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Abstract  
 
Port dredging is of economic importance worldwide but its impacts to the marine environment 
through the remobilization of elemental contaminants are not well understood. A massive 
deepening and widening of Port Everglades, Florida, will begin in 2023. Contaminated sediment 
disturbed during the dredging process could be released and prove to be harmful to three coral 
reef tracks located beginning 1.5 miles away from the port. This study focused on identifying 
and quantifying 14 different trace elements: arsenic (As), cadmium (Cd), cobalt (Co), chromium 
(Cr), copper (Cu), mercury (Hg), lead (Pb), manganese (Mn), molybdenum (Mo), nickel (Ni), 
selenium (Se), tin (Sn), vanadium (V), and zinc (Zn) in Port Everglades, West Lake, and the 
coral reef sites before dredging commences, using induced coupled plasma mass spectrometry. 
All 14 elements were found within 5 of 10 port cores, with five cores displaying non-detected 
(n/d) values of mercury (Hg). West Lake contained all 14 elements, 13 out of 14 elements were 
found in North Reef samples (n/d values of Hg), and all 14 elements were found in the South 
Reef samples. Arsenic (As) concentrations in all cores exceeded probable effect levels (PEL, 
41.6 µg/g) and molybdenum (Mo) concentrations in all cores exceeded the background 
continental crust (1.5µg/g) by up to 256 %. Additional element concentration spikes above the 
threshold effect levels (TEL) included cadmium, chromium, copper, lead, mercury, nickel, and 
zinc. This study provides evidence of elemental contamination within Port Everglades and its 
potential harmful impact through remobilization to the threatened reef sites.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key words: Elemental contamination, sediment, marine sediment cores, Port Everglades, coral 
reefs, SECLER  



 2 

Introduction 

Port Everglades History 
 

Ports are vital to the U.S. economy as they serve to transport various goods such as cargo, 

fuel, and passengers all over the world. American Association of Port Authorities (AAPA) 

reports that 99 % of the country’s overseas cargo by volume is handled by seaports (American 

Association of Port Authorities, 2013). Additionally, Seaport industries also provide jobs to over 

23 million Americans (EPA, 2020).  One of the most important economical sources to South 

Florida is Port Everglades. Located in south Fort Lauderdale, Port Everglades was originally 

envisioned as a solution for “Florida’s shipping bottlenecks” and has grown into one of the East 

Coast’s most valuable seaports. (McGoun, 2002).  

Port Everglades was opened in 1928. It was previously a mangrove swamp that 

surrounded an area coined ‘Lake Mabel’. Maritime shipping of freight ships increased over the 

past century from 30,000 in 1900 to nearly 90,000 in the year 2000, along with an increase in 

cruise ships as well in response to globalization (Corbett et al., 2010). The rapid increase of ship 

traffic over the past century has led to increase port developments. Additionally, there has been a 

high demand for berth expansion to accommodate larger vessels, due to large population growth 

during the last century (porteverglades.net, 2020, Walker et al., 2012). 

The parcel before Port Everglades was primarily used as a mean for local farmers to ship 

produce. Ideas began forming in the late 1800s and early 1900s to transform the naturally formed 

Lake Mabel, also known as Bay Mabel Harbor, into a more efficient means to transport goods. A 

resolution was passed in 1911 by the Florida Board of Trade for a Deepwater Port Project, 

enabling farmers to transport their produce to the north and west of Florida (Port Everglades 

History, porteverglades.org). In 1893, Frank and Marshall Stranahan arrived in South Florida 

with hopes to operate a ferry service and trading post near what was known as the time as “New 

River”. The Stranahans then formed Fort Lauderdale Harbor Company in 1913, which served as 

a hub for small boats. This operation was completed by excavating Lake Mabel, which was 

referred to as an ideal site for operations to increase trade operations with Cuba by a Florida East 

Coast railway survey (Port Everglades History, porteverglades.org).  

In the 1920s, Joseph Wesley Young, founder and major developer of the City of 

Hollywood, played a huge role in the development of Lake Mabel. The Great Miami Hurricane 
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in 1926 significantly slowed port development progress (Port Everglades History, 

porteverglades.org).  Due to the impact of the storm along with the Florida real estate crash, 

Young was no longer able to provide support for the project. However, the following year 

financiers took on the project and the Broward County Port Authority was established by the 

Florida legislature in 1927 (Port Everglades History, porteverglades.org).  

Progress continued in 1929 as the port project was completed, the first airport was 

opened, and Port Everglades received its first cargo (86-meter SS Vogtland) and first military 

ship (carrying personnel of the 2nd Battalion of the Fleet Marine Force) (Port Everglades History, 

porteverglades.org). As development continued, goods such as food, fertilizer, fruits, vegetables, 

and sugar were prioritized for transport, and the first port manager, Florida Chamber of 

Commerce’s Warren T. Eller, was hired in 1932 (Port Everglades History, porteverglades.org).  

By 1950 Port Everglades was the port of call for many cruise lines (Port Everglades 

History, porteverglades.org).  Florida Power and Light became a partner in the 1960s and 

purchased various lighting units within the port. During this time, petroleum and petroleum 

storage tanks had become one of the main products being transported within this area. The 

Foreign Trade Zone No. 25 was opened in the late 1970s, and the port supported its first rail-

mounted container gantry crane as well. The first port-owned crane was acquired in 1981. By the 

late 1980s, thirty berths were operational, and eight cruise terminals were opened 

(porteverglades.org). The 1990s brought opening of parking garages, facility improvements for 

cruise and cargo terminals, and a transfer of governance from the Port Authority to the 

government of Broward County. This led to the boom in container ship traffic that is now seen 

today. In 2010, Port Everglades was estimated to have $13.9 billion in economic value to the 

State of Florida (Martin Associates 2010). A simplified history of Port Everglades can be found 

in Table 1.  

The boom of ship traffic in the US over the past century has led to an increase in the 

number of ports being dredged to allow for larger container and cruise ships. Dredging projects 

in the surface waters of Florida have been regulated since the early 1970s to offer protection to 

surface waters from degradation due to pollution and the loss of wetlands caused by these 

construction activities. This includes wetland ecosystem, water quality (stormwater), water 

quantity (flooding), wildlife, and pollution regulations. All dredging activities are overseen by 

the following departments and water management districts: Northwest Florida, Suwanee River, 
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St. Johns River, Southwest Florida, and South Florida, as well as the Army Corps of Engineers 

(Florida DEP, 2018).  Due to these many activities, sediments are often sinks of contaminants for 

different types of chemicals, such as hydrocarbons, dioxins, pesticides, fertilizers, nutrients, and 

trace elements (Lucchetti, et al., 2017). Contaminants disturbed during the dredging process can 

be released and likely bioaccumulated by surrounding biological organisms. Evidence of this has 

been displayed in the sentinel crab (Macrophthalmus spp.), common periwinkle (Littorina 

littorea), and Sydney Rock oysters (Saccostrea glomerata) (Davies and Uyi, 2009; Hedge et al., 

2009; Saadati et al., 2020). 

The South Florida Water Management District manages nine major canals within the area 

that eventually drain into estuarine areas such as the Intracoastal Waterway and other associated 

bays and swamps. This discharge then makes its way from the Intracoastal waterway and into the 

Atlantic Ocean. Water discharges from the major canals can carry bacteria, oil and grease, 

pesticides, viruses, and toxic trace elements. Water within the Port is classified as Class III, i.e., 

acceptable for recreation, fish, and wildlife (U.S. Army Corps of Engineers, 2015). 

Dredging and Impacts 

Dredging includes the excavation and disposal of bottom material, which can have 

detrimental impacts on the marine environment (U.S. Army Corps of Engineers, 1983; ABP 

Research, 1999). Along with harming these aquatic environments, dredging processes and 

disposal have the potential to change bathymetry, alter water velocities, cause sedimentary 

regime changes, and erode seagrass beds (Erftemeijer and Lewis, 2006). Specifically, dredging 

large volumes of sediment will decrease water transparency and increase volume of suspended 

matter. If the suspended sediment is high in organic matter the resuspension of sediment may 

lead to changes in water quality as well due to the release of contaminants (Filho et al., 2004). 

Other implications related to dredging include destruction of benthic communities, nutrient 

concentration changes, and a decrease in dissolved oxygen levels. Coral reefs and seagrass beds 

can be most affected, as they are very sensitive ecosystems (Erftemeijer and Lewis, 2006).  

Although dredging, or anthropogenic resuspension, is considered a destructive 

disturbance, natural processes such as bioturbation (resuspension of sediments by living 

organisms) aids in maintaining ecological balance within sediments. Effects of dredging activity 

will only be detrimental if the turbidity generated is greater than what is normally occurring in 
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Table 1. Timeline of Port Everglades History (1911 – 2023). 

Deepwater Port Project 1911 

Excavation of Lake Mabel to build the Port 1913 

Port Everglades opened 1920s 

Port Everglades completed 1930s 

Maintenance dredging projects 1935-1939 

Boom in Cruise Ship Operations 1950s 

FPL Partnership and increase in petroleum use 1960s 

Harbor deepening project 1962 

Increased operation of berths and cruise terminals 1980s 

Boom in Container Ship Traffic 1990s 

Port Everglades estimated $13.9 billion economic value to 
South Florida 

2010 

Navigation channel maintenance project 2013 

Dredging Project 2023  
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the area (Stern and Sickle, 1978; Orpin et al., 2004). In this case, the dredging operation 

will be extremely harmful to the surrounding ecosystem as there is typically little to no wave 

action caused by natural forces (e.g., storms, winds, and river discharges). Increased suspended 

sediments generated by dredging is usually no more than commercial shipping operations, 

bottom fishing, or severe storms, but the degree of harm depends on quantity frequency and 

duration of dredging, along with depth and physical dimensions of dredging location, grain size 

composition, density, and degree of contamination of dredged material, and proximity/distance 

of sensitive, ecologically/economically important ecosystems such as coral reefs (Pennekamp et 

al., 1996). 

Sediments as Sinks for Contaminants 

Sediments are described as inorganic or organic particles of biological, chemical, or 

mineral origin, and the benthic environments within them are highly sensitive, delicate 

ecosystems. Additionally, the sediment water boundary has the steepest chemical gradient and is 

most susceptible to disruption (Tuit and Wait, 2020). Marine sediment consists of a variety of 

materials on the seafloor, originating from biological productivity, continental erosion, cosmic 

debris, hydrothermal vents and/or volcanism (Dunlea et al., 2018). Sediment particles can be 

deposited and transported within aquatic systems and involve the interconnection between solid, 

liquid, and biological phases. Bioavailability of contaminants in sediments such as trace elements 

can change with depth along with changing seasonally due to temperature changes and various 

inputs of nutrients (Environment Canada, 1994; US EPA, 1994, 1995; USGS, 2005; Tuit and 

Wait, 2020). Suspended sediment is a major concern as it can bind contaminants and nutrients. 

These materials, after released, may become available for biological uptake (Mudroch, 1983). 

Sediments of water bodies located in or near industrial locations may be highly polluted 

with organic and inorganic contaminants, depending on the types of activities in the area 

(Mecozzi et al., 2011).  Economic development, for example, can result in environmental crises 

such as element pollution (Gao and Chen, 2012). Once trace elements are introduced into the 

water column, these tend to become incorporated into the underlying sediments, making 

sediments good indicators of contamination levels (Norville, 2005). Presence of trace elements 

within sediment can increase transfer within the marine food chain (Saadati et al., 2020); 

therefore, biomagnification and bioaccumulation are potential outcomes of the contaminants 
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entering and remaining in the marine environment and can result in an even higher exposure that 

is already present within the ecosystem (Gao and Chen 2012). 

Trace Elements and Heavy Metals in Sediment 

In this study, heavy metals will be referred to as elements, as not all the elements 

analyzed are metals. However, heavy metal is a commonly used term. Heavy metals are 

generally defined as naturally occurring metals with a relatively high specific density that may 

negatively affect the environment and biota (Jakimska et al., 2011; Jaishankar et al., 2014). 

Heavy metals can be either essential or nonessential to organisms. Essential metals have 

biochemical and physiological functions, while nonessential metals do not have a biological 

function in the body (Tchounwou et al., 2012). Essential metals can be harmful at higher levels, 

but nonessential heavy metals may be highly toxic even at low concentrations. Furthermore, 

toxic concentrations of heavy metals and trace elements may be just above natural background 

levels (Jaishankar et al., 2014). Metals of concern for public health include arsenic (considered a 

metalloid), cadmium, chromium, lead, and mercury due to their high toxicity. The distribution of 

heavy metals is widespread as they are commonly used in the industrial, agricultural, 

pharmaceutical, and technological fields (Tchounwou et al., 2012).  

Heavy metals have both natural and anthropogenic sources. Most heavy metals are 

present in the Earth’s crust and enter the environment through erosion, volcanic eruptions, and 

other natural processes. However, many heavy metals are now also introduced into the 

environment through anthropogenic activities such as the burning of fossil fuels, mining, and 

industrial processes (Nriagu, 1989; Visschedijk et al., 2004). These metals include mercury, zinc, 

nickel, lead, cadmium, arsenic, copper, and vanadium (Pacyna et al., 2007; Fowler, 2013). 

Mining and its associated activities, including smelting and shipping, are large contributors of 

heavy metals to the environment. A direct relationship was found between the element that is 

mined and exported and the metals found in the marine environment (Valdes and Castillo, 2014). 

However, many other contaminants are released in this process. For example, mercury is a 

byproduct of the smelting of copper, zinc, lead, nickel, and gold (Pirrone et al., 2010). Selenium 

(considered a non-metal and trace element) is an essential element that is naturally present, but it 

is also introduced into the environment through the burning of coal and fossil fuels.  
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Arsenic, one of the most common toxins, is introduced anthropogenically through use in 

herbicides, pesticides, wood preservatives, oil and coal burning, trash incineration, and industrial 

sources (Rosen and Liu, 2010). Soil, groundwater, and runoff surrounding mines are often 

heavily contaminated with metals (El Khalil et al., 2008). As a result, heavy metal concentrations 

are usually elevated in local marine environments and bioaccumulate through trophic webs 

(Volesky, 1990; Valdés and Castillo, 2014). Heavy metals and trace elements are by-products of 

multiple industrial processes, varying amounts can get into the environment through waste 

discharge, anti-fouling paint and heavy fuel from cargo and cruise ships (Robson and Neal, 

1997).  

Trace elements enter the marine environment through atmospheric and land based 

effluent sources (Gonzálaz-Marcías, et al., 2006). Metals that are considered most toxic to 

marine life, in order of decreasing toxicity, include mercury, cadmium, silver, nickel, selenium, 

lead, copper, arsenic and zinc (Davies, 1979).  Sediments can be extremely useful indicators for 

monitoring these anthropogenic contaminants within aquatic environments (Ergin, et al., 1991; 

Balls, et al., 1997; Atgin, et al., 2000).  

Contaminated sediments in aquatic ecosystems throughout the world have been linked 

with potential human and ecological risks (Rifkin, et al., 2004). The distribution of these 

contaminants in aquatic ecosystems depends on the chemical and physical characteristics of 

these substances, properties of abiotic components and the structure and composition of the 

biotic community (Jennett et al., 1980). Additionally, partitioning of elements in marine 

ecosystems is determined by their association with bed sediments, suspended particulates, and 

organic matter; bottom sediments tend to be one of the major sinks for pollutants as they have 

the largest capacity for chemical storage (Francis, et al., 1983). 

  Trace elements have high ecological significance as they can accumulate in both 

sediment and biota (Nowrouzi and Pourkhabbaz, 2014). Most elements bind to fine-grained 

sediment fractions (<63 µm), as there is a high surface area to grain size ratio and humus matter 

content (Horowitz and Elrick, 1987; Moore, et al., 1989). The elements within this category 

display higher bioavailability than sediment fractions larger than 2 mm to 63 µm (Everaat and 

Fischer, 1992). Organic matter content plays a crucial role in sediment ecosystems, as it provides 

food sources for heterotrophic benthic organisms living below the photic zone (Yang, et al., 

2010) and allowing for bioavailability and distribution of contaminants due to its high sorption 
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affinity to hydrophobic organic contaminants and metals (Li et al., 2009; Fränzle et al., 2007). 

 Benthic communities within marine sediments are extremely biodiverse. Bacteria, 

ciliates, fungi, foraminifera, protozoa, meiofauna (nematodes, copepods, turbellarians), and 

macrofauna (polychaetes, crustaceans, mollusks, echinoderms) thrive in these environments, and 

all play a role to maintain the ecosystem balance. Bacteria are major players in the breakdown of 

detritus and help to decompose POC (particulate organic carbon), protozoa and meiofauna feed 

on bacteria, detritus, fungi and microalgae, and the majority of macrofauna are deposit (obtain 

nutrition from organic matter within sediments) or suspension feeders (obtain nutrition from 

passing particles in overlying water) (Snelgrove, 1997).  

Benthic marine sediment ecosystems are nutrient rich, as there is a high amount of dead 

particulate organic material and benthic algae sinking to the bottom from surface waters. 

Additionally, the benthos can impact water column processes, trophic transfer, global carbon, 

nitrogen and sulfur cycles, pollutant metabolism, burial and transport, and sediment stability and 

transport (Snelgrove et al., 1997). The sediments that create these ecosystems are also considered 

to be a suitable means of identifying sources of element pollution in aquatic ecosystems (Schintu 

and Degetto, 1999).  

The high affinity for metals allows for trace elements concentrate within organic matter 

and finer grained sediments (Seidemann 1991; Lin and Chen 1998; Espericueta et al., 2006). 

Wangersky (1986) reported high concentrations of trace elements in organic rich sediments. 

Additionally, metal concentrations (Cu, Cr, Pb, and Zn) have been found to be positively 

correlate with organic matter content, as well as a display of positive correlations between trace 

element adsorption of sediments and organic matter content (Lin and Chen, 1998).  

Although many metals and trace elements are biologically essential (copper, nickel, zinc), 

all are toxic to biological organisms above specific threshold concentrations (Norville, 2005). 

Threshold effect levels (TEL) and probable effect levels (PEL) can be used as valuable tools to 

assess Numerical Sediment Quality Assessment Guidelines (SQAG) (MacDonald and Ingersoll, 

1993). The threshold effect levels indicate element concentrations in sediment in which benthic 

organisms have started to exhibit toxic responses, while the probable effect levels indicate 

concentrations in which a large percentage of benthic organisms have exhibited toxic responses 

(Geoenvironmental Engineering, 2015). 
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Background, or baseline, values consisting of surface averages of continental crust 

composition can also be used to assess sediment contamination. These values are derived from 

the upper continental crust (the most accessible part of Earth), which is frequently used for 

various geochemical investigations. The two used methods to determine composition of the 

upper crust include 1) establishing weighted averages of rocks exposed at the surface and 2) 

establishing composition averages of insoluble elements in fine-grained clastic sedimentary 

rocks or glacial rocks and using these values to extrapolate the composition of the upper crust 

(Clarke, 1889). Composition averages derived from three continents, including the post-Archean 

Australian average shale (PAAS), European shale composite (ES) and North American shale 

composite (NASC) samples (Taylor and McLennan, 1995). Chemical compositions of various 

elements derived from the samples can also be utilized to determine the severity of 

contamination within sediment samples. 

Arsenic 

Arsenic is the 20th most abundant element on earth and is released naturally due to 

weathering of arsenic-rich rocks and volcanic activity. Arsenic is released into the environment 

via anthropogenic sources as well, such as herbicides, pesticides, plant defoliants and 

preservatives. It is also commonly used in various pigments, alloys with lead and copper, glass 

making, and for medicinal purposes (MacDonald and Ingersoll, 1993).  

Arsenic is prominently toxic and carcinogenic. In its inorganic forms, arsenic is lethal to 

the environment and organisms (Jaishankar et al., 2014). The toxicity of arsenic to marine 

organisms is particularly complicated due to the existence of two different inorganic arsenic 

species – As (III) and As (V); both can be found in aquatic ecosystems (Liber et al., 2011).  

Various sublethal effects on behavior, growth, locomotion, reproduction and respiration 

have displayed results that arsenic is acutely toxic to marine organisms (MacDonald and 

Ingersoll, 1993). Four studies with freshwater invertebrates (Anderson, 1946; Borgmann et al., 

1980; Spehar et al., 1980; Golding et al., 1997) determined that As (III) is generally more toxic 

than As (V). One of the major sinks for arsenic is in sediments (Pierce and Moore, 1982).  

Marine sediments can contain substantial concentrations of total arsenic (100-300 µg/g). 

However, environmental conditions can influence these concentrations; for example, anaerobic 

incubation of flooded soils and sediments will increase arsenic concentrations in porewaters 

(Brannon, 1987). Arsenic concentrations in surface water typically occurs in a soluble form that 
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will co-precipitate with hydrated aluminum and iron oxides or is adsorbed by organic matter 

within the sediments (MacDonald and Ingersoll, 1993). Arsenic will also co-precipitate or adsorb 

easily on other metal sulfides (Demayo et al., 1979). The upper continental crust value of arsenic 

is 1.5 µg/g (Taylor et al. 1995; Rudnick and Gao, 2003), and the toxicity of arsenic to marine 

biota is represented by a TEL value of 7.2 µg/g and a PEL value of 41.6 µg/g (MacDonald and 

Ingersoll, 1993).  

Cadmium 

Cadmium is a by-product of zinc production and is often found in soil where it is 

absorbed and accumulated in plants (Irfan et al., 2013; Jaishankar et al., 2014). Cadmium has 

similar chemical properties to zinc and can replace zinc in metallothionein, acting as an inhibitor. 

It can also be found in biocides, batteries, pigments, telephone wires, and may be present in 

phosphate rocks used for fertilizers (MacDonald and Ingersoll, 1993). Anthropogenic sources of 

cadmium in the marine environment include mining, metal smelting, agricultural uses, fertilizers, 

pesticides, alloys, paints, and the burning of fossil fuels (CCREM, 1987).  

Cadmium transport within sediments typically occurs through organic matter and through 

co-precipitation with aluminum, iron and manganese oxides (Jaagumagi, 1992). Biological 

availability of cadmium depends on factors such as pH, redox potential, and water hardness 

(MacDonald and Ingersoll, 1993).  

 Cadmium toxicity has been found to be potentially harmful for aquatic insect larvae in 

sediments. Midge larvae exposed to cadmium, as well as chromium and zinc contaminated 

sediments displayed lower survival rates, decreased length and weight and reduced frequencies 

of emergence (Wentsel et al., 1977b, 1978). Additionally, chironomid larvae were found to avoid 

sediments containing > 422 µg/g Cd and > 8330 µg/g Zn (Wentsel et al., 1977b, 1978), and 

cadmium levels as low as 6.9 µg/g is toxic to marine amphipods (Swartz et al., 1985). 

 Francis et al. (1983) confirmed the high sorption capacity of cadmium from small 

quantities of the trace elements mobilized from element-enriched sediments. Sediments 

containing 100 to 1000 µg/g Cd were discovered to have released ≤ 0.01 % of the metal into 

surface waters, demonstrating the potential of bottom sediments to behave as sinks for trace 

elements (Francis et al., 1983). The upper continental crust value of cadmium is 0.098 µg/g 

(Taylor et al. 1995; Rudnick and Gao, 2003), and the toxicity of cadmium to marine biota is 
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represented by a TEL value of 0.68 µg/g and a PEL value of 4.2 µg/g (MacDonald and Ingersoll, 

1993). 

Chromium 

Chromium is the 7th most abundant element on Earth and is present in many oxidation 

states. It is used in various industrial processes, such as the production of chrome alloys and 

chromium metals, as well as uses in the chemical industry in the production of ceramics, dyes, 

explosives, paints, and paper (MacDonald and Ingersoll, 1993). Anthropogenic sources of 

chromium include the production of chromium steels, ferrochromium and metal plating industry 

emissions, coal and oil burning, and cement manufacturing (Taylor et al., 1979).  

The most common forms of this trace metallic element are Cr (III) and Cr (VI); behavior 

in these two oxidation states differ greatly. Cr (VI) is the dominant form under oxic conditions 

and typically exists as hydrogen chromate (HCrO4
-) or chromate (CrO4

-2), depending on pH. 

There is clear evidence that exposure to certain levels of Cr (VI) can result in significant health 

risks in humans, as the soluble form of chromium can readily pass-through cell membranes and 

oxidize intracellular compounds (Rifkin et al., 2004).  

Chromium was first used in the production of stainless steel and coatings (Chandra and 

Kulshreshtha, 2004). Additionally, chromium is widely used in dyes, pigments, wood 

processing, photography, textiles, and leather tanning. Due to its widespread industrial use, 

chromium has been introduced as a byproduct into marine and terrestrial ecosystems, e.g., water, 

soil, sediment, and air (Rifkin et al., 2004).  

In the marine environment, aquatic plants play a crucial role in the uptake, storage, and 

recycling of metals, such as chromium (Chandra and Kulshreshtha, 2004). A study conducted by 

Berry et al. (2002) examined mortality rates in amphipods with Cr (III) and Cr (VI) in sediment 

at concentrations ranging from 10 to 100,000 µg/g Cr. Amphipods exposed to Cr (III) 

experienced approximately 10 % mortality rate at the most highly spiked sediment, however, 

amphipods exposed to Cr (VI) experienced significant mortality rates (> 90 %) at concentrations 

starting at 1000 µg/g Cr. The upper continental crust value of chromium is 35 µg/g (Taylor et al. 

1995; Rudnick and Gao, 2003), and the toxicity of chromium to marine biota is represented by a 

TEL value of 52.3 µg/g and a PEL value of 160 µg/g (MacDonald and Ingersoll, 1993).    
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Cobalt 

Cobalt is a relatively rare metal. Recent measurements in seawater suggest that cobalt is 

scavenged from the deep sea and follows a biogeochemical pathway similar to manganese 

(Heggie and Lewis, 1984). Exposure to cobalt is mainly a concern for industrial workers, but the 

general public consumes trace amounts of cobalt through fish and vegetables (Barceloux and 

Barceloux, 1999). Mild effects of cobalt exposure include reversible hematological and 

endocrine symptoms, but exposure to high concentrations of cobalt can lead to neurologic and 

cardiac symptoms (Leyssens et al., 2017). The mechanism of cobalt toxicity is not fully 

understood, but it appears to damage calcium pumps (Simonsen et al., 2012).  

Cobalt toxicity interferes with the homeostasis of calcium and iron which can lead to the 

disruption of many body functions (Leyssens et al., 2017). Heggie and Lewis (1984) discovered 

solid-phase concentrations of cobalt in surface sediments to be almost double the level of deep-

sea concentrations, indicating large portions of sedimentary cobalt are recycled with manganese 

between porewaters and redistributed in surface sediments. The upper continental crust value of 

cobalt is 10 µg/g (Taylor et al. 1995; Rudnick and Gao, 2003). The toxicity of cobalt to marine 

biota represented by TEL and PEL has not been recorded in the literature. 

Copper 

Copper is a common metallic element that exists in three forms: Cu, Cu (I), and Cu (II) 

and is biologically available since it is essential for the proper growth of animals (Flemming and 

Trevors, 1989; Ikemoto et al., 2004). Weathering or the solution of copper-bearing metals, 

copper sulfides and native copper are natural sources of this element within marine ecosystems 

(MacDonald and Ingersoll, 1993). Anthropogenic sources of copper include copper wire mills, 

coal burning industries, smelting, and refining industries, and iron and steel producing industries 

(CCREM, 1987). Copper is an essential micronutrient (MacDonald and Ingersoll, 1993); 

therefore, it is easily and readily accumulated by marine organisms, especially plants. However, 

copper can be toxic to bivalve mollusks, altering the biochemical and physical properties of the 

surface epithelium and disrupting membrane permeability (Cheng, 1979). Dean et al. (2007) 

discovered that a significant amount of copper in marine sediments in fish farms originated from 

anti-fouling agents. These can be released in either solid or particulate form, from either trapped 

nets or chipped off hard structures (i.e., container ships) into the marine environment (Claisse 

and Alzieu, 1993; Miller, 1994; Brooks, 2000; Morrisey et al., 2000; Solberg et al., 2002; Brooks 
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and Mahnken, 2003). The upper continental crust value of copper is 25 µg/g (Taylor et al. 1995; 

Rudnick and Gao, 2003), and the toxicity of copper to marine biota is represented by a TEL 

value of 18.7 µg/g and a PEL value of 108 µg/g (MacDonald and Ingersoll, 1993). 

