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Abstract

The brain renin–angiotensin system continues to be enigmatic more than 40 years after the brain was first recognized to be a site of action of
angiotensin II. This review focuses on the enzymatic pathways for the formation and degradation of the growing number of active angiotensins in
the brain. A brief description and nomenclature of the peptidases involved in the processing of angiotensin peptides in the brain is given. Of
primary interest is the array of enzymes that degrade radiolabeled angiotensins in receptor binding assays. This poses major challenges to studies
of brain angiotensin receptors and it is debatable whether an accurate determination of brain angiotensin receptor binding kinetics has yet been
made. The quandary facing the investigator of brain angiotensin receptors is the need to protect the radioligand from metabolic alteration while
maintaining the characteristics of the receptors in situ. It is the tenet of this review that we have yet to fully understand the binding characteristics
of brain angiotensin receptors and the extent of their distribution in the brain because of our inability to fully protect the angiotensins from
metabolic alteration until equilibrium binding conditions can be attained.
© 2007 Published by Elsevier B.V.
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1. Introduction

The first definitive demonstration of an effect of angiotensin
II (Ang II) in the brain was the cross perfusion study of
Bickerton and Buckley [1]. However, this effect was produced
by blood-borne Ang II later recognized to be mediated by the
circumventricular organs of the brain which are outside of the
blood–brain-barrier. A subsequent casual observation by Booth
[2] revealed that Ang II acts within the brain which initiated an
interest in the possible existence of a brain renin–angiotensin
system (RAS). A few years later, Ganten et al. [3] reported the
existence of renin-like activity in the brain and research on the
brain RAS began in earnest.

1.1. Roles of the brain renin–angiotensin system

The influence of the brain RAS on hydromineral balance,
arterial blood pressure, neurosecretory functions and overall body
homeostasis is well documented. There are several excellent
review articles covering early studies of the brain RAS [4–6].

While these ‘traditional’ functions of angiotensins in the
brain have been established for some time, the recognition of
the presence of multiple receptor subtypes for angiotensins in
the brain as well as novel functions for metabolites of the octa-
and heptapeptide angiotensins has greatly extended the range of
activities attributed to the brain RAS. More recent reviews cover
these aspects of the brain RAS [7–12].

1.2. Generation and degradation of angiotensin peptides in the
brain

The rate of synthesis as well as the rate of degradation of
neurotransmitters and neuromodulators is an important factor in
initiating and terminating their biological effects. This principle
applies to peptide hormones as well. They are regulated by
proteases (otherwise called peptidases, proteinases or proteo-

lytic enzymes) that generate and metabolize them [13–15]. The
human genome encodes several hundred proteases, of which the
function of many has not yet been determined. Peptidases
involved in processing of angiotensin peptides have been
collectively termed “angiotensinases”. While the term has
largely been used to infer degradation, it is now know that these
enzymes can generate active angiotensins. Angiotensinases are
comprised of three groups of peptidases: amino-, endo- and
carboxypeptidases. Aminopeptidases have traditionally been
viewed as the most important group, accounting for 60–90% of
angiotensinase activity in various tissues [16] however, it is now
known that angiotensin peptides are processed by a broad
variety of peptidases.

2. Angiotensin-forming enzymes

The formation of the primary active angiotensin, Ang II is
considered to occur via a cascade of enzymatic reactions,
starting with a large protein precursor. The fact that the enzyme
renin was the first component of the RAS to be discovered has
led to the naming of this hormonal system as the renin–
angiotensin system. However, as will be seen, renin is certainly
not the only angiotensin-forming enzyme. However, out of
respect for the discovery of renin by Tigerstedt and Bergstrom
[17], use of the term renin–angiotensin system likely will
continue. In Section 2 the primary focus will be on formation of
Ang II and Ang III from angiotensinogen and Ang I, as they are
the angiotensins that act on the classical AT1 and AT2 receptors.
The formation of the other active angiotensins from Ang I, Ang
II and Ang III, which act on receptors other than AT1 and AT2,
are pirmarily addressed in Section 3.

2.1. Renin

The only known substrate for renin is angiotensinogen,
which is the only known precursor for the active octapeptide
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angiotensin II (Ang II). In the brain, the primary source of
angiotensinogen is astroglia which are reported to constitutively
secrete it into the extracellular fluid of the brain [18]. By the
classical pathway of the RAS it is cleaved by renin (EC
3.4.23.15) between Leu10–Leu11 residues to yield angiotensin I
(Ang I) (Fig. 1) [6,19,20]. Renin is an aspartyl peptidase of the
A1 family. In the brain of rodents and humans renin is expressed
in two forms: one is that secreted either as active renin from the
secretory/storage granules, or is formed extracellularly from

secreted, inactive prorenin. The other form is a more recently
described non-secreted, brain-specific intracellular renin, which
in comparison with secreted renin is expressed in much higher
amounts in the brain tissue [21–26].

