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Neurocognitive Implications of Sport-Related Concussion in  

High School Athletes Over-Time 

By 

Evan L. Smith, M.S. 

Nova Southeastern University 

The identification of sport-related concussion (mild traumatic brain injury [mTBI]), its 

neurocognitive sequelae, and subsequent management have become a top priority within a 

spectrum of research disciplines at the intersection of psychology and sports medicine. To 

properly understand the complex neurocognitive changes associated with sport-related 

concussion in high school age individuals, multiple aspects of the injury were explored including 

the psychobiological nature of the injury, diagnostic concerns, normative adolescent 

neurocognitive development and abnormal changes as a result of the injury, and risk for further 

injury. While a wealth of literature exists in these areas, one aspect in particular, neurocognitive 

changes associated with sport-related mTBI in adolescents, is the focus of this research study. A 

review of the current research reveals a lack of exploration into neurocognitive deficits over-time 

as early as adolescence. To advance the understanding of how sport-related concussions may 

influence neurocognitive performance during this vulnerable age for brain development, multiple 

group comparisons were conducted to determine differences based upon reported concussion 

history. Results suggest that adolescents who experience sport-related concussion demonstrate 

significantly reduced levels of neurocognitive performance in several domains on initial baseline 

testing. Furthermore, these findings generally persist upon follow-up neurocognitive testing 

during adolescence. Thus, persistent neurocognitive deficits found during adolescence may have 

profound implications for brain development and concussion management.  
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Chapter I  

Statement of the Problem 

 An estimated 38 million children and adolescents participate annually in organized sports 

across the United States (US) (Daneshvar, Nowinski, McKee & Cantu, 2011). While 

participation in sport is associated with several psychobiological benefits such as improved 

cardiovascular and metabolic disease risk profiles, reduced body fat, increased cardiovascular 

fitness and improved psychological health (Eime et al., 2013), over the past two decades there 

has been increasing awareness that sport-related concussions, or mild traumatic brain injuries 

(mTBI), are a common consequence of sport participation. In the US alone, the estimated rates of 

sport-related concussion range as high as 3.8 million incidents (Barkhoudarian, Hovda, & Giza, 

2011). Of even greater concern is the increasing scientific evidence which suggests that 

concussions can result in long-term neurological problems and may induce persistent reductions 

in neurocognitive functioning (Daneshvar et al., 2011).  

 Concern for player safety has remained at the forefront of high-collision sports such as 

football, boxing, rugby, and ice hockey. In the early 20th Century, the National Collegiate 

Athletic Association (NCAA) was convened to implement stricter player safety regulations after 

19 athletes were killed or paralyzed playing football (Dunn, Dunn & Day, 2006). However, it 

wasn’t until recently that formal concussion policies and procedures were implemented by 

collegiate and professional governing bodies, including the National Hockey League (NHL) in 

1995, National Football League (NFL) in 2008 (revised in 2010) and NCAA in 2010 (Tomei et 

al., 2012). 

Despite the emphasis on sports such as football and ice hockey, sport-related brain injury 

(i.e., concussion) is also evident in limited-contact and non-contact sports such as soccer, 
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basketball, baseball and tennis. Nonfatal sport-related brain injuries pose a serious public health 

issue, as the Center for Disease Control (CDC) reported more than 207,000 emergency room 

visits related to these injuries from 2001 to 2005 (CDC, 2009). Historically, definitions of 

concussion and guidelines for concussion management have widely varied. Typically, these 

definitions utilized loss of consciousness (LOC) to determine “grade”, or severity, of concussive 

injury. However, these systems lacked consistency and empirical support (Collins & Hawn, 

2002). The inadequacy of these concussion management guidelines were re-examined and 

defined in 2001 when the International Ice Hockey Federation, Federation Internationale de 

Football Association (FIFA) and the International Olympic Committee, held an international 

conference in Vienna, Austria (Aubry et al., 2001). Understanding of concussive brain injury 

continues to evolve. To better understand the distinction between concussive and sub-concussive 

brain injury, we will explore the contemporary definition of “concussion”. For the purposes of 

this dissertation, mTBI and concussion will be used interchangeably. 

 The American Medical Society for Sports Medicine (AMSSM) currently defines a 

concussion as a “traumatically induced transient disturbance of brain function and involves a 

complex pathophysiological process. Concussion is a subset of mild traumatic brain injury 

(mTBI) which is generally self-limited and at the less-severe end of the brain injury spectrum,” 

(Harmon et al., 2013). This definition is derived from a growing literature supporting a complex 

neurobiological cascade of events in the brain triggered by the occurrence of the injury. Evolving 

from previous descriptions, LOC is no longer a prerequisite for the incidence of brain injury and, 

based on the most recent international summit on concussion, McCrory et al. (2013) defines a 

concussion as a “complex pathophysiological process affecting the brain, induced by traumatic 

biomechanical forces”. More comprehensively, the authors identify several common features that 
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incorporate the clinical, pathologic and biomechanical injury constructs that are utilized in 

defining the nature of a concussive brain injury: 

1. Concussion may be caused either by a direct blow to the head, face, neck or 

elsewhere on the body with an impulsive force transmitted to the head. 

2. Concussion typically results in the rapid onset of short-lived impairment of 

neurologic function that resolves spontaneously. However, in some cases, symptoms 

and signs may evolve over a number of minutes to hours. 

3. Concussion may result in neuropathological changes, but the acute clinical symptoms 

largely reflect a functional disturbance rather than a structural injury and, as such, no 

abnormality is seen on standard structural neuroimaging studies. 

4. Concussion results in a graded set of clinical symptoms that may or may not involve 

loss of consciousness. Resolution of the clinical and cognitive symptoms typically 

follows a sequential course. However, it is important to note that, in a small 

percentage of cases, symptoms may be prolonged. (p. 250-251) 

Each facet of the definition provides a contributory perspective to the overall complexity 

of our current understanding of sport-related mTBI. When considering the breadth of the current 

definition, it becomes crucial to understand the implications of brain injury amongst developing 

athletes.  

To better understand the implications of brain injury within a high school population a 

variety of aspects will be discussed, including the psychobiological consequences of the injury 

and the unique set of protective and risk factors that exist for youth and adolescents who incur 

sport-related concussions. Risk factors such as repetitive blows to the brain have been 

documented in former professional athletes, but have not been fully considered within the 
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context of the neurocognitive development of youth and adolescent athletes. For example, 

Brooks et al. (2013) examined the lingering effects of concussion history in adolescent hockey 

players and found that those players who report two or more concussions report more symptoms 

of concussion at future baseline testing. These results suggest that high school athletes are likely 

suffering the cumulative effects of multiple concussive injuries earlier than what has been 

reported in the post-concussion syndrome (PCS) and chronic traumatic encephalopathy (CTE) 

literature. Additionally, a review of the current research reveals a lack of exploration into these 

deficits over-time as early as adolescence. Given the lack of literature examining potential risk 

for ongoing neurocognitive dysfunction in those athletes who incur multiple concussions at an 

early age, empirical exploration of diagnostic concerns and concussive management guidelines 

as well as the implications of repeated mTBI in high school athletes will be examined in this 

dissertation. 
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Chapter 2 

Review of the Literature  

Concussion from a Psychobiological Perspective 

 The research on sport-related concussion has provided both quantitative and qualitative 

data regarding the clinical presentation of the injury. The subsequent advancement has allowed 

clinicians and researchers to gain a better understanding of the influence of brain dysfunction on 

return-to-play (RTP) guidelines for athletes. Critical to the advancement of clinical research was 

the establishment of a comprehensive understanding of the biological, chemical and metabolic 

“cascade” that follows a concussive injury (Giza & Hovda, 2001). As such, the neurological 

repercussions of mTBI are thoroughly discussed in the literature using animal and human 

subjects. First, research will be explored to provide a description of the biomechanical processes 

resulting from concussion and mTBI. Next, the cascade of neurological events, known as the 

“energy crisis” will be examined to understand the signs and symptoms of sport-related 

concussion.  

Neuro-mechanical etiology of concussion. A concussion is a form of mTBI which 

occurs when the brain is subjected to rapid acceleration and deceleration forces causing 

displacement of the cerebral spinal fluid (CSF) that surrounds the brain and may result in the 

brain making impact with the skull. Injury sustained to the brain at the site of impact is known as 

a coup injury, while injury occurring on the opposite side is referred to as a contra-coup or 

whiplash injury. Additionally, rotational forces on the brain may cause the tissue (i.e., axons and 

dendritic connections) to elongate, deform, or shear within the neurological tracts of the cranium. 

As a result of the traumatic injury, damage occurs to neuronal cell bodies, axons, dendrites, 

blood vessels and glial cells, disrupting neurological communication within the brain 
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(Povlishock, 1992). The literature concerning the neurobiological etiology of concussion through 

axonal injury and the subsequent metabolic cascade of dysfunction is detailed below. 

mTBI and the “energy crisis”. A distinction is made in the literature between moderate-

severe traumatic brain injury (TBI) and mTBI, as structural damage or injury are not common 

with mTBI. Neurons in the brain do not typically die as they do in TBI, but rather, they become 

stretched and torqued, causing a complex cascade of ionic, metabolic and physiologic events 

(Giza & Hovda, 2001). In discussing the metabolic changes that occur immediately after a 

biomechanical injury to the brain, the authors detail an abrupt shift in ionic fluxes that cause 

depolarization, with the unchecked efflux of potassium (K+) and influx of calcium (Ca2+). The 

resulting changes in cellular physiology cause the sodium-potassium (Na+-K+) pump within the 

cell to trigger a massive increase in glucose metabolism, as it is starved for adenosine 

triphosphate (ATP). Because vasospasming of the cerebral arteries also occurs following a 

concussive injury, an “energy crisis” is created within the cell as the disparity between glucose 

supply and demand increases. The concussed brain experiences a period of depressed 

metabolism immediately following the “hyper-metabolism”, contributing further to the energy 

crisis as Ca2+ may impair mitochondrial oxidative metabolism. This unchecked Ca2+ 

accumulation may even lead to cell death. Below is a figure illustrating the abrupt metabolic 

cascade of events in a concussed brain. It is likely that during this period, the brain becomes 

vulnerable to additional impacts (Giza & Hovda, 2001).  
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Figure 1: Neuro-metabolic Cascade Following Experimental Concussion 

 

 
Figure 1. Neurometabolic cascade following experimental concussion. K+, potassium; Ca2+, 

calcium; CMRgluc, oxidative glucose metabolism; CBF, cerebral blood flow. (Reprinted with 

permission. Giza CC, Hovda DA. Ionic and metabolic consequences of concussion. In: Cantu, R. 

C. & Cantu, R. I., (2000)). Neurologic Athletic and Spine Injuries. St Louis, MO: WB Saunders 

Co; p.80–100.). 