Lead 

Lead is a highly toxic, nonessential metal that is absorbed by plants where it causes 

damage to chlorophyll and photosynthetic processes and suppresses the overall growth 

(Jaishankar et al., 2014; Najeeb et al., 2014). The main uses of lead include the manufacturing of 

lead-zinc batteries, and gasoline alkyl lead additives. Construction materials, electroplating, 

coatings, dyes, glassware, paints, and storage tank linings, transport of radioactive materials, and 

roofing are other various uses of lead (CCREM, 1987; MacDonald and Ingersoll, 1993). Lead in 

the marine environment tends to stay tightly bound to marine sediments under oxidizing 

conditions and is mainly distributed by atmospheric and riverine inputs (Ottley and Harrison, 

1991; Turner et al., 1991; MacDonald and Ingersoll, 1993; Grousset et al., 1999) where it is 

released by high temperature processes and combustion of leaded fuel due to its volatile nature. 

Lead has the potential to be toxic to marine life due to concentrations in surface sediments in 

coastal areas (Stamatis et al., 2006).  

Heinz et al. (1999) found one in ten mallards (Anas platyrhynchos) died due to 24 % 

lead-contaminated sediment (3400 µg/g) and that protoporphyrin levels in the blood were 

positively correlated with lead concentrations as well. Therefore, lead in sediment can pose a 

significant threat to waterfowl, which are known to consume large amounts of sediment while 

feeding (Heinz et al., 1999). Lead contamination in sediment in this area of study originated from 

spent shotgun pellets, lead fishing weights, and years of upstream mining activities. 

Anthropogenic values of total Pb concentrations were examined in surface sediments in the Gulf 

of Kavala, Greece and they ranged from 4 to 135 µg/g, with the total values (ranging from 25 to 

209 µg/g Pb), indicating a high correlation to anthropogenic values. Deeper sampling sites 

displayed increased anthropogenic recovery (Stamatis et al., 2006). Gastropods exhibit toxic 

responses to lead as well. The upper continental crust value of lead is 20 µg/g (Taylor et al. 

1995; Rudnick and Gao, 2003), and the toxicity of lead to marine biota is represented by a TEL 

value of 30.2 µg/g and a PEL value of 112 µg/g (MacDonald and Ingersoll, 1993).   
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Manganese 

Manganese is the 5th most common metal in the Earth’s crust. Manganese pollution is 

common due to its ubiquitous natural occurrence, widespread associations with industrial 

processes, and high mobilization properties (Paschke et al., 2005; Li et al., 2013). Although Mn 

occurs naturally in sediments and soils due to the weathering of parent material, anthropogenic 

processes such as mining, smelting and addition of biosolids/organic wastes to agricultural areas 

have increased Mn concentrations in many areas (Paschke et al., 2005; Boudissa et al., 2006; Li 

et al., 2013). Li et al. (2013) studied anthropogenic Mn pollution of Yellow River sediment in the 

region of Ningxia, northwest China, an agricultural area with hundreds of irrigation channels. 

Various industrial plants have been established over time in this area due to large economic 

growth; however, they have contributed to a large portion of air, water, and sediment pollution. 

Mn values in Yellow River sediment included 750 µg/g at 0-5 cm depth, 673.4 µg/g at 45-50 cm 

depth and 620 µg/g at 95-100 cm depth (Li et al., 2013). The upper continental crust value of 

manganese is 600 µg/g (Taylor et al. 1995; Rudnick and Gao, 2003). The toxicity of manganese 

to marine biota represented by TEL and PEL has not been recorded in the literature. 

Mercury 

Mercury is the most well-studied trace element due to its extreme toxicity and high 

concentrations in the environment (Jaishankar et al., 2014). Mercury exists in three forms that 

vary in bioavailability and toxicity: the metallic element, inorganic salts, and organomercury 

compounds. These forms of mercury are taken up by microorganisms and methylated to produce 

the bioaccumulating methylmercury (Das et al., 2003; Jaishankar et al., 2014).  

Methylmercury is an organic form of mercury that is lipid soluble and highly toxic (Das 

et al., 2003). The main form of mercury in sediment is mercury sulfide, which is highly insoluble 

(Tomiyasu et al., 2000). However, microorganisms in bottom mud can convert several mercury 

compounds into methylmercury (Johnels and Westermark, 1969). This element is commonly 

used for medicinal compounds, electrical equipment, the paint industry, paper industry, and in 

the production of chlorine. In the past, mercury-based pesticides were frequently used, however 

such practices have been banned (CCREM, 1987). 

 Marine sediment is considered a sink for mercury released into the environment due to 

the much longer lifetime of mercury in sediment. Additionally, mercury in sediment provides 
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multiple depositional records (spatial distribution) and may provide temporal behavior of 

sedimentary mercury as well. Discharged mercury is sediment and its environmental impact has 

become a global concern (Nriagu et al., 1992; Akagi et al., 1995; Ikingura and Akagi, 1996). The 

main source of this contamination is the recent increase of mercury in gold mining in many 

developing countries (Tomiyasu et al., 2000).  

Methylmercury is readily taken up by marine organisms. Therefore, sedimentary 

methylmercury may be re-taken up in the biogeochemical cycle and is likely to be 

bioaccumulated at high levels in marine organisms (CCREM, 1987). The upper continental crust 

value of mercury is 0.096 µg/g (Taylor et al. 1995; Rudnick and Gao, 2003), and the toxicity of 

mercury to marine biota is represented by a TEL value of 0.13 µg/g and a PEL value of 0.70 

µg/g (MacDonald and Ingersoll, 1993). 

Molybdenum 

Molybdenum is an essential element with low toxicity (Barceloux and Barceloux, 1999). 

It does not occur naturally in a pure metallic state, thus occurs in association with other elements. 

It is generally found as Mo (IV) and Mo (VI) in nature; Mo (IV) is often found as MoS2 in 

mineral deposits (Fox and Doner, 2003). Many of the anthropogenic sources for molybdenum 

include mining operations (and by-products of copper-mining operations), municipal sewage, or 

coal combustion. Most molybdenum is used in stainless steel and cast-iron alloys (Barceloux and 

Barceloux, 1999). Invertebrate mortality in short-term tests have been reported at molybdenum 

concentrations greater than 28 µg/g, with some LC50 (lethal concentration) doses as high as 

2650-3619 µg/g (Martin and Holdich, 1986; Khangarot, 1991; Naddy et al., 1995). The upper 

continental crust value of molybdenum is 1.5 µg/g (Taylor et al. 1995; Rudnick and Gao, 2003). 

The toxicity of molybdenum to marine biota represented by TEL and PEL has not been recorded 

in the literature. 

Nickel 

Nickel is the 23rd most abundant metal in the Earth’s crust and typically occurs naturally 

in a combination with arsenic, antimony, and sulfur, and is commonly used in the production of 

nickel alloys, nickel plating and stainless steel (MacDonald and Ingersoll, 1993). Anthropogenic 

sources include electroplating industries, nickel ore mining, fossil fuel combustion, and smelting 

and mining activities (CCREM, 1987).  
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Nickel typically occurs in the Ni (II) form in aquatic ecosystems. In sediments, it is 

deposited due to the sorption to organic matter and co-precipitation with iron and manganese 

oxides (MacDonald and Ingersoll, 1993). Nickel within sediment also tends to form complexes 

with iron and manganese oxides (Jaagumagi, 1992).  

The toxicity of dissolved nickel to marine invertebrates has been widely reported, with 

LC50 doses of 0.2 - 70 µg/g (Warnick and Bell, 1969; Biesinger and Christensen, 1972; 

Baudouin and Scoppa, 1974; Martin and Holdich, 1986; Khangarot and Ray, 1989, Schubauer-

Berigan et al., 1993; Phipps et al., 1995; Doig and Liber, 2006). Further effects of nickel-

contaminated sediments on aquatic organisms include reduction in growth, avoidance reactions, 

and mortality. In the presence of copper, the toxicity of nickel increases; therefore, the existence 

of both elements in sediment may be a factor that increases the contamination factor of Ni. The 

upper continental crust value of nickel is 20 µg/g (Taylor et al. 1995; Rudnick and Gao, 2003), 

and the toxicity of nickel to marine biota is represented by a TEL value of 15.9 µg/g and a PEL 

value of 42.8 µg/g (MacDonald and Ingersoll, 1993).    

Selenium 

Selenium has mainly been studied for its role in selenoproteins and detoxification of 

heavy metals. The chemical forms of selenium in sediment are unknown, however, selenium 

may enter aquatic systems as selenite, selenate, or elemental selenium from smelting operations 

(Peters et al., 1999). Previous studies from Fowler and Benayoun (1976a), Lui et al. (1987), and 

Zhang et al. (1990) demonstrated evidence of food web bioaccumulation as the major route of 

selenium accrual in marine animals. However, selenium concentrations in organic detritus in 

sediments is thought to be a greater contributor to food web contamination than that dissolved in 

water (Canton and Van Derveer, 1997). Selenium values in selenium spiked sediment in Lake 

Macquarie, Australia (conducted by Peters et al., 1999) displayed evidence that two invertebrate 

species, polychaete Marphysa sanguinea and bivalve Spisula trigonella, amassed selenium from 

the spiked sediment, confirming bioaccumulation. The upper continental crust value of selenium 

is 50 µg/g (Taylor et al. 1995; Rudnick and Gao, 2003). The toxicity of selenium to marine biota 

represented by TEL and PEL has not been recorded in the literature. 

Tin 

 Tin can be found as inorganic or organic forms in the environment (natural or 

anthropogenic sources) and occur naturally as inorganic forms within the Earth’s crust. Chronic 
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exposure to tin can lead to accumulation in the kidneys, liver, and bones. The organometallic 

form of tin, organotin, primarily originates from anthropogenic sources. Short chain alkyl forms 

of tin, specifically butylin compounds, have a significant effect on gastropods as they simulate 

the development of male sex characteristics in female gastropods (Ostrakhovitch, 2015). Wong 

et al. (1982) discovered that organic tin compounds in green and blue algae cultures acted as 

inhibitors to primary production and reproduction.  

Tributyltin (TBT), a member of the organotin compound family, is used in biocidal wood 

preservatives and the production of plastics. The most important tributyltin compounds include 

tributyltin fluoride (TBTF) and tributyltin oxide (TBTO) (MacDonald and Ingersoll, 1993). 

Tributyltin oxide is utilized as a slimicide in cooling water towers, a wood preservative, and 

marine anti-fouling paint for use on vessels of all types (MacDonald and Ingersoll, 1993; De 

Mora et al., 1995).  

Tributyltin is frequently leached from the paint and is released into the water column and 

underlying sediments. TBT compounds are extremely toxic to marine life (flora and fauna). It 

was discovered that tributyltins can produce negative biological effects, even at extremely low 

levels. De Mora et al. (1995) examined surface sediments from the Auckland region of New 

Zealand following newly regulated introduction of organotin (TBT)-containing marine paint. 

Concentrations from 13 locations ranged from < 2 to 1360 µg/g. The high toxicity of TBT 

compounds and the elevated potential of their release into marine ecosystems makes them a 

significant threat in marine sediments (MacDonald and Ingersoll, 1993). Insufficient data exist to 

determine TEL and PEL toxicity levels for TBT compounds; however, Clark et al. (1987) 

observed 100 % mortality in grass shrimp exposed to tributyltin concentrations as low as 10 

mg/g. The upper continental crust value of tin is 5.5 µg/g (Taylor et al. 1995; Rudnick and Gao, 

2003). The toxicity of tin to marine biota represented by TEL and PEL has not been recorded in 

the literature. 

Vanadium 

Vanadium is a trace element, widely distributed throughout nature, and present in nearly 

all living organisms. It may exist in valence states ranging from +2 to +5. V (IV) and V (V) are 

dominant under moderately reducing and aerobic conditions (Fox and Doner, 2003). Major 

anthropogenic sources of vanadium include power-producing plants using fossil fuels, burning of 

coal wastes, and dumps of coal dusts in mining areas. Marine invertebrates, such as tunicates, 
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have been found to accumulate vanadium levels up to 0.3 % dry weight. Aquatic plant growth 

can be simulated by trace amounts of vanadium, however above 100 µg/g are toxic 

(Venkataraman and Sudha, 2005). A sediment incubation study conducted by Amrhein et al. 

(1993) discovered that vanadium concentrations slowly decreased under reducing conditions, 

while under oxidizing conditions vanadium concentrations dropped to nearly zero. Additionally, 

values recorded by Fox and Doner (2003) indicated that vanadium generally decreased with 

increasing depth of soil cores. The upper continental crust value of vanadium is 60 µg/g (Taylor 

et al. 1995; Rudnick and Gao, 2003). The toxicity of vanadium to marine biota represented by 

TEL and PEL has not been recorded in the literature. 

Zinc 

Zinc is the 24th most abundant element in the Earth’s crust, and is used in alloys for die 

casting, dry batteries, brass, roofing, and in coatings to protect iron and steel (MacDonald and 

Ingersoll, 1993). Common sources of zinc in the marine environment originate from aerial 

deposition and riverine inputs (Neff, 2002). Major anthropogenic sources of zinc into the marine 

environment include atmospheric emissions, iron and steel production, wood combustion, 

municipal wastewater effluents, smelting, refining activities, and zinc mining (CCREM, 1987).  

Zinc toxicity in sediments depends not only on its total concentration, but on mobility 

and reactivity to ecosystem components; adsorbed metals onto solid particles (i.e., sediment) are 

potentially available as they may be dissolved due to changes in salinity, pH, redox conditions, 

etc. (Rousseau et al., 2009). Zinc existing at a neutral pH can be deposited in sediments by 

sorption to clay minerals, organic matter, and hydrous iron and manganese oxides. However, 

sorption of organic matter seems to be the most significant environmental process in fine-grained 

sediments (Jaagumagi, 1992; MacDonald and Ingersoll, 1993). The upper continental crust value 

of zinc is 71 µg/g (Taylor et al. 1995; Rudnick and Gao, 2003), and the toxicity of zinc to marine 

biota is represented by a TEL value of 124 µg/g and a PEL value of 271 µg/g (MacDonald and 

Ingersoll, 1993). 

Potential Impacts 

Element contamination, which is frequently detected in sediments, has become a concern 

worldwide. Trace elements can stay in the sediment for long periods of time, but not forever. 

Combinations of chemical and physical water conditions will result in these contaminants to 

become available to overlying water and marine organisms. These contaminants can be 



 20 

significantly harmful to aquatic organisms, as well as having the potential to be toxic to humans 

through the food chain (Peng et al., 2009).  

Port Everglades, located in direct proximity to the Intracoastal Waterway, exhibits 

characteristics of an estuarine environment, as it is semi-enclosed and connects to the ocean. 

Estuarine waters, the most productive marine ecosystems in the world (Underwood and 

Kromkamp, 1999) can receive significant anthropogenic input from point and non-point sources 

located within or near the estuary (Chapman and Wang, 2000). Historic contamination, such as 

decades’ worth of port contaminants, remains a significant concern for these sediments and can 

have correlated effects on benthic and water column species (Hedgpeth, 1967; Varanasi et al. 

1985; Nichols et al. 1986; French, 1993; Valette-Silver, 1993; Stein et al., 1995; Virkanen, 

1998). 

From 2013 to 2015, a dredging project in the Port of Miami, similar to the proposed Port 

Everglades dredging project, yielded significant sediment accumulation, resulting in a higher 

prevalence of partial mortality of corals (Miller et al., 2016). Although the dredging project will 

convenience many industries, it has the potential to be extremely harmful to the aquatic 

environment, particularly for benthic communities and corals, which take thousands of years to 

form.  

Although the projected negative impacts are known, the consequences of dredging and 

other coastal construction are unavoidable due to the proximity of the reef ecosystems. Dredging 

reduces visibility and smothers reef organisms, leading to sediment rejection behaviors. Corals 

can display sediment rejection in various ways such as: corals polyp rejection, mucus production, 

ciliary/tentacular action, morphological variation (Erftemeijer et al., 2012). Southeast Florida’s 

reef ecosystems are highly biodiverse, with several species of scleractinian and gorgonian corals, 

sponges, algae, and reef fish (Walker et al., 2012). Specifically, 27 species of scleractinian corals 

and 39 species of gorgonians can be found along Palm Beach, Broward, and Miami-Dade 

counties (Goldberg, 1973).  

Study Importance 

This study provides a first ever comprehensive approach to quantify element 

contamination within Port Everglades sediment and compare them with West Lake and the 

nearby coral reef sites. The temporal and spatial aspects of the sediment core samples are 

valuable first steps to understanding the accumulation of these elements and their variation 
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within each core, site, and throughout Port Everglades. This research lays groundwork for future 

anthropogenic contamination research and environmental toxicology studies. 

Objectives 

The port sediment analysis focused on identifying and quantifying fourteen different 

trace elements in Port Everglades and the coral reef sediment prior to the 2023 proposed 

dredging project using induced coupled plasma mass spectrometry (ICP-MS). Fourteen trace 

elements (arsenic, cadmium, cobalt, chromium, copper, lead, mercury, manganese, molybdenum, 

nickel, selenium, tin, vanadium, and zinc) were measured in fourteen sediment cores 1-2m in 

length collected in Port Everglades and surrounding areas. These data have established 

contaminated element accumulation levels that could be released to the nearby coral reef track by 

the resuspension of sediment during the massive dredging operation.  

Materials and Methods 

Sample Collection 

Permits for sediment core collection were provided by Broward County (Permit #ES2019-

11), US Army Corps of Engineers (Permit #SAJ-2019-01644(NW-LCK)), and Florida DEP 

(Permit #05131935, Project #06-375933-001-EE). Sediment cores, collected on July 9-11, 2019, 

ranging from 1-2 meters in length, were collected from seven different locations via vibratory 

coring from a boat platform within and outside Port Everglades, Florida including 1) Dania 

Cutoff Canal (DCC): contained exposed mangroves and is located adjacent to the park road 

(26.064° N, 80.114° W), 2) Park Education Center (PEC): located within a semi-exposed 

mangrove channel with shallow tidal flow (26.084° N, 80.112° W), 3) Park Headquarters (PHQ): 

an exposed beach located south of Oceanographic Center along a small beach and lies within the 

Von D. Mizell – Eula Johnson State Park (26.07372º N, 80.11276º W), 4) South Turning Basin 

(STB): a semi-isolated canal surrounded by mangroves located within Port Everglades (26.075° 

N, 80.1162° W), 5) West Lake (WL): an isolated water body west of the intracoastal waterway, 

surrounded entirely by mangroves (26.075° N, 80.112° W), 6) North Reef (RF): Located 

between the first reef tract and Fort Lauderdale Beach, (26.110° N, 80.100° W), and 7) South 

Reef (RF): located between mooring balls and Park Beach, situated directly east of port gantry  

(26.074° N, 80.096° W). A map of coring locations can be found in Figure 1. 
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A Bradford pneumatic vibrator, powered by an air compressor, was clamped to aluminum 

barrels (measuring 7.5 cm diameter and 3 m length). This setup was further supported by a 

vibracore extraction land-based tripod. The United States Geological Survey (USGS) at the  

Davie and St. Petersburg locations provided the materials for and assisted in this process. Core 

catchers were positioned at the base of each barrel to ensure complete recovery of the sediments. 

The mechanical vibration of the pneumatic vibrator pushed the barrels into the sediment. Upon 

recovery of the sediment core, the barrel was removed from the water and the Bradford 

pneumatic vibrator was detached. The barrels were then cut to core length via pipe cutter and 

capped immediately. The core lengths were then measured, recorded, and prepared for transport. 

The cores were split longitudinally at the USGS St. Petersburg Coastal and Marine Science 

Center using a custom-made sediment core splitter. Following the splitting process, each core 

segment was placed inside plastic sleeves prevent desiccation and prepared for transport to the 

USGS laboratory at the USGS laboratory at NSU’s Center for Collaborative Research building, 

where they were stored horizontally at 4° C in a Continental CH3R-GD refrigerator. High 

resolution, panoramic photos were taken of each core prior to sampling to assess lamination 

following the sampling process. Subsamples of sediment (1 cm3, 2-3 g) were taken at 5 cm 

intervals along the entire length of the core from surface to base. A total of 302 sediment samples 

were collected and analyzed for the 14 element concentrations. 

Digestion and Analysis 

Each sediment sample was washed three times with ultrapure deionized water (18.2 

megohm) from a Barnstead water purification system. The sediments were then pre-dried 

overnight in an VWR drying oven for 18 hours at 80° C and then for five hours in a Fischer 

Scientific isotemp vacuum oven model 282A at 80° C at a pressure below 10-2 torr, using a 

14008-01 model Welch 1400 DuoSeal vacuum pump. The dry weight of each sample was then 

recorded. The digestion technique used for this experiment was EPA Method 3050B (EPA). 

Ultrapure deionized water was added to reach the remaining volume of 100 mL. 

Analyses were performed using a sector-field induced coupled plasma mass spectrometer 

(ICP-MS) (ThermoFisher Element XR) with a Peltier-cooler spray chamber (PC-3; Elemental 

Scientific, Inc.) at The University of Southern Mississippi’s Center for Trace Analysis. 
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Concentrations of fourteen elements were measured for arsenic (As), cadmium (Cd), 

chromium (Cr), cobalt (Co), copper (Cu), lead (Pb), molybdenum (Mo) manganese (Mn), 

mercury (Hg),nickel (Ni), selenium (Se), tin (Sn), vanadium (V), and zinc (Zn).  Prior to 

analysis, digested samples were diluted 5-fold in 0.64 M ultrapure nitric acid (Seastar Baseline) 

containing 2 ppb indium as an internal standard. Diluted samples were held in acid-washed 

Teflon autosampler vials. Mass spectrometer scans were performed in low (Cd-111, Hg-199, 

200, 201, 202, Pb-208), medium (Al-27, V-51, Cr-52, Mn-55, Fe-56, Co-59, Ni-60, Cu-63, Zn-

66), and high (As-75, Se-77, 82) resolution, depending on the isotope. Mo-98 was monitored to 

correct for MoO+ interference on Cd. Standardization was employed by external standards, with 

a high standard and a blank re-run every eight samples. For the elements (Hg, Se) where multiple 

isotopes were determined, no significant analytical differences were noted between the isotopes. 

Two USGS reference water concentrations were also assessed as part of each analytical run to 

verify the standardization. In several cases, sample calibration was also verified by standard 

additions. Blanks of ultrapure deionized water, hydrogen peroxide, and trace metal basis nitric 

acid (10 %) were used for quality control purposes. Detection limits were calculated as three 

times the standard deviation of the blank (Appendix Table 1). SRM (Standard Reference 

Material) was digested and analyzed as well to evaluate reliability of the analytical methods used 

in this study. The SRM recovery rates for As, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Se, Sn, V, 

and Zn were 73 %, 89 %, 71 %, 62 %, 76 %, 66 %, 82 %, 48 %, 57 %, 79 %, 76 %, 31 %, 66 %, 

77 %, respectively. 

Continental Crust Composition 

Continental crust chemical composition averages were derived from three continents, 

including the post-Archean Australian average shale (PAAS), European shale composite (ES) 

and North American shale composite (NASC) samples (Taylor and McLennan, 1995). These 

naturally occurring crustal compositions can be utilized to determine the severity of 

contamination within sediment samples. 

Geo-accumulation Index 

The geo-accumulation index (Igeo ) measures the pollution intensity of individual 

sampling locations. This is a quantitative measure of the degree in contamination in sediments 

(Förstner et al., 1990). The Igeo is calculated with the following calculation:  
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Igeo = log2(
Cn

1.5xBn
) 

Cn represents measured concentrations within the sediment cores and Bn represents 

background levels of the continental crust (Rudnick and Gao, 2003). Mueller (1979) has 

provided values that quantify the degree of contamination from the above equation:  

4 - 5: strongly to extremely contaminated 

3 - 4: strongly contaminated 

2 - 3: moderately to strongly contaminated 

1 - 2: moderately contaminated 

0 - 1: uncontaminated to moderately contaminated 

<  0: uncontaminated. 

Pollution Load Index 

The pollution load index (PLI) has been proposed by Tomlinson et al. 1980. PLI is 

calculated using contamination factor (CF), represented by Cmetal/Cbackground. The calculation for 

PLI is as follows: 

PLI = (CF1 x CF2 x CF3 x … CFn)1/n 

where n = number of elements. This approach looks at elements within each sediment core as a 

whole and providing a PLI value that explains overall element pollution within each sediment 

sample. A sample with a PLI > 1 is classified as polluted while a sample with a PLI < 1 indicates 

that there is no contamination present (Tomlinson et al., 1980; Ray et al., 2006; Badr et al., 

2009). 

Potential Ecological Risk Index 

The potential ecological risk index (PER) is another approach to observe the 

contamination degree of the overall element concentrations within each sediment sample (Jahan 

and Strezov, 2018). Guo et al. (2010) presented the following equation to determine the potential 

ecological risk index: 

PER = ∑ E

 

 

 

E = TC 
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T = Ca/Cb 

where Ca = element content within sample and Cb = reference value of the element. T represents 

the toxic response factor as follows: Zn, Mn = 1, Cr = 2, Cu, Pb = 5, Ni = 6, As = 10, and Cd = 

30 (Hakanson, 1980; Fu et al., 2009; Guo et al., 2010; Chen et al., 2014; Cao et al., 2015).  

Threshold effect levels (TEL) and Probable effect levels (PEL)  

Threshold effect levels (TEL) and probable effect levels (PEL) can be used as valuable 

tools to assess Numerical Sediment Quality Assessment Guidelines (SQAG) (MacDonald and 

Ingersoll, 1993). The threshold effect levels indicate element concentrations in sediment in 

which benthic organisms have started to exhibit toxic responses, while the probable effect levels 

indicate concentrations in which a large percentage of benthic organisms have exhibited toxic 

responses (Geoenvironmental Engineering, 2015). 

Statistical Analysis 

Statistical analyses were conducted with Microsoft Excel (v. 2012; Microsoft 

Corporation) and the statistical software PRIMER (v7, PRIMER-E Ltd). A parametric design 

was employed to assess differences among trace element concentrations at the seven sites and at 

every 5 cm. Single-factor one-way analysis of variance (ANOVA) was utilized to determine 

significant differences (p < 0.05) between and among elements within and across sample sites. 

The statistical software PRIMER (v7) was used to generate Pearson correlations to test for 

differences among the trace element concentrations. The Pearson correlation values were then 

used to create dendrograms and non-metric multi-dimensional scaling (MDS) cluster analyses to 

further investigate relationships between the element concentrations within the sediment 

cores.  A single factor one-way ANOVA was performed to examine significant mean differences 

(p < 0.05) between maximum concentrations amongst coring locations and match paired t-tests 

were performed to further investigate the origin of the significant differences (v. 2012; Microsoft 

Corporation). 

Results and Discussion 

Ten sediment cores were taken from four sites within Port Everglades and two cores from 

West Lake south of Port Everglades along the Intracoastal Waterway (ICW). Three cores were 

taken from Dania Cutoff Canal (DCC), two from South Turning Basin (STB), three from Park 

Education Center (PEC), and two from Park Headquarters (PHQ). Replicate cores within each 
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site were taken to compare element concentration variations per location as sediments are 

dynamic systems. All cores were collected along the perimeter of the Intracoastal Waterway 

within the port and in West Lake (WL) in water depths less than two meters. Reef sites (RF) 

surface sediment concentrations were compared to the surface concentrations of all cores.  

Concentrations of all 14 elements were detected in all sediment cores. Table 2 illustrates the total 

elemental concentrations across each sediment core from greatest to least, while Table 3 

demonstrates all elemental ranges, upper continental crust values (Rudnick and Gao, 2003), and 

TEL and PEL values.  

