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Abstract 

Drifting Fish Aggregating Devices (dFADs) are a gear accessory utilized on a global scale by 

commercial fishers to increase catch size and efficiency of target pelagic fishes such as tuna and 

dolphinfish.  Despite their widespread use, there are few scientific estimates of the total number 

of abandoned or beached dFADs in the Atlantic Ocean and Caribbean Basin or the compliance 

of dFAD use with t-RFMO recommendations.  Previous studies have utilized the modeled drift 

trajectories of dFADs to predict beaching probability and location, but this study is the first of its 

kind, analyzing true beaching events.  This study identifies the beaching location, composition, 

and ICCAT Rec. 19-02 compliance of stranded dFADs in the western North Atlantic and 

Caribbean Sea using citizen science data reported over social media.  Abandoned, lost, or 

otherwise discarded (ALDFG) dFADs were reported on the shores of the Gulf of Mexico, along 

the Atlantic coast of the United States and 17 Caribbean island nations, with reports as distant as 

Scotland, Ireland, and Brazil.  Sixty-one (22.8%) dFADs were reported as having beached in 

United States National or State Parks, MPAs (both domestic and foreign), as well as foreign 

conservation areas.  Furthermore, a total of 119 (61.03%) of photo-documented dFADs were 

non-compliant.  It is my recommendation that the distribution of abandoned lost, and otherwise 

discarded dFADs be surveyed in the North Atlantic Ocean to gain better understanding of the 

scope of dispersal and construction.  Additional research is necessary to determine best practices 

of identification marking schemes and ALDFG recovery incentives. 
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Introduction 

 Several species of tuna have high economic value and serve as critical sources of 

nutrition and income in both developed and developing countries (Gershman et al. 2015).  

Commercial tuna fishing catches have increased from less than 500,000 metric tons (mt) through 

the 1950’s to approximately 4 million mt in 2002, valued at USD $5 billion (Bayliff et al. 2005).  

The total annual catch of tropical tuna globally has remained relatively consistent thereafter, with 

a total catch of ~4.57 million mt in 2012 and 5.2 million mt by 2018, valued at USD $40.8 

billion (McKinney et al. 2020).  Of this harvest, approximately 60% was caught by purse seine 

vessels (Fig. 1), and 65% (or ~1.98 million tonnes) of that purse seine catch was taken off 

floating objects (Scott and Lopez 2014; ISSF 2020).  In the equatorial Atlantic Ocean, purse 

seine vessels typically target bigeye tuna (Thunnus obesus), skipjack tuna (Katsuwonus pelamis), 

and yellowfin tuna (Thunnus albacares) (Scott and Lopez 2014).  In 2012, 13% of yellowfin, 

35% of bigeye, and nearly 80% of skipjack tuna harvested by purse seine vessels were caught 

using floating objects (FOBs) in the Atlantic Ocean (Scott and Lopez 2014).   

For thousands of years, humans have been utilizing floating debris to enhance fishing 

success worldwide (Gershman et al. 2015).  Flotsam, as well as felled trees, palm fronds, and 

other floating debris, are commonly known to attract a variety of marine species to the shelter 

they offer in the pelagic zone where little natural refuge can be found.  Fish Aggregating Devices 

(FADs) function in the same manner, attracting various species to the protection beneath a 

floating or neutrally buoyant object (Maufroy et al. 2015).  The term FAD encompasses any 

floating object that has been purposefully deployed with the intent to enhance fishing success, 

though some fishers refer only to man-made floating objects as FADs (MRAG 2017).  FAD 

fishing by artisanal fleets became common in the late 1980s, and shortly after, purse seine 

vessels began to utilize thousands of drifting FADs (dFADs) annually in the Atlantic Ocean 

(Scott and Lopez 2014).  
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Figure 1. Total annual catch of bigeye tuna (Thunnus obesus), skipjack tuna (Katsuwonus 

pelamis), and yellowfin tuna (Thunnus albacares) by all flag nations by all gear types (blue), 

annual catch by purse seine vessels (yellow), annual catch of FAD sets (grey), and annual catch 

from pelagic long line (red line) from 1950-2019 in the Atlantic Ocean and adjacent seas 

(ICCAT Nominal Catch Information). Annual catch measurements are in metric tonnes (mt).  
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In 2012, it was estimated that between 81,000 and 121,000 drifting FADs are deployed 

worldwide annually and since 2011, the number of dFADs deployed in the Atlantic and Indian 

Oceans have increased fourfold (Gershman et al. 2015; Maufroy et al. 2017).  Drifting FAD sets 

are deployed by purse seine vessels and are allowed to drift freely (often referred to colloquially 

as “soaking”), typically while being monitored remotely.  The structure of a dFAD encourages 

the aggregation of various species, including tuna beneath the floating structure, enhancing the 

catch size and efficiency of purse seine fishing.  Purse seine nets are deployed around a dFAD 

which is then pulled back on board with the catch for eventual retirement or redeployment 

(Hanich et al. 2019).  This fishing technique has been adapted worldwide at industrial scales 

(Beverly et al. 2012). 

 Modern FADs are simply surface or sub-surface platforms that vary in construction 

method.  Materials used for dFAD platforms (also referred to as “rafts” or “floats”) range from 

commercially manufactured plastic discs to home-made rafts of miscellaneous items such as 

bamboo, PVC (polyvinyl chloride) pipes, ethylene vinyl acetate floats, high-density polyethylene 

(HDPE), and polyethylene terephthalate (PET) containers or bottles that are bound together with 

synthetic netting and rope.  Most designs also have subsurface components, often referred to as 

“aggregators” or “curtains”, to further increase attraction of small fishes and other prey while 

improving the ability to catch currents and drift further (Fig. 2), thus increasing both range and 

aggregating more fishes (Maufroy et al. 2015).  Longer aggregators have greater surface area, 

thus generating greater drag and reducing the speed at which as dFAD drifts with currents and 

allows biomass to accumulate in greater amounts.  In the Atlantic Ocean, dFAD curtains are 

typically 80-100 m long, with greater depth of gear associated with a greater risk of 

entanglement and beaching events not restricted to shorelines, such as those that become 

entangled with corals and can no longer drift freely (Curnick et al. 2020).  Biomass begins to 

aggregate around the subsurface components roughly fourteen days after deployment, with 

engagement peaking at approximately 40 days (Jayakody and Pieris 2003; Orue et al. 2019).  A 

cover of mesh netting or shadecloth on the platform is often incorporated to maintain the 

integrity of the dFAD and reduce the impact of weathering.   
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Figure 2. Examples of typical construction of drifting FADs with sausage bundle aggregators 

(left), drifting FADs with net aggregators and bamboo spreaders (middle), and anchored FADs in 

the Atlantic Ocean (right). Drifting FAD models vary by ocean basin. Drifting FADs are 

commonly composed of a platform of various material, ranging from bamboo, plastic jugs, and 

manufactured plastic discs to provide buoyancy and shelter to target species, a satellite-linked 

beacon buoy to allow remote tracking and a curtain of netting and ropes beneath the platform to 

increase attraction of target species. Anchored FADs are commonly composed of PVC pipes or a 

bamboo pole for buoyancy, with netting or burlap sacks draped beneath serving as an attractant 

to target species, and an anchor to secure the aFAD.   
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The design of FAD platforms dictates the cost of construction, with homemade rafts 

costing very little, as materials are often readily available, and manufactured platforms retailing 

at approximately USD $1900 (J.J. Chicolino Co. 2020).  The satellite-linked GPS buoys that are 

frequently associated with dFADs are used by large-scale purse seine fisheries and allow fishers 

to remotely track dFAD location.  The use of radio beacon buoys to track dFADs became 

commonplace in the mid-1980s and into the 1990s.  These buoys were replaced in the early 

2000s by solar-powered GPS-equipped buoys (Imzilen et al. 2021).  The majority of 

contemporary models of satellite-linked beacon buoys have an echo-sounder incorporated that 

monitors the presence or absence of an aggregation beneath the buoy with sonar and transmits 

the data via satellite to the fisher.  The average retail price of these buoys ranges from USD 

$1000 to $1500 with bulk rates available.  Occasionally, buoys are stolen from deployed FADs 

by competing vessels to replace the buoy with one of their own to harvest more target species 

(Baske et al. 2012).  Anchored FADs (aFADs) are generally used by artisanal fishers in 

nearshore areas and do not have associated tracking buoys.  

