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Distribution of Non-AT1, Non-AT2 Binding of
125I-Sarcosine1, Isoleucine8 Angiotensin II in Neurolysin
Knockout Mouse Brains
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Jamala D. Swindle3, Kira L. Santos3,4, Ines Schadock5, Michael Bader5, Vardan T. Karamyan6,7

1 Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, Florida, United States of America, 2 Department of Physiology and Functional

Genomics, University of Florida, Gainesville, Florida, United States of America, 3 Farquhar College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale,

Florida, United States of America, 4 College of Dentistry, University of Florida, Gainesville, Florida, United States of America, 5 Max-Delbrück-Center for Molecular Medicine,

Berlin, Germany, 6 Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America, 7 Center for Blood-

Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America

Abstract

The recent identification of a novel binding site for angiotensin (Ang) II as the peptidase neurolysin (E.C. 3.4.24.16) has
implications for the renin-angiotensin system (RAS). This report describes the distribution of specific binding of
125I-Sarcosine1, Isoleucine8 Ang II (125I-SI Ang II) in neurolysin knockout mouse brains compared to wild-type mouse brains
using quantitative receptor autoradiography. In the presence of p-chloromercuribenzoic acid (PCMB), which unmasks the
novel binding site, widespread distribution of specific (3 mM Ang II displaceable) 125I-SI Ang II binding in 32 mouse brain
regions was observed. Highest levels of binding .700 fmol/g initial wet weight were seen in hypothalamic, thalamic and
septal regions, while the lowest level of binding ,300 fmol/g initial wet weight was in the mediolateral medulla. 125I-SI Ang
II binding was substantially higher by an average of 85% in wild-type mouse brains compared to neurolysin knockout
brains, suggesting the presence of an additional non-AT1, non-AT2, non-neurolysin Ang II binding site in the mouse brain.
Binding of 125I-SI Ang II to neurolysin in the presence of PCMB was highest in hypothalamic and ventral cortical brain
regions, but broadly distributed across all regions surveyed. Non-AT1, non-AT2, non-neurolysin binding was also highest in
the hypothalamus but had a different distribution than neurolysin. There was a significant reduction in AT2 receptor binding
in the neurolysin knockout brain and a trend towards decreased AT1 receptor binding. In the neurolysin knockout brains,
the size of the lateral ventricles was increased by 56% and the size of the mid forebrain (22.72 to +1.48 relative to Bregma)
was increased by 12%. These results confirm the identity of neurolysin as a novel Ang II binding site, suggesting that
neurolysin may play a significant role in opposing the pathophysiological actions of the brain RAS and influencing brain
morphology.
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Introduction

The classical renin-angiotensin system (RAS) was initially

characterized as a major regulator of systemic blood pressure

and fluid and electrolyte balance by way of direct vasoconstriction

of vascular smooth muscle, generalized sympathetic nervous

system activation, and mediation of aldosterone and epinephrine

release [1–6]. The RAS is presently known to be comprised of

circulating angiotensins and independent tissue-specific RASs [7–

9]. Prominent among tissue-specific RASs is the brain RAS [10–

12]. Angiotensin (Ang) II, the main effector peptide of the RAS, is

abundantly expressed in the brain [13,14]. There are two primary

G protein-coupled receptors for Ang II reported to be present in

the brain: type 1 (AT1) and type 2 (AT2) [15–17]. The AT1

receptor mediates the classical functions noted above [18] along

with thirst and sodium chloride appetite [19,20]. This receptor

may also be associated with diabetes, depression, Parkinson’s

disease, and Alzheimer’s disease [12]. The AT2 receptor is

believed to act antagonistically to the AT1 receptor by mediating

vasodilation and cerebroprotection, as well as neural differentia-

tion, regeneration, and neurotrophic actions [21–24].

There are several biochemical pathways for the breakdown of

Ang II into inactive peptides (Figure 1). Ang II can be converted to

the short-lived heptapeptide Ang III by glutamyl aminopeptidase-

A. Ang III is then cleaved by the membrane-bound alanyl

aminopeptidase-N to form the 3–8 hexapeptide Ang IV [25].

Further metabolism of Ang IV by aminopeptidases results in

inactive peptides [26,27]. Ang II can also be metabolized by a

variety of mono- and di-peptidyl aminopeptidases [27]. Alterna-
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tively, Ang II can be converted to Ang (1–7) by angiotensin-

converting enzyme-2 (ACE-2), prolyl carboxypeptidase [28] and

prolyl endopeptidase [29,30], see reviews [12,27]. Ang (1–7) has

been of particular interest lately as its actions through the G

protein-coupled receptor Mas serve to counterbalance the

deleterious effects of Ang II [31,32]. Actions of Ang (1–7) are

associated with vasodilation and cardioprotection, as well as

decreased hypertrophy, fibrosis, and thrombosis [32]. Further

aminopeptidase activity on Ang (1–7) produces Ang (2–7) and Ang

(3–7), which may also have biological activity [33–35].