Cobalt, cadmium, mercury, and selenium were consistently in the lowest concentrations 

across all port sites, West Lake, and the adjacent nearshore coral reef tract. Meanwhile, arsenic, 

manganese, vanadium, and zinc concentrations were the highest at all port sites, West Lake, and 

the nearshore reef sites. Chromium was the highest at the nearshore reef sites but not across the 

port sites or West Lake. Molybdenum was the second lowest element concentration at the reef 

sites and fifth lowest at West Lake while it was moderately to highly represented at all the port 

sites. 

Elemental Core and Sediment Differences per Location 

No significant differences were noted between or among replicate cores at WL or 

replicate sediment samples from the nearshore reef sites. However, two of the four port sites 

(DCC, PEC) exhibited significant variability, specifically among tin concentrations. DCC 

exhibited significant differences among the three duplicate cores in concentrations of cadmium 

and tin and PEC exhibited significant differences (p < 0.05) among concentrations of tin 

(Appendix Table 2). No significant differences in elemental concentrations were found among 

the cores collected at PHQ and STB. No significant differences were found between the element 

concentrations of duplicate cores in WL. No significant differences were found among the 

element concentrations of the surface sediment samples from either north or south RF. The 

single factor one-way ANOVA revealed significant mean differences between elemental 

concentrations of Co, Hg, Mn, and Se (Appendix Table 3).  Significant differences between 

coring locations (Port and WL) and RF sites were not able to be determined due to small sample 

sizes (i.e., surface sediment samples of only 5 cm in RF sites). The elements (Co, Mn, and Se) 

with significant differences between Port and WL, p < 0.006, 0.0055, and 0.0032, respectively, 

were all elements that displayed low concentrations with respect to the upper continental crust 
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values (Table 3). Due to the low concentrations of these elements, variance was lower, and 

therefore the analysis of variance (single-factor one-way ANOVA) was more likely to detect 

differences between coring locations (Port and WL).   

 Hg (p = 0.0002) did not display concentrations below upper continental crust values 

(Table 3). The majority of Hg concentrations were not detected (Appendix Tables 4 – 17) and 

were only measured in spikes (Appendix Tables 5, 7 – 9, 12 – 13, 14 – 15). This may be the 

reason of the significant difference of Hg concentrations across Port locations and WL. 

Comparisons to Continental Crust Values 

Of the fourteen elements analyzed (As, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Se, Sn, V, 

Zn), all but nickel and selenium had at least one concentration in the cores that exceeded 

continental crust values (Table 3). Sediment molybdenum concentrations exceeded those of 

continental crust (1.5 µg/g) at all port locations but not WL or the RF sites (Appendix Tables 4 -

17). Concentrations in one port location (DCC core 3, 384.5 µg/g) exceeded continental crust 

values by more than 250 %. Arsenic (entire core), cadmium (entire core), molybdenum (entire 

core), chromium (35 cm), vanadium (35 cm) were above continental crust values at PHQ. 

Vanadium and chromium have been previously found to be incorporated into sediments due to 

adsorption to soluble iron (Fe) oxide grain coatings at the sediment water interface (Loring, 

1979). Arsenic, cadmium, copper, mercury, molybdenum, and tin in the sediment from WL 

exceeded continental crust values. The north and south RF sites had levels of arsenic, copper, 

and zinc that exceeded levels found in the continental crust, with high levels of copper (28.6 

µg/g) and zinc (91.1 µg/g) These concentrations were 1.4 and 1.3 times greater, respectively, 

than those found in the crust. Arsenic concentrations were anywhere from 1.8 to 5.7 times higher 

than the background continental crust. 

Overall, sediment samples from cores collected within the port displayed the most 

element concentrations above continental crust values, with one location exceeding background 

levels for 11 of the 14 elements (PEC, As, Cd, Cr, Cu, Hg, Pb, Mo, Ni, Sn, V, and Zn). WL 

displayed five of 14 element concentrations above continental crust values (As, Cd, Hg, Mo, and 

Sn), and north and south RF sites only displayed three of 14 elements (south RF - As, Cu, and 

Zn); the RF sites had the lowest levels of elemental contaminants. 
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Geo-accumulation index (Igeo) 

Of the 14 elements analyzed, only arsenic and molybdenum exhibited geo-accumulation 

values showing moderate to extreme contamination levels. Molybdenum and arsenic displayed 

contaminated Igeo values in DCC and PHQ core samples, ranging from strongly to extremely 

contaminated (Appendix Tables 18 - 19). Molybdenum and arsenic within STB cores exhibited 

moderate to strongly contaminated values (Appendix Table 20). Arsenic and molybdenum 

exhibited uncontaminated to moderately contaminated values at PEC (Appendix Table 21). 

Arsenic in WL was the only element to show moderately to strongly contaminated levels 

(Appendix Table 22). Both RF sites showed uncontaminated to moderately contaminated arsenic 

levels (Appendix Table 23).  

Pollution load index (PLI) 

The PLI value explains the overall element pollution within each sediment sample. This 

approach assesses elements within each sediment core. The DCC site cores had polluted 

sediments throughout the core. STB had low PLI levels while PEC yielded polluted sediments 

only at the surface sediment. The PLI at PHQ was below contaminated values. The PLI in WL 

and the RF sites all showed no signs of contamination (Appendix Table 24).  

Potential ecological risk (ERI) 

DCC sediment exhibited high to significantly high ecological risk. STB and PHQ 

sediment exhibited considerable to significantly high ecological risk. PEC displayed low to high 

ecological risk throughout the cores except for the surface sediment that exhibited significantly 

high risk. WL exhibited low to considerable ecological risk while the RF sites displayed low to 

moderate potential ecological risk (Appendix Table 25). 

Threshold and Probable Effect Levels (TEL and PEL) 

DCC arsenic exceeded both TEL and PEL at all depths, chromium and nickel regularly 

exceeded TEL while copper was found above TEL levels at one DCC sample and Zn exceeded 

TEL levels at one sample and PEL levels in another (Appendix Tables 26 - 28). PEC samples 

exceeded the PEL for arsenic, copper, mercury, nickel, and zinc while exceeding the TEL for 

copper and zinc. PEL also had most of its high elemental contaminants (Cd, Hg, Pb, Ni, Zn, Cu 

and As) in its surface sediment (Appendix Tables 29 - 31). Arsenic exceeded the TEL values in 

PHQ cores while cadmium also exceeded the TEL values in multiple samples (Appendix Tables 

32 - 33). Copper found at the STB exceeded the PEL level while arsenic, mercury, and zinc 
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exceeded the TEL and were found primarily at the surface of the cores (Appendix Tables 34 - 

35).  

Copper and mercury exceeded the TEL in WL samples while arsenic exceeded the TEL 

values across the WL cores. No PEL values were exceeded by any of the fourteen elements in 

the WL core samples (Appendix Tables 36 - 37). The only elemental concentration found above 

the PEL threshold was copper in a single sample at the RF sites; the north RF site had samples 

containing arsenic concentrations (Appendix Tables 38 - 39). 

Comparison of Port, WL, and RF with world-wide Port Elemental Concentrations  

 Appendix Table 40 displays elemental concentrations of marine sediment at various 

worldwide Port locations with the Port Everglades data added for comparison purposes. 

Concentrations of cobalt and nickel were generally lower in the Port Everglades cores (Co 0.02 – 

7.40 µg/g and Ni 0.42 – 19.5 µg/g) than those found in previous port studies in New South 

Wales Australia (Co: 1-12 µg/g and Ni 3-20 µg/g), Naples, Italy (Co: 1.96-7.2 µg/g) and Koper, 

Slovenia (Ni 61.3-109.4 µg/g). Concentrations of chromium (0.34 – 56.8 µg/g), copper (0.29 – 

210 µg/g), mercury (0 – 0.74 µg/g), lead (0.06 – 35.9 µg/g), manganese (1.6 – 203.6 µg/g), 

selenium (0.05 – 6.8 µg/g), tin (0.0 – 140.1 µg/g), vanadium (0.2 – 176.2 µg/g), and zinc (0.63 – 

387 µg/g) were similar to concentrations those found in these studies, while arsenic (0.8 – 223 

µg/g), cadmium (0.0 – 0.92 µg/g) and molybdenum (0.0 – 140.1 µg/g) were consistently higher 

than those found in port sediment in these various locations (Appendix Table 40). 

Elemental Contaminants – Dania - Cutoff Canal 

The highest concentration of molybdenum was displayed in DCC (384.5 µg/g), 256 times 

greater than continental crust background levels, Appendix Table 6), and was the highest 

molybdenum concentration in all the cores (Port, WL, and RF) collected in this study. The range 

of molybdenum in DCC was not detected (n/d) to 384.5 µg/g. The high concentrations of 

molybdenum could be due to anoxic and sulfidic conditions in the water column. Molybdenum 

concentrations in sediment, along with iron (Fe) distribution, is typically used to identify such 

conditions in marine systems (Scholz, et al. 2017). Molybdenum also has a long residence time 

of approximately 440,000 years in oxygenated seawater (Miller, et al. 2011), and is converted to 

sulfur-containing complexes in the presence of dissolved hydrogen sulfide (H2S) (Helz et al. 

1996; Erikson and Helz, 2000; Vorlicek et al., 2004; Dahl et al., 2013a). Therefore, sedimentary 

Mo enrichments will typically indicate the presence of hydrogen sulfide as well as anoxic 
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conditions (Scholz, et al., 2017). It is possible sediment samples collected from DCC contained 

anoxic and H2S sediments due to consistently high levels of Mo in the first 50 cm. Additionally, 

DCC displayed the highest level of arsenic of all the cores collected within this study, with a 

concentration of 223 µg/g (Appendix Table 6), 148.7 times greater than upper continental crust 

values. The range of arsenic in DCC was 0.80 – 233 µg/g.  

High concentrations of both molybdenum and arsenic could indicate a significant 

contamination within the surrounding ecosystem. Significant correlations between the two 

elements (R = 0.87641) were displayed within DCC as well (Figure 2; Appendix Table 41). 

Visible evidence of this disturbance, e.g., an obvious separation between sediment and organic 

material, within the longitudinally split sediment core can be seen in the Appendix Figure 3.  

 Dania Cutoff Canal is located just south of Port Everglades and is used by small ships 

handling heavy equipment and general cargo (U.S. Harbors, 2021). Widespread groundwater 

contamination within Port Everglades has been reported due to storage tank leakage, as well as 

observations of significant standing petroleum floating and mixing on the groundwater table. The 

Port Everglades Impact Statement (2015) stated that contamination into the underlying 

groundwater and adsorption of elements by underlying sediments in Port Everglades and Dania 

Cutoff Canal is likely; therefore, elements above PEL were to be expected. All other samples for 

all 14 elements were below the TEL (Appendix Tables 26 - 28). 

Elemental Contaminants - Park Education Center  

Manganese (98.1 µg/g), vanadium (176.2 µg/g), and zinc (602.8 µg/g) were the highest 

concentrations found in PEC. Manganese has been associated with mangrove forest rhizospheres 

and high permeability of sediments (Guieros et al., 2003). Vanadium and zinc are strongly 

associated with organic matter (Emerson and Huested, 1991; Shine and Ford, 1995; Du Laing et 

al., 2007; Schneider et al., 2016; Telfeyan et al., 2017). Thus, sediments with higher particulate 

organic matter are more likely to become contaminated with elements over time through 

processes such as sorption to humic substances (Liang and Wong, 2003). 

The highest concentration of copper was displayed in PEC (214.9 µg/g, 8.6 times greater 

than continental crust background levels, Appendix Table 8), and had the highest copper 

concentration of all the cores (Port, WL, and RF) collected in this study. Copper has been used in 

antifouling treatments since ancient times (Yebra et al., 2004); however, starting at the end of the 

18th century, is has been more frequently incorporated along with other metals such as lead, 
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arsenic, and mercury (OSPAR Commission, 2016). This sample site’s proximity within central 

Port Everglades may explain the high concentrations of copper found in surface sediment. The 

highest concentration of zinc was displayed in PEC (602.8 µg/g, 8.5 times greater than 

continental crust background levels, Appendix Table 9), was also the highest zinc concentration 

of all the cores (Port, WL, and RF) collected in this study. Copper and zinc have been previously 

analyzed in surface sediments in Bahía Blanca Estuary, Argentina, an area that is near oil 

refineries, terminals, petro-chemical industries, and textile plants that discharge waste into the 

surrounding estuaries. This area additionally is frequently utilized by fishing boats and cargo 

ships and requires frequent dredging. Both copper and zinc were detected in surface sediments in 

Bahia Bay, with zinc displaying a 1.3 times high acute toxicity than copper to recently hatched 

Chasmagnathus granulate larva, a burrowing semiterrestrial crab (Ferrer et al., 2003).  

PEC displayed strong correlations (R > 0.8) between the following: molybdenum and 

arsenic (R = 0.92858), copper and lead (R = 0.8888), and arsenic and selenium (R = 0.85846) 

(Figure 3, Appendix Table 42). Lead is known to have a high correspondence with reactive solid 

phases and copper concentrations are strongly affected by the presence of organic matter (Laxen, 

1985; Della Puppa et al., 2013; Seda et al., 2016). Additionally, lead has been found to bind to 

soil particles as well as to living and dead microbial cells (Chaney et al., 2000; Yang et al., 

2009). It has also been found in association with copper and iron in freshwater streams in central 

Indiana (Reising et al., 2018). Anthropogenic sources or arsenic and selenium include coal 

combustion, mining, smelting, and municipal, industrial, and domestic waste disposal (Wen and 

Carignan, 2007; Zeng et al., 2015; Ali et al., 2019;). Arsenic and selenium are both metalloids 

with very similar chemical properties with different biological effects (Sun et. al., 2014). 

However, little is known about their elemental interactions in sediment.  

Elemental Contaminants - Park Headquarters  

Element concentrations in PHQ exceeded upper continental crust values (Rudnick and 

Gao, 2003) for the following: molybdenum (269.5 µg/g, 179.1 times greater than upper 

continental crust values), cadmium (0.70 µg/g, 7.1 times greater than upper continental crust 

values), vanadium (70.8 µg/g, 1.18 times greater than upper continental crust values), zinc (241 

µg/g, 3.4 times greater than upper continental crust values), chromium (42.8 µg/g, 1.2 times 

greater than upper continental crust values) and arsenic (75.0 µg/g, 50 times greater than upper 

continental crust values) (Appendix Tables 10 - 11). Park Headquarters is less than 0.4 
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kilometers south of Park Education Center, however, it displayed considerably lower element 

concentrations. It is difficult to determine the cause of such differences, as sediment systems are 

dynamic and unpredictable. One site may have had more anthropogenic sediment disturbance 

related to park activities than the other. 

PHQ displayed significant correlations (R > 0.8) between the following: molybdenum 

and arsenic (R = 0.8717), molybdenum and selenium (R = 0.8243), lead and copper (R = 

0.8954), vanadium and chromium (R = 0.9150), vanadium and selenium (R = 0.8889), chromium 

and selenium (R=0.9181), and arsenic and selenium (R = 0.8045) (Figure 4, Appendix Table 43). 

Although this location displayed many significant interactions between elements, the highest 

element concentrations found within PHQ were molybdenum (269.5 µg/g, 177 times greater than 

upper continental crust values) and zinc (241 µg/g, 3.4 times greater than upper continental crust 

values) (Appendix Tables 10 - 11). Like DCC and PEC, evidence of anoxic conditions, organic 

matter, and higher likelihood of contamination were displayed at PHQ (Shine and Ford, 1995; 

Du Laing et al., 2007; Schneider et al. 2016; Scholz et al., 2017).  

Elemental Contaminants - South Turning Basin 

The highest element concentrations within STB were copper (136.5 µg/g), manganese 

(101.8 µg/g), and zinc (190 µg/g) (Appendix Tables 12 - 13). Samples collected from the South 

Turning Basin exceeded upper continental crust values (Rudnick and Gao, 2003) for the 

following: arsenic (59.9 µg/g, 39.9 times greater than upper continental crust values); cadmium 

(0.35 µg/g, 3.6 times greater than upper continental crust values), copper (136.5 µg/g, 5.5 times 

greater than upper continental crust values),lead (28.3 µg/g, 1.4 times greater than upper 

continental crust values), mercury (0.19 µg/g, 1.9 times greater than upper continental crust 

values), molybdenum (88.5 µg/g, 59 times greater than upper continental crust values) tin (11.1 

µg/g, 2.0 times greater than upper continental crust values), and zinc (190 µg/g, 2.7 times greater 

than upper continental crust values) (Appendix Tables 12 - 13). 

Sediment core samples collected from STB were visibly high in organic matter content 

(Appendix Figures 9-10), which may explain the higher number of elemental concentrations 

exceeding upper continental crust values (Rudnick and Gao, 2003), as elements such as arsenic, 

cadmium, copper, mercury, and zinc have been found to be associated with high particulate 

organic matter (Coale and Bruland, 1988; Moffett and Dupont, 2007; Bruland, 1989; Donat and 

Bruland, 1990; Little et al., 2014; DiToro et al., 1990; Gibbs, 1973; Orem et al., 1986; Chin and 
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Gschwend, 1991; Johansson and Iverfeldt, 1994; Kainz et al., 2003; Mirlean et al., 2003; Wang 

and Mulligan, 2005). Additionally, STB displayed values exceeding probable effect level (PEL) 

threshold values for copper (0.36 – 136.5 µg/g, PEL value: 108 µg/g), and South Turning Basin 

core 1 displayed a single value (10 cm) of arsenic exceeding the PEL threshold (range 3.0 – 59.9 

µg/g, PEL value: 41.6 µg/g).  

Element distribution and their relationship with organic matter is a crucial component to 

determining elemental mobility, potential bioavailability, and toxicity to the surrounding aquatic 

ecosystems (Baran et al., 2019). Copper and zinc are commonly associated with high organic 

matter content (Shine and Ford, 1995; Du Laing et al., 2007; Schneider et al., 2016), due to slow 

decompositions rates in the anaerobic conditions (Liang and Wong, 2003). Sediments with high 

manganese content often occur in anoxic basins (Huckriede and Meischner, 1996).  

STB displayed a multitude of significant interactions (Figure 5, Appendix Table 44); the 

highest Pearson correlations coefficients were found to be between molybdenum and arsenic 

(R=0.9105), cadmium and lead (R = 0.9597), cadmium and vanadium (R=0.9360), cadmium and 

chromium (R=0.9394), cadmium and nickel (R = 0.9679), cadmium and zinc (R=0.9449), 

cadmium and copper (R = 0.9466), lead and nickel (R = 0.9442), lead and zinc (R=0.9835), lead 

and copper (R = 0.9964), vanadium and chromium (R = 0.9637), vanadium and nickel (R=0.96), 

vanadium and selenium (R = 0.9755), chromium and nickel (R = 0.9812), chromium and 

selenium (R = 0.9592), cobalt and selenium (R = 0.9462), nickel and zinc (R = 0.9273), nickel 

and selenium (R = 0.9287), and zinc and copper (R=0.9840). Arsenic cadmium, copper, lead, 

molybdenum, and zinc exceeded upper continental crust values (39.9, 3.6, 5.5, 1.4, 59, and 2.7 

times greater, respectively) for samples collected from South Turning Basin, all of which have 

been found to be associated with high organic matter content (Laxen, 1985; Emerson and 

Huested, 1991; Shine and Ford, 1995; Kaschl et al., 2002; Korshin et al., 2005; Wang and 

Mulligan, 2005; Du Laing, et al., 2007; Della Puppa et al., 2013; Marks et al., 2015; Schneider, 

et al., 2016; Seda et al., 2016;Telfeyan, et al., 2017).  

Elemental Contaminants - West Lake  

Sediment core samples collected from West Lake Park served as the control, as the site is 

located within a mostly isolated water body west of the Intracoastal Waterway within an 

enclosed mangrove habitat five miles south of Port Everglades. There is little to no 

anthropogenic activity since boats are not permitted. The sediment samples provided valuable 
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insight to the degree of contamination within the area. Low to no water movement was observed 

in this sample site. However, concentrations exceeding upper continental crust values (Rudnick 

and Gao, 2003) included molybdenum (3.6 µg/g, 2.4 times greater than upper continental crust 

values), cadmium (0.28 µg/g, 2.9 times greater than upper continental crust values), mercury 

(0.26 µg/g, 2.7 times greater than upper continental crust values), copper (30.4 µg/g, 1.2 times 

greater than upper continental crust values), tin (7.7 µg/g, 1.4 times greater than upper 

continental crust values), and arsenic (21.7 µg/g, 14.5 times greater than upper continental crust 

values) (Appendix Tables 14 - 15). Even so, elemental concentrations from WL are significantly 

lower than sediment samples collected from the Port (Appendix Tables 4 – 15). 

WL TEL threshold levels were exceeded at only specific depths for mercury (TEL 0.13 

µg/g, 45-55 cm WL 1, 40 cm WL 2), nickel (TEL 15.9 µg/g, 75 cm WL 2), copper (TEL 18.7 

µg/g, 5 – 10 cm WL 1, 5 cm WL 2), and arsenic (TEL 7.24 µg/g, found consistently throughout 

both WL 1 and WL 2 cores) (Appendix Tables 36 – 37). Molybdenum concentrations in WL (n/d 

- 3.61 µg/g) were much lower compared to Port sites (n/d – 140.1 µg/g) (Appendix Tables 4 – 

15).  

Overall, the sediment core samples collected from the port and WL displayed high 

correlations between molybdenum and arsenic (R = 0.83629), chromium and nickel (R = 

0.84364), chromium and selenium (R = 0.84602), and copper and lead (R = 0.79765) (Figure 6, 

Appendix Table 45). The highest correlations among elements from WL were between cadmium 

and lead (R = 0.9239), vanadium and tin (R = 0.9811), chromium and cobalt (R = 0.9081), nickel 

and tin (R = 0.9715), and arsenic and selenium (R = 0.9608), with the highest elemental 

concentrations in manganese and zinc (Figure 6, Appendix Table 45). WL is surrounded by 

mangroves and their rhizospheres can result in increased manganese levels (Guieros et al., 2003). 

The particulate organic matter located in the upper portion of the cores may explain the high 

levels of zinc as it is strongly associated with organic matter (Emerson and Huested, 1991; Shine 

and Ford, 1995; Du Laing et al., 2007; Schneider et al., 2016; Telfeyan et al., 2017). 

Elemental Contaminants - North and South Reef 

North RF had high arsenic concentrations (up to 8.55 µg/g, 5.7 times greater than upper 

continental crust values) (Appendix Table 16). North RF displayed significant correlations (R > 

0.8) between cadmium and lead (R = 0.9843), cadmium and vanadium (R = 0.9648), cadmium 

and chromium (R = 0.9968), cadmium and manganese (R=0.9996), lead and vanadium (R = 
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0.9033), lead and chromium (R = 0.9953), lead and manganese (R = 0.9887), vanadium and 

chromium (R=0.9405), vanadium and manganese (R =  0.9574), chromium and manganese (R = 

0.9986), cobalt and zinc (R = 0.9646), cobalt and copper (R = 0.9988), nickel and zinc (R = 

0.9263), nickel and tin (R = 0.9932), and zinc and copper (R = 0.9508) (Figure 7, Appendix 

Table 46). South RF had correlations between cadmium and cobalt (R = 1), lead and nickel (R = 

0.9869), vanadium and arsenic (R = 0.9998), manganese and zinc (R = 0.9999), manganese and 

copper (R = 0.9989), and zinc and copper (R = 0.9993) (Figure 8, Appendix Table 47). 

South RF displayed high arsenic (up to 3.82 µg/g), copper (28.6 µg/g), and zinc 

(91.1µg/g) concentrations as well (Appendix Table 17). The copper levels were high enough to 

exceed the TEL threshold of 18.7 µg/g. Although element concentrations were found to be 

visibly lower in the RF sites compared to both Port and WL, arsenic concentrations were 

consistently high (up to 5.7 times above the upper continental crust values). in both north and 

south RF, although lower than Port and WL (Appendix Tables 4 - 17). 

There are both natural and anthropogenic sources of arsenic including erosion of arsenic-

containing rocks, volcanic eruptions, mining and fracking, coal-fired power plants, trash 

incineration, arsenic- chromated copper arsenate (CCA) treated wood, cattle-dipping vats, 

chicken litter, fertilizers, pesticides, soil amendments, and sludges from water treatment plants 

(Missimer et al., 2018). A major anthropogenic source of copper into the marine environment is 

from antifouling paints, which are used to coat buoys, ship hulls and underwater surfaces. 

Additionally, chromated copper arsenate (CCA) is used in treated timbers for decking and piling 

structures as well (United States Environmental Protection Agency, 2007). Along with copper, 

the antifouling paint product is dominated by zinc as well (Ytreberg et al., 2016). 

Elemental Contaminants Comparisons for all Sites 

Overall, sediment samples collected from the Port cores (DCC, PEC, PHQ, STB) 

displayed higher concentrations of all elements, except As, compared to WL and RF sites 

(Appendix Tables 4 - 17). As was found to be extremely high within the Port, exceeding PEL 

thresholds at all four Port sites (DCC, PEC, PHQ and STB). However, As was consistently high 

in WL, and RF sites, as well, exceeding the TEL threshold in all but one of the sampling sites 

(south RF). 
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As and Mo Covariance in Port Sites 

All sites revealed that arsenic (As) concentrations (0.6-223.2 µg/g) in all cores exceeded 

probable effect levels (PEL, 41.6 µg/g), where a large percentage of benthic organisms show a 

toxic response. Molybdenum (Mo) concentrations (0-384.5 µg/g) in all cores exceed the 

background continental crust (1.5 µg/g). Excluding West Lake, North Reef, and South Reef, all 

port cores (DCC, STB, PEC, and PHQ) displayed evidence of covariance between molybdenum 

and arsenic. 

Transfer of arsenic from the water column to marine sediments is associated with iron 

(Fe) and manganese (Mn) oxyhydroxides and oxides (Tribovillard, 2020). Similarly, 

molybdenum may be transferred from the water column to sediments through a particulate 

shuttle effect involving Fe and Mn (Algeo and Lyons, 2006; Algeo and Tribovillard, 2009). 

Additionally, high molybdenum values have been found in areas bearing manganese oxides 

(Crusius et al., 1996).  

Significant correlations between molybdenum and arsenic (R = 0.87641) were displayed 

within all three cores collected from DCC (Figure 2, Appendix Table 41). Arsenic displays 

correlations with molybdenum enrichments in iron shuttling processes and diagenetic cold fluid 

circulation (i.e., cold seeps). In both cases of particulate iron shuttling and diagenetic fluid 

circulation, the correlation between molybdenum and arsenic is caused by a strong relationship 

between these two metals and reactive iron. Iron causes both molybdenum and arsenic to 

combine within the sediment where they are trapped (Tribbovillard, 2020). Therefore, there is a 

high possibility of iron within the sediment samples. 

Anthropogenic origins of molybdenum in the environment include agricultural and 

industrial contamination, such fly ash from mine wastes, fossil fuel combustion (Morrison and 

Spangler, 1992; Zhang and Reardon, 2003) and crop supplementation to counteract molybdenum 

deficiency in crops (WHO, 2011a). Arsenic has been used extensively in Florida since 1893 as a 

pesticide in agriculture and later on golf courses (Singleton, 1929; Miller and McBride, 1931; 

Miller et al., 1933; Deszyck and Sites, 1953; Singleton, 1958;  Deszyck and Ting, 1959; Beard, 

1998; Cai et al., 2002; Fishel, 2005; and Bencko and Foong, 2017;). Default Soil Cleanup Target 

Levels (SCTL) for arsenic levels in Florida soils are defined as 2.1 µg/g in residential 

environments and 12 µg/g in commercial or industrial environments (Chapter 62-777, Florida 

Administrative Code). Arsenic levels found within this study exceeded not only TEL and PEL 



 

 38 

thresholds and displayed extreme contamination (geo-accumulation index, potential ecological 

risk), arsenic concentrations exceeded the Florida SCTL (2.1 µg/g) as well. Average arsenic 

concentrations in Florida have been reported to be 3 µg/g (Goldberg, 1963); therefore, 

anthropogenic inputs are significantly contributing to the arsenic contamination found within the 

sediment core samples. 