 In the Atlantic Ocean, European and Asian commercial fishing vessels commonly deploy 

dFADs along the west coast of Africa, typically off the coasts of Côte d’Ivoire, Ghana, and 

Gabon (Maufroy et al. 2015).  Drifting FADs are also deployed on a smaller scale by artisanal 

fishers in the Caribbean Sea.  The dFADs deployed off the African coast are allowed to drift 

westwards across the Atlantic, with both location and aggregations monitored remotely by 

vessels utilizing the satellite-linked beacon buoys attached to the rafts.  Occasionally, a dFAD 

can drift too far to be recovered in a financially practical manner, or may become damaged in 

some way, resulting in the loss or abandonment of the FAD.  Additionally, dFADs that drift west 

of 30° W are less likely to be recovered by the deploying vessel as they drift out of fishing 

grounds (Maufroy et al. 2015).  It is estimated that the average cost to a fishing vessel of 

recovering “lost” dFADs is approximately USD $1125 ± $75, approximately equivalent to the 

cost of a satellite-linked FAD buoy (Banks and Zaharia 2020).  This monetary expense is 

accompanied by the cost of time spent not fishing for target species and the subsequent loss of 

catch and profit.  In these scenarios, the dFAD is often abandoned by the vessel, and the satellite 

beacon buoys are subsequently deactivated, ceasing all transmissions from the buoy.  These 

abandoned dFADs then drift with prevailing currents and wind patterns, with some eventually 

washing ashore, sinking, or becoming entangled with marine organisms.  The intentional 
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deactivation of the satellite-linked beacon buoys affiliated with dFADs is banned under 

MARPOL Annex V, as the intentional discharge or disposal of fishing gear is prohibited 

(MARPOL 1987).  As of 2015, approximately 20% of intergovernmental organizations (IGOs) 

had mandatory efforts in place to mitigate and monitor abandoned, lost, or otherwise discarded 

fishing gear (ALDFG), though this number has since expanded, as Regional Fisheries 

Management Organizations (RFMOs) have added resolutions that include the recovery of 

abandoned gear such as FADs (Gilman 2015). 

   Although FADs may be lost or abandoned for a variety of reasons, they often result in 

negative impacts that are also commonly associated with other ALDFG, including megafauna 

entanglement, ghost fishing, socioeconomic costs, and the introduction of plastics to the marine 

environment.  Over one-third of all marine debris in the oceans are ALDFG or other marine-

based litter (Consoli et al. 2020).  FADs that have been abandoned or lost continue to pose a 

threat to marine life, as they do during active deployment and monitoring because they are a type 

of passive gear, meaning that they do not require regular maintenance to serve their intended 

purpose (Morena et al. 2018).  The environmental impacts of dFADs, both active and derelict, 

are amplified by the prolific use of durable, synthetic materials in dFAD construction such as 

nylon ropes and netting, as well as exposure-resistant plastics.  A study conducted by the Island 

Conservation Society of the Seychelles documenting beached FADs on St. Francis Atoll found 

that 39% of FADs had become entangled with coral, and over 70% of all FADs observed were 

composed of synthetic materials (Zudaire et al. 2018).  The presence of more FADs made of 

synthetic materials than biodegradable materials may be a result of manufactured materials being 

more durable and less susceptible to extreme weathering and sinking over pronged periods of 

exposure.  Although some research in the Indian Ocean (Filmalter et al. 2013; Stelfox et al. 

2016) details the construction of dFAD rafts, there has been little effort in the Atlantic Ocean to 

do the same.   

FADs with subsurface aggregators pose an additional entanglement risk to organisms 

such as sea turtles, sharks, marine mammals, and various fishes, as well as corals and other 

benthic species when they enter shallow waters (Gilman 2011).  A study of megafauna 

entanglement reported reptiles, pinnipeds, cetaceans, elasmobranchs, and sirenians entangled in 

ghost fishing gear (Stelfox et al. 2016).  In the Indian Ocean alone, an estimated 480,000 to 

960,000 silky sharks (Carcharhinus falciformis) were annually killed as a result of dFAD 
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entanglements based on data collected between 2010 and 2012 (Filmalter et al. 2013).  In the 

Atlantic Ocean, bycatch from FADs set for tropical tuna accounts for 2-8% of total catch by 

weight (Scott and Lopez 2014).  Filmalter et al. (2013) also found that dFADs, both active and 

abandoned, generated a mortality rate in sharks that was five to ten times greater than that of 

active purse seining in the Indian Ocean.  Megafauna entanglements in FADs are difficult to 

quantify because dead animals will often fall off the gear or be removed by scavengers after 

approximately two days, resulting in a small window in which to observe the entanglement 

(Filmalter et al. 2013).  The transition from traditional FAD construction techniques and 

materials to non-entangling, biodegradable models is thought to be one of few feasible methods 

of significantly reducing the risk of entanglement with dFADs, particularly after they become 

ALDFG (Morena et al. 2018).   

Though bycatch and entanglement are prominent effects of abandoned dFADs, both 

operational and derelict FADs contribute to overfishing and stock depletion (Hanich et al. 2019).  

Skipjack, bluefin, and albacore tuna stocks are not overfished in the Atlantic, while yellowfin 

and bigeye stocks are overfished, and bigeye are also subject to overfishing (ICCAT 2019).  As a 

result, annual catch limits for bigeye have been reduced from 65,000 mt in 2016, to 62,500 mt in 

2020, and 61,500 mt in 2021, though the total allowable catch for yellowfin has remained 

consistently 110,000 mt since 2012 (ICCAT Rec. 16-01, 19-02).  Overfishing of juvenile tuna 

from dFADs is also of concern in the Atlantic Ocean and may result in loss of potential yield or a 

reduction in the number of reproductively active individuals (Davies et al. 2014).  There is no 

discrimination between juvenile and mature individuals caught by purse seine vessels utilizing 

dFADs.  Most tunas caught from FADs are less than 70 cm in fork length (Marsac et al. 2000).  

Bigeye tuna are considered mature at a fork length (FL) of approximately 100 cm, at roughly 

three years, while yellowfin tuna are considered mature at 104 cm FL, and skipjack tuna mature 

at approximately 45-50 cm FL (ICCAT 2019 SCRS Report 9.1 YFT; ICCAT 2019 SCRS Report 

9.2 BET; ICCAT 2019 SCRS Report 2.1.3 SKJ).  The increased proportion of catch consisting of 

juvenile tuna in the eastern Atlantic Ocean has caused a stock-wide reduction in yield per recruit 

of bigeye and yellowfin tuna, although the true extent of this is unknown, as juvenile bycatch is 

often unreported (Dagorn et al. 2013).   

While derelict fishing gear presents a persistent threat to mobile species that traverse the 

water column, it can also negatively impact sessile, benthic marine life.  In the Mediterranean 
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Sea, the mean density of marine litter recorded by a remotely operated vehicle (ROV) was 4.63 

items/100 m2 (Consoli et al. 2020).  Seafloor ALDFG made up 96.8% of all marine litter 

recorded in their study, and FAD ropes comprised 81.1% of all litter observed, making this FAD 

component the most prolific item recorded.  Litter-fauna interactions were commonplace, with 

47.6% of debris items having at least one engagement.  FAD ropes were again the most common 

item, accounting for 88.6% of all litter-fauna interactions.  There are two regulations in place that 

manage FAD fishing in the Mediterranean, the first being a time-area closure from January 

through August throughout the entirety of the Mediterranean.  Additionally, Malta has restricted 

FAD fishing to designated zones.  Despite these ordinances, the Mediterranean faces similar 

problems to that of the Atlantic Ocean, where there are few efforts to mitigate FAD use and 

environmental impacts, and there is no incentive to remove FADs after use or at the close of the 

season (Consoli et al. 2020).  Studies suggest that removal of abandoned FADs from pelagic 

waters may be cost-prohibitive, particularly with derelict FADs that have sunk (Schled et al. 

