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Abstract 

Background: Accelerated orthodontics encompasses a group of techniques designed to facilitate 

the faster movement of teeth. Many techniques developed are designed to cause a controlled 

injury to the cortex of the bone resulting in a transient osteopenia, also known as the regional 

acceleratory phenomena (RAP). Little research has been done to compare these techniques and 

describe their effects on the periodontium. Objective: To clinically, histologically, and 

radiographically compare several minimally invasive techniques for inducing accelerated 

orthodontics. Methods: Sixty 8-9-week-old male Sprague Dawley rats were used for this 

investigation. An orthodontic device consisting of a 50g NiTi closed coil spring was applied to allow 

for the mesial movement of the upper left first molar. Rats were divided into 4 groups, one control 

(n=15) and 3 minimally invasive accelerated orthodontic interventions consisting of Piezocision 

(n=15), Propel (n=15), and pulsed electromagnetic fields (PEMF) (n=15) were included. Five rats 

from each group were euthanized  for histology at 3  time points from baseline at Day 7, Day 21 

and Day 49. Histomorphometric and descriptive analysis were performed using axial cross-

sectional slides of the mid-root region. For clinical analysis, the distance from incisors to test 

molars were measured with digital calipers at baseline and post-treatment time points. Cone 

beam computed tomography and micro computed tomography were performed.  Results: Bone 

density was found lower in the Piezocision and Propel groups at day 21, and the periodontium re-

organizes by day 49. Piezocision had statistically significant reductions in histologic and 

radiographic bone density (p<0.05).  Conclusion: Decortication techniques, such as Piezocision 

and Propel, resulted in more osteopenia and tooth movement. Utilization of decortication may 

facilitate tooth movement through the alveolus to provide an accelerated and safe movement. 
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Pulsed electromagnetic fields may demonstrate the potential for regulating bone metabolism 

without decreases in bone density.  
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Introduction 

Accelerated orthodontics is a group of techniques that are used to facilitate the faster 

movement of teeth to achieve relatively shorter treatment times. Reducing treatment times could 

be a significant factor in providing ideal treatment to the adult population. More adults are 

wearing braces to align their teeth for better function and esthetics. The benefits of strategically 

placing teeth in appropriate maintainable positions can vastly improve the long-term prognosis 

of both minor and complex treatment (Ainamo 1972, Yared et al. 2006, Zhang et al. 2017)). Some 

of these minor applications of orthodontics include up-righting of tilted teeth, de-rotation of 

teeth, space closure, orthodontic extrusion, etc. In certain cases, adult patients can benefit from 

comprehensive full arch orthodontic movements. For example, in cases of posterior bite collapse, 

tooth migration may limit restorative space and move teeth out of ideal restorative positions. In 

these cases, ideal treatment often includes a comprehensive orthodontic plan. Though most adult 

patient treatment plans often include some level of orthodontics, it is still considered to be poorly 

accepted by both patients and clinicians. Some potential reasons for poor treatment acceptance 

include time, esthetics, and cost of adult orthodontic treatment (Uribe et al. 2014, Varela and 

Garcia 1995). In both minor/localized and comprehensive treatment, accelerated orthodontics 

can increase the speed and of movement and potentially reduce treatment time (Uribe et al. 

2014). This may increase patient compliance for ideal treatment and improve the quality of 

patient care. 
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Biomechanics of Tooth Movement 

Due to the nature of the bone, orthodontic movement of adult teeth requires extended 

amounts of time. This reasoning for the relative increased treatment time of adult teeth is the 

result of several factors including psychology, bone density, vascularity, systemic status, and 

epigenetic stability (Masella and Meister 2006, Rosa et al. 2015, Skidmore et al. 2006). 

Understanding the biomechanics of tooth movement can shed light on how challenges with 

treatment time can be overcome. 

Bone is an organic matrix consisting of collagen amalgamated with crystalline 

hydroxyapatite. Although the relative mineralization and non-organic ratio of contents within 

bone have a significant impact on the physical properties of bone, the cellular and vascular 

component of bone plays a potential role in the movement of teeth through the alveolus (Murshid 

2017, Sodek and Mckee 2000). The interaction of pressure and tension within the periodontal 

environment is a well-accepted model for describing the macro and microbiological reactions 

when a force vector is applied (Feller et al. 2015). The pressure side results in compression of the 

periodontal ligament (PDL) space, hyalinization, and osteoclastic resorption. The vessels within 

the periodontal ligament space are compressed and result in fluctuations in gas, fluid, and cellular 

flow. Additionally, the vessel compression can result in localized sites of necrosis which will 

require cleaning-up or resorption, which is later replaced. With the localized compressed vessels 

comes ischemia and ischemic necrosis. Vascular endothelial growth factor (VEGF) has been shown 

to be upregulated in these regions to facilitate the growth of new vessels and re-establishment of 

vascularity (Miyagawa et al. 2009). The catabolic orchestration causes an altered pH and cytokine 

release resulting in a paracrine and/or autocrine cellular signaling cascade. The signals then bring 

about a series of reactions to recruit cells to resorb the hyalinized areas. This creates a path in 
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which the force can now move in the direction of the vector with a decompressed vascular supply. 

Without excessive orthodontic forces, the amount of bone necrosis is controllable through the 

remodeling process. If excessive forces are utilized, then necrosis can become extensive leading 

to significant amount of undermining resorption and root resorption (Deguchi et al. 2014, Masella 

and Meister 2006). This has the potential to pathologically damage the tooth, attachment, and 

delay tooth movement.  

The molecular and cellular contents are in flux during strain to the PDL. Compression 

hydrodynamics forces molecules throughout the PDL space allowing activation of matrix 

metalloproteinases (MMPs), serine proteases, aspartate proteases, and cysteine proteases. These 

enzymes begin to digest the extracellular matrix and form a less dense, more elastic network 

(Krishnan and Davidovitch 2006). This allows a reduction in pressure while also exposing new 

molecules and pathways for these molecules to reach fibroblasts and mesenchymal cells. The cells 

also directly respond to this mechanical strain. Mechanical forces in the surrounding extracellular 

matrix are directed on the cells, creating alterations to the cell membrane and the cytoskeleton. 

These changes can set off a chain reaction leading to increased receptor activator of nuclear 

factor-𝜅𝛽 (RANK) and interleukin 1β (IL-1β) expression. The monocyte/macrophage lineage gives 

rise to osteoclasts as the RANK ligand (RANKL)/ osteopotegrin (OPG) ratio increases within the 

environment (Feller et al. 2015, Murshid 2017).  

At the same time, the tension side is undergoing a similar yet opposite series of events. 

The periodontal ligament fibers are being stretched. The mechanical strain of tension results in a 

very different cascade of cellular responses then does the pressurized PDL region. Mesenchymal 

cells within the alveolar bone respond to the tension strain by upregulating mitogen-activated 

protein kinase (MAPK) intracellular signaling pathway. This has been shown to upregulate the 

transcription factor Runx-2, which plays a critical role in regulating the maturation of osteogenic 



4 
 

cells into osteoblasts (Feller et al 2015). Other MAPK pathways via ERK 1/2, JNK, or p38 have all 

been indicated in osteoblast maturation and function in relation to mechanical amount of 

mechanical strain (Zhu et al. 2008). For example, a p38 cascade can upregulate RANKL production 

by osteoblasts resulting in an increased RANKL/OPG ratio, hence increased bone resorption and 

remodeling. The mechanical tensing formed on the cells can alter the diameter of the cellular 

membrane channels (Huang et al. 2004). This would affect ion and molecular flow potentially 

altering the activity of the cells. The tensing of the fibers also dissipates molecular flow through 

the extracellular space analogous to the compression side. The main difference being the content 

of the materials being shifted around by this hydrodynamic flow. Nonetheless, this sets off a 

signaling cascade to recruit fibroblasts and osteoblasts to build bone and re-organize the 

periodontal ligament.  

Bone is known to have a biomechanical response to forces, especially alveolar bone. The 

mere presence or absences of teeth dictates its existence. Understanding that the absence of 

teeth or implants result in the loss of alveolar bone, then their presence may have unique factors 

that sustain the presence of bone (Chen et al. 2013, Cowin et al. 1991, Esther 2010, Zhu et al. 

2008). One viable explanation is the vascular supply of the periodontal ligament. This rich vascular 

source can breathe nutrients and vitality to the surrounding alveolar bone. However,, dental 

implants do not have vascular PDL, yet the alveolar bone remains. Another explanation is that the 

forces applied to the tooth or implant generate a mechanical signal that is reciprocated with a 

biochemical response to sustain and adapt the alveolar bone(Chen et al. 2015, Cowin et al. 1991, 

Feller et al. 2015, Krishnan and Davidovitch 2006). By simply stretching and compressing PDL 

fibroblasts, genetic regulation of collagen synthesis and matrix metalloproteinase (MMP)-2 can 

be seen19. When a functional load is applied to teeth, forces are transmitted to the underlying 

bone and PDL.  This force applies strain to the collagen fibers in the bone and PDL. The shearing 
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strain on the collagen fibers and fluid results in a deformation that shifts the location of the 

charged regions. This generates areas of electronegative and electropositive charges. In turn, this 

generates an electrical potential in the region. The electrical potential can then affect cells and 

cellular signaling (Rubin et al. 1993). Cellular responses to energy have been documented by in-

vitro and in-vivo studies (Burger and Klein-Nulen 1999, Cowin et al. 1991, Rubin and Lanyon 1984). 

Although the focus has much been on the mechanical forces causing the electrochemical based 

effects, the nature of electrical energy’s potential to alter the biochemistry of the periodontium 

has not been forgotten (Dogru et al. 2014). Cytokine production and chemotaxis have been shown 

to be affected solely by electromagnetic energy input without direct influence from biochemical 

energy sources (Dogru et al. 2014, Shupak et al. 2003, Stark and Sinclair 1987). An important 

example demonstrates RANKL production to fluctuate by the application of electromagnetic 

radiation (Zhang et al. 2017). This suggests that the energy generated by stresses applied to bone 

and collagen can directly play a vital role in the functions of cells. The cells localized in the alveolar 

bone, such as mesenchymal cells, fibroblasts, and endothelial cells, will have a reaction to these 

forces that can affect bone/collagen metabolism (Shupak et al. 2003).  

Additionally, the deformation caused by stresses to the alveolar bone generates 

fluctuations in the hydrodynamic flow in bone and surrounding tissues (Will 2016, Rosa et al. 

2015, Ramani-Mohan et al. 2017). This facilitates the movement of fluids within the localized 

region including the PDL space, canaliculi system, and marrow spaces. When a force is applied to 

a single tooth, the localized alveolar bone is compressed. The fluid within this region is 

hydraulically moved creating shear stress. This results in a cascade of mechanosensory changes . 

It is suggested that high frequency, low level fluid-based shear stress is a key factor in bone 

remodeling (Rosa et al. 2015). Some of the effects are electrochemically induced, as previously 

mentioned. Another is the relative gradient changes resulting from fluids moving around within 
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the localized system. Cytokine latent fluid within this region is forced outwards and encounters 

cells that have now been introduced to a higher level of cytokines and nutrients. These distant 

cells, who have just been introduced to a bounty of cell altering molecules, have the ability to 

upregulate, as well as down regulate, certain cell signalers (Rosa et al. 2015). Once the force on 

the tooth is relieved, the elastic deformation rebounds allowing the fluid, which now has an 

altered concentration of cytokines and cells, to flow back to the location of the tooth. The cells in 

the bone and collagen surrounding the affected tooth are now exposed to an array of outsourced 

cytokines. This change in concentration of certain molecules results in a cellular response. Thus, 

the localized cells respond with the potential to alter the bone morphology surrounding the tooth. 

Osteoclasts can be induced by a possible influx in the presence of RANKL, followed by the 

induction of osteoblast formation via RANKL outflow or OPG inflow. The shear stress of the fluid 

flow can also directly be applied on cells. The strain on cells is enough to trigger morphological 

and functional changes (Chen et al. 2013, Huang et al. 2004). In tandem, these hydraulically 

induced changes can result in a cellular response aiding tooth movement.  

Piezoelectric Potential of Bone 

Another potential source for facilitating the cellular signaling takes into consideration the 

piezoelectric nature of bone. Much of the dental research on bone focuses on the biochemical 

and cellular properties. Bone is a solid and, thus, is subjected to the natural laws of physics that 

apply to solid objects. One physical property of bone that is of interest is its piezoelectric property 

(Donahue 2000, Ren et al. 2015, Marino and Gross 1989). The unique crystalline structure of 

piezoelectric objects allows them to either create energy upon being deformed or to deform upon 

application of an energy source. The classical example is quartz. When a voltage is applied to 

quartz, it will deform or change shape. On the other hand, if quartz is compressed manually, it 
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will generate a voltage. For example, the piezoelectric surgical instruments utilize ceramics and 

their piezoelectric property to generate ultrasonic vibrations of a surgical insert to cut hard tissue. 

The crystalline structure of quartz has a certain configuration of disbursed negatively and 

positively charged atoms creating a distinct neutralized charge. Upon compression, atoms shift 

and the polarization changes. This results in a potential difference and the formation of electrical 

energy. Bone has been shown to have piezoelectric properties (Ahn and Grodzinsky 2009, Marino 

and Gross 1989). Studies on dry bone were clearly able to note the piezoelectric property of bone. 

Contradicting results have been demonstrated in wet bone.  As the water content increased, the 

polarizability of bone and collagen can increase but the piezoelectric potential is dampened (Ahn 

and Grodzinsky 2009, Netto and Zimmerman 1975). Even when the potential is reduced, the 

piezoelectric property is retained. A string of studies demonstrating similar results with wet versus 

dry bone began to reduce the viability of the piezoelectric effects on bone biophysics (Anderson 

and Eriksson 1970, Burger and Klein-Nulen 1999, Netto and Zimmerman 1975). Researchers 

argued that wet bone in vitro studies best represent what would likely happen in vivo, suggesting 

that the piezoelectricity within the body would be dampened possibly to a point of no affect. 

Other physical properties, such a fluid flow related shear stress and streaming potentials began 

to take center stage, shifting the scientific literature focus away from piezoelectricity (Ahn and 

Grodzinsky 2009, Anderson and Eriksson 1970, Netto and Zimmerman 1975, Marino and Gross 

1989). More recent studies utilizing more advanced technology have begun to re-shift some focus 

to the potential piezoelectric properties of bone. For example, a more recent study utilizing a 

Piezo-response Force Microscope was able to demonstrate piezoelectric properties of both wet 

and dry human long bones (Halperin et al. 2004). Initial studies on dry bone indicate that it is not 

the inorganic hydroxyapatite component responsible for the bulk of the piezoelectric effect, but 

rather the collagen(Ahn and Grodzinsky 2009). Upon stress of the collagen fibers, the charge 
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carrying portions of the macro molecule are displaced from the inside to the surface resulting in 

the potential being formed (Stroe 2013). The deformation that occurs along the collagen fibrils is 

the deformation that results in piezoelectricity. The hydration around these collagen 

macromolecules has been indicated in the reduction of the piezoelectric effect. But the localized 

positioning of water molecules can vary depending on the type of bone. Higher amounts of 

mineralized hydroxyapatite can aid in shielding the collagen from water and reduces the 

dampening of piezoelectric properties (Marzec et al. 1996). For example, cortical in vivo may be 

more piezoelectric then cancellous bone. Nonetheless, evidence exists to suggest bone has a 

piezoelectric potential. 

The summation of all these potential sources for bone modification can be used to control 

the direction of tooth movement. Utilizing a controlled vector, one side has an upregulation of 

osteoblasts and the opposite has an osteoclastic environment. The osteoblast side will have a 

resulting increase in new bone formation and calcification, and the osteoclastic side will have 

resorption of bone. This creates a path of which the tooth can migrate through demineralized 

connective tissue as bone is laid down behind. Once this vector is halted, bone is remodeled and 

ideally the periodontium is stabilized in the absence of insulting inflammation, such as that 

derived from pathogenic bacteria (Will 2016, Masella and Meister 2006). 

Adult Orthodontic Treatment 

Although younger adolescent patients are often thought of as the main recipients of 

orthodontic treatment, the need and want for orthodontics in adults is growing. As this need 

grows, so does the awareness of the differences in the bone’s ability to allow tooth movement in 

younger patients versus adults. Younger adolescent patients have not completed growth. There 

have been documented changes in bone mineralization, collagen matrix, and non-collagenous 
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protein levels in adults that makes tooth movement more difficult (Sodek 2000, Wang et al. 2002). 

The adolescent alveolar bone has the luxury of an upregulation of anabolic related hormones. The 

collagen network is also more likely less disturbed and can better respond to the turnover process 

(Wang et al. 2002). Thus, the orchestration of bone remodeling can occur much more smoothly 

and allow for rapid turnover and faster tooth movement. Additionally, the bone mineral content 

of adults has likely gone under primary and secondary mineralization. The higher density of bone 

requires greater effort on behalf of the osteoclasts to turn over to allow a tooth to advance in the 

vector of the applied force. This requires a greater recruitment of osteoclast mediators, 

osteoclasts, and their by-products. This higher RANKL environment can also result in the 

production of other inflammatory mediators, such as IL-1b and TNF-α (Feller et al. 2015). Adult 

patients already have a higher potential for inflammatory diseases including but not limited to 

periodontitis (Weyand et al. 2014). Despite the potential for excessive inflammatory destruction, 

comprehensive orthodontic treatment has proven to be effective and safe in adults without 

resulting in any significant periodontal destruction ( Charavet et al. 2016, Choo et al. 2011, Wilcko 

2013). Thus, if additional pathological inflammation is controlled, then excessive tissue 

breakdown beyond regeneration or repair does not occur. The local “clean” inflammation that 

occurs by orthodontic tooth movement can occur in adults without damage to the tooth or the 

periodontium. On the other hand, this pressure-induced inflammation has been known to result 

in significant tooth resorption and ankyloses (Deguchi et al. 2014). This pathological inflammatory 

response has been linked to excessive forces during tooth movement. The pathology behind this 

phenomenon has been suggested to be the result of too much pressure resulting in undue 

necrosis. Since adults have a higher density bone, the direction of the vector often results in 

greater potential resistance and pressure. This is a major reason that typical orthodontic 
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movement in adults must be performed with lower forces and hence a slower rate. This may result 

in relatively extensive treatment times for adult orthodontic patients (Wang et al. 2002).  

It has also been shown that adult patients have less compliance with orthodontics, which 

in turn elongates the treatment time (Skidmore et al. 2006, Melo et al. 2013). As treatment time 

becomes longer, the adult patients will likely have even less compliance, resulting in a feedback 

loop of compliance issues. The longer braces are worn the more issues come to rise.  Braces 

provide a plaque trap that can cause many pathological effects on teeth and periodontal tissues. 

The plaque that accumulates can cause gingival inflammation, which could lead to more serious 

conditions of the periodontium (Addy et al. 1982). Gingival overgrowth and fibrosis due to this 

inflammation may require surgical intervention to correct. Plaque can also cause demineralization 

of enamel and lead to white spot lesions on the teeth that may require additional treatment to 

correct (Boyd and Baumrind 1992). Conventional orthodontic treatment requires the teeth to be 

moved at a certain rate to allow for just the right amount of force. If these forces are increased in 

an attempt to move teeth faster, bone loss and tooth resorption could occur (Deguchi et al. 2014).  

