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ABSTRACT

Spiral galaxies range from bulge-dominated early-type galaxies to late types with little or no bulge. Cosmological models do not predict the
formation of disk-dominated, essentially bulgeless galaxies, yet these objects exist. A particularly striking and poorly understood example of
bulgeless galaxies are flat or superthin galaxies with large axis ratios. We therefore embarked on a study aimed at a better understanding of
these enigmatic objects, starting by compiling a statistically meaningful sample with well-defined properties. The disk axis ratios can be most
easily measured when galaxies are seen edge-on. We used data from the Sloan Digital Sky Survey (SDSS) in order to identify edge-on galaxies
with disks in a uniform, reproducible, automated fashion. In the five-color photometric database of the SDSS Data Release 1 (2099 deg2) we
identified 3169 edge-on disk galaxies, which we subdivided into disk galaxies with bulge, intermediate types, and simple disk galaxies without
any obvious bulge component. We subdivided these types further into subclasses: Sa(f), Sb(f), Sc(f), Scd(f), Sd(f), Irr(f), where the (f) indicates
that these galaxies are seen edge-on. Here we present our selection algorithm and the resulting catalogs of the 3169 edge-on disk galaxies
including the photometric, morphological, and structural parameters of our targets. A number of incompleteness effects affect our catalog, but it
contains almost a factor of four more bulgeless galaxies with prominent simple disks (flat galaxies) within the area covered here than previous
optical catalogs, which were based on the visual selection from photographic plates (cf. Karachentsev et al. 1999, Bull. Special Astrophys.
Obs., 47, 5). We find that approximately 15% of the edge-on disk galaxies in our catalog are flat galaxies, demonstrating that these galaxies are
fairly common, especially among intermediate-mass star-forming galaxies. Bulgeless disks account for roughly one third of our galaxies when
also puffy disks and edge-on irregulars are included. Our catalog provides a uniform database for a multitude of follow-up studies of bulgeless
galaxies in order to constrain their intrinsic and environmental properties and their evolutionary status.

Key words. catalogs – galaxies: spiral – galaxies: irregular – galaxies: photometry – galaxies: statistics – galaxies: fundamental parameters

1. Introduction

During the last decade an increasing number of studies of late-
type edge-on disk-dominated galaxies has been conducted, re-
flecting a growing interest in understanding these galaxies in
the framework of galaxy evolution and cosmological mod-
els. Models describing the chemodynamical evolution of disk
galaxies within a slowly growing dark matter halo can suc-
cessfully reproduce many of the observed properties of Milky-
Way-type disk galaxies (Samland & Gerhard 2003; Samland
2004). Models with high merger rates as mandated in hier-
archical merger scenarios face a number of problems when
comparing the predicted properties of galactic subcomponents
with observations (e.g., Abadi et al. 2003). It is even more

� The full catalog tables (Tables 2 and 3) are only available in elec-
tronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr
(130.79.128.5) or via
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/445/765

difficult to succeed in producing disk-dominated, essentially
bulge-less late-type galaxies, making these objects an evolu-
tionary enigma. In cold dark matter (CDM) simulations the re-
sulting disks are smaller, denser, and have lower angular mo-
mentum than observed. Major mergers increase the angular
momentum (e.g., Gardner 2001), but also destroy disks, hence
it seems unlikely that simple disk galaxies suffered major merg-
ers in the recent past. Adding feedback alleviates the angular
momentum problem to some extent (e.g., Sommer-Larsen et al.
2003; Robertson et al. 2005). However, D’Onghia & Burkert
(2004) point out that dark halos that did not suffer major merg-
ers have too low an angular momentum to begin with. This pre-
vents them from producing the observed extended disks from
the collapse of their associated baryons, since the specific an-
gular momentum of the gas cannot be increased by feedback
processes.

Overall, disk galaxies show a multitude of different mor-
phologies ranging from disk galaxies with a substantial

Article published by EDP Sciences and available at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20053981
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bulge and with high surface brightness to bulgeless low-
surface-brightness (LSB) galaxies (e.g., Schombert et al. 1992;
Matthews et al. 1999) and various complex bulge/disk com-
binations in between (e.g., Matthews & de Grijs 2004). While
certain properties such as the asymptotically flat rotation curves
seem to be shared by most disk galaxies, they differ in other key
properties such as surface brightness and scale length. In order
to understand how these systems form and evolve we need to
understand the morphological systematics from bulgeless disks
to disk galaxies with a dominant spheroidal bulge.

Historically, models consider disk formation as the result of
the collapse of a gaseous protogalaxy (e.g., Fall & Efstathiou
1980). Disks may then form from inside-out around a pre-
existing classical bulge (Athanassoula 2005) or via smooth ac-
cretion of material (Steinmetz & Navarro 2002). On the other
hand, intense star formation will also lead to the formation of
a bulge or a dense nucleus in a bulgeless disk galaxy, aided
by the rapidity of the gas infall and the total amount of the
accreted material (either through infall or mergers) (Noguchi
2001). Also bars, formed via instabilities of a disk, can trans-
port material to the disk center. The subsequent star formation
may build up an additional bulge component, which can then
stabilize the disk (Samland & Gerhard 2003).

Dalcanton et al. (1997) propose a scenario where gas in
low angular momentum protogalaxies collapses efficiently, re-
sulting in high-surface-brightness galaxies. Protogalaxies with
high angular momentum and lower mass, on the other hand,
evolve into LSB galaxies. Dalcanton et al. (1997) note that
“gravitational collapse in any hierarchical model with Gaussian
initial conditions leads to a broad distribution of halo masses
and angular momenta”, which could account for the observed
range of properties. Dalcanton et al. (2004) found that galax-
ies with disk circular velocities Vc > 120 km s−1 tend to show
bulges. They suggest that these objects are more gravitationally
unstable, which can lead to fragmentation and gravitational col-
lapse along spiral arms and subsequently to smaller gas scale
heights, pronounced dust lanes, and star formation. In this pic-
ture, slowly rotating disks are stable and have low star forma-
tion rates, implying also lower metallicities.

While these scenarios offer a convincing and internally con-
sistent explanation for the nature of disk galaxies, the frequency
and stability of disk-dominated galaxies is surprising from the
cosmological point of view. Hierarchical models of galaxy for-
mation include violent interaction phases that should destroy
disky systems (Steinmetz 2003; Taylor & Babul 2003). A bet-
ter knowledge of disk-dominated galaxies may hence be key
for understanding their formation, evolution, and survival.

