
COPYRIGHT PROTECTION FOR SOFTWARE

Ralph Oman-

I. THORNY ISSUES ... 340
II. REVERSE ENGINEERING ... 343

The United States blazed the trail in giving copyright protection for
software. Until just recently, many other countries favored sui generis
protection for software, but that argument was finally settled in
GATT/TRIPs and last December's World Intellectual Property
Organization Copyright Treaty. Copyright is now universally seen as the
preferred means of protection. To try to make certain that we all have a
clear idea of the metes and bounds of protection for computer software in
the United States, let me start with a few copyright basics.

Copyright protects the authors of original works of authorship.
You know what they are: sculpture, novels, poems, paintings,
newspapers, newsletters, jewelry, fabric designs, recipe books, motion
pictures, sound recordings, maps and charts, architectural works, cartoons
- the list goes on and on. The copyright law does not normally protect
useful articles. Generally the patent law protects useful articles.
Copyright protects a lamp base in the shape of a Balinese dancer that is
artistic. But it doesn't protect the design of the lamp as a whole. Even so,
copyright in fact has always protected useful works. Maps and charts have
been protected since 1790, so it comes as no surprise that copyright also
protects computer programs, very useful creations that are essentially
operating instructions for a machine. The courts have played a major role
in defining the scope of copyright protection. After deciding the basic
issues of copyright-ability of software, they got into the tough issues.
Under United States law, computer programs are literary works. As with
other literary works, the law protects both literal and non-literal features of
a program.,

Counsel, Dechert Price & Rhoads; Pravel Professorial Lecturer in Intellectual Property
and Patent Law, George Washington Law School. Former United States Register of Copyrights;
Chair, American Bar Association's Committee on International Copyright Treaties and Law.

1. Literal refers to the actual source code or object code or the computer screens or the
user interfaces, and non-literal refers to the SSO, the plot, the flow of elements one into another,
and the relationship of the elements one to another.

ILSA Journal of Int'l & Comparative Law

I. THORNY ISSUES

But it's not quite so simple. What's protected? What's
copyrightable? What's not, particularly on the non-literal side?

Copyright, of course, protects only the expression of ideas, not the
ideas themselves. In copyright cases, the defense often claims that it has
only borrowed un-protectable ideas, rather than protectable expression. In
Morrissey v. Procter & Gamble, a 1967 non-software case involving
written instructions for entering a promotional contest, the circuit court
stated the general principle: if a work is so simple and so straightforward
as to leave available only a severely limited number of ways to say
something, the expression would be un-copyrightable, even if it was very
creative.2 The idea and the expression had merged. Since we use
computer programs in a functional context, the idea/expression argument is
often transformed into an inquiry as to whether or not copyright in a
program gives the copyright owner a monopoly over a technological
function.

In an early series of cases, Whalen v. Jaslow, the most famous, the
courts developed a reasonably simple approach to this issue.3 To see if
somebody had copied expression or ideas, the judges determined whether
or not other programs could be written that performed the same function as
the copyrighted program. If another program could be written to perform
the same function, then that program is an expression of the idea and
protected from copying. The idea is very general: in this case, the
organization of a dental office. Everything else is expression, including
SSO. Of course independent creation of an identical program is okay.
This simple approach has not survived, particularly in the most difficult
area of the law trying to figure out if somebody infringed not the actual
computer code, the literal aspects of the program, but the non-literal
aspects, the SSO.

In 1997, the Court of Appeals in New York decided Computer
Associates v. Altai. The case deals with the question of whether the scope
of protection of the non-literal aspects of a computer program may be
protected by copyright.' What is an idea and what is expression?

The decision rejects the broad approach I just described. The Altai
court declined to find infringement even when faced with strong evidence
of copying of non-literal elements. The defendant, Altai, had admitted
copying the actual code of one version of the plaintiff's program and paid

2. Morrissey v. Procter & Gamble, 262 F. Supp. 737 (D. Mass. 1967).

3. Whalen v. Jaslow, 609 F. Supp. 1307 (E.D. Pa. 1985).
4. Computer Assoc. v. Altai, 126 F.3d 365 (6th Cir. 1997).

[Vol. 4:339340

Oman

damages of $350,000. The real dispute concerned a second, so-called clean
version of the program that Altai programmers created without seeing all of
plaintiff's source code. For this clean room version, the appeals court found
that there was no copying of the literal computer code. The court then looked
for copying of the structural or organizational (the non-literal) elements of the
program.

It looked for substantial similarity between the non-literal elements of
both programs. Substantial similarity, of course, is the standard the courts
apply in finding whether or not infringement has taken place. It found none.
Any SSO that was very similar was not copyright infringement. In its
analysis, the court applied what we called the abstraction test to determine
whether or not the non-literal aspects of computer programs are substantially
similar. The court also drew on the doctrines of merger, scnes'-faire, and
public domain, which I will explain.