However, with the accelerated orthodontic techniques, teeth can move faster without the need 

for pathological forces (Alikhani et al. 2013, Dibart et al 2011, Shenava et al. 2014). With treatment 

time reduced, patients have a better chance of avoiding the complications of plaque accumulation 

around the braces and brackets 

Cost and esthetics of orthodontics has also been considered to be a limiting factor in 

treatment plan acceptance in adults. Chair time has highly been considered a valuable measure 

of a clinician’s worth. If there was a way to reduce the amount of chair time, patients would take 

up, then it may conceivable to possibly reduce the cost to the patient. Typically, a patient is 

charged a single fee for orthodontic treatment and this fee will not fluctuate based off the amount 

of time spent in treatment once treatment commences. Accelerated orthodontics could result in 
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quicker movement of teeth and may result in fewer visits for the patient. If a clinician now has 

finished an orthodontic case in 1 year instead of the anticipated 2 years, this frees up chair time 

for a year in which another patient can be seen. Survey studies have indicated that parents would 

be willing to pay up to 20% additional money to speed up the treatment of their child’s 

orthodontic treatment (Uribe et al. 2014). Thus, it may be conceivable to assume that although 

the innate cost of orthodontics may limit treatment plan acceptance, the ability to reduce time 

outweighs potential cost limitations.  This may suggest patients have a greater concern for time 

of treatment than the cost.  

The esthetics may also be a realm of concern for patients. The stereotypical orthodontic 

patient is a teenager, not a grown adult. The presence of orthodontic appliances can potentially 

affect the self-esteem, body image and social life of an adult patient (Varela and Garcia 1995). 

Others that the patient may encounter, such as friends and employers, may have altered 

psychosocial responses as well. The improvements in body image and self-esteem potentially 

indicated, mainly are seen after treatment is complete (Varela and Garcia 1995). In addition to 

esthetics, the lengthy nature of adult orthodontics results in low patient acceptance. Esthetics is 

closely tied to time. Longer treatment times mean longer the patient remains in perceived 

unaesthetic orthodontic appliances. Thus, having a method to reduce treatment times, such as 

accelerated orthodontics, will also aid in alleviating a patient’s apprehension of the esthetics and 

time of orthodontic treatment.  

Periodontics and Orthodontics 

In addition to providing faster movement of teeth, these facilitated orthodontic 

techniques allow for a better collaboration between periodontists and orthodontists. This 

additive team dynamic allows for more comprehensive and ideal treatment for patients. 
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Orthodontic patients need to have periodontal inflammation and caries under control prior to 

progressing with treatment. From a periodontal and restorative stand point, having orthodontics 

can potentially place teeth in more maintainable positions (Joss-Vassalli et al. 2010). Reduction of 

crowding can facilitate the hygiene. Closure of slight diastemas, especially in the posterior, can 

reduce food traps and prevent possible impaction of debris subgingivally. Moving teeth in into a 

more favorable occlusion can prevent possible periodontal inflammatory exacerbation from 

secondary occlusal trauma (Ainamo 1975). For example, reducing a steep anterior overbite or 

closing an anterior open bite may provide proper occlusal forces in protrusive movements. 

Understanding the patient’s periodontal, restorative, and orthodontic needs and concerns is key 

to ideally treating and preventing potential issues. Improper understanding of the soft and hard 

tissue biotype can result in possible recession if teeth are mobilized outside of the alveolar 

housing. Recession on the facial, especially on the lower anteriors and bicuspids is a very common 

sequela of orthodontic tooth movement (Yared et al. 2006, Joss‐Vassalli et al. 2010). Recession 

due partially to orthodontic movement could be prevented in many cases with a proper 

periodontal assessment prior to orthodontics. On the other hand, just having a diagnosis of thin 

tissue does not necessitate needing pre-orthodontic grafting. If the patient has signs of 

inflammation and orthodontic tooth movement is planned in the direction of thin tissue, often 

facially on the lower anteriors, then grafting would be indicated (Dibart et al. 2013, Wilcko et al. 

2003). Thus, clinicians of all specialties need to be aware of all aspects of treatment. Without 

understanding the orthodontic plan, a periodontist could not fully evaluate sites that will benefit 

from pre-orthodontic treatment. Accelerated orthodontics requires a complete understanding of 

the planned orthodontic treatment plan. Stages of bonding and movements must be understood 

to properly plan the location and timing of corticotomies in addition to knowing areas that would 

benefit from grafting. The amount of time for which the acceleration is considered to work varies 
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amongst techniques, and thus must carefully be coordinated based on timing of movements 

(Dibart et al. 2011). If a significant leveling and aligning is planned prior to closing large edentulous 

spaces, then it is possible that accelerated orthodontics may need to be performed multiple times. 

Knowing the exact teeth being moved and which are designed to be anchors is key (Dibart et al. 

2011). For example, a molar may be designated to be anchorage for moving neighboring teeth. If 

corticotomies to speed the movement are performed too close to the molar, then the relative 

anchorage could decrease and possibly lead to inadvertent movements. The orthodontist and 

surgeon must be aware of where corticotomies should be placed. Being unaware could result in 

improper use of the relative anchorage and cause teeth to move in unpredicted patterns. Knowing 

which teeth are now capable of faster movement can help the orthodontist plan adjustments 

accordingly. Thus, the periodontist and orthodontist are required to communicate their 

assessments and plan to accomplish accelerated orthodontics. This, in turn, results in ideal team 

treatment planning (Dibart et al. 2011).  

History of Accelerated Orthodontics and Periodontally Accelerated Osteogenic 

Orthodontics (PAOO) 

The concept of accelerated orthodontics is not a new one. The concept of creating 

corticotomies to accelerate tooth movement has been documented in the year 1893 by L.C. 

Bryan2. Dr. Henrich Khole in 1959 suggested that the dense cortical plate can limit tooth 

movement. Cortical bone does not contain significant vascularity and has increased density. Thus, 

more time would be required to turn over the bone and allow for tooth movement. With this 

theory in mind, Henrich Khole (1959) suggested that decorticating and creating mobile blocks of 

bone containing the teeth to be moved would no longer limit the movement of the teeth. The 

thought was that the block of bone would move with the tooth rather than the tooth alone. In 
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1996, Thomas and William Wilcko made an observation that it was not the boney blocks 

migrating, but rather the corticotomy around the tooth was resulting in a regionally acceleratory 

phenomenon (RAP) (Wilcko and Wilcko 2009). The RAP effect was initially described by an 

orthopedist Dr. Harold M. Frost (1983). Basically, the RAP effect can be described as a localized 

healing response to a noxious stimuli or injury in the bone (Frost 1983). The neighboring hard and 

soft tissue change in order to help repair the neighboring injury. Thus, the Wilcko et al. 2003 

reported that the controlled injury, or corticotomy, in the alveolar bone would result in a localized 

alteration, or osteopenia, that would facilitate tooth movement. With this concept, it became 

apparent that the amount and depth of the corticotomy did not need to be excessive. In other 

words, there was no need to remove so much bone as to create mobile blocks of bone. By simply 

removing an apico-coronal line of cortical bone interproximally on the facial, the surrounding 

bone would respond by a reduced density and allow for faster tooth movement. They were able 

to document many cases and several controlled studies to demonstrate the effectiveness of their 

modified corticotomy technique, and coined their technique Wilckodontics, also known as PAOO 

(Wilcko 2013)  . They were able to demonstrate a nearly 2-fold reduction in treatment time 

utilizing their technique. In a controlled clinical study, Makki et al. 2014 compared similar 

mandibular crowding cases treated with conventional orthodontics against PAOO. They were able 

to demonstrate a statistically significant reduction in treatment time as well as significantly less 

relapse after ten years (Makki et al. 2014). Another major component of their procedure was the 

utilization of bone grafting onlayed over the corticotomy sites.  The original technique did not 

require the use of a barrier membrane over the bone particulate. As the technique has evolved, 

several modifications in grafting material and membrane use have been suggested (Wilcko et al. 

2015)  
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Regional Acceleratory Phenomenon (RAP)  

The RAP effect as mentioned before, is a key underlying mechanism for all these 

previously mentioned techniques. Dr. H.M Frost had developed the concept of the regional 

acceleratory phenomenon (Frost 1983). He noted that the surrounding bone was altered upon 

injury. This healing was not isolated to just the exact site of injury (Frost 1983)). Soft tissue injuries 

typically have significant vascular supply to initiate a healing response. Bone has limited 

vascularity, especially cortical bone. This results in limited cellular access and signaling. To bring 

sufficient cells to clean and rebuild, the neighboring soft tissue and relatively vascular cancellous 

bone needs to provide support. The access of cells to the cancellous bone is simplified by 

demineralizing neighboring cortical bone. This can be accomplished due to increase in 

inflammatory cells, which tend to help upregulate osteoclast maturation, chemotaxis, and 

activity. The mineralized cortical bone and denser cancellous bone undergo controlled 

demineralization. The breakdown of osseous density increases room for cell and vascular 

migration. The increased vascular access is coupled with an influx of progenitor cells from various 

sources, including the newly arriving perivascular progenitor cells. This helps the anabolic bone-

remodeling phase via osteoblastic activity (Frost 1983, Sebaoun 2008). The help provided by 

neighboring tissues allow for proper healing of the osseous injury. This RAP effect results in a 

transient osteopenia, but eventually returns the bone quality to pre-injury levels. It begins 1 week 

after injury, peaks at 2 months, and returns to baseline at 4 months (Frost 1983). The Wilcko et 

al. (2003) described the RAP effect first time as the underlying cause for the transient increase in 

tooth movement following corticotomies.  

The RAP effect can also be used to describe normal orthodontic tooth movement as well. 

The controlled injury would be the pressure necrosis that occurs upon compression of the 
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periodontal ligament, which creates a lag period of tooth movement. During this period, a process 

similar to the RAP effect occurs to allow for the transient influx of inflammatory cells and 

osteoclastogenesis. The amount of RAP effect is substantially greater with the placement of 

cortical injuries. This is reflected in the histological studies observing bone demineralization 

(Dibart et al. 2013). Clinically, it is demonstrated by the increased speed of tooth movement and 

decreased treatment times (Alikhani et al. 2013, Bemard 1990, Dibart et al. 2011, Wilcko et al. 

2003).   

 

The Road to Minimally Invasive Accelerated Orthodontics 

A common complaint amongst patient’s and clinicians alike is the invasiveness of the 

classical corticotomy techniques, such as PAOO. A full thickness flap must be created on the arch 

involved and typically extends nearly the full length of the arch. The flap is reflected beyond the 

apex and involves incising through papillae.  Reflecting a full thickness flap may result in loss of 

thin facial alveolar bone due to disruption of vital periosteum (Wood 1972). Wilcko et al. (2003) 

was able to demonstrate on a case series looking at post-operative cone beam computed 

tomography images that bone particulate graft was able to increase facial bone thickness. They 

suggest that their technique can increase the band of keratinized tissue. In cases of facial 

advancement of lower anteriors in areas of thin biotype, increasing keratinized tissue could be 

beneficial (Wilcko et al. 2003). Their statements could not be substantiated with any histological 

evidence that the visual soft tissue changes they saw was actually increased the amount of 

keratinized epithelium (Wilcko et al. 2015).  Subsequent grafting can alleviate the issue of alveolar 

loss, but the amount of grafting further increases the complexity, cost, and time of the procedure. 

To perform the full thickness flap on nearly a whole arch, vital anatomy (i.e. mental nerve) needs 
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to be considered, and medical status/healing abilities become a greater concern. With larger 

surgical exposure, there is a potential for greater post-operative morbidity and complications. 

Sutures in a fully reflected buccal and/or palatal flaps become very critical for maintaining graft 

and tissue margins. Larger flaps and the likely increased swelling create an environment for 

potential early loss of sutures, surgical wound opening, loss of graft, and infections. Additionally, 

the combination of the technique sensitive nature of the procedure along with the large access 

flap result in significantly increased surgical treatment times. To create a near full arch flap on the 

facial and /or palatal, care must be taken to not excise important anatomy and prevent damage 

to marginal and papillary tissues. Once access is obtained, creating corticotomies would likely take 

the least amount of time of the entire procedure. The subsequent grafting and releasing of tissues 

can continue to extend surgical time. These procedural steps can accumulate to a relatively long 

procedure. Time alone could significantly affect the acceptance of this treatment from both the 

patient and/or clinician. Increased time also can relate to increased cost of the procedure. The 

cost would also be potentiated by the amount of grafting. Hence, the time/complexity related 

cost increase may also become a deterring factor in patient acceptance for PAOO. This technique 

has scientific literature suggesting its viability, but the patient/clinician acceptance needed to be 

addressed1 (ref format). Recent techniques have been focusing on more minimally invasive 

approaches to accelerate tooth movement. 

Corticision  

Park et al. (2006) was able to create cortical perforations using a modified scalpel (Park 

et al. 2006). This technique, known as corticision, did not require a flap. The scalpel could be 

placed interproximally and passed through the soft tissue all the way to the cortical bone. Then 

the scalpel could be hammered into the bone with a mallet to perforate the cortex. Lastly the 
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bone is luxated through the isolated vertical incision. The key point of this technique is that it can 

create the interproximal cortical perforations and induce the RAP effect without creating a full 

thickness flap. This was a major step in minimizing the amount of surgery to attempt to achieve 

the same type of accelerated tooth movement. These vertical incisions could also be left to heal 

by primary intention without significant time suturing. No papillary tissues are reflected, which 

helps prevent the risk of marginal and interdental tissue loss. Thus, the complexity, time, and cost 

can be reduced significantly while still providing accelerated tooth movement. One potential issue 

without a full thickness flap is the lack of access during creating the corticotomies. Without full 

access the prominence of the teeth may be less distinguishable and could result in accidental 

perforation into the tooth structure. Although there is limited evidence to suggest that 

perforating into cementum and dentin during a corticotomy results in pathological changes, 

perforating into the pulp can lead to possible devitalization, root resorption, and tooth loss. Thus, 

obtaining proper paralleled BWs, PAs, and ideally a CBCT are critical for analyzing the locations of 

corticotomies. Any sites radiographically determined to have roots in very close proximity should 

be avoided (Park et al. 2006). Additional precautions that can be taken when performing flapless 

corticotomies include palpation of root prominence and/or surgical guides derived from 

radiographs designed to avoid tooth structure. The interproximal crestal bone is another 

anatomical site that is at increased risk of damage without a fully reflected flap. Bone sounding in 

combination with radiographic examination should be used to avoid damage to crestal bone. 

Though there are risks involved with limited access, the benefits of the minimally invasive nature 

of a flapless corticotomy are profound. Less flapping means less surgical time and post-op 

morbidity. The cost could be reduced as well. Thus, this could increase case acceptance and 

clinician willingness to perform accelerated orthodontic treatment. 
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Piezocision®: Minimally Invasive Accelerated Orthodontic Tooth Movement 

In 2011, Dr. Sergai Dibart also developed a flapless technique for creating corticotomies, 

but with a piezosurgical instrument rather than a scalpel (Dibart et al. 2011). Dr. Tomaso 

Vercellotti developed the concept of utilizing the piezosurgical instrument to perform the 

corticotomies (Thomas et al. 2017). Surgical burs were traditionally used to perform 

corticotomies. Piezosurgical instruments provide certain advantages that traditional rotary 

instruments do not. Piezosurgical tips are designed to cut hard tissue without damaging soft 

tissue. In areas with proximity to intraosseous nerves, vessels, sinus membranes, and flapped 

tissue, having an instrument friendly to soft tissue reduces risk for iatrogenic injury. Also, 

piezosurgical instrument use has been suggested to result in beneficial osteogenic healing. 

Vercellotti et al. (2005) analyzed the histology of bone remodeling following bone removal from 

a carbide bur, diamond bur, and piezosurgical instrument. The study demonstrated that rotary 

instruments resulted in greater bone loss during remodeling then piezosurgical osteotomies 

(Vercellotti et al. 2005). Thus,  the corticotomy induced by the piezosurgical instrument could 

prevent any advertent bone loss following the completion of tooth movement. It is because of 

these findings in conjunction with the safety of not damaging soft tissue that has coined this as a 

“friendly” alternative to utilizing a rotary bur.  The full nature of the osteogenic effects of the 

piezosurgical units has not yet been identified. Histologic studies have suggested both catabolic 

and anabolic benefits (Baloul et al. 2011, Dibart et al. 2013, Vercellotti et al. 2005). Thus, it is 

conceivable to suggest that utilizing these alternative cutting instruments can either relatively 

increase or decrease the rate of tooth movement. If the cellular orchestration is simply modified 

to modulate pathogenic levels of inflammatory cytokines and cellular activity, then the RAP effect 

would simply be modulated by the piezoelectric stimulation of bone. This would allow safe 

continual bone turnover to facilitate faster tooth movement. If the potentiation of the piezo unit 
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results in an upregulation of osteoblastic and anabolic environment, then the length of RAP effect 

would be less. Bone would be rebuilding fast to respond to the injury resulting in a quicker 

response and decreased amount of time in which the bone is softer. This would result in a relative 

reduction in the acceleration of tooth movement. Histologic evidence regarding accelerated 

orthodontics and suggests a more catabolic upregulation and, thus, may help create less 

mineralized bone for the tooth to move through (Baloul et al. 2011, Dibart et al. 2013). 

Dr. Dibart’s technique, coined Piezocision, is a corticotomy technique utilizing isolated 

vertical incisions interproximally (Dibart et al. 2011). The incisions are similar to the corticision 

technique. They are made full thickness and do not include the crestal bone and papilla, and do 

not extend too far apically. The location of the vertical incisions are limited to just access bone in 

the areas required to create corticotomies. A rotary bur would most definitely harm the soft tissue 

if passed through this limited access. Using the piezosurgical tips, allows for safe cutting of hard 

tissue without damaging the soft tissue. The instrument is moved apico-coronally through the 

incision until the cortical bone has been perforated. The depth can be pre-determined by CBCT 

analysis or can be felt through the tactile difference of cortical vs. cancellous bone. Digitally based 

guides can also be fabricated based off radiographic and surface scan data. It is estimated that a 

minimum of 3-5mm of insertion of the piezoelectric tip through the soft tissue would be required 

to reach through the cortical bone. This depth can vary depending on the individual location of 

the corticotomy in the arch and bone thickness phenotype of an individual. As with PAOO, at least 

2mm of crestal bone needs to be intact to preserve vitality of interproximal one height. Damaging 

this region may result in loss of interdental papilla height. With limited access, similar precautions 

as in corticision must be applied. Based from a combination of histomorphometric analysis and 

clinical observations, it is suggested that the span of the RAP effect is 1.5 teeth from site of the 

corticotomy (Dibart et al. 2013). This would allow the clinician to skip an interproximal site and 
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still obtain the RAP effect on the skipped area. The amount of controlled injury to induce the RAP 

effect is still to be determined in literature. The original concept of creating large mobile blocks 

of bone, which essentially could be considered distraction osteogenesis, could be considered a 

very large injury. As techniques progressed, the amount of injury became smaller. PAOO would 

only place corticotomies on the buccal surrounding the tooth and only disrupting the cortical 

bone. The PAOO technique has evolved to only need interproximal decortication. With the 

reduction in corticotomy injury size, similar RAP related tooth movement has been able to be 

accomplished (Makki et al. 2014). 