 Another possible contributor to the anthropogenic sources of arsenic found within the 

sediment cores is past discharges from Wingate Road Municipal Incinerator and Landfill, a site 

located approximately 5 miles west of Port Everglades. Municipal solid waste was regularly 

incinerated here from 1954 to 1978. After being added to the Environmental Protection Agency’s 

Superfund National Priorities list in 1990, the site closed 11 years later. Investigations of toxic 

chemicals, heavy metals and trace elements have been conducted by the Environmental 

Protection Agency. Previous arsenic detections as early as 1996 were found to be 211 µg/g at the 

Wingate Road Municipal Incinerator Dump and Landfill site (EPA, 1996). Additionally, a cancer 

incidence data analysis was conducted in 2016 for communities in the vicinity of the facility 

(Florida Department of Health and Division of Environmental Health, 1997). Levels of arsenic at 

the previous Wingate facility were found to be 23 µg/g in soil and ash residue and 46 µg/g in 

sediment, as well as sediment collected from Rock Pit Lake (south of Wingate) (59 µg/g in 2013 

and 12.2 µg/g in 2015) (EPA, 2016). 

The combustion of solid waste produces fly ash and bottom ash, which have been found 

to contain arsenic, cadmium, chromium, lead, and nickel (Chrostowski and Sager 1991). Due to 

the close vicinity of this site to Port Everglades, it is possible that the high volume of ash 

produced by the Wingate facility between the years 1954 and 1978 could be one of the root 

causes of high levels of arsenic across all locations. However, sedimentation rates are variable by 

location; therefore, it may be difficult to pinpoint exact timelines to which the ash entered the 

water column and settled into marine sediment.  

Along with multiple possibilities of anthropogenic sources, particulate organic matter 

may play a role as well. Previous case studies have demonstrated that naturally occurring organic 

matter has the potential to influence the sorption behavior of arsenic. Organic matter can enhance 

arsenic release by 1) competition for available adsorption sites, 2) formation of aqueous 

complexes, or 3) change of redox chemistry of the arsenic species and site surfaces (Wang and 

Mulligan, 2005). High geo-accumulation index levels of tin were found in association with 
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molybdenum and arsenic in all three cores collected from Dania Cutoff Canal (Appendix Table 

18); tin has also been used in biofouling paints: In the early 1960s, organotin compounds 

(commonly in the forms tributyltin, TBT, or triphenyltin, TPhT) were used in paints as a biocide 

(Dafforn et al., 2011). The tin-containing biofouling paints became popular as they were 

effective at low concentrations and were used extensively in the 1970s and 1980s. However, 

negative environmental effects were observed due to their usage, and the organotin compounds 

were restricted in the late 1980s for use only on vessels less than 25 meters in length. Today, the 

anti-fouling market is dominated by copper- and zinc-based paints (Ytreberg et al., 2016). 

Copper and Zinc Covariance in Port and West Lake Sites 

Copper and zinc consistently displayed maximum values at the same depths, mostly 

surface sediment (5 to 30 cm) in the following cores: Dania Cutoff Canal 1 (174.5 µg/g Cu, 5 cm 

and 102.0 µg/g Zn, 5 cm), Park Education Center 1 (28.1 µg/g Cu, 55 cm and 33.3 µg/g Zn, 55 

cm), Park Education Center 2 (214.9 µg/g Cu, 5 cm and 415.6 µg/g Zn, 5 cm), South Turning 

Basin 1 (129 µg/g Cu, 20 cm and 190 µg/g Zn, 25 cm), South Turning Basin 2 (136.6 µg/g Cu, 

15 cm and 156.6 µg/g Zn, 15 cm), West Lake 1 (30.4 µg/g Cu, 5 cm and 49.8 µg/g Zn, 5 cm), 

and West Lake 2 (21.1 µg/g Cu, 5 cm and 37.7 µg/g Zn, 5 cm) (Appendix Tables 4, 7, 8, 12, 13, 

14, 15).  

Copper is both a common marine pollutant and an essential element to marine organisms 

in trace amounts. At higher concentrations, however, it can have toxic effects on marine 

organisms (Kim et al., 2008). Particularly, copper can be extremely toxic to coral reefs (Sabdano, 

2009). Sabdano, 2009 demonstrated dramatic coral bleaching and death at copper concentrations 

of 0.1 µg/g. This indicates the potential severity of the much higher levels of copper observed in 

this study to the nearshore coral reef tracts.  

Copper has been known to be strongly complexed to organic material (Coale and 

Bruland, 1988; Moffett and Dupont, 2007), and is incorporated within some insecticides in 

Florida (Diepenbrock et al., 2020). Zinc has been  correlated to organic material as well, 

however, to a lesser extent and by weaker ligands than copper (Bruland, 1989; Donat and 

Bruland, 1990; Little et al., 2014). Due to the relationship among copper, zinc, and organic 

materials, it has been hypothesized that enrichments of the two elements in anoxic sediments are 

controlled by both sulphidiation and transfer of organic matter to the sediment (Francois, 1988; 

Calvert and Pederson, 1993; Brumsack, 2006; Tribovillard et al., 2006).  
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Both copper and zinc are used in antifouling and anticorrosive paints that protect the hulls 

of marine ships, and zinc is often associated with increased sewage, wastewater discharge, and 

increased sedimentary runoff due to rapidly expanding coastal development (Ali et al., 2011). 

Due to the high ship traffic in proximity to the sampling sites, these factors may be what 

responsible for the large zinc spikes observed in the sediment samples.  

Cadmium in Port Sites 

Cadmium concentrations (0-0.92 µg/g) were found above upper continental crust levels 

at specific depths, Dania Cutoff 1-3, Park Education Center 1-3, Park Headquarters 1-2, South 

Turning Basin 1-2, with the highest cadmium level found at 130cm in Park Education Center 1, 

9.4 times higher than background levels. Park Education Center was the only site with Cd levels 

above TEL and PEL values (Appendix Tables 29 – 30).  

Cadmium is an element of concern due to its toxicity and potential for trophic transfer 

(Jacob et al., 2013), and it is one of the EPA’s priority pollutants due to its bioaccumulation, 

persistence, and toxicity (Fu and Allen, 1992). Accumulation of cadmium in organisms is of high 

concern due to its carcinogenic properties and relative toxicity (Waalkes, 2000; Goyer et al., 

2004; Satarug et al., 2010).  

One common source of cadmium is within mineral phosphate fertilizers, which 

commonly contains high zinc concentrations as well (Mortvedt, 1996; Lambert et al., 2007). 

Although little is known about the adsorption of cadmium by sediment, previous studies (Lo et 

al., 1992) have found that organic matter tends to bind to cadmium and copper, inducing 

mobility and affects bioavailability. 

Mercury in Port and West Lake Sites 

Mercury concentration spikes (0-0.63 µg/g) were found above the threshold effect levels 

(TEL: 0.13 µg/g) in the following cores and depths: Dania Cutoff Canal 2 (20 cm), Park 

Education Center 1 (135 cm), Park Education Center 2 (80 cm), Park Education Center 3 (125 

cm), South Turning Basin 1 (15 cm), South Turning Basin 2 (10 cm), West Lake 1 (55 cm), and 

West Lake 2 (40 cm) (Appendix Tables 5, 7 – 9, 12 – 13, 14 – 15). 

Mercury is listed as a priority pollutant by international agencies of marine environmental 

protection and is acutely hazardous in estuaries due to their high biologic productivity (Baeyens 

and Leermakers, 1998; Kannan et al., 1998; Sferra et al.,1999; Harland et al., 2000; Turner et al., 

2001). This has additionally been reported for marine mammals such as dolphins, porpoises, and 
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seals (Law et al., 1992). Organic matter has been found to be an important component in 

controlling the distribution of mercury and other trace elements in bottom aquatic sediments 

(Gibbs, 1973; Orem et al., 1986; Chin and Gschwend, 1991; Johansson and Iverfeldt, 

1994; Kainz et al., 2003; Mirlean et al., 2003).  

A study conducted through Simón Bolívar University in Caracas, Venezuela revealed that 

Porites astreoides exposed to 1.738 µg/g Hg accumulated 89% of the mercury within the 

zooxanthellae, with the remaining found to have accumulated in the polyps and skeleton. Porites 

astreoides also experienced a decrease in both zooxanthellae density and protein content per unit 

surface area (Bastidas and García, 2004). All surface sediment samples collected from the North 

reef and South reef locations did not contain mercury. This provides a clear baseline of the 

present conditions of the reef tracts in proximity to Port Everglades. 

Potential Impacts to Coral Reefs 

The Port Everglades dredging project will most likely present an elemental contaminant 

threat to the adjacent coral reef species, as most sediment cores collected near the port displayed 

evidence of elemental contaminant concentrations at dangerous levels. All reef sediment samples 

(North and South Reef) displayed significantly lower element concentrations compared to 

sediment core samples from all locations. These locations have provided pre-dredging baselines 

and will help to understand the full extent of the potential impacts to the reef ecosystems.  

Coral reefs are ubiquitous throughout many shallow coastal environments in lower 

latitudes and are at high risk of rising pollution pressures (Ali et al., 2011). Trace elements are 

included in the three classes of pollutants that pose a significant risk to coral ecosystems, and 

various stress responses, including 1) physiological stressors, 2) inhibition or coral fertilization 

and reduced reproductive stress, 3) decreased settlement and survival of coral larvae, 4) changes 

in growth and population of zooxanthellae, 5) changes in photosynthesis rates resulting in 

decrease of coral calcification and growth rates during juvenile polyp stage, 6) increased 

bleaching, and 7) overall increased coral mortality have been linked to elevated element levels 

(Kayser, 1976; Esquivel, 1983; Howard and Brown, 1984; Heyward 1988; Abdel-Salam, 1989; 

Harland and Brown, 1989; Goh, 1991;  Falkowski et al., 1993; Reichelt-Brushett and Harrison, 

1999, 2005; Reichelt-Brushett and Harrison 2000; Ferrier-Pages et al., 2001; Reichelt-Brushett 

and Michalek-Wagner, 2005; Mitchelmore et al., 2007; Sabdono 2009). 
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Laboratory experiments have displayed evidence of chemical contamination posing a 

threat to corals species; however, it is difficult to pinpoint specific contaminants. Low 

concentrations of copper, zinc, and iron can physiologically impact coral function at various life 

These toxic substances, commonly found in antifouling agents, can have severe impacts on 

corals. Unfortunately, the effects of these elements are “silent”, resulting in chronic and/or 

sublethal stress or mortality of unknown causes (U.S. Army Corps of Engineers, 2015). 

Conclusions 
 

Sediments within the vicinity of Port Everglades contain a variety of potentially harmful 

elemental concentrations. Trace elements were found in high concentrations at all Port locations 

but not at the coral reef sites. Contamination spikes (including cadmium, chromium, copper, 

lead, mercury, nickel, and zinc) throughout the sediment cores suggest possible elemental 

interactions with high organic matter and/or anthropogenic inputs contributing significantly to 

element concentrations in sediment. Arsenic (As) consistently exceeded both TEL and PEL 

threshold levels within the Port, as well as exceeding TEL in WL and RF sites. Additionally, 

molybdenum (Mo) exceeded upper continental crust values (Rudnick and Gao, 2003) in the Port 

and WL. However, there has been no TEL or PEL Mo data in the literature to help determine its 

toxicity to the marine environment; therefore, more studies will need to be conducted to 

determine the potential toxicity of Mo to benthic organisms. It is likely that the surrounding coral 

reef ecosystem will be greatly affected by these contaminants once the dredging project begins. 

The measured port sediment is highly contaminated with arsenic (As), cadmium (Cd), copper 

(Cu), mercury (Hg), molybdenum (Mo), and zinc (Zn), and the high level of water and sediment 

movement produced during the dredging operation will be much greater than what typically 

occurs in the shallow Intracoastal Waterway. Due to the high elemental concentrations found 

within this study, the potential impacts to the nearby reef tracts (coral damage or mortality) could 

be substantial. 

Future Considerations 

Along with organic matter, various elements have been found to be directly correlated 

with iron (Fe) concentrations in marine sediments. The inclusion of Fe in future studies will most 

certainly aid in the understanding of the origin of element concentrations in sediment samples. 

 Additionally, future research on the extent of entry and accumulation of elements in 
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marine port sediment would help determine the potential impacts to benthic communities and 

nearby coral reefs. A separate study to investigate the change in element concentrations post-

dredging, as well as incorporating the analysis of persistent organic pollutants (POP), would help 

to identify the extent of the damage, and possibly to further identify their sources which pose 

significant threats to the marine ecosystem. Separate studies of temporal accumulation of 

elements in sediment cores to create a timeline of when contamination occurred would contribute 

substantially to the discovery of their origin. Sediment traps will need to be placed at the RF 

locations to observe various types of accumulation and determine possible contaminant sources. 

Future research will also be needed to determine sedimentary rates, sediment types, and the 

amount of particulate organic matter (POM) present within the sediment cores. 
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Table 2. Order of elements from greatest to least based on concentration in each sediment core. 
DCC = Dania Cutoff Canal, PEC = Park Education Center, PHQ = Park Headquarters, STB = South 
Turning Basin, WL = West Lake, NR = North Reef, SR = South Reef. 

 

DCC1: Mn > As > Cu > Sn > Zn > V > Mo > Cr > Ni > Pb > Se > Co > Cd > Hg 

DCC2: Mn > Sn > As > V > Mo > Cr > Zn > Ni > Cu > Se > Pb > Co > Cd > Hg 

DCC3: Mn > Mo > As > Zn > V > Cu > Sn > Cr > Ni > Pb > Se > Co > Cd > Hg 

PEC1: Mn > V > Zn > Cr > Cu > As > Pb > Mo > Ni > Sn > Se > Co > Cd >Hg 

PEC2: V > Mn > Zn > Cu > Cr > As > Pb > Mo > Ni > Sn > Co > Se > Cd > Hg 

PEC3: Zn > V > Mn > Cr > Cu > As > Sn > Ni > Mo > Pb > Co > Se > Cd > Hg 

PHQ1: Mo > V > As > Zn > Mn > Cr > Ni > Cu > Sn > Pb > Se > Co > Cd > Hg 

PHQ2: Mo > V > As > Mn > Cr > Ni > Zn > Cu > Sn > Pb > Se > Co > Cd > Hg 

STB1: Zn > Cu > Mn > V > Mo > As > Cr > Pb > Ni > Sn > Se > Co > Cd > Hg 

STB2: Zn > Cu > Mn > V > As > Mo > Pb > Cr > Ni > Sn > Se > Co > Cd > Hg 

WL1: Mn > Zn > Cu > As > Pb > Cr > V > Ni > Sn > Mo > Se > Co > Cd > Hg 

WL2: Mn > Zn > As > V > Cu > Pb > Cr > Ni > Sn > Mo > Se > Co > Cd > Hg 

NR1: Mn > As > V > Cr > Zn > Sn > Pb > Cu > Ni > Se > Co >Cd> Mo > Hg 

NR2: Mn > Cr > V > As > Zn > Sn > Pb > Cu > Ni > Co > Se > Cd > Mo > Hg 

NR3: Mn > V > As > Cr > Zn > Sn > Pb > Cu > Ni > Se > Co > Cd > Mo > Hg 

SR1: Zn > Cu > Mn > Cr > V > As > Sn > Pb > Ni > Se > Co > Cd > Mo > Hg 

SR2: Mn > Cr > V > Zn > As > Sn > Pb > Ni > Cu > Se > Co > Cd > Mo > Hg 

SR3: Mn > Zn > Cr > V > As > Pb > Sn > Ni > Cu > Se > Co > Cd > Mo > Hg 
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Appendix Table 1. Inductively coupled plasma mass spectrometer (ICP-MS) detection limits 
(µg/g) for all 14 elements tested. 

  
Element Detection Limit 

 

As 0.00003 
 

Cd 0.00001 
 

Cr 0.0001 
 

Co 0.00002 
 

Cu 0.005 
 

Pb 0.0004 
 

Mn 0.00008 
 

Mo 0.0001  
Hg <0.00001 

 

Ni 0.0005 
 

Se 0.00003 
 

Sn 0.001 
 

V 0.00004 
 

Zn 0.02 
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Appendix Table 2: Paired t-tests. P < 0.05 indicates a significant difference between element 
concentrations. 
 

PEC Cores 2, 3 Sn   3.5E-07 
PEC Cores 1, 3 Sn   1.6E-05 
DCC Cores 1, 3 Sn     0.039 
DCC Cores 2, 3 Cd     0.042 
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Appendix Table 3: Single Factor One-Way ANOVA. P < 0.05 indicates a significant mean 
difference between maximum concentrations amongst coring locations. 
  

Element P - value 
Hg 0.0002 
Mn 0.0060 
Co 0.0055 
Se 0.0032 
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Appendix Table 4.  Dania Cutoff Canal 1 Elemental Concentrations (µg/g) by sediment core depth 
(cm), with minimum (min), maximum (max), median, and mean values. N/a = End of sediment core.  
N/d = Not detected. Bold values indicate maximum concentrations by element. 
 

cm Mo Cd Hg Pb V Cr Mn Co Ni Zn Cu Sn As Se 
5 16.1 0.25 n/d 6.35 32.4 34.9 76.2 0.62 11.3 102.0 174.5 52.2 36.4 2.96 
10 2.97 0.051 n/d  3.01 7.72 7.41 18.4 0.16 2.26 73.91 150.8 14.8 11.4 0.659 
15 20.1 0.17 n/d 2.11 24.8 25.7 48.2 0.47 8.72 9.30 13.40 45.2 42.9 2.30 
20 36.3 0.26 n/d  2.00 31.3 22.8 52.4 0.56 8.99 13.1 4.36 54.3 66.2 2.60 
25 36.2 0.30 n/d 2.36 37.4 27.8 62.2 0.62 10.1 17.3 20.3 54.5 73.2 2.59 
30 24.9 0.19 n/d  1.52 23.3 15.3 43.4 0.47 5.98 4.07 3.51 32.7 53.2 1.70 
35 18.7 0.15 n/d 2.72 24.5 14.3 42.3 0.49 5.14 12.5 9.4 24.4 36.3 1.39 
40 45.9 0.23 n/d  1.71 38.9 15.4 70.5 0.76 7.29 10.0 23.4 1.03 61.2 2.01 
45 17.9 0.080 n/d 1.07 15.0 6.25 63.7 0.51 3.11 5.37 3.70 32.1 26.7 1.14 
50 7.06 0.03 n/d  0.23 5.10 1.96 130 0.34 1.23 1.48 0.532 25.3 12.6 0.494 
55 3.72 0.01 n/d 0.060 1.25 0.824 119 0.33 0.760 1.01 0.22 16.1 13.5 0.434 
60 4.62 0.01 n/d  0.089 2.31 0.788 147 0.29 0.830 1.01 0.381 16.2 14.0 0.458 
65 1.91 0.01 n/d 0.15 0.950 0.701 145 0.26 0.523 0.807 0.288 6.13 12.3 0.319 
70 0.88 0.01 n/d  0.35 1.13 0.85 163 0.35 0.89 75.4 55.4 1.28 17.9 0.26 
75 2.93 0.004 n/d 8.21 5.92 13.6 79.7 1.81 3.57 14.6 10.3 0.05 15.0 0.681 
80 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
85 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
90 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
95 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
100 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
105 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
110 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
115 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
120 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
125 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
130 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
135 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
140 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
145 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
150 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
155 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
160 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
165 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
170 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
175 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
180 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
185 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
190 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
195 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
200 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
min 0.9 0.0 0.0 0.1 0.9 0.7 18.4 0.2 0.5 0.8 0.2 0.1 11.4 0.3 
max 45.9 0.3 0.0 8.2 38.9 34.9 162.5 1.8 11.3 102.0 174.5 54.5 73.2 3.0 

median 16.1 0.1 0.0 1.7 15.0 13.6 70.5 0.5 3.6 10.0 9.4 24.4 26.7 1.1 
mean 16.0 0.1 0.0 2.1 16.8 12.6 84.0 0.5 4.7 22.8 31.4 25.1 32.9 1.3 
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Appendix Table 5.  Dania Cutoff Canal 2 Elemental Concentrations (µg/g) by sediment core depth (cm), 
with minimum (min), maximum (max), median, and mean values. N/a = End of sediment core. N/d = Not 
detected. Bold values indicate maximum concentrations by element. 
  

cm Mo Cd Hg Pb V Cr Mn Co Ni Zn Cu Sn As Se 
5 0.48 0.01 n/d 1.43 2.00 2.01 5.14 0.04 0.47 5.17 3.90 0.730 0.803 0.05 

10 45.9 0.46 n/d  4.00 41.5 56.8 47.0 0.92 18.6 10.3 11.9 90.2 44.3 4.55 
15 44.1 0.39 n/d 3.62 47.2 51.8 45.2 0.81 16.8 7.82 10.4 140 41.3 4.22 
20 44.5 0.43 n/d  4.27 73.9 46.4 75.0 0.88 15.2 28.9 40.7 1.37 56.2 3.56 
25 58.3 0.38 n/d 3.88 66.7 53.5 44.7 0.92 19.5 17.5 11.5 131 46.5 4.29 
30 62.9 0.48 n/d  3.97 53.7 50.3 60.6 0.85 16.7 10.1 10.2 2.00 72.6 4.79 
35 52.4 0.34 n/d 4.15 42.4 37.7 73.7 0.83 14.0 14.3 12.7 106 52.8 2.88 
40 60.8 0.40 n/d  3.97 46.0 34.1 63.1 0.87 13.1 19.8 10.9 1.9 80.6 2.90 
45 26.8 0.28 n/d 2.63 34.7 21.8 50.5 0.69 9.39 13.8 8.94 59.2 69.6 2.42 
50 88.9 0.51 n/d  1.5 100 23.3 63.3 1.25 11.0 242 5.74 81.9 126 2.92 
55 8.41 0.03 n/d  0.091 4.02 1.19 103.2 0.33 1.05 0.979 0.36 18.4 17.6 0.57 
60 5.50 0.01 n/d 0.10 2.64 0.78 121.1 0.22 0.775 1.10 0.28 20.9 12.8 0.35 
65 6.98 0.03 n/d  0.27 3.63 2.60 138.0 0.30 1.64 1.42 0.613 23.3 16.3 0.673 
70 19.5 0.24 n/d 2.50 31.4 24.1 75.8 0.56 9.23 5.50 4.72 69.6 55.0 2.14 
75 0.570 0.01 n/d  0.036 0.619 0.26 110.8 0.12 0.463 1.67 0.21 12.9 7.79 0.33 
80 1.37 0.01 n/d 0.084 1.60 0.502 119.7 0.30 0.542 0.83 0.24 17.9 10.3 0.29 
85 0.777 0.00 n/d 0.20 1.25 0.756 99.88 0.18 0.458 0.23 0.1 7.18 14.3 0.399 
90 1.59 0.01 n/d 1.38 3.06 3.77 143.0 0.706 1.41 1.36 0.460 7.93 13.8 0.506 
95 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
100 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
105 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
110 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
115 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
120 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
125 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
130 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
135 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
140 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
145 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
150 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
155 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
160 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
165 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
170 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
175 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
180 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
185 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
190 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
195 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
200 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
min 0.48 0.00 0.00 0.04 0.62 0.26 5.14 0.04 0.46 0.23 0.12 0.73 0.80 0.05 
max 88.89 0.51 0.46 4.58 100.38 56.81 142.98 1.25 19.49 241.93 24.35 140.05 126.02 6.83 

median 23.13 0.26 0.00 2.01 33.07 22.54 70.48 0.70 9.31 5.50 5.23 19.61 42.81 2.28 
mean 29.47 0.23 0.03 2.13 30.40 22.66 79.56 0.60 8.36 20.81 6.52 44.24 41.02 2.28 
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Appendix Table 6. Dania Cutoff Canal 3 Elemental Concentrations (µg/g) by sediment core depth 
(cm), with minimum (min), maximum (max), median, and mean values. N/a = End of sediment 
core.  N/d = Not detected. Bold values indicate maximum concentrations by element.  
  

cm Mo Cd Hg Pb V Cr Mn Co Ni Zn Cu Sn As Se 
5 8.30 0.10 n/d 5.28 15.5 11.1 14.0 0.24 4.18 41.5 26.1 0.45 18.1 0.849 
10 11.8 0.18 n/d  4.77 22.7 9.63 23.9 0.52 5.00 40.6 27.7 0.68 21.2 0.843 
15 137 0.02 n/d 2.82 53.1 26.1 10.9 0.31 6.27 54.5 7.61 1.5 52.2 2.812 
20 18.2 0.23 n/d  2.45 23.1 7.59 28.88 0.752 4.64 24.0 11.2 0.44 10.6 0.640 
25 38.9 0.08 n/d 2.88 14.8 5.26 19.7 0.32 2.39 15.2 12.3 0.50 22.0 0.599 
30 129 0.15 n/d  2.16 31.4 6.27 57.0 0.94 3.72 19.6 11.5 1.80 51.1 1.58 
35 244.9 0.03 n/d 1.7 37.7 16.3 42.2 0.48 4.60 4.92 4.75 3.03 114 2.85 
40 26.1 0.1 n/d  0.31 3.87 2.53 203.6 1.06 1.71 387.1 0.80 1.03 54.3 1.15 
45 384.5 0.04 n/d 0.59 17.5 7.12 67.7 0.87 3.60 2.3 3.89 4.18 223 3.94 
50 8.17 0.03 n/d  0.080 1.55 0.692 113.0 0.39 0.967 1.32 0.22 0.597 17.8 0.43 
55 5.67 0.01 n/d  0.055 0.570 0.427 86.76 0.23 0.504 0.11 0.20 0.31 16.2 0.405 
60 0.639 0.00 n/d 0.02 0.16 0.16 110.4 0.19 0.30 0.31 0.063 0.495 6.33 0.31 
65 0.34 0.0 n/d  0.02 0.26 0.22 102.5 0.19 0.42 0.36 0.13 0.964 8.12 0.31 
70 1.51 0.01 n/d 0.02 0.23 0.23 133.7 0.28 0.60 0.26 0.08 0.867 8.70 0.27 
75 0.48 0.0 n/d  0.1 0.23 0.22 127.5 0.47 0.51 0.43 n/d 1.18 14.0 0.24 
80 0.22 0.002 n/d 0.03 0.33 0.23 93.03 0.32 0.599 0.46 0.13 13.2 13.3 0.424 
85 0.25 0.01 n/d  0.11 0.39 0.42 156.2 0.31 0.670 2.22 0.32 0.720 10.1 0.37 
90 0.24 0.0 n/d  0.051 0.35 0.27 108.8 0.477 0.465 0.21 0.083 10.2 12.3 0.22 
95 2.10 0.01 n/d 0.077 2.55 0.634 128.1 0.24 0.46 0.547 0.29 25.2 12.5 0.34 
100 29.6 0.03 n/d  0.662 4.08 2.08 160.6 0.55 1.18 1.52 0.58 34.4 25.6 0.58 
105 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
110 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
115 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
120 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
125 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
130 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
135 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
140 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
145 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
150 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
155 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
160 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
165 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
170 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
175 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
180 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
185 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
190 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
195 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
200 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
min 0.22 0.00 0.00 0.02 0.16 0.16 10.92 0.19 0.30 0.11 0.00 0.31 6.33 0.22 
max 384.47 0.23 0.00 5.28 53.10 26.14 203.56 1.06 6.27 387.14 27.68 34.41 223.17 3.94 

median 8.23 0.02 0.00 0.21 3.21 1.39 97.76 0.35 1.07 1.87 0.45 1.00 17.04 0.50 
mean 52.39 0.05 0.00 1.20 11.52 4.88 89.42 0.46 2.14 29.88 5.39 5.09 35.58 0.96 
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Appendix Table 7.  Park Education Center 1 Elemental Concentrations (µg/g) by sediment core depth 
(cm), with minimum (min), maximum (max), median, and mean values. N/a = End of sediment core. N/d = 
Not detected. Bold values indicate maximum concentrations by element. 
  

