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Abstract  

The widespread use of plastics has led to a surplus of plastic waste in landfills and the ocean. The 
degradation of these plastics produces microplastics, which are detrimental to the environment. 
Microplastics can be introduced into the ocean in several ways, including runoff and sewage 
outfalls; both pathways can concentrate microplastics and promote adsorption of environmental 
contaminants to the plastic's surface. South Florida has six sewage outfalls, and nine inlets, whose 
proximity to the Florida Reef Tract increases the potential exposure of microplastics to sensitive 
environments, such as the coral reef. A quantitative assessment of microplastics introduced into 
the ocean via sewage outfalls and inlets is an essential first step toward understanding potential 
environmental impacts. This study evaluated microplastics' concentration, composition, and 
spatial and temporal distribution in southeast Florida coastal waters. Plastics were quantified in 
water samples from eight sites. Fourier Transform Infrared (FTIR) Spectroscopy was used to 
identify 5.7% of the particles sampled, including the plastic polymer composition and possible 
source material. There were no significant differences between sampling locations, categories, or
sites; however, a significant spatial influence was found. Of the particles identified, 57.63% were 
plastics. This study revealed that the coastal waters of Broward county have notable amounts of 
microplastics, and the type of polymers present suggests that sewage effluent is a major source of 
microplastics. The results of this study have provided new background information to guide further 
research and support future management strategies. 
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Introduction  

Plastic usage has grown exponentially over the last century, and many of those plastics 

have been discarded into the ocean (Hidalgo-Ruz et al., 2012). Improper waste disposal has 

contributed to the development of floating islands of garbage composed chiefly of plastics 

(Martinez et al., 2009). Over time, many physical and chemical processes reduce most plastics into 

progressively smaller pieces, eventually becoming microplastics. Microplastics are defined as 

pieces less than 5 mm in size and are divided into two groups, primary and secondary, according 

to their original size. Primary microplastics, which were originally designed to be less than 5 mm, 

can enter the ocean directly through sewage effluent (Cole et al., 2011). Plastics that are reduced 

into smaller pieces via mechanical, chemical, and physical processes are considered secondary 

microplastics (Ryan et al., 2009). Investigation into the fate of both types of microplastics is 

critically important, as their effect on the marine environment may be significant.  

Desforges et al. (2015) found that microplastics are present and widespread across the 

oceans, with the highest concentrations near populated areas and convergence zones. Microplastics 

are often removed from the water column via shoreline deposition, sedimentation, and ingestion, 

which has led to an underestimation of plastics in the oceans (Desforges et al., 2015). Coastal areas 

have been found to have some of the highest microplastic concentrations due to their proximity to 

known plastic sources such as municipal drainage systems and sewage effluents (Yang et al., 

2021). A major contributor is the influx of plastics from sewage outfalls which contain 

concentrated amounts of many primary types of microplastics, such as microbeads derived from 

cosmetics and clothing fibers (Costa et al., 2010). Outfalls release concentrated amounts of 

microplastics that have been exposed to human waste, chemical contaminants, and pathogens; 

thus, they may pose a more significant hazard to organisms (Lares et al., 2018). Southeast Florida 

currently has six outfalls (Figure 1) that release sewage into the ocean off the coast of Palm Beach, 

Broward, and Miami-Dade Counties (Hazen and Sawyer 1994). Although sewage is filtered and 

treated before being released, the high flow rates can introduce large quantities of microplastics 

(Kelly et al., 2021). Coastal inlets are also a source of plastic debris due to maritime activities and 

stormwater effluent (Velez et al., 2020). Estimating the concentration and type of microplastics 

introduced to the ocean via outfalls and inlets is a critical first step in understanding the potential 

impact of outfall-associated plastics on the environment.  
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The distribution and abundance of microplastics throughout the marine environment are of 

increasing concern due to the potential for ingestion by organisms and the ability of microplastics 

to act as vectors for toxins (Budimir et al., 2018). The potential ecotoxicological effects of 

microplastics are not well understood and determining how microplastics are introduced into the 

environment is an essential first step in understanding the threats they pose (Costa et al., 2010). 

Ingestion, accidental or intentional, is the most common vector of microplastic introduction into 

food webs. Ingestion can cause intestinal blockage and subsequent starvation in a wide range of 

consumers, including polychaetes, crustaceans, and fishes (Lares et al., 2018). Hall et al. (2015) 

found that scleractinian corals can ingest microplastics, which can impede digestion and slow 

growth. Microplastics may also biomagnify, increasing the risk of ingestion by humans (Lares et 

al., 2018).  