 Early rodent models by Dibart et al. (2013) and Baloul et al. (2011) were able to 

demonstrate a distinct and sufficient RAP effect histologically, which resulted in nearly twice the 

amount of tooth movement in the same span of time (Baloul et al. 2011, Dibart et al. 2013).  The 

animal-based RAP effect was determined based off histological mineralized bone content in 

conjunction with osteoclastic activity and was determined to peak at approximately 28 days and 

return to baseline by 56 days. Similar findings by Baloul et al. (2011) was found but able to find 

fluctuations in cytokine markers suggesting the increase in bone turnover at approximately 3-5 

weeks (Baloul et al. 2011). Based on clinical case series by Dibart et al. (2013), the amount of time 

the RAP effect is active in humans is like that found with PAOO techniques. It begins at 

approximately 1-2 weeks, peaks at 2 months, and returns to baseline at approximately 4 months.  

A recent randomized clinical trial compared conventional orthodontics with Piezocision and was 

able to demonstrate a nearly half reduction in treatment time (Charavet et al. 2016). Piezocision 

also allows for grafting to alter the tissue biotype. If grafting is desired, a tunnel can be used via 

the vertical incisions and bone or soft tissue grafts can be applied through the same incision. In 

grafting scenarios, sutures would be required to contain graft. The ability to graft can be a vital 

component of providing ideal pre-orthodontic periodontal care. A distinct advantage to 
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performing PAOO is that access is gained to graft and help maintain facial tissue stability. With 

the advancement of tunneling techniques, grafting can still be performed. 

Propel® 

Another minimally invasive technique to decorticate uses the Propel® device (Alikhani et 

al. 2013). The Propel device is a threaded point with a depth stopper that is advanced through 

soft tissue and through the cortex creating micro-osteoperforations. Several punctures can be 

made at each interproximal site. These micro-osteoperforations have recently been shown in a 

rodent model to result in similar bone alterations as seen in other corticotomy techniques 

(Alikhani et al. 2015). A Clinical study has shown a near 50% reduction of treatment time as 

compared to conventional orthodontics.  Once again, access is limited to observe osseous 

anatomy. Thus, similar precautions must be taken to prevent damage to dental structures, crestal 

bone, vital vessels/nerves, and marginal soft tissue. Due to the small size of the cortical 

perforation, it is recommended to perform 2-3 or more interproximally in sites desired to 

accelerate the movement. Micro-osteoperforations results in the least amount of access for 

grafting. There are no incisions in this technique. The tissue in the site of perforation is simply 

punctured. Large graft tissue cannot be performed in conjunction with micro-osteoperforations 

unless further access is made. It is recommended that micro-osteoperforations can be performed 

every 2 months when attempting to accelerate the movement of teeth. This is a relatively sooner 

re-entry rate for attempting to re-injure the bone. Thus, it may be in anticipation of a relatively 

shorter RAP effect due to the minimal nature of the cortical perforations.  

Pulsed Electromagnetic Field Therapy 

More techniques are available for accelerated orthodontics that do not utilize 

decortication, such as pulsed electromagnetic fields (PEMF).  Pulsed electromagnetic frequencies 
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utilize electromagnetic energy to elucidate an osteogenic response (Dogru et al. 2014, Esther 

2010, Hannemann et al. 2014 ,Shupak et al. 2003, Sheneva et al. 2014, Stark and Sinclair 1987,). 

This transfer of energy may result in alterations of bone turnover and facilitate tooth movement 

(Dogru et al. 2014). Electromagnetic energy dictates atoms, molecules, cells, and organs. 

Essentially it is everywhere and is innately a major component of how nearly everything functions. 

The oral cavity has been shown to have an electromagnetic energy profile, and this value changes 

depending on the amount of restorations present (Skomro et al. 2012). Electromagnetic energy is 

a wave form of energy measured in units of wavelength. The most common form of 

electromagnetic radiation that is studied for medical/dental purposes is that within the visible 

light spectrum. Visible light wavelengths, such as those emitted by laser emitting devices, have 

also been indicated in having healing potential. Low intensity laser therapy (LILT) is a form of 

electromagnetic radiation to induce a healing response (Sheneva et al. 2014). LILT has been 

attempted for accelerated orthodontics but has shown limited response. Electromagnetic energy 

outside of the visible light spectrum is also utilized in both fields. A great example is radiographic 

imaging. X-rays fall on a shorter wavelength then visible light. Although it has been determined 

that osteogenic cells respond differently to various levels of electromagnetic radiation, the exact 

nature of this relationship is not well understood. Due to this lack of dose/reaction understanding, 

clinical studies have yet to establish the proper form of application for this type of energy. PEMF 

is created by an alternating magnetic resonance that creates a flow of electromagnetic energy. In 

this fashion, the electromagnetic energy is traveling at low frequencies between 6 Hz to 500 Hz, 

the range in which most biological activity can be found (Shupak et al. 2003). The alterations of 

current will result in changes in the frequencies. The rate of frequency change and the frequency 

itself are major factors in deriving a desired effect from the PEMF. Clinical studies observing 

fracture healing in long compact bones have demonstrated significant accelerated healing 
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potentials (Diniz et al. 2002, Hannemann et al. 2014). An example of electromagnetic radiation’s 

direct effect on cellular response is noted in cellular membrane response. As an electromagnetic 

field is pulsed around a cell, pore permeability can change allowing water and ions to flow more 

readily between the inside and outside of the cell. This could drastically change concentration 

gradients and significantly affect cellular activity. Also, surface receptors such as epidermal 

growth factor receptors, can fluctuate in numbers resulting in altered functions (Satake 1990). 

Osteoclastogenesis has been shown to be decreased by PEMF via reduction of the Ca2+-

calcineurin-nuclear factor of activated T-cells signaling pathway (Zhang et al. 2017). The most 

agreed upon effect has been suggested to be the upregulation of osteoblast functionality (Diniz 

et al. 2002, Shupak et al. 2003, Kim 1990). These potential osteogenic affects can play a vital role 

in the periodontium, especially the alveolar bone. Implant studies in rabbit models using PEMF 

have shown to upregulate genetic control of osteoblastic activity and increase early bone to 

implant contact (Bambini et al. 2017, Barak et al. 2016).  

Tooth movement with PEMF has been studied in a few animal models. A rodent model in 

which the upper two central incisors were separated orthodontically, PEMF was shown to 

increase the amount of tooth movement significantly more than control within the same amount 

of time (Dogru et al. 2014). The caveat is that this study only was conducted for 8 days, which can 

only reflect early stage changes. Cellular effects of PEMF in the periodontium have also been 

suggested. Human PDL fibroblasts where shown to have changes in spreading and adherence 

upon application of a PEMF in an in-vitro model (Kim 1990).   

Typically, electromagnetic radiation is fluctuating constantly around our bodies. Sources 

of electromagnetic radiation include everything from our TV’s to the radio broadcasting towers. 

This creates a field of energy, also known as “electrosmog” that may not necessarily be the range 

in which our cells ideally respond. A pulsed electromagnetic field (PEMF) can create a “bubble” of 
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desired electromagnetic radiation, cancelling outside sources and providing a targeted range of 

energy. Studies have attempted to isolate a range of electromagnetic radiation that cellular 

activity would respond favorably to (Shupak et al. 2003). By pulsing this controlled 

electromagnetic field, this energy could theoretically allow for increased desired cellular activity.  

As mentioned before, bone may have piezoelectric properties. When strain is applied to 

bone, energy is dissipated related to the strain. Vice versa is true as well. If an electromagnetic 

energy is applied to the bone, then strain may occur. It may be conceivable that the piezoelectric 

instrument applies a specific range of strain to the bone related to the piezoelectricity used to 

power the internal ceramic rings. Ceramic rings within the handpiece of a piezoelectric unit are 

piezoelectric as well. Applying a set voltage results in strain. Pulsing this energy results in the 

ceramic rings to expand and compress rapidly. This vibration mechanically vibrates the 

piezoelectric tip inside the handpiece. This vibrational energy, once applied to bone, may result 

in an indirect transfer of energy to the bone. This specific dose of energy can dissipate further 

from the actual site of contact between instrument and bone. Thus, it is possible for an alteration 

in neighboring cellular activity to this spread of energy (Vercellotti et al. 2005). This dose would 

be likely a dampened version of what was used to apply the strain on the ceramic rings in the 

piezoelectric handpiece. It has been suggested that the 30kHz frequency range output from 

current piezoelectric surgical units can potentially result in osteogenic responses (Dibart et al. 

2013). This may suggest that beyond creating a controlled cortical injury, the piezosurgical units 

can release electromagnetic radiations resulting in osteogenic changes in a similar fashion as 

PEMF. Studying the effects of PEMF in accelerated orthodontics could help better understand the 

nature of electromagnetic energy and its role in bone healing around teeth. Additionally, studying 

PEMF directly against piezosurgical instruments may shed light on the similarities or differences 

between the electromagnetic effects on the periodontium. 
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No matter the technique, accelerated orthodontics is designed to alter the periodontium 

to facilitate faster tooth movement. These newer more minimally invasive techniques have been 

studied for their effectiveness with little focus on the detailed effects on the periodontium. 

Current research has focused on the bone density as well as the number of local osteoclasts. Other 

factors such as the migration/polarization of fibroblasts, nature of vessels, periodontal 

attachment fiber turnover remain to be histologically described with these techniques. It is 

important to track the actions of fibroblasts and their relation to the periodontal ligament. 

Knowing how they differ amongst techniques is important for understanding how the attachment 

apparatus re-matures. Any disruption in this process could result in iatrogenic attachment loss. 

Understanding the alterations in the alveolar bone and tooth attachment apparatus is key to both 

learning about the techniques’ effectiveness, as well as its relative safety. With a thorough 

investigation on the histological nature of the periodontal response to these accelerated 

orthodontic techniques, potential risks and benefits could further be elucidated.  

 The scientific literature has yet to support that any technique outperforms the other. 

Previous studies focus on a single technique and lack in histological support for its function. 

Therefore, the aim of this study is to compare the effects of several minimally invasive techniques 

on orthodontic tooth movement. An animal model has proved an efficacious model in testing 

tooth movement and allows for histological evaluation. Considering these techniques can alter 

the nature of the periodontium, it is important to have a comparative histological understanding 

of these techniques.  

 

 

 



27 
 

 

Purpose: The purpose of this study is to compare the clinical, radiological and histological effects 

of several minimally invasive accelerated orthodontic techniques including Piezocision, Propel 

and PEMF on orthodontic tooth movement on a rat model. The clinical analysis will allow the 

study to elucidate the difference in resulting rate of tooth movement. Radiographic information 

can show tooth movement amounts and bone density differences. The goal for the histological 

analysis was to evaluate density differences of the bone and the relative effects on the 

periodontium. 
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Materials and Methods  

This study has been approved by the Institutional Animal Care and Use Committee of 

Nova Southeastern University. The animals were obtained and acclimatized in the animal care 

facility for at least one week. Rats were placed in pairs in cages at the animal care facility. Cages 

were supplied with rat chow and water ad libitum. A total of 61 young adult laboratory rats 

(Sprague–Dawley; 280–320g, 8-9 weeks old) were used. The rodent model has two large central 

incisors that have long roots traveling nearly the full extent of the cranium. Then there is a large 

edentulous space until the posterior 3 molars are found. The three molars are in direct contact 

with each other and relatively straight in alignment. The root surface area is significantly smaller 

on the molars as compared to the central incisors. Thus, the central incisors serve as great anchor 

for mesialization of the posterior molars. The first molar mesialization towards the central incisors 

has been utilized as an animal model for orthodontic movement in several similar studies (Baloul 

et al. 2011, Dibart et al. 2013). Many of the concepts for the animal model to be used in this study 

was derived from prior studies attempting to understand the effectiveness of decortication and 

other orthodontic interventions (Ibrahim et al. 2017). Following similar protocols would allow for 

possible comparative analysis in the form of a meta-analysis. Prior PEMF studies used the creation 

of a diastema on the upper central incisors (Dogru et al. 2014). The length of the roots on the 

upper incisors transverse on the dorsum posteriorly nearly the entire length of the cranium. Using 

this model would not allow for sufficient decortication along the length of the root.  

The animals were divided into 4 groups at baseline as shown in Figure 1: 1) Control (tooth 

movement alone; n = 15)-, 2) Piezocision (n = 15), 3) Propel (n= 15), and 4) PEMF (n = 15). Three 

time-points of 7, 21, and 49 days were studied based on the established intervals in previous 
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studies (Baloul et al. 2011, Dibart et al. 2013). Prior studies have demonstrated that early signs of 

the RAP effect in rodents are not distinguishable until the first week. The following 1 month has 

peak in activity with a decrease towards baseline after 2 months. The animals were fed softened 

rat chow and water ad libitum and weighed weekly. The left side of each animal’s maxilla served 

as the experimental side, while the right side did not receive any treatment to ensure that the 

nourishment capacity of the animal was not impaired. 

 

 

Procedure 

All procedures were completed under general anesthesia with intraperitoneally 

administered ketamine (8mg/kg) and xylazine (5mg/kg) combination. Rats were initially weighed 

Figure 1: Summary of groups.  
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with a scale at the animal facility immediately prior to transport. Rats were transferred in groups 

of 3-4 from animal care facility to operation site. Three empty recovery cages were brought as 

well. Rats were handled with care to expose abdomen to allow for intraperitoneal injection. Upon 

injection rats were replaced into recovery chamber until anesthesia could be visually determined. 

A stabilization operating table was created to minimize movement during procedure and facilitate 

access to the test molar. Once rats were anesthetized, a cephalometric X-Ray was taken using 

fixed markers on the stabilization table to hold the rats’ heads and bodies in the same relative 

positions. The cephalometric X-Ray was utilized to detect any growth pattern anomalies between 

rats. To access the test molar, retraction was needed throughout the procedure. Two research 

assistants were required for retraction and rodent stabilization. To stabilize the rats head two 

fingers in a V-Shape was used to support the head with palm rest on the stabilization table. The 

rat’s torso was stabilized with three fingers and palm rest on the stabilization table. Stabilization 

was required to prevent rat movement during the procedure. Careful pressure was used as to not 

inhibit the rats breathing. Visual signs of breathing and haptic feeling from the torso stabilizer was 

used to gauge the respiratory status of the rodent. Retraction was performed with a floss passed 

around lower and upper incisors separately. The floss was attached to cotton pliers which were 

extended out away from the rat’s head to open the rat’s mouth. Another finger from the torso 

stabilizer was sued to protrude the tongue. Managing the tongue allowed for better access and a 

patent airway. This access was used for all procedural steps required intra-oral access. A clinical 

measurement from the anterior extent of the incisors to the upper left first molar was taken with 

digital calipers. A digital caliper could not be used intraorally so a direct/indirect method was used 

to measure the space. A blunted wire was placed at the most distal extent of the gingival margin 

of the incisors and the most mesial extent of the gingival margin of the test molar. This distance 

was marked on the wire. The digital caliper was used to measure this difference as the baseline 
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clinical distance of the edentulous space.  After measurements, rats were randomly assigned to 

one of the four groups. Then they were sub grouped to one of the three time points (7, 21, and 

49 days). 

 

 

 

Piezocision and Propel groups required an intra-operative intervention that was 

performed after measurements. For the Piezocision group, an incision was done with a 15c blade 

on the mesial and distal of the first molar (Figure 2B). The decortication was performed with a 

piezoelectric surgical unit with a BS1 insert tip to a depth of 1 mm. The decortication was taken 

to the depth of 1 mm to assure that it has penetrated through the cortex and that depths were 

even on each rat. In addition to depth control, haptic feedback of the quality of bone was noted 

during the utilization of the piezosurgical depth to insure bone has been injured. The Piezoelectric 

unit is set to 30 kHz to allow for proper cutting efficiency without over heating the bone, and 

Figure 2: Interventions 

All rats in this study received the same orthodontic appliance as depicted. A) Control group 

received only tooth movement with no other intervention. B) The Piezocision group 

received a corticotomy at the mesial and distal palatal of the test molar using a 

piezosurgical instrument. C) The Propel group received a decortication puncture using the 

device at the mesial and distal of the test molar. D) PEMF rats received a daily dose of 

approximately 7 hours set on a bone setting from a mat placed underneath the cage. 
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potentially resulting in osteogenic effects via electromagnetic radiation. Corticotomy was 

performed with thorough irrigation. Suctioning and frequent breaks were taken to prevent 

aspiration of fluids in the airway. The incision created was minimal to only allow penetration of 

the BS1 tip. The incision was in position for primary closure and did not require suturing. 

Hemostasis was quickly acheived following pressure with a cotton tip. 

For the Propel group, the device was modified to allow for application to a depth of 1mm 

at the distal and mesial of the test molar. The stopper was removed. A 1mm mark was made with 

permanent ink. The instrument tip was advanced with a twisting motion to penetrate soft tissue 

and decorticate (Figure 2C). Once the mark was reached the instrument was backed out. The 

penetration through the soft tissue places minimal trauma to soft tissues and does not require 

suturing. Typically, two to three penetrations are done on humans in clinical practice. Due to the 

size discrepancy of rat molars to human teeth, only one puncture was made at each site. 

Hemostasis was achieved using pressure with a cotton tip.  

For pulsed electromagnetic field (PEMF, Lenyosys BioRegulation device), a device that is 

flat and has adjustable pulsing modes output was used. No extra intervention for this group was 

needed during the time the rat was under anesthesia. The device has several settings based on 

the desired effect. The device was set to a “dental” setting designed to emit frequencies that 

promote osteogenic properties. Plastic cages containing the rats were placed on top of the PEMF 

mats. The PEMF was applied daily for 7 hours during the duration of the project (Shupak et al. 

2003). The mats PEMF range was tested utilizing a magnetic flux reader. The field created was 

measured to reach approximately 8-10 cm above the mat. This would allow for the rats to receive 

the full effect of the field while in the cage (Figure 2D). Two mats were used. If more than two 

cages were in the facility that were in the PEMF group, cages would be rotated to ensure all rats 
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PEMF group rats received the 7-hour dose daily. The mats were powered by AAA batteries and 

required a battery change after 2 uses. Batteries were changed after every 2nd cycle for each mat.  

Placement of Orthodontic Appliances:  

After interventions were performed, each rat had the orthodontic appliance placed 

(Figure 2). The orthodontic appliances chosen are of the smallest size and are applicable to rodent 

teeth. The tip of a stainless-steel ligature was slightly bent 2-4mm from the tip. A suture holder 

was used to pass the bent tip from the buccal to palatal on the interproximal of the first and 

second molar. If tissues were punctured, Cotton tip applicators were used to achieve hemostasis. 

After observing the tip enter the palatal area under the contact, the ligature was pulled and a 50g 

NiTi closed coiled spring was passed through the ligature to generate approximately 25-50g. This 

force is suggested to be a great amount but fall within the usual range used by other studies. 