 

Typically, mTBI symptoms resolve within a few weeks. McRea et al. (2009) suggests 

that 85% of athletes average 17.49 (SD = 1.6) years of age evidence full neurocognitive and 

symptomatic recovery from concussive symptoms within 1 week. Fewer than 3% of subjects 

reported concussive symptomatology one month post-injury. Should the signs and symptoms of 

concussion persist for up to six months, this could indicate more diffuse damage within the brain 

and is known as Post-Concussion Syndrome (PCS). Impairments are persistent and more severe 

in most cases, including dizziness, hearing loss, sleep disorders, loss of taste or smell, attention 

deficits, and other difficulties with memory (Kushner, 1998). Given an understanding of the 

biopsychological etiology of brain dysfunction following a concussion, a review of detection 

methods and protocols is outlined below. 
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Diagnostic Evaluation of Concussion 

 The neurological underpinnings of head trauma reveal a myriad of signs and symptoms 

that have been established as important in the diagnosis of concussion. Aubry et al. (2002) refers 

to the First International Conference on Concussion in Sport (ICCS) as establishing the first 

guidelines for systematic concussion evaluation, including ten protocols: clinical history, 

evaluation, neuropsychological testing, imaging procedures, research methods, management and 

rehabilitation, prevention, education, future directions and medico-legal considerations. Now in 

its fourth iteration, the 2012 ICCS in Zurich, Germany, supplemented the findings of the 

previous conferences and refinement of the definition of concussion. Recommendations for 

diagnosis and ongoing evaluation include sideline testing of athletes suspected of being injured, 

restrictions on RTP times, assessment of psychological comorbidities, and more stringent 

regulations for athletes under the age of 18. As outlined by the 2012 ICCS, diagnosis of 

concussion will include one or more of the following: cognitive impairments, sleep disturbance, 

behavioral changes or somatic, cognitive and/or emotional symptoms (McCrory et al., 2013).  

 For high school athletes, the evidence of brain dysfunction and prognosis for recovery 

informs the current rules and regulations for return-to-play (RTP) decisions. RTP guidelines 

established at the 2012 ICCS denote a six step process that injured high school athletes must 

achieve before final RTP clearance. McCrory et al (2013) outlined the updated RTP as such: (1) 

The athlete must rest to alleviate all cognitive, emotional and physical symptoms. This is 

achieved by refraining from physical and cognitive stress (e.g. limiting interactions with friends, 

homework, or television). (2) Return to light aerobic exercise (e.g. walking or swimming) to 

assess whether symptoms return as heart rate increases. (3) Engage in sport-specific exercise 

(e.g. light lifting or jogging). (4) Engage in non-contact training and complex drills (e.g. heavy 
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lifting or pitching drills) to determine if symptoms return under strenuous exercise and cognitive 

load. (5) Full contact return to practice, pending medical clearance to expose the athlete to game-

like conditions under supervision. (6) Athlete is cleared to RTP pending symptom-free 

completion of steps 1-5. To begin RTP protocol, the high school athlete must present as non-

symptomatic and meet baseline neurocognitive functioning as outlined below. Moreover, an 

athlete must be symptom-free for 24 hours following each step of the RTP progression.   

Adolescent Neurocognitive Development and Impairment 

To better understand the neurocognitive risk incurred by adolescents with a history of 

concussion, normative neurocognitive development in adolescents is examined next. In 

particular, Connors et al. (2003) provides an examination of normative reaction time (RT) and 

impulse control performance amongst a normative epidemiological sample (N=816) of 9-17-

year-old children. Utilizing the continuous performance test (CPT), the authors demonstrate 

main effects of improved performance in RT and impulse control inhibition as age increases 

amongst this healthy sample. Additionally, gender main effects reveal males evidenced faster RT 

and more impulsive errors when compared to female counterparts. Additionally, this finding is 

corroborated by an electroencephalography (EEG) study (Johnstone et al., 2005) demonstrating 

improved RT with age and identifies event related potentials (ERP) utilized in activation and 

inhibition associated with these findings. These findings suggest that additional research is 

warranted into exploring the effects of neurocognitive functioning amongst several demographic 

variables (e.g., age, gender, and ethnicity).  

Given the developmental changes that occur in high school-age athletes, it is important to 

recognize the unique set of risk and protective factors that mediate the relationship between 

normative development and potential dysfunction caused by mTBI. Brain development in this 
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age group is accented by the growth of the executive function system. Proliferations of neurons 

in the prefrontal cortex and limbic system during adolescence influence the development of 

cognitive functioning, planning and behaviors. A higher-order control system, executive 

functioning (EF) regulates lower-order brain functions (e.g. short-term memory, sensory 

perceptions, language and motor skills) and organizes future/goal-oriented thinking and 

behaviors (Pokhrel et al., 2013). Additionally, this increased aptitude for sequencing of actions 

towards a goal is an outward expression of acquiring abstract reasoning skills at this age. 

Differential acquisition of these skills is common in this age group as individuals mature at 

varying rates (Spear, 2000). Injury to the brain during this critical period in neurocognitive 

development could be uniquely detrimental and is explored below. 

ImPACT® studies with high school athletes. Not fully developed, adolescents may 

exhibit poorer cognitive performance under stress, both environmental and biological (Spear, 

2000). Orthopedic injuries may differ from neurological injuries in diagnosis, prognosis and 

symptomology. Additionally, coping strategies and recovery from concussion may vary within 

this population. For these reasons, it is crucial to examine the dysfunction that occurs in high 

school-age athletes when recovering from a concussion.  

Exploration of the neurocognitive effects of concussion in youth athletes delineates 

between concussion (mTBI) and orthopedic injury (OI) (Reiger et al., 2013). Utilizing a sample 

of 69 parent-child pairs (39 mTBI, 30 OI), injured adolescents participated in initial ImPACT® 

testing (child) and the Behavior Rating Inventory of Executive Function (BRIEF) (parent) in the 

emergency room. 18 participants withdrew from the study and the remaining 51 participated in 

3-month follow up ImPACT® testing and the BRIEF. As expected, mTBI youth endorsed more 

post-concussion symptoms and performed poorer on initial ImPACT® testing. However, BRIEF 
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results did not distinguish groups. Neurocognitive measures did not differentiate between OI and 

mTBI groups at 3-month follow up, except for visual memory scores, which remained impaired 

in the mTBI croup comparatively. Results suggest that although neurocognitive differences 

existed between groups, parents may not accurately assess child functioning during recovery 

from mTBI. 

Covassin et al. (2013) examined the relationship between neurocognitive performance 

and reported symptoms with coping responses. A sample of 104 concussed athletes (M  = 16.41, 

SD = 2.19 years) was comprised of 76% high school (n = 79) and 24% collegiate (n = 25) 

athletes. Each participant completed a baseline neurocognitive functioning measure (ImPACT®) 

and post-concussion ImPACT® with a measure of coping responses during recovery from 

concussion (Brief COPE) approximately 3 and 8 days post-injury. Results were compared using 

a regression model and revealed that concussed athletes reported higher levels of avoidance 

coping behaviors (e.g. denial, venting, behavioral disengagement) with lower cognitive 

functioning scores (Visual Memory) on the ImPACT®. In addition, athlete self-report of self-

blame, self-distraction and religion resources was higher at 3 days compared to 8 days post-

concussion. Implications for these findings suggest that high school and collegiate athletes may 

use maladaptive avoidant coping strategies when recovering neurocognitive function due to 

concussion. 

During high-collision sports, athletes accept the risk of acute injury as a risk of gameplay. 

Research with moderate and mild-collision sports is unclear regarding the inherent risk of 

participation in sport. For example, Lovell & Solomon (2013) found that 61% of cheerleaders 

examined for concussion (n = 138) reported an increase in symptoms compared with baseline 

ImPACT® testing. As a group, neurocognitive performance 7 days post-concussion remained 
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significantly declined relative to baseline testing (F = 6.5. p < ,001). Kontos et al. (2011) 

investigated the relationship between soccer heading and neurocognitive functioning and 

symptoms in youth soccer players. A sample consisted of 63 athletes (27 females, 36 males) 

aged 13 to 18 (M = 15.89, SD = 1.17) who were observed during practice and game and grouped 

into heading exposure groups (low, moderate, high) based on average number of headers taken. 

Participants completed ImPACT® testing and results revealed no differences between groups. 

While each group outperformed the 10th percentile normative group, high frequency males 

demonstrated slower processing speed scores than females. Authors suggest that the effects of 

heading in youth soccer may be subtle and further research is warranted at higher levels of play. 

The literature suggests that youth participation in sport demonstrates inherent risks for 

injury. Acute mild brain injury (mTBI) symptoms may take longer to resolve in a high-school 

age population and require different intervention and prevention protocol from OI. As symptoms 

and cognitive dysfunction appear to have more deleterious effect during recovery from mTBI in 

this population, additional examination of literature regarding repetitive blows to the head is 

described below. 

Risk Factors Associated with Repeated Blows to the Head 

As discussed, the signs, symptoms and neurophysiology of impairment resulting from 

mTBI are usually self-limiting and resolve spontaneously over a period of several weeks. In high 

school athletics, return to play (RTP) protocols have been established to minimize the risk of 

prolonged neurocognitive and somatic deficits resulting from sport-related concussion. However, 

impact injuries less severe than concussion may occur during participation in sport that do not 

produce overt neurological symptoms. These injuries to the brain are associated with subtle 

neuropsychiatric deficits or changes in functional magnetic resonance imaging (fMRI) and are 
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referred to as “sub-concussive” hits (Gysland et al., 2012). In addition, many sub-concussive 

symptoms and signs may be fleeting and go undetected following the immediate neurological 

insult. For this reason, players, coaches, parents and medical staff, may overlook mild sport-

related head injury, as they do not produce immediate observable concerns. Consequently, the 

athlete may put him or herself at greater risk for long-term dysfunction if repeated exposure to 

mTBI, concussion and sub-concussive hits are undiagnosed (McCrory et al., 2009). The risk 

factors associated with repetitive blows to the head, including the development of Second Impact 

Syndrome (SIS) and Chronic Traumatic Encephalopathy will be explored. 

Second-Impact Syndrome (SIS). Essential to the treatment of sport-related concussion 

is the accuracy, sensitivity and enforcement of the RTP protocols established above. Adherence 

to this measure should mitigate the risk of dangerous neurogenic dysfunction resulting of 

repeated blows to the head. Should the athlete suffer a second head injury before the symptoms 

associated with the “energy crisis” from first impact have resolved, a synergistic and potentially 

fatal neurobiological cascade of events may trigger, known as Second Impact Syndrome (SIS). 

While the second impact to the brain may be sub-concussive in nature, the athlete can suffer an 

acute episode of severe cerebrovascular engorgement, diffuse cerebral swelling and brain 

herniation, resulting in coma and even death (Cantu & Gean, 2010).  

The literature on the evidence for SIS (McCrory, 2001) is mixed. Presumably, SIS results 

from the brain’s inability to regulate cerebral blood flow coupled with catecholamine release 

which abruptly increases intracranial blood volume (Lam, Hsiang & Poon, 1997). Young athletes 

appear to be at increased risk to experience SIS, with all reported cases occurring in athletes 

from the age of 10 to 24. The majority of deaths occurred in the high school athletic population 

(μ=17.9 years of age) and those participating in high-collision sports appear to be uniquely 



CONCUSSION IN HS ATHLETES  15 

susceptible, as most SIS instances resulted from American football and boxing injuries (71% and 

14% respectively) (Mori, Katayama & Kawamata, 2006).  

High school athletes in particular may be particularly susceptible to the dangers of SIS. 