In addition to the physical hazards of ingestion, plastics exposed to UV radiation degrade 

into their component hydrocarbon compounds, which are irritants and toxins (Munier and Bendell 

2018). Microplastics release higher quantities of contaminants such as hydrocarbons compared to 

larger plastic fragments due to their high surface area to volume ratio (Wright et al., 2013). This 

Figure 1. Location of the six active sewage outfalls that discharge effluent in southeast Florida 
coastal waters. Reproduced from Banks et al. (2008) with author permission  
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high ratio also increases the area for bacterial microfilm development, which can create sub-

environments in which anaerobic bacteria flourish (Eckert et al., 2018). The increased density of 

anaerobic bacteria may then increase the transfer potential of human pathogenic and antibiotic-

resistant plasmids (Eckert et al., 2018). Dense bacterial populations in microfilms also increase the 

chances of horizontal gene transfer among bacteria (Eckert et al., 2018). Microplastics can also 

settle into substrates creating an anoxic layer in which toxic chemicals, such as methane and 

hydrogen sulfide, are produced via anaerobic respiration (Munier and Bendell 2018). Over time, 

gravity and wave action can compact the sediment, which reduces the oxygen available to the 

surrounding substrate (Wright et al., 2013).  

The distribution of microplastics in the water column is related to surface circulation, 

precipitation, and prevailing winds. The hydrodynamic wind mixing model has been used to 

predict microplastic levels 2.5 times higher than what has been collected in surface nets (Doyle et 

al., 2011, Kooi et al., 2016). Floating microplastics can travel long distances, often breaking into 

smaller fragments, before settling (Thiel et al., 2013). Most studies have relied on net tows to 

collect samples; thus, current microplastic research has largely been restricted to sampling the 

ocean surface. However the clogging of nets with organic material makes it challenging to obtain 

accurate estimates of microplastics in the water column, and current surface sampling methods 

may miss up to 70% of microplastics (Kooi et al., 2016). Sampling a fixed volume of water via a 

Surface Sampler can permit more accurate quantification of microplastics and eliminate errors due 

to clogging.  

Reliable identification of microplastics is difficult due to variations in sampling methods 

and visual errors (Kappler et al., 2015). Plastic identification often relies on both physical and 

chemical identifiers. Microscopy can be used to visually identify plastic particles by following 

physical identifiers such as shape, color, and texture, but it has several limitations (Shim et al., 

2017). Fourier Transform Infrared Spectroscopy (FTIR) is an analytical technique used to identify 

organic and inorganic materials. It is useful for identifying the composition of plastic polymers 

when combined with high lateral resolution. This technique uses the infrared range of the 

electromagnetic spectrum to induce vibrations in various chemical bonds and functional groups of 

the molecules as the energy is absorbed. Data is collected concurrently for each frequency of the 

infrared spectrum, and as the frequencies at which the vibrations occur for the chemical bonds and 
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functional groups are well known, the chemical composition of the material can be interpreted. 

The software transforms the data into a spectral graphical representation, which is then matched 

to a database for identification.  

Significance of Work 

The threat of microplastics to the environment and humans is significant (Lares et al., 

2018). Between 4.8 and 12.7 million tons of plastic are introduced into the ocean each year, most 

of which will become microplastics (Jambeck et al., 2015). Several recent studies have found that 

organisms ingest microplastics at all trophic levels and can bioaccumulate at higher trophic levels 

(Barnes et al., 2009: Santillo et al., 2017: Rotjan et al., 2019). Microplastics aggregate biofilms on 

their surface; because they concentrate microbes that would generally remain dispersed, they are 

potential vectors for disease (Reisser et al., 2015). Recent research has found that microplastics 

covered in a biofilm are preferred over natural foods in the coral Astrangia poculata, leading to a 

diminished ability to ingest food (Rotjan et al., 2019). 

Microplastics and possibly toxic chemicals they contain and adsorb can lead to 

compounding effects on ecosystems and human health. Because microplastics bioaccumulate and 

biomagnify, they are likely to pose a major threat to human health (Tsang et al., 2017). Although 

the full extent of the effects of microplastics on human health is still poorly understood, seafood 

contamination could impact the role of fish as a protein source or make coastal water hazardous to 

swim in, hurting both local and world economies (Barboza et al., 2018).  

Monitoring the quantity and composition of microplastics introduced into the ocean via 

sewage outfalls and inlets is crucial to understanding their potential impact on the environment. 

