Medical Education Digest, Vol. 6 No. 4 (July 15, 2004)

Nova Southeastern University

Follow this and additional works at: https://nsuworks.nova.edu/hpd_com_med

Part of the Osteopathic Medicine and Osteopathy Commons
Analyzing Communication and Interpersonal Skill Competence

A core clinical skill for the practice of medicine is communication with patients. It includes interviewing to obtain a medical history, explaining a diagnosis or prognosis, giving therapeutic instructions and information needed for informed consent to undergo a diagnostic or therapeutic procedure, and providing counseling. Interpersonal skills are relational and process-oriented focusing on the effect of communication on another person. They include respect, paying attention to the patient with verbal and nonverbal channels, having a caring intent, being curious and interested in the patient’s ideas, values, and concerns, and being personally present with the patient.

A third-year medical student should be able to demonstrate sufficient skills to interview a patient to obtain a medical history, but not yet able to negotiate a treatment plan requiring knowledge of various options. A graduating medical student should be able to demonstrate the ability to reflect on how their feelings and values influence interactions with patients as well as be able to develop therapeutic relationships, relieve distress, and provide comfort and support. Residents should be able to demonstrate continued competence and improvement in motivating patients to change health habits and in relieving stress through therapeutic counseling. At the end of residency, physicians should be able to demonstrate proficiency in working with others as a team member and a leader.

Methods to assess communication and interpersonal skills include checklists of observed behaviors and interactions, surveys of patients’ experience in interactions, and examination using oral, essay, or multiple choice response questions (e.g., psychological testing to determine personality traits and attitudes, video-recorded vignettes of difficult or typical communications, novel interactive computer simulations). Assessment tools should be reliable, valid, generalizable, and credible. Specific tools consist of direct observation of interactions with real patients, rating of simulations with standardized patient rating of interactions recorded on audio or videotape, patient questionnaires and surveys, assessment of knowledge, perception, and attitudes about communication. Faculty development is usually necessary for mastering effective ways to teach and evaluate interpersonal and communications skills.

Using Online Modules in Geriatric Education

The Mountain State Geriatric Education Center (MSGEC) in Morgantown, West Virginia, recently began exploring the use of multi-modal Web-based modules or courses to make geriatric education available to rural faculty/preceptors, students, and practitioners. Its goals were to establish a network to improve geriatric knowledge of health professionals in West Virginia, to develop and implement a structured program of geriatric education for health professions students and educators affiliated with its rural health education partnership, and to provide continuing geriatric education. The modules included curriculum in medical fundamentals of geriatric care, cultural issues, legal and ethical issues, public policy, and geriatric models in long-term care, managed care, and interdisciplinary teams. Multi-modal education is the employment of several different media methods or deliveries to teach a unit or concept. MSGEC integrated distance learning with more traditional modalities. This mixed modality approach helped its target audience to begin to use MSGEC's online modules and has introduced distance-education technology to people who were not traditional users of online resources.

Survey Examines Value of the Subinternship

Boston University School of Medicine's survey of fourth-year medical students was performed to assess their perception of how well the subinternship prepared them to perform core clinical skills. The subinternship consists of the rotations students perform after completing their third-year clerkships. It is during that period of time when students receive patient care experience prior to graduate medical education relating to general knowledge, skills, and attitudes. There were 101 student responders—or 69 percent of the class—surveyed concerning their perceived preparation to perform 20 core skills. Each student completed two five-point Likert scales ranging from “not at all prepared” to very well prepared” for each skill. Almost all participants thought the subinternship prepared them for many of the core skills of the internship. However, five at-risk skills were identified where fewer than 75 percent of the students surveyed believed they were prepared by both subinternship and medical school overall. Three areas where 40 to 50 percent felt unprepared were complex patient communication skills including discussing end-of-life care, delivering bad news, and assisting with patient or family grief management.

Objective Structured Clinical Examinations of New Residents

Objective structured clinical examinations (OSCEs) are now widely used in undergraduate medical education to assess knowledge, physical examination, and interpersonal skills. The Association of American Medical Colleges released a report of its Medical School Objectives Project (MSOP) in 1998 regarding learning objectives for graduates of medical schools. However, there are concerns that medical school graduates may not be meeting the MSOP standards and that residents are not equipped to meet the competencies set forth by the Accreditation Council for Graduate Medical Education (ACGME). This can lead to an increase in errors, which is further highlighted by the Institute of Medicine, which has expressed concerns about the education and training of physicians. Residency programs do not formally determine whether their trainees possess the skills expected at the time they begin their graduate medical education program.