Several unique risk factors exist which create increased vulnerability for high school-age 

athletes, including age, type of sport, and prior history of concussion. Proctor and Cantu (2000) 

discovered that beginning at approximately age 12, head injuries increase as a function of 

increasing age. Additionally, high school athletes evidence slower recovery of neurocognitive 

functioning domains when compared to college athletes (Collins, Stump & Lovell, 2004). 

Engagement in high-collision sport-related activities may be especially risky, as Cantu (2003) 

notes, 69% of all football-related fatalities from 1945 to 1999 were due to brain injury. Prior 

concussion history was also found in many of the athletes in this study. A history of concussive 

events may expose the athlete to magnified risk of incurring additional and more symptomatic 

concussions (Cobb & Battin, 2004). 

Chronic Traumatic Encephalopathy (CTE).  Chronic traumatic encephalopathy (CTE) 

is a neurodegenerative condition that is characterized by confusion, slowing of speech, tremors, 

Parkinsonian symptoms and overall mental deterioration (Saffary & Chin, 2012). A paucity of 

research exists in the area of CTE research. Once referred to as “dementia pugilistica,” CTE was 

thought to be a disease state specific to boxers who had experienced repeated blows to the head. 

Recently becoming an attention-grabbing issue in sports, it has been confirmed not only former 

boxers but also retired football players from the National Football League (NFL) as well as 

professional soccer and rugby players (Omalu et al., 2005). While CTE can only be confirmed 

via autopsy, it is thought to be the result of repeated concussive or subconcussive injuries. Rising 

concern over the physiological and psychological effects of concussions and their long-term 
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Figure 2: Neuropathological Findings in a Brain with Stage IV CTE 

 
Figure 2. Gross neuropathological findings in a 77-year-old former Australian Rules rugby 

player who died with severe dementia and Stage IV CTE. Cognitive problems, memory loss, 

attention difficulties, and executive dysfunction were first noted in his mid-50s, followed by 

depression and anxiety, worsening explosivity and impulsivity. By his mid-60s, he was physi-

cally and verbally abusive, paranoid, and severely demented. He began playing rugby at age 13, 

and played for 19 years in U21 and senior leagues. a At autopsy, the brain weighed 1,030 g and 

showed severe atrophy and ventricular enlargement with a prominent cavum septum pellucidum 

(arrowhead). b–c The mid-portion of the septum pellucidum (asterisk) is reduced to a thin 

filament with severe atrophy of the fornix, thalamus, hypothalamus, mammillary bodies, 

amygdala, anterior hippocampus, and entorhinal cortex. d There is bilateral hippocampal atrophy 

(arrowheads). e The floor of the hypothalamus is severely thinned and the mammillary bodies 

are severely atrophic (arrowhead). f Brainstem sections show pallor of the pars compacta of the 

substantia nigra and locus coeruleus, with discoloration of the frontal tracts of the cerebral 

peduncle (McKee et al., 2013). 
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 High school athletes who participate in high-collision sports and activities are typically 

aware of the acute risks associated with the sport itself, however, little is known about long-term 

damage that may be occurring within the brains of these individuals. Current literature reveals 

some insight into the biomarkers associated with CTE, however, developmental changes that 

may occur in brain injured athletes remain relatively unknown. Neuropsychological factors 

associated with the current theory of CTE may distinguish those who experience repeated blows 

to the head from those who do not. Given the retrospective nature in diagnosing CTE and long-

term cognitive dysfunction, future directions in research and the early detection and intervention 

of preventative measures from an early-age are indicated. 

Future Research 

 Research involving sport-related concussion, mTBI and subconcussive events, provides 

initial findings regarding the unique dysfunction in high-school age athletes recovering from 

injury. Concussions are demonstrated to be an injury not only structural, but associated with a 

cascade of metabolic dysfunction within the brain that causes cognitive and clinical symptoms. 

This effect may be more prominent in athletes who are less mature in biological brain 

development. Ongoing studies examining the prevention, diagnosis, evaluation, intervention and 

recovery involved in RTP protocol will be essential to providing appropriate care to high school-

age athletes and may determine is athlete are at risk for the development of long-term difficulties 

associated with repeated blows to the head, namely PCS and CTE.  

Purpose of the Study 

 This study proposed to explore the relationships between neurocognitive functioning in 

high school athletes as a function of reported concussion history. The examination of these 

relationships were cross-sectional, based on archival data. The neurocognitive measures utilized 
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assess functioning in various cognitive areas including visual memory, verbal memory, visual-

motor speed, reaction time and impulse control. The data examined were collected from 34 

Broward County, Florida high schools as part of a Florida regulation for all high school athletes 

to be measured biannually on baseline neurocognitive functioning prior to beginning their sport. 

This mandate was instituted by the School Board of Broward County, Florida and the Broward 

County Athletic Association (BCAA) to help diagnose and effectively manage a concussive 

injury. This data has been collected longitudinally over a span of 3 years (2011-2014). The study 

attempted to contribute to the existing literature on the risks associated with multiple concussive 

brain injuries, as well as provide further exploration on neurocognitive functioning in 

adolescents. Specifically, this study aimed to answer the following research questions: 

1. Does neurocognitive functioning tend to remain stable over-time in healthy 

adolescents? If so, what changes occur in healthy high school athletes? 

a. H0: High school athletes’ neurocognitive functioning remains stable over-

time.  

b. H1: High school athletes’ neurocognitive functioning varies over-time. 

2. At baseline, do high school athletes differ in neurocognitive functioning profiles as a 

function of reported concussion history? 

a. H0: At baseline, high school athletes reporting prior concussion(s) do not 

differ in neurocognitive functioning from those who report no prior 

concussions. 

b. H1: At baseline, high school athletes reporting prior concussion(s) differ in 

neurocognitive functioning from those who report no prior concussions. 
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3. Are there differences in neurocognitive functioning in high school athletes’ over-time 

due to a history of reported concussions?  

a. H0: High school athletes reporting prior concussion(s) do not differ in changes 

in neurocognitive functioning from those who report no prior concussions 

over-time. 

b. H1: High school athletes reporting prior concussion(s) differ in changes in 

neurocognitive functioning from those who report no prior concussions over-

time. 

4. If a significant difference is found between change in neurocognitive functioning 

among those who reported concussion history and those that did not, is this difference 

moderated by any variables (e.g., demographic variables, injury variables)? 

a. H0: If a significant difference is found between changes in neurocognitive 

functioning among those who reported concussion history and those that did 

not, this relationship will not be modified by an additional variable(s). 

b. H1: If a significant difference is found between changes in neurocognitive 

functioning among those who reported concussion history and those that did 

not, this relationship is modified by an additional variable(s). 

5. Furthermore, if neurocognitive function is found to be different between groups of 

athletes with varying concussion history, is this change explained, even partially, by a 

component specific to concussion? 

a. H0: If neurocognitive function is found to be different between groups of 

athletes with varying concussion history, this change is fully explained by 

reported concussion history. 
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b. H1: If neurocognitive function is found to be different between groups of 

athletes with varying concussion history, this change is explained, even 

partially, by a component specific to concussion (e.g., baseline PCSS score, 

time since last concussion). 
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Chapter III 

Methods 

Participants 

 The current study is based on archival de-identified data provided by the Nova 

Southeastern University Sports Medicine Clinic (NSU-SMC). The sample consisted of 

approximately 23,000 Broward County, Florida, high school athletes who have completed at 

least one baseline neurocognitive functioning screening prior to beginning their sport in a given 

year. The subject ages ranged from 12-19 years of age. All subjects submitted to a baseline 

computerized neurocognitive functioning assessment as part of a county school board resolution 

requiring all high school athletes to complete baseline neurocognitive functioning measures to 

inform RTP protocol, should they be suspected of suffering a concussive brain injury. As this 

mandate encourages biannual testing, longitudinal data for several athletes in the archival 

database were provided.  

 Administration of the computerized assessment was delivered by licensed medical 

professionals trained to provide this form of testing. Training included instructions regarding 

login requirements, software requirements, test set-up, group and individual guidelines for 

administration. Typically, tests are expected to be administered in a controlled environment. In a 

group setting, an external mouse is required, along with empty terminals between examinees, 10-

15 athletes per administration and in a quiet room. Computerized testing access is provided to the 

BCAA through the NSU-SMC, thus allowing access to the data collected.  
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Materials and Procedure 

Neurocognitive testing.  

Computerized neurocognitive assessments are administered to each athlete biannually by 

licensed medical staff including the high school Certified Athletic Trainer (ATC) or the licensed 

psychologist at the NSU-SMC. Athletes received an explanation of RTP protocol and the 

importance of giving their full effort on the baseline neurocognitive function assessment. 

Additionally, administrators provided instructions regarding the assessment including what the 

test seeks to measure, length of time expected and format of the assessment. Players were 

expected to complete the computerized assessment in a quiet room individually or in group 

format. Once completed, athletes were given the option to send confirmation to a pre-registered 

email address or are given permission to leave.   

 Neurocognitive evaluations. 

The Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT®) 

computerized test is the most widely used and most empirically validated computerized 

concussion evaluation system (Iverson, Lovell, & Collins, 2006). It was developed to assist 

practitioners in making informed decisions regarding RTP following concussions by comparing 

and athlete’s post-concussion neuropsychological performance with baseline results. The test is 

divided into 3 sections which provide information to aid in the neurocognitive evaluation of 

concussion and are described below. 

 Sections. The ImPACT® is comprised of 3 sections. Section 1 (Demographics 

Information and Health History Questionnaire) requires the athlete to input basic demographic 

and descriptive information using a computer keyboard and mouse to navigate/select responses 

on the screen. Additionally, this section asks athletes the answer questions regarding height, 
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weight, sport, position, concussion history and other historical health questions. Section 2 

(Current Concussion Symptoms and Conditions) asks questions about the most recent date, hours 

slept last night and current medications. The athlete then rates their current severity of 22 

concussion symptoms using the Post-Concussion Symptom Scale (PCSS) which relies on a 7-

point Likert scale (a score of 0 representing no severity and a score of 6 representing the most 

severe rating). The PCSS calculates a total symptom score for each individual and is further 

explained below. In Section 3, athletes complete six modules that test neuropsychological 

functioning. These modules (Word Discrimination, Design Memory, X’s and O’s, Symbol 

Matching, Color Match and Three Letter Memory) are combined into 5 neuropsychological 

functioning scores that are also described below (ImPACT®, 2014). 

 Post-Concussion Symptom Scale (PCSS). As outlined by the ICCS, RTP protocol 

suggests that athletes not return to play until they are asymptomatic (McCrory et al., 2013). 

Thus, the PCSS is utilized in the management of concussion by assessing and documenting 

clinical symptomology in athletes. The PCSS is presented to the athlete in Section 2 of the 

ImPACT® and identifies 22 commonly reported concussion symptoms. Respondents are 

required to endorse each of the 22 symptoms on a 7-point, Likert-type scale ranging in severity 

from “None” to “Severe” experience of the symptom within 24 hours of testing. A total symptom 

score is derived by adding the sum of all points endorsed for the 22 items (see Appendix for 

PCSS table).   