2016). 

As the number of dFADs deployed globally continues to increase, the number of Marine 

Protected Areas (MPAs) is also rising.  The passive nature of dFADs is occasionally exploited by 

fishers that deploy dFADs outside MPAs with the knowledge that currents will carry the gear 

through restricted waters.  Vessels then navigate around MPAs and fish off the FADs that have 

aggregated target species within the MPA boundaries.  This risk of passive dFAD fishing 

through MPAs was studied in the Chagos Archipelago, a cluster of 14 shallow atolls located in 

the Indian Ocean south of the Maldives.  Curnick et al. (2020) modeled dFAD trajectories from 

16 origin locations outside the archipelago, and found that in > 14 days, 37.51% posed a risk of 

beaching or traversing the MPA though the risk decreased over time.  A total of 8.13% of the 

dFADs modeled beached under all deployment circumstances with temporal and spatial 

variations (Curnick et al. 2020).  

Abandoned, lost, or discarded dFADs are often subject to intense weathering as a result 

of their prolonged time at sea.  As a result, they can begin to degrade and introduce macro (> 5 

mm in size) and micro (< 5 mm in size) plastics to the environment as a result of physical 

weathering and photodegradation.  Reports of lone satellite linked beacon buoy and lone rafts, in 

addition to full dFADs composed of both a buoy and a raft, have been made from around the 

North Atlantic Ocean, Caribbean Sea, and Gulf of Mexico, often believed to be the result of 
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physical or photo degradation according to reports received by the CFTP.  Traditional FAD 

platforms constructed of bamboo are often built using hundreds of meters of synthetic rope and 

netting that are susceptible to degradation under extreme conditions and contribute to marine 

debris and ghost fishing.  Octagonal rafts with floats composed of 5 L plastic jugs and containers 

are common in the Atlantic, where they are predominately utilized by Spanish fleets, where they 

are referred to as “parrilla octagonal”, translated literally to “octagonal shelf” (Zudaire et al. 

2019).  In 2016, the Spanish technology company Zunibal created the Zunfloat™, a reusable 

manufactured plastic disc intended to generate a lesser impact on the marine environment than 

previous FAD platforms (Zunibal 2020).  Zunibal touts the Zunfloat™ as a recyclable and 

reusable product that is resistant to deformation, does not degrade with sunlight or in seawater, 

and produces less waste and less environmental impact (Zunibal 2020).  To date, there not been 

any published research substantiating these claims.  JJ Chicolino SL, a Spanish company 

specializing in the production of fishing and aquaculture gear, has recently begun manufacturing 

a similar, supposedly non-entangling dFAD raft (JJ Chicolino 2020). 

Atlantic dFAD deployment typically occurs in the waters around the Gulf of Guinea off 

the African coast (Angel et al. 2014).  Deploying in this region allows commercial dFADs to be 

passively transported by the Southern Equatorial Current or other smaller, regional currents and 

be passively carried through the pelagic waters that are commonly inhabited by a variety of tuna 

species.  This methodology requires minimal effort from fishers, though there is no definitive 

certainty regarding the path a deployed dFAD may take.  The trans-Atlantic movement of 

dFADs is likely aided by equatorial surface currents flowing west from the west coast of Africa 

towards the east coast of North and South America (Fig. 3).  Water, biota, and marine debris 

have the potential to be swept into the Greater Caribbean region by these currents, and carried 

further north by the Caribbean Current, Gulf of Mexico Loop Current, Florida Current, and the 

Gulf Stream, respectively, though there are no estimates as to the percentage of dFADs that 

remain in the gyre or are transported further north (Fratantoni; Renner 2004).  These currents 

express very little seasonal variation, though loop current eddies are periodically generated, 

returning to the Gulf of Mexico rather than the Florida Straits, and seasonal differences in the 

number of dFAD beaching events are not related to changes in prevailing currents, as is possible 

in the Indian Ocean (Bourles et al. 1999, Imzilen et al. 2021).   
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The influence of prevailing ocean currents is not solely restricted to trans-basin transport 

but is also believed to contribute to beaching events of marine debris and ALDFG.  The speed of 

slower coastal currents may also affect the levels of stranded derelict fishing gear, with slow 

currents likely contributing greater amounts of marine debris to beaches, as floating objects 

remain in the region longer in areas of reduced mean current velocity (Storrier et al. 2007).  

Specific to the western North Atlantic Ocean, the Caribbean current has the lowest mean current 

speed as determined by satellite-tracked surface drifters (31 cm s−1), while the Loop Current in 

the Gulf of Mexico, the Florida Current, and the Gulf Stream have mean surface current speeds 

of 61 cm s−1, 97 cm s−1, and 60 cm s−1, respectively (Fratantoni 2001).  Average current 

speeds, directionality, and other components are subject to change as they interact with 

coastlines, the seafloor, wind, and other external factors, therefore they are not always accurate 

predictors of the coastal flows that result in dFAD strandings.  The distance of stranding 

locations to local sources of marine debris is also a contributing factor to the amount of debris in 

a coastal environment.  Human coastal population and commercial fishing activity are 

considered the main regional drivers of marine-based coastal debris in the Atlantic Ocean (Ribic 

et al. 2010).  In addition, the density of marine debris has been observed to be greater on the 

windward shores of Caribbean islands than the leeward side as a result of prevailing winds and 

currents bringing more debris to those locations (Debrot et al. 1999).  
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Figure 3. A visual representation of designation of tuna Regional Fisheries Management 

Organization’s waters are depicted as follows-ICCAT waters are yellow, the fishing grounds 

overseen by IOTC are orange, IATTC regulated waters are shown in, WCPFC waters are dark 

blue, and CCSBT water is designated by red stripes (Source: Maribus 2013).  
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Few modelling studies predicting dFAD distribution have been conducted globally, 

though several basin-wide studies have been completed in the Atlantic and Indian Ocean.  In 

2015, Maufroy et al. attempted to predict the stranding locations of abandoned dFADs in the 

Western Atlantic Ocean, though this study did not consider the stranding of Atlantic dFADs on 

North American or Caribbean shores.  Maufroy et al. (2015) used the GPS positions of the 

satellite-linked beacon buoys of dFADs deployed by French purse seine vessels operating in the 

Atlantic and Indian Oceans from 2007 to 2011 to identify the primary region and season of 

Atlantic and Indian Ocean dFAD deployment, as well as the total extent of their drift.  Mean “at-

sea drift speed” was found to be 1.3 m s−1, providing a mean rate for researchers to apply to 

dFADs to attempt to recreate the path taken to the final stranding location.  It was determined 

that on average, dFADs deployed in the two basins drifted for 39.5 days and travelled 1285.5 km 

before recapture or stranding, with an estimated 9.9% of all deployments ending with beaching 

events and outliers beaching on South American coasts (Fig. 4).   

A similar paper by Imzilen et al. (2021) modelled the trajectories of dFADs and 

suggested that limiting regions of dFAD deployment would reduce beaching events in the Indian 

and Atlantic Oceans.  The trajectories of 12,000 dFADs deployed between 2008 and 2017 by 

French fleets off the coast of Mauritania, Gabon, and Angola were tracked until retrieval, loss, or 

a beaching event occurred.  In that time, a total of 19-22% of all deployed dFADs were beached, 

this percentage stabilizing at ~22% after 2013.  This stability is thought to be related to the 

increased use of echosounder buoys during this time, the deactivation of unproductive buoys to 

remain under RFMO quota, and reduced capacities on the number of dFAD buoys per vessel.  