A new dimension was added to the brain RAS with the

discovery of a novel non-AT1, non-AT2 binding site for Ang II

[36]. Initial studies of this novel binding site could not ascertain its

function and it was hypothesized to be either a signaling or

clearance receptor, or a peptidase [37–39]. We recently reported

the metalloendopeptidase neurolysin (EC 3.4.24.16, also known as

microsomal endopeptidase or mitochondrial oligopeptidase) to be

the novel non-AT1, non-AT2 Ang II binding site [40]. This

binding site is unmasked by p-chloromercuribenzoic acid (PCMB)

which is an organomercurial compound that inhibits the activity of

numerous enzymes, including neurolysin [41]. Most likely, PCMB

causes a conformational change in neurolysin that enhances its

ability to bind angiotensins, but inhibits its ability to cleave these

substrates. The density of this binding site in the brain is

substantially higher than that of AT1 or AT2 receptors in the rat

brain [36,42,43]. While neurolysin is mostly known for its actions

on neurotensin, its primary substrate, it can also metabolize Ang I

to form Ang (1–7) [44,45] and Ang II to form the inactive peptides

Ang (1–4) and Ang (5–8) [45,46].

A critical component of the study that identified neurolysin as

the non-AT1, non-AT2.

Ang II binding site was the use of a mouse strain in which the

neurolysin gene was knocked out [40]. Expression of the non-AT1,

non-AT2 binding site was dramatically decreased in the brains of

the neurolysin knockout mouse strain compared to wild-type mice.

Distribution was then examined using quantitative densitometric

autoradiography. A qualitative sampling of this autoradiographic

analysis was included in our previous publication [40]. Addition-

ally, we examined the distribution and concentration of AT1 and

AT2 receptors in the brains of the neurolysin knockout mouse

strain in comparison to wild-type mice using the same method-

ology.

Materials and Methods

Ethics Statement
This study was carried out in accordance with the recommen-

dations in the Guide for the Care and Use of Laboratory Animals

of the National Institutes of Health. The animal protocols were

approved by the Institutional Animal Care and Use Committee of

Figure 1. Metabolic pathways of Ang peptides. Metabolic routes of Ang I and II by neurolysin and other peptidases of the RAS. ACE =
angiotensin-converting enzyme, dipeptidyl carboxypeptidase I, Kininase II, EC 3.4.15.1, CD143; ACE-2 = angiotensin-converting enzyme-2, EC
3.4.17.23; APA = aminopeptidase A, glutamyl aminopeptidase, EC 3.4.11.7, CD249; NEP = neprilysin, neutral endopeptidase, EC 3.4.24.11; PRCP =
prolyl carboxypeptidase, angiotensinase C, carboxypeptidase P, EC 3.4.16.2; PREP = prolyl endopeptidase, post-prolyl cleaving enzyme, EC 3.4.21.26;
TOP = thimet oligopeptidase, EC 3.4.24.15. Adapted from Wright et al. [12].
doi:10.1371/journal.pone.0105762.g001

Mouse Brain Neurolysin Binds Angiotensin II
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Nova Southeastern University (IACUC Control# 014-389-09-

0922) and by the Committee on the Ethics of Animal Experiments

of the State of Berlin (LAGESO, Permit Number: T0042/06).

Animals
Six male mouse brains, 3 wild-type (WT) and 3 neurolysin

knockout (KO), were collected from 12-week old adult male mice

maintained in 12-hour light/dark cycle and fed ad libitum in the

laboratory of Dr. Michael Bader. The neurolysin knockout mice

were generated using gene-trap technology and expressed on a

C57Bl/6 background [47]. Mice were sacrificed with an overdose

of ketamine-xylazine anesthesia. The brains were stored at

280 uC and shipped to Nova Southeastern University on dry

ice. A full characterization of the neurolysin knockout mice

documenting complete loss of neurolysin protein and mRNA is

described in a manuscript to be submitted for publication.

Materials
Ang II and Sar1, Ile8 Ang II (SI-Ang II) were acquired from

Phoenix Pharmaceuticals and Bachem and were radioiodinated by

a previously described method [48]. Losartan was obtained from

Dr. Ron Smith of Dupont Merck, PD123319 from Tocris, and

PCMB sodium salt from MP Bio-medicals.

Receptor autoradiography
Receptor autoradiographic studies were performed following

established protocols [49–51]. Frozen mouse brains were sectioned

in the coronal plane at a thickness of 20 mm, mounted on charged

slides in repeating series of 6 (Table 1) air dried, and stored at

270uC. After 2 weeks (for non-AT1, non AT2 binding) or 4

months (for AT1 and AT2 binding), sections were thawed and pre-

incubated in assay buffer for 30 min at room temperature. The

assay buffer contained 150 mM NaCl, 5 mM EDTA, 0.1 mM

bacitracin, and 50 mM NaPO4 at pH 7.1–7.2. For non-AT1, non-

AT2 binding, this buffer also contained 150 mM PCMB. Following

pre-incubation, the slide-mounted sections were incubated in the

same buffer with 250 pM 125I-labeled Sar1, Ile8 Ang II (125I-SI

Ang II). For non-AT1, non-AT2 binding, the assay buffer also

contained 10 mM losartan, 10 mM PD123319 and 150 mM

PCMB. Slides with adjacent sections were incubated with

250 pM 125I-SI Ang II in the presence of 3 mM Ang II to

determine nonspecific binding. For AT1 and AT2 receptor

binding, 1 set of slides was incubated with 3 mM Ang II, an

adjacent set was incubated with 10 mM PD123319, and another

adjacent set was incubated with 10 mM losartan (see Table 1).