Modules. Each ImPACT® module is displayed in order to the athlete with the ability to 

pause between modules. In Module 1 (Word Discrimination), athletes are presented with twelve 

target words for 750 milliseconds. They are then given a second presentation of the same word 

set. After the second presentation, the athlete is presented with a randomized list of 12 target and 
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12 non-target words that have been chosen from the same semantic category. Athletes are asked 

to discriminate whether the word was a target word using the mouse to click “yes” or “no” 

responses on the computer screen. A delay condition (approximately 15 minutes) is administered 

after all other test modules using the same method (ImPACT®, 2014). 

Module 2 (Design Memory) is similar to the method of Module 1, however, it uses target 

designs rather than target words. Additionally, the non-target designs are comprised of target 

designs that have been rotated. A delay condition (approximately 15 minutes) is assessed for this 

module as well. Individual and total percent scores are provided for correct “yes” and “no” 

responses for each module (ImPACT®, 2014). 

In Module 3 (X’s and O’s) the athlete practices a distracter task (clicking the “Q” key if a 

blue square appears on the screen or the “P” key if a red circle is presented) and is then presented 

with a memory task. During the memory task, the athlete is presented with a randomized 

assortment of X’s and O’s for 1.5 seconds and asked to remember which three X’s or O’s were 

illuminated in yellow in their respective locations on the screen. After each presentation, the 

athlete completes the distracter task. The memory task then reappears and the athlete is asked to 

click the X’s or O’s that were previously illuminated in their location on the screen. Each athlete 

undergoes four trials of Module 3 and three scores are provided: correct identification, reaction 

time during the distracter task, and number of errors during the distracter task (ImPACT®, 

2014). 

In Module 4 (Symbol Matching) the athlete is initially presented with a 2x9 grid with 9 

common symbols (i.e., square, circle, triangle, etc.) that are paired with a number from 1 to 9 

underneath. Below this grid, a symbol is presented and the athlete is asked to click the 

corresponding number on the grid as quickly and accurately as possible. Correct performances 
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result in a green illumination of the number and incorrect performances result in a red 

illumination. After the athlete completes 27 trials, the symbols disappear from the top grid and 

the athlete is asked to recall the correct pairing by clicking the corresponding number in the grid 

to the symbol that appears below. Average reaction time scores are provided along with correct 

memory recognition scores (ImPACT®, 2014). 

Module 5 (Color Match) is a Stroop-type challenge that begins with a task to ensure the 

athlete can discriminate color. The athlete is required to click red, blue or green buttons on the 

screen as a demonstration of visual acuity. Next, color words (i.e., RED, BLUE, GREEN) are 

displayed in the same color ink (i.e., the word RED displayed in red ink) or in a different color 

ink (i.e., the word GREEN displayed in red ink). The athlete is asked to click the box only if the 

word is displayed in the same ink as quickly as possible. Scores are provided for reaction time 

and errors (ImPACT®, 2014). 

Lastly, the athlete is presented with Module 6, known as Three Letter Memory, where 

three randomized consonant letters are displayed on the screen and are immediately followed by 

randomized distractor task. In the 18-second distractor task, the athlete uses the computer mouse 

to click in backward order, as quickly as possible, on a 5x5 grid that contains randomized 

numbers from 1 to 25. The athlete is then presented with a memory task, where they are asked to 

recall the three consonants by typing them on the keyboard. After five trials, scores are provided 

for correctly identified letters and the average number of correctly clicked numbers during the 

distractor task (ImPACT®, 2014). 

 Composite Subscale Scores. The results of the 6 neurocognitive modules on the 

ImPACT® test are combined and five composite subscale scores are calculated: Verbal Memory, 

Visual Memory, Processing Speed, Reaction Time and Impulse Control.  
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Verbal Memory Composite is a score ranging from 1 to 100, with higher scores 

indicating better performance. It is comprised of the average of the following scores: total 

memory percent correct, total correct hidden symbols matched from the Symbol Matching 

module (Module 4) and total percent letters correct from the Three Letter Memory module 

(Module 6).  

Visual Memory Composite is a score ranging from 1 to 100, with higher scores 

indicating better performance. It is comprised of an average of the following scores: total percent 

correct from the Design Memory module (Module 2) and total correct memory score from the 

X’s and O’s module (Module 3).  

Processing Speed Composite is a score ranging from 1 to 100, with higher scores 

indicating better performance. It is comprised of an average of the following scores: total 

number correct on the distractor task divided by 4 (number correct/4) from the X’s and O’s 

module (Module 3) and average numbers counted correctly times 3 (number correct x 3) from 

the Three Letter Memory module (Module 6).  

Reaction Time Composite is a score ranging from 0 to 1, with lower scores indicating 

better performance. The value is measured in seconds. It is comprised of an average of the 

following scores: average correct reaction time (RT) from the X’s and O’s module (Module 3), 

average correct RT divided by 3 (avg. correct/3) from the Symbol Matching module (Module 4) 

and average correct RT from the Color Match module (Module 5).  

Impulse Control Composite is a total score ranging from 0 to 132 with lower scores 

indicating better performance. Each point represents an individual error. It is comprised of the 

following scores: total incorrect (interference) during the distractor task from the X’s and O’s 
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module (Module 3) and total commissions from the Color Match module (Module 5) 

(ImPACT®, 2014). 

 Once the composite scores are calculated, a percentile rank is produced for all composite 

scales except the Impulse Control composite to inform the clinician’s interpretation of the 

athlete’s scores compared within the normative sample. This is valuable during both baseline and 

post-injury testing to establish an expected range of neurocognitive functioning norms for each 

athlete. If an athlete is suspected of sustaining a concussion, composite scores or percentile ranks 

may be used to compare post-concussion tests to that athlete’s baseline functioning norms. If a 

current baseline test is not available, scores may be compared to age-appropriate norms. The 

athlete may be cleared to begin RTP protocol once baseline or normative scores are met 

(McCrory, et al., 2013).  

Iverson, Lovell, & Collins (2003) examined the psychometric properties of the 

ImPACT® test. Primarily, the study found no test-retest practice effects after a two-week 

interval. This is necessary to validate when using a concussed sample, but is also important when 

discussing baseline year-to-year results. Additionally, there were no significant differences in 

test-retest for any of the composite scores (Verbal Memory: t(55) = -0.17, p < .87, Visual 

Memory: t(55) = 0.85, p < .40, Reaction Time: t(55) = 0.97, p < .34 and Total Symptom Score: 

t(55) = -0.54, p < .60) except for Processing Speed (t(55) = -3.26, p < .003) in which 68% did it 

faster at re-test.  More contemporary findings (Nakayama, et al., 2014) revealed stronger 

evidence to suggest the ImPACT is a reliable neurocognitive battery. Intraclass correlation 

coefficients (ICCs) were calculated for baseline to day 45, day 45 to day 50, baseline to day 50, 

and overall. Results indicated all ICCs exceeded the threshold value of 0.60 (Verbal Memory: 

0.76, 0.69, 0.65, and 0.78; Visual Memory: 0.72, 0.66, 0.60, and 0.74; Visual Motor Speed: 0.87, 



CONCUSSION IN HS ATHLETES  30 

0.88, 0.85, and 0.91; Reaction Time: 0.67, 0.81, 0.71, and 0.80). At baseline testing, sections 

inquiring about current concussion are omitted, although concussion history is requested.  

Proposed Analyses  

 The analyses below were performed using the IBM SPSS 23. A description of the 

proposed analyses is provided next. 

Effect Size Considerations. 

 Initially outlined in 2009 and updated in 2016, Ferguson (2016) provides detailed 

guidelines on the selection and interpretation of reported effect sizes.  Four general categories of 

effect size are provided, including (1) Group difference indices, (2) Strength of association 

indices, (3) Corrected estimates, and (4) Risk estimates. Group difference indices usually note 

the magnitude of difference between two or more groups. Strength of association indices 

typically examine the magnitude of shared variance between two or more variables. Corrected 

estimates, or squared associations, including partial eta-squared (η2) is most commonly used for 

factorial ANOVA designs. Risk estimates are generally used in medical research and estimate 

the difference in risk for a particular outcome between two or more groups of individuals.  

To determine selection of an appropriate effect size, Ferguson (2016) provides general 

guidelines: (1) Rigid adherence to arbitrary guidelines is not recommended. That is, study 

limitations must be considered when interpreting effect size, as the guidelines suggested are 

minimal cutoffs and not guarantees that the observed effect sizes are meaningful, (2) Corrected 

effect sizes are preferable to uncorrected effect sizes, (3) For correlational designs, partial r and 

standardized regression coefficients are preferred to bivariate r as they estimate the unique 

variance attributable to a predictor controlling for other variables, (4) When the data are 

binomial, only rh should be used as an effect size estimate, (5) For ordinal data, Somer’s d or 
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Kendall’s τ should be used, (6) It is recommended that effect size Cis be reported along with 

effect size estimates, and (7) Effect size estimates can be influenced by sampling and 

measurement errors which may reduce the representation of the “true” effect in the population.  

In an effort to adhere to these guidelines and for the purpose of the proposed analyses in 

this study (described below), the partial eta-squared (η2) index was employed to interpret the 

magnitude of effect observed, with r2 utilized for post-hoc testing. The following threshold 

interpretation of these effects are utilized: .04 (RMPE = recommended minimum effect size), .25 

(moderate effect), and .64 (strong effect). 

Hypothesis I. 

 Utilizing a longitudinal design, we attempted to determine what, if any, changes in 

neurocognitive functioning can be expected over time in high school athletes. Athletes who 

report no prior concussions to baseline and have at least two valid baselines were included in 

these analyses. A paired, or “repeated measures”, t-test was used to evaluate if there is a change 

in neurocognitive functioning over-time in these “healthy” athletes. Utilizing a paired t-test 

approach allows for comparison of the same group of individuals at multiple time points, 

reducing variation and increasing statistical power.  

Hypothesis II. 

In order to choose an appropriate analysis to perform in Hypothesis III, we must compare 

the neurocognitive functioning in high school athletes who report varying concussion histories at 

baseline. A one-factor between-subjects ANOVA was performed with reported concussion 

history (e.g., Group 1[0 concussions]; Group 2[1 concussion]; Group 3[2+ concussions]) entered 

as the IV and each of the four neurocognitive functioning composite scores (visual memory, 

verbal memory, visual-motor speed and reaction time) were treated as DVs.  



CONCUSSION IN HS ATHLETES  32 

Assumptions associated with ANOVA include (1) independence of observations, (2) 

normality, and (3) homogeneity of variances. Independence of observations denotes that the 

occurrence of one event does not affect the probability of the other event, thus independently 

observed. The assumption of normality states that the deviations of an observed value in a 

sample are normally distributed within the population from which the sample was chosen. The 

tenability of these assumptions were evaluated before conducted the ANOVA’s a priori (e.g., 

testing equality of variances using Levene’s test). Level of significance was set to α = .05 to 

yield a 95% confidence interval for interpretation of results. If the omnibus, or overall, was 

found to be significant, the Tukey (honest significant difference) HSD post hoc procedure was 

conducted using a family-wise error rate of 𝛼𝐹𝑊𝐸 = .05 to further explore the relationships 

between groups. Tukey's HSD test compares the means of each level of the group to the means 

of every other level and is applied simultaneously to the set of all pairwise comparisons. 