This study assessed microplastics' spatial and temporal distribution in the southeastern Florida 

coastal environment. It also determined their concentration in the upper water column, particularly 

in waters adjacent to sewage outfalls. Microplastic data from Florida's outfalls, inlets, reefs, and 

surrounding areas can be used to estimate plastic contamination. Fourier Transform Infrared 

Spectroscopy permitted the identification of the composition of the microplastic samples, which 

can help determine where the plastics originated. The findings from this study could support 

stricter regulations on the amount of sewage discharged, which will reduce some microplastic 

introduction. Broader public awareness of the threat microplastics pose to the public could increase 

support for regulatory measures. Current legislation has reduced the output of sewage from the 
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outfalls and is planning on ending their regular use by 2025 (FL DEP, 2004). After 2025, outfalls 

will only be used to reduce wastewater leaves from treatment plants during periods of high input 

or emergencies. It is vital to study their current impact and the impact of their use over time; this 

will help guide regulations for future projects.  

Objectives 

This study examined the possible major sources of microplastic introduction and 

accumulation in the coastal marine waters of Broward county, Florida. The objectives were to (1) 

determine if microplastics were present in coastal waters; (2) determine the concentration of each 

category of microplastic; (3) identify the types of plastic polymers present using FTIR; (4) 

determine if there is spatial variation in the concentration of microplastics, and; (5) determine if 

there is temporal variation in the concentration of microplastics.  

Methods 

Field sampling  

Two main sampling locations were chosen for this study (Figure 2), which are denoted as Hillsboro

(Hill) and Port Everglades (PEV). Each location included four categories: outfall, inlet, coral reef, 

Figure 2. A map showing the two sampling locations in Broward county. The approxamite 
sampling site is shown as a dot with its category classification identified via color. Map was 
made using randymajors.org Map Tools ©2022.  
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and north. Sites were selected at each location and category, for a total of eight sites. These sites 

were selected due to their proximity to populated areas which are economically dependent on 

healthy offshore environments. The Hillsboro location sites and categories are Hillsboro Inlet 

(inlet), Broward Outfall (outfall), Oakland Ridge Reef (reef), and Hill Northern (north). Sites at 

the Port Everglades location were as follows: Port Everglades Inlet (inlet), Hollywood Outfall 

(outfall), Barracuda Reef (reef), and PEV Northern (north). The Northern Site for the Hillsboro

location is 26.1300N, -80.08816W, and the location of the Port Everglades north site is 26.00000N, 

-80.09642W. Inlets and outfalls are likely sources of microplastics, so they were analyzed for them 

it see what concentration was coming from freshwater input. Concentrations from a nearby reef 

site were also examined to see if these sites were affected by microplastics. A northern site was 

also chosen upstream of the inlet/outfall to act as a control since they were less likely to be 

influenced by the sources and were therefore used as a reference. All sites are based on The 

National Oceanic and Atmospheric Administration's (NOAA) Florida Area Coastal Environment 

(FACE) program. 

Sample collection  

Sampling took place bi-monthly for one year, from February 2020 through December 

2020, to examine microplastics' temporal and spatial composition at each site. Due to the closures 

related to the Covid-19 pandemic, samples were not collected at any site for the Port Everglades 

location for April 2020.  

Water samples were taken at the surface of each site at 0-15 cm depth using a 12-foot-long 

Nasco swing sampler. Samples were poured into a large container which was filled until there was 

4 L of water. Sub-samples were then created by distributing 1 L into one of four containers for 

transport and storage. Each sub-sample was stored in an individual 1 L plastic container and chilled 

in coolers for transport (Kooi et al., 2016). All collection equipment was washed three times with 

seawater from each site before samples were taken. All samples were taken during daytime hours, 

and the inlets were sampled two hours after high tide when water was flowing out. Per FACE 

protocols, when the boil (the surface disturbance above the outfall) was weak or not present, water 

samples were taken from the GPS coordinates of the outfall mouth. Two samples of reverse 

osmosis (RO) water produced at the Nova Southeastern University Oceanographic campus were 
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also obtained at each sampling time. There were 10 samples taken for analysis at each sampling 

event, for a total of 56 samples for the duration of this experiment. 

Sample processing  

Each 1 L sub-sample was filtered separately; samples were vacuum filtered through 

cellulose filters with a pore size of 0.22 µm and stored in sterile polystyrene Petri dishes. 

Additional filter methods, such as buoyancy separation, were not used as treated sewage contains 

high levels of cellulose fibers as well as denser plastics from cosmetics (Lares et al., 2018). Sieve 

filtration was also not viable because microplastic fibers are flexible enough to fit through micron 

meshes and the mechanical process can break the fibers into smaller pieces, (Hidalgo-Ruz et al., 

2012). Filters were air-dried at room temperature in covered Petri dishes for at least seven days. 