After 1-hour incubation, the slides were quickly dipped in distilled

water, rinsed in 5 changes of assay buffer for 15 sec each, dipped in

distilled water again, and dried under a stream of cool air. Slides

were mounted onto cardboard along with a 125I calibration

standard (ARI-0133, American Radiolabeled Chemicals) and

placed in an X-ray cassette. Apposed to X-ray film (Kodak MR-

1) for a 38-hour exposure (for neurolysin binding) or 5-day

exposure (for AT1 and AT2 receptor binding), after which the film

was developed in an automated film processor.

The sixth slide in each set of sections was Nissl-stained with

thionin to histologically identify anatomical loci corresponding to

brain regions in which 125I-SI Ang II binding was assessed

(Table 1).

Image analysis
Film images of 125I-SI Ang II binding to mouse brain sections

were analyzed using a densitometric procedure. Films were

scanned at 2400 dpi resolution. Scanned images were evaluated

using an image analysis software program (MCID, Interfocus

Imaging Ltd.) which quantified the 125I-SI Ang II binding based

upon calibration with a set of 125I standards. A tissue equivalency

of 45% was used for the calibration based upon empirical

determinations (Speth, unpublished). For enhanced visualization,

the black and white film images were converted to pseudocolor.

To assess binding in specific brain regions, the mouse brain atlas of

Franklin and Paxinos [52] was used in conjunction with visual

assessment of thionin-stained brain sections and pseudocolored

autoradiograms. Areas corresponding to specific brain regions

were circumscribed manually and sampled densitometrically [50].

Average density and surface area values of sampled regions were

recorded. To assess the expression of non-AT1, non-AT2 binding

in the brains of the wild-type and neurolysin knockout strains, 32

brain regions were identified and quantitated. To assess the

expression of AT1 and AT2 receptor binding, 9 and 10 brain

regions were sampled, respectively.

To determine specific binding, 125I-SI Ang II binding not

displaceable in the presence of 3 mM Ang II (nonspecific binding)

was subtracted from binding in the absence Ang II (total binding)

as described in Table 1. A correction was applied to normalize

densitometric measurements for sections with higher background

absorbance to account for variations in film background. The

increased background absorbance was subtracted from density

measurements in the affected sections.

The size of the lateral, third and fourth ventricles as well as the

cerebral aqueduct was determined for each brain via analysis of

the thionin-stained brain sections. The ventricles and aqueduct

were circumscribed and the surface area for each compartment

was determined at 120 micron intervals in the coronal plane. For

lateral ventricles measurements of surface area were taken from

Table 1. Summary of autoradiography protocol.

Grouping Non-AT1, non-AT2 Non-specific AT1 and AT2 Total AT1 Total AT2 Histology (thionin)

Non-specific Total

Slide Series 21 22 23 24 25 26

3 mM Ang II + - + - - -

150 mM PCMB + + - - - -

10 mM PD123319 + + - + - -

10 mM losartan + + - - + -

Autoradiography experiments utilized PCMB, PD123319, or losartan, to unmask non-AT1, non-AT2 binding, or block AT2 and AT1 receptors, respectively. Non-
radioiodinated Ang II was utilized to define specific binding of 125I-SI Ang II to Ang II binding sites and receptors, as described in Materials and Methods.
doi:10.1371/journal.pone.0105762.t001

Mouse Brain Neurolysin Binds Angiotensin II
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,0.9 mm caudal to ,1.15 mm rostral to Bregma. For the third

ventricle the surface area was measured from ,0.9 mm to

,0.2 mm caudal to Bregma. For the fourth ventricle measure-

ments were taken from ,6.66 mm to ,5.34 mm caudal to

Bregma. For the cerebral aqueduct measurements were taken

from ,4.84 mm to ,4.24 mm caudal to Bregma.

Statistical analysis
Sampling of brain regions involved multiple determinations at

different coronal levels. The average density for total and

nonspecific binding from all coronal levels sampled was deter-

mined, and specific binding was derived as described above. The

areas circumscribed for each region varied to some extent based

on the perceived density of 125I-SI Ang II binding. To assess the

possible impact of size measurement differences, the area sampled

was also determined for each brain region of each mouse brain.

Statistical comparisons of knockout versus wild-type brains for

specific binding density were made with a two-way analysis of

variance (strain and region). Comparison of brain surface area was

also made using a two-way analysis of variance (strain and

anterior-posterior coordinate). An unpaired Student’s t-test was

used for comparison between neurolysin knockout and wild-type

mouse brain ventricle sizes, brain surface area (in areas where

ventricles were measured), and the ratio of ventricle to total brain

surface area. Additionally, an a priori one-tailed, unpaired

Student’s t-test was run to compare non-AT1, non-AT2 binding

in knockout versus the wild-type brain regions. The statistical

significance level was p,0.05. Values shown are mean 6 SEM.

