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FORMING EARLY-TYPE GALAXIES IN GROUPS PRIOR TO CLUSTER ASSEMBLY
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ABSTRACT

We study a unique protocluster of galaxies, the supergroup SG1120�1202. We quantify the degree to which
morphological transformation of cluster galaxies occurs prior to cluster assembly in order to explain the observed
early-type fractions in galaxy clusters at z p 0. SG1120�1202 at is composed of four gravitationallyz ∼ 0.37
bound groups that are expected to coalesce into a single cluster by z p 0. Using HST ACS observations, we
compare the morphological fractions of the supergroup galaxies to those found in a range of environments. We
find that the morphological fractions of early-type galaxies (∼60%) and the ratio of S0 to elliptical galaxies (0.5)
in SG1120�1202 are very similar to clusters at comparable redshift, consistent with preprocessing in the group
environment playing the dominant role in establishing the observed early-type fraction in galaxy clusters.

Subject headings: galaxies: clusters: general — galaxies: elliptical and lenticular, cD — galaxies: evolution —
galaxies: interactions — galaxies: spiral — galaxies: structure

1. INTRODUCTION

Our understanding of the role of environment in determining
galaxy properties remains incomplete primarily because of the
complicated correlations among galaxy properties and the dif-
ficulty in establishing the correspondence between local gal-
axies and their progenitors. While many properties, including
morphology and star formation rate, vary strongly as a function
of environment (e.g., Dressler 1980; Lewis et al. 2002; Gómez
et al. 2003) the relative importance of different physical pro-
cesses in driving these variations remains controversial (Park
et al. 2007). Here, we focus on identifying the environment in
which predominantly late-type field galaxies are “transformed”
into early-type cluster galaxies.

Two general classes of physical scenarios have been pro-
posed as mechanisms for driving morphological transforma-
tions: local processes like mergers (e.g., Toomre 1977) or tidal
interactions (e.g., Mastropietro et al. 2005) and global processes
such as ram pressure stripping (e.g., Gunn & Gott 1972), evap-
oration and strangulation (e.g., Larson et al. 1980), and ha-
rassment (e.g., Moore et al. 1999). Local processes are most
effective in groups because of the low relative velocities
(Barnes 1985) whereas global processes are most effective in
clusters where the gravitational potential is deep but the relative
velocities of the galaxies are high.

A compelling empirical case has been made that preproc-
essing in the group environment is the dominant mechanism
driving the observed early-type fractions in clusters (Zabludoff
& Mulchaey 1998; Kodama et al. 2001; Helsdon & Ponman
2003). However, numerical simulations have recently suggested
that intermediate-mass clusters accrete their galaxies as indi-
vidual systems, and that therefore any transformation must oc-
cur in the cluster environment (Berrier et al. 2008). Evidently,
the key in resolving this question lies in unambiguously tagging
and studying the distant galaxies that lie in today’s massive
clusters.
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The natural environment to begin such a study is that of
groups at intermediate redshift (e.g., Wilman et al. 2005; Mul-
chaey et al. 2006). However, not all groups will be accreted
by clusters and there exists a wide dispersion in group prop-
erties at intermediate redshifts (Poggianti et al. 2006). To avoid
these pitfalls, we focus on a unique system,5 SG1120�1202
(hereafter SG1120). SG1120 is a gravitationally bound struc-
ture consisting of four X-ray-luminous groups at ,z ∼ 0.37
whose dynamics indicate that it will collapse to form a cluster
of similar mass to Coma by z p 0 (Gonzalez et al. 2005).
Therefore, the question is relatively unambiguous here: do the
galaxy morphologies in SG1120 already match those seen in
local clusters of comparable mass or will they need to be trans-
formed after the groups coalesce? While SG1120 represents
only one unique evolutionary path, most clusters continue to
accrete groups at late times and the group properties observed
in SG1120 are broadly relevant for assessing the impact of this
late-type accretion. In this Letter we use the standard cosmol-
ogy ( p 0.3, p 0.7, p 70 km s Mpc ) unless�1 �1Q Q HM L 0

stated otherwise.