Once the filters were dry, the particles present were visually identified using the protocol 

established in Nor et al. (2014), counted, and sorted into five shape categories under a dissecting 

microscope. The categories used were microplastic fibers, fragments, foam, pellets, and other

(Lares et al., 2018). Sub-samples were totaled for each site. Plastics greater than 5 mm (5,000 µm) 

in length were not considered microplastics and were not analyzed.  

Sample identification  

Simple random sampling was used to select 5-10 individual microplastic particles from 

each sample for identification using FTIR. Unique particles, ones that had infrequent identifiers, 

and those with reoccurring color and shape identifiers were also selected in addition to the random 

samples to account for loss and identify unique particles. There were 2,070 microplastic particles 

counted, of which 204 were sent to the lab for analysis. Since funding for this project was limited, 

available equipment capacity was around 200 samples. A total of 118 microplastic samples were 

successfully analyzed. There were 86 samples not identified due to samples being unable to be 

located on the filter paper, destruction in shipment, or instrument inability to acquire a valid signal 

for interpretation. Identified samples were referred to as microplastic polymers or just polymers.  

Analysis was done using a Nicolet IS5 FTIR with a diamond ATR (attenuated total 

reflectance) crystal at Dallas College Eastfield Campus (EFC) in Mesquite, TX. The instrument 

were collected

over a spectral range of 7800-350cm-1 (Thermo Scientific Nicolet iS5 FT-IR spectrometer 
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Brochure BR51983-E 0216M-Nicolet iS5). The instrument was calibrated according to

manufacturer specifications. Background data for the instrumentation were collected to eliminate 

ambient peaks and were repeatedly collected between batches of similar samples (Arahman et al., 

2017). Sample particles were placed into the sample port containing the diamond ATR. Each set 

of samples had an assigned code and a unique sample number. This information was used as the 

microplastic samples. Images 

of each sample were correlated to the spectrum and identified. Staff at EFC identified the

microplastic samples. Identification data may include common name, chemical name, and 

molecular structure. Individual pieces were sorted using images and identification to determine the 

statistical probability that a representative image will be a specific microplastic (Table 1).  

Table 1. An example of the tabulation data produced by FTIR. The first column contains a picture 
of the microplastic particle identified, the second column shows the spectrum given off when 
exposed to infrared, and the last column shows the best possible match for the spectrum received.

Data Analyses 

Descriptive statistics were used to evaluate the presence of microplastics, the concentration 

of each shape category, and the type/abundance of polymers. The average concentration of each 

shape category was calculated per L of surface water. The distribution of the shapes and the type 

of polymers found were used to identify potential plastic sources. Conclusions were based on 

which plastic shapes and polymers occurred most often. 

Samples from each site were treated as replicates for each sampling time point. This 

approach resulted in six samples for each site at the Hillsboro location and five samples for each 

site at the Port Everglades location. All statistical tests were conducted using RStudio. Raw data 

Image Spectrum ID 

 

 

PET 
Polyethylene 
terephthalate 
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did not meet assumptions of normality or homoscedasticity. A Wilcoxon rank-sum test with 

continuity correction ( =0.05) was used to compare the mean microplastic concentration between 

the Port Everglades and Hillsboro locations. This test was used to determine if the location affected 

microplastic quantity. 

To determine if there was spatial variation between categories (Inlet, Outfall, Reef, North), 

a One-Way ANOVA ( =0.05) was used. Site data from each location were combined into a single 

category. Log transformations were used to normalize the data. This test allowed for a comparison 

of the different categories to determine if the source categories (Inlet and Outfall) differed from 

the other categories (Reef and North). A Kruskal Wallis ANOVA on ranks test ( =0.05) was used 

to determine if there was spatial variation between the eight sites. This test allowed for the 

comparison of each category between locations. 

A One-Way ANOVA ( =0.05) with a Tukey's Honest Significance (HSD) test was used 

to determine if there was temporal variation in the mean microplastic concentration throughout 

this study. Log transformations were used to normalize the data.  

Results 

Microplastic particles were found in every sample across all sampling sites (Figure 3). 

Fibers were the most prevalent particle found, and the predominant polymers were Polyacrylates, 

Alkyd, and Polyester.   

Microplastic classification and Identification  

Overall the mean concentration of microplastic particles was 11.8 ± 18 particles/L. A

similar study conducted in the last six months of 2019 showed an average particle count of 8.17 ± 

7.29 particles/L (Wightman, 2020). Plastic from particles were initially categorized by shape using 

physical characteristics.  