Forces at 100g or greater tend to produce pathological conditions that can possibly inhibit tooth 

movement (Murphy et al. 2014, Ibrahim et al. 2017). A 50g force would allow for continuous 

application of forces 25g and greater for a longer duration (Figure 3). A 25g force application 

initially may begin to drop resulting in less force application as the study progresses. In 

conventional human orthodontics, forces are adjusted periodically to continue to achieve 

movement. Since forces are only being applied once at the beginning, the initial application of a 

higher force will allow for a better simulation of active forces throughout the entire duration of 

the study. The ligature was then twisted to tie off and place the spring at the mesial end of the 

test molar. The excess ligature was removed. The end of the tied ligature was covered in flowable 

composite and light cured. This would prevent the sharp edges of the ligature from harming the 

intra-oral environment. The size of the end of the ligature and composite was kept minimal to 

provide enough support without taking up significant room. The area was then sufficiently dried 

with cotton tips. Self-etch primer and bond was applied to the mesial of the test tooth and light 
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cured. Flowable composite was applied to the mesial aspect of the test tooth to cover both 

ligature and tooth.  Composite was light cured. This was done to stabilize the ligature. Another 

ligature was passed through the other end of the NiTi closed coil spring. The ligature was 

continued to pass through the interproximal of the upper central incisors. The ligature was then 

tied off around both central incisors. This activated the closed coil spring between 25g to 50g 

(Figure 3). This range of force would allow for sufficient tooth movement with limited pathological 

tooth changes from excessive force issues. NiTi springs were tested with a force gauge to confirm 

that at the distance from first molar to central incisors produces a force of 25g to 50g. The central 

incisors were then dried thoroughly with a cotton tip. The self-etch primer and bond was applied 

to ligature and central incisors and light cured. Flowable composite was then applied to the tooth 

and ligature end. Composite was applied as to not cover incisal or occlusal surfaces. Composite 

was light cured. This device allows the upper left first molar to move mesially away from distal 

molars. 

  

 

After orthodontic appliance was placed, the rats were placed in the recovery cages. Rats 

were monitored for return to full consciousness. Upon full recovery rats were placed into new 

Figure 3: Force Gauge Measurements of the NiTi Spring used to apply orthodontic force. 
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cages. Rats were labelled based off number and not procedure. Only rats that were in the PEMF 

group were labeled on the cage as “PEMF” in addition to their number. All animals were permitted 

to move freely within their cages. All animals were housed in the same manner and provided 

softened rat chow and water ad libitum. The rat chow was soaked in distilled water for 2 hours 

and then placed in a feeding bowl in the cage. Rat chow had to be softened as hard pellets may 

dislodge the orthodontic appliance. Water and food was checked daily. Cages were cleaned, and 

rat bedding was changed weekly. Anterior orthodontic appliance was visible always. If any 

disturbance in the appliance was noted, rats were checked for stability of device. Rats would be 

once again sedated utilizing the same xylazine/ketamine mixture. The device would be checked. 

If device was deemed to be repairable, the device was re-adjusted. If device was unrepairable, a 

new device was placed. Rats were placed again in a recovery cage until they return to baseline 

level prior to sedation. If device was unrepairable within 24 hours prior to a designated sacrifice 

time, no repair was performed as rats would be sacrificed same day. Rats where weighed weekly 

and checked for general health. If any distinct activity suggesting systemic illness was noted rats 

would be further checked. Only one rat was noted to have a severe infection near the 

reproductive organs. Rat was noted to have severe weight loss, 1 week after intervention. Rat was 

euthanized at the one-week interval. One rat did not survive the intervention. This was the first 

rat, and retraction protocol was altered to include a forward retraction of the tongue.  

 The animals were sacrificed at 7, 21 and 49 days. Prior to euthanasia, rats where re-

weighed. For euthanasia, an overdose of carbon dioxide and de-capitation was used. Rats were 

individually placed into a chamber with rubber hosing connected to a CO2 tank. CO2 flowed into 

chamber to euthanize rat. To confirm euthanasia, decapitation was performed after CO2 

application. After decapitation, the heads were placed in individual labeled jars of 10% formalin. 

Animal samples were given a new number by a separate research assistant. The new numbers 
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were correlated with the original number on a master data sheet, which would be used after data 

collection. This would then randomize the data collection as numbers on the cage would not 

indicate which treatment the rats had received. After one week in formalin, another 

cephalometric X-Ray was taken from the same fixed points to observe relative growth patterns of 

the rats. Also, clinical measurements were again taken from the incisors to the upper left first 

molar using a digital caliper.  

Histological Studies: 

 After the euthanasia, the maxilla was removed with a diamond disc. Maxilla was placed 

into individual histology trays. Samples were prepared for histology inside of trays. Samples were 

fixed with 4 % paraformaldehyde, decalcified, embedded in paraffin, and transversely sectioned 

(5-8 μm thick) through the first, second, and third molar roots using a microtome producing five 

slide sections from apex to crown per arch. Slides at three different vertical levels of the roots 

(apical, middle, and coronal) were chosen and stained with hematoxylin and eosin. Histological 

analyses were performed for each sample.  

In addition to observational data, histomorphometric analysis were performed utilizing 

ImageJ software. At the mid-root sectional slides, the area between the first molar roots including 

the roots (intra-radicular area) was used for histomorphometric analysis. The intra-radicular area 

was defined as a pentagon-shaped grid, each angle formed by the center of the five first molar 
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roots. Within the grids, the total amount of bone was recorded using ImageJ software to contrast 

the bone and was expressed as percentage of area with bone (Figure 4).  

 

Clinical Radiographic Measurements  

To determine the rate of tooth movement, a clinical and radiographic analysis were 

performed. For a clinical measurement, digital calipers were used to measure the amount of space 

between the first molar and the anterior teeth in the experimental quadrant at baseline and at 

time of sacrifice. Cone beam computed tomography (CBCT) of the rat jaws were taken and utilized 

for measurements. These measurements included changes in the distance from test first molar to 

second molar giving the distance the test tooth was orthodontically moved (Figure 5). 

Additionally, CBCT images were analyzed utilizing ImageJ software to determine relative grey 

intensity values around a fixed grid surrounding the test molars (Figure 5). The grid was designed 

to be 4.5x6.5mm with the test tooth centered in the grid at the mid-root level. The grid was placed 

axially on the tooth along the long axis of the tooth. The same grid was applied to the control side 

Figure 4. Histology Analysis 

A) Midroot intra-radicular region of the test molar with the intra-radicular space outlined B) 

Cropped out grid of the intra-radicular space to be analyzed for bone density C) Bone is 

isolated utilizing ImageJ software to depict the relative density within the defined grid. 
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as well. 4.5 x 6.5mm was chosen as it encompassed control molar and a sufficient space around 

that could demonstrate the potential limits of the RAP effect. A smaller field may have cut off the 

expansive demineralization created by accelerated orthodontics. Grey intensity values were 

derived from images using ImageJ software. The grey intensity values of the control side were 

compared to the test side. The samples were scanned after the maxilla was fixed in formalin for 

at least 24 hours. Timing and comparing to the control side were designed to reduce potential 

errors introduced by the CBCT scanner. The CBCT scanner was set to a child setting. These 

differences in grey intensity value correlate to varying levels of bone calcification or density 

around the test molar at time of sacrifice. Lastly, the CBCT images were used to determine the 

amount of migration the 3rd molar traveled despite not having any orthodontic forces. Anecdotal 

information regarding the rate and/or amount of movement of teeth that are not involved in the 

orthodontic movement has been regarded to be different in the presence of accelerated 

orthodontics. This measurement may elucidate if any differences in non-activated molar 

movement exists amongst the groups. Three separate bilateral anatomical points (posterior orbit, 

zygomatic arches, and the base of the incisors) were used to create a line of symmetry. The line 

of symmetry was placed on the distal aspect of the control side of third molar. The distance from 

this line to the test side of third molar was measured in millimeters.  

Micro Computed Tomography (Micro CT) was performed to measure relative bone 

densities and extent of demineralization. Micro CT machine was acquired after the majority of the 

study had been complete. Not all samples were able to undergo Micro CT. Because of the limited 
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number of samples sent for Micro CT, it was not included in the results of this study. 

 

 

After de-randomization of data and further histological observations, it was determined 

that the orthodontic appliance may have not functioned properly on all samples. To reduce the 

variable of orthodontic appliance failure, samples deemed to not have any movement by day 21, 

less than 0.5mm of movement by day 49, and several appliance issues along the course of 

movement were omitted during a second round of statistical analysis. The 0.5mm mark was 

chosen because the average amount of movement in controls was over 1mm after first round of 

analysis. The samples with 0.5mm of movement correlated with appliance issues, such as broken 

anterior composite or dislodged posteriors ligature. The histology also resembled baseline normal 

Figure 5: CBCT Analysis 

A) Intensity measurements were made by creating a 4.5mm by 6.5mm grid with the 

midroot region of the test tooth centered in the grid. ImageJ software was used to obtain 

grey intensity values and compared to a grid placed on the contralateral side. This 

difference in intensity values created a relative decrease in intensity value representing a 

change in radiographic bone density. B) The distal contact point of the test molar to the 

mesial contact point of the second molar was used to measure the amount of tooth 

movement. All contacts were initially closed at baseline. Thus, any movement seen would 

represent movement due to orthodontic forces. C) Three consistent points were used to 

create a relative plane of symmetry to compare how much the 3rd molar had moved 

mesially on the test side as compared to the control side. 
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architecture as if orthodontic movement had ceased. The combination of these factors may 

suggest possible appliance issues and creates a potential uncontrolled variable.  

Statistical Analysis:  

To look for the change in clinical tooth distance (Incisal-Molar or IM distance); CBCT 

intensity values (CBCT Intensity Difference); CBCT based tooth distance from the second molar to 

first molar (CBCT tooth distance); amount of movement of the distal most molar mesially 

(Posterior Shift); and the histologic bone density (Histology Inter-Root Bone Percentage or 

Histology Bone Difference Percentage) we used a two-way ANOVA. The fixed effects were time 

(Day 7, Day 21, and day 49), group (control, PEMF, Propel, Piezocision), and the interaction of 

group by time. The co-variates were rat beginning and sacrifice weight. Post-hoc Tukey tests were 

also conducted. Statistical analysis was performed again after samples were omitted due to 

potential failures in the orthodontic appliances. 
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Results 

Change in Incisor to Molar (IM) Distance 
 

For the change (baseline distance minus either 7,21, or 49 day time points) in the clinically 

measured distance of the central incisor to the test molar, we found a significant difference by 

time [F (3, 42) = 36.52, p < 0.001, 2 = 54%], but no difference between groups (p = 0.964), or the 

interaction of group by time (p = 0.715). A post hoc Tukey test showed that day-49 was 

significantly different from day-7 and day-21 at p < 0.05; no difference was found between day-7 

and day-21 (p = 0.440) (Table 1). 

 
 

Day 
 

Day Difference 
Lower  
95% CI 

Upper  
95% CI 

p-value 

49  7 1.95 1.32 2.57 <.0001* 

49  21 1.63 1.08 2.19 <.0001* 
21  7 0.31  -0.29 0.92 0.440 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Pairwise Comparisons of clinically measured distance of the central incisor to test molar. 

*Statistically significant difference (p< 0.05). 
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 Day 7 Day 21 Day 49 

 I-M Distance Per (mm) I-M Distance Per (mm) I-M Distance Per (mm) 

 M SD Min Max M SD Min Max M SD Min Max 

Control 14.36 1.25 12.60 15.70 14.74 0.69 13.60 15.30 14.73 0.49 14.30 15.20 

PEMF 14.92 0.54 14.10 15.60 14.34 0.50 13.70 15.10 14.44 0.13 14.30 14.60 

Propel 14.68 0.33 14.20 15.10 14.62 0.33 14.20 15.00 14.46 0.09 14.30 14.50 

Piezocision 14.92 0.20 14.60 15.10 14.67 0.33 14.30 15.10 14.52 0.44 13.90 14.90 

             

 Day 7 Day 21 Day 49 

 I-M Distance Post (mm) I-M Distance Post (mm) I-M Distance Post (mm) 

 M SD Min Max M SD Min Max M SD Min Max 

Control 13.72 1.07 12.10 14.90 13.62 0.77 12.40 14.20 11.90 1.05 10.90 13.00 

PEMF 14.16 0.31 13.90 14.70 13.53 0.43 12.90 13.90 12.38 0.58 12.00 13.40 

Propel 14.16 0.56 13.30 14.70 13.72 0.53 13.10 14.30 11.90 0.73 11.20 12.90 

Piezocision 14.36 0.40 14.00 14.80 13.44 0.46 12.80 14.00 11.55 0.86 10.50 12.30 

             

 Day 7 Day 21 Day 49 

 I-M Distance Change (mm) I-M Distance Change (mm) I-M Distance Change (mm) 

 M SD Min Max M SD Min Max M SD Min Max 

Control 0.64 0.38 0.20 1.20 1.12 0.58 0.60 2.00 3.00 1.51 1.30 4.20 

PEMF 0.76 0.59 0.10 1.50 0.80 0.77 -0.20 1.40 2.06 0.55 1.10 2.50 

Propel 0.52 0.39 0.10 0.90 0.90 0.63 -0.10 1.50 2.56 0.69 1.60 3.20 

Piezocision 0.56 0.38 0.10 1.00 1.14 0.51 0.50 1.80 2.90 0.81 1.90 3.70 

 
 
 

 
 
 
 

Table 2: Descriptive Statistics for IM Distance 
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Figure 6. IM Distance measured by Distance Difference between initial measurement at 

baseline and at time of sacrifice. 
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Change in CBCT Intensity 
 

For the difference in the CBCT intensity values around the test molar roots versus the 

contralateral first molar roots, we found a significant difference by time [F (3, 39) = 14.21, p < 

0.001, 2 = 28%], but no difference between groups (p = 0.739, or the interaction of group by time 

(p = 0.177). A post hoc Tukey test showed that day-49 was significantly different from day-7 and 

day-21 at p < 0.05; no difference was found between day-7 and day-21 (p = 0.440) (Table 3). 

 
 

Day Day Difference 
Lower  
95% CI 

Upper  
95% CI 

p-value 

49 7 29.70 5.80 15.57 <.0001* 

49 21 20.42 5.10 8.00 <.0001* 
21 7 9.29 5.29  -3.59 0.197 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Pairwise Comparisons for CBCT Intensity Change 

*Statistically significant difference (p< 0.05). 
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 Day 7 Day 21 Day 49 

 CBCT Intensity Left CBCT Intensity Left CBCT Intensity Left 

 M SD Min Max M SD Min Max M SD Min Max 

Control 154.20 21.43 124.50 172.80 150.40 18.02 122.70 167.50 144.15 12.03 128.30 153.90 

PEMF 164.58 8.71 155.40 173.30 149.90 15.74 131.20 161.50 146.73 16.81 124.80 160.30 

Propel 149.85 27.59 112.00 178.10 154.76 9.36 144.10 166.20 138.40 15.34 122.10 163.50 

Piezocision 144.60 25.45 116.60 172.20 131.55 20.87 101.40 147.60 116.10 30.69 80.80 136.40 

             

 Day 7 Day 21 Day 49 

 CBCT Intensity Right CBCT Intensity Right CBCT Intensity Right 

 M SD Min Max M SD Min Max M SD Min Max 

Control 163.28 29.98 120.70 186.90 156.68 18.40 129.20 178.10 170.80 22.04 138.50 184.90 

PEMF 177.56 8.79 164.30 188.90 164.48 16.98 134.50 176.30 175.98 10.89 164.90 190.90 

Propel 165.75 23.16 131.20 179.60 176.80 4.64 172.20 182.50 183.44 3.05 180.10 187.50 

Piezocision 152.04 20.35 133.40 174.90 170.75 10.12 159.10 183.70 178.57 1.93 177.40 180.80 

             

 Day 7 Day 21 Day 49 

 CBCT Intensity Change CBCT Intensity Change CBCT Intensity Change 

 M SD Min Max M SD Min Max M SD Min Max 

Control 9.08 8.74 -3.80 14.90 6.28 6.95 -5.80 10.60 26.65 11.02 10.20 33.60 

PEMF 12.98 6.26 4.90 21.10 14.58 12.11 3.30 34.90 29.25 24.92 12.50 66.10 

Propel 15.90 10.16 1.50 25.30 22.04 10.70 9.40 36.70 45.04 15.39 22.20 65.40 

Piezocision 7.44 6.86 0.40 16.80 39.20 25.80 11.50 69.90 62.47 29.66 44.40 96.70 

 

 
 
 

 

Table 4: Descriptive Statistics for CBCT Intensity 
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Change in CBCT Tooth Distance  
 

For the CBCT measured difference of the test molar to the second molar, we found a 

significant difference by time [F (3, 41) = 36.35, p < 0.001, 2 = 55%], but no difference between 

groups (p = 0.997), or the interaction of group by time (p = 0.553). A post hoc Tukey test showed 

that day-49 was significantly different from day-7 and day-21 at p < 0.05; no difference was found 

between day-7 and day-21 (p = 0.440) (Table 5).  

 

Day Day Difference 
Lower  
95% CI 

Upper  
95% CI 

p-value 

49 7 2.03 0.27 1.36 <.0001* 
49 21 1.52 0.27 0.86 <.0001* 
21 7 0.51 0.26  -0.13 0.142 

 
 
 
 

Figure 7: CBCT Intensity Difference 

Table 5: Pairwise Comparisons for CBCT Tooth Distance 

*Statistically significant difference (p< 0.05). 
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 Day 7 Day 21 Day 49 

 CBCT Tooth Distance CBCT Tooth Distance CBCT Tooth Distance 

 M SD Min Max M SD Min Max M SD Min Max 

Control 0.15 0.19 0.00 0.40 0.42 0.46 0.00 1.10 2.13 1.51 0.50 3.60 

PEMF 0.18 0.16 0.00 0.40 0.58 0.70 0.00 1.70 1.35 1.07 0.40 2.70 

Propel 0.10 0.08 0.00 0.20 1.04 1.11 0.00 2.30 2.24 1.28 0.60 4.00 

Piezocision 0.04 0.05 0.00 0.10 0.45 0.34 0.00 0.80 2.87 0.50 2.40 3.40 

 
 
 
 

 

 
 
 
 
 

 
 

 
Change in Posterior Shift 
 

To look for the change in CBCT tooth posterior shift we used a two-way ANOVA. The fixed 

effects were time (Day 7, Day 21, and day 49), group (control, PEMF, Propel, Piezocision), and the 

interaction of group by time. The co-variates were rat beginning and sacrifice weight. We found 

a significant difference by time [F (3, 44) = 70.50, p < 0.001, 2 = 55%], but no difference between 

Table 6: Descriptive Statistics for CBCT Tooth Distance 

Figure 8: CBCT Tooth Distance 
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groups (p = 0.426), or the interaction of group by time (p = 0.116). A post-hoc Tukey test showed 

that day-49 was significantly different from day-7 and day-21 at p < 0.05; day-21 was significantly 

different from day-7 at p < 0.05 (Table 7). 

 
 

Day Day Difference 
Lower  
95% CI 

Upper  
95% CI 

p-value 

49 7 0.62 0.05 0.49 <.0001* 
49 21 0.40 0.05 0.29 <.0001* 
21 7 0.22 0.05 0.10 <.0001* 

 
 
 
 
 

 Day 7 Day 21 Day 49 

 CBCT Posterior Shift CBCT Posterior Shift CBCT Posterior Shift 

 M SD Min Max M SD Min Max M SD Min Max 

Control 0.05 0.10 0.00 0.20 0.24 0.13 0.00 0.30 0.55 0.06 0.50 0.60 

PEMF 0.16 0.09 0.10 0.30 0.30 0.07 0.20 0.40 0.68 0.18 0.40 0.90 

Propel 0.04 0.05 0.00 0.10 0.34 0.05 0.30 0.40 0.90 0.31 0.70 1.40 

Piezocision 0.13 0.10 0.00 0.20 0.35 0.14 0.20 0.60 0.66 0.15 0.50 0.90 

 
 
 
 

 
 
 
 
 
 
 
 
 

Table 7: Pairwise Comparisons for Posterior Shift 

*Statistically significant difference (p< 0.05). 