cm Mo Cd Hg Pb V Cr Mn Co Ni Zn Cu Sn As Se 
5 0.065 0.03 n/d 3.22 3.14 5.30 11.2 0.14 1.25 17.3 12.5 0.11 1.34 0.13 
10 0.12 0.028 n/d 1.60 2.34 4.22 5.83 0.10 0.696 8.60 5.00 0.046 0.641 0.06 
15 0.743 0.052 n/d 3.61 6.11 6.29 7.89 0.15 1.94 25.7 15.7 0.13 2.01 0.15 
20 0.21 0.032 n/d 1.29 2.82 3.55 5.56 0.10 0.725 10.6 3.78 0.035 0.775 0.06 
25 1.04 0.048 n/d 3.87 10.1 7.93 9.69 0.22 2.84 17.2 13.2 0.12 2.81 0.17 
30 1.18 0.032 n/d 1.92 9.81 9.74 10.4 0.288 2.38 6.88 5.05 0.063 3.93 0.269 
35 1.20 0.046 n/d 2.06 11.5 16.6 17.2 0.447 3.00 2.80 1.89 0.00 2.94 0.31 
40 1.51 0.052 0.01 4.16 10.5 16.0 22.0 0.532 3.60 5.19 3.60 0.051 4.54 0.30 
45 0.444 0.03 n/d 1.50 7.00 12.1 11.8 0.33 2.06 3.65 1.12 n/d 2.97 0.34 
50 0.965 0.051 n/d 2.76 10.1 13.2 20.3 0.532 3.14 9.83 2.29 0.01 4.42 0.33 
55 3.14 0.34 0.36 20.1 55.0 14.4 30.4 0.747 16.4 33.3 28.1 0.40 12.1 0.61 
60 3.86 0.33 0.25 13.7 34.2 11.3 23.6 0.54 10.37 29.9 22.7 0.11 12.1 0.646 
65 2.85 0.22 0.29 10.3 16.0 6.70 14.5 0.28 4.53 19.0 15.2 0.22 6.16 0.38 
70 2.79 0.24 0.16 8.50 11.6 6.13 15.8 0.23 2.96 16.2 10.5 0.19 5.62 0.27 
75 0.886 0.09 0.02 3.39 3.47 2.43 7.36 0.093 1.15 6.66 3.56 0.036 2.10 0.09 
80 0.808 0.03 n/d 1.21 1.28 1.30 4.79 0.055 0.399 3.10 1.05 0.02 1.13 n/d 
85 1.98 0.03 0.01 2.40 4.50 2.88 11.3 0.13 0.897 6.22 3.23 0.072 3.24 0.16 
90 0.484 0.01 0.072 0.971 0.654 1.23 5.34 0.048 0.567 4.07 0.879 0.006 0.850 0.01 
95 5.14 0.04 n/d 4.46 7.10 4.98 22.2 0.27 1.63 8.37 6.58 0.28 5.76 0.28 
100 9.19 0.13 n/d 9.01 24.0 12.0 34.2 0.50 5.05 21.3 15.5 0.35 11.1 0.76 
105 1.32 0.02 n/d 2.61 3.72 2.96 12.4 0.14 1.01 4.30 3.85 0.045 2.80 0.15 
110 3.93 0.06 n/d 5.38 10.3 5.84 20.5 0.23 3.12 13.4 3.89 0.37 6.99 0.48 
115 4.37 0.088 0.736 3.74 15.0 9.44 35.8 0.37 3.68 10.5 4.13 0.19 11.6 0.817 
120 8.14 0.1 n/d 3.52 15.9 7.53 26.8 0.36 2.79 8.59 3.11 0.18 15.4 0.59 
125 8.92 0.079 n/d 5.66 15.2 8.45 32.2 0.31 3.27 9.06 3.78 0.055 13.5 0.767 
130 43.8 0.92 n/d 3.99 50.7 21.0 20.4 0.67 11.3 6.79 4.97 0.00 32.1 2.26 
135 14.1 0.11 n/d 3.98 15.3 6.11 23.3 0.33 2.81 5.26 2.84 0.17 15.8 0.666 
140 2.91 0.03 n/d 2.29 7.20 4.16 18.1 0.26 1.51 4.73 1.65 0.12 7.32 0.32 
145 2.72 0.03 0.003 1.81 5.24 3.42 17.4 0.14 0.990 3.58 1.31 0.086 3.82 0.23 
150 0.789 0.01 0.005 1.28 3.67 2.75 6.89 0.16 0.604 1.55 0.729 0.0038 1.49 0.15 
155 0.772 0.01 0.055 3.39 8.76 7.52 9.71 0.517 1.67 1.06 2.1 0.10 0.880 0.35 
160 2.28 0.044 0.12 2.10 33.4 7.64 30.5 0.752 2.45 2.81 2.03 0.38 4.01 0.41 
165 1.50 0.04 0.048 1.89 22.3 5.64 47.1 0.882 2.47 2.60 3.66 0.14 2.87 0.29 
170 1.21 0.03 n/d 1.78 27.7 5.85 41.1 0.67 2.76 11.3 2.92 12.2 2.05 0.14 
175 0.43 0.03 n/d 1.39 9.92 4.45 27.3 0.42 1.63 1.24 1.55 0.56 1.11 0.12 
180 0.34 0.02 n/d 1.49 8.77 4.86 28.5 0.39 1.77 2.35 1.34 0.17 0.937 0.10 
185 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
190 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
195 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
200 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
min 0.065 0.011 0.00 0.971 0.654 1.23 4.80 0.048 0.399 1.064 0.729 0.00 0.641 0.002 
max 43.8 0.916 0.736 20.11 55.01 21.0 47.1 0.882 16.4 33.3 28.1 12.2 32.1 2.26 

median 1.40 0.041 0.000 2.99 9.99 6.12 17.8 0.296 2.42 6.84 3.63 0.112 3.53 0.285 
mean 3.78 0.096 0.060 4.07 13.46 7.38 19.16 0.343 3.04 9.58 5.98 0.473 5.81 0.366 
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Appendix Table 8. Park Education Center 2 Elemental Concentrations (µg/g) by sediment core depth (cm), 
with minimum (min), maximum (max), median, and mean values. N/a = End of sediment core. N/d = Not 
detected. Bold values indicate maximum concentrations by element. 
  

cm Mo Cd Hg Pb V Cr Mn Co Ni Zn Cu Sn As Se 
5 4.94 0.77 0.24 73.8 59.0 46.6 73.3 2.22 29.3 415.6 214.9 3.27 18.9 1.35 
10 0.23 0.053 n/d 4.82 5.16 7.78 14.9 0.25 2.20 25.7 22.2 0.572 1.56 0.16 
15 0.11 0.03 n/d 1.84 2.24 4.30 6.63 0.11 0.990 12.3 4.76 1.12 0.61 0.10 
20 0.10 0.04 n/d 1.37 2.41 3.39 6.45 0.13 0.800 6.23 2.96 0.687 0.753 0.09 
25 1.08 0.1 n/d 3.64 13.8 9.60 11.6 0.32 3.65 9.81 7.22 1.08 2.61 0.22 
30 1.37 0.074 n/d 2.45 12.0 12.9 18.9 0.39 3.34 7.55 5.81 0.46 3.21 0.20 
35 1.37 0.1 n/d 2.42 12.0 19.7 17.0 0.53 3.40 2.79 1.80 0.30 2.45 0.23 
40 0.69 0.1 n/d 2.17 11.7 18.9 16.7 0.43 3.28 3.35 1.55 0.54 2.18 0.13 
45 1.50 0.053 n/d 3.47 10.8 17.6 24.6 0.579 3.41 3.88 2.38 0.29 4.64 0.357 
50 2.06 0.1 n/d 3.67 11.5 18.9 23.6 0.59 4.19 6.11 3.42 0.54 4.21 0.14 
55 1.68 0.046 n/d 2.63 12.3 17.9 18.6 0.543 3.20 2.81 1.83 0.33 3.43 0.31 
60 1.05 0.03 n/d 2.06 7.8 11.8 14.0 0.367 2.56 4.33 1.62 0.22 3.59 0.35 
65 0.98 0.054 0.01 2.62 10.8 16.4 18.3 0.543 3.14 3.05 2.06 0.26 3.29 0.30 
70 3.29 0.20 0.26 9.56 34.2 13.4 25.3 0.589 10.6 16.6 13.8 1.02 8.94 0.613 
75 5.50 0.33 0.33 14.0 44.5 11.4 21.6 0.586 12.1 25.0 24.1 1.10 10.4 0.616 
80 7.27 0.33 0.632 18.0 31.4 10.3 22.5 0.461 10.1 28.2 25.8 1.10 8.85 0.623 
85 4.09 0.28 0.20 10.1 15.2 7.17 16.4 0.28 3.77 18.5 15.5 0.668 8.08 0.530 
90 8.71 0.44 0.488 15.6 15.4 9.15 26.1 0.36 3.72 25.6 16.0 0.881 8.24 0.602 
95 0.55 0.069 n/d 17.6 1.01 1.84 12.7 0.10 0.61 7.38 2.64 1.12 2.19 0.12 
100 0.51 0.04 n/d 1.79 1.23 1.39 6.57 0.06 0.42 3.97 1.40 0.702 1.09 0.03 
105 0.60 0.02 n/d 1.31 0.94 1.39 5.73 0.058 0.42 4.26 1.22 1.12 0.804 0.05 
110 4.17 0.041 0.01 5.37 14.7 5.71 31.4 0.28 1.70 8.98 9.39 0.429 5.10 0.28 
115 6.33 0.071 0.02 3.25 81.06 7.43 30.7 0.25 1.94 14.6 3.65 1.19 11.5 0.525 
120 6.64 0.062 n/d 2.88 63.77 7.36 28.1 0.23 1.97 6.49 3.45 0.782 8.09 0.512 
125 8.30 0.078 n/d 7.80 49.4 10.1 41.9 0.45 3.25 9.83 6.89 1.17 10.6 0.72 
130 89.8 0.24 n/d 1.6 106 13.1 53.4 2.06 4.93 4.04 2.41 3.19 62.4 1.6 
135 30.2 0.10 0.1 3.46 176.2 16.8 48.9 0.52 5.13 6.6 3.05 2.44 22.0 1.39 
140 6.99 0.065 n/d 6.57 109.9 10.1 45.6 0.37 2.82 7.37 4.04 0.824 8.27 0.548 
145 3.13 0.1 n/d 7.99 15.7 7.87 32.3 0.35 2.45 10.0 5.24 0.768 6.75 0.44 
150 8.70 0.084 n/d 4.25 43.6 10.7 30.9 0.37 2.96 6.13 4.09 0.802 12.2 0.732 
155 0.48 0.01 n/d 0.27 0.927 0.991 2.72 0.03 0.39 0.608 0.054 0.548 1.25 0.056 
160 0.24 0.005 n/d 0.24 0.704 0.669 1.96 0.03 0.23 0.709 0.004 0.495 0.799 0.0 
165 0.77 0.01 n/d 0.436 1.80 1.34 4.23 0.056 0.443 0.818 0.25 0.13 1.45 0.049 
170 2.65 0.03 0.03 1.03 9.88 2.93 18.1 0.33 1.16 1.20 1.10 0.28 3.35 0.10 
175 1.74 0.04 n/d 1.67 15.9 5.44 27.4 0.45 1.92 2.91 2.34 n/d 3.86 0.31 
180 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
185 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
190 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
195 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
200 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
min 0.10 0.00 0.00 0.24 0.70 0.67 1.96 0.030 0.230 0.610 0.00 0.00 0.610 0.00 
max 89.8 0.77 0.63 73.8 176 46.6 73.3 2.22 29.3 416 215 3.27 62.4 1.59 

median 1.74 0.06 0.00 3.25 12.3 9.60 18.9 0.37 2.96 6.49 3.42 0.70 3.86 0.31 
mean 6.22 0.11 0.07 6.90 28.7 10.4 22.8 0.440 3.90 20.4 12.0 0.87 7.36 0.41 
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Appendix Table 9. Park Education Center 3 Elemental Concentrations (µg/g) by sediment core depth (cm), 
with minimum (min), maximum (max), median, and mean values. N/a = End of sediment core. N/d = Not 
detected. Bold values indicate maximum concentrations by element.  
  

cm Mo Cd Hg Pb V Cr Mn Co Ni Zn Cu Sn As Se 
5 10.1 0.39 0.25 35.9 100.4 41.1 98.08 1.23 22.2 225.3 210.2 14.6 22.2 1.25 
10 1.50 0.077 n/d 4.24 20.2 13.4 18.8 0.40 5.00 14.6 10.5 11.7 3.75 0.24 
15 0.26 0.04 n/d 1.65 5.90 5.41 8.06 0.18 1.67 5.61 3.16 9.83 1.23 0.050 
20 0.14 0.03 n/d 1.73 4.25 4.17 5.84 0.13 1.13 7.11 4.61 15.6 1.00 0.00 
25 0.12 0.04 n/d 1.69 4.34 4.31 5.75 0.12 1.16 7.50 4.81 11.7 1.04 0.045 
30 1.28 0.068 n/d 3.75 15.3 11.4 13.3 0.35 3.99 15.7 11.3 8.68 3.56 0.28 
35 0.19 0.03 n/d 1.59 4.59 4.44 6.47 0.12 1.31 602.8 4.36 11.0 0.979 0.581 
40 2.08 0.050 n/d 2.31 11.7 13.2 15.3 0.450 2.92 4.05 3.11 4.06 4.12 0.28 
45 0.588 0.033 n/d 1.00 6.13 11.0 11.2 0.296 1.74 10.8 0.792 2.74 2.25 0.303 
50 1.03 0.03 n/d 1.57 9.66 13.8 13.6 0.408 2.36 1.60 1.43 2.23 3.78 0.502 
55 1.30 0.048 n/d 2.16 10.4 14.4 16.1 0.394 2.60 1.60 1.42 2.71 2.49 0.307 
60 1.27 0.046 n/d 3.01 10.8 19.4 25.5 0.551 3.36 3.05 2.01 4.34 3.78 0.34 
65 1.83 0.075 0.11 6.91 13.0 19.9 27.7 0.624 4.60 14.3 6.95 4.00 4.33 0.478 
70 1.90 0.068 n/d 3.08 10.9 17.1 22.3 0.574 3.45 3.01 2.74 3.11 3.97 0.346 
75 2.01 0.05 n/d 2.35 10.5 14.5 16.8 0.50 3.02 2.79 1.94 9.88 3.09 0.23 
80 1.77 0.058 n/d 3.28 12.1 18.9 18.7 0.551 3.24 3.18 1.97 3.80 3.32 0.32 
85 2.42 0.052 n/d 3.09 11.5 16.2 20.5 0.560 3.35 2.89 2.34 4.31 4.01 0.39 
90 3.76 0.063 n/d 3.64 17.2 19.7 26.1 0.899 5.37 3.49 2.85 7.37 6.55 0.588 
95 4.24 0.1 n/d 3.54 15.1 17.1 26.7 0.908 4.02 4.20 2.54 8.89 6.60 0.400 
100 4.51 0.11 0.11 5.11 28.6 13.5 21.2 0.567 6.88 5.69 6.29 6.73 8.32 0.473 
105 7.17 0.25 0.29 13.2 38.79 12.0 21.3 0.527 10.1 23.1 22.4 5.96 14.4 0.757 
110 6.65 0.29 0.20 10.1 16.6 7.55 15.4 0.29 4.10 19.2 13.7 5.72 7.14 0.470 
115 0.750 0.05 n/d 2.15 2.32 1.77 6.02 0.058 0.654 3.82 2.18 8.22 1.50 0.062 
120 4.22 0.12 0.14 4.21 7.53 4.07 12.0 0.18 1.53 10.4 4.45 6.33 5.88 0.26 
125 8.33 0.13 0.47 6.73 16.3 7.50 26.1 0.33 3.01 22.6 8.82 6.17 12.0 0.50 
130 0.79 0.02 n/d 3.14 1.17 1.65 5.73 0.057 0.45 5.60 1.29 7.34 1.21 0.003 
135 2.04 0.039 n/d 2.70 10.7 3.72 15.3 0.14 1.21 4.31 2.65 6.51 3.34 0.25 
140 10.2 0.10 n/d 5.49 37.4 9.90 28.8 0.38 3.06 8.02 5.10 10.5 10.9 0.923 
145 30.1 0.16 n/d 4.55 80.73 16.1 59.2 0.52 4.68 9.23 4.64 15.6 27.8 1.27 
150 2.37 0.05 0.04 6.57 9.14 5.77 24.2 0.30 2.14 8.06 4.01 0.574 5.29 0.39 
155 0.46 0.01 n/d 1.21 1.67 1.73 7.63 0.1 0.50 1.49 0.67 0.857 1.41 0.00 
160 15.6 0.1 n/d 1.91 38.2 14.5 17.0 2.06 17.0 4.95 5.02 1.72 18.9 1.1 
165 13.8 0.1 n/d 1.87 45.7 15.7 11.2 3.52 17.0 1.50 5.03 1.2 15.4 1.23 
170 7.84 0.10 n/d 3.07 41.6 15.8 10.6 2.41 13.5 1.89 4.76 0.12 10.5 1.16 
175 6.81 0.08 0.01 3.24 39.7 13.3 8.60 1.45 9.57 3.03 4.05 0.23 7.43 1.10 
180 8.09 0.072 n/d 3.19 46.2 16.1 10.1 2.57 13.3 4.26 4.18 0.10 10.7 1.13 
185 6.99 0.089 n/d 3.84 41.7 16.1 10.1 2.13 14.7 2.60 4.07 0.22 9.72 0.940 
190 22.1 0.22 n/d 4.78 124.3 32.7 15.2 6.84 20.0 1.91 3.69 0.50 31.5 1.67 
195 8.32 0.05 n/d 2.12 24.2 6.39 21.0 1.1 3.69 1.76 1.92 0.26 6.81 0.35 
200 0.43 0.01 n/d 1.51 4.94 3.42 16.6 0.35 1.28 2.02 1.1 0.49 1.1 0.1 
min 0.122 0.008 0.00 1.00 1.17 1.65 5.73 0.057 0.450 1.50 0.671 0.100 0.979 0.00 
max 30.1 0.40 0.50 35.9 124 41.1 98.1 6.80 22.2 603 210 15.6 31.5 1.70 

median 2.2 0.1 n/d 3.1 12.5 13.3 15.7 0.5 3.4 4.3 4.0 5.0 4.2 0.4 
mean 5.1 0.1 n/d 4.4 23.8 12.5 19.0 0.9 5.6 27.0 9.7 5.6 7.3 0.5 
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Appendix Table 10. Park Headquarters 1 Elemental Concentrations (µg/g) by sediment core depth (cm), 
with minimum (min), maximum (max), median, and mean values. N/a = End of sediment core.  N/d = 
Not detected. Bold values indicate maximum concentrations by element. 
  

cm Mo Cd Hg Pb V Cr Mn Co Ni Zn Cu Sn As Se 
5 0.39 0.02 n/d 1.50 1.55 2.53 7.86 0.051 0.36 6.65 2.77 0.734 0.958 0.01 
10 3.42 0.04 n/d 1.46 4.34 4.09 10.6 0.13 1.23 75.47 2.97 0.820 2.86 0.24 
15 40.4 0.1 n/d 2.2 36.1 13.3 11.4 0.2 4.73 16.5 6.96 3.15 11.3 0.95 
20 45.0 0.1 n/d 1.5 32.5 12.1 8.42 0.2 4.38 5.97 2.93 3.89 11.4 1.4 
25 63.1 0.1 n/d 1.2 48.3 19.5 5.53 0.19 5.51 4.01 2.29 2.66 21.8 1.3 
30 269.5 0.18 n/d 2.43 67.2 32.0 14.0 0.33 8.94 6.31 7.50 2.77 75.0 3.69 
35 133 0.20 n/d 3.73 47.2 28.3 16.9 0.34 7.70 8.44 7.95 2.29 40.6 3.10 
40 37.0 0.1 n/d 1.14 18.6 13.0 8.12 0.13 3.93 5.55 2.89 1.18 10.8 1.17 
45 43.2 0.1 n/d 1.51 24.4 15.9 8.34 0.16 3.88 4.27 3.39 1.59 15.1 1.51 
50 20.6 0.02 n/d 0.861 17.2 8.72 5.88 0.21 2.82 7.99 1.90 1.01 11.9 0.79 
55 28.2 0.03 n/d 0.937 25.2 10.6 5.93 0.11 2.62 1.90 2.42 1.18 15.4 0.89 
60 7.05 0.01 n/d 0.40 5.82 4.31 2.71 0.04 1.02 0.895 0.741 0.600 6.04 0.36 
65 5.34 0.02 n/d 0.40 4.56 3.91 2.35 0.03 0.906 2.86 0.945 0.574 5.48 0.26 
70 5.75 0.057 n/d 0.834 8.40 6.25 7.86 0.10 1.92 1.65 1.37 0.52 7.85 0.37 
75 8.38 0.070 n/d 0.685 11.3 8.77 7.83 0.13 2.80 1.33 1.22 0.53 10.1 0.618 
80 7.10 0.11 n/d 0.818 9.17 8.47 9.27 0.15 2.66 39.3 1.48 0.19 10.9 0.487 
85 7.92 0.11 n/d 0.772 10.5 8.65 8.72 0.13 2.71 0.852 1.11 0.39 11.5 0.515 
90 5.17 0.067 n/d 0.671 7.73 6.60 9.85 0.10 1.76 1.74 0.791 0.458 11.6 0.38 
95 4.79 0.046 n/d 0.447 4.96 4.69 6.09 0.072 1.10 0.741 0.404 0.379 9.29 0.27 

100 3.73 0.04 n/d 0.805 4.25 3.68 4.58 0.068 1.03 3.84 0.731 0.538 6.98 0.14 
105 10.8 0.11 n/d 1.08 14.9 11.0 12.9 0.16 2.56 1.72 1.07 1.07 17.5 0.50 
110 15.6 0.053 n/d 0.454 10.9 5.96 7.24 0.11 1.54 1.41 0.590 0.431 14.5 0.35 
115 13.0 0.11 n/d 0.719 18.0 9.47 9.69 0.16 2.94 1.28 0.891 0.466 19.1 0.605 
120 9.89 0.052 n/d 0.512 14.5 6.55 8.21 0.11 1.47 1.34 0.494 0.544 18.4 0.442 
125 9.10 0.052 n/d 0.609 7.49 5.05 7.72 0.12 1.33 0.815 0.415 0.384 13.7 0.26 
130 6.97 0.04 n/d 0.42 10.0 4.99 7.22 0.091 1.17 1.20 0.26 0.724 8.26 0.34 
135 28.0 n/d n/d 0.41 47.3 20.6 16.9 0.71 4.92 241 0.79 7.21 16.6 1.9 
140 48.7 0.1 n/d 0.32 55.7 19.3 17.6 0.60 4.57 1.7 0.86 3.35 22.4 1.5 
145 19.4 0.03 n/d 0.1 25.7 11.1 37.2 1.0 3.23 1.91 0.67 2.68 18.1 1.0 
150 11.7 0.02 n/d 0.15 13.0 7.34 30.2 7.40 11.5 7.31 0.63 2.38 16.9 1.05 
155 6.92 n/d n/d 0.20 5.95 3.38 30.0 3.27 12.1 2.35 0.19 2.58 7.58 0.43 
160 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
165 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
170 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
175 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
180 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
185 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
190 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
195 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
200 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
min 0.390 0.00 0.00 0.110 1.55 2.53 2.35 0.030 0.360 0.740 0.190 0.190 0.960 0.010 
max 270 0.20 0.00 3.73 67.2 32.0 37.2 7.40 12.1 241 7.95 7.21 75.0 3.69 

median 10.8 0.1 0.0 0.8 13.0 8.7 8.3 0.1 2.7 2.4 1.1 0.8 11.6 0.5 
mean 29.7 0.1 0.0 0.9 19.8 10.3 11.2 0.5 3.5 14.8 1.9 1.5 15.2 0.9 
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Appendix Table 11. Park Headquarters 2 Elemental Concentrations (µg/g) by sediment core depth (cm), 
with minimum (min), maximum (max), median, and mean values. N/a = End of sediment core. N/d = Not 
detected. Bold values indicate maximum concentrations by element. 
  

cm Mo Cd Hg Pb V Cr Mn Co Ni Zn Cu Sn As Se 
5 0.081 0.01 n/d 1.87 2.12 2.27 13.1 0.082 0.66 8.22 3.71 0.960 0.933 0.05 

10 0.17 0.01 n/d 1.93 2.09 1.93 10.5 0.1 0.53 7.48 4.38 1.05 1.05 0.01 
15 n/d 0.01 n/d 1.61 1.85 2.75 9.67 0.1 0.50 7.59 3.46 1.37 0.77 n/d 
20 33.4 0.16 n/d 4.21 34.7 21.5 18.8 0.37 8.77 9.27 5.28 1.96 14.4 2.07 
25 65.9 0.49 n/d 2.97 44.2 20.4 21.7 0.52 11.8 7.02 5.11 1.67 24.4 2.09 
30 54.1 0.55 n/d 2.19 31.3 12.2 17.4 0.37 5.41 6.85 4.01 1.25 17.8 1.27 
35 96.3 0.70 n/d 2.69 70.8 42.8 14.9 0.59 18.6 3.14 3.01 2.0 26.3 2.63 
40 35.2 0.17 n/d 0.793 15.7 9.07 5.54 0.14 3.44 0.605 1.68 0.783 11.1 0.863 
45 119 0.1 n/d 1.0 30.7 13.7 7.61 0.22 4.00 4.44 2.54 1.73 32.5 1.60 
50 25.0 0.15 n/d 0.694 16.2 9.93 6.18 0.15 3.86 1.48 1.92 0.694 11.4 0.882 
55 21.5 0.17 n/d 0.630 22.9 9.84 6.43 0.21 4.42 1.33 1.88 0.729 11.0 0.831 
60 15.4 0.065 n/d 0.539 15.7 6.92 3.78 0.094 2.23 0.866 1.47 0.572 9.53 0.631 
65 14.5 0.14 n/d 0.745 19.5 10.4 6.15 0.15 4.08 3.59 1.95 0.658 10.6 0.842 
70 5.50 0.01 n/d 0.35 5.60 3.67 1.61 0.02 0.72 0.54 0.56 0.869 5.60 0.32 
75 6.92 n/d n/d 0.51 3.88 4.39 2.26 0.03 0.734 0.71 0.63 0.67 5.58 0.32 
80 13.1 0.02 n/d 1.08 8.77 10.7 5.42 0.1 1.44 1.20 1.53 1.02 14.2 0.81 
85 10.6 0.03 n/d 1.03 8.58 10.5 3.86 0.11 1.59 2.97 1.96 0.81 12.7 0.66 
90 16.9 0.04 n/d 1.37 15.6 17.9 9.57 0.14 2.95 5.69 2.97 0.62 20.0 0.933 
95 8.98 0.01 n/d 0.815 6.27 8.59 3.38 0.059 1.11 2.49 1.67 0.27 13.5 0.555 
100 6.95 0.004 n/d 0.652 5.07 6.68 2.28 0.044 0.804 0.28 1.09 0.22 11.6 0.373 
105 7.27 0.01 n/d 0.596 6.25 6.66 2.54 0.05 0.698 0.935 0.707 0.567 11.1 0.35 
110 13.2 0.19 n/d 0.990 10.9 10.2 22.8 0.29 4.80 2.15 1.14 0.867 19.5 0.51 
115 9.38 0.070 n/d 0.734 7.17 7.60 11.7 0.11 1.96 2.05 0.745 0.874 13.9 0.37 
120 37.5 0.04 n/d 1.05 18.6 11.4 4.94 0.087 1.87 0.816 1.46 0.44 30.1 0.808 
125 25.1 0.054 n/d 0.810 25.6 11.4 5.14 0.10 1.95 2.27 1.29 0.34 30.4 0.887 
130 27.0 0.075 n/d 0.889 15.2 12.4 8.25 0.15 2.33 1.31 1.17 0.59 22.6 0.613 
135 21.3 0.1 n/d 1.17 10.4 9.58 7.77 0.13 1.85 0.919 0.70 0.72 23.9 0.43 
140 40.3 0.03 n/d 0.33 52.0 21.7 34.1 0.83 4.55 0.40 0.96 2.62 20.1 1.61 
145 33.3 0.05 n/d 0.45 38.9 19.4 21.8 0.92 6.20 16.2 1.2 3.40 20.6 1.86 
150 7.35 0.04 n/d 0.36 10.2 6.18 7.00 0.40 2.65 2.69 0.67 1.39 8.27 0.68 
155 23.5 0.04 n/d 0.24 24.9 14.0 14.0 1.8 6.22 4.09 1.0 4.71 15.6 2.00 
160 20.2 0.1 n/d 0.29 15.8 23.8 27.3 2.26 8.23 1.4 1.65 3.23 19.5 1.85 
165 21.2 0.02 n/d 0.1 12.8 9.79 16.7 1.4 10.5 0.32 1.2 4.59 12.8 1.7 
170 3.06 0.00 n/d 0.03 2.38 2.22 43.5 0.32 3.29 0.31 0.31 1.28 5.01 0.52 
175 1.78 n/d n/d 0.04 1.61 1.45 33.1 0.22 2.57 0.16 0.10 0.853 5.22 0.37 
180 1.63 n/d n/d 0.1 1.95 1.68 34.0 0.32 3.65 0.15 0.31 1.01 3.96 0.27 
185 2.98 0.01 n/d 0.25 2.88 2.66 28.5 0.45 7.72 0.32 0.78 2.13 4.99 0.33 
190 4.52 n/d n/d 0.85 4.58 4.10 14.3 0.24 9.56 3.33 0.975 1.71 4.14 0.56 
195 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
200 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
min 0.00 0.00 0.00 0.032 1.61 1.46 1.61 0.024 0.500 0.147 0.101 0.215 0.769 0.00 
max 119 0.697 0.00 4.21 70.8 42.8 43.5 2.26 18.7 16.2 5.28 4.71 32.5 2.63 

median 15.0 0.0 0.0 0.8 11.9 9.8 9.6 0.2 3.1 1.8 1.4 0.9 12.7 0.7 
mean 22.4 0.1 0.0 1.0 16.4 10.6 13.4 0.4 4.2 3.0 1.8 1.3 13.9 0.9 
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Appendix Table 12. South Turning Basin 1 Elemental Concentrations (µg/g) by sediment core depth 
(cm), with minimum (min), maximum (max), median, and mean values. N/a = End of sediment core.  
N/d = Not detected. Bold values indicate maximum concentrations by element. 
  

