1∏
k=0

(x+ κa − κa−1 − ui − kα)

∏
da−da−1<0

da−1−da−1∏
k=1

(x+ κa − κa−1 − ui + kα)

·
n−1∏
i=1

∏
1≤a,b≤i

∏
dab<0

−dab−1∏
k=1

(x+ κab + kα)

∏
dab≥0

dab∏
k=0

(x+ κab − kα)

·
n−2∏
i=1

∏
1≤a≤i

1≤b≤i+1

∏
dab≥0

dab∏
k=0

(x+ κab − kα)

∏
dab<0

−dab−1∏
k=1

(x+ κab + kα)

,

where

dab = 〈ya − yb, d〉 = 〈Sa −Sa−1 −Sb + Sb−1, d〉 = da − da−1 − db + db−1,

κab = κa − κa−1 − (κb − κb−1).

Proposition 3.3 With the notations of the previous theorem, i∗pτ
∗j∗0Qd = i∗ρ(F )bT(Vd).

Proof. We have d = δ[pq], α = λ/δ and note that di = 〈Si, δ[pq]〉 and τ∗j∗0κa =
τ∗Hi = Si. So ipτ

∗j∗0Qd will give the same expression as theorem (3.2). ✷

Proposition 3.4 B(t) = e−S·t/α∑
d τ

∗j∗0Qd ∩ Ide
d·t is an Ω−Euler series. Here S =

(S1 , . . . ,Sn−1).
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Proof. Equivariant Chern polynomial of F l(n) is given by

Ω = τ∗Γ = bT(V ) =

n∏
i=1

n−1∏
a=1

(x+ ya − ui)
n−2∏
i=1

∏
1≤a≤i

1≤b≤i+1

(x+ ya − yb)

n−1∏
i=1

∏
1≤a,b≤i

(x+ ya − yb)

where Γ is a T equivariant class in H∗
T
(Y ) given by

Γ =

n∏
i=1

n−1∏
a=1

(x+Ha −Ha−1 − ui)
n−2∏
i=1

∏
1≤a≤i

1≤b≤i+1

(x+Hab)

n−1∏
i=1

∏
1≤a,b≤i

(x+Hab)

,

where Hab = Ha −Ha−1 − (Hb −Hb−1).

We must show that Γ · j∗rQd = j∗0Qr · j∗0Qd−r, 0 � r � d. We will consider several
cases. Let’s fix 1 ≤ i ≤ n and 1 ≤ a ≤ n− 1. For 0 � r � d :

• If da − da−1 ≥ 0, ra − ra−1 ≥ 0 and da − da−1 − (ra − ra−1) ≥ 0, then we will have

a term
∏da−da−1
k=0 (x+ κa − κa−1 − ui − kα) in Qd. Isolate (x+Ha −Ha−1 − ui), a

part of Ω , to compute

(x+Ha −Ha−1 − ui) · j∗r
da−da−1∏
k=0

(x+ κa − κa−1 − ui − kα) =

(x+ ya − ui)
da−da−1∏
k=0

(x+Ha −Ha−1 − ui + ((ra − ra−1 − k)α) (5)

On the other hand we have ra−ra−1 ≥ 0 and da−da−1−(ra−ra−1) ≥ 0. Consider

j∗0

ra−ra−1∏
k=0

(x+ κa − κa−1 − ui − kα) · j∗0
(d−r)a∏
k=0

(x+ κa − κa−1 − ui − kα)
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where (d− a)a = da − da−1 − (ra − ra−1). This becomes

ra−ra−1∏
k=0

(x+Ha −Ha−1 − ui + kα)
(d−a)a∏
k=0

(x+Ha −Ha−1 − ui − kα), (6)

Expanding (5) and comparing to (6) we clearly see that they are equal. This is also
contained as an example of Euler data in [8].