Imzilen et al. (2021) found that that the majority of dFADs became stranded along the West 

African coast and along the Gulf of Guinea, while beaching events in the Caribbean and along 

the coast of Brazil were considered sporadic.  This estimated beaching of ~19-22% of all dFAD 

deployments, in combination with the estimated total number of annual, global dFAD 

deployments determined by Baske et al. (2012), suggests that there could be as many as 15,390-

26,620 dFADs lost annually worldwide.  Because there have not been any studies of the 

distribution of beached dFADs in the Atlantic and Greater Caribbean utilizing definite stranding 

data as opposed to projected trajectories and simulations, this study is the first of its kind.  The 

use of observational studies to validate the results of predictive modelling studies such as that of 

Maufroy et al. (2015) and Imzilen et al. (2021) is considered highly important, though often 
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challenging due to the physical limitations and difficulties affiliated with the collection of 

observational data (Chassignet et al. 2018).  These studies serve to ensure that predictive models 

“reflect reality” and can be used in future predictions with limited uncertainty (Eker et al. 2018).   

The five tuna Regional Fisheries Management Organizations (t-RFMOs) have stated their 

intention to reduce the impact of abandoned and lost FADs through the introduction of a variety 

of resolutions and recommendations (Table 1).  In addition, these t-RFMOs committed to a 

collaborative effort called the Kobe Process (named for the inaugural meeting in Kobe, Japan), 

whose purpose is to enhance the collaboration and cooperation between The Indian Ocean Tuna 

Commission (IOTC), Inter-American Tropical Tuna Commission (IATTC), International 

Commission for the Conservation of Atlantic Tunas (ICCAT), the Western and Central Pacific 

Fisheries Commission (WCPFC), and the Commission for the Conservation of Southern Bluefin 

Tuna (CCSBT1).  The t-RFMOs IOTC, IATTC, ICCAT and WCPFC began to regulate the use of 

dFADs in 1999 and have continued to research and periodically update Conservation and 

Management Measures (CMM), Resolutions, and Recommendations (hereafter referred to as 

regulations), including IATTC Res. 99-07, WCPFC CMM 2008-01, ICCAT Rec. 11-01, and 

IOTC CMM 12/08 (Fig. 5).  Though these regulations were implemented to reduce the impact of 

active dFADs, they also serve to indirectly reduce the impact of derelict dFADs as ALDFG.   

 

  

 
1 The CCSBT, while one of the five t-RFMOs, does not have any fisheries utilizing dFADs and thus does not have 

any regulations regarding their use.  The CCSBT will not be discussed further in this study. 
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Figure 4.  The beaching location of French dFAD buoys from predictive modelling studies 

based on rate of movement. The smoothed densities of dFAD strandings in the Western Atlantic 

Ocean for the period of 2007-2011 (a). Black dots correspond to individual stranding locations 

(Source: Maufroy et al. 2015).  The number of French dFAD beaching events recorded per km of 

continental shelf edge in each 5◦x5◦ grid cell for the period 2008–2017 (b) (Source: Imzilen et al. 

2021). 

 

(a) 

(b) 
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In order to reduce the entanglement risk of dFADs, ICCAT requires that all dFADs be 

not covered, or covered in a material that does not pose a risk of entanglement.  Additionally, 

sub-surface dFAD components may not include entangling materials such as netting, but rather 

should be made of materials such as ropes or canvas. However, ICCAT Rec. 19-02 does not 

require that outdated and non-compliant dFADs be recovered by deploying vessels and updated 

or replaced to meet the new standards of construction.  This likely results in a number of lost and 

abandoned dFADs being non-compliant with regard to new regulations of construction methods 

and materials.  Surveys in the Seychelles have revealed problems with the t-RFMO 

recommended aggregator design.  So-called “sausage-style” curtains, which are composed of 

mesh netting rolled into bundles to reduce entanglement risk, are under scrutiny because as they 

endure exposure, they often unravel, and the fine mesh netting can tear, creating larger holes that 

increase the risk of entanglement.  As a result of such dFAD degradation, the International 

Seafood Sustainability Foundation (ISSF 2020) redefined non-entangling FADs (NEFADs) as 

“Fish aggregating devices that are constructed with no netting material...  For a FAD to be 

completely non-entangling, it must use no netting materials either in the surface structure (raft) 

or the submerged structure.”   

ISSF further distinguishes FADs that use netting that is intended to have minimal 

entanglement risk “such as using netting tied in bundles or using small size netting (< 7 cm 

stretched mesh) are now called “lower entanglement risk FADs (LERFADs)” (ISSF 2015).  

Balderson and Martin (2015) found that in the Seychelles, 39% of dFADs were entangled and 

“beached” on reefs.  Of these dFADs, 23.8% used synthetic rope as the aggregator, while 48.9% 

used netting.  Of those not beached on coral, 37% had coral entangled in the aggregator, and 

100% were made of netting.  Nearly half (46%) of dFADs that used sausage nets also had corals 

entangled, suggesting that such LERFADs may not be sufficiently mitigating the threat of 

entanglement with sessile marine organisms.  Of the 214 dFADs surveyed, 40% did not have a 

buoy attached, likely as a result of weathering.  

Satellite-linked beacon buoys are often used to identify dFADs as the property of 

individual vessels or fleets.  Vessel names, buoy serial numbers, or alphanumeric series are often 

etched or painted on the dome of the buoys to denote ownership, though this method of marking 

is not consistent across all participants in the fishery.  Ownership and accountability remain 

pertinent policy issues, with very few requirements or incentives regarding the reporting, 
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deployment, recovery, or labelling of FADs by the various t-RFMOs.  All FADs are required to 

be marked with a unique identifying code of numbers, often the serial number of the affixed 

satellite-linked beacon buoy, though further guidance is inconsistent between t-RFMOs (WCPFC 

CMM 2018-01; IATTC Res. 19-01; ICCAT Rec. 19-02; IOTC CMM 19/02).  A total maximum 

number of active and deployed FADs has been independently set by each t-RFMO (Table 1). 

ICCAT Rec. 19-02 states that all buoys affiliated with dFADs must be legibly marked post-

manufacturing with the buoy’s unique serial number, though no elaboration has been made 

regarding the method of such markings.   

“The FAD Management Plan for a CPC purse seine and baitboat fleets must include the 

following: … Radio buoys markings and identifier (requirement for serial numbers) …if FAD 

marking and associated beacon/buoy ID are absent or unreadable, the FAD shall not be 

deployed” (ICCAT Rec. 19-02). 

There is no further ICCAT guidance regarding the method of marking a buoy, though 

IOTC and IATTC make additional specifications pertaining to details such as the material used 

to create the post-manufacture mark (e.g., epoxy-based paint marker) or the size of the post 

manufacture marking.  IOTC has stated the intention to create a series of guidelines regarding the 

identification marking scheme of dFADs, though ICCAT, IATTC, and WCPFC have not 

publicized such plans to develop a comprehensive dFAD buoy marking scheme despite their 

membership in the Kobe Process.  The identifying marking on FADs are intended to assist in 

identifying FADs after deployment, and to incentivize vessels and flag states to retrieve all 

FADs.  Under the jurisdiction of the four t-RFMOs, all dFADs retrievals are to be documented, 

however, there are no outright requirements that all deployed FADs must be retrieved.  

Reporting of lost FADs is required by ICCAT, IATTC and IOTC, though the consequence of 

failing to do so is not stated (IATTC Res. 19-01, ICCAT Rec. 19-02, and IOTC CMM 19/02).  It 

should be noted that enforcement of RFMO regulations is typically left to individual Contracting 

Parties and Cooperating Non-Contracting Parties (CPCs); there is no centralized enforcement 

agency for these organizations. 
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Table 1. Current RFMO Conservation and Management Measures, Recommendations and 

Regulations as specified by the most recent RFMO compendium as follows; Western and Central 

Pacific Fisheries Commission (CMM 2018-01, CMM 2020-01), Inter-American Tropical Tuna 

Commission (Resolutions C-19-01, C-17-02, C-16-01), International Commission for the 

Conservation of Atlantic Tunas (Rec. 16-01, Rec. 17-02, Rec. 19-02, 20-01), and the Indian 

Ocean Tuna Commission (CMM 19/02). Note that resolutions by IATTC are binding, while 

ICCAT’s recommendations are considered binding, as are IOTC’s and WCPFC’s conservation 

and management measures (Unterweger, 2015). *Maximum number of FADs/Buoys per vessel 

under IATTC jurisdiction is dependent on vessel class; Class 6 (1,200 m3 and greater): 450 

FADs, Class 6 (<1,200 𝑚3): 300 FADs, Class 4-5: 120 FADs, Class 1-3: 70 FADs (IATTC 

2019; ICCAT 2020; IOTC 2020; WCPFC 2020). 