The need for a homogeneous search for mainly bulgeless
edge-on galaxies was recognized by Karachentsev (1989), who
wanted to use these objects in order to investigate large-scale
streaming motions in the universe. He used photographic data
in order to identify and catalog these systems. The result-
ing catalogs are the “Flat Galaxy Catalogue” (hereafter FGC)
(Karachentsev et al. 1993) and its extension, the “Revised Flat
Galaxy Catalogue” (hereafter RFGC) by Karachentsev et al.
(1999). This RFGC is an all-sky survey and contains the largest
published compilation of visually selected bulgeless edge-on
galaxies: 4236 objects in total. A collection of edge-on disk

galaxies in the near infrared is provided in “The 2MASS-
selected Flat Galaxy Catalog” (Mitronova et al. 2004). Since
the appearance of these highly inclined disks is essentially
needle-like and does not exhibit a distinct bulge component
Karachentsev (1989) called them “flat galaxies”. Flat galax-
ies are thin edge-on spiral galaxies which seem to be (nearly)
bulgeless and of late morphological Hubble type (Sc/Sd and
later). A few years earlier, Goad & Roberts (1979) and Goad
& Roberts (1981) already called attention to edge-on galaxies
with extreme axial ratios. They called these systems “superthin
galaxies”. Superthin and flat galaxies belong to the same group,
which we will summarize here under the term “simple disk
galaxies”.

In order to contribute to a better characterization of these
objects, we carried out the work presented here, which aims at
compiling a uniform sample of disk-dominated galaxies from
modern CCD data at optical wavelengths. The Sloan Digital
Sky Survey (SDSS) with its homogeneous, deep, large-area
coverage provides an ideal data base for the identification
of such galaxies. The SDSS (York et al. 2000) is carrying
out multi-color imaging of one quarter of the sky, followed
by medium-resolution spectroscopy primarily of galaxies and
other objects of interest down to certain magnitude limits.
These data are pipeline-reduced and the resulting images,
astrometry, photometry, structural parameters, and calibrated
spectra are released to the public after a proprietary period
(Stoughton et al. 2002; Abazajian et al. 2003, 2004, 2005).

The SDSS with its resolution, dynamic range, and photo-
metric accuracy allows one to study statistical properties and
biases of disk galaxies such as their structure, intrinsic prop-
erties, overall frequency, and global scaling relations. The for-
mation and evolution scenarios can be probed by studying the
detailed structure and morphology (e.g., bulges, bars, halos,
knots, and lanes) and comparing these with predictions from
models (e.g., Samland & Gerhard 2003; Samland 2004; Immeli
et al. 2004). Also the frequency of warps of the edge-on galax-
ies and possible relations with the environment can be studied
easily using the SDSS. Warps should be relativy frequent since
Reshetnikov (1995) showed that about 40% of the FGC galax-
ies have pronounced warps. Radial and vertical color gradients
in these systems can shed light on the assembly of structure
and on the evolutionary state using the available multi-color
photometry.

In addition, the SDSS spectra enable the estimation of the
properties of the stellar populations, of the star formation rates,
central activity, and metallicities. The redshifts from the catalog
allow one to estimate the luminosities and sizes of the galax-
ies and the distribution of these properties. Also the environ-
ment of the cataloged galaxies can be investigated to probe the
distribution of the surrounding satellites, the Holmberg effect,
external influences on morphological evolution, and the local
density and properties (frequency, position, and alignment) in
a cluster environment.

We confined our search of the SDSS data base to edge-on
disk galaxies, which facilitates the definition of an effective se-
lection criterion. The choice of edge-on galaxies in particular is
the only way to reliably select pure disk galaxies based on their
optical morphologies. Altogether, we collected 3169 edge-on
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galaxies from the SDSS Data Release 1 (SDSS DR1). These
systems can be subdivided into subclasses according their ap-
pearance.

This paper is organized as follows: in Sect. 2 we describe
the training set of galaxies and the resulting selection criteria.
In Sect. 3 the actual target selection is explained. The classifica-
tion of the detected objects is presented in Sect. 4, followed by
a description of the catalog (Sect. 5). Comparisons to evaluate
the completeness of our selection are presented in Sect. 6. The
influence of dust extinction on the galaxy selection is discussed
in Sect. 7. Different types of galaxies and their subclasses are
discussed in Sect. 8. The last Sect. 9 contains the summary and
conclusions.

2. Training set and selection criteria

2.1. The data base

Our intent is to find edge-on galaxies with dominant stellar
disks. We are using Karachentsev et al.’s catalogs as a start-
ing point in order to carry out a systematic and reproducible
selection of these kinds of galaxies. The object selection in
the FGC and RFGC was based on the visual identification of
galaxies with an axial ratio of a/b � 7 and a major axis di-
ameter a >∼ 40′′ in the blue band on copies of the POSS-I and
ESO/SERC photographic plates. The availability of the SDSS
database permits us to carry out a survey using deep, homoge-
neous, five-color CCD data that are superior to the less deep,
inhomogeneous photographic plates. An added advantage of
the SDSS is that it will ultimately allow us to carry out such
a search in an automated, objective, repeatable fashion. This
certainly does not render the earlier studies superfluous since
the SDSS is not an all-sky survey and since the earlier identifi-
cations provide a valuable training set for the definition of the
selection criteria to be applied to the digital data. Furthermore,
the SDSS permits us to identify not only simple-disk candi-
dates, but also edge-on galaxies in general and to investigate
the properties of all of these different morphological types.

We have analyzed SDSS data from DR1 (Abazajian et al.
2003), which was the largest publicly available data set when
this work was started. DR1 provides 2099 deg2 of imaging data
observed in the five SDSS filters ugriz. The r-band depth of
these data is approximately 22.6 mag. Meanwhile the data re-
leases 2 (DR2) (Abazajian et al. 2004), 3 (DR3) (Abazajian
et al. 2005), and 4 (DR4) (Adelman-McCarthy et al. 2006) are
available, which cover successively larger areas on the sky. As
detailed in Abazajian et al. (2004), changes were made to the
data processing software between DR1 and DR2, but no such
changes occurred for DR3 as compared to DR2 (Abazajian
et al. 2005). We compared the SDSS photometry parameters
in DR1 and DR2 for our galaxies and found no significant
changes. However, in all of the releases some galaxies are af-
fected by so-called “shredding” (e.g., Abazajian et al. 2003,
2004; Kniazev et al. 2004a), i.e., these galaxies are detected
as two or more independent objects. This is found in particu-
lar for extended objects with substructure and diameters �1′.
A comparison of the different data releases showed that shred-
ded target galaxies are similarly miss-classified in all of these

releases. Some of the galaxies that were correctly identified in
DR1 turned out to be shredded in the later releases. Hence we
decided to continue to work with DR1 for the pilot study pre-
sented here.