• da − da−1 ≥ 0, ra − ra−1 ≥ 0 but (d − a)a < 0. In this case we still have (5) but
this time we must consider the division

ra−ra−1∏
k=0

(x+Ha −Ha−1 − ui + kα)

−(d−a)a−1∏
k=1

(x+Ha −Ha−1 − ui + kα).

(7)

Recall that da − da−1 − (ra − ra−1) < 0 ⇒ −(d − a)a − 1 < ra − ra−1. Moreover,
expanding (7) we see that the only remaining term is

(x+Ha −Ha−1 − ui)(x +Ha −Ha−1 − ui − (d− r)aα) · · · (x+Ha −Ha−1 − ui

+(ra − ra−1)α),

which is equal to (5).

• da− da−1 ≥ 0 and ra − ra−1 < 0. In this case, we have (d− a)a > 0 and obtain the
equality

(x+Ha −Ha−1 − ui) ·
da−da−1∏
k=0

(x+Ha −Ha−1 − ui + (ra − ra−1 − k)α)

=

(d−a)a∏
k=0

(x+Ha −Ha−1 − ui − kα)

ra−1−ra−1∏
k=1

(x+Ha −Ha−1 − ui − kα),
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which is in fact

(x+Ha −Ha−1 − ui) · j∗r
da−da−1∏
k=0

(x+ κa − κa−1 − ui − kα) =

j∗0

(d−a)a∏
k=0

(x+ κa − κa−1 − ui − kα)

(
j∗0

ra−1−ra−1∏
k=1

(x+ κa − κa−1 − ui + kα))

• da − da−1 < 0, ra − ra−1 ≥ 0. Obviously this implies (d− r)a < 0. We compare

(x+Ha −Ha−1 − ui)

j∗r

da−1−da−1∏
k=1

(x+ κa − κa−1 − ui + kα)

and (8)

(
j∗0

ra−ra−1∏
k=0

(x+ κa − κa−1 − ui − kα)
)

j∗0

−(d−a)a−1∏
k=1

(x+ κa − κa−1 − ui + kα)

(9)

If ra − ra−1 = −(d − r)a − 1 = ra − ra−1 − da + da−1 + 1 then we have
da − da−1 = −1 and no term on (8) except (x + Ha − Ha−1 − ui) appears.
Clearly only the same term survives on (9) after cancellation. Otherwise, observing
−(d − r)a − 1 > ra − ra−1, and expanding (9) accordingly, we obtain the equality
of (8) and (9).

• da − da−1 < 0, ra − ra−1 < 0, (d− r) ≥ 0. This time we will compare

(x+Ha −Ha−1 − ui)
da−1−da−1∏

k=1

(x+Ha −Ha−1 − ui + (ra − ra−1 + k)α)

and (10)
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(d−r)a∏
k=0

(x+Ha −Ha−1 − ui − kα)

ra−1−ra−1∏
k=1

(x+Ha −Ha−1 − ui − kα).

(11)

Observe that

ra−1 − ra − 1− (d− r)a = −1− (da − da−1) =

{
> 0 da − da−1 < −1
0 da − da−1 = −1

If da − da−1 = −1, (10) is just (x + Ha − Ha−1 − ui) and same for (11). Note
if da − da−1 < −1 then after cancellations on (11) we obtain the equality again.
Finally:

• da − da−1 < 0, ra − ra−1 < 0, (d− r)a < 0. Then we will have the equality of

(x+Ha −Ha−1 − ui)
da−1−da−1∏

k=1

(x+Ha −Ha−1 − ui + (ra − ra−1 + k)α)

and

1
−(d−r)a−1∏

k=1

(x+Ha −Ha−1 − ui + kα) ·
ra−1−ra−1∏

k=1

(x+Ha −Ha−1 − ui − kα)

since (d− r)a < 0⇒ da−1− da > ra−1 − ra and we will obtain the term (x+Ha −
Ha−1 − ui) in the first expression when k = ra−1 − ra.