 

RFMO 

Max. No. 

FADs/ 

Buoys per 

vessel 

No. 

Active 

FADs at 

any given 

time 

Required 

Reporting of 

lost FADs 

Use of Non-

Entangling 

FADs 

Use of 

Biodegradable 

materials 

Unique 

I.D. 

Marking 

on FADs 

Required 

Western and 

Central Pacific 

Fisheries 

Commission 

N/A 350 Unspecified Required Recommended Yes 

Inter-American 

Tropical Tuna 

Commission 

N/A 70-450* Yes Recommended 

Recommended, 

research 

ongoing 

Yes 

International 

Commission 

for the 

Conservation 

of Atlantic 

Tunas 

N/A 300 
Yes, annual 

basis 
Required 

Recommended, 

research 

ongoing 

Yes 

Indian Ocean 

Tuna 

Commission 

500 buoys 300 
Yes, annual 

basis 
Required 

Recommended, 

research 

recommended 

Yes 
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In past years, monitoring the compliance of various aspects of dFADs, such as the 

construction, identification marking, and their deployment has gained support amongst t-

RFMOs.  Due to the pelagic nature of dFAD deployment, and the limited number of mandatory 

recommendations regarding the marking of buoys and platforms, there are numerous challenges 

that arise in the effort to monitor dFAD use.  The use of fisheries observers has been 

recommended by several t-RFMOs, governmental organizations, and non-governmental 

organizations (NGOs) (Gilman et al. 2018; Zudaire et al. 2019), though there are multiple 

difficulties including physical challenges such as proximity to gear and suboptimal weather on 

board a vessel that fisheries observers face (Gilman et al. 2018).  Other suggested methods of 

mitigating dFAD impact and increasing compliance include, but are not restricted to financial 

incentives, seasonal time-area closures, mandatory recovery, as well as enforcement of other pre-

established, mandatory t-RFMO recommendations (Fonteneau et al. 2015).  Ownership and 

dFAD accountability are common issues with such mitigation efforts, as dFAD marking schemes 

are not public knowledge and attributing responsibility for problematic dFADs can be 

challenging.  Additionally, dFADs are often not marked to indicate ownership, and when they 

are, many are illegible or do not adhere to mandatory t-RFMO marking regulations (Gilman et 

al. 2018; Baske and Adam 2019).  Post-manufacture markings that meet ICCAT specifications 

are often not beneficial in determining ownership of dFADs, as these marks contain the serial 

number of the buoy, but the vessel or entity to which the serial number is registered is not public 

information.  To address this gap in knowledge, we developed a citizen-science reporting 

mechanism, the Caribbean FAD Tracking Project (CFTP), using a social media platform to 

collect photographs depicting the marking schemes of satellite-linked beacon buoys and the 

construction of affiliated dFAD rafts, which were then evaluated regarding compliance with 

mandatory ICCAT Rec. 19-02.   

By studying the distribution and composition of ALDFG FADs, both the commercial 

tuna industry and fisheries researchers can gain insight into the true breadth of the impacts of 

such gear.  Fish aggregating devices are utilized on a large-scale globally, with an estimated 

18,000 dFAD deployments occurring in the Atlantic Ocean annually (Escalle et al. 2021).  

Approximately 10-22% of all FAD deployments in the Atlantic Ocean end with a beaching 

event, resulting in roughly 1,800-3,960 dFADs beaching along Atlantic shores and reef tracks 

every year, a number that is increased further by the failure to recover many dFADs.  Due to the 
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nature of dFAD use and monitoring, as well as the structure of active mandatory t-RFMO 

recommendations, it is challenging to identify and attribute ownership and responsibility for 

dFADs and their environmental and socio-economic impacts.  The Caribbean FAD Tracking 

Project serves as a centralized reporting agency for ALDFG dFADs in the North Atlantic Ocean, 

Caribbean Sea, and Gulf of Mexico.  By analyzing various aspects of the reported FADs, it is 

possible to better understand the shortcomings of current FAD management, and to validate 

predicted beaching events from modelling studies that may be utilized in future FAD 

management. 

Methods 

Study Area and Caribbean FAD Tracking Project 

In 2015, Thomas Pitchford, a wildlife biologist with the Florida Fish and Wildlife 

Conservation Commission, began independently researching and documenting the reporting of 

beached dFADs in the western Atlantic in an effort to establish a pattern and substantiate claims 

that dFAD strandings on Florida beaches were not isolated incidents.  As a result of both the 

geographic scale and the nature of this study, data collection was nearly exclusively supported by 

citizen science, keyword internet searches, and public reporting.  Reports were accepted from 

any location in the Atlantic Ocean and Caribbean Sea, though the majority of reports are made 

from Caribbean nations and the southern United States.  This research was founded on keyword 

searches including terms such as “bamboo raft found ashore”, “strange buoy on beach”, 

“mystery raft”, and eventually encompassed terms that were written on stranded buoys.  

Searches were conducted on sites such as Instagram, Facebook, Twitter, Flickr, independent 

blogs, and Google image search.  Once finding such “reports” online, Pitchford would contact 

the person who posted the information in order to determine details such as the find date, the 

exact location of the FAD, and any other pertinent information and photos that were then 

recorded in a spreadsheet.  Photographs were cataloged by find date, finders name and a brief 

description of the FAD.  Any online report that did not receive a supplementary response was not 

included in the dataset.  Both the find date and the report date were noted, as many dFADs were 

discovered well before they were reported to the CFTP. 
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In April 2019, Thomas Pitchford turned over his data to the Caribbean FAD Tracking 

Project, and now serves as a point of contact between the Caribbean FAD Tracking Project and 

citizen scientists.  At this point, I became solely responsible for the addition, analysis, and 

upkeep of this dataset (https://nsuworks.nova.edu/faelab/1/).  Using the data Pitchford had 

collected, I created a flyer detailing common elements of dFADs, their use, and information we 

hoped to receive in a report.  This flyer (Appendix I), along with a statement of intention, was 

distributed to various public and private entities along the Atlantic coast of Florida, as well as to 

various Caribbean nations including state environmental agencies, sea turtle conservation 

programs, and beachcomber groups (Appendix II).  A month later, in May 2019, I created and 

published a Facebook page titled the Caribbean FAD Tracking Project 

(www.facebook.com/fadtrackers) as well as an email account (fadtrackers@gmail.com).  The 

nature of these accounts is to serve as a reporting platform for the public around the Caribbean 

Sea and North Atlantic Ocean.   

In February, March, April, May, July, October, November, and December of 2020, at 

least 32 articles highlighting dFAD strandings and the affiliated environmental impacts and 

featuring the Caribbean FAD Tracking Project were published by various newspapers and 

conservation organizations (Appendix III).  In November of 2020, the United Nations 

Environmental Programme Ninth meeting of the Scientific and Technical Committee (STAC) to 

the Protocol Concerning Specially Protected Areas and Wildlife (SPAW) in the Wider Caribbean 

Region cited the CFTP in their implementation of the Action Plan for the Conservation of 

Marine Mammals (MMAP) in the Wider Caribbean: A Scientific and Technical Analysis (Vail 

and Borobia 2020).  This estimated number of publicity events is a conservative approximation, 

as the Caribbean FAD Tracking Project did not consistently receive notification that we were to 

be featured.  Increases in the number of reports received in the months that the CFTP was 

featured by a media outlet were observed, though increases in the number of reports were not 

consistent with the number of publications per month (Fig. 6).  The Caribbean FAD Tracking 

Project did not contact any media outlets; all articles were conceived prior to the news source 

contacting the Caribbean FAD Tracking Project or were published without the knowledge of the 

Caribbean FAD Tracking Project. 