2.2. Renin-like enzymes

Several other peptidases, in addition to renin, are capable of
forming Ang I from angiotensinogen. Among acid proteases in

Fig. 1. Pathways of formation of angiotensin peptides in the brain. Abbreviations used: ACE — angiotensin converting enzyme; ACE2 — human homolog of
angiotensin converting enzyme; APA — aminopeptidase A; A-LAP — adipocyte derived leucine-aminopeptidase; L-RAP — leukocyte-derived arginine
aminopeptidase; NEP — neutral endopeptidase; TOP — thimet endopeptidase; Pro-EP — prolyl-endopeptidase; Pro-CP — prolyl-carboxypeptidase; APX —
aminopeptidase X; DAP — aspartyl aminopeptidase; P-LAP/IRAP — placental leucine-aminopeptidase/insulin-regulated aminopeptidase; APN/APM —
aminopeptidase N/M; APB — aminopeptidase B; DPP I — dipeptidyl peptidase I; DPP III — dipeptidyl peptidase III. Numbering of amino acid residues in all
fragments is based on the numbering in angiotensinogen. Larger sized arrows indicate the “classical” metabolic pathways for angiotensin peptides.
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the brain cathepsins E (EC 3.4.23.34) and D (EC 3.4.23.5),
aspartic proteinases belonging to the A1 family, can form Ang I
from angiotensinogen substrate [27–30] (Fig. 1). Cathepsin D is
a typical lysosomal enzyme, whereas cathepsin E has been
found in the endoplasmic reticulum, in endosomes and other
cell compartments. Both enzymes are involved in the proces-
sing of various peptide precursors [29].

Two neutral peptidases are also capable of generating Ang I
from angiotensinogen in the brain: elastase and proteinase 3
[7,31,32] (Fig. 1). Furthermore, two other neutral peptidases—
cathepsin G (EC 3.4.21.20) and tonin, together with elastase and
proteinase 3, can form Ang II directly from angiotensinogen,
without Ang I production as an intermediate, by cleaving the
peptide bond between the Phe8–His9 residues [32–37] (Fig. 1).
Cathepsin G, tonin, elastase and proteinase 3 are neutral serine
proteinases (S1 family). They are localized mainly to
endosomes and lysosomes, and are widely expressed in
different mammalian tissues including the brain [31,34–36].
They are an essential part of the cell proteolytic machinery with
a still growing list of known physiological substrates, and have
a role in many biological processes.

2.3. Angiotensin-converting enzyme (ACE)

In the classical RAS cascade, the decapeptide Ang I is
converted to Ang II by angiotensin-converting enzyme (ACE,
kininase II, EC 3.4.15.1). ACE is one of the most extensively
studied mammalian peptidases. It exists in soluble and
membrane-bound forms, and is a member of the M2 family of
zinc metallopeptidases. ACE possesses dipeptidyl carboxypep-
tidase activity and can selectively convert Ang I to Ang II, des-
Asp-angiotensin I to Ang III, Ang 1–7 to Ang 1–5, and
bradykinin to its inactive metabolite, in addition to metabolizing
several other peptides [15,38–42]. However, ACE does not
metabolize Ang II, presumably due to its inability to metabolize
the His6–Pro7 bond [43]. The soluble form of ACE is
distributed extracellularly while the membrane-bound form is
on the external face of the plasma membrane. Thus the
formation of Ang II from Ang I by ACE is thought to occur
extracellularly only [44].

2.4. Other carboxypeptidases

Two other peptidases — cathepsin A (carboxypeptidase A,
lysosomal protective protein, deamidase, EC 3.4.16.5) and
human homologue of ACE (ACE2, ACEH) can remove His10

from Ang I, generating Ang-(1–9) [7,43,45,46]. Ang-(1–9)
can be further metabolized to Ang II by cathepsin A [7,45]
(Fig. 1). Cathepsin A is a multifunctional lysosomal, acidic,
serine carboxypeptidase (S10 family) that also functions as a
protective and an activator protein for neuraminidase and
beta-galactosidase [47–49]. Cathepsin A also acts as an
esterase/C-terminal deamidase at neutral pH and both
carboxypeptidase and esterase/C-terminal deamidase func-
tions are fully separated from its protective function [50].
ACE2, like ACE, is a member of the M2 family of zinc
metallopeptidases, existing in a membrane-bound form and

widely expressed in a variety of mammalian tissues including
the brain [15,41,51]. In contrast to ACE, ACE2 cleaves only a
single C-terminal residue from its peptide substrates including
Ang I and Ang II, but not Ang-(1–9) and Ang-(1–7) [43,46].
Another differentiating feature of ACE2 from ACE is that
it is unable to cleave bradykinin and Hip–His–Leu, and is
insensitive to ACE inhibitors, e.g., lisinopril and captopril
[15,41]. In addition to its role as a carboxypeptidase, ACE2 is
also the receptor for severe acute respiratory syndrome
(SARS) coronavirus [52,53].