Hypothesis III. 

 Once the “healthy” trend of neurocognitive change over time was established (Hypothesis 

II), neurocognitive functioning over-time as a function of prior reported concussion history was 

evaluated utilizing Analysis of Covariance (ANCOVA). Athletes included in this statistical 

analysis must have had at least 2 baseline tests of neurocognitive functioning.  

Additional considerations in ANCOVA include (1) independence of the covariate and 

treatment effect, and (2) homogeneity of regression slopes. The independence of the covariate 

and treatment effect refers to the assumption that the IV and covariate are not significantly 

associated to each other. Homogeneity of regression slopes refers to the assumption that the 

relationship (i.e., positive, negative and with relative strength) between the covariate and the DV 

is homogenous across the groups being tested (IV). If the analysis conducted in Hypothesis III 
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revealed differences in baseline neurocognitive functioning between athletes with varying 

concussion histories, alternative analyses were considered (e.g., 3x2 Mixed Model ANOVA). 

 If the assumptions are met, the proposed statistical procedure utilized groups of athletes 

separated based upon reported prior concussion history (G1: 0 concussions; G2: 1 concussion; 

G3: 2+ concussions) as the levels of IV. The covariate in the ANCOVA model was the baseline 

neurocognitive functioning composite scores. The DV was the second baseline of the high school 

athletes included in the procedure.  

Hypothesis IV. 

 If a statistical difference was found when comparing groups of high school athletes based 

on reported prior concussion history, we would explore the possibility of alternative components 

which may moderate the strength of the relationship between concussion history and 

neurocognitive functioning. Exploration of moderation tests the extent to which the prediction of 

a DV from an IV differs across levels of a third variable. This third variable affects the strength 

and/or direction of the relationship between the IV and DV, depending on the levels of the IV 

and third variable. The model below offers a path diagram for mediation where the IV, DV and 

moderator variable are represented by X, Y and Z, respectively. 

 

 

 

 

 

Figure 3: Path Model of Moderation 
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Figure 3. Note: XZ= the product of X and the moderator variable, β1 = the effect of X on Y, β2 = 

the effect of Z on Y, and β3 = the effect of XZ on Y (Fairchild and MacKinnon, 2009). 

 

Hypothesis V. 

 If a significant statistical difference was found when comparing groups of high school 

athletes based on reported prior concussion history, we would explore the possibility of 

alternative components which may mediate the relationship between concussion history and 

neurocognitive functioning. In mediation, the relationship between the IV and the DV is 

hypothesized to be an indirect effect that exists due to the influence of a third variable, the 

mediator. When the mediator variable is included in a regression analysis model with the IV, the 

effect of the IV is reduced and the effect of the mediator remains significant. Sobel’s test of 

Significance of the Indirect Effect (ab) is used in simple mediation models to test the 

significance of a mediation effect. Thus, it provides a method to determine whether the reduction 
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in effect of the IV, after including the mediator variable, is a significant reduction and therefore 

whether the indirect effect is statistically significant. 

 A Path model of indirect effects was utilized to conceptually understand the influence of 

a mediating variable. Here, the relationship between the IV and mediator (Path a) is established 

if variations in the level of the IV significantly account for variations in the mediator. This 

relationship is explored by performing an ANOVA. Next, the relationship between the mediator 

and DV (Path b) is established if variations in the level of the mediator significantly account for 

variations in the DV. Lastly, mediation is confirmed if the relationship between the IV and DV 

(Path c) are no longer significant when Paths a and b are controlled. Partial mediation is 

confirmed if Path c does not result in a value of zero. 

Figure 4: Path Model of Indirect Effects 

 

Figure 4. The path model of indirect effects (Preacher & Hayes, 2008). 
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Chapter IV 

Results 

Statistical Plan 

Results provided below were analyzed using IBM SPSS 23. Several considerations were 

made during the statistical implementation of the proposed analyses to ensure the data was 

utilized in an efficient manner, consistent with the proposed statistical plan. Considerations and 

findings are provided below.  

Selection Criteria 

 Participants were all initially selected for entry into the current study if they were 

Broward County, Florida, high school athletes who had completed at least one baseline 

neurocognitive functioning screening prior to beginning their sport in a given year from 2009 – 

2014. This initial sample consisted of 23,376 unique individuals who completed 1, 2, 3, or 4 

baseline screenings during this timeframe. Based on the current best research practice in the 

literature (Brooks et al., 2013; Covassin et al., 2011; Kontos et al., 2011) and consultation with 

committee members, including an expert sport psychologist, the decision was made to eliminate 

neurocognitive profiles to reduce confounding variables and ensure the results were reflective of 

best research practices. Additionally, given the target sample (e.g., high school athletes), 

selection criteria were evaluated based on factors deemed directly influential to adolescent 

development. Selection criteria eliminated profiles of athletes who: (1) were younger than age 12 

or older than age 19; (2) had a self-reported history of attention deficit hyperactivity disorder 

(ADHD); and (3) self-reported history of a learning disorder (LD). Results are illustrated in the 

figure below. 
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Figure 5: Selection Criteria Flow Chart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Selection criteria flow chart. 

 

Demographic Information 

 Of the remaining sample (n = 22392) several groups with multiple levels were identified. 

To ensure clarity for the reader, demographic frequencies at initial baseline pertinent to the 

current study are illustrated in the tables below. 

 

 

 

 

Total unique participants with at 

least 1 neurocognitive baseline 

profile 

(n = 23376) Profiles eliminated younger than 

age 12 or older than age 19 

(n = 214) 

Remaining participants ages  

12 to 19 

(n = 23162) 

Profiles eliminated self-reported 

history of ADHD  

(n = 533) 

Remaining participants ages 12 to 

19 without history of ADHD 

(n = 22629) 

Profiles eliminated self-reported 

history of LD 

(n = 237) 

Participants included in the 

analyses 

(n = 22392) 
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Table 1 

 

Frequency of Age in Sample 

Age n % 

12 113 0.50 

13 405 1.81 

14 5521 24.66 

15 5918 26.43 

16 5142 22.96 

17 4189 18.71 

18 1015 4.53 

19 89 0.40 

 

Table 2  

 

Frequency of Concussions in Sample 

# of Concussions n % 

0 21123 94.33 

1 1002 4.47 

2 189 .85 

3 47 .21 

4 11 .05 

5 14 .06 

6 1 .005 

7 1 .005 

9 4 .02 
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Table 3  

 

Demographics and Other Characteristics of Sample 

Characteristic  n % 

Gender   

Male 13820 61.72 

Female 8572 38.28 

Ethnicity    

White 8177 36.52 

Black or African American 7889 35.23 

Hispanic or Latino 3800 16.97 

Asian 260 1.16 

American Indian or Alaska Native 93 0.42 

Native Hawaiian or Other Pacific 

Islander 

71 .32 

Missing Data 2102 9.38 

Country of origin    

United States 20773 92.77 

Other 1619 7.23 

Language of origin (n=25957)   

English 20823 93.00 

Spanish 1053 4.70 

Other 516 2.30 

 

Analyses Employed 

Hypothesis I. 

 It was hypothesized that athletes who did not endorse a history of concussion would not 

demonstrate significant changes in neurocognitive functioning when tested at separate time 

points. To test this hypothesis, four composite scores related to neurocognitive functioning along 

with impulse control and total symptom score as produced by the ImPACT® test (e.g., Verbal 

Memory [VeM], Visual Memory [ViM], Visual Motor Speed [VMS], Reaction Time [RT], 

Impulse Control [IC], and Post-Concussion Symptom Scale [PCSS]) were measured at two time 

points: initial baseline and follow-up testing. Six Repeated Measures ANOVA’s were employed 
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to determine if neurocognitive changes occur from initial baseline profile to follow-up baseline 

profile in non-concussed high school athletes. 

Table 4 

 

Descriptive and Repeated Measures ANOVA Statistics in Non-Concussed Sample (n = 2141) 

Variable Initial Mean (SD) Follow-Up Mean (SD) F  Partial Eta2 

Verbal Memory 79.40 (12.46) 82.46 (11.62) 116.77* .052 

Visual Memory 67.81 (14.78) 72.17 (14.22) 209.30* .089 

Visual Motor Speed 32.96 (7.36) 35.39 (7.32) 394.33* .156 

Reaction Time 0.65 (0.13) 0.64 (0.11) 22.56* .010 

Impulse Control 8.17 (9.80) 6.66 (6.28) 53.85* .025 

Post-Concussion 

Symptom Scale 

4.23 (7.55) 3.64 (7.56) 12.61* .006 

*Significant at the < .01 level  

 

Verbal Memory (VeM). Descriptive statistics for the non-concussed group at initial 

baseline and follow-up baseline are as follows: 0 Concussions (Initial: n = 2141, µ = 79.40, σ = 

12.46; Follow-Up: n = 2141, µ = 82.46, σ = 11.62). Repeated Measures ANOVA revealed a 

significant difference within the non-concussed group over-time (F = 116.768, p < .001, partial 

η2 = .052) with a small effect. 

 Visual Memory (ViM). Descriptive statistics for the non-concussed group at initial 

baseline and follow-up baseline are as follows: 0 Concussions (Initial: n = 2141, µ = 67.81, σ = 

14.78; Follow-Up: n = 2141, µ = 72.17, σ = 14.22). Repeated Measures ANOVA revealed a 

significant difference within the non-concussed group over-time (F = 209.298, p < .001, partial 

η2 = .089) with a small effect. 

Visual Motor Speed (VMS). Descriptive statistics for the non-concussed group at initial 

baseline and follow-up baseline are as follows: 0 Concussions (Initial: n = 2141, µ = 32.96, σ = 

7.36; Follow-Up: n = 2141, µ = 35.39, σ = 7.32). Repeated Measures ANOVA revealed a 
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significant difference within the non-concussed group over-time (F = 394.334, p < .001, partial 

η2 = .156) with a small effect. 

Reaction Time (RT). Descriptive statistics for the non-concussed group at initial baseline 

and follow-up baseline are as follows: 0 Concussions (Initial: n = 2141, µ = .651, σ = .129; 

Follow-Up: n = 2141, µ = .637, σ = .114). Repeated Measures ANOVA revealed a significant 

difference within the non-concussed group over-time (F = 22.561, p < .001, partial η2 = .010) 

with a small effect. 

Impulse Control (IC). Descriptive statistics for the non-concussed group at initial 

baseline and follow-up baseline are as follows: 0 Concussions (Initial: n = 2141, µ = 8.17, σ = 

9.80; Follow-Up: n = 2141, µ = 6.66, σ = 6.28). Repeated Measures ANOVA revealed a 

significant difference within the non-concussed group over-time (F = 53.852, p < .001, partial η2 

= .025) with a small effect. 

Post-Concussion Symptom Scale (PCSS). Descriptive statistics for the non-concussed 

group at initial baseline and follow-up baseline are as follows: 0 Concussions (Initial: n = 2141, 

µ = 4.23, σ = 7.55; Follow-Up: n = 2141, µ = 3.64, σ = 7.56). Repeated Measures ANOVA 

revealed a significant difference within the non-concussed group over-time (F = 12.606, p < 

.001, partial η2 = .006) with a small effect. 