  

https://nsuworks.nova.edu/faelab/1/
https://www.car-spaw-rac.org/IMG/pdf/spaw_stac9_unep_depi_car_wg.42-inf.29_addendum_1_implementation_of_the_mmap_-_a_scientific_and_technical_analysis-en.pdf
https://www.car-spaw-rac.org/IMG/pdf/spaw_stac9_unep_depi_car_wg.42-inf.29_addendum_1_implementation_of_the_mmap_-_a_scientific_and_technical_analysis-en.pdf
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Figure 6. The number of reports received per month by the Caribbean FAD Tracking Project via 

all methods of communication (Email, personal communication, Facebook). Months when the 

Caribbean FAD Tracking Project was subject to known external publicity are shaded orange, 

while months with no known publicity are shaded blue. 
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Mapping, photograph, and data analysis 

 Photographs of all reported FADs were requested, though some reports made prior to the 

establishment of CFTP did not include a photograph (n = 72), and those reports were not 

included in the analysis of compliance of dFAD buoys.  Photos were utilized to substantiate 

reports made, and confirm the construction materials of dFAD platforms, the make and model of 

buoys, and post-manufacture buoy markings.  Reported dFADs were initially categorized as 

“lone buoy”, “lone raft”, or “full FAD” – the last term meaning both a raft and a tethered buoy.  

Rafts were then further categorized as home-made or manufactured, then further broken down by 

material (e.g., jugs, bamboo, aFAD2, and PVC) or manufacturer (e.g., Zunibal or JJ Chicolino 

Co.), or were documented as unspecified in the case of reports that did not include sufficient 

information or a photograph (Fig. 7).  Photographs were again used to determine the make and 

model of buoys, and any photo that did not clearly depict the buoy were designated as uncertain.  

Buoys were categorized by manufacturer (e.g., Zunibal, Marine Instruments, SatLink, Thalos, or 

of uncertain design).  Photographed post-manufacture marking on the buoys were recorded and 

were then categorized as legible, partially legible, illegible, or absent – the last term meaning that 

the buoy bore no post-manufacturing marks.  Reports were then classified by one of three levels 

of compliance: compliant, non-compliant and uncertain compliance.   

The designation of compliance of dFAD platforms and GPS buoy markings were made 

with reference to ICCAT Rec. 19-02.  FAD platforms were studied to determine whether there 

was a cover or subsurface component made of netting.  Only those images that explicitly 

depicted one of these infringements were designated as non-compliant and were subsequently 

analyzed.  All partially legible, illegible, and absent markings were designated as non-compliant 

with ICCAT Rec. 19-02 which states that the serial number of the buoy must be marked on the 

protective dome of the buoy as a method of identification and must be legible.  The location of 

reports that did not specify beaching coordinates were designated based on additional 

information provided in the report including street names, nearby residential addresses, bays, and 

beaches.  Approximate find locations were denoted as such in the data set.  Maps of dFAD 

distribution versus conservation areas, dFAD material and dFAD compliance were created with 

 
2 For the purposes of this study, anchored FADs, (aFADs) were categorized as a “Material”, because they were 

included in the larger category “Home-made FADs”. This designation is made because the construction methods 

and design of the four observed home-made FAD “materials” differed.  
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ArcGIS ArcMap 10.8 (ESRI 2019).  “USA_Parks” feature service by ESRI 2020, “Caribbean 

Marine Protected Areas and management effectiveness polygon data only_” layer package 

provided by World Resources Institute 2011, “Major Ocean Currents” feature service provided 

by NOAA 2016, and “Protected Areas” feature service by TCN et al. 2019 were used to generate 

a figure comparing the distribution of reported FADs and protected areas such as State and 

National Parks and Marine Protected Areas. 

Statistical analyses were run in RStudio 4.0.3 (RStudio Team 2020).  Chi-square tests 

were used to determine if there were differences in the number of beached FADs of various 

materials, and the number of compliant, non-compliant and uncertain FADs with regard to 

ICCAT Rec. 19-02.  Additionally, chi-square tests determined if there were differences in the 

number of beached dFADs reported during hurricane season or the dry season, if publicity 

affected the number of reports made to the CFTP, and if there were differences in the number of 

beached dFADs reported from various geo-political regions around the North Atlantic Ocean 

(United States, Caribbean, Central America, South America, Mid-Atlantic, and Europe).  

Multivariate Analyses of Variance (MANOVA) were run to determine if there were significant 

differences in the type of raft (aFAD, Bamboo, JJ Chicolino Co., Jugs, PVC, Unspecified, and 

Zunibal) over time (1999-2021).  A MANOVA was also used to determine if there were 

differences in the number of compliant, non-compliant, and “uncertain” FADs over time.  
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Figure 7. Photographic examples of common FAD components. The typical construction of an 

octagonal dFAD platform composed of 5L oil containers. Photo courtesy of Kelli Ann Briggs 

(a). A square bamboo dFAD platform wrapped in non-compliant net cover, photo courtesy of 

Thomas Pitchford (b). A Zunibal Zunfloat™ with a shadecloth and non-compliant net cover, 

photo courtesy of John Chamberlain (c). A Marine Instruments M3i+ satellite-linked beacon 

buoy with post-manufacturing markings stating “ZG 557653” in blue paint marker, photo 

courtesy of Raven Hoflund (d).  

 

  



 

29 
 

Results 

Abundance and distribution of reported FADs  

 A total of 267 stranded FADs have been reported since 1999, all in various physical 

conditions throughout the wider Caribbean region and North Atlantic Ocean (Fig. 8).  Reports 

have been made from 29 countries around the Atlantic Ocean, with the majority of reports 

originating in the United States (US; n = 145, 54.3% of total reports).  Sixty-one dFADs (22.8%) 

were reported as beaching on US State or National Park beaches, in Marine Protected Areas 

under the management of any nation, or other conservation and protected regions where fishing 

was restricted, if not banned.  This number reflects the percentage of FADs reported in protected 

regions excluding reports (n excluded = 27) that provided only a country as a location of reference 

(e.g., “Bahamas”, or “Bermuda”).  There was no significant difference in the number of dFADs 

reported during the Atlantic hurricane season (June 1st-November 30th; χ2 = 0.25397, df = 1, p = 

0.6143), consistent with the findings of Imzilen et al. (2021).  A total of 130 dFADs were 

reported to the CFTP in the months of December through May, while 122 were reported during 

hurricane season, and 15 dFADs were excluded from this analysis because the find date was not 

reported.  The number of reports made to the CFTP differed significantly in months that the 

project was publicized in newspapers, online magazines, Facebook articles, and flyers, and in 

those months where there was no known publicity (χ2 = 23.375, df = 1, p < 0.001). 

Composition of Reported dFADs 

As reports began to accumulate, patterns in raft construction became evident.  The first 

model of platform reported (initially reported in 1999), consisted of hand-made rectangular or 

square rafts made of bamboo lashed together with rope.  Manufactured Zunfloat™ FAD rafts 

were the next model to appear, initially reported in October 2017, roughly one year after first 

appearing on the market, and similar rafts produced by J.J Chicolino Co. were first reported in 

May 2019.  Homemade FAD platforms have been increasing in frequency with the appearance 

of rafts composed of dozens of 5 L plastic jugs and containers, wrapped in netting within 

octagonal or square frames of PVC or metal pipes since March 2017 (Fig. 9).  There are 

significant differences in the number of dFADs of different construction materials (χ2 = 320.06, 

df = 7, p < 0.001).  A total of 70 complete FADs were reported, consisting of both buoy and raft, 
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while 114 individual buoys and 83 lone rafts have been reported.  Of these FADs, 63 can be 

tentatively attributed to a specific flag state and vessel.  These FADs bore legible post-

manufacture markings on the dome that explicitly stated the vessels name or an alphanumeric 

code that was traceable via vessel registries.  The beaching location of all reports categorized by 

dFAD platform material was subsequently mapped (Fig. 10).   
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Figure 8.  A visual comparison of all beaching locations of FADs reported to the Caribbean 

FAD Tracking Project from 1999-2021 and United States State Parks and National Parks, Marine 

Protected Areas, and other designated conservation areas. Yellow dots represent beached FADs, 

green polygons represent United States parks, and orange and blue polygons represent Caribbean 

Marine Protected Areas and other conservation regions. Prevailing surface currents in the 

world’s oceans are included. Map made with ArcGIS ArcMap 10.8. 
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Figure 9. The number of rafts found annually that were reported to the Caribbean FAD Tracking 

Project, categorized by raft type. Raft type was determined by reference to reports and affiliated 

photographs. It should be noted that both find date and report date were included in dFAD 

reports made to the CFTP, and this figure is a representation of find date, as many FADs were 

reported some time after discovery. Additionally, due to the timing and nature of this study, 2021 

is an incomplete year, and the data cover the period of January 1- May 31, 2021. 