2.2. Definition of a training set

In order to quantify a training set for the selection of disk-
dominated edge-on galaxies we searched for all RFGC galax-
ies with a right ascension between 00 00 00 and 02 12 00 in the
DR1 database, using the RFGC coordinates. In this coordinate
range we expect to recover 47 RFGC galaxies in the DR1. It
turned out that two of these objects have significantly different
coordinates from the galaxies detected in the SDSS, while a
third galaxy has a very different angular diameter in the RFGC
as compared to the SDSS. For the remainder, the difference be-
tween the RFGC coordinates and the SDSS coordinates is typi-
cally smaller than ±0.001 degrees (3.6′′). For this “training set”
that we re-identified in the SDSS, we found that the structural
parameters have slightly smaller values in the DR1 as com-
pared to the RFGC. We tested various combinations of SDSS
structural and photometric parameters that would allow us to
recover the galaxies in the training set (and additionally other
edge-on disk galaxies in the SDSS). Ultimately, these galaxies
should be recovered by performing an automated search of the
SDSS photometric catalog database.

2.3. Definition of the query

As the result of this empirical approach, we finally adopted
the parameters listed below for subsequent queries of the DR1
“Best Galaxy Table” (Abazajian et al. 2003). The DR1 “Best
Galaxy Table” is the table in the SDSS database containing all
parameters for galaxies that are of the highest quality at the
time of the data release.

– Axial ratio in the g band: a/b > 3, where a and b are the
major and minor axis, respectively.

– Angular diameter (isophotal major axis of the galaxy in the
“blue” g filter) a > 30′′.

– Colors in the range of 0.5 < g− r < 2 mag and 0.5 < r− i <
2 mag.

– Magnitude limit in the g filter <20 mag.

With these conditions we are able to essentially reproduce all of
the RFGC criteria and to recover the training set. In addition to
the RFGC galaxies, our query parameters yield a much larger
number of flat edge-on galaxies and other disk-dominated ob-
jects. This increase in numbers is in part due to the higher res-
olution and depth of the DR1 as compared to the photographic
plates, but also due to our intention to collect all edge-on disk
galaxies (including those with bulges). The latter is facilitated
particularly by our relaxed choice of minimum axis ratios.

The images of the thus found objects were then down-
loaded from the DR1 “Data Archive Server” (DAS) using the
SDSS rsync server. We downloaded the so-called “corrected
imaging frames” (fpC) in the five SDSS bands. For a detailed
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description of the fpC frames we refer to the on-line description
in the SDSS webpages1.

3. Target selection

After a visual inspection we removed contaminants from
our object list. The contaminants are mostly spikes (from
very bright stars) and artifacts such as satellite or meteorite
tracks which resemble an edge-on galaxy. Also strongly spike-
blended edge-on galaxies were rejected. Additionally, obvious
non-edge-on systems and unknown objects were removed. The
obvious non-edge-on systems are objects where a bright bar
in a faint disk simulates an edge-on disk. Apart from these
contaminants, our selection criteria produce a fairly uniform
sample of extended disk-dominated galaxies including objects
with bulges and bulgeless simple disks. All in all, 3169 objects
were assembled in our catalog. Some early-type edge-on spiral
galaxies are also included in the catalog, but internal dust lanes
introduce a bias in excluding a fraction of these galaxies. This
will be discussed in greater detail in Sect. 7. Additionally, our
sample is limited by our selection criteria and by the SDSS
photometry itself. The following biases affect our selection:
(1) Edge-on galaxies with very faint disks around bulges and
bright centers. (2) “Shredded galaxies”. (3) Galaxies with un-
usual colors caused by an AGN and/or dust.

The edge-on galaxies remaining in our sample after visual
inspection and removal of contaminants fall into three general
morphological groups:

– pure bulgeless disks/simple disks;
– galaxies with a disk and an apparent bulge;
– objects with disks and central light concentration but no ob-

vious bulge-like structure. These may be considered an in-
termediate class between the simple disks and galaxies with
bulges. This group also comprises edge-on disky irregulars.

Out of these galaxies, an effort was made to select by eye ob-
jects spanning the full range in properties including different
disk thicknesses, different bulge sizes, and presence or absence
of dust lanes. The result is a subsample of 129 galaxies that
is our morphological “reference set”. Via visual inspection we
subdivided this reference set into 42 simple disks, 37 galaxies
with a bulge, and 50 intermediate types with central light ex-
cess. We then used this subsample to further automate the sep-
aration process and to develop a code to recover these general
classes of edge-on galaxies in the SDSS DR1.

We found that the luminosity-weighted mean value of the
ellipticity (hereafter ε) of the elliptical isophotes is a very ro-
bust separator between simple disks and the other edge-on
types. In combination with the concentration index (hereafter
CI) we can also exclude galaxies with an apparent bulge. The
CI clearly separates galaxies with bulge from those without an
apparent spheroidal component. This will be detailed in the fol-
lowing sections.

1 http://www.sdss.org/dr1/dm/flatFiles/fpC.html

3.1. Isophote fitting

The following analysis is performed with the MIDAS analysis
package developed by the European Southern Observatory. We
applied it to the frames in all five SDSS filters, but only used
the results for the three most sensitive bands gri. Unless ex-
plicitly specified otherwise, magnitudes quoted below refer to
each of the separate bands. Firstly, we subtract the sky and the
“softbias” from all frames. The softbias is an additional off-
set of 1000 counts per pixel in order to avoid negative pixels
in the images. The sky and softbias were subtracted as mean
values from the images. The values of the sky and softbias
are stored in the header of each fpC frame. Then we use the
MIDAS surface photometry package “surfphot” to fit ellipses
to the isophotes of our galaxies. The innermost ellipse is fitted
adopting the center coordinates given by the DR1 photomet-
ric database. The intensity of the innermost isophote is derived
from the luminosity of the brightest pixel in a box (8× 8 pixel)
that corresponds to the galaxy center.

In steps of 0.2 mag the program fits ellipses until an
isophote is reached that corresponds to a surface brightness
of µ = 25 mag arcsec−2. This implies that on average
20–30 isophote levels are plotted for every galaxy depending
on the size and brightness. This isophote algorithm is based on
the formulae of Bender & Moellenhof (1987).

3.2. Measuring the luminosity-weighted mean
ellipticity and concentration index

We use the resulting values of the isophote levels and the ma-
jor (a) and minor (b) axes in order to derive the luminosity
weighted mean ellipticity of the elliptical isophotes (ε). ε is
defined as

ε =

n∑

i=1
εi · Ii

n∑

i=1
Ii

(1)

and

εi = 1 − bi

ai
(2)

is the ellipticity of the ith isophote, whereas

Ii = zi · ((a · b)i − (a · b)i−1) · π (3)

is the intensity between two isophote levels. The isophote level
is indicated by zi.