Hypothesis II. 

 It was hypothesized that at initial baseline testing, athletes would demonstrate 

significantly different neurocognitive performances based on reported concussion history. To test 

this hypothesis, 6 separate one-factor between-subjects ANOVA’s were performed with reported 

concussion history (e.g., Group 1[0 concussions]; Group 2[1 concussion]; Group 3[2+ 

concussions]) at initial baseline entered as the independent variables and each of the four 



CONCUSSION IN HS ATHLETES  42 

neurocognitive functioning composite scores along with impulse control and total symptom 

score as produced by the ImPACT® test (e.g., Verbal Memory [VeM], Visual Memory [ViM], 

Visual Motor Speed [VMS], Reaction Time [RT], Impulse Control [IC], and Post-Concussion 

Symptom Scale [PCSS]) were treated as dependent variables.   

Table 5 

 

Descriptive and Between-Subjects ANOVA Statistics Amongst Concussion Groups 

Variable 0 Con.  

M (SD)a 

1 Con.  

M (SD)b 

2+ Con. 

M (SD)c 

F  Partial Eta2 

Verbal Memory 81.14 (11.19) 79.78 (11.96) 78.99 (12.40) 11.54* .001 

Visual Memory 69.41 (13.86) 68.40 (14.46) 67.00 (16.61) 6.35* .001 

Visual Motor Speed 33.47 (7.12) 33.61 (7.88) 32.94 (9.16) .921 < .001 

Reaction Time 0.65 (0.12) 0.64 (0.11) 0.67 (0.21) 8.50* .001 

Impulse Control 6.67 (6.58) 7.87 (8.24) 7.41 (7.22) 16.77* .001 

Post-Concussion 

Symptom Scale 

4.32 (7.85) 6.36 (9.71) 8.23 (12.77) 60.94* .005 

a Denotes n = 21123; b Denotes n = 1002; c Denotes n = 267 

*Significant at the < .01 level  

 

 Verbal Memory (VeM). Descriptive statistics for the 3 groups are as follows: 0 

Concussions (n = 21123, µ = 81.13, σ = 11.19), 1 Concussion (n = 1002, µ = 79.78, σ = 11.96), 

2+ Concussions (n = 267, µ = 78.99, σ = 12.40). Between-subjects ANOVA revealed significant 

differences between groups (F = 11.537, p < .001, partial η2 = .001) with a small effect, however, 

a violation of Levene’s Test of Equality of Variances (F(2, 22389) = 3.944, p = .019) is also 

found. Although Levene’s Test of Homogeneity of Variance is significant, and thus violated, the 

standard deviation between-groups are extremely similar and likely due to large sample size. 

Subsequent Welch’s test was performed to account for unequal variances (Welch’s F(2,578.722) 

= 9.976, p  < .001) and also revealed significant between-group differences. Post-hoc 

Independent T-tests using Welch’s test account for the probability of inflation of Type I error. 

Bonferroni’s correction is also applied, comparing each p-value to .05/3 for interpretation. Post-
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hoc Independent Samples T-Test revealed significant between group differences for 0 

Concussions vs. 1 Concussion (t(1085.867) = 3.522, p < .001, r2 = .011), 0 Concussions vs. 2+ 

Concussions (t(271.507) = 2.822, p = .005, r2 = .028), however, the 1 Concussion vs. 2+ 

Concussions comparison was not significant (t(407.484) = .937, p = .349, r2 = .002). 

 Visual Memory (ViM). Descriptive statistics for the 3 groups are as follows: 0 

Concussions (n = 21123, µ = 69.41, σ = 13.86), 1 Concussion (n = 1002, µ = 68.40, σ = 14.46), 

2+ Concussions (n = 267, µ = 67.00, σ = 16.61). Between-subjects ANOVA revealed significant 

differences between groups (F = 6.349, p = .002, partial η2 = .001) with a small effect, however, 

a violation of Levene’s Test of Equality of Variances (F(2, 22389) = 12.070, p < .001) is also 

found. Although Levene’s Test of Homogeneity of Variance is significant, and thus violated, the 

standard deviation between-groups are extremely similar and likely due to large sample size. 

Subsequent Welch’s test was performed to account for unequal variances (Welch’s F(2,577.842) 

= 5.051, p = .007) and also revealed significant between-group differences. Post-hoc 

Independent T-tests using Welch’s test account for the probability of inflation of Type I error. 

Bonferroni’s correction is also applied, comparing each p-value to .05/3 for interpretation. Post-

hoc Independent Samples T-Test revealed significant between group differences for 0 

Concussions vs. 1 Concussion (t(1090.028) = 2.171, p = .03, r2 = .004), 0 Concussions vs. 2+ 

Concussions (t(270.704) = 2.365, p = .019, r2 = .020), however, the 1 Concussion vs. 2+ 

Concussions comparison was not significant  (t(380.233) = 1.257, p = .209, r2 = .004). 

Visual Motor Speed (VMS). Descriptive statistics for the 3 groups are as follows: 0 

Concussions (n = 21123, µ = 33.47, σ = 7.12), 1 Concussion (n = 1002, µ = 33.61, σ = 7.88), 2+ 

Concussions (n = 267, µ = 32.94, σ = 9.16). Between-subjects ANOVA revealed no significant 

differences between groups (F = .921, p = .398, partial η2 < .001) with no effect. In addition, a 
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violation of Levene’s Test of Equality of Variances (F(2, 22389) = 16.455, p < .001) is also 

found. Although Levene’s Test of Homogeneity of Variance is significant, and thus violated, the 

standard deviation between-groups are extremely similar and likely due to large sample size. 

Subsequent Welch’s test was performed to account for unequal variances (Welch’s F(2,575.809) 

= .610, p = .544) and remained non-significant. Post-hoc Independent T-tests using Welch’s test 

are not indicated. 

Reaction Time (RT). Descriptive statistics for the 3 groups are as follows: 0 Concussions 

(n = 21123, µ = .648, σ = .115), 1 Concussion (n = 1002, µ = .640, σ = .107), 2+ Concussions (n 

= 267, µ = .673, σ = .206). Between-subjects ANOVA revealed significant differences between 

groups (F = 8.504, p < .001, partial η2 = .001) with a small effect, however, a violation of 

Levene’s Test of Equality of Variances (F(2, 22389) = 17.416, p < .001) is also found. Although 

Levene’s Test of Homogeneity of Variance is significant, and thus violated, the standard 

deviation between-groups are extremely similar and likely due to large sample size. Subsequent 

Welch’s test was performed to account for unequal variances (Welch’s F(2,576.195) = 4.408, p 

= .013) and also revealed significant between-group differences. Post-hoc Independent T-tests 

using Welch’s test account for the probability of inflation of Type I error. Bonferoni’s correction 

is also applied, comparing each p-value to .05/3 for interpretation. Post-hoc Independent 

Samples T-Test revealed significant between group differences for 0 Concussions vs. 1 

Concussion (t(1115.458) = 2.130, p = .033, r2 = .004), 0 Concussions vs. 2+ Concussions 

(t(268.124) = -2.040, p = .042, r2 = .015), and the 1 Concussion vs. 2+ Concussions comparison 

(t(305.004) = -2.540, p = .012, r2 = .021). 

Impulse Control (IC). Descriptive statistics for the 3 groups are as follows: 0 

Concussions (n = 21123, µ = 6.67, σ = 6.583), 1 Concussion (n = 1002, µ = 7.87, σ = 8.242), 2+ 
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Concussions (n = 267, µ = 7.41, σ = 7.218). Between-subjects ANOVA revealed significant 

differences between groups (F = 16.771, p < .001, partial η2 = .001) with a small effect, 

however, a violation of Levene’s Test of Equality of Variances (F(2, 22389) = 14.208, p < .001) 

is also found. Although Levene’s Test of Homogeneity of Variance is significant, and thus 

violated, the standard deviation between-groups are extremely similar and likely due to large 

sample size. Subsequent Welch’s test was performed to account for unequal variances (Welch’s 

F(2,576.496) = 11.499, p < .001) and also revealed significant between-group differences. Post-

hoc Independent T-tests using Welch’s test account for the probability of inflation of Type I 

error. Bonferoni’s correction is also applied, comparing each p-value to .05/3 for interpretation. 

Post-hoc Independent Samples T-Test revealed significant between group differences for 0 

Concussions vs. 1 Concussion (t(1062.455) = -4.527, p < .001, r2 = .019), however, the 0 

Concussions vs. 2+ Concussions was not significant (t(271.623) = -1.671, p = .096, r2 = .010), 

and the 1 Concussion vs. 2+ Concussions comparison was not significant  (t(467.956) = .886, p = 

.376, r2 = .002). 

Post-Concussion Symptom Scale (PCSS). Descriptive statistics for the 3 groups are as 

follows: 0 Concussions (n = 21123, µ = 4.32, σ = 7.848), 1 Concussion (n = 1002, µ = 6.36, σ = 

9.712), 2+ Concussions (n = 267, µ = 8.23, σ = 12.768). Between-subjects ANOVA revealed 

significant differences between groups (F = 60.942, p < .001, partial η2 = .005) with a small 

effect, however, a violation of Levene’s Test of Equality of Variances (F(2, 22389) = 77. 552, p 

< .001) is also found. Although Levene’s Test of Homogeneity of Variance is significant, and 

thus violated, the standard deviation between-groups are extremely similar and likely due to 

large sample size. Subsequent Welch’s test was performed to account for unequal variances 

(Welch’s F(2,571.631) = 33.522, p  < .001) and also revealed significant between-group 
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differences. Post-hoc Independent T-tests using Welch’s test account for the probability of 

inflation of Type I error. Bonferoni’s correction is also applied, comparing each p-value to .05/3 

for interpretation. Post-hoc Independent Samples T-Test revealed significant between group 

differences for 0 Concussions vs. 1 Concussion (t(1063.922) = -6.558, p < .001, r2 = .039), 0 

Concussions vs. 2+ Concussions (t(268.547) = -4.989, p < .001, r2 = .085), and the 1 Concussion 

vs. 2+ Concussions comparison (t(352.124) = -2.221, p = .027, r2 = .014). 

Hypothesis III. 

 It was hypothesized that high school athletes reporting prior concussion(s) would differ in 

changes in neurocognitive functioning from those who report no prior concussions, over-time. 

Six 2x2 Mixed Model ANOVA’s were employed rather than ANCOVA, given the differences in 

neurocognitive functioning discovered at initial baseline between concussion groups. Participants 

were divided into two groups; 0 Concussions and 1+ Concussions. Time was divided into two 

groups; Initial Baseline and Follow-Up Baseline. These operations were performed to capture the 

maximum amount of participants who completed more than one baseline test. Descriptive 

statistics revealed that, on average, all athletes in the sample tested at least twice were tested 

approximately 328 days between initial and follow-up (n = 2235, µ = 328.04, σ = 219.07). The 

interaction term (Time x Group) was analyzed for each of the four neurocognitive functioning 

composite scores along with impulse control and total symptom score as produced by the 

ImPACT® test (e.g., Verbal Memory [VeM], Visual Memory [ViM], Visual Motor Speed 

[VMS], Reaction Time [RT], Impulse Control [IC], and Post-Concussion Symptom Scale 

[PCSS]) were treated as dependent variables.   