Fibers made up the majority of the microplastics with 1,378 particles (66.57%), then 

fragments with 485 particles (23.43%), foam with 6 particles (0.29%), pellets with 11 particles

(0.53%), and other with 190 particles (9.18%). The mean concentration of fibers for all water 
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Figure 3. The total microplastic abundance per month, by site and category. These numbers indicate the total plastic particles 
identified at each site during each month.  
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samples was 7.83 ± 14.79 fibers/L; fragments had a mean of 2.76 ± 5.83 fragments/L, pellet 0.06 

± 0.18 pellets/L, foam 0.03 ± 0.13 particles/L, and other 1.08 ± 1.48 particles/L.  

There were 22 microplastic particles found in the blank water samples and blank filters; 

these were not added to the total microplastic count. Six out of 10 blank filters examined had

microplastic particles, and there were 13 microplastic particles found in total on the filters. Blank 

water samples yielded 1.83 ± 2.89 particles/ L of RO water, with blank filters having 1.3 ± 1.83 

microplastic particles per filter. As microplastic concentrations in this study are considered 

underreported, and blanks yielded minimal contamination, filter count values were not corrected. 

All microplastic particles found in blank water samples and blank filters were sent to the lab for 

analysis. The microplastic particles from February blank 1 were identified as either a laboratory 

reagent or an inorganic pigment. The microplastic particles from October blank 2 could not be 

identified due to the signal being too weak for the FTIR machine to read. The rest of the

microplastic particles identified from blank water samples and blank filters (August blank 1, 

October blank 1, December blank 1, blank filter sample 1, blank filter sample 5, blank filter sample 

6, and blank filter sample 8) were identified as the laboratory reagent bromoform, with 

diphenylamine inhibitor.  

A total of 2,070 microplastic particles were found in this study, of which 118 were 

identified to chemical composition. Most of the microplastic particles identified were plastic 

polymers (57.63%); the rest were grouped into generic categories. These categories are inorganic, 

laboratory reagent, organic, organometallic (bromopentacarbonyl bromide), salt (copper(I) 

thiocyanate), and synthetic organic (camphene) (Figure 4 A & B). There were 14 types of plastic 

polymers identified (Figure 5). The fiber shape category had the highest variety of plastic 

polymers. Polyacrylates were the most numerous with 18 identified samples. Polyester and alkyds 

were identified 11 times, cellophane was found 6 times, ethylene propylene diene 5 times, low-

density polyethylene 3 times, polyvinylchloride 4 times, polyisobutene 3 times, polyamide 2 times, 

and all other plastics (polyethylene, polyethylene wax, polystyrene, rayon, and vinyl alcohol/ vinyl  

butyral) were found once. Cellulose, a common organic identified, and rayon have almost identical 

FTIR spectrums, which could lead to an underestimate of the rayon found in this study (Lusher et 

al., 2015). The organic category was the second largest group and consisted of substances like  
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tallow or hair. All particles sent for identification in the foam shape category were lost or unable 

to be identified via FTIR.

Many samples in the laboratory reagent group contained bromoform, which is a surface 

contaminant and not an accurate identification. Bromoform is used in geological tests, laboratory 

reagents, and as a solvent. Presence in a marine environment is most likely due to the breakdown 

of disinfectants used in wastewater. Bromoform was also found in the blank water samples and

blank filters, and present on 11 of the microplastic particles sent for identification. Organic 

materials made up 19.49% of the samples identified. Several organic samples contained natural 

fibers such as cotton and wool, originating from laundry or boat upholstery. Organic material was 

Figure 4. (A)The composition distribution of the particles identified by FTIR. (B) The 
distribution of all identified particles categorized by shape.
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also found as a surface contaminant on nine microplastic particles. Organic contaminants on the 

surface can help identify microplastic sources. 

Spatial analysis

There were no significant differences between locations (Wilcoxon Test, p=0.8135), 

(Figure 6).

Figure 5. Polymer identification for every microplastic identified by FTIR. Polymers are grouped by 
shape category and stacked to show proportion of each category. Segment color corresponds to the 
polymer identification.
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There were no significant differences between categories (One-Way ANOVA, p=0.8993), 

(Figure 7). There were no significant differences between sites (Kruskal Wallis ANOVA, 

p=0.8234), (Figure 8).

Figure 6. Mean (±SD) microplastic particles found at the Hill and PEV sampling location across 
all months.
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Figure 7. Mean (±SD) microplastic particles found across all categories and all months.

Figure 8. Mean (±SD) microplastic particles found across all sites and all months.
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Temporal analysis

A highly significant difference was found in mean microplastic concentration over time (One-Way 

ANOVA, p= <0.01). A Tukey's HSD was used to determine what months differed from each other 

(Figure 9). February had a significantly higher mean microplastic concentration than all other 

months, and August had significantly lower mean microplastic concentrations than June, October, 

and December. April was not significantly different from June, August, October, and December.