Table 8: Descriptive Statistics for Posterior Shift 
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Figure 9: CBCT Posterior Shift 
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Change in Histological Inter-Root Bone Percentage 

 
For the differences in the amount of measured histological bone density percentage 

around the intra-radicular midroot region of the test molar, we found no significant difference by 

time (p = 0.554), and no difference between groups (p = 0.946), or the interaction of group by 

time (p = 0.697).  

 
 
 Day 7 Day 21 Day 49 

 Bone Percentage  Bone Percentage Bone Percentage 

 M SD Min Max M SD Min Max M SD Min Max 

Control 58.93 8.27 49.30 69.30 70.38 5.87 63.80 79.70 75.05 6.59 67.80 83.40 

PEMF 63.18 12.17 41.80 72.10 69.90 10.16 57.00 84.30 73.64 8.87 60.00 81.40 

Propel 59.38 14.51 40.30 75.50 59.58 17.88 30.00 76.50 65.80 11.60 47.60 79.60 

Piezocision 60.06 8.32 46.10 66.90 60.50 12.25 45.30 75.90 59.94 15.33 44.30 81.40 

             

 Day 7 Day 21 Day 49 

 Bone Percentage Control Bone Percentage Control Bone Percentage Control 

 M SD Min Max M SD Min Max M SD Min Max 

Control 79.20 1.64 77.30 81.30 77.32 9.11 64.70 87.70 79.78 7.59 68.90 86.10 

PEMF 77.96 2.45 74.60 80.70 78.12 9.69 63.80 88.10 84.06 5.11 77.50 90.70 

Propel 74.28 7.44 66.80 84.30 75.94 3.99 71.80 81.40 79.36 6.82 69.30 87.20 

Piezocision 76.86 4.20 70.30 81.00 79.18 5.41 70.00 84.80 80.00 5.88 70.50 85.00 

             

 Day 7 Day 21 Day 49 

 Bone Percentage Change Bone Percentage Change Bone Percentage Change 

 M SD Min Max M SD Min Max M SD Min Max 

Control 20.28 6.63 12.10 28.00 6.92 6.38 0.90 17.10 4.70 7.82 -3.70 12.80 

PEMF 14.80 12.99 6.90 37.90 8.22 6.19 2.90 18.40 10.40 12.42 -0.50 30.70 

Propel 14.88 13.56 0.40 29.00 16.36 15.85 2.10 41.80 13.58 9.08 1.60 21.70 

Piezocision 16.84 5.63 10.00 24.20 18.72 12.84 9.00 37.70 20.04 14.98 -0.90 38.40 

 

 

 

 

Table 9: Descriptive Statistics for Histological Inter-Root Bone Percentage 
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Figure 10: Histological Bone Density Difference Percentage in the Intra-Radicular 

Midroot Region 
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After removal of the samples that were considered to have failed orthodontic appliance. 

The same statistical analysis was performed. 

 

Change in Incisor to Molar Distance 

We found a significant difference by time [F (2, 29) = 14.17, p < 0.001, 2 = 64%], but no 

difference between groups (p = 0.874), or the interaction of group by time (p = 0.853). A post hoc 

Tukey test showed that day-49 was significantly different from day-7 and day-21 at p < 0.05; no 

difference was found between day-7 and day-21 (p = 0.089) (Table 10). 

 

Day Day Difference 
Lower  
95% CI 

Upper  
95% CI 

p-value 

21 7 0.60 -0.08 1.28 0.089 
49 7 1.99 1.34 2.64 p < 0.001* 
49 21 1.39 0.70 2.08 p < 0.001* 

 

 

 

 

 Day 7 Day 21 Day 49 

 I-M Distance Per (mm) I-M Distance Per (mm) I-M Distance Per (mm) 

 M SD Min Max M SD Min Max M SD Min Max 

Control 14.50 0.82 13.80 15.40 14.93 0.32 14.70 15.30 14.73 0.49 14.30 15.20 

PEMF 14.92 0.54 14.10 15.60 14.60 0.44 14.30 15.10 14.37 0.12 14.30 14.50 

Propel 14.67 0.45 14.20 15.10 14.67 0.31 14.40 15.00 14.46 0.09 14.30 14.50 

Piezocision 14.93 0.24 14.60 15.10 14.55 0.24 14.30 14.80 14.45 0.48 13.90 14.90 

             

 Day 7 Day 21 Day 49 

 I-M Distance Post (mm) I-M Distance Post (mm) I-M Distance Post (mm) 

 M SD Min Max M SD Min Max M SD Min Max 

Control 13.87 0.49 13.30 14.20 13.87 0.49 13.30 14.20 11.88 1.06 10.90 13.00 

Table 10: Pairwise Comparisons for IM Distance (samples removed) 

*Statistically significant difference (p< 0.05). 
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PEMF 14.16 0.31 13.90 14.70 13.30 0.57 12.90 13.70 12.08 0.11 12.00 12.20 

Propel 13.87 0.55 13.30 14.40 13.37 0.31 13.10 13.70 11.91 0.73 11.20 12.90 

Piezocision 14.25 0.37 14.00 14.80 13.04 0.68 12.20 13.70 11.33 0.91 10.50 12.30 

             

 Day 7 Day 21 Day 49 

 I-M Distance Change (mm) I-M Distance Change (mm) I-M Distance Change (mm) 

 M SD Min Max M SD Min Max M SD Min Max 

Control 0.63 0.51 0.20 1.20 1.07 0.81 0.60 2.00 2.98 1.51 1.30 4.20 

PEMF 0.76 0.59 0.10 1.50 1.40 0.00 1.40 1.40 2.29 0.20 2.10 2.50 

Propel 0.80 0.10 0.70 0.90 1.30 0.20 1.10 1.50 2.55 0.68 1.60 3.20 

Piezocision 0.68 0.33 0.30 1.00 1.51 0.77 0.94 2.60 3.00 0.96 1.90 3.70 

 

 

 

 

 

 

 

 

  

Table 11: Descriptive Statistics for IM Distance (samples removed) 

Figure 11: IM Distance (samples removed) 
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Change in CBCT Intensity  

We found a significant difference by time [F (2, 29) = 13.77, p < 0.001, 2 = 28%], between 

Piezocision and Control group [F (3, 29) = 6.33, p = 0.002, 2 = 28% , and also with Piezocision and 

PEMF p = 0.012. No difference was found for the interaction of group by time (p = 0.059) (Table 

13) in bone density measurements in CBCT images measured by grey value intensity. A post-hoc 

Tukey test showed that day-49 was significantly different from day-7 and day-21 at p < 0.05; no 

difference was found between day-7 and day-21 (p = 0.440) (Table 12). 

 

 

 

 

 

 

Day Day Difference 
Lower  
95% CI 

Upper  
95% CI 

p-value 

21 7 14.67 0.00 29.34 0.050* 
49 7 28.80 15.24 42.35 p < 0.001* 

49 21 14.13 -0.55 28.80 0.061 

Group Group Difference 
Lower  
95% CI 

Upper  
95% CI 

p-value 

PEMF Control 5.64 -12.17 23.46 0.824 
Propel Control 13.94 -3.88 31.76 0.167 
Piezocision Control 28.43 9.56 47.30 0.002* 
Propel PEMF 8.30 -9.27 25.86 0.578 
Piezocision PEMF 22.78 4.15 41.41 0.012 * 
Piezocision PEMF 14.49 -4.14 33.12 0.171 

Table 13: Pairwise Comparisons of CBCT Intensity Change by Groups (samples removed) 

*Statistically significant difference (p< 0.05). 

Table 12: Pairwise Comparisons of CBCT Intensity Change by time (samples removed) 

*Statistically significant difference (p< 0.05). 
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Day 7 Day 21 Day 49 

 CBCT Intensity Left I-M Distance Left I-M Distance Left 

 M SD Min Max M SD Min Max M SD Min Max 

Control 
154.57 26.23 124.5 172.8 156.00 12.62 142.50 

167.5

0 144.15 12.03 128.30 153.90 

PEMF 
164.58 8.71 155.4 173.3 142.20 16.52 131.20 

161.2

0 148.20 20.27 124.80 160.30 

Propel 
140.43 24.69 112 156.4 154.50 7.28 146.10 

158.8

0 138.40 15.34 122.10 163.50 

Piezocision 
137.98 23.9 116.6 172.2 117.75 23.12 101.40 

134.1

0 116.10 30.69 80.80 136.40 

             

 Day 7 Day 21 Day 49 

 CBCT Intensity Right CBCT Intensity Right CBCT Intensity Right 

 M SD Min Max M SD Min Max M SD Min Max 

Control 
162.97 36.71 120.70 186.90 166.23 12.72 152.80 

178.1

0 170.80 22.04 138.50 184.90 

PEMF 
177.56 8.79 164.30 188.90 159.97 22.35 134.50 

176.3

0 179.67 9.81 172.80 190.90 

Propel 
161.13 26.01 131.20 178.20 175.87 5.76 172.20 

182.5

0 183.44 3.05 180.10 187.50 

Piezocision 
146.33 18.29 133.40 172.60 177.50 8.77 171.30 

183.7

0 178.57 1.93 177.40 180.80 

             

 Day 7 Day 21 Day 49 

 CBCT Intensity Change CBCT Intensity Change CBCT Intensity Change 

 M SD Min Max M SD Min Max M SD Min Max 

Control 8.40 10.57 3.80 14.90 10.23 0.40 9.80 10.60 26.65 11.02 10.20 33.60 

PEMF 12.98 6.26 4.90 21.10 17.77 15.97 3.30 34.90 31.47 30.04 12.50 66.10 

Propel 20.70 4.06 17.60 25.30 21.37 6.39 14.10 26.10 45.04 15.39 22.20 65.40 

Piezocision 8.35 7.57 0.40 16.80 59.75 14.35 49.60 69.90 62.47 29.66 44.40 96.70 

Table 14: Descriptive Statistics for CBCT Intensity (samples removed) 
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Figure 12: CBCT Intensity Difference (samples removed) 
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Change in CBCT Tooth Distance  

We found a significant difference by time [F (2, 29) = 15.57, p < 0.001, 2 = 55%], but no 

difference between groups (p = 0.692), or the interaction of group by time (p = 0.636). A post hoc 

Tukey test showed that day-49 was significantly different from day-7 and day-21 at p < 0.05; no 

difference was found between day-7 and day-21 (p = 0.046) (Table 15). 

 

Day Day Difference 
Lower  
95% CI 

Upper  
95% CI 

p-value 

21 7 0.84 0.01 1.67 0.046 
49 7 2.08 1.31 2.84 p < 0.001* 
49 21 1.23 0.40 2.06 0.003 

 

 

 

 Day 7 Day 21 Day 49 

 CBCT Tooth Distance CBCT Tooth Distance CBCT Tooth Distance 

 M SD Min Max M SD Min Max M SD Min Max 

Control 0.20 0.20 0.00 0.40 0.70 0.36 0.40 1.10 2.13 1.51 0.50 3.60 

PEMF 0.18 0.16 0.00 0.40 0.97 0.64 0.50 1.70 1.67 1.05 0.60 2.70 

Propel 0.17 0.15 0.00 0.30 1.60 1.13 0.30 2.30 2.24 1.28 0.60 4.00 

Piezocisi

on 0.05 0.06 0.00 0.10 0.70 0.14 0.60 0.80 2.87 0.50 2.40 3.40 

 

 

 

 

 

 

 

Table 15: Pairwise Comparisons for CBCT Tooth Distance (samples removed) 

*Statistically significant difference (p< 0.05). 

 

Table 16: Descriptive Statistics for CBCT Tooth Distance (samples removed) 
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 Figure 13: CBCT Tooth Distance (samples removed) 
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Change in Posterior Shift 

To look for the change in CBCT tooth posterior shift we used a two-way ANOVA. The fixed 

effects were time (Day 7, Day 21, and day 49), group (control, PEMF, Propel, Piezocision), and the 

interaction of group by time. We found a significant difference by time [F (2, 29) = 48.50, p < 0.001, 

2 = 55%], but no difference between groups (p = 0.163), or the interaction of group by time (p = 

0.311). A post hoc Tukey test showed that day-49 was significantly different from day-7 and day-

21 at p < 0.05; day-21 was significantly different from day-7 at p < 0.05. 

 

 Day 7 Day 21 Day 49 

 CBCT Posterior Shift CBCT Posterior Shift CBCT Posterior Shift 

 M SD Min Max M SD Min Max M SD Min Max 

Control 0.07 0.12 0.00 0.20 0.20 0.17 0.00 0.30 0.55 0.06 0.50 0.60 

PEMF 0.16 0.09 0.10 0.30 0.27 0.06 0.20 0.30 0.67 0.25 0.40 0.90 

Propel 0.07 0.06 0.00 0.10 0.33 0.06 0.30 0.40 0.90 0.31 0.70 1.40 

Piezocision 0.13 0.10 0.00 0.20 0.43 0.21 0.20 0.60 0.68 0.17 0.50 0.90 

 

 

 

 

 

 Table 17: Descriptive Statistics for Posterior Shift (samples removed) 
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Figure 14: Posterior Shift. Posterior Molar Tooth Distance Difference (samples removed) 
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Change in Histological Inter-Root Bone Percentage 

We found no significant difference by time (p = 0.232), a difference between groups [F (3, 

29) = 3.56, p = 0.025, 2 = 19%], but no significant interaction of group by time (p = 0.193). A post 

hoc Tukey test showed that Piezocision was significantly different from the control at p < 0.05 

(Table 18). 

Group Group Difference 
Lower 

95% CI 

Upper 

95% CI 
p-value 

PEMF Control 4.40 -7.14 15.94 0.732 

Propel Control 8.86 -2.68 20.40 0.181 

Piezocision Control 12.71 1.56 23.87 0.021* 

Propel PEMF 4.46 -6.92 15.84 0.715 

Piezocision PEMF 8.31 -2.68 19.30 0.192 

Piezocision PEMF 3.85 -7.14 14.84 0.778 

 

 Day 7 Day 21 Day 49 

 Bone Percentage  Bone Percentage Bone Percentage 

 M SD Min Max M SD Min Max M SD Min Max 

Control 64.43 13.38 49.30 74.70 67.20 3.22 63.80 70.20 75.05 6.59 67.80 83.40 

PEMF 63.18 12.17 41.80 72.10 61.37 7.56 57.00 70.10 74.67 6.10 69.50 81.40 

Propel 51.87 13.63 40.30 66.90 62.13 7.91 54.40 70.20 68.14 7.44 59.30 79.60 

Piezocision 59.48 9.49 46.10 66.90 50.98 9.64 45.30 65.40 62.03 13.53 44.30 76.30 

             

 Day 7 Day 21 Day 49 

 Bone Percentage Control Bone Percentage Control Bone Percentage Control 

 M SD Min Max M SD Min Max M SD Min Max 

Control 80.57 2.97 77.30 83.10 71.93 7.20 64.70 79.10 79.78 7.59 68.90 86.10 

PEMF 77.96 2.45 74.60 80.70 71.97 7.70 63.80 79.10 85.70 2.69 82.60 87.40 

Table 18: Pairwise Comparison for Histological Inter-Root Bone Percentage (samples removed) 

*Statistically significant difference (p<0.05) 
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Propel 76.17 8.81 66.80 84.30 76.43 4.40 73.00 81.40 77.96 5.37 69.30 82.70 

Piezocision 77.03 4.83 70.30 81.00 81.63 3.66 77.50 85.00 78.75 5.97 70.50 84.70 

             

 Day 7 Day 21 Day 49 

 Bone Percentage Change Bone Percentage Change Bone Percentage Change 

 M SD Min Max M SD Min Max M SD Min Max 

Control 16.17 10.41 8.40 28.00 4.70 4.01 0.90 8.90 4.70 7.82 -3.70 12.80 

PEMF 14.80 12.99 6.90 37.90 9.37 8.06 2.90 18.40 14.60 9.44 6.00 24.70 

Propel 24.27 6.09 17.40 29.00 14.30 8.33 4.70 19.60 13.58 9.08 1.60 21.70 

Piezocision 17.60 6.20 10.00 24.20 30.65 11.25 14.30 38.40 15.45 12.61 -0.90 26.20 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 19: Descriptive Statistics for Histological Inter-Root Bone Percentage (samples removed) 
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Figure 15: Histological Inter-Root Bone Density Difference (samples removed)    

*Statistically significant difference (p< 0.05). 
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Figure 16: Clinical pictures of each group at each time point. 
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Figure 17: Histological cross-sections of each group at each time point 

(Magnification 10x).  
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 Figure 18: Histological cross-sections of Control Group at each time point. 



67 
 

 

 Figure 19: Histological cross-sections of PEMF Group at each time point. 
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 Figure 20: Histological cross-sections of Propel Group at each time point. 
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Figure 21: Histological cross-sections of Piezocision Group at each time point. 
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Figure 22: Histological cross-sections demonstrating resorptive activity.  

A) Multinucleated osteoclasts can be visualized within resorption lacunae in 

denser regions of intra-radicular bone. From a 7 day Piezocision sample. B) 

Excessive resorption leading to root resorption. Often depicted in areas of 

pressure in many samples. This aggressive resorption was noted in a 21 day 

Piezocision sample. C)Ankylosis was noted in several samples in several groups. 

From a 21 day control group. 

Figure 23: Histological cross-sections 

demonstrating capillary lacunae. 

Around the PDL space on the alveolar 

side, indentations can be noted all 

along. These regions often contain 

larger vessels. As tooth movement 

begins these regions begin to expand 

and become continuous with the 

enlarging PDL space. From a non-test 

side molar. 
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Figure 24: Histological cross-sections 

demonstrating unique bone 

remodeling. 

Upon reconstitution of the alveolus at 

49 day groups that had significant 

movement, the bone forms in these 

elongated patterns. Young bone is 

interposed with long marrow spaces 

with newly developing vessels. They 

often are directed in the same path as 

the vector of tooth movement. Due to 

the lighter staining young bone, the PDL 

fibers often appear continuous with the 

developing bone. From a Day 49 Propel 

group. 

Figure 25: Histological cross-sections 

demonstrating osteoblastic activity. 

Osteoblasts can be seen lining the 

bone and adding a new layer of 

osteoid in a region of tension within 

the PDL. Incremental lines can also be 

depicted. From day 49 Piezocision 

group. 

 

Figure 26: Histological cross-

sections demonstrating bone 

adjacent to Piezocision 

decortication site. 

Decortications were best visualized 

in 7 day samples. Lacunae directly 

adjacent to the injury appear empty 

as osteocytes have likely been lost. 

The depth of empty lacunae is 

limited in this Piezocision sample. 

The preservation of osteocytes 

adjacent to injury site may result in 

a faster response.  
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     Discussion 

The Rat Model 

 The model used in this study has been derived from many similar studies(Baloul et al , 

Dibart et al 2013). Several limitations were noted in this particular model including mesialization 

into basal bone, force of the closed coil spring, and the limited time interval in which tooth 

movement can be observed. 