2. OBSERVATIONS

We measure morphologies using HST ACS F814W imaging
(Cycle 14) composed of 10 pointings that cover 18.4� # 11.8�,
with single-orbit depth at each location. Spectra were obtained
with the VLT (VIMOS and FORS2; 2004 February and 2007
February) and Magellan (LDSS3; 2006 February) and ground-
based imaging with the VLT (VIMOS; 2003 February and 2006
February) and the KPNO Mayall (FLAMINGOS; 2006 Feb-
ruary) telescopes. The spectroscopic target selection was based
on Vega-magnitude-limited catalogs ( or ). TheR ≤ 22.5 K ≤ 20s

observations yield redshifts for 364 galaxies, including 156
confirmed SG1120 members on the HST ACS mosaic. Con-
firmed members are defined to lie within the 2 j velocity limits
defined by the lowest and highest redshift groups (890 and
1551 km s , respectively), which in turn corresponds to�1

5 Based on observations with the NASA/ESA Hubble Space Telescope, ob-
tained at the Space Telescope Science Institute, which is operated by AURA,
Inc., under NASA contract NAS 5-26555; and based on data collected at the
VLT (072.A-0367, 076.B-0362, and 078.B-0409), which is operated by ESO
and the Magellan Telescope, which is operated by the Carnegie Observatories.
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Fig. 1.—Comparison of the visual morphologies (as indicated in the legend)
to the GIM2D values. The quantitative bulge-to-total ratio (BT) is plotted on
the x-axis and smoothness index (S2) on the y-axis. The horizontal and vertical
lines indicate the values separating our morphological classes based on the
criteria by Simard et al. (2008).

. The velocity dispersions for the groups are0.349 ≤ z ≤ 0.377
measured using the biweight estimator (rostat; Beers et al.
1990).

For the subsequent computation we use p �21.28∗MV

( , Vega) as in Postman et al. (2005). For the pho-m p 19.1814

tometric filter conversions including evolution correction we
use the formulae from Fabricant et al. (2000) which have a 0.1
mag associated uncertainty.

3. MORPHOLOGICAL CLASSIFICATION

3.1. Quantitative Classification

We use GIM2D (Simard et al. 2002, 2008) for the quanti-
tative morphological classification. GIM2D performs auto-
mated bulge/disk decomposition and measures the object’s
asymmetry. We compare our morphological results with the
reference data set of Simard et al. (2008) who used the same
quantitative classification on a morphological study of high-
redshift galaxy clusters and groups in the ESO Distant Cluster
Survey.

The galaxies are modeled using an profile for the bulge1/4r
and an exponential profile for the disk, and the models are
convolved with the point-spread function (PSF) generated by
TinyTim (Krist 1993). For each object, we calculate PSFs at
the locations of the members in the raw ACS images, and then
drizzle (Fruchter & Hook 2002) them together to generate a
composite PSF for each object.

For each galaxy, we use the GIM2D bulge-to-total ratio (BT)
and image smoothness index (S2) (Simard et al. 2008) inside
two half-light radii; S2 measures the overall smoothness of the
galaxy with respect to the model.

3.1.1. Reliability Tests with Simulations

A reliability check of GIM2D and error quantification is
performed by inserting artificial galaxies (created with GAL-
IMAGE/GIM2D) in the real ACS frames that are then analyzed
in the same way as the observed galaxies. We follow the de-
scription given by Simard et al. (2002, 2008). The simulated
galaxies have random BT and inclination values between 0 and
1 and 0� and 85�, respectively, and cover the magnitude range
of our targets. We derive the averaged standard deviation for

BT (p0.042) and S2 (p0.016) with the aid of the simulations.
We then perform bootstrap resampling to compute a fractional
error of 4% using the standard deviations determined the sim-
ulations. Therefore we assume an uncertainty of �4% for the
quantitative morphological fractions derived throughout this
Letter.