Elastase, proteinase 3, tonin, cathepsin B and G can also
cleave the carboxy terminal His–Leu from Ang I to form
Ang II [32,36,54] (Fig. 1) in a manner similar to the well-
characterized formation of Ang II by ACE. Cathepsin B is a
member of cysteine cathepsins (C1 family). It is a ubiquitous
mammalian lysosomal peptidase, expressed in brain, that
functions to convert several peptide precursors into active
peptides [54,55].

Chymase is another enzyme capable of forming Ang II from
Ang I [56]. This enzyme is largely associated with mast cells,
and aside from the pineal gland and the pituitary, there is little
chymase activity in the brain [57].

2.5. Aminopeptidases

Aminopeptidases have traditionally been thought to be
inactivators of Ang II, with the exception of aminopeptidase A-
mediated formation of the generally short-lived heptapeptide,
Ang III [58–60]. The des–Asp1, des–Arg2 Ang II hexapeptide
(Ang IV) has little activity at the classical Ang II receptor
mediating the pressor, dipsogenic, salt appetite-inducing and
hormone-releasing effects of Ang II and thus was considered to
be a weak agonist at best. However, the discovery of high
affinity binding sites for Ang IV in the brain [61] and the
reported memory enhancing effects of Ang IV [62], yet another
active angiotensin was discovered. Thus aminopeptidases are
newly cast as angiotensin-synthesizing enzymes in addition to
their continuing role as angiotensin inactivators. Indeed, it has
been suggested that aminopeptidase A activity is essential for
formation of an active angiotensin peptide in the brain [63].
Although recent studies from our laboratory have challenged
that hypothesis [64,65].

2.5.1. Aminopeptidase A (APA)
One of the most known and accepted peptidases

responsible for further processing of Ang II is APA (glutamyl
aminopeptidase, EC 3.4.11.7), which cleaves Asp1 from Ang
II, generating the heptapeptide Ang III [58–60]. Ang III can
also be generated from Ang I without Ang II production as
an intermediate through formation of des–Asp1–Ang I (Ang
2–10) by APA and aminopeptidase X (see also Section
2.5.3), and subsequent carboxypeptidase cleavage of Leu–
His by ACE [60,66,67] (Fig. 1). APA is a widely expressed
mammalian membrane-bound aminopeptidase, a member of
the M1 family of zinc metallopeptidases [14,68]. It is
abundantly expressed in the brain [69]. The catalytic domain
of the peptidase is in the ectodomain of the protein thus it is

18 V.T. Karamyan, R.C. Speth / Regulatory Peptides 143 (2007) 15–27



positioned to metabolize peptides that are in the extracellular
milieu. It specifically cleaves acidic residues (aspartic acid or
glutamic acid) from the N-terminus of peptide substrates,
predominantly from Ang I, Ang II and cholecystokinin-
8 [14,60,68,70].

2.5.2. Oxytocinase subfamily
Another aminopeptidase that can cleave Asp1 from Ang II is

known as adipocyte-derived leucine aminopeptidase (A-LAP,
puromycin insensitive leucyl-specific aminopeptidase, PIL-
SAP) [71,72]. Moreover, it can sequentially cleave N-terminal
amino acids from generated angiotensins up to His–Pro–Phe
[72,73] (Fig. 1). A-LAP is a member of the oxytocinase
subfamily of M1 aminopeptidases, found in soluble and
membrane-bound forms. It is extensively expressed in the
brain and many other tissues [71,72]. Together with other
members of this subfamily: placental leucine aminopeptidase
(P-LAP, cysteinyl aminopeptidase, EC 3.4.11.3, EP 11.3), also
known as insulin-regulated aminopeptidase (IRAP) and the Ang
IV receptor [74], and leukocyte-derived arginine aminopepti-
dase (L-RAP), it plays an important role in the maintenance of
homeostasis during pregnancy, memory retention, blood
pressure regulation and antigen presentation [71,72].

2.5.3. Aspartyl aminopeptidase (DAP)/aminopeptidase X
(APX)

Aminopeptidase X (amastatin-, bestatin- and EDTA-insen-
sitive aminopeptidase) activity described by Sim and co-
workers [66,75] can cleave Asp1 from Ang I and Ang II
forming the 2–10 nonapeptide fragment of Ang I and Ang III,
respectively. This enzyme is likely the same as aspartyl
aminopeptidase (DAP, EC 3.4.11.21) first described by Kelly
et al. [76] and later characterized by Wilk et al. [67]. It is a
member of the M18 family of metalloproteinases. This DTTand
o-phenanthroline sensitive, but amastatin, bestatin, relatively
EDTA, insensitive enzyme was capable of efficiently metabo-
lizing Ang II to Ang III [67]. As noted above, des–Asp1–Ang I
can be processed to Ang III by ACE [38,60] (Fig. 1).

3. Angiotensin degradation

As noted above, the line between angiotensin synthesis and
degradation has blurred due to the discovery of physiological
actions and receptors for angiotensin peptides previously
considered to be inactive metabolites. However, when consid-
ering the primary actions of the RAS, in particular, effects at the
AT1 receptor subtype which mediates nearly all of the
physiological and pathophysiological effects of Ang II,
anything less than the carboxy terminal heptapeptide is
considered to be an inactive metabolite.

