7-1-1984

Winds Over Water: A Bibliography

Janet M. Witte
Nova University

Find out more information about Nova Southeastern University and the Halmos College of Natural Sciences and Oceanography.

Follow this and additional works at: https://nsuworks.nova.edu/occ_facreports

Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons

NSUWorks Citation

This Article is brought to you for free and open access by the Department of Marine and Environmental Sciences at NSUWorks. It has been accepted for inclusion in Marine & Environmental Sciences Faculty Reports by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.
Artist Joanne Schinbeckler's rendering of the Navy Remote Ocean Sensing System (NROSS) satellite, which is expected to be launched in 1988. Onboard will be a 6-antenna scatterometer that will provide sea surface wind velocity measurements. The original drawing was provided by NASA.

This document was produced under NASA Contract Number NAS5-26714.

Published by the Nova University/NYIT Press, Fort Lauderdale, Florida, July 1984.
FOREWORD

This bibliography was compiled as an outgrowth of the Satellite Surface Stress (S3) Working Group, which was sponsored by NASA/Goddard Space Flight Center and NASA/Jet Propulsion Laboratory (JPL) from the fall of 1982 to the spring of 1984 (Contracts NAS5-26714 and 956773). I wish to thank the Working Group Chairman, Dr. James J. O'Brien, for providing me with the impetus to compile this work. I also wish to thank the other members of the Working Group for adding their moral support (as well as many of the references).

Janet M. Witte
Fort Lauderdale, Florida
July 1984
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Foreword</th>
<th>iii</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCES: GENERAL</td>
<td>1-112</td>
</tr>
<tr>
<td>REFERENCES: REMOTE SENSING</td>
<td>113-178</td>
</tr>
</tbody>
</table>

Anisimova, E.P., V.I. Makova, A.A. Speranskaya, and M.S. Tugeyeva, 1983: On momentum transfer from wind to waves. Izv., Atmos. Ocean. Phys., 19, 4, 323-326. (In English)

Brown, G.S., 1978: Correlation of $\sigma(0^\circ)$ inferred from wind speed estimates with NOAA hindcast data. NASA Rept. CR-14137.

Bryant, P.J., 1982: Modulation by swell of waves and wave groups on the ocean. J. Fluid Mech., 114, 443-466.

Cane, M.A., 1974: Forced motions in a baroclinic equatorial ocean. GFD Notes, WHOI Ref. 74-63, 44-65.

Efimov, V.V., 1970: On the structure of the wind velocity field in the atmospheric surface layer and transfer of wind energy to sea waves. Izv. An SSSR, 6, N10, 1043-1058.

33

Hicks, B.L., 1960: The generation of small water waves by the wind. IN The Dynamics of the Upper Ocean, Cambridge Univ. Press.

Iwata, N., 1970: A complementary note on the aerodynamic roughness of wind disturbed sea surface. La Mer, 8, 240-245.

Kullenberg, G., 1976: On vertical mixing and the energy transfer from the wind to the water. Tellus, 28, 159-165.

55

Makin, V.K., 1984: Wind energy transfer by surface gravity waves. Oceanology, 23, 4, 424-428. (In English)

Moskalenko, L.V., 1974: Steady-state wind-driven currents in the eastern half of the Mediterranean Sea. Oceanology, 14, 4, 614-618. (In English)

Moskalenko, L.V., 1984: Seasonal variability of integrated wind-driven circulation in the Tyrrhenian Sea. Oceanology, 23, 4, 405-409. (In English)

Murphy, R.C., 1926: Oceanic and climatic phenomena along the west coast of South America during 1925. Geogr. Rev., 16, 26-54.

Stewart, R.H., 1970: Laboratory studies of the velocity field over deep water waves. J. Fluid Mech., 42, 733-754.

Stommel, H., 1964: Summary charts of the mean dynamic topography and current field at the surface of the

Taylor, P.A., 1969: The planetary boundary layer above a

Thompson, R.E., 1970: On the generation of Kelvin-type waves by atmospheric disturbances. J. Fluid Mech., 42, 657-

98

Valenzuela, G.R., and J.W. Wright, 1979: Modulation of short
gravity-capillary waves by longer-scale periodic flows--

Vanden-Broeck, J.-M., and J.B. Keller, 1980: A new family of

Van der Hoven, J., 1957: Power spectrum of horizontal wind
speed in the range from 0.0007 to 900 cycles per hour.
J. Meteor., 14, 160-164.