Results

Specific binding of 125I-SI Ang II in the presence of PCMB,

losartan and PD123319 was observed throughout the brains of

both the wild-type and neurolysin knockout mouse strains

(Figures 2–12), and was measured in 32 regions (Figure 13).

Two-way analysis of variance indicated a highly significant (p,

0.0001) reduction of 46% in 125I-SI Ang II binding in the brains of

the neurolysin knockout strain. There was also a highly significant

(p,0.0001) regional variation in 125I-SI Ang II binding in both

strains, as can be visually appreciated in Figures 2–12. There was

no strain by region interaction (p = 0.883), indicating that the

extent of the reduction in 125I-SI Ang II binding in the neurolysin

knockout mouse strain did not vary significantly between brain

regions. A priori t-tests comparing binding of 125I -SI Ang II in the

presence of PCMB, losartan and PD123319 between strains

indicated a significant (p,0.05) difference in all regions except for

the ventral medial hypothalamus (VMH) and median preoptic

nucleus (MnPO), as shown in Figure 13, Panel B. As can be seen

in Figures 11 and 12, 125I-SI Ang II binding in the cerebellum was

almost exclusively localized to the molecular layer; however, it was

unfeasible to single out this layer in our measures. Therefore, the

total surface area of the cerebellum (granular and molecular layers)

was assayed. This, along with high non-specific 125I-SI Ang II

binding in the cerebellum contributed to the relatively low specific
125I-SI Ang II binding reported in Figure 13.

Specific binding of 125I-SI Ang II to neurolysin was derived by

subtracting specific binding in the neurolysin knockout brain

Figure 2. 125I-SI Ang II binding comparison. Comparison of 125I-SI Ang II binding in the brains of a representative neurolysin KO (right panels)
and WT (left panels) mouse strain in the presence of PCMB, losartan, and PD123319. Approximate coordinates relative to Bregma: +3.56 mm for WT
and +3.32 mm for KO. Top row shows thionin-stained coronal sections adjacent to the sections used to generate the autoradiograms for ‘‘total’’
(middle panels) and ‘‘non-specific’’ (lower panels) of 125I-SI Ang II binding. Binding is represented in pseudocolor. The vertical calibration bar
represents the relationship between 125I-SI Ang II binding density and the color spectrum. The blue horizontal calibration bar shown in the upper left
panel = 1 mm. This pattern is repeated for Figures 3–12.
doi:10.1371/journal.pone.0105762.g002

Mouse Brain Neurolysin Binds Angiotensin II
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Figure 3. 125I-SI Ang II binding comparison. Comparison of 125I-SI Ang II binding in the brains of neurolysin KO and WT mouse strains in the
presence of PCMB, losartan, and PD123319. Bregma +2.22 mm (histology) and +2.10 (autoradiograms) for KO, and Bregma +2.16 (histology), +1.92
(total) and +2.04 mm (non-specific) sections for WT.
doi:10.1371/journal.pone.0105762.g003

Figure 4. 125I-SI Ang II binding comparison. Comparison of 125I-SI Ang II binding in the brains of neurolysin KO and WT mouse strains in the
presence of PCMB, losartan, and PD123319. Bregma +0.86 (histology) and +0.98 mm (autoradiograms) for KO, and Bregma +0.96 mm (histology and
autoradiogram) sections for WT.
doi:10.1371/journal.pone.0105762.g004

Mouse Brain Neurolysin Binds Angiotensin II
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Figure 5. 125I-SI Ang II binding comparison. Comparison of 125I-SI Ang II binding in the brains of neurolysin KO and WT mouse strains in the
presence of PCMB, losartan, and PD123319. Bregma +0.38 (histology) and +0.5 mm (autoradiograms) for KO, and Bregma +0.36 mm (histology and
autoradiogram) sections for WT.
doi:10.1371/journal.pone.0105762.g005

Figure 6. 125I-SI Ang II binding comparison. Comparison of 125I-SI Ang II binding in the brains of neurolysin KO and WT mouse strains in the
presence of PCMB, losartan, and PD123319. Bregma +0.08 mm for the KO and WT histological and autoradiogram sections.
doi:10.1371/journal.pone.0105762.g006

Mouse Brain Neurolysin Binds Angiotensin II
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Figure 7. 125I-SI Ang II binding comparison. Comparison of 125I-SI Ang II binding in the brains of neurolysin KO and WT mouse strains in the
presence of PCMB, losartan, and PD123319. Bregma 20.34 mm for the KO and WT histological and autoradiogram sections.
doi:10.1371/journal.pone.0105762.g007

Figure 8. 125I-SI Ang II binding comparison. Comparison of 125I-SI Ang II binding in the brains of neurolysin KO and WT mouse strains in the
presence of PCMB, losartan, and PD123319. Bregma 21.82 mm for KO, and Bregma 21.70 mm for WT histological and autoradiogram sections.
doi:10.1371/journal.pone.0105762.g008