For the CI of these objects we used the ratio of the follow-
ing SDSS parameters

CI = petrorad_90 · petrorad_50−1. (4)

This is the ratio of the Petrosian radii (petrorad) that contain
90% and 50% of the Petrosian flux in the same band, respec-
tively (see Stoughton et al. 2002). The Petrosian radius is the
radius of a circular aperture at which the “Petrosian ratio” is set
to a fixed value of 0.2. This “Petrosian ratio” is the ratio of the
surface brightness in an annulus at a certain radius to the mean
surface brightness within a circle with this radius. As discussed



S. J. Kautsch et al.: Edge-on disk galaxy catalog 769

 0

 5

 10

 15

 20

 25

 1.5  1.7  1.9  2.1  2.3  2.5  2.7  2.9  3.1  3.3  3.5  3.7  3.9  4.1  4.3  4.5

N
um

be
r

Concentration Index (r-band)

Disk Galaxies with Bulge
Intermediate Types

Simple Disk Galaxies

Fig. 1. Number distribution of the visually selected galaxies versus
their concentration index (CI).

in Strauss et al. (2002) the use of circular apertures instead of
elliptical apertures is fairly insensitive to inclination. Similarly,
the Petrosian magnitudes are derived from the Petrosian flux
using a circular aperture centered on every object. The advan-
tage of this method is that this allows an unbiased measure-
ment of a constant fraction of the total galaxy light using the
technique based on that of Petrosian (1976). For a detailed de-
scription of the Petrosian parameters used in the SDSS we refer
to Blanton et al. (2001) and Yasuda et al. (2001).

The CI is known as a morphological separator between
early- and late-type galaxies (see, e.g., Strateva et al. 2001;
Shimasaku et al. 2001; Nakamura et al. 2003; Shen et al. 2003;
Kniazev et al. 2004a). With the CI and with ε as separators we
recover our visually selected subgroups of the training set very
well automatically. Therefore we applied this procedure to all
edge-on galaxies in our catalog.

3.3. Choosing the limiting values of CI and ε

In order to determine which choices of CI distinguish best
between the general types of edge-on galaxies we use a his-
togram with the distribution of the CIs of the visually “classi-
fied” galaxies in our reference set (Fig. 1). Clearly, the majority
of the simple disk galaxies has a CI < 2.7, hence we adopt a CI
of 2.7 as the boundary condition to differentiate between simple
disks and intermediate-type galaxies from those of with an ob-
vious bulge component. A slightly lower value was often used
in previous morphological studies of galaxies from the SDSS
in order to separate between S0/Sa-type spirals and later spiral
types (Strateva et al. 2001; Shimasaku et al. 2001; Nakamura
et al. 2003; Shen et al. 2003). Contrary to our study these au-
thors did not limit their samples to edge-on galaxies. Disky ir-
regular galaxies exhibit very low CIs: the limit is CI < 2.15
(see also discussion in Kniazev et al. 2004a). Unfortunately it
is not possible to separate the intermediate type from simple
disks using only the CI. As one can see in the histogram the
two remaining classes are merged at low values of the CI de-
spite their different morphological appearance.
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For that reason we use the weighted mean ellipticity of the
isophotes ε as the second discriminator. Other possible mor-
phological separators from the literature such as colors, asym-
metry index, and profile likelihoods (Strateva et al. 2001), as
well as decomposition (Kelly & McKay 2004) and Gini in-
dex (Abraham et al. 2003; Lotz et al. 2004) turned out not to
be useful for the sensitive characterization of edge-on galaxies
(Kautsch & Grebel 2003) probably because of the influence of
dust and of the galaxy inclination on these separators.

We again use a histogram of the number distribution
(Fig. 2) of the ε values of the training subsample. In this case
we intend to separate the intermediate types from the simple
disks. We defined the region of 0.75 ≤ ε < 0.8 as the transi-
tion zone between the classes and a value of ε = 0.8 as the
sharp border. This limiting value allows us to select the best
simple disk candidates and the transition types. Additionally,
with ε < 0.55 we can divide the class of galaxies with a bulge
into early and later types.

4. The classification of edge-on galaxies

In order to flag these systems we follow the terminology intro-
duced by de Vaucouleurs (1959). In his scheme, spiral galaxies
are marked with an additional letter referring to the shape of
the spiral arms, e.g., “r” means ring shaped and “s” s-shaped
spiral structure when seen face on. We will instead use an “f”
to indicate that a galaxy is flat, i.e., contains an edge-on com-
ponent with or without a bulge. Furthermore, we introduce
the following subclasses: galaxies with bulges (Sa(f), Sb(f));
simple disks (Sd(f)), Sc(f) and an intermediate group between
Sc(f) and Sd(f) called Scd(f), and disky edge-on irregulars
(Irr(f)). Representative examples of the general class mem-
bers are shown in Fig. 3. The three galaxies shown are for the
Sb(f) class (SDSS J020405.91-080730.3), for the Scd(f) class
(SDSS J102903.90+611525.8), and for the Sd(f) class (SDSS
J135309.65+045739.3). These galaxy images are three-color
(g, r, i) composites provided by the SDSS DR3 Image List Tool
and have a scale of 90′′ in X and Y direction. The separation
diagram, Fig. 4, exhibits CI and ε in order to separate these
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Fig. 3. The left image is a typical member of the class of galax-
ies with bulge Sb(f): SDSS J020405.91-080730.3. A typical ex-
ample of the Scd(f) intermediate class is in the middle: SDSS
J102903.90+611525.8. Simple disk galaxies Sd(f) have an appearance
like SDSS J135309.65+045739 at the right. All images are cutouts
from the DR3 Image List Tool. These images have a scale of 90 square
arcsec.

classes. The abscissa represents the luminosity-weighted mean
ellipticity of the isophotes ε. The ordinate shows the concen-
tration index CI as taken from the SDSS. The values are given
in the SDSS r band2. The automatically recovered simple disk
galaxies are hereafter marked with Sd(f), the intermediate types
with Scd(f) and Sc(f), the galaxies with bulges with Sa(f) and
Sb(f), and irregulars with Irr(f). The lines mark the borders be-
tween the general classes and the subtypes in our new classifi-
cation within the general classes. The selection parameters for
the g, r, i bands are listed in Table 1.