 During the mesialization process several factors were noted as potential variables that 

could affect the outcome of movement. For example, if the closed coil spring is situated on 

different aspects of the tooth, then the resulting positioning of the tooth can be affected. Rotation 

and tilting may occur and skew the clinical measurements.  

Tilting of anchorage teeth can occur when anchorage is not sufficient to move the desired 

teeth. In this rodent test, the anchorage of the incisors may have not been sufficient to mesialize 

the test molar through dense cortical bone. Clinical backwards tilting of the incisors was noted in 

several samples but was not documented numerically. Relative anchorage has been suggested to 

change when the RAP effect is induced in regions of desired tooth movement (Dibart et al. 2011). 

As the transient osteopenia allows for less resistance to tooth movement in the region of the 

controlled injury, the anchorage tooth has less reciprocal force applied to it. This results in a 

relative increase in anchorage. In this model, the relative increase in anchorage could have 

resulted in less tilting of the anchoring incisor. The test molar would be moving in softer bone 

resulting in less pulling force on the incisors. The control group may cause more tilting of the 
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incisors. This would result in less interdental space and an overestimation of the amount of the 

amount of tooth movement in the control group.  

The same concepts apply to rotational forces. The mesial region of the test molar is 

directly proximal to a region of horizontally deficient dense cortical bone. Upon greater forces the 

cortical bone may not remodel fast enough to facilitate bodily movement of the test molar. The 

spring in most groups was located at some portion of the palatal aspect of the test molar. If the 

closed coiled spring was fixated further distally on the palatal, the slow remodeling mesial bone 

may redirect the rotation of the tooth. This could theoretically result in rotational forces sending 

the distal palatal rotating further mesial in conjunction with tilting. This again may skew clinical 

measurements. The significance of an interventions ability to reduce undesired tilting and rotating 

during movement of teeth through inadequate bone has yet to be investigated in this orthodontic 

model. Further investigations need to be conducted considering the relative potential of bone 

quality and number of rotational/tilting vectors produced under similar orthodontic applications 

in this rodent model. 

Another potential issue with mesialization in this model is the presence of basal bone 

mesial to the first molar. The test molar traveled nearly 2 times the size of the molar, which is a 

relatively far distance as most molar movements in humans do not involve closing a two-molar 

space. The bone directly mesial to the test molar was almost entirely dense type 1 bone, and the 

edentulous span was never genetically or phenotypically determined to harbor teeth. Essentially, 

this can be considered an atypical movement relative to the space closures we test in humans and 

larger animals. Most movements performed in a typical clinical scenario is within the alveolar 

housing. This specific edentulous ridge area in rats has histological resemblance of basal bone. An 

absolute lack of marrow spaces is noted with defined and wide lacunae. Despite this bone quality, 

as teeth were moved into this zone, the periodontium appears to continue with the tooth. So, this 
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may only be relative limitation that is dependent on the variables such as force and tooth 

durability. The ability of tooth movement through bone that is not genetically predisposed to 

harboring a tooth has not been adequately investigated in the literature. To develop a RAP affect 

it may be important to have some underlying cancellous bone. Since the bone is very dense in the 

edentulous site of mesialization, any attempt to create an injury would not expose cancellous 

bone as is seen on the distal of the test molar. Similar studies on accelerated orthodontics 

suggested that a mesial and distal decortication could be performed on the test molar (Dibart et 

al. 2013, Teixiera et al. 2010). These studies performed the mesial decortications with the 

pretense that the cortical bone would not be 0.5mm thick. On the facial and palatal of the dentate 

region, this depth would sufficiently penetrate the cortical bone (Ibrahim et al. 2017). Histological 

evidence in this study shows a relatively deep layer of dense cortical bone, nearly the full thickness 

of the ridge on the mesial.  

The cancellous bone plays a vital role in supplying the cellular activity to remodel the 

injured bone. With the limited vascular supply in the edentulous site, the mesial interventions 

performed may have a limited effect on the mesialization of the molars. Thus, this model may 

have limited effectiveness for observing clinical differences amongst techniques. This may also 

explain the limited clinical differences observed amongst the groups in this study. Future rat 

studies utilizing mesialization may be improved by extracting the first molar and mesializing the 

second molar after the first molar site has healed. This method would allow for mesialization 

through a region of cancellous alveolar bone. This would also allow for a more realistic simulation 

of the RAP effect upon surgical and non-surgical accelerated orthodontic intervention. 

Considering the above variables in conjunction with sample size, it could be suggested that this 

model does not provide sufficient data to make clinical rate conclusions. It has been suggested 

that the rat model provides certain advantages in observing early tooth movement chemical and 
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histological changes rather than quantity-based changes, such as rate and amount of movement 

(Ibrahim et al. 2017).  

An additional factor that may be important to note in this model is the force of the 

appliance. Previous rat accelerated orthodontic models were able to demonstrate a statistically 

significant difference between control and intervention (Alikhani et al. 2015, Dibart et al. 2013). 

Potential major differences were the measured time durations were shorter and the orthodontic 

forces used were 25g. This may suggest the mesialization force of a 50g force NiTi closed coil 

spring has the potential to mesialize under any condition or intervention. Prior studies on rat 

models utilizing a 50g closed coil spring demonstrated sufficient mesialization capabilities with no 

significant difference in resulting pathological changes as compared to 25g (Gonzalez et al. 2008). 

Prior studies utilizing accelerated orthodontic techniques with 25g closed coil springs reported 

movement results at similar times of approximately 2-3mm by day 42 as our study (Baloul et al. 

2011). The slightly more movement seen in our study may be either the result of utilizing a 50g 

force closed coil spring or the extended duration of the study of 49 days vs 42 days. A micro-

osteoperforation RAP induction model used a 50g force spring and observed similar results 

(Teixeira et al. 2010). The mean amount of teeth movement noted at day 28 (0.6mm) resembles 

the mean amounts in our study at day 21 (0.7-1.6mm). With that in mind these studies were 

capable of demonstrating a statistical significance. Applying an intervention may affect rate at 

lower forces, but it is possible that rate may only be minimally affected at higher forces. At 

extremely higher forces the resorption front from the RAP created may not be sufficient to 

prevent compression on the pressure side. Thus, necrosis could still occur resulting in delayed 

movement. The amount of undermining resorption may also be affected by the RAP induction. If 

over-compression of the pressure side occurs, the native increase in resorptive cytokines and cells 

may be exacerbated by the influx of catabolic activity from the RAP effect. This could increase the 
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risk for pathological tooth and periodontium changes. On the other hand, the bone turnover 

abilities of the RAP effect could expedite the undermining resorption and reduce the density on 

the pressure side. Hence, the catabolic based pathology would be less likely to occur. To better 

understand this scenario, further investigations into the RAP effect in areas of extreme pressure 

need to be investigated including cytokine profile and cellular activity. 

The final time point used in this study was 49 days. The amount of movement seen in all 

groups at 49 days suggests possible complete closure of the closed coiled springs. Thus, complete 

closure may have occurred between day 21 and 49 for different groups. But by day 49 all groups 

were able to show near completion of orthodontic movement with 50g of movement. The exact 

moment of tooth movement completion may have been missed between these two intervals 

limiting the potential of understanding which technique results in faster tooth movement. It has 

been suggested that the rodent orthodontic is only suitable for several weeks rather then 7 weeks 

(Ibrahim et al. 2017). Additionally, the clinical and histological observations demonstrate that the 

test tooth is moved outside the arch by the 49 day time point. This would result in undesired 

tilting and attachment loss.  Future studies may consider more time intervals under 49 days. 

Lastly, the sample size may have affected the statistical power within this study. Several 

samples did require repair of appliance during the study. Also a few samples in the Piezocision 

group had complete avulsion of the test tooth prior to completion and were included at the 

closest time point as they were within 48hrs of a sacrifice time point. The groups with avulsions 

beyond time points were not included in statistical analysis of clinical movements. The Piezocision 

group ended with a smaller sample size then the control group (n=3 vs. n=5) due to avulsion. This 

could have directly resulted in skewed data. The clinical measuring system was also exposed to 

several variables. These include human error and growth anomalies. These could explain certain 

negative movement values measured at the 21-day mark.  
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Measurement Techniques 

 The clinical tooth measurements presented with limitations. No statistical significance 

could be derived from this method. The measurements were taken as the initial step prior to any 

interventions. The measurements were taken from the most proximal gingival margin location 

relative to the edentulous space. As tilting occurs the region of the tooth that was originally used 

for measuring shifts further subgingivally. Hence, the exact baseline measurement site on the test 

molar cannot be reached and an area slightly more mesial was used to measure the amount of 

change in mesialization.  Despite the relatively large anchorage potential of the incisors, the 

incisors may have tipped distally. The distal tipping would reduce the space measured and result 

in a larger relative distance closure calculation. More incisor tilting would overestimate the 

amount of tooth movement. 

  The mesialization of the test molar was also measured radiographically from the mesial 

contact point of the second molar to the nearest point of the test molar. This method reduces 

certain human errors in measurement. Utilizing a cone beam image, teeth could be aligned to 

produce relatively similar points of measurements. All contacts between the first molar and 

second molar were in direct contact at baseline, and thus any measured changes were a result of 

tooth movement. This measurement could be done to the nearest tenth of mm. This minimizes 

measurement issues with tilting since the incisors are not involved in the measurement. Also, 

issues with rotating are slightly minimized as an indirect device does not need to be applied to 

areas with altered soft tissue dimensions. The sample size issue was still applied to this 

measurement method as teeth were avulsed during handling of samples at certain time intervals, 

primarily in the Piezocision and Propel groups. 
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 The CBCT analysis for bone density also presented with certain advantages and 

disadvantages. The benefits of utilizing CBCT imaging included the ability to observe the relatively 

same transverse plane on the test molar. Histological observations would be limited by the slide 

preparation which may have slight angulation differences.  A potential limitation could have been 

derived from the resolution of the cone beam images. Micro CT analysis would contain greater 

pertinent data at the scale of the rodent model. Additionally, the selected field for observing 

radiodensity changes at different time points may not be ideal for eliciting differences as much of 

the anatomy is different at each time point. The ridge is thinner when the tooth moves to day 49. 

Thus, the potential for changes in bone density is limited as there is less potential anatomy to 

analyze in this region. Considering the various anatomies, it was beneficial to compare all samples 

to their own contralateral side. 

 Histological bone density measurements also presented with limitations. Although the 

grid between roots created a relatively uniform space to measure bone quality, the roots would 

be included in the measurement. Some samples would have less distinct cemental layers and 

higher fiber density then others. This would create false positives of bone when adjusting 

threshold levels. Despite this potential limitation, the effects were limited to a minor portion of 

the measured field and did not isolate into any specific group.  

Bone Density and Tooth Movement 

 Bone density differences noted in this study shed light into potential differences 

in these accelerated orthodontic techniques. Piezocision showed a statistically greater reduction 

of radio-density reduction than the control group. The decortication groups tended to have a 

greater reduction in radiographic bone density at days 21 and 49 as compared to other groups. 

Especially at day 49 the radio-density surrounding the test molar is significantly reduced in Propel 

and Piezocision groups. The relative decreased radiographic bone density suggests possible 
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reduced bone mineralization. This may be the result of the RAP effect creating a localized 

osteopenia in the region of the test molar. Thus, decortication groups could have an osseous 

environment more conducive for accelerated orthodontic tooth movement. The relative decrease 

in radiographic bone density of the Piezocision group does coincide with the higher radiographic 

tooth movement. As the density of the bone decreases it may relate to relative amount of tooth 

movement. The trend of bone density change for the Piezocision group appears to vary from the 

other groups. Bone density in most groups appear to gradually decrease from day 7 to 21 with a 

steeper decrease at day 49. The Piezocision group decreases steeply from day 7 to 21 and 

gradually decreases from day 21 to 49 resembling a more logistic curve. This may suggest that the 

RAP effect brings bone remodeling earlier and greater with Piezocision then other modes of 

accelerated orthodontics. Propel also appears to have a potential for significant bone remodeling 

but may have a limited potential without an initial boost in osteoclastic activity. 

 Research is limited in utilizing CBCTs to analyze bone density changes around 

orthodontically moved rat molars. Using histological and Micro CT analysis from prior studies, the 

trend of continual bone mineralization reduction is consistent with studies observing Piezocision 

and micro-osteoperforations (Dibart et al. 2011, Teixeira et al. 2010). In a study by Dibart et al. in 

2011, the histological evidence suggests bone remineralization at time points beyond 49 days. 

Although the CBCT findings in this study suggest a reduction in mineralization at day 49, the 

histological data coincides with prior studies demonstrating higher levels of bone density at day 

49.  Although CBCT imaging often provides adequate accuracy of bone density, bone density 

changes often take longer to visualize radiographically (Akesson et al. 1992, Grimard et al. 2009). 

As osteoclasts begin to resorb bone and reduce mineralization, the radiographic evidence of 

demineralization is delayed. Thus, the radiographic density results may possibly underplay the 

amount of the demineralization occurring. Histological evidence does not directly correlate with 
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the density changes, as well. The day 49 histological samples tend to have a higher mean bone 

presence between the roots then day 21 in the decortication groups. The bone present at day 49 

may not be completely calcified and/or may be immature. The mineralization of this newly formed 

bone may not be substantial yet to demonstrate a radiographic rebound of sound alveolar bone.  

Bone has several stages of development. In earlier stages, the bone is an intricate collagen 

matrix yet to be filled with calcium phosphate minerals (Sodek and Mckee 2000). As this osteoid 

begins to receive minerals, the relative radio-opacity would not be that of mature bone. As the 

mineral content increases and organizes into a crystalline structure, the radio-opacity increases. 

So, bone may begin to take form histologically, but until the mineralization of the osteoid is 

complete the relative radio-opacity will not translate into dense bone radiographically. This could 

explain the disconnect between radiographic and histological densities at day 21 and day 49. Since 

the potential for more demineralization and collagen matrix alterations are noted in the 

decortication groups at day 21, a greater amount of time is required to re-achieve mature dense 

bone in the Piezocision and Propel groups. Assuming mature bone is that which contains adequate 

remineralization, the Piezocision group may be showing signs of delayed remineralization. This 

would help explain the trend of the lower radiographic bone density at day 49. It also correlates 

with the decreased bone volume noted at day 21 in the histological analysis. Observational 

analysis showed signs of rampant osteoclastic activity at day 21 in the surrounding periodontium. 

Despite the amount of histologic changes noted in several samples, the day 21 radio-opacity had 

not reflected as significant of a bone density change. The radiographic evidence of bone loss takes 

longer to become evident than actual attachment loss. The radiographic bone density at day 49 

more likely resembles the histological catabolic osseous breakdown at day 21. The crystalline 

structure may be broken down, but calcium and phosphate deposits may have not yet exited the 
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area at day 21. Some levels of calcium may be shunted away from the site via the vasculature, but 

the physiology may be dictating the future need for the calcium in the immediate area.  

Often a breakdown of the crystalline structure is dictated by hormones, such as 

parathyroid hormone, to increase blood calcium levels (Sodek and Mckee 2000). In the scenario 

of the RAP effect, blood levels may be adequate, and a negative feedback loop would prevent the 

excessive efflux of calcium from the site of osteoclastic activity (Frost 1983). Additionally, the 

absence of a pathogenic source of osteoclastic mediating signalers could also limit the shunting 

of calcium from the region of tooth movement. On the other hand, it can be speculated that the 

RAP effect could result in excessive continual removal of mineralization and make the reversal 

process prolonged. The physiology of calcium influx/efflux from a RAP induced region may not 

follow the same principles as other bone breakdown events.  

Histological bone density measurements also demonstrated a statistical significance in 

the Piezocision group at day 21. All the groups had relatively similar bone density reductions at 

day 7, but by day 21 the densities began to vary. A distinct trend between the decortications 

groups and the control/PEMF groups could be noted again. The decortication groups had a slight 

decrease or stayed similar in bone density at day 21 compared to day 7. The PEMF and control 

groups had a decrease in bone density compared to its contralateral side. The decortication 

groups retained their relative decrease in bone at day 21 that started at day 7. But the Piezocision 

group trended towards having a greater amount of bone density reduction. This has been 

emulated in previous histological studies evaluating Piezocision, showing nearly complete loss of 

intra-radicular bone density (Baloul et al. 2011, Dibart et al. 2013). Thus, the bone may have 

undergone further resorption to facilitate orthodontic movement. This is likely a result of the RAP 

effect induced by these interventions. Studies evaluating micro-osteoperforation induced intra-

radicular density changes via Micro CT have shown significantly lower density levels (33%) 
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(Teixeira et al. 2010). Although Micro CT values cannot be directly compared to 

histomorphometric data, this suggests a drop-in mineralization in a similar fashion as seen in our 

histological measurements.  

The bone density of the control group and PEMF group began to trend towards baseline 

at day 49. This may indicate a possible decrease in tooth movement. The radiographic tooth 

movement levels support this trend as well. Tooth movement in bone that has not undergone 

resorption may take longer or possibly result in over compression of the pressure side PDL 

(Gonzales et al. 2003). The orthodontic force will move the tooth despite the presence of bone. If 

bone is too dense, the PDL will compress leading to a series of events to resorb the bone (Feller 

at el. 2015). Too much compression leads to too much necrosis. As mentioned earlier, this may 

result in pathological changes in the root or the attachment (Gonzales et al. 2003). The groups 

that retained a certain level of bone density reduction have less potential chances of over 

compressing the PDL space. Denser sites would still require remodeling, which could delay the 

rate of tooth movement. Some samples in the Piezocision and Propel groups demonstrated a near 

complete loss of bone density histologically at day 21. These teeth could be considered to be 

highly mobile. Several of these samples were correlated to the samples that had avulsed teeth 

during sectioning of the jaws. These samples would have limited issues in rate of tooth movement 

or pathological changes due to over compression of the PDL space. Avulsion of the decortication 

group teeth at day 21 is likely a result of the local demineralization. It has been suggested that 

long term evaluations on tooth movement in rats can result in tooth avulsion as teeth are moved 

out of the alveolus (Ibrahim et al. 2017). In this specific scenario the teeth are still in the alveolus 

at time of avulsion. This is confirmed with histology of these samples showing a front of alveolar 

bone outside the zone of demineralization. Also, the teeth that did complete movement by day 
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49 were less often avulsed then those at day 21, which is when the demineralization due to RAP 

would be the greatest. 

 At 49, a similar trend as noted in day 21 is seen with a continuation of bone density 

difference in the decortication groups. The control and PEMF group both had a slight decrease in 

density. At this point, the bone resorption may have begun to reach a level to facilitate tooth 

movement. This could explain the resultant amount of tooth movement accomplished by these 

groups at day 49. The clinical tooth movements reached higher levels by day 49 matching closely 

with the decortication groups. Since all groups completed tooth movement by day 49, it is possible 

that tooth movement measurements between 21 and 49 days may have shown the results of a 

lag phase. Since the bone density remained constantly low in decortication groups, they may have 

been able to maintain a rate of tooth movement through the 21 days and reached completion 

prior to the 49 days mark. The PEMF and control groups may have had to take longer to remodel 

bone to reach the same amount of tooth movement.  Although the movement may have been 

completed by day 49, it is possible that this would have delayed the movement completion 

beyond the time it took the decortication groups (Figure 24). The consistency of the bone at day 

49 in several samples resembled a younger form of bone. The collagen fibers that were laid down 

to form the osteoid could be visualized, especially in the decortication groups. This could be 

suggestive of continued RAP effect. If continued force movements were applied, these samples 

may have had the potential for continued facilitated movement. Thus, a longer distance of 

movement and time points may be inquired in later studies to elucidate the later effects of these 

interventions.  