Mouse Brain Neurolysin Binds Angiotensin II
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Figure 9. 125I-SI Ang II binding comparison. Comparison of 125I-SI Ang II binding in the brains of neurolysin KO and WT mouse strains in the
presence of PCMB, losartan, and PD123319. Bregma 23.40 mm (histology and autoradiograms) for KO, and Bregma 23.32 (histology) and 23.20 mm
(autoradiogram) sections for WT.
doi:10.1371/journal.pone.0105762.g009

Figure 10. 125I-SI Ang II binding comparison. Comparison of 125I-SI Ang II binding in the brains of neurolysin KO and WT mouse strains in the
presence of PCMB, losartan, and PD123319. Bregma 24.24 mm (histology and autoradiograms) for KO, and Bregma 24.36 (histology) and 24.24 mm
(autoradiogram) sections for WT.
doi:10.1371/journal.pone.0105762.g010

Mouse Brain Neurolysin Binds Angiotensin II
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Figure 11. 125I-SI Ang II binding comparison. Comparison of 125I-SI Ang II binding in the brains of neurolysin KO and WT mouse strains in the
presence of PCMB, losartan, and PD123319. Bregma 25.8 mm for the KO and WT histological and autoradiogram sections.
doi:10.1371/journal.pone.0105762.g011

Figure 12. 125I-SI Ang II binding comparison. Comparison of 125I-SI Ang II binding in the brains of neurolysin KO and WT mouse strains in the
presence of PCMB, losartan, and PD123319. Bregma 27.2 mm for the KO and WT histological and autoradiogram sections.
doi:10.1371/journal.pone.0105762.g012

Mouse Brain Neurolysin Binds Angiotensin II

PLOS ONE | www.plosone.org 9 August 2014 | Volume 9 | Issue 8 | e105762



regions from the specific binding in their counterpart wild-type

brains (Figure 14, Panel A). Of the regions sampled, highest

binding was found in the suprachiasmatic nucleus of the

hypothalamus, and lowest binding was found in the mediolateral

medulla. The difference in specific binding of 125I-SI Ang II to

neurolysin between the highest and lowest regions surveyed was

3.5-fold.

Specific binding of 125I-SI Ang II to the non-AT1, non-AT2,

non-neurolysin binding site is displayed in the rank order of

highest to lowest binding (Figure 14, Panel B). There was no

correlation in the density of non-neurolysin and neurolysin

binding, R2 = 0.0036. Non-neurolysin binding was highest in the

MnPO and other hypothalamic nuclei, the lateral septum and

other frontal forebrain regions, and was lowest in the midbrain

and brain stem regions. The variation in density from highest to

lowest regions surveyed was 3.6-fold.

Specific binding of 125I-SI Ang II to AT1 and AT2 receptors was

observed in the presence of PD123319 or losartan, respectively

(Figures 14–17). AT1 receptor binding was measured in 9 brain

regions (Figure 18, Panel A). Two-way analysis of variance of AT1

receptor binding revealed a highly significant (p,0.0001) regional

variation in binding density. There was a trend (p = 0.0597)

towards reduced AT1 receptor binding (27%) in the brains of the

neurolysin knockout mouse strain. Despite the appearance of

increased AT1 receptor binding in the locus coeruleus and solitary

tract nucleus area, there was no strain by region interaction

(p = 0.477), indicating that the trend towards reduced AT1

receptor binding in the neurolysin knockout mouse strain did

not vary significantly between brain regions.

AT2 receptor binding was measured in 10 brain regions

(Figure 18, Panel B). Two-way analysis of variance of AT2

receptor binding revealed a highly significant (p,0.0001) regional

variation in binding density. There was a highly significant (p,

0.0001) reduction of 57% in AT2 receptor binding in the brains of

the neurolysin knockout strain. There was no strain by region

interaction (p = 0.536), indicating that the reduction in AT2

receptor binding in the neurolysin knockout mouse strain did not

vary significantly between brain regions.

Quantitation of 125I-SI Ang II binding required a subjective

evaluation of the adequate sample area of the region or nucleus of

interest. Comparison of sampled area values for 125I-SI Ang II

binding in the presence of PCMB between the wild-type and

knockout strains showed an insignificant decrease of 0.4% in the

neurolysin knockout strains across regions measured. A similar

comparison of sampled area values for AT1 and AT2 binding

between the wild-type and knockout strain showed a small increase

of 2.3% and 2.2%, respectively, in the neurolysin knockout strains

compared to the wild-type strain across regions measured.