In the histogram in Fig. 5 we plotted the number distribu-
tion of the apparent diameters of our galaxies. The majority
of our objects is smaller than 60′′ (∼88% of all catalog ob-
jects). Only ∼2% of all galaxies in our catalog have a diameter
larger than 100′′ (Fig. 5). In order to check the influence of the
size of the objects on our separation we plotted galaxy samples
with different angular size (less than and greater than 60′′) in
Fig. 6. This permits us to test whether higher resolution affects
the separation process, in particular whether bright centers and
extended disks bias the classification. The upper inset shows
the number distribution of the CIs. Both size samples follow
the same distribution. In the bottom inset the number distribu-
tion of ε is presented.

Galaxies with diameters a > 60′′ tend to have slightly
higher values of ε, since these galaxies tend to be closer to us,
facilitating the detection of more highly eccentric isophotes in
the outer regions of these extended objects.

Using visual inspection we found that all Sd(f) types with
an angular diameter a > 60′′ show the appearance of a simple
disk. Consequently they are assigned to the correct class by the
automated algorithm. We therefore conclude that the defined
limiting values of our catalog are still robust enough so that size

2 For the selection from the photometric database we used the g
band in order to make the parameters comparable to those used for
selecting the FGC. In the following diagrams, however, we refer to
the r band. This filter is mostly used in the other studies involving
the CI (Shimasaku et al. 2001; Nakamura et al. 2003; Shen et al.
2003) because its quantum efficiency is the highest of all SDSS bands
(Stoughton et al. 2002). In addition it includes the red light of the
bulge which is important to separate galaxies with bulges from bulge-
less galaxies.

Table 1. Limiting values. These are the values of the limits of the mor-
phological classes. The values are valid for the SDSS g and r bands.
The value for the i band is the same as in the other filters for ε. For
CI it is slightly higher because i is more sensitive for the dominant
redder bulge stars. In this case one should add a value of 0.1 to the
numbers of the CI in this table. In general, note that the galaxies near
boundaries have the least certain classification.

Class ε CI

lower limit upper limit lower limit upper limit

Sa(f) − <0.55 ≥2.70 −
Sb(f) ≥0.55 − ≥2.70 −
Sc(f) − <0.75 ≥2.15 < 2.70

Scd(f) ≥0.75 <0.80 ≥2.15 < 2.70

Sd(f) ≥0.80 − − < 2.70

Irr(f) − <0.80 − < 2.15

and resolution do not affect the classification. The influence of
resolution on the separation is discussed in Sect. 7.

5. The catalog

The main catalog is listed in Tables 2 and 3. The structural pa-
rameters of the catalog entries are shown in Table 2. Table 3
contains the photometric parameters and the redshifts. All en-
tries are ordered by increasing right ascension. The full tables
are available from the CDS. These tables contain all edge-on
galaxies with disks that fulfill our automatic selection criteria,
ranging from early-type spirals to late-type spirals and irregu-
lars. In total, our catalog contains 3169 objects.

Table 2 is organized as follows: Col. (1) presents the galaxy
name in the SDSS nomenclature, which is consistent with the
IAU nomenclature requirements. The following two Cols. (2)
and (3) contain the coordinates of the galaxies, i.e., right as-
cension and declination for the epoch J2000. Column (4) indi-
cates the general class (simple disks: Sd(f); intermediate types:
Sc(f), Scd(f) and Irr(f); galaxies with bulge: Sa(f) and Sb(f)).
The Cols. (5)–(7) show our derived value of ε in the g, r, and
i bands. Columns (8)–(10) contain the CI in these same bands.
The angular diameter in g, r, and i in arcsec is presented in
Cols. (11)–(13). The axial ratios in the g, r, i bands are de-
rived from the ratio of isoA/isoB of the SDSS parameters and
are listed in Cols. (14)–(16). isoA is the isophotal major axis
and isoB the isophotal minor axis of an isophote with a surface
brightness of µ = 25 mag arcsec−2 (in the respective band) as
given by the DR1 pipeline.

Table 3 starts with the SDSS designation of the galaxy
(Col. (1)) followed by our proposed class in Col. (2). Petrosian
magnitudes and their uncertainties are provided in the g, r,
and i bands in Cols. (3) to (8). The total surface brightness
in g, r, i is given in Cols (9), (10), and (11). We derived it
using the parameters petroMag + rho, which are given in the
SDSS DR1 database. In this database, rho is five times the
logarithm of the Petrosian radius in the i band. The Petrosian
magnitudes and their uncertainties as well as the total surface
brightnesses were adopted from the SDSS DR1 archive. The
Petrosian magnitudes and the total surface brightnesses are
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Fig. 6. Separation diagram with the emphasized size samples.
Galaxies with angular diameters larger than 60 arcsec are indicated
with filled points, smaller galaxies with fine dots. The upper inset
shows the number distribution of the concentration index, the bottom
inset that of the weighted mean ellipticity. Objects with a diameter
a � 60 arcsec are denoted by the dashed line. The others are indicated
by a filled black line.

6. Completeness considerations from sample
comparisons

6.1. A comparison of our automatically selected
galaxy sample with our visually classified sample

In order to estimate the completeness of our general morpho-
logical groups, we compare the results from our code with
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Table 4. Galaxy classes and their fractions. The absolute numbers of
galaxies in the various morphological subclasses and their percentages
with respect to the catalog entries as a whole are listed in this table.

General Class Number Percentages
Sa(f) 222 7.01
Sb(f) 843 26.60
Sc(f) 1005 31.71

Scd(f) 503 15.87
Sd(f) 501 15.81
Irr(f) 95 3.00
Total 3169 100.00

those from the visual inspection using the reference set that we
compiled to automate the separation process. Here we com-
pare the three general classes, which are galaxies with bulge,
intermediate types, and simple disk objects. According to the
previously defined limiting values for the three general types,
class Sd(f) contains 501 simple disks. The comparison with our
visual galaxy classification shows an agreement of 97%. Using
our automated procedure, we identified 1065 objects from the
bulge class (Sa(f) and Sb(f)). 88% of these were also identified
as clear bulge galaxies in our visually selected reference set.
The intermediate class contains the largest fraction of galax-
ies (1603 objects). This class is not homogeneous and contains
Sc(f), Scd(f) and Irr(f) types. The comparison with the refer-
ence set indicates a completeness of 69%, i.e., 31% belong to
other classes using visual inspection. 88% of these 31% seem
to belong to the simple disk class when classified by eye. This
suggests that the automated classified intermediate class con-
tains a large number of Sd(f) types.

The division between the classes is necessarily somewhat
arbitrary, and galaxies close to a boundary may in many cases
also be considered members of the adjacent class. For in-
stance, uncertainties can be introduced by variations in galaxy
properties which are a form of “cosmic noise”. We required
our visual subdivision to be consistent with the earlier studies
(Karachentsev et al. 1993, 1999).