Under the merger doctrine, of course, since the expression is
inseparable from the idea, you can not get protection. The scnes'-faire
doctrine holds that certain stock or standard literary devices are not
copyrightable.

Applying these doctrines, and the principles of non-protection for
public domain elements, the court reached its most critical conclusion
regarding the similarity between the plaintiffs and defendant's programs.
The court said that the similarity in the structure between the plaintiffs and
Defendant's program was dictated by the nature of other programs with
which it was designed to interact, and thus, is not protected by copyright.
The court did not ask the tough question: Is it independently created or does
the similarity result from copying?

It is important to note, however, that the Altai court accepts the
principle that copyright protection can extend to a computer program's non-
literal structure. The amount of protection due structural elements, in any
given case, will vary according to the protectible expression found in the
program at issue.

Let's see how the Altai court applies the abstraction test. Step-by-
step, it analyzes both programs in order of increasing generality from
object code, to source code, to parameter lists, to services required, to
general outline. Object code and source codes are protected as literal
elements. Then the court moves further down the spectrum of abstraction
and as it goes it filters out protectible expression from non-protectible
elements to determine the scope of the plaintiff's copyright in the non-
literal structure of a computer program. The court filters out the elements
dictated by efficiency, function, the programming techniques that all
programmers use, external factors (interoperability), or elements taken
from the public domain. Finally, the court compares the remaining

1998]

342 ILSA Journal of Int'l & Comparative Law

protectible expression in Computer Associates' program with Altai's
program to see whether or not the defendant copied any aspect of protected
expression, any of the remaining golden nuggets.

Using this three-step abstraction-filtration-comparison test, the
Altai court has a much narrower view of exactly what components of the
program are subject to copyright protection. Under this test, quite a bit of
copying is tolerated, perhaps more than would be allowed in true literary
work. With a clearer idea of what is protected, generally speaking, the
source code, object code, the golden nuggets of the program's non-literal
aspects, let's look at a few related controversies. These too, are literal
aspects of a computer program. We see them and hear them and touch
them on the screen.

A battle arose over the protectibility of screen displays and other
user interfaces. As with other works, to be protected, computer screens
must contain more than de minimis copyrightable authorship. Some
computer screens only record information, and they are often not
copyrightable because they are just blank forms, or just lists of common
words, and lack enough original expression to support a claim to
copyright. Even so, in 1993 a district court in Boston, in Lotus v.
Borland, found that a menu tree contained enough originality to be
copyrightable.: Even though functional considerations played a part in the
creation of the menu, the court found that function did not dictate the final
version of Lotus' menu on the screen. The court pointed out that a great
variety of possible words and phrases could accomplish the desired
function. The court gave three reasons for its finding. First, Lotus'
format deperds on the programmer's personal judgments and preferences
among many possible choices. Second, even the user of the program can
change the menu tree, so how can it be dictated by function? And third,
the court noted that many other spreadsheet programs used different menu
trees, and mere functionality did not account for these differences. In
conclusion, the court found that Borland's menu tree was sufficiently
similar to Lotus' to constitute copyright infringement.

That decision did not survive the appeal. In March of 1995 the
First Circuit overturned the district court's decision and held that Lotus'
menu tree, made up of words and phrases, is un-copyrightable subject
matter as a matter of law. Citing Section 102(b) the 1976 Copyright Act,
the court found that textual menus (as opposed to complex graphic or
animated user interfaces) are simply a method of operation, for which
Section 102 explicitly prohibits copyright protection.6 The court explained,

5. Lotus v. Borland, 831 F. Supp. 223 (D. Mass 1993).

6. Pub. L. No. 94-553, 90 Stat. 2541-2602 (1976).

[Vol. 4:339

Oman

"we think that method of operation . . . refers to the means by which a
person operates something, whether it be a car, a food processor or a
computer "7 In many ways, the Lotus menu command hierarchy is
like the buttons used to control, say, a videocassette recorder, or like the
dashboard of a car.

In a 4-4 decision last year, the Supreme Court upheld the First
Circuit's decision, without an opinion that would have helped clarify the
law.

Enough on copyrightability. Let me discuss one last controversy:

II. REVERSE ENGINEERING

A very significant issue on the infringement side is whether or not
someone can reverse engineer a copyrighted program to produce a
competing program. Let me explain. By reverse engineering, somebody
can figure out the physical composition or electrical properties of
electronic, mechanical, chemical, and other industrial products. As
applied to computer programs, reverse engineering refers to the whole
range of activities, from the study of publicly available sources of
information about a program to the process of creating pseudo-source
code, as well as decompilation or disassembly, breaking down the program
to its component parts and then rebuilding it sentence by sentence.