Assessment of the lateral ventricle surface area between

,1.5 mm caudal and ,1.0 mm rostral to Bregma showed a

significant (p,0.05) increase of 56% in the neurolysin knockout

mouse strain (Figure 19, Panel A). There was no statistically

Figure 13. Regional distribution: non-AT1, non-AT2 binding. Regional distribution of non-AT1, non-AT2 Ang II binding in neurolysin KO and
WT mouse brains. Brain regions were divided into cerebellum, brainstem and midbrain (Panel A), hypothalamic nuclei (Panel B), thalamoseptalstriatal
regions (Panel C), and telencephalic regions (Panel D). In all but two regions, a priori t-tests showed significant reduction in 125I-SI Ang II binding in
the brains of the neurolysin KO mice. * p,0.05. AH, Anterior Hypothalamus; AMYG, Amygdala; ARC, Arcuate Nucleus; CCTX, Cingulate Cortex; CP,
Choroid Plexus; CPu, Caudate Putamen; CRBLM, Cerebellum; DMH, Dorsomedial Hypothalamus; DTLCMe5, Dorsal Tegmentum, Locus Coeruleus and
Mesencephalic Nucleus of the Trigeminal Nerve; ETC, Entorhinal Cortex; HPC, Hippocampus; IPN, Interpeduncular Nucleus; LMC, Limbic Cortex; LS,
Lateral Septum; ML BRST, Mediolateral Brain Stem; MnPO, Median Preoptic Nucleus; MPOH, Medial Preoptic Nucleus; NACC, Nucleus Accumbens; NTS,
Nucleus Tractus Solitarius; PAG, Periaqueductal Gray; PH, Posterior Hypothalamic Area; PMN, Premamillary Nucleus; PVA-THAL, Paraventricular
Thalamic Nucleus, Anterior; PVH, Paraventricular Hypothalamic Nucleus; PVTHAL, Paraventricular Thalamic Nucleus; Red N, Red Nucleus; RSPC,
Retrosplenial Cortex; SC, Superior Colliculus; SCN, Suprachiasmatic Nucleus; SN, Substantia Nigra; TSN, Triangular Septal Nucleus; VMH, Ventromedial
Hypothalamic Nucleus.
doi:10.1371/journal.pone.0105762.g013
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significant difference in the surface area of the third and fourth

ventricles, and the cerebral aqueduct, between knockout and wild-

type strains (Figure 19, Panel A; p = 0.578, 0.530 and 0.387,

respectively). Analysis of the total surface area of the coronal

sections revealed a significant difference in cross-sectional area

between the two strains (Figure 19, Panel B). Between 5.0 and

2.72 mm caudal to Bregma there was no apparent difference in

surface area; however, from 2.72 mm caudal to 1.48 mm rostral

to Bregma the total surface area of the knockout brain was on

average 12% greater than that of the wild-type brain. Two-way

analysis of variance (anterior-posterior (AP) axis and strain)

revealed a significant AP axis by strain interaction (F1,54 = 1.69,

p,0.005), as well as an expected AP axis main effect

(F4,54 = 19.65, p,0.0001) with no significant strain effect

(F1,4 = 3.66, p = 0.128). The average total surface area of the

coronal sections from which the lateral ventricle size was

determined (Figure 19, Panel C, left Y-axis) was significantly

greater in the knockout strain (p,0.05). There was a nonsignif-

icant (p = 0.115) tendency toward increased lateral ventricle size to

total surface area ratio in the knockout brains (Figure 19, Panel C,

right Y-axis).

Discussion

The substantial decrease in 125I-SI Ang II binding in the

presence of PCMB in the brains of the neurolysin knockout mouse

strain confirms our previous observation that neurolysin is the

Figure 14. Regional distribution: neurolysin and non-AT1, non-AT2, non-neurolysin binding. Regional distribution of 125I-SI Ang II
binding to neurolysin (Panel A) and non-AT1, non-AT2, non-neurolysin (Panel B) in the mouse brain. Values represent the difference between non-AT1,
non-AT2 Ang II binding in the WT and neurolysin KO mouse brains in 32 regions. AH, Anterior Hypothalamus; AMYG, Amygdala; ARC, Arcuate
Nucleus; CCTX, Cingulate Cortex; CP, Choroid Plexus; CPu, Caudate Putamen; CRBLM, Cerebellum; DMH, Dorsomedial Hypothalamus; DTLCMe5,
Dorsal Tegmentum, Locus Coeruleus, Mesencephalic Nucleus of the Trigeminal Nerve; ETC, Entorhinal Cortex; HPC, Hippocampus; IPN,
Interpeduncular Nucleus; LMC, Limbic Cortex; LS, Lateral Septum; ML BRST, Mediolateral Brain Stem; MnPO, Median Preoptic Nucleus; MPOH, Medial
Preoptic Nucleus; NACC, Nucleus Accumbens; NTS, Nucleus Tractus Solitarius; PAG, Periaqueductal Gray; PH, Posterior Hypothalamic Area; PMN,
Premamillary Nucleus; PVA-THAL, Paraventricular Thalamic Nucleus, Anterior; PVH, Paraventricular Hypothalamic Nucleus; PVTHAL, Paraventricular
Thalamic Nucleus; Red N, Red Nucleus; RSPC, Retrosplenial Cortex; SC, Superior Colliculus; SCN, Suprachiasmatic Nucleus; SN, Substantia Nigra; TSN,
Triangular Septal Nucleus; VMH, Ventromedial Hypothalamic Nucleus.
doi:10.1371/journal.pone.0105762.g014
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non-AT1, non-AT2 Ang II binding site [40]. A definitive pattern of
125I-SI Ang II binding to neurolysin can be seen by subtracting out

the 125I-SI Ang II binding in the neurolysin knockout mice from
125I-SI Ang II binding in the wild-type brains (Figure 14B).