The number of Sd(f) objects is relatively low. However, we
intentionally chose fairly conservative separation criteria in or-
der to minimize possible contamination of our thus selected
simple disk sample. If we use a more generous lower limit-
ing value of ε � 0.75 and include the Scd(f) objects as simple
disks, the simple disk object class contains 1004 galaxies (ex-
tended simple disk sample of seemingly bulgeless types, Scd(f)
and Sd(f)). This corresponds to 32% of the total catalog and
enlarges the simple disk class by a factor of two. With this
selection, however, the contamination by other types is larger
than with the more rigorously defined limits for simple disks.
Table 4 contains the absolute numbers and percentages of the
various classes in comparison to the entries in the catalog as a
whole.

6.2. A comparison of the revised flat galaxies catalog
with our catalog

We searched for the RFGC galaxies in the SDSS DR1 using
the coordinates given in the RFGC and recovered 328 objects.

Then we checked how many of these galaxies are recovered in
our catalog using our selection criteria. We found 273 objects
in common.

The remaining 55 RFGC galaxies were studied to find
out why they were not recovered. In most cases objects are
not recovered because they are not detected as SDSS targets
(“Photoobjects”). This is the case when a galaxy is located near
the borders of an SDSS stripe, which has the consequence that
this object is not included in the “Best Galaxy Table” and sub-
sequently not detected in the SDSS “Galaxy” catalog. In the
cases of relatively extended objects these systems are “shred-
ded” by the SDSS detection software and thus not included in
our catalog. Furthermore, there are a few cases where the SDSS
shows a galaxy with an inclination deviating from an edge-on
orientation at a given set of RFGC coordinates. A small sub-
set of RFGC galaxies are not really edge-on galaxies. If RFGC
galaxies are very close to nearby bright foreground stars, they
are also rejected by the SDSS software. We conclude that we
recovered all RFGC galaxies that conform to our selection cri-
teria except for those missed by the SDSS software and for
those that are not edge-on. Hence the RFGC is more complete
than our catalog for nearby (and hence seemingly large) edge-
on systems. The RFGC is also more complete in terms of spa-
tial coverage since it does not suffer from the detection prob-
lems near the bright stars or edges of stripes.

We plot the location of the recovered RFGC galaxies in our
separation diagram in Fig. 7. It is clearly seen that most of the
RFGC objects belong to the Scd(f) and Sd(f) class (184 of 273).
Additionally, a smaller number of RFGC systems is found in
the Sb(f), Sc(f) and Irr(f) classes. This is illustrated in the two
inserted histograms in Fig. 7: RFGC objects clearly exceed our
chosen limits for simple disk galaxies in the case of both dis-
criminators, the CI (upper inset) and the ε (bottom inset). That
means that Karachentsev et al. (1993) and Karachentsev et al.
(1999) did not only select simple disk systems, but also in-
cluded some mixed-morphology galaxies, whose classification
we can now correct thanks to the CCD data3.

With our separation routine we have thus improved the
identification of simple disks in contrast to the flat galaxies cat-
alogs. There are several reasons for this improvement: one is
that the CCD images of the SDSS have a greater uniformity
than the earlier employed blue POSS-I and ESO/SERC photo
plates. In addition, the SDSS imaging data are deeper – they are
50% complete for point sources at g = 23.2 mag (Abazajian
et al. 2003). The limiting magnitude of the blue POSS-I plates
is 20 mag(R) (see Minkowski & Abell 1963, p. 481), and of the
ESO/SERC J plates is 22.5 mag(B) (Reid et al. 1991). Because
of the higher sensitivity, depth, and resolution of the SDSS, we
can identify more substructure within our galaxies, which leads
to a more accurate classification. This improved classification
benefits from our choice of the SDSS r-band, which has the
highest photon efficiency in the SDSS.

3 Note, however, that our catalog contains all edge-on disk galax-
ies that we identified with our selection criteria, including mixed-
morphology and bulge-dominated galaxies. The galaxy type can be
found in Tables 2 and 3 as explained earlier.
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Our selection parameters include galaxies with smaller di-
ameters and extend to fainter magnitudes. A comparison of the
magnitudes and diameters of the recovered RFGC objects and
the remaining galaxies from our catalog is shown in Fig. 8.
As is to be expected, the figure shows that our catalog con-
tains objects with smaller diameter as well as fainter objects.
Furthermore, our catalog contains galaxies not detected in the
RFGC but with diameters and luminosities in the range of the
RFGC galaxies. Note that we also have a larger number of more
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Fig. 9. Comparison of the depth of this catalog versus the recovered
RFGC objects. The objects of the RFGC are large filled points, the
catalog galaxies are small dots.

luminous galaxies at a given diameter. This is the consequence
of permitting smaller axial ratios than the RFGC, which fa-
vors a larger number of disk galaxies with a bulge. Moreover,
we show in Fig. 9, that in order to recover the RFGC galax-
ies from the SDSS database, we need to use selection cri-
teria with smaller axis ratios. The SDSS axis ratios tend to
be smaller than those of the RFGC. When comparing the
number of seemingly bulgeless types (our Scd(f) and Sd(f)
class with ε � 0.75 and CI < 2.7), our catalog contains
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1004 objects including 184 RFGC galaxies (out of 273 RFGC
galaxies within the DR1 area). While we are missing galaxies
near the edges of stripes etc., we still have ∼3.7 times more
simple disk galaxies than were found in the RFGC within the
same area. As Fig. 8 illustrates, this is only in part because of
the inclusion of smaller axis ratio. We attribute it also to the
higher sensitivity and homogeneity of the SDSS.

It is difficult to determine absolute completeness numbers
for our survey. For instance, in order to recover the initial
RFGC training set, we had to decrease the angular diameters as
compared to the parameters chosen in the RFGC. Furthermore,
some incompleteness effects will affect all galaxies alike (e.g.,
the non-detection due to the location close to the border of
a stripe), whereas for instance dust will affect certain galaxy
types in particular (see next section).

7. The influence of dust and distance

We have subdivided our edge-on galaxies in objects with bulge
and in simple disk systems without a bulge component. In this
section we discuss the expected influence of dust on our sepa-
ration procedure and a resolution bias caused by distance.