Discussion

Microplastic research is an ever-evolving field that has received much attention in recent 

years, with multiple studies focused on various aspects of introduction, transport, and 

decomposition. There are many different ways microplastics are collected and identified, making 

it difficult to compare research accurately, therefore standardized methods need to be developed. 

Uniform methodology will enable researchers to compare data and obtain an accurate picture. This 

Figure 9. The mean (±SD) number of microplastics found for each month of sampling. Letters 
indicate statistically similar groups. 
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study only covered the coastal areas of Broward county; to obtain a complete picture of 

microplastic trends, further research is needed.  

The focus of this study was to (1) determine if microplastics were present in the coastal 

waters of Broward county, (2) determine the concentration of each common category of 

microplastic, (3) identify what types of plastic polymers were present, (4) examine spatial variation 

in the concentration of microplastics, and (5) examine temporal variation in the concentration of 

microplastics. This was the first study to specifically consider outfalls and inlets as potential 

sources of microplastics in the surface waters of Broward county. Overall, 2,070 microplastic 

particles were found over the sampling period; fibers were the most prevalent category of 

microplastics and 14 polymers were successfully identified. The average concentration of 

microplastic was 11.8 ± 18 particles/L, which was higher than expected based on the limited 

studies available for comparison.  

Microplastic Classification   

Most plastics are transported to the ocean via inland, sea, and aerial sources (Yang et al., 

2021). Coastal regions often have higher concentrations of microplastic due to 80% originating 

from a terrestrial source (GESAMP, 2016). In a review done by Yang et al. (2021), it was found 

that fibers were the most common type of microplastic found, followed by fragments. The results 

of this study correspond to these findings, as 66.57% of the microplastics found were fibers. 

Similar microplastic sampling in the coastal waters of the Southern Mediterranean and South 

Carolina estuaries also found fibers to be the most prevalent microplastic category (Gray et al., 

2018, Tata et al., 2020). Fibers are considered primary microplastics, with their predominant mode 

of introduction being wastewater from laundry. Even though the two outfalls sampled in this study 

did not have significantly higher quantities of microplastics at the surface than the surrounding 

environment, outfalls cannot be overlooked as potential sources of primary microplastics. 

Plastic polymers 

Coastal regions, especially those near populated areas, have greater varieties of plastic 

polymers due to their proximity to sources (Yang et al., 2021). This study found 14 different plastic 

polymers consisting of high- and low-density plastics. The most common polymer identified was 
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polyacrylates, a low-density plastic that is predominantly used in paints, adhesives, and textiles 

(Penzel et al., 2000). The sources of the polyacrylates were likely both primary and secondary 

sources. Other common microplastics found were alkyds and polyester; alkyds are used in 

varnishes, paint, and adhesives and likely entered the marine environment as secondary 

microplastics from abrasions to boats (Wagner et al., 2014). Polyester is mainly used in clothing 

and was almost certainly introduced into the ocean via an outfall. Plastics used in textiles, such as 

polyester, rayon, and polyamides are typically introduced directly into the ocean from sewage 

outfalls or can be transported from land to water via winds (Yang et al., 2021). Due to Covid-19, 

disposable mask use drastically increased and became an additional source for microplastic fibers. 

Many single-use masks are made from synthetic fibers such as polypropylene and polyester.

Polypropylene was only found once during this study, higher levels will likely be seen in the future. 

In a marine environment, polypropylene takes longer to decompose due to salt having a high 

refractive index and can take hundreds of years to degrade (Ranjan and Goel 2021). During that 

time, polypropylene and many other plastics desorb additives, pollutants, and metals attached to 

their surface into the environment. Polyester was the second most common plastic polymer found, 

it was found as fibers, fragments, and other shape categories. As polyester is commonly found in 

marine ecosystems, due to its regular use in clothing and fiberglass, it most likely came from 

laundry or boats (Tokiwa et al., 2009). 

Non-plastic Classification 

There were several particles found that were not plastic polymers. These include organic 

herbs, oils/ fats, wool, cotton, and residual laboratory reagents. Several samples had organic 

surface contaminates such as Uncaria tomentosa (Cats Paw) and Withania Spp. (Ashwagandha). 

One sample with Ashwagandha on the surface was identified as cellophane, and this would be 

considered a secondary microplastic introduced via improper waste disposal. Several samples

contained mortar or sand used in construction, this was likely transported into the ocean via runoff 

or wind. Cellulose was another common organic found and was expected because of outfall input. 