  

Year
Unkn
own

1999 2008 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

PVC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

JJ Chicolino Co. 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1

Unspecified 0 0 0 0 0 0 2 0 0 2 0 0 1 0 0

aFAD 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0

Bamboo 0 1 0 1 1 0 1 3 8 6 0 4 7 1 2

Jugs 0 0 0 0 0 0 0 0 0 0 4 10 13 15 7

Zunibal 3 0 0 0 0 0 0 0 0 0 1 10 18 13 7

Lone Buoy 9 0 1 1 0 4 1 3 7 13 7 19 21 24 4
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Figure 10.  The reported stranding locations and composition of all dFADs reported to the 

Caribbean FAD Tracking Project in the Atlantic Ocean, Caribbean Sea, and Gulf of Mexico 

dating from May 1999 to May 2021. Composition of FADs was determined by reference to 

reports and photographs. Reports were made by the public to the Caribbean FAD Tracking 

Project’s Facebook and email accounts or collected by keyword searches on various websites. 

Map made with ArcGIS ArcMap 10.8. 
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A total of 52 Zunfloats™ were reported, as were four rafts manufactured by J.J. 

Chicolino SL.  Of the 92 homemade rafts, 35 were composed of bamboo, 51 were composed of 

plastic oil jugs or containers within an octagonal frame of PVC piping or metal, five anchored 

FADs of PVC pipes with curtains made of plastic tarp and burlap draped below were reported, as 

was one FAD composed of PVC and shadecloth, while five additional FADs were of unspecified 

construction methods (Fig. 11).  Two Zunibal Zunfloats™ were reported to the Caribbean FAD 

Tracking Project in a severely weathered condition, with photographs depicting both platforms 

broken into dozens of smaller fragments.  Two deceased green sea turtles (Chelonia mydas) were 

reported entangled in the netting of a dFAD found on the coast of Padre Island, Texas in June of 

2019, and a third sea turtle (unidentified species) was reported beside a satellite-linked beacon 

buoy in Grande Isle, Louisiana in August of 2020.  The number of lone buoys, manufactured 

rafts (both JJ Chicolino Co. and Zunibal), and homemade rafts composed of bamboo and plastic 

jugs have changed significantly since 1999, while the number of anchored FADs, rafts of 

unspecified make, and PVC dFAD rafts did not differ significantly from 1999 to 2021 (Table 2).   

Compliance of Reported FADs with ICCAT Rec. 19-02  

Of the 153 reports of dFAD rafts received by the Caribbean FAD Tracking Project, 124 

had associated photographs.  The images submitted to the CFTP were used to determine the 

construction methods and materials of the dFADs.  Thirty-five of the 153 rafts were made of 

bamboo, while the remaining 118 were composed of various plastics and synthetic materials.  

Fifty-five FADs were wrapped or covered in large diameter netting, a non-compliant material as 

of 2015, and 19 FADs had a net aggregator that hung below the platform when suspended in the 

water column.  In total, 59 (47.58%) of the photographed dFAD rafts were not compliant with 

ICCAT Recommendation 19-02 regarding the use of non-entangling materials in FAD 

construction.  It is worth noting that some dFADs may have been deployed prior to the 

establishment of ICCAT Recommendations that restrict the use of entangling materials.  There 

were significant differences in the number of dFAD rafts of different levels of compliance (χ2 = 

45.933, df = 2, p < 0.001). The majority of reported FAD rafts were compliant (n = 90, 58.82%), 

while 41.18% (n = 63) were non-compliant with ICCAT Rec. 19-02 specifications.  
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Figure 11.  The construction of FAD platforms reported to the Caribbean FAD Tracking Project 

from 1999-2021 by category. Lone buoys were reported without a raft of any composition 

affiliated. Handmade dFAD platforms are typically made of either bamboo tied together with 

ropes or plastic jugs contained within an octagonal frame of PVC pipes wrapped in netting or 

shade cloth. Zunibal and JJ Chicolino SL platforms are manufactured plastic discs created for 

use in dFAD fishing, while anchored FADs (aFADs) are designed to anchor to the ocean floor 

and lack a satellite linked beacon buoy. Composition was determined by reference to reports and 

associated photographs. Asterix (*) indicates significance, meaning that the number of dFADs 

composed of that material changed significantly over time. 

 

  

114*
42.7%

52*
19.5%

51*
19.1%

35*
13.1%

5
1.9%

5
1.9%

4*
1.5%

1
0.3%

Lone Buoy Zunibal Jugs Bamboo aFAD Unspecified JJ Chicolino Co. PVC



 

36 
 

Table 2. The significance of the number of FADs that are composed of various construction 

materials (response variables; the number of Lone Buoys, Zunibal floats, Plastic Jug floats, 

Bamboo floats, aFADs, floats of unspecified make, JJ. Chicolino Co. floats, and PVC floats) 

over time (explanatory variable), determined by one-way MANOVA tests in RStudio (Version 

4.0.3; RStudio Team 2020). The construction materials of FADs were determined by reference to 

reports and photographs. P values that are less than 0.05 are considered statistically significant. 

Asterix (*) indicates significance, meaning that the number of dFADs composed of that material 

changed significantly over time. 

 

 

 

  

dFAD Material p value 

Lone Buoy 7.615e-05* 

Zunibal 0.001688* 

Plastic Jugs 0.000342* 

Bamboo 0.00418* 

aFAD 0.1806 

Unspecified 0.1618 

JJ Chicolino Co 0.007041* 

PVC 0.09793 
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A total of 184 satellite-linked beacon buoys have been reported to the Caribbean FAD 

Tracking Project, 131 of which were photographed.  Seventy-nine had a legible marking on the 

buoy’s dome, 23 buoy’s markings were partially legible (likely as a result of weathering and 

exposure), and 10 were totally illegible.  The remaining eight bore no post-manufacture unique 

identifying marks (Fig. 12).  The method with which buoys were marked varied.  A total of 105 

buoys were marked with an unspecified type of paint or paint markers, only 74 (70.48%) of 

which were legible.  One buoy had the name of the deploying vessel and the buoy’s serial 

number etched into the dome’s surface and showed very little indication of weathering, while six 

were marked with permanent marker, of which four (66%) were legible.  

Six satellite-linked buoys were not sufficiently photographed to discern the presence of 

post-manufacture marking and were thus excluded from any statistical analyses.  Fifty-five 

(41.98%) of the photographed buoys that had a unique post-manufacture identifying mark were 

marked with the serial number of the buoy, while 66 buoys (50.38%) were non-compliant 

regarding ICCAT Recommendation 19-02’s guidance on buoy marking, and 10 buoys (7.63%) 

were not photographed well enough to determine whether or not the buoy was properly marked, 

or the buoys was too damaged to determine compliance.  Twenty-five of the photographed, 

marked buoys clearly bore the deploying vessel’s name.  Thirty-nine of the buoys were marked 

with an alphanumeric series that was not consistent with either the name of the vessel or the 

serial number of the buoy.  Researchers believe that these codes represent pertinent information 

such as the vessel registration number of FAD number, but this is uncertain.  In total, 119 

(61.03% of all dFADs reported to the Caribbean FAD Tracking Project) were non-compliant 

with regard to ICCAT Rec. 19-02.  The compliance of dFADs and their affiliated components in 

the Atlantic has changed significantly over time.  Compliant dFADs, non-compliant dFADs and 

dFADs of uncertain compliance all differed over the course of this 22-year observation period 

(Table 3). The number of FADs reported varies by region (United States, Caribbean, Central 

America, South America, Mid-Atlantic, and Europe) (χ2 = 420.26, df = 5, p < 0.001).   
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Figure 12. A visualization of all photographed post-manufacture buoy marking by category 

reported to the Caribbean FAD Tracking project. Blue denotes compliant buoys (e.g., those with 

a serial number present), while shades of orange represent non-compliant buoys (e.g., those with 

indecipherable alphanumeric code, solely the deploying vessel name, those unmarked, and those 

that were not sufficiently photographed. Post-manufacture markings were documented based on 

reports and affiliated photographs. 
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Table 3. The significance of the number of dFADs of various levels of compliance (response 

variables; the number of compliant FADs, non-compliant FADs, and FADs of indeterminable 

“uncertain” compliance) over time (explanatory variable), analyzed by one-way MANOVA tests 

in R(4.0.3). Compliance of FADs was determined by reference to reports and photographs.  The 

number of compliant, non-compliant and “uncertain” FADs was significantly different, 

increasing from 2017 to 2018, and from 2018 to 2019, (p = 0.04196, and p = 0.000553, 

respectively). Asterix (*) indicates significance, meaning that the number of dFADs of that level 

of compliance changed significantly over time. 