The distribution of dust in spiral galaxies has been the sub-
ject of a lively debate over decades. Recent studies try to model
the influence of dust on the surface photometry. Kuchinsky
et al. (1998) compared the optical/near infrared (NIR) color
gradients of edge-on galaxies with the reddening from radiative
transfer models. These models use Monte-Carlo techniques in
order to describe the radiative transfer of photons (including
scattering, absorption, and re-emission) in different dust envi-
ronments (Gordon et al. 2001). Other models were applied to
edge-on galaxy examples (see e.g., Xilouris et al. 1997, 1998;
Pohlen et al. 2000; Popescu et al. 2000; Misiriotis & Bianchi
2002). The best models include a homogeneous and clumpy
distribution of dust (Kuchinsky et al. 1998). Tuffs et al. (2004)
computed the attenuation of stellar light at different inclina-
tions, wavelengths, and opacities from the different geometrical
components of a spiral galaxy. They found that the extinction
strongly depends on the inclination. In the case of edge-on sys-
tems most of the attenuation by dust occurs in the thin disk
component, which often includes a typical dust lane.

But the amount of dust in different edge-on spiral types is
not constant. This was recently shown by Stevens et al. (2005)
with new SCUBA observations. Their measurements show that
the flat galaxy NGC 5907 (FGC 1875) contains a very high
amount of neutral hydrogen but only small amount of total dust.
A high ratio of the mass of the neutral hydrogen to the mass of
cold dust implies a very low star formation efficiency. In addi-
tion, Matthews et al. (1999) and Matthews & van Driel (2000)
show the “lack of a quintessential dust lane” in the prototyp-
ical superthin galaxy UGC 7321. In another paper, Matthews
& Wood (2001) conclude that the dusty interstellar medium
(ISM) in this type of objects has a clumpy and patchy distri-
bution. They derived the observed properties of dust with the
aid of a multiphase ISM model and found that “≈50% of the
dusty material in UGC 7321 is contained in a clumpy medium”.
The other half has a diffuse distribution. UGC 7321 is an LSB

galaxy with a large axial ratio and no bulge component, a typi-
cal simple disk.

What are the differences in the properties of edge-on galax-
ies with an organized dust lane and those that exhibit a clumpy
and diffuse dust distribution? Dalcanton et al. (2004) found a
clear boundary between edge-ons with and without a dust lane.
They conclude that the dust distribution is connected with the
rotation velocity, i.e., galaxy mass. Organized dust lanes ap-
pear in high surface brightness objects with a relative rapid
rotation velocity. In galaxies with rotation velocities below
Vc = 120 km s−1 the dust has not settled into a thin dust lane.
The dust distribution of these simple disk galaxies with typi-
cally a low surface brightness is clumpy and diffuse out to large
scale heights.

What is the effect of a clumpy or an organized dust distri-
bution on our separation values? In galaxies with a small angu-
lar size the dust lanes are unresolved, especially in those with
larger distances. For these galaxies it is not a simple exercise
to verify the existence of an intrinsic dust lane. In some of our
larger and brighter galaxies a dust lane is visible, in others not.
The dust is concentrated in the thin disk component and con-
sequently the light attenuation caused by the thin disk is the
highest (Tuffs et al. 2004). The stellar disk disappears in the ex-
treme cases where a large amount of dust extends beyond the
whole disk. Therefore the consequences of the dust attenuation
of the disk are expected to be stronger in more massive galax-
ies like NGC 891. In these objects the probability of a domi-
nant bulge is high. They are more metal-rich and are expected
to contain more dust (mass-metallicity relation, e.g., Dalcanton
et al. 2004). In general, the dust dims the thin disk with respect
to the bulge brightness. This circumstance introduces three ad-
ditional biases for our catalog:

1. Early-type disk galaxies: our catalog has an incompleteness
for galaxies with big bulges and attenuated underlying thin
disks. In these cases the disk cannot easily be detected as a
bright structure because its morphology is like a dark line
in a bright bulge component. Therefore this catalog is likely
to be incomplete for dusty early-type spirals, especially for
the types S0(f) and Sa(f), where we may be missing the
disks. This may lead to an overestimate of the number of
simple disks as compared to pronounced bulge-disk sys-
tems.

2. Massive late-type spirals/massive simple disks: a bias is
shown in the extreme cases where the thin disk of a high-
mass simple disk galaxy is almost completely obscured by
dust. In this case the galaxies may have too small an ax-
ial ratio a/b to be selected for our catalog. In the less ex-
treme cases of high-mass simple disk galaxies the dust dims
the thin disk. The influence of dust in a simple disk is that
the value of ε decreases because a dusty disk appears to be
thicker. For that reason, the affected galaxies may exhibit
an offset toward the intermediate class in the separation di-
agram (Fig. 4). The CI of such galaxies is not distorted be-
cause these objects have no distinct bulge.

3. Objects at large distances are affected by a resolution bias.
The consequences are that an unresolved dustlane dims the
light of the stellar disk compared to a dust-free disk. This
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does not affect ε; the disk looks simply smaller. This may
lead to a slight increase of the CI for disks with a bulge.
However, the separation of the general classes does not
seem to be displaced by the presence or absence of unre-
solved dust lanes. The important effect is that a strongly
dimmed disk looks smaller and may fail to pass the se-
lection criterion. The catalog will be more incomplete for
small angular size disk galaxies with unresolved dust lanes.
To reduce this effect we impose a minimum diameter in our
search.

A future paper is planned in order to explore the effects of dust
using simulated galaxies with varying amounts of dust and
inclinations.

8. Discussion

We identified edge-on disk galaxies in the SDSS DR1, which
we subdivide in the following classes:

Disk galaxies with a bulge; Sa(f), Sb(f) (CI � 2.7): the frac-
tion of these objects in the catalog is 34%. This class con-
tains spiral galaxies with a bulge that are not affected by the
selection effect described in Sect. 7.

Intermediate class; Sc(f), Scd(f), Irr(f) (CI < 2.7 and ε <
0.8): these late-type galaxies show a central light concen-
tration and often a bouffant disk but no obvious bulge.
With a fraction of 50% these types represent the major-
ity in this catalog. These galaxies may have an inclina-
tion slightly smaller than edge-on or may show pronounced
warps. At CI < 2.15 and ε < 0.8 the class of disky edge-
on (dwarf) irregulars appears. They show an asymmetric
“puffy” disk with small clumpy (not central) light concen-
trations comparable to those found by Parodi et al. (2002)
or blue compact dwarfs (e.g., Sandage & Binggeli 1984);
see also Kniazev et al. (2004a).

Simple disk galaxies; Sd(f) (CI < 2.7 and ε � 0.8): these
galaxies appear to be pure bulgeless disks. Using the con-
servative separation values, this class contains 16% of the
catalog objects.

In order to check the usefulness of our separation we visually
inspected galaxies in the extreme regions in our separation
diagram and found the following subgroups:

Dusty disk-dominated galaxies (CI � 2.6 and ε � 0.75):
these types have flat extended disks and slight central light
concentration. The majority of this type appears as ex-
tended disks with dust lanes, small bulges and very blue
outer disks.