3.1. Aminopeptidases

Historically aminopeptidases have been viewed as the
primary metabolic enzymes for degradation of Ang II [16].
However, it is recognized now that the effects of peptidases are
more complex.

3.1.1. Aminopeptidase A (APA) and aspartyl aminopeptidase
(DAP)/aminopeptidase X (APX)

APA and DAP have a strong preference for acidic amino
acids and are considered to be the primary enzymes responsible
for the degradation of Ang II to Ang III. However, since Ang III
is thought to be a fully active agonist at AT1 and AT2 receptors,
this metabolic step can hardly be considered to be a degradation.
On the other hand, Ang III appears to be highly labile and short-
lived [77,78] so the process of formation of Ang III could be
considered to be a prelude to inactivation of the peptide, at least
as an AT1/AT2 agonist. Of interest is the observation that Ang
IV binds to a soluble form of human APA, but is very slowly
metabolized by it, thereby acting as a competitive inhibitor [79].
These investigators also reported a small amount of Ang III
metabolism to Ang IV by this soluble APA. In addition to its
ability to form Ang III from Ang II, the reported ability of APX
(likely DAP) to form des Asp1 Ang I from Ang I has been
suggested to result in the formation of a physiological
antagonist of the AT1 angiotensin receptor subtype [80]. An
interesting inference of this observation is that ACE inhibitors
could then be prolonging the lifespan of this endogenous AT1
receptor antagonist.

3.1.2. Oxytocinase subfamily
A-LAP (described in Section 2.5.2) is capable of cleaving N-

terminal amino acids starting from Ang II up to tripeptide His–
Pro–Phe [72,73]. Thus it is capable of metabolizing angioten-
sins to completely inactive peptides (Fig. 1). Interestingly, the
closely related P-LAP/IRAP and L-RAP are not able to
metabolize Ang II [72,74,81,82]. P-LAP/IRAP is reported to
metabolize Ang III to IV, whereas L-RAP has ability to
metabolize Ang III down to the tripeptide His–Pro–Phe by
sequential elimination of N-terminal amino acids [72,82].

3.1.3. Aminopeptidase N (APN) and aminopeptidase B (APB)
APN (E.C. 3.4.11.2, aminopeptidase M, alanyl aminopepti-

dase, CD13) and APB (E.C. 3.4.11.6, arginyl aminopeptidase)
have also generally been considered to be inactivating enzymes
because they form an angiotensin fragment that has negligible
affinity for the classical Ang II receptors. In cleaving Arg1 from
Ang III they form des–Asp1, des–Arg2 Ang II (Ang IV)
[14,83,84], which is predominantly involved in learning and
memory functions mediated mainly by Ang IV receptors [62]. In
addition to its ability to cleave Arg1 from Ang III to form Ang IV,
APN can also cleave Val1 from Ang IV to form Ang-(4–8)
(Fig. 1), a putatively inactive angiotensin fragment [85]. APN and
APB are members of the M1 family of Zn-metallopeptidases.
APN is predominantly characterized as a membrane-bound
peptidase with its catalytic site in its extracellular domain
[14,84]. APB is both a secreted and membrane-bound protease
[86]. Both APN and APB are ubiquitously distributed in different
tissues of mammalian organisms, including brain. APN metabo-
lizes regulatory peptides by removing the N-terminal amino acid
with a preference towards, neutral residues. APB demonstrates
strict specificity for Arg and/or Lys residues at the N terminus of
various peptides. This suggests a dominant role of APB, rather
than APN, in the processing of Ang III [14,84,86,87]. However it
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has been suggested that APN is the predominant enzyme
responsible for brain Ang III metabolism in the mouse [88] and
rat [89] brain. Besides having peptidase activity, APN has also
been shown to be a receptor of coronaviruses, a human
herpesvirus and Bacillus thuringiensis CryIA(c) toxin in their
target tissues [14,84].

3.1.4. Diaminopeptidases
In addition to APA, DAP and A-LAP, dipeptidyl peptidase I

(DPP I, EC 3.4.14.1, previously called cathepsin C or J) and
dipeptidyl peptidase III (DPP III, EC 3.4.14.4) can also be
responsible for N-terminal amino acid cleavage of Ang II.
These aminopeptidases are responsible for processing of
various proteins and peptides, including angiotensins [90,91]
They remove the Asp1–Arg2 dipeptide from Ang II forming
Ang IV [45,90–92] (Fig. 1).

Diaminopeptidases are also reported to cleave Val–Tyr
from Ang IV to form the putatively inactive Ang-(5–8) frag-
ment [85,90]. DPP I and DPP III were first characterized
as acidic lysosomal and basic cytosolic cysteine peptidases
respectively, however, their membrane-associated forms were
also described [91]. As shown in Table 1, DPP III possesses
substantially higher affinity for Ang II than does APA [90].
The affinity of DPP III for Ang III analogs is similar to the
affinity of APN for Ang III leading to the suggestion that DPP
III also metabolizes Ang III to the inactive Ang-(4–8) frag-
ment [90] (Table 1).