Neurolysin binding was widespread throughout the brain, showing

only a 3.5-fold difference in density among sampled brain regions,

in contrast to the discrete localization of AT1 and AT2 receptors in

the mouse brain [53–56]. Indeed, neurolysin has a broad array of

substrates [44,45], thus its distribution beyond that of the

angiotensin receptors is not unexpected. Noteworthy to its

potential functional significance in the brain is its high expression

in nuclei associated with circadian rhythms (suprachiasmatic

nucleus), arousal (locus coeruleus), sympathetic nervous system

activation (paraventricular hypothalamus), fear and anxiety

(amygdala), Parkinson’s disease (substantia nigra), Alzheimer’s

disease (hippocampus), and drug addiction (nucleus accumbens).

With respect to the functional significance of neurolysin to the

brain RAS, the significant reduction in AT2 receptor binding

suggests that neurolysin plays a role in maintaining AT2 receptor

expression in the brain. There are two comprehensive studies of

the regional density of mouse brain AT1 and AT2 receptors

[53,57]. While they show agreement with the regions that contain

AT1 receptor binding, the relative densities in 7 overlapping

regions were not significantly correlated. The distribution of AT2

receptor binding in this study varied from the comprehensive

studies with respect to AT2 receptor binding in the hypothalamus

[53,57]. However a limited study of the hypothalamic AT2

receptor binding [54] as well as an immunohistochemical analysis

[58] indicated the presence of AT2 receptors in the paraventricular

nucleus of the hypothalamus in agreement with this study. The up-

regulation of brain AT2 receptors is yet another indicator of a

potential beneficial effect of neurolysin, since increased expression

Figure 15. AT1 and AT2 receptor binding comparison. Comparison of 125I-SI Ang II binding to the AT1 and AT2 receptors of neurolysin KO (right
panels) and WT (left panels) mouse strain brains in the presence of PD123319 or losartan, respectively. Approximate coordinates relative to Bregma: +
0.98 mm (histology and autoradiograms) for KO, and Bregma +0.92 (histology), +0.86 (AT1), and +0.98 mm (AT2 and non-specific) for WT. Top row of
panels are thionin-stained coronal sections adjacent to the sections used to generate the autoradiograms for ‘‘total’’ 125I-SI Ang II binding to the AT1

receptor (second row), AT2 receptor (third row), and ‘‘non-specific’’ 125I-SI Ang II binding (fourth row), represented in pseudocolor. The vertical
calibration bar represents the relationship between binding density of 125I-SI Ang II and the color spectrum. The horizontal calibration bar in the
upper left panel = 2 mm. This pattern is repeated for Figures 16 and 17.
doi:10.1371/journal.pone.0105762.g015
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and/or stimulation of brain AT2 receptors is associated with

neuronal protection [59,60].

The lateral ventricular enlargement observed in the neurolysin

knockout brains and the presence of neurolysin in the choroid

plexus may indicate a role for neurolysin in the blood brain barrier

and blood-cerebrospinal fluid permeability. This effect was limited

to the lateral ventricles as no changes in the third and fourth

ventricles or the cerebral aqueduct were observed between strains.

This indicates that reduced flow of CSF through the cerebral

aqueduct is not a cause of the lateral ventricle enlargement.

Peptidases in the cerebral microvasculature and choroid plexus

decrease the effects of circulating peptides on the cerebral

microvasculature and help prevent blood-borne peptides from

entering the brain via metabolic inactivation [61]. In the absence

of neurolysin, its circulating peptide substrates may have more

powerful actions on brain microvasculature circumventricular

organs and the choroid plexus. There may even be an increased

penetration of these peptides through the blood-brain or blood-

CSF barrier allowing them to exert actions on periventricular

brains structures, e.g., ependyma, leading to remodeling of the

lateral ventricles. Ang II can damage the blood-brain barrier

leading to hypertensive encephalopathy [62,63]; this effect could

be exacerbated by the loss of its metabolic inactivation by

neurolysin. Future studies should be directed to determining if Ang

II or another peptide substrate of neurolysin causes this lateral

ventricle remodeling.

The pattern of neurolysin mRNA expression reported in the

Allen Brain Atlas: http://mouse.brain-map.org/experiment/

show/638735 using in situ hybridization [64] shows some

similarities with the pattern of neurolysin binding reported in this

study. Neurolysin mRNA expression is high in the pyramidal layer

of the pyriform cortex, at the interface of layers 1 and 2 of the

cerebral cortex and deeper layers of the frontal and entorhinal

cortices; CA3 and dentate gyrus regions of the hippocampus; and

the laterodorsal tegmental nucleus. High binding to neurolysin was

detected in an area delineated as the dorsal tegmental, locus

coeruleus, mesencephalic nucleus of the trigeminal nerve

(DTLCMe5, Figure 11); the hippocampus (Figures 8 and 9) and

the cerebral cortex (Figures 2–10), as summarized in Figure 14.