Previous studies had suggested a decline in the RAP effect induced by Piezocision at 

approximately 42 days in a rodent model (Baloul et al. 2011, Dibart et al. 2013). Similar results in 

bone alterations in the intra-radicular region are demonstrated in these studies. After the two-
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week mark, noticeable bone density changes occur and begin to re-organize by the 2-month mark. 

This has also been demonstrated in similar Propel studies (Alikhani et al. 2015, Teixeira et al. 

2010). Literature has supported a notable and significant effect from decortication techniques in 

an animal model.  

Histological Findings 

Histological findings can help understand the nature of the alveolar remodeling during 

accelerated orthodontics. Our histological findings were also compared to the contralateral side 

as a control group to further develop potential contrast in changes. At day 7, all groups had a 

relatively similar histologic picture (Figure 17). The contralateral control sides of the jaw showed 

a uniform PDL space with dense alveolar bone lining the palatal aspect of the teeth. Beneath the 

dense cortical bone on the palatal lies a zone of less dense cancellous bone. Marrow spaces are 

found in this region and varied in size depending on the sample and section. Some samples had 

dense bone within both the furcation region and surrounding bone. Others had large marrow 

spaces juxtaposed to dense bone. Sites were found with disperse cancellous bone lacking a large 

series of Haversian systems and small dispersed marrow spaces. It could be speculated that these 

phenotypes may have a different response to tooth movement. The marrow spaces provide a 

great source of mesenchymal cells and vasculature to help remodel the bone during tooth 

movement (Feller et al. 2015). In a scenario of dense bone, this excellent source of remodeling 

factors is difficult to reach. The PDL, periosteum and intrabony cells/vasculature are relied on 

alone for systematically remodeling bone. This can possibly slow the rate and extent of 

remodeling. Possibly leading to slower or more pathological tooth movement.  

The samples with larger marrow spaces may be able to facilitate cellular activity once the 

marrow spaces are reached. In some periodontitis studies, it has been suggested that once a 

marrow space is reached at crestal bone, the amount of attachment loss can accelerate leading 
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to a possible intrabony pocket (Soames et al. 1976). The same potential exists here, but instead a 

“clean” version would be occurring. The marrow space would not help propagate permanent 

attachment loss, but rather help modulate bone turnover. The dense surrounding bone would 

need to be remodeled first from other sources, especially the PDL and periosteum, in order to 

reach the marrow space. This theoretically can create sporadic periods of relative lag until marrow 

spaces are reached. Spread out, ample marrow spaces allow for continual remodeling as cells and 

vasculature is ample. Little remodeling is required to reach the next supply of cells and 

vasculature. The PDL spaces consist of a generally uniform space with dense organized ligament 

fibers running in varying directions. Within the dense networks, fibroblasts can be spotted 

relatively spread out. Vessels are also noted within this space. Larger vessels line indentations on 

the alveolar side of the PDL space (Figure 23). Red blood cells (RBCs) can occasionally be spotted 

inside the vessels. A distinct layer of bundle bone can be visualized demarcated by normal alveolar 

bone. Isolated osteoblasts and osteoclasts can be spotted performing routine remodeling activity. 

Osteocytes within lacunae in a dense network of Haversian systems are noted on the mesial and 

palatal of the first molar, which suggest a denser and more mature region of bone (Sodek and 

Mckee 2000).  

 

Day 7 Histology 

In all groups, the day 7 histological findings remained very similar. Thus, the resulting 

findings to be discussed are representative of all groups. The mesial aspect of the PDL space often 

has a decreased width with an increased width on the distal. The compressed PDL space shows 

signs of hemorrhage. RBCs can be often found free floating within the PDL space (Figure 18).  The 

lumens of the vessels are often not patent and contain many RBCs. The compression has caused 

blood vessels to have a constricted passage. Cells clump at these sites and limits the ability for 
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oxygen and other nutrient exchange. In areas of severe compression vessels may become 

damaged leading to excessive leakage of vascular elements into the PDL space. This spillage will 

likely result in the influx and activation of macrophages to clean up. The amount of blood vessel 

constriction and hemorrhage will be correlated to the amount of hyalinization and undermining 

resorption that must occur to continue tooth movement. Large multinucleated cells are found in 

these regions suggesting a catabolic environment has been initiated. The presence of these cells 

has the potential to facilitate the orchestration of the RAP effect (Frost 1983, Teixeira et al. 2010). 

The PDL fibers appear to be overly dense in areas of compression and less dense in areas 

of tension. In areas of compression the fibers are densely packed together and have yet to be re-

organized by neighboring fibroblasts. Tension areas have over stretched fibers, thus thinning out 

the density of collagen per histologic slice. The fibroblast orientation is very distinct in the tension 

region. Fibroblasts appear to be elongated and parallel to the stretched ligament fibers.  Some 

areas appear to have torsional forces as the fibers run more parallel to the root as do the 

fibroblasts. In general, fibroblasts tend to be oriented parallel to the fiber orientation, which often 

is perpendicular to the cementum and alveolar bone (Figure 19). This ideally positions fibroblasts 

to migrate utilizing their leading pole along the ligament fibers and toward either cementum or 

bone. While moving along the fibers, these cells can help degrade and rebuild the collagenous 

fibers of the PDL to help re-orient the distribution of force towards homeostasis. Also, the 

increased access to bone and cementum aid in their relative functions at those sites, which is to 

breakdown and re-stablish attachment at these respective points. 

In many samples, there is evidence of widening of marrow spaces (Figure 21). The marrow 

spaces appear to become wider within the furcation and in the bone adjacent to the bundle bone. 

This widening is complemented with a relative boost in cellularity. The histologic image of the 

widened marrow space likely indicates more marrow spaces have opened adjacent to the root on 
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varying vertical levels. This could give access for the marrow cells and PDL cells alike to join forces 

in altering the osseous architecture and facilitating the RAP effect. The trabeculation appears to 

create thinner peninsulas of bone in the region of the prior bundle bone. The bundle bone region 

in some areas has a decreased density. There is also signs of incremental lines forming at this early 

of a stage in the areas of decreased density. The lighter stained regions may represent new 

osteoid being laid down in areas of tension. The relative lightness is related to the decreased 

calcification of the newer immature bone. The ligament fibers appear thinner and stretched 

taught in these regions. The path of tension on the fibers blend in with the out stretched islands 

of new bone. This is a direct example of bone being built in the tension zones during orthodontic 

tooth movement noted in all groups.  

Osteoblasts can be visualized in conjunction with osteoclasts in the remodeling zones 

(Figure 22 and 25). Bone formation is noted in all groups. These tensed collagen fibers are 

potentially great structural supports for both cell adhesion and serve as a niche for anabolic 

action. The mesenchymal cells and fibroblasts can utilize these firm structures to migrate to site 

of action. As relative tension alters, pressure changes occur allowing hydrostatic forces to affect 

the cells and nutrients in the environment. These trabecular patterns appear more adjacent to 

areas with prior cancellous bone. In regions adjacent to more cortical bone, a slightly different 

pattern develops. The cul-de-sacs in which the larger vessels are sitting on the outer edges of the 

PDL space begin to widen and become one with the PDL space. The areas with relatively large PDL 

spaces appear to have some protrusions of new bone forming but seems more limited than the 

more cancellous regions. The areas with limited PDL space and dense bone have larger resorption 

indentations along the bundle bone with many multinucleated cells lying within. These more 

cortical areas have less cellular potential adjacent to the PDL space, which could limit the ability 

to increase the RAP effect. 
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The bundle bone region does appear to be highly affected by regions of tension/pressure 

and cortical/cancellous in all groups. This can potentially influence the attachment apparatus and 

the orchestration of bone remodeling. The bundle bone in some areas is distinct but begins to 

become indistinguishable in some regions by day 7 depending on density (Figure 18). The denser 

regions with tension still retain a distinct layer of bundle bone. The denser regions with pressure 

seem to have a less distinguished layer of bundle bone although still evident. The osteoclastic 

resorption seems to be focused within the bundle bone region and has yet to expand to other 

regions. The vascularity and cellular source is limited to expand or moderate the remodeling and 

RAP effect in this region.  

Regions near cancellous bone were more difficult to distinguish the bundle bone (Figure 

21). The areas of tension have a soft transition from PDL fiber to osteoid to mature cancellous 

bone. Hence, the bundle bone may also be undergoing a maturation in these regions as well. The 

newly formed bone likely has collagen fibers that will take the form of Sharpey’s fibers. The 

densifying fibers extending from the osteoid have the potential to become calcified and form the 

new bundle bone region. The cancellous bone with limited PDL space and pressure within the 

space has a mixed pattern of resorption indentations and trabecular islands. The islands of 

trabeculation are dense and likely not the result of newer bone formation but rather a connection 

of marrow spaces as result of bone remodeling. The joining of marrow spaces surrounding the 

test teeth can result in elaborate connections between the marrow spaces and PDL space. This 

increased connection reduces the surface area of bundle bone during this time point and may 

result in slightly greater mobility. These channels of communication also allow for osteogenic cells 

to travel more readily to rebuild and re-establish the proper surface areas. If osteoblastic activity 

is limited for the duration of tooth movement and after, attachment levels could be at risk. On 
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the other hand, more potential pathways for cells to travel could result in a faster and wider 

spread of the RAP effect. 

Both in Piezocision and Propel, the site of decortication can be located at day 7(Figure 20 

and 21). As the osseous injury passes through the cortical bone, the geometry of the 

instrumentation is distinct with an immediate zone of empty lacunae surrounding the site. 

Osteocytes do have extensions that reach out from the lacunae in small channels that connect to 

the closest lacunae and osteocytes (Sodek and Mckee 2000). It is possible that, although the 

lacunae have not been touched, the distal extent of the osteocytes extensions may have been 

damaged, and a resulting death or possible apoptosis may have occurred. In the Piezocision 

group, the osteocyte death appears limits to the lacunae adjacent to the injury wall (Figure 26). 

This limits the loss of osteocytes allowing the remaining osteocytes to respond. It has been 

suggested that piezosurgical osteotomies have a less damaging effect on bone tissue (Chiriac et 

al. 2005, Vercellotti et al. 2005), which may explain the limited damage to osteocytes seen in the 

Piezocision group histological samples. The osteocytes play a critical role in local bone 

homeostasis. Thus, a reduction of osteocytes by decortication could limit the rate of bone 

turnover and the rate of tooth movement. 

The absence of vital osteocytes will trigger a cascade of remodeling. As the 

instrumentation reaches the cancellous depths, the geometry of the instrument is no longer 

apparent. The damage appears to elucidate a more vascular response with a localized clot 

forming. The clot will release a series of inflammatory cytokines and growth factors to stimulate 

the influx of mesenchymal and native cells (Mast and Schultz 1996). The response of bone 

turnover will be much greater than in the denser regions. Hence, the depth of a corticotomy is 

emphasized by this histological finding. The corticotomy must reach the cancellous bone to 
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properly initiate an effective RAP response. This also creates a pathway for communication with 

the devitalized cortical regions adjacent to the instrumentation.  

Comparing the different measurements of tooth movement and the histological 

differences between groups, it appears RAP effect has yet to take on any large significance in 

facilitating the tooth movement at day 7. The histological findings illustrate the stage being set 

for the following bone turnover that will likely begin due to the osseous injury (Frost 1983). One 

sample in the PEMF group had a relatively large amount of bone density reduction by day 7. The 

nature of the pulsed fields on the alveolar bone have yet to be fully understood. The range of 

density changes does appear to be wide at day 7 in the PEMF group (Figure 19). Some have no 

apparent change at all while one appears to have the most reduction in density. It could be 

speculated that individuals are affected differently to the same field. This could be derived from 

the bone quality, genetics, and/or epigenetics. The conduction of the electromagnetic radiation 

is highly dependent on its penetration of the signal. Bone has a potential to transmit this energy 

(Diniz et al. 2002, Norton et al. 1984). Varying bone densities may respond differently to this 

energy input. If bone acts as an energy antenna, then the denser bone may have a resulting boost 

in energy influx. This boost may also react in two different ways. This influx could either transmit 

the energy too much or may provide a beneficial passage to the necessary cells and signals to act. 

On the other hand, if bone acts as an energy dampener then the passage of energy to the desired 

locations may be too little by the dampening or be just right. These suggestive theories would 

need to be further investigated to understand the exact mechanism of field therapy on tooth 

movement. 

Individual genetic and electromagnetic responses to the electromagnetic field may also 

play a role. Some individuals may have a slight modification in the genes, or involved proteins in 

transcription, translation, and genetic ultrastructure/storage that may react differently to a 
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distinct applied PEMF. Applying varying PEMF as a sole variable may elucidate the specific effects 

on the periodontium during tooth movement. The exact mechanism of action could not be 

highlighted although the pattern of the bone density reduction did appear distinct from other 

groups. The resorption of bone followed a more radial pattern from the center of the roots. This 

gives the appearance of a resorption front outwards primarily from the PDL space. Other samples 

have more apparent tension and pressure regions. Some PEMF samples appear to be responding 

as a whole PDL space unit. The demineralized type 1 collagen and fibroblast rich PDL space 

appears to have a greater reaction to the PEMF. The PEMF applied in this study may be more 

attuned to the demineralized collagen spaces. It could be theorized that the wave property of this 

form of energy would have more of an effect on an elongated elastic fiber then a mineralized rigid 

fiber. The transmission could more readily transmit through the PDL fibers and effect the 

vasculature associated mesenchymal cells and fibroblasts within this space. 

The potential for early demineralization and tooth movement was demonstrated 

histologically and clinically in a PEMF sample at day 7. The osseous remodeling observed in PEMF 

does not seem to follow that of decortication and the RAP effect. If PEMF is involved in osseous 

changes and accelerated tooth movement, the mechanism would not be similar to that of 

decortication and the RAP effect. 

Day 21 Histology 

Day 21 histological findings demonstrated relatively more differences between groups. 

Despite more differences, certain findings remained relatively consistent amongst all groups. For 

example, there are regions of pressure and tension with a localized widening of PDL spaces and 

fusion of marrow spaces. A slight increase in the number of multinucleated cells, likely osteoclasts, 

are present within resorption lacunae at the edges of more cortical bone at the mesial and palatal 

directions. More osteoblast activity can be found at the distal sides of the molar (Figure 17). The 
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tension side has a greater presence of osteoid formation along the elongated fibers. Darkly 

stained nucleated cells line the bone sporadically, likely osteoblasts laying down premature bone. 

These cells will eventually become entrenched in the osteoid and form the new lacunae as bone 

matures. The mesial edge of the test tooth begins to enter an even denser and thinner region of 

bone. This could result in many potential pathological changes. Some samples had a greater 

reduction in bone density in this region then others, thus facilitating the movement and reducing 

potential pathological changes. The amount of bone remodeling had the widest range of 

observational variation at this time point. 

 The control group at day 21 appears to retain the relatively similar histologic 

representation as it did at day 7 (Figure 18). A slight widening of the PDL space is noted as 

compared to day 7. The indented regions that originally contained large vessels on the alveolar 

side of the PDL space has become indistinct within the PDL space. The widening and remodeling 

on the alveolar bone proper has widened and possibly released any potential pressure created on 

vessels within these regions. Some regions that demonstrate further demineralization have begun 

to fuse neighboring marrow spaces with the expanding PDL space. In the control group, the 

amount of demineralization appears to be limited. In all day 21 control samples a distinct PDL 

space can be identified along the entire circumference of the roots. The attachment apparatus, 

although altered, maintains its core components with a distinct cementum attachment and 

Sharpey’s fibers inserted into alveolar bone proper. Localized sites of alveolar bone proper 

remodeling have merged the marrow spaces with the PDL space. The fibers extending from the 

cementum appear to divert away from the marrow spaces towards the remaining peaks of bone. 

In regions of large dehiscence in the alveolar bone proper, fibers appear to extend into the 

demineralized space. These fibers appear to weave with fibers extending from neighboring roots. 

This finding of extended fibers beyond alveolar bone proper is limited in the control group. This 
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extension of fibers suggests a possible decrease in PDL fibers directly functioning in traditional 

periodontal attachment. This could relate to the relative increase in mobility.  

The decortication groups (Piezocision and Propel) demonstrated a potential to result in a 

relatively large amount of demineralization at day 21. Samples in the Propel group were able to 

demonstrate a nearly complete interior demineralization at day 21. Periodontal fibers still extend 

from cementum and intermingle with fibers from adjacent roots and eventually attach to distant 

bone sites. These distant bone anchorages include the mesial, distal and palatal aspects of the 

test molar, and occasionally the buccal aspect as well. Due to the extent of demineralization, some 

of the distal root fibers extend and weave with the mesial root fibers of the second molar. The 

demineralization can extend into the 2nd molar but not all the way into the 3rd. This reflected in 

prior studies suggesting a potential reach of Piezocision to reach 1.5 teeth adjacent to the site of 

decortication (Dibart et al. 2013). Fibroblasts are highly visible amongst the reorganizing PDL 

fibers. As collagen turnover occurs to maintain a stable attachment apparatus, the density of 

mature periodontal ligament is reduced. This makes the presence of the cells more prominent, 

and consequently more mobile within the ligamentous space. These histological findings have 

been noted at similar time point in studies investigating histological changes after Piezocision 

(Dibart et al. 2013). 

 The reduction in mineralization has exposed more vascular structures, especially in the 

Piezocision group. The new vascularization provides greater supply for cell influx and nutrient 

efflux/influx. It would potentially mean that any systemic component may play a prominent role 

in effecting the remodeling process at this point. For example, if a systemically delivered drug 

designed to continue to facilitate tooth movement or help control any pathological tooth 

resorption existed, this would be the highly effective moment to deliver the agent. Systemic 

chronic inflammatory diseases, such as Diabetes and Cardiovascular disease have been correlated 
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with increased circulating inflammatory mediators (Kuo et al. 2008). If any of these diseases are 

uncontrolled, a resulting increased influx of inflammatory mediators may exacerbate the 

RANKL/RANK ratio within the controlled RAP effect (Zhang et al. 2017). This could lead to 

pathological tooth resorption or permanent loss of attachment. These factors would need to be 

individually studied to understand the full breadth of its potential effect on accelerated 

orthodontic techniques. Systemic factors and active periodontitis are both contraindications for 

performing acceleratory orthodontic techniques, but the underlying mechanism and direct effect 

is not yet fully understood.  

The increased presence of blood supply can also be both a result and causative agent of 

the RAP effect. Since a localized increase in remodeling is performed as a result of cortical injury, 

the bone remodeling around the tooth exposes even more blood vessels to continue the RAP 

effect. If it is considered as causative agent, the localized remodeling allows more access for the 

vasculature to send a rapid response to the site of the cortical injury. In either scenario, the injury 

in conjunction with demineralization around vessels increases the remodeling in the region. 

Although not measured within this study, the potential for new angiogenesis is a possible 

component to the increased turnover. The vessels observed could be either previously present 

yet entrapped within the cancellous system, or they could be the result of angiogenesis within 

the region. The RAP effect does have the potential to induce angiogenesis to bring in the required 

components to facilitate repair. Angiogenesis often stems from present vasculature. Since the site 

of cortical bone injury must rely on blood supply from the cancellous bone, periosteum, and the 

PDL space to establish the RAP effect and repair the injury. Considering the density of the vessels 

within the PDL space, it is possible that the vessels needed to stimulate the RAP response are 

derived mostly from the PDL. The young vessels may be the reason for increased cellular presence. 