3.2. Endopeptidases

Several endopeptidases metabolize Ang II in the brain.
Neprilysin, thimet oligopeptidase, and neutral endopeptidase
cleave the Tyr4–Ile5 bond forming two tetrapeptides [93–95]
(Fig. 1). Prolyl endopeptidase can also metabolize Ang II by
cleaving the C-terminal Phe8 from Ang II to form Ang 1–7
[7,96,97] (Fig. 1). Moreover, all 4 of these endopeptidases
are able to cleave Ang I at the Pro7–Phe8 bond to form Ang-
(1–7) [45,95,98–100] (Fig. 1). Up until the observation was
made that Ang-(1–7) could stimulate vasopressin release
from hypothalamic explants [101] the removal of phe8 from
Ang II was thought to be a metabolic inactivation of the
peptide. However, Ang-(1–7) is widely recognized as having
activity on its own right [102], with its own receptor [103]

which may play a role in hippocampal plasticity [104]. Thus
the formation of Ang-(1–7) by prolyl carboxypeptidase must
be viewed as an enzymatic step leading to the formation of
an active angiotensin.

3.2.1. Neprilysin
Neutral endopeptidase (EC 3.4.24.11, EP 24.11, neprilysin,

NEP) is a member of the membrane-bound, M13 family of zinc-
dependent metalloproteases, that cleaves peptide bonds on the
amino acid side of hydrophobic amino acid residues [105,106].
It is constitutively expressed in several tissues including the
brain and kidney, but is developmentally regulated in other cell
types (e.g. lymphocytes). It terminates the activity of peptides
involved in cardiovascular regulation, inflammatory phenom-
ena, and is critical for synaptic neuropeptide metabolism.
Neutral endopeptidase has been called the “cholinesterase” of
peptidergic synapses by some authors [105,106]. Of note
neutral endopeptidase is reported to cleave Ang-(1–9) to Ang-
(1–7), Ang III to Ang-(5–8), and Ang-(1–7) to Ang-(1–4)
[43,107,108].

3.2.2. Thimet oligopeptidase and Neurolysin
Thimet oligopeptidase (EC 3.4.24.15, EP 24.15, thimet

endopeptidase, Pz-peptidase, endo-oligopeptidase A) and
neurolysin (EC 3.4.24.16, EP 24.16, “neurotensin-degrading
enzyme”) are members of the M3 family of Zn-dependent
metalloendopeptidases ubiquitously distributed in the central
nervous system and in peripheral organs of mammals
[109,110]. Initially, both proteases were considered to be
soluble enzymes, of which thimet oligopeptidase predomi-
nantly nuclear, while neurolysin was cytosolic. Later it was
demonstrated that in rat brain 20–30% of thimet oligopepti-
dase activity is associated with membranes, including plasma
membranes, endosomes and synaptic vesicles [94,111–114].
Moreover, Shivakumar et al. [95] recently showed that thimet
oligopeptidase is associated with AT1 and B2 receptors in
kidney cells, both at the plasma membrane and after receptor
internalization, suggesting a possible mechanism for endo-
somal disposition of ligand that could facilitate receptor
recycling. In the case of neurolysin, it has now been shown
that the enzyme is mainly cytosolic in astrocytes, but is
largely membrane-associated in neurons [115].

3.2.3. Prolyl endopeptidase
Despite being an endopeptidase, prolyl endopeptidase

(3.4.21.26, prolyl oligopeptidase, post-proline cleaving
enzyme), a member of the prolyl peptidase subfamily of
serine proteases, can cleave Pro–Xaa peptide bonds (where
Xaa is any amino acid) even when the Xaa amino acid is the
omega amino acid of the peptide [116,117]. As such, it also
has the ability to form Ang-(1–7) from both Ang II and Ang
I, Ang-(2–7) from Ang III, and Ang-(3–7) from Ang IV
[7,45,96,97,118,119]. Prolyl endopeptidase is an intracellular
enzyme responsible for degradation of several peptide
hormones and neuropeptides, which is highly conserved in
mammals and is one of the most abundantly expressed brain
peptidases [116,117,120,121].

Table 1
Affinities of some aminopeptidases for angiotensin peptides

Ang II Ang III Ang I

APA Ki=15 μM, Km=0.13 mM
[171];Ki=24 μM [172];
Km=35.3 μM [59]

No complete
inhibition
[171]

No
complete
inhibition
[171]

APM/N No complete inhibition [171];
no degradation [173]

Ki=3 μM,
Km=0.24 mM
[171];Ki=0.34 μM,
Km=2 μM [173]

No
complete
inhibition
[171]

DPP III Ki=0.34 μM [90] Ki a=0.3 μM [90]
a Analogs of Ang III.
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3.2.4. Other endopeptidases
Cathepsin B and elastase (described above for their ability to

form Ang I from angiotensinogen) have also been shown to be
able to cleave the Val3–Tyr4 bond of Ang II, whereas cathepsin
G cleaves the Tyr4–Ile5 bond [32,54] (Fig. 1). The various
fragments formed by these endopeptidases are virtually devoid
of biological activity.