To address this concern, the University of Michigan developed a Postgraduate Orientation Assessment (POA) to measure knowledge and skills of incoming residents. The POA’s focus is to determine if the new residents have the knowledge and skills required during the first four months of residency. A multistation OSCE was developed that included testing stations in critical laboratory values, cross-cultural communication, evidence-based medicine, radiographic image interpretation, informed consent, pain assessment and management, aseptic technique, and system compliance. The final product was an eight-station, three-hour OSCE. Although it was optional at first, it subsequently became a requirement for all entering residents. The OSCE featured 132 residents from 54 U.S. medical schools, 3 international schools, and 2 dental schools. It was demonstrated that the POA was feasible to determine baseline competence of residents.

Cadaver Scandals at Medical Schools

A series of incidents at medical schools in which body parts have been bought and sold has created serious damage to a number of cadaver programs. Dr. Arthur L. Caplan, who directs the Center for Bioethics at the University of Pennsylvania School of Medicine, remarked that, “The perception that people are mishandling body parts is toxic to future gifts.” The demand for cadavers has grown for anatomy classes, continuing medical education conferences, and biotech labs resulting in the potential to make big profits by transferring bodies among institutions. Tulane University sent a body to a body-brokerage company, which allegedly sold it to the U.S. Army for experiments with land mines without permission of the donor family. Another incident involved UCLA, where an employee of that university was arrested for trafficking in stolen parts. The director of the UCLA program was charged with felony grand theft, and a class action law suit filed against UCLA potentially endangers cadaver programs nationwide.

A former Governor of California is heading a task force to review the willed-body program at the system’s five medical schools. The American Association of Anatomists is calling for stricter regulations to ensure that the willed-body program meets high standards related to the integrity, identity, and security of bodies donated to the program. It states that all programs should comply with the Uniformed Anatomical Gift Act, which was adopted by all 50 states and prohibits the sale or purchase of human body parts. In Tulane’s case, nine university bodies had been sent to National Anatomical Service, a body-brokerage company, and sold for $37,000 to the U.S. Army. The bodies were blown up in Aberdeen, Maryland, in tests for footwear designed to protect soldiers who step on land mines. National Anatomical Service has transported about 8,000 bodies between medical schools since 1976. Other medical schools are tightening the controls on their programs to assure possible donors that bodies are treated with respect.

Residents’ Orientation Requires Attention

There is minimal literature describing the best way to orient new residents. Typically, there is much information to provide and too little time. A new orientation program was established in a children’s hospital in Sydney, Australia. It was divided into two components, the first including the key operational aspects of the hospital relating to safe functioning issues. A key component of this involved the redevelopment of the residents’ manual, which was distributed a month before the orientation and included a statement requiring residents to be familiar with it by orientation. Residents had to acknowledge in writing that they read the manual and return that acknowledgement to the chief resident. Because it was indicated that traditional lectures are poorly absorbed and poorly remembered, the orientation departed from lectures, replacing them with an interactive, scenario-based orientation program. In fact, in one program using didactic lectures, only one of twelve residents surveyed could recall any content and three could not even recall being at the orientation program itself. These scenarios were followed by a ten-station objective structured clinical examination, each 15 minutes in duration, followed by a series of questions. Instead of examining individual residents, groups of five to seven were analyzed. Each group attended each OSCE station and was assessed as a group. The scoring system, distributed in advance, was based on model answers. A group score was provided to avoid embarrassing individuals.

Creative Case Studies That Replace Lectures

According to Clyde Herreid, Ph.D., a distinguished teaching professor in the Department of Biological Sciences at the University of Buffalo SUNY, if you want to make science faculty members nervous, tell them to stop lecturing and start telling stories instead. However, he continued, if you transfer lecture notes on cellular respiration into a crime scene with yellow police tape and spilled red paint for blood, professors become creative. This was part of a five-day Case Studies in Science workshop for science faculty. It was reported that nearly 90 percent of the workshop participants embrace this method in their own teaching according to a survey by Survey Research Lab in the Department of Sociology, University of Buffalo College of Arts and Sciences, with educational consultants Ciurzck & Company. In addition, they reported that student attendance goes way up even in courses made up by nonmajors trying to satisfy their science requirements. A $1.2 million National Science Foundation grant to the university’s National Center for Case Study Teaching in Science will fund the instruction of 2,000 science professors nationwide and reach nearly a half million undergraduates.

The grant will permit the creation of a searchable database for nearly 200 cases. Dr. Herreid stated that, “There seems to be a conviction among scientists that young people who enter the field need to be told the facts and principles first before they can start to use them. It’s only later, in graduate school, where they are really allowed to start using information in a creative way. The information can pass from the teacher’s yellowed lecture notes into the students’ notebooks without going through the brains of either of them.” Cases in the University of Buffalo database cover both undergraduate and graduate level courses that include majors in chemistry, biology, pharmacy, and computer science. The National Center for Case Study Teaching in Science Web site can be accessed at: http://www.ublib.buffalo.edu/libraries/projects/cases/case.html.