It is important to note that rayon and cellulose have almost identical FTIR spectrums leading to 

misidentification. Four instances of cellulose were found, two of which were not a standard color 

for cellulose and likely rayon that was misidentified by FTIR. Misidentification of microplastics 
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with FTIR is a common issue that often results in underestimating microplastics in a sample. 

Surface contamination and similar spectrums can be misleading and inaccurate. Many of the 

laboratory reagents found were surface contamination and not accurate identifications. This further 

supports the idea that this study underestimates the microplastics present in Broward county

because plastic polymers could be falsely identified as laboratory reagents. A combination of

identification methods such as visual microscopy, Raman spectroscopy, and thermal analysis

should be used to reduce the likelihood of false identifications.  

Microplastics adsorb many toxic substances and can be vectors for transporting pollutants 

(Raju et al., 2018). Bromoform was the chemical most frequently identified on particles in this 

study; it is sometimes used as a laboratory reagent and results from the degradation of certain 

wastewater treatment chemicals (Agency for Toxic Substances and Disease Registry, 1990). 

Bromoform is considered a potential human carcinogen, and animal studies have shown 

bromoform to affect kidney and liver function (U.S Department of Health and Human Service. 

Hazardous Substances Data Bank 1993). There is limited published research available; however, 

one study found that bromoform increased the incidence of several tumor types in animals (U.S 

Environmental Protection Agency 1999). Other chemical contaminants were found including

copper(I) thiocyanate, an algae/bactericide; talloamphocarboxypropionate, a multipurpose 

polymer often used in personal care products; and camphene, a plasticizer. These chemicals

cumulative and long-term effects on the environment are not known. As microplastics degrade to 

progressively smaller particles, their ability to adsorb pollutants increases, as does their ability to 

become biologically incorporated into an  tissues (Snell & Hicks, 2011). Microplastics 

pose a persistent threat to marine ecosystems and humankind due to their ability to persist in an 

environment and become vectors for chemical contaminants.  

 
Spatial Influence  
 
No significant influence of location, category, or site on mean microplastic counts was  

found. Throughout this study, the amount of microplastic particles found varied and did not appear 

to follow spatial trends. It was expected that source categories (outfalls and inlets) would have the 

highest concentrations; this was only true for some sampling dates. The apparent homogeneity of 

microplastics in southeast Florida surface waters is likely explained by the degree of mixing which 
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results from strong, fast-moving currents in this area. Future research should consider taking

samples at various depths in the water column to show settling rates for different polymers. 

Sampling offshore and in the Gulf Stream is also recommended to determine how microplastics 

are transported regionally. 

The Hollywood and Broward outfalls were both active during the sampling period of this 

study. There are current expansion plans in development to increase the output of all active outfalls 

and increase the use of deep injection wells. The projected flow rates in 2025 have the Broward 

outfall producing 94 MGD and the Hollywood outfall producing 54 MGD (FL DEP, 2004). It was 

predicted that the outfalls would be a significant source of microplastics, thus leading to higher 

counts in adjacent surface waters. However, the data does support the outfalls as possible sources 

of microplastics due to the high number of fibers present and subsequent identification of polymers 

associated with clothing. 

Port Everglades and Hillsboro inlets are areas of significant boat traffic and human activity, 

although Port Everglades is a large international shipping port and Hillsboro is a noncommercial 

inlet used primarily for recreation. Due to higher traffic and human activity, Port Everglades was 

expected to have higher microplastic counts. However, particle counts varied, with the highest 

counts in October and December at Port Everglades, and the highest counts in April at Hillsboro

(when the Port Everglades location was not sampled). Inlets are still probable sources of 

microplastics as several of the identified polymers originated from antifouling paints and resins. 

The northern sites in this study were selected because of their distance from what was 

believed to be a source of microplastics; it was assumed those sites would have the lowest 

concentration of microplastics. As at all other sites, however, counts for the northern sites varied. 

Samples taken at Hill in April, PEV in August, Hill in Oct, and Hill in Dec had the highest count 

for the category; likewise, samples taken at PEV in Feb, PEV in June, PEV in Oct, and PEV in

Dec had the lowest counts for that category. A previous study found an accumulation of 

microplastics in the northern reaches of the sampling area, which suggested that the Gulf Stream 

and Florida current created a gyre and concentrated them there (Wightman, 2020). A study done 

in the Nordic Sea compared microplastic counts in the East Greenland Current to counts in the 

Greenland Sea Gyre and found that the gyre increased the microplastic pollution in that specific 

area (Jiang et al., 2020). The data from the present study does not support this; instead, the 
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observed variation supports the premise that microplastic pollution is subject to currents and 

winds, which can mix the surface of the water column in complex ways. 