3.3. Carboxypeptidases

3.3.1. ACE2 and ACE
As noted above, ACE2 can cleave Leu10 from Ang I, and

Phe8 from Ang II, to make Ang-(1–9) and Ang-(1–7)
respectively, and thus is viewed primarily as an angiotensin-
forming enzyme [43,46]. Interestingly the latter two peptides
seem to not be metabolized by ACE2. Of note, Ang-(1–7) is a
substrate for ACE, APN and DPPIII [85,90], whereas Ang-(1–
9) is metabolized to Ang II by cathepsin A (described above in
Section 2.4.) [7,45] (Fig. 1).

3.3.2. Prolyl carboxypeptidase
Prolyl carboxypeptidase (EC 3.4.16.2, angiotensinase C,

peptidyl prolylamino acid hydrolase) is another carboxypeptidase
capable of cleaving Ang II and Ang III at the Pro–Phe bond, to
yield Ang-(l–7) and Ang-(2–7), respectively [45,120,122–125]
(Fig. 1). It exists as membrane-associated and extracellular forms,
that remove the omega amino acid from peptides when the
penultimate amino acid is a proline [116,117]. It has an acidic pH
optimum (pH=5.0) when hydrolyzing short synthetic peptide
substrates, but retains significant activity in the neutral range with
longer, naturally occurring peptides (e.g. Ang II, Ang III, des–
Arg9–bradykinin) [122,124,126].

4. Protection of radiolabeled angiotensins in binding assays

After the discovery of the brain RAS, binding sites for
angiotensin peptides in the brain were extensively studied using

receptor binding techniques. The presence of angiotensin
binding sites in the brain has been demonstrated in a variety
of species [127–136] and subsequent in vitro autoradiographic
studies have directly localized these binding sites to specific
brain nuclei [137–141].

However, from the beginning all these studies faced a major
pitfall — severe metabolic degradation of angiotensin peptides,
which could and did negatively influence correct generation and
interpretation of binding experiments. There were two major
problems: 1) impossibility to reach steady-state conditions —
the time course for binding of radiolabeled angiotensins has a
bell shape (Fig. 2), and, 2) identification of different angiotensin
fragments, along with intact ligands, bound specifically
[133,134,142,143]. There have been three types of attempts to
solve these problems: addition of protease inhibitors to the
incubation medium, use of purified plasma membranes and
development of peptidase-resistant analogs of angiotensins.

4.1. Peptidase inhibitors

Attempts to overcome the problem ofmetabolic degradation of
angiotensin ligands during receptor binding studies have
invariably included a variety of protease inhibitors. The most
common of which include: sulfhydryl reagents (dithiothreitol, β-
mercaptoethanol), chelating agents (EDTA, EGTA, o-phenan-
throline), pure protease inhibitors (leupeptin, pepstatin, bacitra-
cin, amastatin, bestatin, PMSF), unrelated peptides (glucagon,
insulin, bovine serum albumin) [128,136,143,144]. Of note,
addition of peptidase inhibitors does not always help to protect the
ligand from degradation. One of the commonly used peptidase
inhibitors in angiotensin receptor binding assays, bacitracin, is
reported to activate aspartyl aminopeptidase (DAP) [67]. This
would promote its conversion to Ang III, thus distorting the
observations of binding kinetics. Moreover, dithiothreitol (DTT)
and other disulfide reducing agents are capable of activating
thimet oligopeptidase and DPPIII [90,145–147].

4.2. Subcellular fractionation

Virtually all brain angiotensin receptor binding assays have
used a membrane fraction. In most cases this involves mechanical
and osmotic disruption of the cells, centrifugal precipitation of the
membrane fraction, with the soluble/cytosolic enzymes as well as
the microsomal membrane fractions being discarded in the
supernatant. On occasion, synaptosomal preparations have been
used for receptor binding assays [142,148] to focus on receptors
expressed on the extracellular side of the plasma membrane.
However, additional steps must be taken to ensure that receptor–
ligand internalization (receptor-mediated endocytosis) does not
alter the binding kinetics and lead to subsequent degradation of
receptor-associated angiotensin peptides [149].