3.2. Visual Classification

To complement our quantitative morphologies, five of our
team members6 visually classified all confirmed cluster mem-
bers according to a simplified Hubble scheme: ellipticals (E),
lenticulars (S0), spirals (S), and irregulars (I). For this analysis
the irregular classification includes interacting and low surface
brightness galaxies as well as dwarfs. To standardize the clas-
sifications, we use a training set based on the sample from
Fabricant et al. (2000). For the subsequent analysis, we adopt
the most common assigned morphological type when the clas-
sification from the individuals differs.

3.3. Visual versus Quantitative Classification

Figure 1 shows the distribution of the visual types (E, S0,
S, and I) and their GIM2D values. A correlation is evident in
Figure 1, with E�S0 galaxies typically having 0.4 ≤ BT ≤ 1
(right) and S galaxies BT ! 0.4 (left). Asymmetric structures,
measured with S2, increase in late-type galaxies as expected.
However, the divisions are not sharp and each class contains
some galaxies that lie outside these regions. Asymmetric struc-
tures such as rings, spiral arms, H ii regions, and the presence
of close neighbors can contribute to the scatter in BT for S0,
S, and I galaxies. Moreover, the spread in BT range is not
surprising given that spheroids do not all have profiles, and1/4r
not all disks are pure exponentials (e.g., Graham et al. 2003).

Simard et al. (2008) derived the fraction of early-type gal-
axies, , using the same GIM2D criteria as in this Letter. Wefe

use their definition for early-types as being galaxies with BT
≥ 0.35 and S2 ≤ 0.075 (cf. Tran et al. 2001). The values of
these selection criteria are indicated by a vertical and horizontal
line in Figure 1. We find that many galaxies that qualify as
late-types by the quantitative criteria, but that are visually clas-
sified as S0, generally have moderate quantitative asymmetry.

4. EARLY-TYPE FRACTIONS

The early-type fraction ( ) depends both on how is definedf fe e

(visual vs. GIM2D) and the magnitude limit. The visual and
quantitative morphologies yield nearly identical fractions. We
derive for different magnitude limits and list the results forfe

SG1120 in Table 1.7 Generally, we find at a cutofff ∼ 70%e

of � 0.5 and when including fainter members.∗M f ∼ 60%e

The latter value is comparable to the fraction of passive galaxies
in SG1120 with [O ii] l3727 emission !5 (∼61% � 8%;Å
Gonzalez et al. 2005).

4.1. for Clustersfe

Table 2 lists for galaxy clusters at a similar z as that offe

SG1120. Independent of magnitude cutoff, clusters at these
redshifts have early-type fractions of ∼60% (within ∼500 �1h65

6 S. J. K., A. H. G., C. A. S., K.-V. H. T., and D. Z.
7 While mass selection is preferable to luminosity selection (e.g., Holden et

al. 2006, 2007), we opt for luminosity selection in this instance to facilitate
comparison with existing samples. We note however that for a stellar-mass-
limited sample we obtain high values comparable to cluster values fromfe

Holden et al. (2006, 2007).
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TABLE 1
Early-Type Fractions in SG1120 (%)

Classification �0.5∗M �1∗M �1.4∗M �1.5∗M �1.75∗M

Visual 73 � 4 60 � 5 61 � 6 61 � 6 60 � 6
GIM2D 66 � 4 57 � 4 59 � 4 60 � 4 58 � 4

Notes.—Listing for the supergroup the in percentages for both thefe

visual and automated GIM2D classification; is determined using multiplefe

magnitude cutoffs because, e.g., Simard et al. (2008) and Poggianti et al.
(2006) use � 1.4 in their sample. The error for the visual results is∗M
the standard deviation from the mean value of the visual classification
from the five classifiers.