Complex bulge/disk systems (CI � 3 and ε < 0.7): these
types are mostly complex bulge-disk systems. The bulge
of these systems becomes clearly visible. In some of these
types a stellar disk extends out to large scale heights and
forms a bright but diffuse envelope around the galaxy.

In addition to the visual inspection of all galaxies in the ex-
treme regions in the ε–CI space we also checked galaxies lo-
cated in the central regions of the selection boxes for every gen-
eral type by eye. In agreement with our expectations we found

simple disk systems at high ε and low CI (0.8 < ε < 0.85
and 2.3 < CI < 2.4). Their appearance is blue and needle-like.
Intermediate values of CI and ε reveal the region where inter-
mediate types are concentrated (0.7 < ε < 0.75 and 2.5 < CI <
2.6). This group is dominated by lenticular-shaped puffy disks
and smooth central light concentration but no dominant bulge
component. The center is slightly redder than the bluer outer
parts in these systems. It seems that they often have extended
faint LSB disks around the bright parts. We checked the central
region of disk galaxies with dominant bulges (0.65 < ε < 0.7
and 3 < CI < 3.1). These early-type spirals are visibly less blue
than the other general types in this catalog, and galaxies with
bulge are the less well-populated group.

The highest concentration of galaxies can be found in the
transition zone between the intermediate types and the simple
disks. This indicates the lack of clear-cut boundaries between
different types; instead we are seeing a continuum.

Figure 10 shows a comparison of the general classes with
surface brightness. As shown in this figure, the presence or ab-
sence of bulges has an influence on the overall surface bright-
ness of a galaxy as one would expect. Simple disk galaxies have
the lowest intrinsic surface brightnesses of all edge-on galax-
ies in this catalog. For this plot we use the surface brightness
given in Col. 10 of Table 3. This surface brightness is derived
as explained in Sect. 5. No dust correction is applied.

9. Conclusions and summary

We present for the first time a homogeneous and large dataset
of uniformly selected edge-on disk galaxies. These common
galaxy types are very important in order to understand the for-
mation and evolution of disk galaxies. The galaxies are selected
from the SDSS DR1 on the basis of photometric structural pa-
rameters indicative of extended stellar disks with large major
to minor axis ratios.

With the aid of this method we gathered 3169 edge-on
galaxies in an area of 2099 deg2 and selected through an au-
tomated separation algorithm. Using visual inspection of the
galaxies we realized that this catalog contains three general
classes of crude morphological types: disk galaxies with bulge,
thin bulgeless objects and intermediate types.

The separation is based on the central light concentration
and the flatness of the galaxy images. The light concentration
is expressed via the concentration index CI. With this CI we are
able to distinguish between disk galaxies with a bulge compo-
nent Sa(f) and Sb(f) and those with bulgeless appearance – the
Sc(f), Scd(f), Sd(f) and Irr(f) classes. As a second discrimina-
tor we use the luminosity-weighted average of the ellipticity ε,
derived from elliptical isophotes of every object. The ε allows
one to distinguish several structural groups with flat disks: the
early-type spirals, types Sa(f) from Sb(f); the apparently bul-
geless systems from intermediate types Sc(f), Scd(f) and Irr(f)
with central light concentrations; and the thin, smooth galaxies,
the simple disk class Sd(f).

The simple disk class includes objects previously defined
as flat and superthin galaxies and it exhibits the lowest surface
brightness compared to the other classes. The axial ratios of
simple disk galaxies are the largest. The intermediate class of
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edge-ons is composed of different types of galaxies including
(dwarf) irregular systems. There is no well-defined boundary
between these general classes, but instead a continuum of prop-
erties exists.

The fraction of galaxies with bulge (Sa(f), Sb(f)) is 34%,
those without bulge 16% (Sd(f)) and the fraction of the inter-
mediate class is 50%. However, we found that the intermediate
object class contains also a large fraction (about 440 objects,
these are nearly 30% of the intermediates) of seemingly bulge-
less types. Therefore we conclude that every general class (i.e.,
galaxies with bulge, intermediate objects and simple disks) rep-
resents about one third of the galaxies listed in the catalog. The
true numbers of our classes are somewhat lower. Dust attenu-
ation introduces a bias such that this catalog is expected to be
incomplete for early-type spirals with pronounced dust lanes.
Additional incompleteness is introduced because of features of
the SDSS database such as galaxy shredding, etc.

In the case of late-type spirals, dust is expected in high-
mass systems and increases the apparent thickness of the disk.
This results in a minor offset in the separation but has no effect
on the completeness for simple disks. Unresolved dust lanes
dim the disk light and lead to higher incompleteness for distant
disk galaxies. A comparison with the RFGC shows that our
catalog suffers from incompleteness for, e.g., galaxies close to
bright stars or near the edge of a scan stripe, but that it nonethe-
less contains almost four times as many galaxies within a given
area than the RFGC. This is mainly because we included also
galaxies with smaller angular diameters, but it is also a result
of the homogeneity, resolution, and depth of the SDSS.

This catalog provides a large, homogeneously selected
galaxy sample for which sensitive five-color photometry (and
in many cases also spectroscopy) is available. SDSS spec-
troscopy, while covering only a portion of the galaxies because
of its circular aperture of 3′′, will be useful for a wide variety of
studies, for instance for deriving metallicities and for constrain-
ing the properties of the underlying stellar populations (e.g.,
Kniazev et al. 2004b; Bernardi et al. 2005).

While these data will be analyzed in later papers, even
the raw catalog data have interesting implications. Our results
re-enforce the conclusions of Karachentsev and collaborators
(Karachentsev et al. 1993, 1999) that simple disk galaxies are
relatively common, especially among intermediate-mass star-
forming galaxies (Matthews & Gallagher 1997). Galaxy for-
mation models must be able to produce such high angular mo-
mentum systems with reasonable frequencies. We also find that
the simple disks are not a separate morphological class, but
rather are at the end of a continuum that extends smoothly
from bulge+disk systems. However, the simple disks tend to
be lower surface brightness galaxies, indicating that the prob-
ability for bulge formation depends on host galaxy mass. This
in turn can be linked to models where bulges form from in-
ternal disk instabilities through the dependence of the Toomre
Q-parameter on disk surface density (e.g., Immeli et al. 2004).
Similarly the properties of our sample will be useful in con-
straining the role of galaxy mergers in building disk-halo galax-
ies (e.g., Springel & Hernquist 2005; Kormendy & Kennicutt
2004). We will explore these and related issues in future papers.
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