4.3. Peptidase-resistant analogs

Initial studies of brain angiotensin receptors used 125I–Ang
II. However, subsequent studies using angiotensin analogs
modified in the 1 and 8 position gave much better results

Fig. 2. Time course of specific binding of 125I–Ang III to a rat brain membrane
preparation. Rat brain membranes (50 mg initial wet weight/ml) were prepared as
described previously [169]. The incubation medium contained standard assay
buffer 150 mM NaCl, 5 mM EDTA, 0.1 mM bacitracin, and 50 mM NaPO4, pH
7.1–2, plus the following peptidase inhibitors: o-phenanthroline (1 mM),
puromycin (3 mM) phenylmethylsulfonyl fluoride (1 mM). A total of 2.5 mg
initial wet weight of brain membranes was present in 100 μl for this assay which
was carried out at 21–24 °C. Nonspecific binding was determined in the presence
of 3 μM Ang II and subtracted from total binding to derive specific binding.
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[140,143,144,150–152]. The most common amino terminal
substitution is sarcosine (N-methyl glycine) for aspartic acid.
Because sarcosine is a secondary amine, it resists degradation
by aminopeptidases. The lack of a side-chain on the alpha
carbon also contributes to its metabolic stability since it is a poor
substrate for the acid aminopeptidases (APA, DAP) primarily
responsible for removal of Asp1 of Ang II [58,59,67]. The most
common substitution to the carboxy terminal is the introduction
of an alkyl side chain-containing amino acid, with isoleucine
being the most often used amino acid. The substitution of the
aromatic phenylalanine with an aliphatic amino acid converts
the peptide to an antagonist [153,154], although there are
reports suggesting that some agonistic properties of the peptide
are retained [155].

The advantage of using antagonistic angiotensin peptides is
that the primary angiotensin receptor subtypes: AT1 and AT2
are G protein-coupled receptors, which show different agonist
binding affinity states depending on the presence of GTP or
GDP [156]. Of note, while the characteristic agonist affinity
shift for AT1 receptors has been demonstrated [157], the AT2
receptor does not show this shift [158], except in the presence of
dithiothreitol [159]. The AT2 receptor also appears not to
internalize [159,160]. However, it should be considered, that
unnatural sequences in angiotensin peptide analogs may not
fully represent agonist binding to angiotensin receptors.

4.4. Shortcomings of angiotensin protection in receptor
binding assays

Although all the above-mentioned approaches have had a
positive impact in preserving angiotensin ligands from degrada-
tion, none of them has been completely successful and metabolic
degradation still continued [143,148,161] (Fig. 3). Moreover,
both Grover et al. [148] and Abhold et al. [143] suggested that
binding assays using angiotensin peptides should include a
measurement of ligand metabolism, an identification of specif-
ically bound radioactivity; and a correction of specific binding
based on the amount of authentic radioligand bound.

However, it should be considered that, metabolism might
occur post-binding, in which case radiolabeled metabolites may
represent a portion of the specific binding of the radioligand. On
the other hand, the suggested correction of the specific binding
based on observed metabolism and identification of the
specifically bound radioactivity is a technically challenging
and cumbersome procedure. This might explain the paucity of
reports that have addressed this problem, i.e. correction of the
specific binding based on observed metabolism and identifica-
tion of specifically bound radioactivity to fully determine the
binding characteristics of angiotensin ligands in brain tissue.

It should also be noted that metabolic degradation can also
affect the ability of non-radiolabeled angiotensin peptides
(usually termed cold), used for estimation of the non-specific
binding of a redioligand, to fully compete for specific binding
sites. Determination of the affinity (expressed as IC50 or KI

values) of these non-radiolabeled angiotensin analogs for binding
to brain angiotensin receptors can also be differentially affected
by their susceptibility to metabolism by brain peptidases.

The most disappointing outcome of the practice of
preserving angiotensin ligands from metabolic degradation in
receptor binding assays is the case of sulfhydryl reducing
agents, in particular DTT. Pioneering studies of Glossmann
et al. [127], and Bennett and Snyder [128] indicated that the
addition of DTT was required for protection of the angiotensin
radioligands from metabolic degradation. Later it was shown
that DTT had the ability to increase the binding affinity for Ang
II in brain with no change in the density of the binding sites
[132,136]. At that period nearly all angiotensin receptor binding
studies conducted in brain were carried out in the presence of up
to 5 mM DTT. Printz et al. [136] in their paper mention: “…In
studies in our laboratories there is no question but that thiols
are essential for optimum binding of Ang II by membranes
isolated from brain and adrenal medulla…”

However, again starting from early studies, it was observed
that Ang II binding sites in non-neuronal tissues such as
vasculature [162], liver [163], and anterior pituitary [136]
showed reduced Ang II binding in the presence of DTT.
Consistent with this observation is the report by Ellis and
Nuenke [145] that β-mercaptoethanol enhances the activity of
pituitary DPP III, which converts Ang II to Ang IV. Moreover,
activation of thimet oligopeptidase by DTT is also well
documented [146,147].