We have to keep coming back to the same basic premise, copyright
protects expression, and not ideas. Copyright does not protect the
functionality of a program. Nothing. in the copyright law prevents
someone from analyzing program code, then taking the ideas, algorithms,
or methods used in the program to create another program.

Anyway, the reconstruction of the original source code from the
object code is like doing a puzzle. You use a decompiler or disassembly
program to search the original for known or anticipated instructions. One
method used to separate idea from expression is the so-called clean room
approach used by Altai. With this approach, you would attempt to extract
only the ideas from a competing program in order to replicate its functions.
A dirty room team actually copies the original program and decompiles it
to develop a pseudo-source code. The team studies the code to identify
interfaces and document ideas. They then prepare detailed written
descriptions of the design elements of the original program without using
actual code, and programmers in the clean room take that intermediate
product, that detailed script, and work from its description to imitate the
original program. One problem in this approach is that if too much actual

7. Lotus v. Borland, 73 F.3d 355 (1st Cir. 1995).

1998]

ILSA Journal of Int'l & Comparative Law

detail from the original program gets into the clean room, even structure,
sequence and organization, the non-literal elements, they may wind up
scrapping the end product as too dirty, or too infringing.

But the basic question remains: does decompilation appropriate
more than unprotected ideas in the attempt to accomplish the same
functions of another program? Decompilation does involve the copying of
a computer program if only as an intermediate step and, is, therefore, a
prima facie infringement. The primary rebuttal argument relies on the fair
use defense, codified in Section 107 of the United States copyright law.
Decompilation for academic research, such as a computer science
professor performing classroom analysis with his students is, in all
probability, within the fair use privilege. Decompilation for commercial
purposes normally stands on a different footing. Copyright owners argue
that the decompilation of a program to produce a competing product fails
all four of the fair use factors:

1) the nature and purpose of the use is entirely commercial;
2) the copyrighted source code, as an unpublished work, is
subject to a very narrow scope of fair use;
3) the entire work is copied;
4) harm to the market for the original is presumed with
commercial use.
Decompilers reject this claim. They say their purpose which is to

gain access to ideas, is a socially valuable one. They argue that software is
the first and only copyrightable work that is not transparent, that is not
read or played when it is used, and as such, does not clearly reveal its
ideas or expression. Since copyright does not protect ideas, the argument
goes, they should be available to the public, and decompilation is one of
the few ways to accomplish this. In Lotus v. Borland, the First Circuit
discussed the economic implications of interoperability, and concluded that
software compatibility has a beneficial public impact that should be
encouraged.,

Decompilers also argue that the market factor weighs in their favor
since the end result is non-infringing; any market loss is attributable to the
appropriation of idea, not expression, and to the building of a better
product. They may have an unfair competitive advantage since they did
not have to pay for the original innovative development costs.

On the other hand, others point out that although most copyrighted
works disclose their ideas on inspection, this is not a requirement, since
copyright protects unpublished works. And, Copyright Office regulations

8. Id.

[Vol. 4:339

Oman

let people deposit copies of programs with the trade secret portions blocked
out, which blocks access to ideas as well as expression.

So we have reached the point in our history where we have more
questions than answers. How have the courts resolved the related issue of
interoperability? Let's look at one case decided by the Court of Appeals
for the Federal Circuit.

Judge Rader of the Federal Circuit in Nintendo v. Atari, found that
the unlocking program contained protectible expression. He affirmed the
lower court's holding that Nintendo would likely establish that Atari
infringed its locking program by copying the literal elements of the source
code. However, Judge Rader noted an important qualification. He
specifically reversed the lower court's finding that Atari's intermediate
copying of the locking program for the purpose of reverse engineering
infringed Nintendo's copyright. The court found such intermediate
copying was fair use: in Judge Rader's words, "[r]everse engineering
object code to discern the unprotectible ideas in a computer program is a
fair use. " 9 Of course, the court did not say that the fair use doctrine
authorizes unrestrained reverse engineering. One can reproduce the
software only to the extent necessary to understand uncopyrightable
portions of the work. In the words of Judge Rader, any reproduction of
protectible expression must be strictly necessary to ascertain the bounds of
protected information within the work.

So I have given you the basics and the hot issues. Winston Churchill
once said that democracy is the worst form of government, except for all the
others. In many ways, copyright is the worst form of protection for
software, except for all the others. Although patent protection shows some
limited promise for break through ideas, copyright will continue as the
primary means of protecting software for the foreseeable future.

9. Atari v. Nintendo, 1993 WL214886 (N.D. Cal. 1993).

19981 345