To summarize, we obtain for 0 � r � d

n∏
i=1

n−1∏
a=1

(x+Ha −Ha−1 − ui)︸ ︷︷ ︸
Γ1

·j∗rQ1
d = j∗0Q1

r · j∗0Q1
d−r
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where

Q1
d =

n∏
i=1

n−1∏
a=1

∏
da−da−1≥0

da−da−1∏
k=0

(x+ κa − κa−1 − ui − kα)

∏
da−da−1<0

da−1−da−1∏
k=1

(x+ κa − κa−1 − ui + kα)

.

In fact preceding argument can easily be seen to be true for the other two parts composing
Qd. Namely, once we set

Γ2 =
1∏n−1

i=1

∏
1≤a,b≤i(x+Hab)

, Q2
d =

n−1∏
i=1

∏
1≤a,b≤i

∏
dab<0

−dab−1∏
k=1

(x + κab + kα)

∏
dab≥0

dab∏
k=0

(x+ κab − kα)

and

Γ3 =
n−2∏
i=1

∏
1≤a≤i

1≤b≤i+1

(x+Hab), Q3
d =

n−2∏
i=1

∏
1≤a≤i

1≤b≤i+1

∏
dab≥0

dab∏
k=0

(x+ κab − kα)

∏
dab<0

−dab−1∏
k=1

(x+ κab + kα)

,

where dab and κab are as before. Note Q0 = Ω, Qd = Q1
d ·Q2

d · Q3
d,Ω = Ω1 · Ω2 · Ω3 and

combining all of above, we obtain

Γ · j∗rQd = j∗0Qr · j∗0Qd−r , 0 � r � d.

This shows that the list Q : Qd gives an Γ-Euler data and then by theorem (2.5) we
obtain the desired result. ✷

Now we want to compute the α degree of Qd. Observing closely we find that after

79



PAKSOY

possible cancellations are done Q2
d ·Q3

d can be written as

Q2
d ·Q3

d =
n−1∏
i=1

i∏
a=1

( ∏
dia<0

dia−1∏
k=1

(x+ κia + kα)

∏
dia≥0

dia∏
k=0

(x+ κia − kα)

)

The α degree of this expression is less than
∑n−1
i=1

∑i
a=1(−dia − 1). In addition,

degα

( n∏
i=1

n−1∏
a=1

∏
da−da−1≥0

da−da−1∏
k=0

(x+ κa − κa−1 − ui − kα)

∏
da−da−1<0

da−1−da−1∏
k=1

(x+ κa − κa−1 + kα)

)
≤ ndn−1.

So we obtain degαQd ≤ ndn−1−
∑n−1
i=1

∑i
a=1(dia+ 1). Recall that c1(X) = 2(S1 + · · ·+

Sn−1) for X = F l(n). Then

〈c1(X), d〉 − degαQd ≥ 2
n−1∑
i=1

di − ndn−1 +
n−1∑
i=1

i∑
a=1

(dia + 1). (12)

We know dia = di − di−1 − (da − da−1). Then

n−1∑
i=1

i∑
a=1

(dia + 1) =
n−1∑
i=1

i(di − di−1) −
n−1∑
i=1

i∑
a=1

(da − da−1)

= −d1 − · · · − dn−1 + ndn−1− (d1 + · · ·+ dn−1)

= −2(d1 + · · ·+ dn−1) + ndn−1.

Therefore (12) becomes

〈c1(X), d〉 − degαQd ≥
n−1∑
i=1

i ≥ 0.

As a result we conclude that τ∗j∗0Qd satisfies the conditions of theorem (2.12) and we
have the following theorem
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Theorem 3.5 Let X = F l(n) and V = TX be the equivariant tangent bundle. The A-
series AV,bT(X) with equivariant Chern polynomial bT can be computed as

A(t+ g) = ef/αB(t)

where B(t) = e−y·t/α
∑
d τ

∗j∗0Qd∩Id and f, g are formal power series given as in theorem
(2.12). ✷
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