This mystery continued until the late 80's–early 90's. During
this time, sulfhydryl reducing agents continued to be widely
used in angiotensin receptor binding assays in neuronal but not

Fig. 3. Metabolic fate of 125I–Ang II bound to a rat brain membrane preparation.
Rat brain membranes were prepared as described previously [169]. The
incubation medium contained 150 mM NaCl, 5 mM EDTA, 0.1 mM bacitracin,
and 50 mM NaPO4, pH 7.1–2. A total of 12.5 mg initial wet weight of brain
membranes was present in 500 μl for this assay, which was carried out for
60 min at 21–24 °C. After one hour incubation the membrane suspension was
centrifuged and the supernatant discarded. The pellet was resuspended in HPLC
mobile phase: 21% acetonitrile: 79% triethylamine phosphate (83 mM
phosphate, pH 3.0), periodically vortexed during 20 min and recentrifuged.
The supernatant was fitered through a 0.22 µm filter, applied to Sep-Pak® C18
(Waters Inc.) column and eluted with 21% acetonitrile: 79% triethylamine
phosphate (83 mM phosphate, pH 3.0). The eluate was run on a reverse-phase
(C18) column with a mobile phase of either 13% acetonitrile: 87% triethylamine
phosphate (83 mM phosphate, pH 3.0), to allow better resolution of smaller
fragments, or 21% acetonitrile: 79% triethylamine phosphate (83 mM
phosphate, pH 3.0) at a flow rate of 1.2 ml/min. Radiolabeled Ang II and
fragments were identified based on the elution times of radioiodinated standards
of Ang II and its fragments under the same HPLC conditions. 15 s fractions of
the column eluate were collected and counted in a gamma counter.
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peripheral tissues. The discovery of angiotensin receptor
subtypes led to the revelation that sulfhydryl agents severely
impair binding at AT1, but not at AT2 receptors [164–167].
Recognizing the fact that sulfhydryl reducing agents impaired
binding of angiotensin ligands to AT1 receptors, Speth and co-
workers [166] in a paper showing sulfhydryl agent-sensitive and
non-sensitive (AT1 and AT2 containing) nuclei distribution in
the rat brain noted: “… An inescapable conclusion from these
studies, however, is that the vast majority of Ang II receptor
binding studies in brain homogenates, and a large number of in
vitro receptor autoradiographic studies were carried out under
conditions that should have effectively inhibited binding to the
AIIα subtype (today known as AT1). Thus only a portion of
receptors were characterized for responsivity to various
conditions…”

5. Future perspectives

It is clear that the metabolic pathways for angiotensins are
complex and that we still have much to learn about the
metabolic fate of the various angiotensin peptides in the brain.
The relative importance of many of the pathways is unknown
due to uncertainties related to their cellular localization, affinity
for angiotensin peptides, their catalytic capacity, and their
expression levels in the brain. Other factors that can affect the
metabolic fate of angiotensins include developmental differ-
ences in enzyme expression, the presence of activators and
inhibitors of these enzymes, and the redox state of the brain.

It is also apparent that claims of specificity for various
enzyme inhibitors must be considered in the light of the expanse
of enzymes capable of metabolizing angiotensin peptides.
Defining an enzyme inhibitor as a specific inhibitor when only 2
or 3 enzyme preparations are tested is inappropriate because it
ignores the possibility that other, untested enzymes could be
affected. For example, enzyme inhibitors that interact with
sulfhydryl groups are likely to have widespread effects on a
large number of proteins, and not just enzymes, as has been
noted with the AT1 receptor.

Another interesting development has been the observation
that different angiotensin peptides can have opposing actions,
e.g., the Ang II counteracting effects of Ang-(1–7) [12,102] and
Ang-(2–10) [80], or complementary actions, e.g., the Ang II
protecting effects of Ang IV by virtue of its ability to inhibit
aminopeptidases [79]. It may be that other angiotensin
fragments are also capable of indirectly interacting with the
metabolic processes of angiotensin peptides.

Despite more than 30 years of research on brain angiotensin
receptors, the problem of metabolic degradation of angiotensin
ligands in brain Ang II receptor binding studies remains
unsolved. None of the reported binding studies for angiotensin
receptors are immune to the challenge that; 1) the radioligand
did not remain intact throughout the incubation period, 2) the
bound radioligand may not be representative of the binding of
the initial radioligand or 3) the conditions under which the
angiotensin peptide was protected from metabolism compro-
mised the ability of the angiotensin receptors to bind
angiotensins.

Correct characterization of the receptor binding kinetics of
angiotensin peptides can be carried out only in conditions where
peptide ligands as well as the receptors are preserved from
metabolic degradation, at least until steady state conditions can be
attained. However, at the same time, one needs to insure that the
ability of angiotensin receptors to interact with ligands will not be
impaired by procedures designed to protect ligand integrity.

Continuing studies of brain angiotensin receptors in our
laboratory have focused on resolving this problem and are
beginning to show some success[168]. However they have also
provided some unanticipated results: in the presence of p-
chloromurcuribenzoic acid (PCMB), a novel, non-AT1, non-
AT2 binding site for angiotensin peptides can be observed in the
brain[169]. However, PCMB, like DTT and β-mercaptoethanol
inhibits Ang II binding to AT1 receptors, presumably by
altering critical cysteine residues in the receptor. Thus it is
necessary to continue to be vigilant to alterations in angiotensin
receptor behavior while developing effective inhibitors of the
peptidases that metabolize angiotensins.
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