 

 



CONCUSSION IN HS ATHLETES  47 

Table 6 

 

Descriptive and Mixed Model ANOVA Statistics Amongst Concussion Groups 

Variable Time 0 Con.  

M (SD)a 

1+ Con.  

M (SD)b 

F-within 

(Partial Eta2) 

F-between 

(Partial Eta2) 

Verbal Memory I 79.56 (12.38) 75.34 (13.56) 2.61 (.001) 14.72** (.007) 

 FU 83.09 (11.26) 80.74 (11.53)   

Visual Memory I 67.89 (14.76) 65.80 (15.13) 0.001 (< .001) 3.67 (.002) 

 FU 72.66 (14.08) 70.53 (14.46)   

Visual Motor Speed I 32.98 (7.32) 32.33 (7.76) 0.91 (< .001) 0.51 (< .001) 

 FU 35.56 (7.25) 35.39 (7.22)   

Reaction Time I 0.65 (0.13) 0.66 (0.12) 0.58 (< .001) 0.15 (< .001) 

 FU 0.64 (0.11) 0.64 (0.11)   

Impulse Control I 8.11 (9.79) 9.71 (10.76) 0.60 (< .001) 4.76* (.002) 

 FU 6.53 (6.09) 7.47 (8.83)   

Post-Concussion 

Symptom Scale 

I 4.21 (7.55) 5.93 (8.10) 0.64 (< .001) 7.71** (.003) 

 FU 3.56 (7.48) 4.96 (8.40)   

Note. I = Initial Testing; FU = Follow-Up Testing 
a Denotes n = 2094; b Denotes n = 141 

*Significant at the < .05 level  

**Significant at the < .01 level  

 

Verbal Memory (VeM). Descriptive statistics for the 2 groups at initial baseline and 

follow-up baseline are as follows: 0 Concussions (Initial: n = 2094, µ = 79.56, σ = 12.38; 

Follow-Up: n = 2094, µ = 83.09, σ = 11.26), 1+ Concussions (Initial: n = 141, µ = 75.34, σ = 

12.50; Follow-Up: n = 141, µ = 80.74, σ = 11.53). Mixed-Model ANOVA revealed no 

significant difference within groups as a function of rate of change over time (F = 2.609, p = 

.106, partial η2 = .001). Independent Samples T-Test was employed also yielded non-significant 

findings (t(2233) = 1.615, p = .106, r2 = .001). Mixed-Model ANOVA revealed a significant 

difference between groups (F = 14.721, p < .001, partial η2 = .007). This significant finding 

suggests that although groups do not differ in the rate at which they change over the two time 

points, the significant difference at initial baseline persists over-time. This finding is illustrated 

in Figure 6, below. 
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Figure 6: Verbal Memory by Concussion Group Over-Time 

 
Figure 6. Verbal Memory Composite Score by concussion group over-time.   

Visual Memory (ViM). Descriptive statistics for the 2 groups at initial baseline and 

follow-up baseline are as follows: 0 Concussions (Initial: n = 2094, µ = 67.89, σ = 14.76; 

Follow-Up: n = 2094, µ = 72.66, σ = 14.08), 1+ Concussions (Initial: n = 141, µ = 65.80, σ = 

15.13; Follow-Up: n = 141, µ = 70.53, σ = 14.46). Mixed-Model ANOVA revealed no 

significant difference within groups as a function of rate of change over time (F = .001, p = .976, 

partial η2 < .001). Independent Samples T-Test was employed also yielded non-significant 

findings (t(2233) = .976, p = .976, r2 < .001). Although approaching significance, Mixed-Model 

ANOVA revealed a non-significant difference between groups (F = 3.668, p = .056, partial η2 = 

.002). This finding is illustrated in Figure 7, below. 
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Figure 7: Visual Memory by Concussion Group Over-Time 

 

Figure 7. Visual Memory Composite Score by concussion group over-time.   

 

Visual Motor Speed (VMS). Descriptive statistics for the 2 groups at initial baseline and 

follow-up baseline are as follows: 0 Concussions (Initial: n = 2094, µ = 32.98, σ = 7.32; Follow-

Up: n = 2094, µ = 35.56, σ = 7.25), 1+ Concussions (Initial: n = 141, µ = 32.33, σ = 7.76; 

Follow-Up: n = 141, µ = 35.39, σ = 7.22). Mixed-Model ANOVA revealed no significant 

difference within groups as a function of rate of change over time (F = .909, p = .340, partial η2 

< .001). Independent Samples T-Test was employed also yielded non-significant findings 

(t(2233) = .954, p = .340, r2 < .001). Mixed-Model ANOVA revealed a non-significant 
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difference between groups (F = .507, p = .477, partial η2 < .001). This finding is illustrated in 

Figure 8, below. 

Figure 8: Visual Motor Speed by Concussion Group Over-Time 

 
Figure 8. Visual Motor Speed Composite Score by concussion group over-time. 

 

Reaction Time (RT). Descriptive statistics for the 2 groups at initial baseline and follow-

up baseline are as follows: 0 Concussions (Initial: n = 2094, µ = .651, σ = .129; Follow-Up: n = 

2094, µ = .638, σ = .114), 1+ Concussions (Initial: n = 141, µ = .658, σ = .123; Follow-Up: n = 

141, µ = .637, σ = .110). Mixed-Model ANOVA revealed no significant difference within groups 

as a function of rate of change over time (F = .576, p = .448, partial η2 < .001). Independent 

Samples T-Test was employed also yielded non-significant findings (t(2233) = .759, p = .448, r2 
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< .001). Mixed-Model ANOVA revealed a non-significant difference between groups (F = .154, 

p = .695, partial η2 < .001). This finding is illustrated in Figure 9, below. 

Figure 9: Reaction Time by Concussion Group Over-Time 

 
Figure 9. Reaction Time Composite Score by concussion group over-time. 

Impulse Control (IC). Descriptive statistics for the 2 groups at initial baseline and 

follow-up baseline are as follows: 0 Concussions (Initial: n = 2094, µ = 8.11, σ = 9.79; Follow-

Up: n = 2094, µ = 6.53, σ = 6.09), 1+ Concussions (Initial: n = 141, µ = 9.71, σ = 10.76; Follow-

Up: n = 141, µ = 7.47, σ = 8.83). Mixed-Model ANOVA revealed no significant difference 

within groups as a function of rate of change over time (F = .600, p = .439, partial η2 < .001). 

Independent Samples T-Test was employed to account for unequal variances between groups and 



CONCUSSION IN HS ATHLETES  52 

also yielded non-significant findings (t(157.319) = .445, p = .657, r2 = .001). Mixed-Model 

ANOVA revealed a significant difference between groups (F = 4.764, p = .029, partial η2 = 

.002). This significant finding suggests that although groups do not differ in the rate at which 

they change over the two time points, the significant difference at initial baseline persists over-

time. This finding is illustrated in Figure 10, below. 

Figure 10: Impulse Control by Concussion Group Over-Time 

 
Figure 10. Impulse Control Composite Score by concussion group over-time. 

Post-Concussion Symptom Scale (PCSS). Descriptive statistics for the 2 groups at initial 

baseline and follow-up baseline are as follows: 0 Concussions (Initial: n = 2094, µ = 4.21, σ = 

7.55; Follow-Up: n = 2094, µ = 3.56, σ = 7.48), 1+ Concussions (Initial: n = 141, µ = 5.93, σ = 

8.10; Follow-Up: n = 141, µ = 4.96, σ = 8.40). Mixed-Model ANOVA revealed no significant 

difference within groups as a function of rate of change over time (F = .218, p = .640, partial η2 
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< .001). Independent Samples T-Test was employed to account for unequal variances and also 

yielded non-significant findings (t(157.319) = .445, p = .657,r2 = .001). Mixed-Model ANOVA 

revealed a significant difference between groups (F = 7.707, p = .006, partial η2 = .003). This 

significant finding suggests that although groups do not differ in the rate at which they change 

over the two time points, the significant difference at initial baseline persists over-time. This 

finding is illustrated in Figure 11, below. 

Figure 11: PCSS Score by Concussion Group Over-Time 

 
Figure 11. PCSS score by concussion group over-time.  
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Hypotheses IV & V. 

The results of the analyses conducted while testing Hypothesis III limit the use of 

exploring moderation and the influence of indirect effects on dependent measures over time, as 

the effect of all differences in the rate of change over-time discovered between groups for the 

neurocognitive performance outcome measures were negligible. Alternative inquiries beyond the 

scope of this pilot study will be discussed in Chapter V. 
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Chapter V 

Discussion  

Overall Findings 

 The current exploratory pilot study set out to better understand the relationship between 

self-reported concussion history, neurocognitive functioning and associated subjective symptom 

experience in high school athletes. To explore this ultimate inquiry, several preliminary 

hypotheses were tested and analyzed using pre-season baseline neurocognitive data. Initially, 

neurocognitive profiles were eliminated based upon selection criteria agreed upon in the existing 

literature and in consultation with this dissertation committee. In total, 984 unique participants 

were extracted because they did not meet the required age range (ages 12 to 19), or endorsed a 

history of a developmental disorder typically associated with neurocognitive dysfunction 

(ADHD or LD). All subsequent analyses were conducted using the remaining 22,392 unique 

participants. The resulting sample was unique, and largely heterogeneous, with regard to age, 

ethnicity, and gender. 

Uniqueness of Sample. A primary aspect of this study which makes it distinct from the 

existing literature is both the size and characteristics of sample. Composed of 22,392 high school 

athletes who completed at least one baseline neurocognitive test, the current study exceeds most, 

if not all articles searched with regard to volume of participants. This is especially important 

when considering the potential for generalizability to the population at large. Additionally, the 

individuals included for analyses are vastly heterogeneous when compared with samples of 

comparable studies. In combination, several characteristics are exclusive to this study, including 

gender (female participants: 38.28%), ethnicity (Black or African American: 35.23%; Hispanic 

or Latino: 16.97%; Asian: 1.16%), and language of origin (Spanish: 4.70%). Given the collective 
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makeup of these individuals, a rare opportunity is afforded to suggest epidemiological 

statements, should the findings support differences amongst those tested. Given the diversity of 

the sample, these findings are likely generalizable to multiple populations, including ethnic 

groups and gender. 

 Hypothesis I. These set of analyses were employed to identify patterns of neurocognitive 

changes in high school athletes who did not report any history of prior concussions. Of the six 

Repeated Measures ANOVA’s conducted (e.g., Verbal Memory, Visual Memory, Visual Motor 

Speed, Reaction Time, Impulse Control, and Total Symptom Score) all six yielded statistically 

significant changes in neurocognitive performance, or associated functioning, from initial 

baseline to follow-up baseline. In addition, five out of six areas tested revealed measureable, 

albeit small, effects of time change on average performance. That is to say, the average 

neurocognitive scores for high school students appear to improve over-time when tested more 

than once at baseline during their high school athletic career. 