However, some areas of high binding, e.g., the suprachiasmatic

nucleus and the paraventricular nuclei of the thalamus and

hypothalamus, show negligible neurolysin mRNA expression.

Figure 16. AT1 and AT2 receptor binding comparison. Comparison of 125I-SI Ang II binding to the AT1 and AT2 receptors of neurolysin KO and
WT mouse strain brains in the presence of PD123319 or losartan, respectively. Bregma +0.14 (histology and AT1) and +0.02 mm (AT2 and non-specific)
for KO, and +0.14 (histology, AT1, and non-specific) and +0.26 mm (AT2) for WT.
doi:10.1371/journal.pone.0105762.g016
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These mismatches suggest that a significant proportion of

membrane associated neurolysin is expressed on axon terminals

distant from its site of synthesis in neuronal cell bodies.

Neurolysin has been shown to be present on the extracellular

surface of cortical neurons and is therefore capable of metabolizing

Ang I and Ang II in their extracellular environment [65,66].

Moreover, formation of Ang (1–7) by neurolysin [45] diverts the

conversion of Ang I into Ang II, directly counteracting the effects

of the latter. While our studies have largely focused on membrane

bound/associated neurolysin, neurolysin is also reported to be

present in the mitochondria and cytosol [66,67]. Indeed, the

soluble angiotensin binding protein isolated from the liver is now

known to be a cytoplasmically localized neurolysin [68]. Thus,

neurolysin may play a role in the intracellular RAS [69] and other

intracrine systems [70]. The importance of neurolysin relative to

the other peptidases which metabolize Ang I and Ang II, shown in

Figure 1, remains to be determined.

Neurolysin has the potential to play an important beneficial role

in the RAS in four ways: 1) by forming a peptide, Ang (1–7), which

counteracts the pathophysiological actions of Ang II, 2) by

reducing formation of Ang II from Ang I by diverting Ang I

away from ACE, 3) by metabolically inactivating Ang II in the

extra- and intra-cellular milieu, and 4) by sustaining AT2 receptor

levels in the brain. Future studies with neurolysin deficient mice

and/or selective inhibitors of neurolysin to determine the levels of

brain angiotensin peptides, blood pressure, thirst and salt appetite,

and neurological phenotypes associated with the loss of neurolysin,

should establish its functional significance.

Noteworthy in this study is the presence of a large amount of

residual specific binding in the brains of the neurolysin knockout

mice. This suggests the existence of a non-AT1, non-AT2, non-

neurolysin Ang II binding site with a different pattern of

expression in the mouse brain. A much smaller amount of 125I-

SI Ang II binding (,17% that of the wild-type strain) was

observed in our previous study using membrane homogenates

obtained from the brains of neurolysin knockout mice [40]. A

possible explanation for this disparity may be the differences in

tissue preparation. In preparing brain membrane homogenates the

tissue is lysed, the membranes are precipitated centrifugally, and

remaining components of the tissue (including the microsomal

membrane fraction) are discarded with the supernatant. In

contrast, the tissue sections used for receptor autoradiography

Figure 17. AT1 and AT2 receptor binding comparison. Comparison of 125I-SI Ang II binding to the AT1 and AT2 receptors of neurolysin KO and
WT mouse strain brains in the presence of PD123319 or losartan, respectively. Bregma 24.48 (histology) and 24.36 mm (autoradiogram sections) for
KO, and Bregma +4.36 mm for the WT histological and autoradiogram sections.
doi:10.1371/journal.pone.0105762.g017
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contain all of the cellular membrane contents. It is possible that

this non-AT1, non-AT2, non-neurolysin Ang II binding site

remains in the supernatant of brain membrane homogenates

and cannot be seen in membrane binding assays. Further studies

to determine the identity of the non-AT1, non-AT2, non-

neurolysin Ang II binding site and its affinity will be necessary

to address this issue.

In conclusion, knockout of the neurolysin gene shows a

significant effect on the RAS by decreasing 125I-SI Ang II binding

to brain AT2 receptors. Additionally, neurolysin knockout mice

display significantly enlarged lateral ventricles. The presence of

substantial 125I-SI Ang II binding in neurolysin knockout brains in

which classical Ang II receptors have been blocked suggests the

presence of an additional non-AT1, non-AT2, non-neurolysin Ang

II binding site of unknown function.

Figure 18. Regional distribution: AT1 and AT2 receptor binding. Regional distribution of 125I-SI Ang II binding to the AT1 and AT2 receptors in
the neurolysin KO and WT mouse brains. Panel A describes binding to the AT1 receptor in 9 brain regions. Panel B describes binding to the AT2

receptor in 10 brain regions. * p,0.05. AC, Anterior Commissure; CCTX, Cingulate Cortex; LC, Locus Coeruleus; LS, Lateral Septum; MnPO, Median
Preoptic Nucleus; NACC, Nucleus Accumbens; NTS, Nucleus Tractus Solitarius; OVLT, Organum Vasculosum of the Lamina Terminalis; PVH,
Paraventricular Hypothalamic Nucleus; SC, Superior Colliculus.
doi:10.1371/journal.pone.0105762.g018
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