 

Temporal influence  
 

 Microplastic counts varied over time throughout this study, with significantly higher 

average counts in February (p<0.01) compared to all other months. Many factors, such as weather 

and tourism, can influence the abundance of microplastics. Tsang et al. (2020) found that 

microplastic concentrations peaked during the dry season in Hong Kong's coastal areas, suggesting 

that lower rainfall increased microplastic concentrations. In February 2020, lower than average 

rainfall and warmer than normal temperatures in Broward county could have led to a significantly 

higher concentration of microplastics (South Florida Weather, 2020). In contrast, August had

significantly lower microplastic counts than June, October, and December. Hurricane Isaias passed 

along the east coast of Florida in early August, causing heavy rainfall and flooding. This freshwater 

input and the strong winds associated with a hurricane could have contributed to the lower 

microplastic counts in the surface waters of Broward county. To obtain a more accurate picture of 

microplastic input, monthly sampling covering all of South Florida, including all inlets and 

outfalls, should be done and could yield more detailed information regarding microplastic input. 

 South Florida experienced a very warm and dry 2020. The early months of 2020 (January 

through mid-May) were characterized by lower than average rainfall (South Florida Water 

Management District, 2020). La Niña conditions emerged during August, with below-average sea 

surface temperatures across the central and eastern equatorial Pacific Ocean (Florida State 

University 2020). These conditions continued in the Northern Hemisphere for the duration of the 

2020 winter season. La Niña winters tend to be warmer and drier than average winter conditions 

(Malone et al., 2014). These dry conditions lead to the most active hurricane season on record, this 

resulted in heavy rainfall and strong winds (National Weather Service, 2021). After mid-May, 

Broward county experienced above-normal rainfall for the remainder of the year (National 

Weather Service, 2021). Rainfall in 2020 was overall much higher than in 2019. Higher density

microplastics, such as polyamide and polyvinyl chloride, could have been resuspended from 

sediments during these weather conditions.   
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South Florida saw a massive decrease in tourism during 2020 due to the COVID-19 

pandemic. This possibly led to the high degree of temporal variability in microplastic 

concentration over time. The winter months are typically peak tourism season, but the pandemic 

shutdown caused a decrease in both domestic and international visitors in every quarter of 2020

(Visit Florida, 2021). There were 79.34 million visitors to Florida in 2020, which is 39.6% lower 

than the previous year (Visit Florida, 2021). While this study was not intended to assess tourism-

related pollution, the sampling timeframe allowed a unique assessment of how such a decrease 

affected microplastic concentrations. The counts of microplastics were expected to be lower; 

however, this was not the case. In a similar study conducted from July to December of 2019 in 

Broward county, Wightman (2019) found an average of 8.17 ± 7.29 particle/L in surface waters,

which was lower than the average of 11.8 ± 18 particles /L found in this study. A comparison of 

corresponding months (August, October, and December) in the 2019 and 2020 studies is shown in 

Figure 10. No substantial differences between corresponding months are noted, except for August

2020. 

Figure 10. A comparison of the average number of microplastic particles found in the months of 
August, October, and December from 2019 and 2020.
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Conclusion  

 The influence of outfalls and inlets on microplastic input has not been well studied, 

especially in South Florida; the spatial, temporal, and polymer data collected in this study have 

thus provided a needed baseline for future research. By evaluating the temporal and spatial effects 

on microplastic distribution, this study revealed that the coastal surface waters of Broward county

have a microplastic concentration that is consistent with other coastal areas. Both the particle shape 

category and type of polymer identified are consistent with other coastal locations. The types of 

polymers present also indicate that sewage effluent is a major source of microplastics, although 

the mixing which results from strong currents and surface winds in the study area make it 

challenging to determine specific point sources of microplastics.  

 Microplastics are small and flexible enough to pass through water filtration systems and 

will be continuously introduced into the marine environment from human refuse. Accumulation in 

the environment, both biologically and in the sediment, will continue unless drastic measures are 

taken to reduce plastic production and consumption. A dynamic approach at the consumer and 

producer level coupled with improved support from governing bodies is the first step to limiting 

plastic output.  

 To better understand the scope and distribution of microplastics across Broward county,

analysis of long-term trends and depth profiles is needed. Future studies should implement longer 

sampling periods and a broader sampling scope. Additional research into the long-term effects of 

the hazardous chemicals found associated with microplastics would allow for a better 

understanding of their threat to the environment. Additionally, more stringent processing and 

analytical identification methods are needed for more accurate polymer identification. 
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