Van Straaten, L.M.J.U., 1950: Periodic patterns of rippled
and smooth areas on water surfaces, induced by wind

Vaysband, V.B., and A.A. Fursov, 1981: Some results of a
study of the features of the group structure of wind
waves in the coastal zone of the sea. *Izv., Atmos.
Ocean. Phys.*, 17, 81-84.

Veenhuizen, S.D., 1973: Turbulent air flow over wind excited
laboratory waves. Ph.D. Dissertation, Colorado State

small-scale wind variations over a water surface.
Bound.-Layer Meteor., 14, 35-57.

Veronis, G., 1963: An analysis of wind-driven ocean
circulation with a limited number of Fourier components.

Veronis, G., 1966: Generation of mean ocean circulation by

Veronis, G., 1970: Effect of fluctuating winds on ocean

Wilson, W.S., 1972: An experimental study of the growth of mechanically generated surface water waves when subjected to a fully developed turbulent channel airflow. Tech. Rept. 74, Chesapeake Bay Inst., The Johns Hopkins Univ., 85 pp.

Yao, N.-C., 1974: Bispectral and cross-bispectral analysis of wind and currents off the Oregon coast. Ph.D. Dissertation, Oregon State Univ., Corvallis, OR.

Alpers, W., 1979: Significance of satellite remote sensing for shipping. Astronautic, Max Planck Inst. fur Meeres., Hamburg, 16, 104-107. (In German)

Bondarenko, I.M., A.A. Zagorodnikov, V.S. Loschilov, and K.B. Chelyshev, 1972: Relationship between wave parameters and the spatial spectrum of aerial photographs and radar pictures of the sea surface. Oceanology, 12, 912-919. (English translation)

Cadet, D., and M. Desbois, 1979: Low-level air flow over the western Indian Ocean as seen from METEOSAT. Nature, 278, 538-539.

Deacon, G.E.R., J. Darbyshire, and N.D. Smith, 1949: Use of the airborne sea and swell recorder to measure changes in the wave spectrum from west to east across the Irish Sea. ARL/R1/103.18/W Int1. Admty Rept.

Greenhut, G., and B.R. Bean, 1981: Aircraft measurements of boundary layer turbulence over the central equatorial

Huhnerfuss, H., W. Alpers, and W.L. Jones, 1978: Measurements at 13.9 GHz of the radar backscattering
cross section of the North Sea covered with an artificial surface film. Radio Sci., 13, 979-983.

Kasischke, E.S., 1980: Extraction of gravity wave information from spaceborne synthetic aperture radar data. M.S. Thesis, Univ. of Michigan, Ann Arbor, MI.

Mourad, A.C., and A.C. Robinson, 1978: Applications of Seasat to the offshore oil, gas, and mining industries. J. Hydronaut., 12, 137-141.

Phillips, O.M., 1981: The structure of short gravity waves on the ocean surface. IN Spaceborne Synthetic Aperture

Pierson, W.J., 1979: A suggested technique for the assimilation of the SASS winds from SEASAT into National Meteorological Center operational numerical weather prediction models. CUNY/CCNY, Final Rept. for Spacecraft Oceanography Group, NOAA/NESS.

Pokazeyev, K.V., and A.D. Rozenberg, 1984: Laboratory studies of regular gravity-capillary waves in currents. Oceanology, 23, 4, 429-435. (In English)

Salfi, R.E., 1974: Operational computer based spectral wave specification and forecasting models. The Univ. Inst. of Oceanogr., City Univ. of New York, Prep. for SPOC (NOAA/NESS).

Shuchman, R.A., K. Knorr, J.C. Dwyer, A. Klooster, and A.I. Maffett, 1979: Imaging ocean waves with SAR. ERIM

Smith, R.J., and G.J. Dome, 1979: Electrical modelling of the radar return from nadir and algorithm to test the wind speed from nadir measurements. RSL Tech. Memo 343-4, Remote Sensing Lab., Univ. of Kansas, Lawrence, KN.