cm Mo Cd Hg Pb V Cr Mn Co Ni Zn Cu Sn As Se 
5 8.25 0.17 n/d 19.2 25.8 15.0 28.8 0.55 9.43 134 110 2.73 21.5 1.2 
10 88.5 0.25 n/d 8.06 45.7 15.8 23.3 0.85 7.74 55.7 42.2 3.77 59.9 1.9 
15 17.24 0.33 0.1 27.1 40.1 19.8 45.4 0.89 15.4 150.7 127 3.01 21.5 1.69 
20 14.9 0.33 0.03 27.0 37.7 19.2 57.4 0.91 15.4 180 129 4.03 20.9 1.4 
25 16.4 0.30 n/d 21.7 51.7 17.6 62.3 1.1 15.9 190 104 4.16 22.8 1.8 
30 31.88 0.29 0.1 16.5 43.3 13.4 59.9 0.98 12.6 91.1 67.2 5.04 37.7 1.9 
35 25.38 0.15 n/d 9.47 29.0 11.2 45.4 1.1 8.53 61.3 48.4 3.15 31.7 1.65 
40 25.98 0.16 n/d 9.57 31.1 17.2 38.7 0.78 10.2 49.9 39.3 3.00 21.3 1.61 
45 24.99 0.1 n/d 5.48 28.2 17.6 29.6 0.99 10.4 23.3 18.4 3.89 16.6 1.8 
50 44.83 0.1 n/d 1.7 32.6 14.1 18.7 1.5 8.29 5.95 2.4 4.73 18.7 2.0 
55 29.68 0.1 n/d 1.8 33.8 9.05 11.3 1.4 6.31 5.81 5.70 4.02 15.7 1.5 
60 17.67 0.2 n/d 9.11 29.6 12.5 63.9 0.99 8.32 45.4 45.3 2.26 21.3 1.40 
65 4.85 0.04 n/d 1.17 7.40 4.5 63.28 0.5 1.9 9.60 4.10 1.00 14.6 0.800 
70 0.074 0.004 n/d 1.01 2.83 2.98 101.8 0.21 1.30 0.627 0.69 0.18 3.01 0.377 
75 0.45 0.01 n/d 1.70 7.71 4.73 89.53 0.51 2.22 2.06 1.14 0.082 4.78 0.41 
80 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
85 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
90 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
95 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
100 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
105 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
110 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
115 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
120 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
125 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
130 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
135 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
140 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
145 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
150 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
155 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
160 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
165 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
170 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
175 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
180 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
185 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
190 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
195 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
200 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
min 0.1 0.0 0.0 1.0 2.8 3.0 11.3 0.2 1.3 0.6 0.7 0.1 3.0 0.4 
max 88.5 0.33 0.06 27.1 51.6 19.8 102 1.50 16.0 190 129 5.04 59.9 2.05 

median 17.7 0.2 0.0 9.1 31.1 14.1 45.4 0.9 8.5 49.9 42.2 3.2 21.3 1.6 
mean 23.4 0.2 0.0 10.7 29.8 13.0 49.3 0.9 8.9 67.0 49.6 3.0 22.1 1.4 
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Appendix Table 13. South Turning Basin 2 Elemental Concentrations (µg/g) by sediment core depth 
(cm), with minimum (min), maximum (max), median, and mean values. N/a = End of sediment core.  
N/d = Not detected. Bold values indicate maximum concentrations by element. 
  

cm Mo Cd Hg Pb V Cr Mn Co Ni Zn Cu Sn As Se 
5 8.67 0.26 0.12 22.6 30.5 17.2 38.8 0.67 12.7 132.5 115.0 2.80 15.5 1.33 
10 9.75 0.34 0.19 27.4 37.5 20.2 49.3 0.76 15.9 155.8 135.3 3.71 15.1 1.61 
15 9.49 0.35 0.16 28.3 39.4 20.3 44.7 0.78 16.4 156.6 136.5 2.95 13.9 1.67 
20 14.5 0.08    n/d 5.07 16.7 5.86 17.7 0.52 5.11  22.3  35.0  8.14   15.6  0.30 
25 8.97 0.04 n/d 0.64 6.85 5.82 4.07 0.46 2.5 11.6 1.3 4.52 9.11 0.46 
30 3.05 0.051 n/d 5.09 6.81 3.45 8.55 0.16 2.59 27.7 22.8 1.03 4.73 0.25 
35 9.84 0.04 n/d 0.48 8.4 4.6 3.4 0.6 2.0 5.00 1.20 8.60 12.6 0.50 
40 8.57 0.0 n/d 0.69 5.06 3.0 8.33 0.62 1.8 8.32 2.6 7.19 14.5 0.42 
45 14.6 0.05 n/d 0.83 7.49 2.6 4.1 0.71 1.3 23.7 1.7 10.3 14.5 0.63 
50 14.8 0.1 n/d 0.26 6.76 2.80 5.31 0.66 1.5 4.47 0.36 11.1 13.3 0.41 
55 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
60 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
65 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
70 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
75 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
80 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
85 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
90 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
95 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
100 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
105 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
110 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
115 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
120 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
125 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
130 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
135 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
140 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
145 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
150 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
155 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
160 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
165 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
170 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
175 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
180 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
185 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
190 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
195 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
200 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
min 3.05 0.00 0.00 0.26 5.06 2.64 3.39 0.16 1.33 4.47 0.36 1.03 4.73 0.25 
max 14.8 0.35 0.19 28.3 39.4 20.3 49.2 0.78 16.4 157 137 11.1 15.5 1.67 

median 9.5 0.1 0.0 0.8 7.5 4.6 8.3 0.7 2.5 23.7 2.6 4.5 13.9 0.5 
mean 9.7 0.1 0.1 9.6 16.5 8.9 18.5 0.6 6.3 58.4 46.3 5.8 12.6 0.8 
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Appendix Table 14. West Lake 1 Elemental Concentrations (µg/g) by sediment core depth (cm), with 
minimum (min), maximum (max), median, and mean values. N/a = End of sediment core. N/d = Not 
detected. Bold values indicate maximum concentrations by element. 
  

cm Mo Cd Hg Pb V Cr Mn Co Ni Zn Cu Sn As Se 
5 n/d 0.04 0.01 5.77 3.44 5.35 28.4 0.12 1.49 49.8 30.4 0.580 8.12 0.39 
10 0.05 0.065 n/d 7.52 4.14 5.47 28.4 0.14 1.72 47.2 25.3 0.47 9.04 0.37 
15 0.581 0.089 0.044 8.47 4.98 5.82 27.8 0.16 1.84 38.6 17.9 0.687 8.38 0.32 
20 0.833 0.13 0.088 11.0 9.20 8.75 35.9 0.35 2.87 19.2 10.1 1.21 6.22 0.425 
25 0.22 0.088 n/d 6.53 4.30 6.39 24.0 0.21 1.60 11.5 5.55 0.502 5.28 0.25 
30 0.24 0.050 n/d 3.28 4.76 6.01 18.1 0.28 1.52 4.07 1.95 0.586 4.63 0.25 
35 0.34 0.087 0.056 6.40 5.37 7.33 26.0 0.26 1.82 19.4 10.3 0.837 4.21 0.29 
40 0.23 0.072 n/d 4.70 5.17 7.46 43.5 0.34 1.78 5.82 3.05 0.454 2.96 0.26 
45 0.58 0.28 0.20 16.4 8.30 8.37 55.9 0.37 3.07 30.5 15.6 0.904 10.4 0.45 
50 0.789 0.11 0.15 11.9 7.43 6.66 72.60 0.35 2.76 23.3 11.7 1.18 12.5 0.52 
55 0.51 0.10 0.21 10.0 6.47 5.18 63.17 0.30 2.28 20.4 9.26 0.49 10.8 0.57 
60 0.856 0.045 0.003 7.10 5.32 4.13 70.62 0.29 1.55 12.8 4.10 0.827 10.3 0.567 
65 0.34 0.02 n/d 4.87 4.04 3.30 55.4 0.21 1.35 7.80 3.15 0.38 11.7 0.49 
70 0.583 0.04 n/d 5.00 4.86 3.39 72.34 0.25 1.31 10.9 2.96 0.28 14.0 0.713 
75 1.39 0.04 n/d 3.36 4.09 2.96 70.07 0.28 1.23 6.60 1.63 0.585 12.1 0.593 
80 0.27 0.01 n/d 0.642 1.21 0.973 80.13 0.18 0.438 1.07 0.430 0.31 4.85 0.18 
85 n/d 0.004 n/d 1.07 1.34 2.80 78.98 0.22 0.649 0.916 0.29 0.19 2.60 0.12 
90 n/d 0.01 n/d 1.64 2.04 3.39 71.0 0.25 0.72 4.94 1.53 0.30 3.18 0.18 
95 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
100 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
105 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
110 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
115 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
120 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
125 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
130 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
135 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
140 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
145 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
150 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
155 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
160 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
165 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
170 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
175 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
180 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
185 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
190 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
195 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
200 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
min 0.0 0.0 0.0 0.6 1.2 1.0 18.1 0.1 0.4 0.9 0.3 0.2 2.6 0.1 
max 1.4 0.3 0.2 16.4 9.2 8.8 80.1 0.4 3.1 49.8 30.4 1.2 14.0 0.7 

median 0.3 0.1 0.0 6.1 4.8 5.4 55.6 0.3 1.6 12.2 4.8 0.5 8.3 0.4 
mean 0.4 0.1 0.0 6.4 4.8 5.2 51.2 0.3 1.7 17.5 8.6 0.6 7.8 0.4 



  
 

108 
 

 

 
A

pp
en

di
x 

Fi
gu

re
 1

1.
 P

ho
to

 o
f l

on
gi

tu
di

na
lly

 sp
lit

 W
es

t L
ak

e 
C

or
e 

1 
co

lle
ct

ed
 Ju

ly
 9

-1
1,

 2
01

9.
  

 



 

 109 

 

Appendix Table 15. West Lake 2 Elemental Concentrations (µg/g) by sediment core depth (cm), with 
minimum (min), maximum (max), median, and mean values. N/a = End of sediment core. N/d = Not 
detected. Bold values indicate maximum concentrations by element. 
  

cm Mo Cd Hg Pb V Cr Mn Co Ni Zn Cu Sn As Se 
5 0.31 0.10 n/d 11.4 4.94 6.80 34.6 0.17 1.98 37.7 21.1 0.502 6.42 0.27 

10 0.074 0.070 n/d 7.24 4.08 6.35 26.8 0.18 1.63 28.3 14.0 0.61 5.23 0.29 
15 n/d 0.03 n/d 2.04 2.36 5.17 15.2 0.17 1.08 8.48 1.03 0.34 1.68 0.17 
20 0.20 0.045 n/d 4.23 4.36 6.24 17.8 0.27 1.65 2.44 6.70 0.31 3.54 0.26 
25 0.16 0.074 0.01 4.54 5.45 7.29 22.6 0.29 1.85 7.15 4.02 0.676 2.99 0.25 
30 0.21 0.072 n/d 5.01 5.14 7.53 54.8 0.39 2.01 8.96 4.81 0.064 3.25 0.25 
35 0.090 0.18 0.060 7.83 5.92 4.57 46.3 0.21 2.24 16.6 8.95 0.624 11.0 0.56 
40 0.46 0.21 0.26 13.1 6.50 6.67 70.1 0.33 2.64 21.1 11.7 0.48 12.3 0.60 
45 0.55 0.091 0.12 10.2 5.58 5.64 75.3 0.32 2.21 16.0 9.12 0.53 11.2 0.647 
50 0.65 0.12 0.11 11.6 7.85 7.21 78.7 0.41 2.88 21.2 11.4 0.49 12.6 0.55 
55 0.41 0.1 0.04 8.96 5.12 4.56 66.1 0.30 1.92 16.8 7.89 0.50 10.6 0.53 
60 0.726 0.04 n/d 6.51 5.78 4.29 77.2 0.31 1.61 8.65 2.99 0.45 10.5 0.51 
65 0.956 0.053 n/d 5.68 5.36 4.10 66.6 0.31 1.59 9.12 3.52 0.39 13.8 0.43 
70 0.975 0.1 n/d 4.54 6.15 4.13 66.5 0.29 1.65 10.9 2.43 0.58 11.0 0.56 
75 3.6 n/d n/d 0.59 59.6 11.2 9.38 0.52 16.8 27.7 1.2 7.70 12.9 0.88 
80 2.04 0.01 n/d 0.965 2.24 1.94 57.13 0.28 0.975 2.45 0.513 0.675 21.7 0.704 
85 0.813 0.03 n/d 2.19 2.78 2.53 70.81 0.22 1.17 7.41 0.927 0.957 8.75 0.46 
90 0.04 n/d n/d 0.14 0.43 0.34 93.77 0.19 0.597 0.41 0.26 0.601 4.62 0.21 
95 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
100 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
105 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
110 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
115 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
120 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
125 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
130 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
135 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
140 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
145 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
150 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
155 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
160 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
165 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
170 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
175 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
180 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
185 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
190 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
195 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
200 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
min 0.00 0.00 0.00 0.14 0.43 0.34 9.38 0.17 0.60 0.41 0.26 0.06 1.68 0.17 
max 3.61 0.21 0.26 13.1 59.6 11.2 93.8 0.52 17.0 37.7 21.1 7.70 22.0 0.88 

median 0.4 0.1 0.0 5.3 5.3 5.4 61.6 0.3 1.8 10.0 4.4 0.5 10.6 0.5 
mean 0.7 0.1 0.0 5.9 7.8 5.4 52.8 0.3 2.6 14.0 6.3 0.9 9.1 0.5 
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Appendix Table 16. North Reef Elemental Concentrations (µg/g) of surface sediment samples (5cm). N/d = Not 
detected. Bold values indicate maximum concentrations by element. 

  
Mo Cd Hg Pb V Cr Mn Co Ni Zn Cu Sn As Se 

NR 1 n/d 0.01 n/d 0.9 5.02 4.7 10.1 0.04 0.41 2.76 0.67 0.99 6.89 0.11 
NR 2 n/d 0.03 n/d 1.4 6.8 6.81 13.9 0.1 0.72 4.52 1.02 1.84 6.37 0.04 
NR 3 0.01 0.04 n/d 1.5 9.12 7.55 15.6 0.04 0.6 3.24 0.65 1.6 8.55 0.08 
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Appendix Table 17. South Reef Elemental Concentrations (µg/g) of surface sediment samples (5cm). N/d = Not 
detected. Bold values indicate maximum concentrations by element. 
  

Mo Cd Hg Pb V Cr Mn Co Ni Zn Cu Sn As Se 
SR 1 n/d 0.04 n/d 1.3 3.8 5.32 24.1 0.03 0.62 91.1 28.6 1.85 2.41 0.07 
SR 2 n/d 0.03 n/d 1.5 4.19 6.35 13.6 0.03 0.75 3.85 0.59 2.07 3.82 0.12 
SR 3 n/d 0.04 n/d 1.8 3.91 6.44 14.6 0.05 0.86 6.97 0.51 1.34 3.32 0.08 
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Appendix Table 18. Dania Cutoff Canal Geo-Accumulation Index for every 5 cm 
in depth. 
cm DCC1 

As 
DCC2 

As 
DCC3 

As 
DCC1 

Mo 
DCC2 

Mo 
DCC3 

Mo 
DCC1 

Sn 
DCC2 

Sn 
DCC3 

Sn 
5 4 -2 3 3 -2 2 3 -3 -4 
10 2 4 3 0 4 2 1 3 -4 
15 4 4 5 3 4 6 2 4 -2 
20 5 4 2 4 4 3 3 -1 -4 
25 5 5 3 4 5 4 3 4 -4 
30 5 5 5 3 5 6 2 -2 -2 
35 4 5 6 3 5 7 2 4 -1 
40 5 5 5 4 5 4 -3 -2 -3 
45 4 4 7 3 4 7 2 3 -1 
50 2 5 3 2 5 2 2 3 -4 
55 3 2 3 1 2 1 1 1 -5 
60 3 1 1 1 1 -2 1 1 -4 
65 2 2 2 0 2 -3 0 1 -3 
70 3 3 2 -1 3 -1 -3 3 -3 
75 3 -2 3 0 -2 -2 -7 1 -3 
80  -1 3  -1 -3  1 1 
85  -2 2  -2 -3  0 -4 
90  0 2  0 -3  0 0 
95   2   0   2 
100   4   4   2 
 
Geo-accumulation Index (GAI) 
GAI > 5 extremely Contaminated, 4-5 Strongly to Extremely, 3-4 Strongly,  
2-3 Moderately to Strongly, 1-2 Moderately 
0-1 Uncontaminated to Moderately, <0 Uncontaminated 
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Appendix Table 19. Park Headquarters Geo-Accumulation Index for every 5 
cm in depth. 

 
cm PHQ1 

Mo 
PHQ1 

As 
PHQ2 

Mo 
PHQ2 

As 
5 -3 -1 -5 -1 
10 1 0 -4 -1 
15 4 2 0 -2 
20 4 2 4 3 
25 5 3 5 3 
30 7 5 5 3 
35 6 4 5 4 
40 4 2 4 2 
45 4 3 6 4 
50 3 2 3 2 
55 4 3 3 2 
60 2 1 3 2 
65 1 1 3 2 
70 1 2 1 1 
75 2 2 2 1 
80 2 2 3 3 
85 2 2 2 2 
90 1 2 3 3 
95 1 2 2 3 
100 1 2 2 2 
105 2 3 2 2 
110 3 3 3 3 
115 3 3 2 3 
120 2 3 4 4 
125 2 3 3 4 
130 2 2 4 3 
135 4 3 3 3 
140 4 3 4 3 
145 3 3 4 3 
150 2 3 2 2 
155 2 2 3 3 
160   3 3 
165   3 3 
170   0 1 
175   0 1 
180   0 1 
185   0 1 
190   1 1 
Geo-accumulation Index (GAI) 
GAI > 5 extremely Contaminated, 4-5 Strongly to Extremely, 3-4 Strongly,  
2-3 Moderately to Strongly, 1-2 Moderately 
0-1 Uncontaminated to Moderately, <0 Uncontaminated 
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Appendix Table 20. South Turning Basin Geo-Accumulation Index for every 5 cm in depth. 
 

cm STB1 
Mo 

STB 1 
As 

STB 1 
Cu 

STB 2 
Mo 

STB 2 
As 

STB 2 
Cu 

5 2 3 2 2 3 2 
10 5 5 0 2 3 2 
15 3 3 2 2 3 2 
20 3 3 2 3 3 0 
25 3 3 1 2 2 -5 
30 4 4 1 0 1 -1 
35 3 4 0 2 2 -5 
40 4 3 0 2 3 -4 
45 3 3 -1 3 3 -4 
50 4 3 -4 3 3 -7 
55 4 3 -3    
60 3 3 0    
65 1 3 -3    
70 -5 0 -6    
75 -2 1 -5    

 
Geo-accumulation Index (GAI) 
GAI > 5 extremely Contaminated, 4-5 Strongly to Extremely, 3-4 Strongly,  
2-3 Moderately to Strongly, 1-2 Moderately 
0-1 Uncontaminated to Moderately, <0 Uncontaminated 
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Appendix Table 21. Park Education Center Geo-Accumulation Index for every 5 cm in 
depth. 

 
cm PEC1 

Mo 
PEC1 

As 
PEC2 
Mo 

PEC2 
As 

PEC3 
Mo 

PEC3 
As 

5 -5 -1 1 3 2 3 
10 -4 -2 -3 -1 -1 1 
15 -2 0 -4 -2 -3 -1 
20 -3 -2 -4 -2 -4 -1 
25 -1 0 -1 0 -4 -1 
30 -1 1 -1 1 -1 1 
35 -1 0 -1 0 -4 -1 
40 -1 1 -2 0 0 1 
45 -2 0 -1 1 -2 0 
50 -1 1 0 1 -1 1 
55 0 2 0 1 -1 0 
60 1 2 -1 1 -1 1 
65 0 1 -1 1 0 1 
70 0 1 1 2 0 1 
75 -1 0 1 2 0 0 
80 -1 -1 2 2 0 1 
85 0 1 1 2 0 1 
90 -2 -1 2 2 1 2 
95 1 1 -2 0 1 2 
100 2 2 -2 -1 1 2 
105 -1 0 -2 -1 2 3 
110 1 2 1 1 2 2 
115 1 2 1 2 -2 -1 
120 2 3 2 2 1 1 
125 2 3 2 2 2 2 
130 4 4 5 5 -2 -1 
135 3 3 4 3 0 1 
140 0 2 2 2 2 2 
145 0 1 0 2 4 4 
150 -2 -1 2 2 0 1 
155 -2 -1 -2 -1 -2 -1 
160 0 1 -3 -1 3 3 
165 -1 0 -2 -1 3 3 
170 -1 0 0 1 2 2 
175 -2 -1 0 1 2 2 
180 -3 -1   2 2 
185     2 2 
190     3 4 
195     2 2 
200     -2 -1 
Geo-accumulation Index (GAI) 
GAI > 5 extremely Contaminated, 4-5 Strongly to Extremely, 3-4 Strongly,  
2-3 Moderately to Strongly, 1-2 Moderately 
0-1 Uncontaminated to Moderately, <0 Uncontaminated 
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Appendix Table 22. West Lake Geo-Accumulation Index for every 5 
cm in depth. 