 Several factors may be contributing to these results and warrant attention. Although 

possible, it is unlikely that practice effects influenced results, given the significant amount of 

time between testing and the established reliability of the ImPACT for use in test-retest statistical 

procedures (Iverson, Lovell & Collins, 2003; Nakayama, et al., 2014). Additionally, age-related 

normal neurological development may be a contributor to improved thinking skills, speeded 

processing and reduced impulsivity. Increased experience in high school academia may also 

assist athletes to improve these mental skills over-time. Lastly, the statistically significant, 

although with negligible effect (partial η2 = .006), reduction in average symptom score over-

time, may relate to increased exposure to the culture of reduced symptom reporting in sport.  
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 With these caveats in mind, the findings from Hypothesis I testing remain noteworthy 

and carry functional implications that can inform the literature on adolescent athlete brain 

development and performance, expectations for return-to-play following a suspected head injury, 

and allow for a measureable control group comparison for future analyses.  

 Hypothesis II. In these next sets of analyses, participants were divided into 3 groups 

based upon self-reported concussion history. Six one-factor between-group ANOVA’s were 

conducted with post-hoc comparisons employed for 5 of the 6 outcome variables evaluated at 

initial baseline. Both outcome variables with memory components (verbal and visual) yielded a 

similar pattern, as the group with no reported concussions, on average, performed significantly 

better than their peers with reported histories of 1 and 2+ concussions. This trend, although small 

in effect, is measureable and carries important implications with regard to memory development 

in adolescent athletes.  

 With regard to the speeded components of testing, variable results were revealed between 

average group performances on outcome measures of Visual Motor Speed and Reaction Time. 

No differences were found between groups when compared on average VMS composite score. 

However, Reaction Time was significantly slower in the groups with higher reported incident of 

concussion for all 3 comparisons (0 Concussions vs. 1 Concussion (t(1115.458) = 2.130, p = 

.033, r2 = .004), 0 Concussions vs. 2+ Concussions (t(268.124) = -2.040, p = .042, r2 = .015), and 

the 1 Concussion vs. 2+ Concussions comparison (t(305.004) = -2.540, p = .012, r2 = .021). In 

addition, those with no reported concussion history were significantly better at inhibiting on 

average than their peers with 1 reported prior concussion. Taken together disinhibition and 

slowed reactivity are a dangerous combination that can result in risky behaviors. Certainly, the 

extent to which these findings are clinically significant are minimal within this study. However, 
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these findings add further evidence to the notion of poorer neurocognitive performance 

associated with higher reported concussion histories.   

 Lastly, the subjective nature of symptomatology associated with brain injury was 

evaluated between groups at initial baseline. Those with higher reported concussion history on 

average endorsed significantly higher symptoms associated with concussion as compared to their 

peers. This trend remained consistent for all three post-hoc comparisons. Similarly, the clinical 

significance of these differences revealed during this study is minimal. However, it does add to 

the current literature and provides context for the analyses conducted in Hypothesis III. 

 Hypothesis III, IV & V. Analyses conducted to test Hypothesis III aimed to evaluate 

changes in neurocognitive functioning over-time as a function of reported concussion history. 

Given the findings from Hypothesis I, similar findings in the no concussion history group were 

expected when groups changed to no reported concussion history vs. 1 or more reported 

concussions. These groups were evaluated at initial baseline and at any follow-up and change 

scores were analyzed. Overall, groups were not statistically different on any of the composite 

outcome variables, thus not necessitating the exploration of indirect effects and moderation. 

These findings suggest that although groups were significantly different at initial baseline on 

most neurocognitive measures, the interaction of group over time did not differ significantly. 

However, the differences that favored no concussion history on neurocognitive performance to 

previously concussed peers remained constant and persisted over-time. 

Implications 

 Chronic Disease Model Interpretation. This pilot study revealed several statically 

significant, unique findings which may inform the current literature regarding concussion in high 

school athletes. Although the rate of change between groups of previously concussed and non-
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concussed adolescent athletes does not appear to differ, it is concerning that the relative 

weaknesses demonstrated by the previously concussed groups persisted over-time. The primary 

clinical contributions of the current findings may be best understood through a chronic disease 

model of interpretation. Small effect sizes were found at early ages for research in this area. 

While the degree to which groups differed on many of the statistically significant measures 

would not be considered to be clinically significant based on the parameters outlined in 

ImPACT® interpretation guide (Iverson, Lovell & Collins, 2003), several factors have the 

potential to manifest clinically significant deficits over the lifespan, given the young age of the 

study population. A combination of substantial underreporting of head injury demonstrated in the 

literature, coupled with the propensity for young athletes to remain engaged in their sports (and 

thus risk further exposure to potentially harmful mechanical forces inflicted on the brain), may 

contribute to more profound clinical findings in neurocognitive performance over the course of 

several years. Multiple hits to the head has been associated with degenerative brain dysfunction 

and death in the case of Chronic Traumatic Encephalopathy. Prolonged exposure to repeated 

blows to the head could have further effects when initiated at or before adolescence. Therefore, 

the observed effect sizes may increase and demonstrate both statistical and clinically meaningful 

significance with a decades-long progression. 

Clinical Implications. Noted within the results are several statistically significant 

findings, suggesting that many of the domains tested differ amongst concussion groups. 

Statistical significance, while useful, may be better understood within the context of clinical 

relevance and implications for those who diagnose, treat or experience head injury. This 

distinction between clinical and statistical significance assists in framing the findings as it 

pertains to their practical meaning. Of particular importance for this study is understanding how 
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sample size could influence the results. Given the large sample size, we would expect a higher 

probability of finding statistically significant results, as power (e.g., the probability of detecting a 

difference between groups on neurocognitive performance) holds a direct relationship with 

sample size. This increased likelihood of obtaining significance is meaningful when describing 

practical implications. 

The reporting of effect size indices becomes increasingly important when extrapolating 

clinical significance of statistically significant results. As previously discussed, several 

significant findings are demonstrated with limited effect size indices. The array of statistically 

significant findings, while interesting and meaningful, may be tempered due to the small effect 

size findings. However, many results remain clinically relevant and assist in expanding the 

literature on brain injury, neurocognitive performance, and implications for concussion 

management during adolescence.  

Several of the findings involved the functional impairment in high school athletes 

associated with a positive concussion history. In particular, adolescents with multiple head 

injuries are reporting consistently worse symptoms than non-injured counterparts both at 

baseline and with persistence over-time (PCSS Score by Group Over-Time: F = 7.707, p = .006, 

partial η2 = .003). Additionally, high school athletes with multiple head injuries are consistently 

worse at inhibiting impulses than their non-injured counterparts both at baseline and over-time 

(IC by Group Over-Time: F = 4.764, p = .029, partial η2 = .002). The implication of these 

findings are germane to the national health care conversation, as deficits in these two areas of 

functioning are common reasons for adolescents to seek appointments with primary care 

physicians.  
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 At later ages, a leading reason for many adults and older adults to see their primary care 

providers are subjective memory concerns. The current findings suggesting differences in 

memory function that persist over-time in adolescents endorsing any concussion history 

compared with non-injured peers in verbal memory (VeM by Group Over-Time: F = 14.721, p < 

.001, partial η2 = .007). Consistent with the chronic disease model, differences at this early age 

could lead to clinically concerning memory problems over several years with repeated exposure 

to additional head injury and aging in the context of multiple blows to the head. 

 For these reasons, dissemination of information is paramount in the prevention of a 

disease progression of the brain, beginning during adolescence. All involved in the organization 

of competitive high school sports should take responsibility for the protection and safety of the 

adolescent participants. From the administrators down to the players, each person can assist in 

the prevention of neurocognitive and symptomatic changes due to youth sport. Armed with more 

knowledge regarding head injury, players can make informed decisions regarding the reporting 

of head injury incurred during sport. The parents may also recognize signs that their adolescents 

are experiencing concussion-like symptoms, requiring appropriate medical attention. 

Administration, coaches and athletic staff have a duty to cultivate a culture of safety for the 

player, and encourage reporting of suspected head injuries without fear of penalty. Collectively, 

these strategies may assist in the prevention of change in neurocognitive functioning at the high 

school level and beyond.  

Limitations 

The current pilot study dissertation yielded several statistically significant and 

meaningful results, however, the study could have been improved in several ways. It is 

acknowledged that the massive size of the sample contributed, at least in part, to the small to 
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negligible effects discovered. Additionally, several of the significant findings, it can be argued, 

are driven by the large sample size in this study. However, large sample size is also one of this 

study’s greatest strengths, as it lends itself to generalizability of findings. Validity may have been 

increased had the participants been closely monitored and matched to other like-participants on 

demographic and concussion related variables (e.g., time since injury, ImPACT® testing each 

year of high school). A significant limitation of this study was the participant self-report of 

concussion history which informed the group selection on these identifications. An explanation 

of method variance is warranted, given this potentially confounding variable. 

Method Biases. Potential problems in research may occur when common method 

variance (e.g., variance that is attributable to the measurement method rather than to the 

constructs the measures represent) is not minimized. Method biases are one of the main sources 

of measurement error and can threaten the validity of the conclusions about the relationships 

between measures. Podsakoff, MacKenzie, Lee, & Podsakoff (2003), review potential sources of 

method biases along with explanations regarding their impact on findings. For the purposes of 

this study, a source of potential confounding variance is attributable to the self-report gathering 

of information (e.g., concussion history, symptoms). A specific aspect of the common source 

(e.g., each student athlete rating their own experience) method effect may be social desirability. 

As a contributor to the well-documented underreporting of concussions in sports, the student 

athlete participants may have chosen to respond to questions in a manner reflective of the 

cultural or socially appropriate norm (e.g., sport culture, adolescent culture). Minimized self-

reporting may have deflated the findings in this study. In an attempt to reduce the risk of method 

bias, this study utilized test results from healthy participants pre-season. Data collection 

occurring prior to the beginning of the athletes’ respective sport may have reduced the likelihood 
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of secondary gain from underreporting of symptoms during the season (e.g., losing playing 

time). Given the limited reliability of self-reporting of concussion, the use of objective data (e.g., 

medical records) may have added reliability to the data and thus the findings. Despite this 

limitation, the current study revealed several meaningful and statistically significant results. 

Expanding on the current findings, future directions for research will be evaluated below. 

Future Directions 

 The current dissertation has evaluated a preliminary exploration into the effects of self-

reported concussion history in high school athletes on neurocognitive performance and 

associated sequelae as a function of their progression over-time. Results suggest that further 

exploration is warranted and future studies may be conceptualized as follow-up and expansion 

on these findings.  

 Many of the findings in this study suggest that an evaluation of detailed longitudinal data 

extending from adolescence to adulthood would be warranted. Ideally, a sample consisting of 

athletes and non-athletes who are matched in age cohort and followed yearly until completion of 

the study would allow for a robust and informative study. Additionally, multiple data points 

would assist in reducing confounding variables and increasing power. For example, longitudinal 

neuroimaging, although not specifically for tracking concussion, could assist in clarifying the 

differences between non-concussed athletes with variable concussion histories. In addition, the 

use of medical charts for objective information will make the study more reliable. Lastly, the 

psychological correlates associated with concussion should not be understated. Changes may 

occur directly related to the effects on brain injury or secondarily in recovery from “an invisible 

injury.” These suggestions may assist in providing new information to the field of concussion 

management and rehabilitation from brain injury.   
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