Fig. 2.—The early-type fractions as described in the text for the different
environments, which are separated by dashed vertical lines. SG1120 is shown
as a filled triangle and literature values as circles. SG1120 values are derived
from the mean of the visual and GIM2D morphologies. The solid vertical line
separates the galaxy groups and clusters at evaluated with mag-0.3 ! z � 0.55
nitude cutoffs ranging from � 1.0 to � 2.5 (left panel), from a com-∗ ∗M M
parison to Coma ( � 0.5; right panel).∗M

TABLE 2
Early-Type Fractions of Groups and Clusters

Source
(1)

fe

(%)
(2)

z
(3)

Cut
( �)∗M

(4)

j

(km s )�1

(5)
No.
(6)

Method
(7)

Clusters

Simard et al. 2008 53 � 5 0.3–0.55 1.4 681–1080 4 GIM2D
Dressler et al. 1997 57 � 10 0.3–0.55 2.5 n.s. 10 Visual
Desai et al. 2007a,b ∼60 ∼0.4 1.5 1600 12 Visual
Lubin et al. 2002b ∼60 ∼0.4 1.5 n.s. 11 Visual

Groups

Jeltema et al. 2007c 77 � 19 0.3–0.50 1.4 211–417 4 Visual
Mulchaey et al. 2006 53 � 26 0.3–0.50 1.0 245–632 2 Visual
Simard et al. 2008 56 � 11 0.3–0.55 1.4 165–540 7 GIM2D
Wilman et al. 2005 42 0.3–0.55 1.75 100–800 26 [O ii]

Notes.—The of clusters and groups from in the literature. Col. (4) shows the mag-fe

nitude cutoffs that were used to derive . The range in velocity dispersion for the systemsfe

are given in Col. (5); if not specified in the literature, we use the “n.s.” space holder. Col.
(6) contains the number of clusters/groups studied by each reference. The classification
method (GIM2D, visual, or [O ii] l3727 emission) is noted in Col. (7).

a The galaxy cluster sample in this study overlaps with the sample in Simard et al.
(2008).

b The galaxy clusters studied in these references partially overlap with the systems of
Dressler et al. (1997).

c Here we recomputed the values from the provided galaxy table for different mag-fe

nitude cutoffs and found that is constant over the range between � 0.5 and �∗ ∗f M Me

2.5. We therefore show only one value.

kpc; see Lubin et al. 2002 and references therein; see also van
Dokkum et al. 2001; Holden et al. 2004).

We expect SG1120 to evolve into a cluster that is similar in
mass to Coma. We find that Coma and SG1120 have compa-
rable early-type fractions when similar magnitude limits are
used: Holden et al. (2006) measure for lumi-f ∼ 78% � 4%e

nosity-selected galaxies ( � 0.5).∗M

4.2. for Groups and the Field atf 0.3 ! z ! 0.55e

Table 2 also lists early-type fractions for galaxy groups in
the same redshift range. The first two entries in the group
section refer to X-ray selected groups, and the remaining entries
to kinematically selected groups. Jeltema et al. (2007) provide
data for four X-ray-luminous groups. Mulchaey et al. (2006)
provide two additional X-ray-luminous groups. Wilman et al.
(2005) report the fraction of passive galaxies, as defined by [O
ii]l3727, within 1 Mpc of the centers of kinematically�1h75

selected groups; we assume that the passive fraction corre-
sponds to , as is the case for SG1120.fe

The scatter in is large among the galaxy group studies,fe

but the mean early-type fraction is distinctly higher than that
of the field. The field is 19 % at (Jeltema et�6f 0.2 ≤ z ≤ 0.6e �5

al. 2007), comparable to that of the passive fraction in the field
(∼25% for ; Wilman et al. 2005).0.2 ≤ z ≤ 0.6

4.3. S0-to-E Ratio

The ratio of S0 to elliptical galaxies in clusters is on average
0.5 at these redshifts (Dressler et al. 1997; Desai et al. 2007).
However, no measurement of the S0/E ratio has been measured
for the field or for galaxy groups at intermediate redshifts.
Using the visual classifications for all confirmed members in
SG1120, we measure the S0/E ratio to also be 0.5, similar to
clusters at the same redshift.