 

cm WL1 
As 

WL2 
As 

5 2 2 
10 2 1 
15 2 0 
20 1 1 
25 1 0 
30 1 1 
35 1 2 
40 0 2 
45 2 2 
50 2 2 
55 2 2 
60 2 2 
65 2 3 
70 3 2 
75 2 3 
80 1 3 
85 0 2 
90 0 1 

Geo-accumulation Index (GAI) 
GAI > 5 extremely Contaminated, 4-5 Strongly to Extremely, 3-4 Strongly,  
2-3 Moderately to Strongly, 1-2 Moderately 
0-1 Uncontaminated to Moderately, <0 Uncontaminated 
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Appendix Table 23. North and South Reef Geo-Accumulation Index for every 5 cm in depth. 
 

cm NR1 
As 

NR2 
As 

NR3 
As 

SR1 
As 

SR2 
As 

SR3 
As 

5 2 2 2 0 1 1 
Geo-accumulation Index (GAI) 
GAI > 5 extremely Contaminated, 4-5 Strongly to Extremely 
 3-4 Strongly          2-3 Moderately to Strongly  
1-2 Moderately      0-1 Uncontaminated to Moderately, <0 Uncontaminated 
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Appendix Table 24. Pollution Load Index Calculations (PLI) for port, WL, and RF 
locations for every 5 cm in depth 

 
cm DCC 

1 
DCC 

2 
DCC 

3 
PEC 

1 
PEC 

2 
PEC 

3 
PHQ 

1 
PHQ 

2 
STB 

1 
STB 

2 
WL 

1 
WL 

2 
5 1.1 0.0 0.3 0.1 1.4 1.4 0.0 0.1 0.6 0.7 0.2 0.2 
10 0.3 1.0 0.4 0.0 0.1 0.3 0.1 0.0 0.8 0.9 0.1 0.1 
15 0.6 0.9 0.5 0.1 0.1 0.1 0.3 0.1 0.9 0.9 0.2 0.1 
20 0.6 1.2 0.3 0.0 0.1 0.1 0.3 0.4 0.9 0.4 0.2 0.1 
25 0.8 1.1 0.3 0.1 0.2 0.1 0.3 0.5 1.0 0.2 0.1 0.1 
30 0.4 0.8 0.5 0.1 0.2 0.2 0.6 0.4 0.9 0.2 0.1 0.1 
35 0.5 1.0 0.4 0.1 0.1 0.1 0.5 0.5 0.7 0.1 0.2 0.2 
40 0.5 0.7 0.3 0.1 0.1 0.2 0.2 0.2 0.6 0.2 0.1 0.3 
45 0.3 0.7 0.4 0.1 0.2 0.1 0.2 0.3 0.5 0.2 0.3 0.2 
50 0.1 1.2 0.1 0.1 0.2 0.1 0.2 0.2 0.4 0.1 0.3 0.3 
55 0.1 0.1 0.0 0.5 0.1 0.1 0.2 0.2 0.3  0.2 0.2 
60 0.1 0.1 0.0 0.4 0.1 0.2 0.1 0.1 0.6  0.1 0.1 
65 0.1 0.1 0.0 0.3 0.1 0.3 0.1 0.2 0.2  0.1 0.2 
70 0.1 0.6 0.0 0.2 0.4 0.2 0.1 0.0 0.0  0.1 0.2 
75 0.2 0.0 0.0 0.1 0.5 0.2 0.1 0.0 0.1  0.1 0.2 
80  0.1 0.0 0.0 0.5 0.2 0.1 0.1   0.0 0.1 
85  0.1 0.0 0.1 0.3 0.2 0.1 0.1   0.0 0.1 
90  0.1 0.0 0.0 0.4 0.3 0.1 0.2   0.1 0.0 
95   0.1 0.1 0.2 0.2 0.1 0.1     
100   0.2 0.3 0.3 0.3 0.1 0.1     
105    0.1 0.5 0.5 0.2 0.1     
110    0.2 0.2 0.4 0.1 0.2     
115    0.3 0.2 0.1 0.1 0.1     
120    0.2 0.2 0.2 0.1 0.1     
125    0.2 0.3 0.4 0.1 0.1     
130    0.5 0.5 0.0 0.1 0.2     
135    0.2 0.4 0.1 0.4 0.1     
140    0.1 0.3 0.3 0.3 0.2     
145    0.1 0.2 0.5 0.2 0.3     
150    0.0 0.3 0.2 0.2 0.1     
155    0.1 0.0 0.1 0.1 0.2     
160    0.2 0.0 0.3  0.3     
165    0.1 0.0 0.3  0.2     
170    0.2 0.1 0.2  0.1     
175    0.1 0.1 0.2  0.0     
180    0.1  0.3  0.0     
185      0.3  0.1     
190      0.5  0.1     
195      0.2       
200      0.1       
cm    NR 

1 
NR 
2 

NR 
3 

SR 
1 

SR 
2 

SR 
3 

   

5    0.04 0.07 0.06 0.1 0.06 0.06    
             

             
Pollution Load Index             >1 Polluted          <1 No Contamination 
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Appendix Table 25. Potential Ecological Risk Index Calculations (ERI) – port, WL, and RF 
locations for every 5 cm in depth 
cm DCC 

1 
DCC 

2 
DCC 

3 
PEC 

1 
PEC 

2 
PEC 

3 
PHQ 

1 
PHQ 

2 
STB 

1 
STB 

2 
WL 

1 
WL 

2 
5 364 10 160 21 441 332 12 12 228 220 75 83 

10 125 449 204 15 34 54 34 11 491 246 89 63 
15 346 406 360 35 15 21 111 12 284 243 90 23 
20 527 543 147 17 19 18 119 150 283 0 89 41 
25 590 439 176 39 41 20 179 319 278 75 66 46 
30 417 642 392 39 48 50 562 292 362 54 48 47 
35 293 466 772 37 36 27 339 398 272 98 60 133 
40 487 669 386 50 34 46 94 128 207 98 45 154 
45 205 556 1502 30 51 27 123 242 142 112 165 109 
50 93 1006 128 48 55 36 89 125 167 108 125 127 
55 94 127 113 203 40 34 115 129 129  108 93 
60 97 89 43 195 36 43 45 85 208  86 85 
65 85 119 55 116 42 58 43 114 113  88 112 
70 136 446 61 117 131 51 71 41 22  110 93 
75 107 55 93 45 185 38 91 39 38  94 98 
80  72 90 17 172 43 107 102   36 149 
85  96 71 32 146 46 113 96   20 70 
90  96 83 10 197 67 100 147   25 30 
95   86 53 41 67 77 95     
100   180 122 19 93 60 80     
105    28 14 183 151 77     
110    67 51 142 114 190     
115    108 101 26 164 116     
120    125 76 79 140 214     
125    118 100 123 108 221     
130    501 492 15 67 176     
135    140 182 36 117 182     
140    60 79 108 171 146     
145    35 68 240 131 156     
150    15 111 53 122 69     
155    13 12 13 55 118     
160    42 7 154  153     
165    33 14 136  95     
170    25 31 106  36     
175    19 41 81  36     
180    15  100  28     
185      99  39     
190      287  31     
195      63       
200      11       
cm    NR 

1 
NR 
2 

NR 
3 

SR 
1 

SR 
2 

SR 
3 

   

5    50 53 70 62 36 36    
Potential Ecological Risk (Eri) 
Eri > 320 significantly high                   160 <Eri < 320 high              80 <Eri < 160 considerable 
40 <Eri < 80 moderate                           Eri < 40 low        
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Appendix Table 26. Dania Cutoff Canal 1 Threshold Effect Levels (TEL) and Probable Effect 
Levels (PEL) for every 5 cm in depth. 

  
cm Mo Cd Hg Pb V Cr Mn Co Ni Zn Cu Sn As Se 
5 16.1 0.25 0 6.35 32.4 34.9 76.2 0.62 11.3 102.0 174.5 52.2 36.4 2.96 
10 2.97 0.051 0 3.01 7.72 7.41 18.4 0.16 2.26 73.91 150.8 14.8 11.4 0.659 
15 20.1 0.17 0 2.11 24.8 25.7 48.2 0.47 8.72 9.30 13.40 45.2 42.9 2.30 
20 36.3 0.26 0 2.00 31.3 22.8 52.4 0.56 8.99 13.1 4.36 54.3 66.2 2.60 
25 36.2 0.30 0 2.36 37.4 27.8 62.2 0.62 10.1 17.3 20.3 54.5 73.2 2.59 
30 24.9 0.19 0 1.52 23.3 15.3 43.4 0.47 5.98 4.07 3.51 32.7 53.2 1.70 
35 18.7 0.15 0 2.72 24.5 14.3 42.3 0.49 5.14 12.5 9.4 24.4 36.3 1.39 
40 45.9 0.23 0 1.71 38.9 15.4 70.5 0.76 7.29 10.0 23.4 1.03 61.2 2.01 
45 17.9 0.080 0 1.07 15.0 6.25 63.7 0.51 3.11 5.37 3.70 32.1 26.7 1.14 
50 7.06 0.03 0 0.23 5.10 1.96 129.6 0.34 1.23 1.48 0.532 25.3 12.6 0.494 
55 3.72 0.01 0 0.060 1.25 0.824 119.1 0.33 0.760 1.01 0.22 16.1 13.5 0.434 
60 4.62 0.01 0 0.089 2.31 0.788 147.1 0.29 0.830 1.01 0.381 16.2 14.0 0.458 
65 1.91 0.01 0 0.15 0.950 0.701 144.0 0.26 0.523 0.807 0.288 6.13 12.3 0.319 
70 0.88 0.01 0 0.35 1.13 0.85 162.5 0.35 0.89 75.4 55.4 1.28 17.9 0.26 
75 2.93 0.00 0 8.21 5.92 13.6 79.65 1.81 3.57 14.6 10.3 0.05 15.0 0.681 

Values above TEL range; Values above PEL range 
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Appendix Table 27. Dania Cutoff Canal 2 Threshold Effect Levels (TEL) and Probable Effect 
Levels (PEL) for every 5 cm in depth. 

  
cm Mo Cd Hg Pb V Cr Mn Co Ni Zn Cu Sn As Se 
5 0.48 0.01 0 1.43 2.00 2.01 5.14 0.04 0.47 5.17 3.90 0.730 0.803 0.05 
10 45.9 0.46 0 4.00 41.5 56.8 47.0 0.92 18.6 10.3 11.9 90.2 44.3 4.55 
15 44.1 0.39 0 3.62 47.2 51.8 45.2 0.81 16.8 7.82 10.4 140 41.3 4.22 
20 44.5 0.43 0 4.27 73.9 46.4 75.0 0.88 15.2 28.9 40.7 1.37 56.2 3.56 
25 58.3 0.38 0 3.88 66.7 53.5 44.7 0.92 19.5 17.5 11.5 131 46.5 4.29 
30 62.9 0.48 0 3.97 53.7 50.3 60.6 0.85 16.7 10.1 10.2 2.0 72.6 4.79 
35 52.4 0.34 0 4.15 42.4 37.7 73.7 0.83 14.0 14.3 12.7 106 52.8 2.88 
40 60.8 0.40 0 3.97 46.0 34.1 63.1 0.87 13.1 19.8 10.9 1.9 80.6 2.90 
45 26.8 0.28 0 2.63 34.7 21.8 50.5 0.69 9.39 13.8 8.94 59.2 69.6 2.42 
50 88.9 0.51 0 1.5 100 23.3 63.3 1.25 11.0 241.9 5.74 81.9 126 2.92 
55 8.41 0.03 0 0.091 4.02 1.19 103.2 0.33 1.05 0.979 0.36 18.4 17.6 0.57 
60 5.50 0.01 0 0.10 2.64 0.78 121.1 0.22 0.775 1.10 0.28 20.9 12.8 0.35 
65 6.98 0.03 0 0.27 3.63 2.60 138.0 0.30 1.64 1.42 0.613 23.3 16.3 0.673 
70 19.5 0.24 0 2.50 31.4 24.1 75.8 0.56 9.23 5.50 4.72 69.6 55.0 2.14 
75 0.570 0.01 0 0.036 0.619 0.26 110.8 0.12 0.463 1.67 0.21 12.9 7.79 0.33 
80 1.37 0.01 0 0.084 1.60 0.502 119.7 0.30 0.542 0.83 0.24 17.9 10.3 0.29 
85 0.777 0.00 0 0.20 1.25 0.756 99.88 0.18 0.458 0.23 0.1 7.18 14.3 0.399 
90 1.59 0.01 0 1.38 3.06 3.77 143.0 0.706 1.41 1.36 0.460 7.93 13.8 0.506 

Values above TEL range; Values above PEL range 
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Appendix Table 28. Dania Cutoff Canal 3 Threshold Effect Levels (TEL) and Probable Effect 
Levels (PEL) for every 5 cm in depth. 

  
cm Mo Cd Hg Pb V Cr Mn Co Ni Zn Cu Sn As Se 
5 8.30 0.10 0 5.28 15.5 11.1 14.0 0.24 4.18 41.5 26.1 0.45 18.1 0.849 
10 11.8 0.18 0 4.77 22.7 9.63 23.9 0.52 5.00 40.6 27.7 0.68 21.2 0.843 
15 137 0.02 0 2.82 53.1 26.1 10.9 0.31 6.27 54.5 7.61 1.5 52.2 2.812 
20 18.2 0.23 0 2.45 23.1 7.59 28.88 0.752 4.64 24.0 11.2 0.44 10.6 0.640 
25 38.9 0.08 0 2.88 14.8 5.26 19.7 0.32 2.39 15.2 12.3 0.50 22.0 0.599 
30 129 0.15 0 2.16 31.4 6.27 57.0 0.94 3.72 19.6 11.5 1.80 51.1 1.58 
35 244.9 0.03 0 1.7 37.7 16.3 42.2 0.48 4.60 4.92 4.75 3.03 114 2.85 
40 26.1 0.1 0 0.31 3.87 2.53 203.6 1.06 1.71 387.1 0.80 1.03 54.3 1.15 
45 384.5 0.04 0 0.59 17.5 7.12 67.7 0.87 3.60 2.3 3.89 4.18 223 3.94 
50 8.17 0.03 0 0.080 1.55 0.692 113.0 0.39 0.967 1.32 0.22 0.597 17.8 0.43 
55 5.67 0.01 0 0.055 0.570 0.427 86.76 0.23 0.504 0.11 0.20 0.31 16.2 0.405 
60 0.639 0.00 0 0.02 0.16 0.16 110.4 0.19 0.30 0.31 0.063 0.495 6.33 0.31 
65 0.34 0.0 0 0.02 0.26 0.22 102.5 0.19 0.42 0.36 0.13 0.964 8.12 0.31 
70 1.51 0.01 0 0.02 0.23 0.23 133.7 0.28 0.60 0.26 0.08 0.867 8.70 0.27 
75 0.48 0.0 0 0.1 0.23 0.22 127.5 0.47 0.51 0.43 0.0 1.18 14.0 0.24 
80 0.22 0.002 0 0.03 0.33 0.23 93.03 0.32 0.599 0.46 0.13 13.2 13.3 0.424 
85 0.25 0.01 0 0.11 0.39 0.42 156.2 0.31 0.670 2.22 0.32 0.720 10.1 0.37 
90 0.24 0.0 0 0.051 0.35 0.27 108.8 0.477 0.465 0.21 0.083 10.2 12.3 0.22 
95 2.10 0.01 0 0.077 2.55 0.634 128.1 0.24 0.46 0.547 0.29 25.2 12.5 0.34 
100 29.6 0.03 0 0.662 4.08 2.08 160.6 0.55 1.18 1.52 0.58 34.4 25.6 0.58 

Values above TEL range; Values above PEL range 
 
  



 

 124 

Appendix Table 29. Park Education Center 1 Threshold Effect Levels (TEL) and Probable Effect 
Levels (PEL) for every 5 cm in depth. 

  
cm Mo Cd Hg Pb V Cr Mn Co Ni Zn Cu Sn As Se 
5 0.065 0.03 0.0 3.22 3.14 5.30 11.2 0.14 1.25 17.3 12.5 0.11 1.34 0.13 
10 0.12 0.028 0.0 1.60 2.34 4.22 5.83 0.10 0.696 8.60 5.00 0.046 0.641 0.06 
15 0.743 0.052 0.0 3.61 6.11 6.29 7.89 0.15 1.94 25.7 15.7 0.13 2.01 0.15 
20 0.21 0.032 0.0 1.29 2.82 3.55 5.56 0.10 0.725 10.6 3.78 0.035 0.775 0.06 
25 1.04 0.048 0.0 3.87 10.1 7.93 9.69 0.22 2.84 17.2 13.2 0.12 2.81 0.17 
30 1.18 0.032 0.0 1.92 9.81 9.74 10.4 0.288 2.38 6.88 5.05 0.063 3.93 0.269 
35 1.20 0.046 0.0 2.06 11.5 16.6 17.2 0.447 3.00 2.80 1.89 0.00 2.94 0.31 
40 1.51 0.052 0.01 4.16 10.5 16.0 22.0 0.532 3.60 5.19 3.60 0.051 4.54 0.30 
45 0.444 0.03 0.0 1.50 7.00 12.1 11.8 0.33 2.06 3.65 1.12 0.00 2.97 0.34 
50 0.965 0.051 0.0 2.76 10.1 13.2 20.3 0.532 3.14 9.83 2.29 0.01 4.42 0.33 
55 3.14 0.34 0.36 20.1 55.0 14.4 30.4 0.747 16.4 33.3 28.1 0.40 12.1 0.61 
60 3.86 0.33 0.25 13.7 34.2 11.3 23.6 0.54 10.37 29.9 22.7 0.11 12.1 0.646 
65 2.85 0.22 0.29 10.3 16.0 6.70 14.5 0.28 4.53 19.0 15.2 0.22 6.16 0.38 
70 2.79 0.24 0.16 8.50 11.6 6.13 15.8 0.23 2.96 16.2 10.5 0.19 5.62 0.27 
75 0.886 0.09 0.02 3.39 3.47 2.43 7.36 0.093 1.15 6.66 3.56 0.036 2.10 0.09 
80 0.808 0.03 0.0 1.21 1.28 1.30 4.79 0.055 0.399 3.10 1.05 0.02 1.13 0.00 
85 1.98 0.03 0.01 2.40 4.50 2.88 11.3 0.13 0.897 6.22 3.23 0.072 3.24 0.16 
90 0.484 0.01 0.072 0.971 0.654 1.23 5.34 0.048 0.567 4.07 0.879 0.0059 0.850 0.01 
95 5.14 0.04 0.0 4.46 7.10 4.98 22.2 0.27 1.63 8.37 6.58 0.28 5.76 0.28 
100 9.19 0.13 0.0 9.01 24.0 12.0 34.2 0.50 5.05 21.3 15.5 0.35 11.1 0.76 
105 1.32 0.02 0.0 2.61 3.72 2.96 12.4 0.14 1.01 4.30 3.85 0.045 2.80 0.15 
110 3.93 0.06 0.0 5.38 10.3 5.84 20.5 0.23 3.12 13.4 3.89 0.37 6.99 0.48 
115 4.37 0.088 0.736 3.74 15.0 9.44 35.8 0.37 3.68 10.5 4.13 0.19 11.6 0.817 
120 8.14 0.1 0.0 3.52 15.9 7.53 26.8 0.36 2.79 8.59 3.11 0.18 15.4 0.59 
125 8.92 0.079 0.0 5.66 15.2 8.45 32.2 0.31 3.27 9.06 3.78 0.055 13.5 0.767 
130 43.8 0.92 0.0 3.99 50.7 21.0 20.4 0.67 11.3 6.79 4.97 0.00 32.1 2.26 
135 14.1 0.11 0.0 3.98 15.3 6.11 23.3 0.33 2.81 5.26 2.84 0.17 15.8 0.666 
140 2.91 0.03 0.0 2.29 7.20 4.16 18.1 0.26 1.51 4.73 1.65 0.12 7.32 0.32 
145 2.72 0.03 0.003 1.81 5.24 3.42 17.4 0.14 0.990 3.58 1.31 0.086 3.82 0.23 
150 0.789 0.01 0.005 1.28 3.67 2.75 6.89 0.16 0.604 1.55 0.729 0.0038 1.49 0.15 
155 0.772 0.01 0.055 3.39 8.76 7.52 9.71 0.517 1.67 1.06 2.1 0.10 0.880 0.35 
160 2.28 0.044 0.12 2.10 33.4 7.64 30.5 0.752 2.45 2.81 2.03 0.38 4.01 0.41 
165 1.50 0.04 0.048 1.89 22.3 5.64 47.1 0.882 2.47 2.60 3.66 0.14 2.87 0.29 
170 1.21 0.03 0.0 1.78 27.7 5.85 41.1 0.67 2.76 11.3 2.92 12.2 2.05 0.14 
175 0.43 0.03 0.0 1.39 9.92 4.45 27.3 0.42 1.63 1.24 1.55 0.56 1.11 0.12 
180 0.34 0.02 0.0 1.49 8.77 4.86 28.5 0.39 1.77 2.35 1.34 0.17 0.937 0.10 

Values above TEL range; Values above PEL range 
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Appendix Table 30. Park Education Center 2 Threshold Effect Levels (TEL) and Probable Effect 
Levels (PEL) for every 5 cm in depth. 
  
cm Mo Cd Hg Pb V Cr Mn Co Ni Zn Cu Sn As Se 
5 4.94 0.77 0.24 73.8 59.0 46.6 73.3 2.22 29.3 415.6 214.9 3.27 18.9 1.35 
10 0.23 0.053 0.0 4.82 5.16 7.78 14.9 0.25 2.20 25.7 22.2 0.572 1.56 0.16 
15 0.11 0.03 0.0 1.84 2.24 4.30 6.63 0.11 0.990 12.3 4.76 1.12 0.61 0.10 
20 0.10 0.04 0.0 1.37 2.41 3.39 6.45 0.13 0.800 6.23 2.96 0.687 0.753 0.09 
25 1.08 0.1 0.0 3.64 13.8 9.60 11.6 0.32 3.65 9.81 7.22 1.08 2.61 0.22 
30 1.37 0.074 0.0 2.45 12.0 12.9 18.9 0.39 3.34 7.55 5.81 0.46 3.21 0.20 
35 1.37 0.1 0.0 2.42 12.0 19.7 17.0 0.53 3.40 2.79 1.80 0.30 2.45 0.23 
40 0.69 0.1 0.0 2.17 11.7 18.9 16.7 0.43 3.28 3.35 1.55 0.54 2.18 0.13 
45 1.50 0.053 0.0 3.47 10.8 17.6 24.6 0.579 3.41 3.88 2.38 0.29 4.64 0.357 
50 2.06 0.1 0.0 3.67 11.5 18.9 23.6 0.59 4.19 6.11 3.42 0.54 4.21 0.14 
55 1.68 0.046 0.0 2.63 12.3 17.9 18.6 0.543 3.20 2.81 1.83 0.33 3.43 0.31 
60 1.05 0.03 0.0 2.06 7.8 11.8 14.0 0.367 2.56 4.33 1.62 0.22 3.59 0.35 
65 0.98 0.054 0.01 2.62 10.8 16.4 18.3 0.543 3.14 3.05 2.06 0.26 3.29 0.30 
70 3.29 0.20 0.26 9.56 34.2 13.4 25.3 0.589 10.6 16.6 13.8 1.02 8.94 0.613 
75 5.50 0.33 0.33 14.0 44.5 11.4 21.6 0.586 12.1 25.0 24.1 1.10 10.4 0.616 
80 7.27 0.33 0.632 18.0 31.4 10.3 22.5 0.461 10.1 28.2 25.8 1.10 8.85 0.623 
85 4.09 0.28 0.20 10.1 15.2 7.17 16.4 0.28 3.77 18.5 15.5 0.668 8.08 0.530 
90 8.71 0.44 0.488 15.6 15.4 9.15 26.1 0.36 3.72 25.6 16.0 0.881 8.24 0.602 
95 0.55 0.069 0.0 17.6 1.01 1.84 12.7 0.10 0.61 7.38 2.64 1.12 2.19 0.12 
100 0.51 0.04 0.0 1.79 1.23 1.39 6.57 0.06 0.42 3.97 1.40 0.702 1.09 0.03 
105 0.60 0.02 0.0 1.31 0.94 1.39 5.73 0.058 0.42 4.26 1.22 1.12 0.804 0.05 
110 4.17 0.041 0.01 5.37 14.7 5.71 31.4 0.28 1.70 8.98 9.39 0.429 5.10 0.28 
115 6.33 0.071 0.02 3.25 81.06 7.43 30.7 0.25 1.94 14.6 3.65 1.19 11.5 0.525 
120 6.64 0.062 0.0 2.88 63.77 7.36 28.1 0.23 1.97 6.49 3.45 0.782 8.09 0.512 
125 8.30 0.078 0.0 7.80 49.4 10.1 41.9 0.45 3.25 9.83 6.89 1.17 10.6 0.72 
130 89.8 0.24 0.0 1.6 106 13.1 53.4 2.06 4.93 4.04 2.41 3.19 62.4 1.6 
135 30.2 0.10 0.1 3.46 176.2 16.8 48.9 0.52 5.13 6.6 3.05 2.44 22.0 1.39 
140 6.99 0.065 0.0 6.57 109.9 10.1 45.6 0.37 2.82 7.37 4.04 0.824 8.27 0.548 
145 3.13 0.1 0.0 7.99 15.7 7.87 32.3 0.35 2.45 10.0 5.24 0.768 6.75 0.44 
150 8.70 0.084 0.0 4.25 43.6 10.7 30.9 0.37 2.96 6.13 4.09 0.802 12.2 0.732 
155 0.48 0.01 0.0 0.27 0.927 0.991 2.72 0.03 0.39 0.608 0.054 0.548 1.25 0.056 
160 0.24 0.005 0.0 0.24 0.704 0.669 1.96 0.03 0.23 0.709 0.004 0.495 0.799 0.0 
165 0.77 0.01 0.0 0.436 1.80 1.34 4.23 0.056 0.443 0.818 0.25 0.13 1.45 0.049 
170 2.65 0.03 0.03 1.03 9.88 2.93 18.1 0.33 1.16 1.20 1.10 0.28 3.35 0.10 
175 1.74 0.04 0.0 1.67 15.9 5.44 27.4 0.45 1.92 2.91 2.34 0.0 3.86 0.31 

Values above TEL range; Values above PEL range 
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Appendix Table 31. Park Education Center 3 Threshold Effect Levels (TEL) and Probable Effect 
Levels (PEL) for every 5 cm in depth. 

  
cm Mo Cd Hg Pb V Cr Mn Co Ni Zn Cu Sn As Se 
5 10.1 0.39 0.25 35.9 100.4 41.1 98.08 1.23 22.2 225.3 210.2 14.6 22.2 1.25 
10 1.50 0.077 0.0 4.24 20.2 13.4 18.8 0.40 5.00 14.6 10.5 11.7 3.75 0.24 
15 0.26 0.04 0.0 1.65 5.90 5.41 8.06 0.18 1.67 5.61 3.16 9.83 1.23 0.050 
20 0.14 0.03 0.0 1.73 4.25 4.17 5.84 0.13 1.13 7.11 4.61 15.6 1.00 0.00 
25 0.12 0.04 0.0 1.69 4.34 4.31 5.75 0.12 1.16 7.50 4.81 11.7 1.04 0.045 
30 1.28 0.068 0.0 3.75 15.3 11.4 13.3 0.35 3.99 15.7 11.3 8.68 3.56 0.28 
35 0.19 0.03 0.0 1.59 4.59 4.44 6.47 0.12 1.31 602.8 4.36 11.0 0.979 0.581 
40 2.08 0.050 0.0 2.31 11.7 13.2 15.3 0.450 2.92 4.05 3.11 4.06 4.12 0.28 
45 0.588 0.033 0.0 1.00 6.13 11.0 11.2 0.296 1.74 10.8 0.792 2.74 2.25 0.303 
50 1.03 0.03 0.0 1.57 9.66 13.8 13.6 0.408 2.36 1.60 1.43 2.23 3.78 0.502 
55 1.30 0.048 0.0 2.16 10.4 14.4 16.1 0.394 2.60 1.60 1.42 2.71 2.49 0.307 
60 1.27 0.046 0.0 3.01 10.8 19.4 25.5 0.551 3.36 3.05 2.01 4.34 3.78 0.34 
65 1.83 0.075 0.11 6.91 13.0 19.9 27.7 0.624 4.60 14.3 6.95 4.00 4.33 0.478 
70 1.90 0.068 0.0 3.08 10.9 17.1 22.3 0.574 3.45 3.01 2.74 3.11 3.97 0.346 
75 2.01 0.05 0.0 2.35 10.5 14.5 16.8 0.50 3.02 2.79 1.94 9.88 3.09 0.23 
80 1.77 0.058 0.0 3.28 12.1 18.9 18.7 0.551 3.24 3.18 1.97 3.80 3.32 0.32 
85 2.42 0.052 0.0 3.09 11.5 16.2 20.5 0.560 3.35 2.89 2.34 4.31 4.01 0.39 
90 3.76 0.063 0.0 3.64 17.2 19.7 26.1 0.899 5.37 3.49 2.85 7.37 6.55 0.588 
95 4.24 0.1 0.0 3.54 15.1 17.1 26.7 0.908 4.02 4.20 2.54 8.89 6.60 0.400 
100 4.51 0.11 0.11 5.11 28.6 13.5 21.2 0.567 6.88 5.69 6.29 6.73 8.32 0.473 
105 7.17 0.25 0.29 13.2 38.79 12.0 21.3 0.527 10.1 23.1 22.4 5.96 14.4 0.757 
110 6.65 0.29 0.20 10.1 16.6 7.55 15.4 0.29 4.10 19.2 13.7 5.72 7.14 0.470 
115 0.750 0.05 0.0 2.15 2.32 1.77 6.02 0.058 0.654 3.82 2.18 8.22 1.50 0.062 
120 4.22 0.12 0.14 4.21 7.53 4.07 12.0 0.18 1.53 10.4 4.45 6.33 5.88 0.26 
125 8.33 0.13 0.47 6.73 16.3 7.50 26.1 0.33 3.01 22.6 8.82 6.17 12.0 0.50 
130 0.79 0.02 0.0 3.14 1.17 1.65 5.73 0.057 0.45 5.60 1.29 7.34 1.21 0.003 
135 2.04 0.039 0.0 2.70 10.7 3.72 15.3 0.14 1.21 4.31 2.65 6.51 3.34 0.25 
140 10.2 0.10 0.0 5.49 37.4 9.90 28.8 0.38 3.06 8.02 5.10 10.5 10.9 0.923 
145 30.1 0.16 0.0 4.55 80.73 16.1 59.2 0.52 4.68 9.23 4.64 15.6 27.8 1.27 
150 2.37 0.05 0.04 6.57 9.14 5.77 24.2 0.30 2.14 8.06 4.01 0.574 5.29 0.39 
155 0.46 0.01 0.0 1.21 1.67 1.73 7.63 0.1 0.50 1.49 0.67 0.857 1.41 0.00 
160 15.6 0.1 0.0 1.91 38.2 14.5 17.0 2.06 17.0 4.95 5.02 1.72 18.9 1.1 
165 13.8 0.1 0.0 1.87 45.7 15.7 11.2 3.52 17.0 1.50 5.03 1.2 15.4 1.23 
170 7.84 0.10 0.0 3.07 41.6 15.8 10.6 2.41 13.5 1.89 4.76 0.12 10.5 1.16 
175 6.81 0.08 0.01 3.24 39.7 13.3 8.60 1.45 9.57 3.03 4.05 0.23 7.43 1.10 
180 8.09 0.072 0.0 3.19 46.2 16.1 10.1 2.57 13.3 4.26 4.18 0.10 10.7 1.13 
185 6.99 0.089 0.0 3.84 41.7 16.1 10.1 2.13 14.7 2.60 4.07 0.22 9.72 0.940 
190 22.1 0.22 0.0 4.78 124.3 32.7 15.2 6.84 20.0 1.91 3.69 0.50 31.5 1.67 
195 8.32 0.05 0.0 2.12 24.2 6.39 21.0 1.1 3.69 1.76 1.92 0.26 6.81 0.35 
200 0.43 0.01 0.0 1.51 4.94 3.42 16.6 0.35 1.28 2.02 1.1 0.49 1.1 0.1 