The vessels also appear to be less compressed in the wider PDL complex. The newly remodeling 
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fibers are less dense and allow for easier cell permeability. Cells can reach site of needed response 

quicker and propagate the healing response faster.  

Much of the cellular activity does appear to be in the alveolar side of the PDL space. With 

the increased presence of bone resorptive activity, the bundle bone is actively changing. The 

density of the bundle bone region is decreased resulting in less ligament anchorage in bone. This 

is a critical portion of the periodontal attachment apparatus. The body must quickly be able to 

reorganize the fibers to establish adequate attachment. This requires an orchestration of collagen 

degradation and re-organization amongst the array of cellular activity required to move the tooth. 

It is conceivable that the body is constantly attempting to maintain a homeostatic relationship of 

ligament fibers within the periodontal space. This could be analogous to a biologic width. Instead 

of a connective tissue and junctional epithelium this biologic dimension is within the PDL space 

between the bundle bone and the cementum. The resulting remodeling from changes in pressure 

and tension could be an attempt to maintain the horizontal PDL biologic width dimension. During 

tooth movement, this biologic width has the ability to undergo substantial remodeling to prevent 

over compression or over tension of fibers. The increased extracellular activity to remodel would 

need to be on the alveolar bone side as we do not have an efficient means to quickly remodel 

cementum and dentin. Like the crestal alveolar bone, having an innate increased nutrient canal 

presence may be a critical factor in establishing remodeling at the alveolar side.  

A denser bundle bone may inhibit the cellular presence on the alveolar side during 

remodeling. As the PDL space is reduced in pressure regions, the active cells become closer to 

cementum and dentin. The earlier catabolic steps of remodeling may abnormally effect root 

components which can not sufficiently anabolically rebuild, possibly resulting in root resorption 

and/or ankyloses (Figure 22). Thus, the apparent increase in active cells dispersed within a 

relatively more demineralized region helps prevent pathological components of an “invasion of 
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biologic width” within the PDL space during tooth movement. It is known that upon flap reflection 

crestal bone undergoes a certain level of remodeling that involves a stage that resembles the RAP 

phenomenon (Wood et al. 1972). At this time point the biologic width is temporarily altered but 

will re-establish. This intermediate stage is very similar to what is observed at the mid root at 

certain day 21samples. A transient increase in the biologic dimension of the PDL is observed, but 

potential for rebuilding exists as long as the factors causing the change are transient.  

As these fibroblasts are actively remodeling the attachment apparatus, the teeth are 

looser. This was confirmed as several day 21 samples in the Piezocision group were avulsed during 

sectioning of the sample. The teeth had a loosened attachment and were highly mobile. The 

histological appearance if these samples and similar samples reflected a loose connective tissue 

zone extending far from the root. The fibroblasts are actively secreting collagenase to re-organize 

fibers and osteoclasts have removed bundle bone. The fibers extend longer into wide nutrient 

canals and sometimes into the neighboring root ligaments.  

A short taut fiber during normal conditions firmly anchors teeth. As the density of fibers 

reduces and fibers are longer, the elastic nature of collagen allows for greater movement until 

the fibers are fully taut. This looser wider PDL space at day 21 can translate into highly mobile 

teeth. The mobility is not a direct concern. Under uncontrolled occlusion, bacterial inflammation, 

and certain systemic complications, this remodeling may be difficult to rebuild. In those scenarios, 

accelerated orthodontics should not be performed. If these components are controlled, the 

mobility is then simply a result of transient changes in the periodontium and will resolve as the 

rebuilding of the attachment apparatus occurs. The same cell rich fibroblast regions involved in 

reducing the density of fibers will be responsible for rebuilding the dense ligament network once 

the orthodontic movement is complete and the RAP effect ends.  
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The signal based osteoclastic activity appears high at day 21. The osteoclast activity is in 

close relation to the neighboring fibroblast activity at this point. Signals may be translating bi-

directionally in order to orchestrate the reduction in density of bone and fibers to allow for tooth 

movement. The addition of cortical perforations can change the number of cells present to 

facilitate this process. This is suggested by the amount of remodeling seen in the several day 21 

samples in the Piezocision and Propel groups.  

Although the PEMF group often resembled the control group at day 21, one sample 

demonstrated a large radius of remodeling around the test roots. This sample had remodeling 

almost entirely isolated to the involved teeth. The samples in the decortication groups that had a 

large amount of demineralization, the effects were more diffuse. The PEMF sample had a radial 

pattern of demineralization from the roots, giving the appearance of an evenly widened PDL 

space. The electromagnetic field is pulsed, and the pattern of pulsing is variant and may appear 

as a pulsing pattern within the tissue. The inductive mat produces low frequency waveform 

electromagnetic energy (Shupak et al. 2003). The moments the frequency fluctuates could result 

in intermittent moments of remodeling. The amount of time it would take for remodeling to occur 

would be too long to be directly affected by the relatively quick variants in energy production. 

 It is more likely that the cumulative effect of the energy would develop the effect rather 

than intermittent moments of osteoclastic activity. Most studied uses of PEMF focus on its 

potential for osteoblastic activity induction and acceleration (Diniz et al. 2002, Esther 2010, Zhang 

et al. 2017, Satake 1990, Yang 2015. For tooth movement, osteoclastic activity must also be 

altered to accelerate tooth movement. Some evidence has suggested a down regulation in RANKL 

dependent induction of osteoclastic activity created by PEMF (Zhang et al. 2017). But to 

sufficiently remodel, a period of increased osteoclastic activity is required. It may be possible that 

the PEMF is causing a reduction in osteoclastic activity and an increase in osteoblastic maturation. 
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This would explain the lack of remodeling and the nearly pristine density of bone noted in most 

of the PEMF samples. Thus, negating the acceleratory healing benefits of the PEMF and having 

limited results in bone demineralization and accelerated tooth movement. Due to the 

intermittent nature of the PEMF, it is also possible that the continuous force applied by the 

orthodontic appliance is producing an osteoclastic effect that is masking the osteoblastic potential 

of the PEMF in several samples showing increased demineralization.  

The original purpose of the PEMF inductive mat was designed for dental bone healing, 

not dental bone demineralization. This was supported in this study with the relatively limited 

results in demineralization. The ability to induce osteoblastic ability may even possibly hinder 

proper osteoclastic activity and throttle the potential for fast tooth movement, as demonstrated 

by the relatively limited rate of tooth movement. The sample with relatively large amounts of 

demineralization may have been due to the orthodontic appliance overriding the effects of the 

PEMF. This specific sample may have had an ideally placed orthodontic appliance supplying 

maximum forces to initiate the demineralization typically involved in heavy orthodontic forces. It 

may also be the result of PEMF interplay with genetics. The genetic variability of PEMF on 

individuals has not been fully investigated and may be play a role in its effectiveness. Although 

upregulation of osteoblastic activity has been studied, histological studies do not find an increase 

in the number of osteoblasts. They suggest the anabolic potential is derived from increased 

osteoblast quality but not the quantity. Our histological findings could not show any increase in 

the number of osteoblasts present. Our findings may continue to support prior research 

suggesting PEMF’s osteoblastic potential and limiting abilities on osteoclasts.  

Day 49 Histology 

The day 49 samples began to show signs of remineralization. At this time point, much of 

the orthodontic movement is completed for all groups due to the amount of force applied. Some 
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groups may have finished prior to this time point. In theory, the earlier the completion of the 

orthodontic movement the more rebuilding or remineralization could have occurred. The control 

group continued to maintain a relatively similar distribution of mineralization as it did in prior time 

points. A couple of the control group samples that did not reach the full length of tooth movement 

possible had a histological appearance of bone similar to day 7. The architecture of the bone 

resembles the cancellous nature of the control side with a slight increase in demineralization and 

larger PDL/marrow spaces. The PEMF group had a similar pattern of osseous changes in samples 

that did not complete movement. The samples that did not finish at day 49 in the decortication 

groups had signs of greater demineralization suggesting a potential for continued movement. The 

efficiency of the appliance in these samples may have limited the full movement of the tooth, 

and/or the osteoblastic remineralization may be rebuilding the osseous architecture. The RAP 

effect at this point may be beginning its last stage of healing and slowly coming to an end. This 

could signal the nearing end of accelerated potential of the decortication.  

 The samples that did complete the movement had similar bone patterns in all groups 

except for two in the PEMF group. In these samples bone patterns around the midroot region 

resembled more the native cancellous architecture noted at day 7. The PEMF group at no time 

point in any simple resulted in significant enough demineralization to potentially alter the 

ultrastructure of the cancellous bone. The density and architecture of attachment most resembles 

the tooth’s initial presentation at day 7. The periodontal attachment has the most potential to 

return to baseline. The cell quantity does not appear overabundant at any time point. This may 

be due to the osteoblastic effects of the PEMF. The number of osteoblasts were not directly 

measured, but the nucleated cells lining the alveolus does not appear to be distinctly abundant. 

The PEMF may be improving the osteoblastic efficiency to maintain the alveolar architecture, and 

in turn maintaining the bundle bone/periodontal attachment. The lack of significant 
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demineralization could potentially limit the movement rate. Although the density of bone could 

also result in more pathological orthodontic related root resorption, the ability to improve 

osteoblastic activity may limit catabolic pathology.  

The decortication groups had a unique reorganization of the surrounding alveolar bone 

at day 49. The cancellous bone has a very organized pattern. Thin streaks of alveolar bone are 

interlaced with thin elongated marrow space (Figure 24). The bone and marrow spaces are 

interlaced in a stripe-like pattern. The elongation is parallel towards the long axis of the tooth. 

The teeth often are tipped mesially at the end of complete movement. As mentioned, the 

limitation of the bone found mesial to the test molar in conjunction with the orthodontic 

appliance, produce a slight tilt in the molar towards the end of movement. The fibers extending 

from the cementum are producing tension against the long axis of the tooth during this tilting to 

produce resistance to the avulsion forces being applied. As the tooth eventually hits a point 

beyond the potential effects of the decortication induced RAP, the dense mesial bone produces a 

point of resistance. A fulcrum point is created, and the tooth begins to rotate around the point of 

resistance. This results in tilting creating a new force vector being applied outwards or coronally 

on the tooth. The new direction of force causes tension in apical fibers. These fibers are loci of 

osteoblastic rebuilding. Considering the relative amount of demineralization and increased 

cellular activity, these fibers are being remineralized relative to the tensed fibers. The newly 

formed bone resembles an osteoid with limited to no osteocyte presence. The amount of distinct 

bundle bone appears limited and immature. As remineralization continues, the distinction 

between alveolar bone and bundle bone may become more distinct.  

Having the reformation of bundle bone after having an episode of near complete bundle 

bone breakdown is a relieving sign to see. In the lack of a continuous stimuli of inflammation, such 

as decortication, tooth movement, and bacteria, the attachment apparatus will attempt to re-
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establish. The biological width of the PDL space is attempted to reform in order provide a 

homeostatic relationship in tension of fibers. As maturation continues, the likely effect on the 

pattern of osteoid and marrow spaces will continue to have morphological changes. The initial 

goal is to re-establish attachment, which appears to have been accomplished quickly after stimuli 

removal. After the security of the tooth’s attachment is done, the alveolus can now begin to 

remodel to optimize the distribution of force and fiber tension. The current architecture of the 

alveolus does appear to have developed without the need for consideration of the occlusion. In 

the tooth’s final position, there is no occlusion. If the tooth had been mobilized to an area of 

occlusion, a different architecture may have formed in order to both compensate for the forces 

developed by orthodontics and occlusion. The axial elongated thin strips of bone and marrow 

spaces provides limited architectural support in the axial direction but does allow for some flexure 

strength. This reflects the lack of occlusal forces applied after mesialization and the continuous 

nonaxial pulling force applied by the appliance. 

 A relatively dense region of fibroblasts can still be noted towards the alveolar side of the 

PDL. Less is apparent than the day 21 samples. Densely stained cells can be found in a linear 

fashion along the immature bundle bone. These are likely osteoblasts continuing the maturation 

of the bundle bone to further solidify the attachment. Sparse multinucleated cells can now be 

found. The number of macrophages and osteoclasts needed at this time point are reduced. This 

shifts the cellular content and likely the cytokine ratios (Baloul et al. 2011).  

The histological evidence demonstrates a greater potential for movement in 

decortication groups, as compared to control and PEMF. Piezocision was shown to significantly 

reduce the bone density surrounding the roots of the first molar allowing for easier tooth 

movement. The effect requires more than a week to begin. Within one week, not enough time 

has passed to allow for cells to ramp a complete response to the cortical injury. As cortical bone 
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is turned over to allow for more vessels and cells to respond to the injury, the response to the 

orthodontic tooth movement increases as well. The same angiogenesis and cytokines begin to 

affect the machinery involved in tooth movement. The RAP effect is visualized histologically with 

a decrease in mineralization and increase in cellular orchestration. At 21 days, this can produce a 

potentially scarce amount of periodontal attachment. The bundle bone absence and PDL fiber 

density reduction lay a potentially fragile amount of attachment for the test tooth. The effect 

appears to spread to the neighboring non-moved tooth as well. The Piezocision group had a 

greater potential for demineralization, PDL fiber density reduction, and increased cellularity than 

Propel. But the need for attachment drives the healing response to re-establish an attachment at 

the end of tooth movement. Remineralization occurs and the PDL fibers begin to return to a 

baseline density. Cellular content begins to also revert to normal. Overall, movement is 

temporarily easier through a transient demineralized region with reduced, restricting attachment.  

Although PEMF may also have an effect on orthodontic tooth movement, it may not be able to 

facilitate faster tooth movement. The PEMF appears to retain baseline bone quality with limited 

catabolic activity. This may be due to the osteoblastic inductivity of PEMF. There is limited 

evidence to suggest that PEMF has the ability to produce demineralization or upregulate 

osteoclastic activity. The effects do not stop tooth movement but does appear to maintain 

baseline bone architecture. Even after completed tooth movement by day 49, the bone appears 

more similar to baseline then does the control group. A more distinct bundle bone and 

attachment apparatus is apparent. It may be possible that the reduction in catabolic activity may 

help prevent pathological resorption during tooth movement. It may be conceivable that higher 

forces with PEMF could be used to achieve faster tooth movement with protection against 

pathological tooth changes associated with excessive forces. This has not been directly studied 
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and may be a potential path of future research. Cytokine measurements should also be 

investigated in future research to further the understanding of PEMF and tooth movement. 

 

Decortication Groups 

Despite both Piezocision and Propel being a form of decortication, the Piezocision group 

was able to radiographically and histologically reduce the bone density more initially and maintain 

a higher mean of radiographic density reduction. One factor that could explain the difference 

could be the relative size of the decortication. Piezocision decortications may be larger than 

Propel decortications. Although a relative correlation has not been established between injury 

size and the amount of RAP, more injury could require a greater inflammatory influx and a 

larger/longer RAP effect. In larger animals and humans, it is recommended to provide more than 

one Propel micro-osteoperforation to accelerate tooth movement. This increases the amount of 

decortication and may resemble the injury size of Piezocision. The modified piezosurgical tip used 

in an animal model is much smaller than the suggested inserts on humans. The size of the injury 

more closely resembles the diameter of the Propel instrument. The relative sizes of decortication 

were similar in both groups with the potential of Piezocision having a slightly larger, no greater 

than 0.5mm, injury. 

 Another explanation could be the osteogenic potential delivered by piezoelectric 

instruments. It can be speculated that the electromagnetic properties may have been transmitted 

to the bone via the piezosurgical instrument. The dissipation of that energy through the site of 

injury could have facilitated the greater presence of osteogenic cells beyond a simple 

decortication (Vercellotti et al. 2005). The extra signaling factor of electromagnetic radiation in 

the frequency range of RAP related cells could have caused an increase in bone remodeling and 
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bone density reduction. However, no direct correlation of this relationship could be derived from 

this study.  

Clinical Implications 

Although the rodent molar mesialization model does have its limitations, it serves as an 

excellent early investigation model for in vivo histologic observation of tooth movement. Results 

investigated in this model still should await further validation from larger animal model studies. 

The ability to achieve histologic representation is key in understanding the fundamental effects 

of minimally invasive accelerated orthodontics on the periodontium. This information allows 

clinicians to better understand the nature and efficiency of the procedures performed. Knowing 

the potential of the demineralization of the RAP inducing procedures, special care should be done 

to preventing detrimental attachment loss or avulsion after a couple weeks of decortication. 

Loose PDL fibers are much of the attachment in this phase resulting in significant mobility. 

Knowing that remineralization will occur, allows us to safely move through the transient 

osteopenia phase with confidence that attachment will not be harmed. Due to the amount of 

demineralization, the orthodontist may have to maintain the appliance as a splint or utilize a 

temporary fixed retainer in order to allow for proper bone maturation.  

Another component of Piezocision is the ability to graft. Often a thin biotype would need 

to be converted into a thick biotype. Thin soft and hard tissue can result in recession depending 

on the direction of movement, frenum attachments, brushing habits, and plaque level (Yared et 

al. 2006, Joss‐Vassalli et al. 2010). When significant buccal movements are being performed on a 

thin tissue biotype, recession must be considered a possibility. A thorough periodontal 

examination in conjunction with advanced dental imaging can be used to better predict potential 

recession. PAOO has been suggested to be successful in increasing the tissue biotype, even during 

buccal advancement (Wilcko et al. 2015). This is because this technique allows for sufficient access 
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to graft by creating a flap. Piezocision creates full thickness vertical incisions which can be 

connected via an internal flap. The created space allows for the passage of graft in a minimally 

invasive fashion. No reflection of papilla or marginal tissue is required to be able to pass hard and 

soft tissue grafting into the tunneled space. The decortication also allows for an adequate blood 

supply, especially as the Rap effect begins to take place at day 21. The increase in cellularity and 

potential pathway for angiogenesis can potentially boost the healing of the graft. This technique 

retains the ability of the graft while reducing the amount of surgery, which improves patient and 

orthodontist compliance. PEMF and Propel both do not give sufficient access to be able to graft 

the buccal tissues of relatively thin sites. 

 If studies continue to demonstrate the ability for PEMF to control catabolic activity and 

upregulate anabolic remodeling, then it could be used in incidences when pathological root 

resorption or ankyloses is anticipated. It could also be used in later stages of orthodontic 

movement, especially in cases where decortications were used. The amount of demineralization 

is impressive after decortication. Towards the completion of tooth movement, PEMF could be 

utilized for re-establishing the mineralization and maturity of bone. Another future study could 

observe the amount of time needed to retain orthodontic appliances for bone maturation in 

controls compared to PEMF used after tooth movement completion. 

Conclusions 

- Minimally invasive decortication techniques produce the RAP effect to facilitate tooth 

movement. 

- Piezocision may produce greater reduction in bone density to facilitate faster 

tooth movement. 

- The rodent orthodontic model is advantageous for observing radiographic and 

histological changes resulting from accelerated orthodontic techniques. 
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- Pulsed electromagnetic field therapy may enhance osteoblastic activity and does not 

facilitate the RAP effect of the alveolar bone. 
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