5. RESULTS AND DISCUSSION

Figure 2 presents as a function of environment. On thefe

left side, the values for the field, groups, and clusters for the
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magnitude cutoffs ranging from � 1.0 to � 2.5 are∗ ∗M M
shown. Comparing the full samples is reasonable because we
found that is nearly independent of the exact limit for cutoffsfe

in this magnitude range. SG1120’s early-type fraction is the
mean of the visual and quantitative GIM2D classification, and
its mean error is from Table 1. The right side of Figure 2 shows

for SG1120 and Coma using the same magnitude limitfe

( � 0.5).∗M
The early-type fraction in the field is low and comparable

to that measured in the local universe (e.g., Tran et al. 2001).
As shown in Figure 2, for galaxy clusters at the redshift rangefe

of SG1120 is ∼60% on average (Dressler et al. 1997; van
Dokkum et al. 2001; Lubin et al. 2002; Holden et al. 2004;
Desai et al. 2007; Simard et al. 2008) and thus similar to the

measured for SG1120. In addition, SG1120’s S0/E ratio isfe

the same as that observed in galaxy clusters at the redshift of
SG1120.

The early-type fraction in the galaxy groups has a larger
range (Mulchaey et al. 2006; Jeltema et al. 2007); while the
mean value falls below the values of SG1120 and the galaxy
clusters, this may not be the most appropriate method for char-
acterizing groups. For example, Poggianti et al. (2006) has
found that the range in passive galaxy fraction corresponds to
other physical characteristics, e.g., velocity dispersions of the
groups. Therefore, the group population likely contains a range
of systems that include preprocessed groups such as those that
make up SG1120, and less evolved galaxy groups.

The Coma cluster and SG1120 ( ) both have almostz ∼ 0.37
comparable early-type fractions when considering the error bars
( � 0.5). Therefore, the morphological mix in SG1120, a∗M
system made of four distinct X-ray-luminous galaxy groups
that will assemble into a galaxy cluster, is similar to that of
clusters in the local universe. We conclude that galaxies in
SG1120 are morphologically preprocessed in the group envi-
ronment and so the galaxy population as a whole does not
require additional morphological evolution.

While there must be some subsequent evolution due to pro-
cesses such as infall of field galaxies, mergers, and ram pres-
sure, what we learn from this system is that the net effect of

these processes need not be large. The values in SG1120fe

indicate that late-time infall of groups does little to change the
cluster early-type fraction. Holden et al. (2006, 2007) have
previously demonstrated that there is little evolution in forfe

massive cluster galaxies, which is to be expected if late-time
accretion is dominated by groups like those in SG1120. If late-
time accretion is instead dominated by individual galaxies
rather than groups, as suggested by Berrier et al. (2008), then
our results imply that the accretion and transformation rates
(from local and global processes) must roughly balance to
maintain a stable .fe

Although SG1120 is only a single system, it demonstrates
that the cluster environment is not required to reach high early-
type fractions, and that in general infalling groups should not
significantly alter cluster values. In fact, we see that in thesefe

group environments mergers among even the most massive
galaxies are common (Tran et al. 2008) supporting the hy-
pothesis that mergers in the group environment are a driver of
galaxy evolution.

The large scatter in among galaxy groups, irrespective offe

whether they are X-ray or kinematically selected, suggests that
obtaining a clean comparison sample of groups that will be
accreted by clusters is key to any evolutionary study. Thus
while the weakness of our study is having only a system, rep-
resenting one possible cluster assembly scenario, it is mitigated
by the knowledge gained from studying galaxies in groups that
are on the verge of entering the cluster environment.
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tive report. We are grateful to L. Simard for support with
GIM2D. This work was supported by grant HST-GO-10499.
K. T. acknowledges support from the Swiss National Science
Foundation (grant PP002-110576), and thanks J. Blakeslee for
help during the initial ACS reduction. J. M. acknowledges
funding support from NASA-06-GALEX06-0030 and Spitzer
G05-AR-50443.
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