Values above TEL range; Values above PEL range 
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Appendix Table 32. Park Headquarters 1 Threshold Effect Levels (TEL) and Probable Effect 
Levels (PEL) for every 5 cm in depth. 

  
cm Mo Cd Hg Pb V Cr Mn Co Ni Zn Cu Sn As Se 
5 0.39 0.02 0.0 1.50 1.55 2.53 7.86 0.051 0.36 6.65 2.77 0.734 0.958 0.01 
10 3.42 0.04 0.0 1.46 4.34 4.09 10.6 0.13 1.23 75.47 2.97 0.820 2.86 0.24 
15 40.4 0.1 0.0 2.2 36.1 13.3 11.4 0.2 4.73 16.5 6.96 3.15 11.3 0.95 
20 45.0 0.1 0.0 1.5 32.5 12.1 8.42 0.2 4.38 5.97 2.93 3.89 11.4 1.4 
25 63.1 0.1 0.0 1.2 48.3 19.5 5.53 0.19 5.51 4.01 2.29 2.66 21.8 1.3 
30 269.5 0.18 0.0 2.43 67.2 32.0 14.0 0.33 8.94 6.31 7.50 2.77 75.0 3.69 
35 133 0.20 0.0 3.73 47.2 28.3 16.9 0.34 7.70 8.44 7.95 2.29 40.6 3.10 
40 37.0 0.1 0.0 1.14 18.6 13.0 8.12 0.13 3.93 5.55 2.89 1.18 10.8 1.17 
45 43.2 0.1 0.0 1.51 24.4 15.9 8.34 0.16 3.88 4.27 3.39 1.59 15.1 1.51 
50 20.6 0.02 0.0 0.861 17.2 8.72 5.88 0.21 2.82 7.99 1.90 1.01 11.9 0.79 
55 28.2 0.03 0.0 0.937 25.2 10.6 5.93 0.11 2.62 1.90 2.42 1.18 15.4 0.89 
60 7.05 0.01 0.0 0.40 5.82 4.31 2.71 0.04 1.02 0.895 0.741 0.600 6.04 0.36 
65 5.34 0.02 0.0 0.40 4.56 3.91 2.35 0.03 0.906 2.86 0.945 0.574 5.48 0.26 
70 5.75 0.057 0.0 0.834 8.40 6.25 7.86 0.10 1.92 1.65 1.37 0.52 7.85 0.37 
75 8.38 0.070 0.0 0.685 11.3 8.77 7.83 0.13 2.80 1.33 1.22 0.53 10.1 0.618 
80 7.10 0.11 0.0 0.818 9.17 8.47 9.27 0.15 2.66 39.3 1.48 0.19 10.9 0.487 
85 7.92 0.11 0.0 0.772 10.5 8.65 8.72 0.13 2.71 0.852 1.11 0.39 11.5 0.515 
90 5.17 0.067 0.0 0.671 7.73 6.60 9.85 0.10 1.76 1.74 0.791 0.458 11.6 0.38 
95 4.79 0.046 0.0 0.447 4.96 4.69 6.09 0.072 1.10 0.741 0.404 0.379 9.29 0.27 
100 3.73 0.04 0.0 0.805 4.25 3.68 4.58 0.068 1.03 3.84 0.731 0.538 6.98 0.14 
105 10.8 0.11 0.0 1.08 14.9 11.0 12.9 0.16 2.56 1.72 1.07 1.07 17.5 0.50 
110 15.6 0.053 0.0 0.454 10.9 5.96 7.24 0.11 1.54 1.41 0.590 0.431 14.5 0.35 
115 13.0 0.11 0.0 0.719 18.0 9.47 9.69 0.16 2.94 1.28 0.891 0.466 19.1 0.605 
120 9.89 0.052 0.0 0.512 14.5 6.55 8.21 0.11 1.47 1.34 0.494 0.544 18.4 0.442 
125 9.10 0.052 0.0 0.609 7.49 5.05 7.72 0.12 1.33 0.815 0.415 0.384 13.7 0.26 
130 6.97 0.04 0.0 0.42 10.0 4.99 7.22 0.091 1.17 1.20 0.26 0.724 8.26 0.34 
135 28.0 0.0 0.0 0.41 47.3 20.6 16.9 0.71 4.92 241 0.79 7.21 16.6 1.9 
140 48.7 0.1 0.0 0.32 55.7 19.3 17.6 0.60 4.57 1.7 0.86 3.35 22.4 1.5 
145 19.4 0.03 0.0 0.1 25.7 11.1 37.2 1.0 3.23 1.91 0.67 2.68 18.1 1.0 
150 11.7 0.02 0.0 0.15 13.0 7.34 30.2 7.40 11.5 7.31 0.63 2.38 16.9 1.05 
155 6.92 0.0 0.0 0.20 5.95 3.38 30.0 3.27 12.1 2.35 0.19 2.58 7.58 0.43 

Values above TEL range; Values above PEL range 
 
 
  



 

 128 

Appendix Table 33. Park Headquarters 2 Threshold Effect Levels (TEL) and Probable Effect Levels 
(PEL) for every 5 cm in depth. 

  
cm Mo Cd Hg Pb V Cr Mn Co Ni Zn Cu Sn As Se 
5 0.081 0.01 0.0 1.87 2.12 2.27 13.1 0.082 0.66 8.22 3.71 0.960 0.933 0.05 
10 0.17 0.01 0.0 1.93 2.09 1.93 10.5 0.1 0.53 7.48 4.38 1.05 1.05 0.01 
15 0.0 0.01 0.0 1.61 1.85 2.75 9.67 0.1 0.50 7.59 3.46 1.37 0.77 0.0 
20 33.4 0.16 0.0 4.21 34.7 21.5 18.8 0.37 8.77 9.27 5.28 1.96 14.4 2.07 
25 65.9 0.49 0.0 2.97 44.2 20.4 21.7 0.52 11.8 7.02 5.11 1.67 24.4 2.09 
30 54.1 0.55 0.0 2.19 31.3 12.2 17.4 0.37 5.41 6.85 4.01 1.25 17.8 1.27 
35 96.3 0.70 0.0 2.69 70.8 42.8 14.9 0.59 18.6 3.14 3.01 2.0 26.3 2.63 
40 35.2 0.17 0.0 0.793 15.7 9.07 5.54 0.14 3.44 0.605 1.68 0.783 11.1 0.863 
45 119 0.1 0.0 1.0 30.7 13.7 7.61 0.22 4.00 4.44 2.54 1.73 32.5 1.60 
50 25.0 0.15 0.0 0.694 16.2 9.93 6.18 0.15 3.86 1.48 1.92 0.694 11.4 0.882 
55 21.5 0.17 0.0 0.630 22.9 9.84 6.43 0.21 4.42 1.33 1.88 0.729 11.0 0.831 
60 15.4 0.065 0.0 0.539 15.7 6.92 3.78 0.094 2.23 0.866 1.47 0.572 9.53 0.631 
65 14.5 0.14 0.0 0.745 19.5 10.4 6.15 0.15 4.08 3.59 1.95 0.658 10.6 0.842 
70 5.50 0.01 0.0 0.35 5.60 3.67 1.61 0.02 0.72 0.54 0.56 0.869 5.60 0.32 
75 6.92 0.0 0.0 0.51 3.88 4.39 2.26 0.03 0.734 0.71 0.63 0.67 5.58 0.32 
80 13.1 0.02 0.0 1.08 8.77 10.7 5.42 0.1 1.44 1.20 1.53 1.02 14.2 0.81 
85 10.6 0.03 0.0 1.03 8.58 10.5 3.86 0.11 1.59 2.97 1.96 0.81 12.7 0.66 
90 16.9 0.04 0.0 1.37 15.6 17.9 9.57 0.14 2.95 5.69 2.97 0.62 20.0 0.933 
95 8.98 0.01 0.0 0.815 6.27 8.59 3.38 0.059 1.11 2.49 1.67 0.27 13.5 0.555 
100 6.95 0.004 0.0 0.652 5.07 6.68 2.28 0.044 0.804 0.28 1.09 0.22 11.6 0.373 
105 7.27 0.01 0.0 0.596 6.25 6.66 2.54 0.05 0.698 0.935 0.707 0.567 11.1 0.35 
110 13.2 0.19 0.0 0.990 10.9 10.2 22.8 0.29 4.80 2.15 1.14 0.867 19.5 0.51 
115 9.38 0.070 0.0 0.734 7.17 7.60 11.7 0.11 1.96 2.05 0.745 0.874 13.9 0.37 
120 37.5 0.04 0.0 1.05 18.6 11.4 4.94 0.087 1.87 0.816 1.46 0.44 30.1 0.808 
125 25.1 0.054 0.0 0.810 25.6 11.4 5.14 0.10 1.95 2.27 1.29 0.34 30.4 0.887 
130 27.0 0.075 0.0 0.889 15.2 12.4 8.25 0.15 2.33 1.31 1.17 0.59 22.6 0.613 
135 21.3 0.1 0.0 1.17 10.4 9.58 7.77 0.13 1.85 0.919 0.70 0.72 23.9 0.43 
140 40.3 0.03 0.0 0.33 52.0 21.7 34.1 0.83 4.55 0.40 0.96 2.62 20.1 1.61 
145 33.3 0.05 0.0 0.45 38.9 19.4 21.8 0.92 6.20 16.2 1.2 3.40 20.6 1.86 
150 7.35 0.04 0.0 0.36 10.2 6.18 7.00 0.40 2.65 2.69 0.67 1.39 8.27 0.68 
155 23.5 0.04 0.0 0.24 24.9 14.0 14.0 1.8 6.22 4.09 1.0 4.71 15.6 2.00 
160 20.2 0.1 0.0 0.29 15.8 23.8 27.3 2.26 8.23 1.4 1.65 3.23 19.5 1.85 
165 21.2 0.02 0.0 0.1 12.8 9.79 16.7 1.4 10.5 0.32 1.2 4.59 12.8 1.7 
170 3.06 0.003 0.0 0.03 2.38 2.22 43.5 0.32 3.29 0.31 0.31 1.28 5.01 0.52 
175 1.78 0.00002 0.0 0.04 1.61 1.45 33.1 0.22 2.57 0.16 0.10 0.853 5.22 0.37 
180 1.63 0.001 0.0 0.1 1.95 1.68 34.0 0.32 3.65 0.15 0.31 1.01 3.96 0.27 
185 2.98 0.01 0.0 0.25 2.88 2.66 28.5 0.45 7.72 0.32 0.78 2.13 4.99 0.33 
190 4.52 0.0 0.0 0.85 4.58 4.10 14.3 0.24 9.56 3.33 0.975 1.71 4.14 0.56 

Values above TEL range; Values above PEL range 
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Appendix Table 34. South Turning Basin 1 Threshold Effect Levels (TEL) and Probable 
Effect Levels (PEL) for every 5 cm in depth. 

  
cm Mo Cd Hg Pb V Cr Mn Co Ni Zn Cu Sn As Se 
5 8.25 0.17 0.0 19.2 25.8 15.0 28.8 0.55 9.43 134 110 2.73 21.5 1.2 
10 88.5 0.25 0.0 8.06 45.7 15.8 23.3 0.85 7.74 55.7 42.2 3.77 59.9 1.9 
15 17.24 0.33 0.1 27.1 40.1 19.8 45.4 0.89 15.4 150.7 127 3.01 21.5 1.69 
20 14.9 0.33 0.03 27.0 37.7 19.2 57.4 0.91 15.4 180 129 4.03 20.9 1.4 
25 16.4 0.30 0.0 21.7 51.7 17.6 62.3 1.1 15.9 190 104 4.16 22.8 1.8 
30 31.88 0.29 0.1 16.5 43.3 13.4 59.9 0.98 12.6 91.1 67.2 5.04 37.7 1.9 
35 25.38 0.15 0.0 9.47 29.0 11.2 45.4 1.1 8.53 61.3 48.4 3.15 31.7 1.65 
40 25.98 0.16 0.0 9.57 31.1 17.2 38.7 0.78 10.2 49.9 39.3 3.00 21.3 1.61 
45 24.99 0.1 0.0 5.48 28.2 17.6 29.6 0.99 10.4 23.3 18.4 3.89 16.6 1.8 
50 44.83 0.1 0.0 1.7 32.6 14.1 18.7 1.5 8.29 5.95 2.4 4.73 18.7 2.0 
55 29.68 0.1 0.0 1.8 33.8 9.05 11.3 1.4 6.31 5.81 5.70 4.02 15.7 1.5 
60 17.67 0.2 0.0 9.11 29.6 12.5 63.9 0.99 8.32 45.4 45.3 2.26 21.3 1.40 
65 4.85 0.04 0.0 1.17 7.40 4.5 63.28 0.5 1.9 9.60 4.10 1.00 14.6 0.800 
70 0.074 0.004 0.0 1.01 2.83 2.98 101.8 0.21 1.30 0.627 0.69 0.18 3.01 0.377 
75 0.45 0.01 0.0 1.70 7.71 4.73 89.53 0.51 2.22 2.06 1.14 0.082 4.78 0.41 

Values above TEL range; Values above PEL range 
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Appendix Table 35. South Turning Basin 2 Threshold Effect Levels (TEL) and Probable 
Effect Levels (PEL) for every 5 cm in depth. 

  
cm Mo Cd Hg Pb V Cr Mn Co Ni Zn Cu Sn As Se 
5 8.67 0.26 0.12 22.6 30.5 17.2 38.8 0.67 12.7 132.5 115.0 2.80 15.5 1.33 
10 9.75 0.34 0.19 27.4 37.5 20.2 49.3 0.76 15.9 155.8 135.3 3.71 15.1 1.61 
15 9.49 0.35 0.16 28.3 39.4 20.3 44.7 0.78 16.4 156.6 136.5 2.95 13.9 1.67 
20 14.5 0.08     0 5.07 16.7 5.86 17.7 0.52 5.11 22.3 35.0 8.14 15.6 0.30 
25 8.97 0.04 0.0 0.64 6.85 5.82 4.07 0.46 2.5 11.6 1.3 4.52 9.11 0.46 
30 3.05 0.051 0.0 5.09 6.81 3.45 8.55 0.16 2.59 27.7 22.8 1.03 4.73 0.25 
35 9.84 0.04 0.0 0.48 8.4 4.6 3.4 0.6 2.0 5.00 1.20 8.60 12.6 0.50 
40 8.57 0.0 0.0 0.69 5.06 3.0 8.33 0.62 1.8 8.32 2.6 7.19 14.5 0.42 
45 14.6 0.05 0.0 0.83 7.49 2.6 4.1 0.71 1.3 23.7 1.7 10.3 14.5 0.63 
50 14.8 0.1 0.0 0.26 6.76 2.80 5.31 0.66 1.5 4.47 0.36 11.1 13.3 0.41 

Values above TEL range; Values above PEL range 
 
  



 

 131 

 
Appendix Table 36. West Lake 1 Threshold Effect Levels (TEL) and Probable Effect Levels (PEL) for 
every 5 cm in depth. 

  
cm Mo Cd Hg Pb V Cr Mn Co Ni Zn Cu Sn As Se 
5 0.0 0.04 0.01 5.77 3.44 5.35 28.4 0.12 1.49 49.8 30.4 0.580 8.12 0.39 
10 0.05 0.065 0.0 7.52 4.14 5.47 28.4 0.14 1.72 47.2 25.3 0.47 9.04 0.37 
15 0.581 0.089 0.044 8.47 4.98 5.82 27.8 0.16 1.84 38.6 17.9 0.687 8.38 0.32 
20 0.833 0.13 0.088 11.0 9.20 8.75 35.9 0.35 2.87 19.2 10.1 1.21 6.22 0.425 
25 0.22 0.088 0.0 6.53 4.30 6.39 24.0 0.21 1.60 11.5 5.55 0.502 5.28 0.25 
30 0.24 0.050 0.0 3.28 4.76 6.01 18.1 0.28 1.52 4.07 1.95 0.586 4.63 0.25 
35 0.34 0.087 0.056 6.40 5.37 7.33 26.0 0.26 1.82 19.4 10.3 0.837 4.21 0.29 
40 0.23 0.072 0.0 4.70 5.17 7.46 43.5 0.34 1.78 5.82 3.05 0.454 2.96 0.26 
45 0.58 0.28 0.20 16.4 8.30 8.37 55.9 0.37 3.07 30.5 15.6 0.904 10.4 0.45 
50 0.789 0.11 0.15 11.9 7.43 6.66 72.60 0.35 2.76 23.3 11.7 1.18 12.5 0.52 
55 0.51 0.10 0.21 10.0 6.47 5.18 63.17 0.30 2.28 20.4 9.26 0.49 10.8 0.57 
60 0.856 0.045 0.003 7.10 5.32 4.13 70.62 0.29 1.55 12.8 4.10 0.827 10.3 0.567 
65 0.34 0.02 0.0 4.87 4.04 3.30 55.4 0.21 1.35 7.80 3.15 0.38 11.7 0.49 
70 0.583 0.04 0.0 5.00 4.86 3.39 72.34 0.25 1.31 10.9 2.96 0.28 14.0 0.713 
75 1.39 0.04 0.0 3.36 4.09 2.96 70.07 0.28 1.23 6.60 1.63 0.585 12.1 0.593 
80 0.27 0.01 0.0 0.642 1.21 0.973 80.13 0.18 0.438 1.07 0.430 0.31 4.85 0.18 
85 0.0 0.004 0.0 1.07 1.34 2.80 78.98 0.22 0.649 0.916 0.29 0.19 2.60 0.12 
90 0.0 0.01 0.0 1.64 2.04 3.39 71.0 0.25 0.72 4.94 1.53 0.30 3.18 0.18 

Values above TEL range; Values above PEL range 
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Appendix Table 37. West Lake 2 Threshold Effect Levels (TEL) and Probable Effect Levels (PEL) 
for every 5 cm in depth. 

  
cm Mo Cd Hg Pb V Cr Mn Co Ni Zn Cu Sn As Se 
5 0.31 0.10 0.0 11.4 4.94 6.80 34.6 0.17 1.98 37.7 21.1 0.502 6.42 0.27 

10 0.074 0.070 0.0 7.24 4.08 6.35 26.8 0.18 1.63 28.3 14.0 0.61 5.23 0.29 
15 0.0 0.032 0.0 2.04 2.36 5.17 15.2 0.17 1.08 8.48 1.03 0.34 1.68 0.17 
20 0.20 0.045 0.0 4.23 4.36 6.24 17.8 0.27 1.65 2.44 6.70 0.31 3.54 0.26 
25 0.16 0.074 0.01 4.54 5.45 7.29 22.6 0.29 1.85 7.15 4.02 0.676 2.99 0.25 
30 0.21 0.072 0.0 5.01 5.14 7.53 54.8 0.39 2.01 8.96 4.81 0.064 3.25 0.25 
35 0.090 0.18 0.060 7.83 5.92 4.57 46.3 0.21 2.24 16.6 8.95 0.624 11.0 0.56 
40 0.46 0.21 0.26 13.1 6.50 6.67 70.1 0.33 2.64 21.1 11.7 0.48 12.3 0.60 
45 0.55 0.091 0.12 10.2 5.58 5.64 75.3 0.32 2.21 16.0 9.12 0.53 11.2 0.647 
50 0.65 0.12 0.11 11.6 7.85 7.21 78.7 0.41 2.88 21.2 11.4 0.49 12.6 0.55 
55 0.41 0.1 0.04 8.96 5.12 4.56 66.1 0.30 1.92 16.8 7.89 0.50 10.6 0.53 
60 0.726 0.04 0.0 6.51 5.78 4.29 77.2 0.31 1.61 8.65 2.99 0.45 10.5 0.51 
65 0.956 0.053 0.0 5.68 5.36 4.10 66.6 0.31 1.59 9.12 3.52 0.39 13.8 0.43 
70 0.975 0.055 0.0 4.54 6.15 4.13 66.5 0.29 1.65 10.9 2.43 0.58 11.0 0.56 
75 3.6 0.016 0.0 0.59 59.6 11.2 9.38 0.52 16.8 27.7 1.2 7.70 12.9 0.88 
80 2.04 0.012 0.0 0.965 2.24 1.94 57.13 0.28 0.975 2.45 0.513 0.675 21.7 0.704 
85 0.813 0.033 0.0 2.19 2.78 2.53 70.81 0.22 1.17 7.41 0.927 0.957 8.75 0.46 
90 0.04 0.00 0.0 0.14 0.43 0.34 93.77 0.19 0.597 0.41 0.26 0.601 4.62 0.21 

Values above TEL range; Values above PEL range 
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Appendix Table 38. North Reef Threshold Effect Levels (TEL) and Probable Effect Levels 
(PEL) for every 5 cm in depth. 

   
Mo Cd Hg Pb V Cr Mn Co Ni Zn Cu Sn As Se 

NR1 0 0.01 0 0.9 5.02 4.7 10.1 0.04 0.41 2.76 0.67 0.99 6.89 0.11 
NR 2 0 0.03 0 1.4 6.8 6.81 13.9 0.1 0.72 4.52 1.02 1.84 6.37 0.04 
NR 3 0.01 0.04 0 1.5 9.12 7.55 15.6 0.04 0.6 3.24 0.65 1.6 8.55 0.08 

Values above TEL range; Values above PEL range 
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Appendix Table 39. South Reef Threshold Effect Levels (TEL) and Probable Effect Levels (PEL) 
for every 5 cm in depth. 

   
Mo Cd Hg Pb V Cr Mn Co Ni Zn Cu Sn As Se 

SR 1 0 0.04 0 1.3 3.8 5.32 24.1 0.03 0.62 91.1 28.6 1.85 2.41 0.07 
SR 2 0 0.03 0 1.5 4.19 6.35 13.6 0.03 0.75 3.85 0.59 2.07 3.82 0.12 
SR 3 0 0.04 0 1.8 3.91 6.44 14.6 0.05 0.86 6.97 0.51 1.34 3.32 0.08 

Values above TEL range; Values above PEL range 
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Appendix Table 40: Elemental Concentrations in Marine Port Sediment  
 

Trace Element Conc. in Marine Sediment Location References 
As 4 – 29 µg/g New South Wales, Australia* Jahan and Strezov, 2018 

6.7 – 19.9 µg/g Koper, Slovenia* Rogan Šmuc, et al. 2018 
8.0 – 21.0 µg/g Naples, Italy* Adamo, et al. 2005 

 0.8 – 223 µg/g Fort Lauderdale, Florida, USA* This Study 
Cd 0.1 – 0.4 µg/g Koper, Slovenia* Rogan Šmuc, et al. 2018 

0.09 – 0.47 Laizhou Bay and Zhangzi Island, 
China 

Zhuang & Gao, 2014 

0.2 – 2.5 µg/g Naples, Italy* Adamo, et al. 2005 
 0.0 – 0.92 µg/g Fort Lauderdale, Florida, USA* This Study 

Cr 1 – 31 µg/g New South Wales, Australia* Jahan and Strezov, 2018 
8.4 – 90.4 µg/g Laizhou Bay and Zhangzi Island, 

China 
Zhuang & Gao, 2014 

0.34 – 56.8 µg/g Fort Lauderdale, Florida, USA* This Study 
10.3 – 161.8 µg/g Naples, Italy* Adamo, et al. 2005 

Co 1 – 12 µg/g New South Wales, Australia* Jahan and Strezov, 2018 
1.9 – 7.2 µg/g Naples, Italy* Adamo, et al. 2005 

 0.02 – 7.40 µg/g Fort Lauderdale, Florida, USA* This Study 
Cu 2 – 1195 µg/g New South Wales, Australia* Jahan and Strezov, 2018 

17.6 – 37.8 µg/g Koper, Slovenia* Rogan Šmuc, et al. 2018 
2.9 – 28.7 µg/g Laizhou Bay and Zhangzi Island, 

China 
Zhuang & Gao, 2014 

0.29 – 210 µg/g  Fort Lauderdale, Florida, USA* This Study 
40 – 415 µg/g Naples, Italy* Adamo, et al. 2005 

Hg 0.5 – 2.73 µg/g Persian Gulf, Iran* Abdollahi, et al. 2013 
0.005 – 0.31 µg/g District of Klang, Malaysia Tavakoly Sany, et al. 2012 

0.018 – 0.536 µg/g South Korea* Choi, et al. 2011 
 0.0 – 0.74 µg/g Fort Lauderdale, Florida, USA* This Study 

Pb 2 – 165 µg/g New South Wales, Australia* Jahan and Strezov, 2018 
10.7 – 30.2 µg/g Koper, Slovenia* Rogan Šmuc, et al. 2018 
6.7 – 34.0 µg/g Laizhou Bay and Zhangzi Island, 

China 
Zhuang & Gao, 2014 

0.06 – 35.9 µg/g Fort Lauderdale, Florida, USA* This Study 
37 – 314 µg/g Naples, Italy* Adamo, et al. 2005 

Mn 6 – 201 µg/g New South Wales, Australia* Jahan and Strezov, 2018 
95 – 535 µg/g Naples, Italy* Adamo, et al. 2005 

316.6 – 325.6 µg/g Persian Gulf, Iran* Abdollahi, et al. 2013 
 1.6 – 203.6 µg/g Fort Lauderdale, Florida, USA* This Study 

Mo 40 µg/g New South Wales, Australia* Jahan and Strezov, 2018 
0.7 – 1.8 µg/g Koper, Slovenia* Rogan Šmuc, et al. 2018 
0.5 – 5.3 µg/g Naples, Italy* Adamo, et al. 2005 

 0.0 – 384.5 µg/g Fort Lauderdale, Florida, USA* This Study 
Ni 3 – 20 µg/g New South Wales, Australia* Jahan and Strezov, 2018 

61.3 – 109.4 µg/g Koper, Slovenia* Rogan Šmuc, et al. 2018 
3.2 – 47.1 µg/g Laizhou Bay and Zhangzi Island, 

China 
Zhuang & Gao, 2014 

 0.42 – 19.5 µg/g Fort Lauderdale, Florida, USA* This Study 
Se 0.4 – 8.8 µg/g New South Wales, Australia Peters, et al. 1999 

0.2 – 1.7 µg/g Solomon River, Kansas, USA May, et al, 2007 
0.2 – 0.3 µg/g Kuskokwim River, Alaska, USA Belkin, et al. 1993 

 0.05 – 6.8 µg/g Fort Lauderdale, Florida, USA* This Study 
Sn 3 – 37 µg/g New South Wales, Australia* Jahan and Strezov, 2018 

 0.0 – 140.1 µg/g Fort Lauderdale, Florida, USA*  
V 2.5 – 13.5 µg/g New South Wales, Australia* Jahan and Strezov, 2018 
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18 – 94 µg/g Naples, Italy* Adamo, et al. 2005 
30.6 – 32.5 µg/g Persian Gulf, Iran* Abdollahi, et al. 2013 

 0.2 – 176.2 µg/g Fort Lauderdale, Florida, USA* This Study 
Zn 7 – 2345 µg/g New South Wales, Australia* Jahan and Strezov, 2018 

54.0 – 99.0 µg/g Koper, Slovenia* Rogan Šmuc, et al. 2018 
12.8 – 88.6 µg/g Laizhou Bay and Zhangzi Island, 

China 
Zhuang & Gao, 2014 

41 – 1196 µg/g Naples, Italy* Adamo, et al. 2005 
 0.63 – 387 µg/g  Fort Lauderdale, Florida, USA* This Study 

* Indicates Port sediment 
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