 

 

  

Compliance Category p value 

Compliant 0.0005808* 

Non-compliant 5.294e-05* 

Uncertain Compliance 0.01037* 
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Discussion 

Trends of dFAD use in the Tropical Atlantic 

Over the course of the past decade, it has become evident with trends in dFAD use and 

beaching events that current FAD management efforts are insufficient to fully mitigate the 

stranding of dFADs on coastlines around the Atlantic Ocean and Greater Caribbean region.  

Since its establishment in May of 2019, the Caribbean FAD Tracking Project has accumulated 

267 individual reports of lost or abandoned dFADs in the Greater Caribbean region.  It is thought 

that a minimum of 81,000-121,000 dFADs are deployed annually worldwide (Gershman et al. 

2016), a figure that is likely growing exponentially every year as many dFADs are not recovered 

on an annual basis.  Escalle et al. (2018) found that approximately 10% of dFADs are recovered 

at sea or nearshore by either the deploying vessel, or another entity.  Minimum estimates suggest 

that at least 18,000 dFADs are deployed annually in the Atlantic Ocean (Escalle et al. 2021).  

Maufroy et al. (2015) estimated that approximately 10% of all dFAD deployment in the Atlantic 

Ocean resulted in a beaching event, while Imzilen et al. (2021) found that 19-22% of deployed 

dFADs deployed over the course of a decade beached.   

The combination of these estimates suggests that a minimum of 1,800-3,960 dFADs were 

abandoned and beached annually in the Atlantic Ocean alone, with global totals surpassing 

26,500 dFADs beaching annually.  If the period of data collection is considered to be May 2019-

May 2021, an average of 133.5 dFADs were reported annually, and these estimates suggest that 

the reports made to the Caribbean FAD Tracking Project annually represent a fraction (3.37-

7.42%) of the total number of annually beached ALDFG dFADs in the Atlantic Ocean and 

greater Caribbean region.  If the data collection is considered to begin in 2015 with Tom 

Pitchford’s keyword searches, then an average of 44.5 dFADs were reported annually over the 

course of 6 years, meaning that the reported dFADs account for only 1.12-2.47% of annually 

beached dFADs in the Atlantic Ocean.    

Distribution of beached dFADs 

 Though the use of drifting FADs has been commonplace in commercial fishing efforts in 

the Atlantic Ocean for nearly five decades, there has not been an attempt to quantify and describe 

reports of stranded dFADs in the basin, though several studies have modeled the theoretical 

distribution and quantity of abandoned and lost dFADs in the Atlantic (Maufroy et al. 2015) or 
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qualified beaching events based on GPS buoy data (Imzilen et al. 2021).  Of the total number of 

FADs reported to the CFTP, 32% did not have an affiliated beacon buoy at the time of reporting.  

This statistic, combined with the total number of 2,283 FADs beached in the Atlantic Ocean 

observed by Imzilen et al. (2021) could result in an additional 710 FADs may have been 

unaccounted for if the percentage of buoys that are severed from their affiliated dFAD is 

consistent.  The reports made to the CFTP span the North Atlantic Ocean, from Brazil to 

Scotland.  Ninety-two reports were made from Caribbean countries, five from Central America, 

and 10 reports were made from South America.  Nine dFADs were reported from the Mid-

Atlantic region (e.g., Bermuda and the Azores), and fewer still from Europe, similar to the 

findings of Maufroy et al. (2015), stating that reports of dFADs would be made from the Eastern 

coasts of South America and the Caribbean, with outliers on the West coast of European nations.   

A total of 145 dFADs were reported in the United States, with the majority reported in 

Florida (n = 102, 70.34%).  Sixty-one dFADs (22.8% of all reports) were located in U.S. State 

and National Parks, and in other foreign nations, including MPAs and other designated 

conservation areas.  As previously stated, this figure is likely an underestimate, as many reports 

did not include an exact find location (n = 127, or 47.57%), and an approximate location was 

determined by geographic descriptions provided in the report including, but not limited to, the 

names of beaches, bays, small towns, and residential addresses.  It is likely that these dFADs 

were initially deployed in the Gulf of Guinea, consistent with the findings of Maufroy et al. 

(2015, 2017) and Imzilen et al. (2021), and were subsequently beached further along in their drift 

path, but without comprehensive and accessible identification measures such as post manufacture 

marking, and greater t-RFMO transparency, we cannot confirm these trajectories.   

Composition of Reported dFADs 

Commercial fishing, like many other industries, has adapted over time to increase 

efficiency and decrease expenses.  Of the reports made to the CFTP, eighty-three (31.09%) did 

not have an affiliated beacon buoy, as opposed to 40% of dFADs in Balderson and Martin’s 

2015 study.   Those reports that included drifting FAD platforms were initially constructed of 

bamboo, palm fronds, and other detritus as their commercial use became popularized in the 

1980s.  Plastic floats such as Zunibal Zunfloats™ and 5L oil containers are buoyant in seawater 

unless physically compromised, with a greater lifespan allowing the continued reuse of synthetic 

FAD platforms.  The use of homemade dFAD rafts composed of plastic jugs and containers, as 
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well as manufactured dFAD rafts by the company Zunibal appeared in our reports in 2017, with 

their numbers increasing significantly since their commercial introduction (Table 2).  

Compliance of Reported dFADs with ICCAT Rec. 19-02 

Knowledge of the shortcomings and limitations of current dFAD management efforts are 

recognized by t-RFMOs, but few adaptations or additional enforcement efforts have been 

implemented in recent years.  For the purpose of the statistical analyses of this study, reports of 

drifting FADs that did not contain sufficient information or clear photographic documentation of 

FAD construction and marking were categorized as “Uncertain”, and were disregarded.  Drifting 

FADs were qualified as “non-compliant” if the floating platform did not meet current 

construction requirements regarding the presence of netting, and/or if the affiliated satellite-

beacon buoy was not marked according to ICCAT Rec. 19-02 marking schemes.  The reports 

made to the Caribbean FAD Tracking Project document a lack of compliance with mandatory 

regulations regarding dFAD construction (ICCAT Rec. 19-02) and their beaching locations can 

be examined in Figure 13.  Fifty-nine photographed dFAD rafts (47.58%) were non-compliant 

regarding the use of non-entangling materials.  Less than one-third of all dFAD rafts were 

composed of the encouraged biodegradable materials (28.22%).  Of these, 14 were non-

compliant and were covered in large stretch diameter netting or possessed an aggregator made of 

netting.  

As previously stated, the prevalence of synthetic materials could be the result of greater 

numbers of synthetic dFADs rafts being deployed, or a result of these platforms being more 

robust and maintaining buoyancy longer than rafts composed of organic materials such as 

bamboo or palm fronds, allowing them to drift far enough to eventually beach.  Half of the 

reported photographed satellite-linked beacon buoys (n = 66, 50.38%) were non-compliant in 

their markings, lacking a serial number inscribed on the buoy’s surface.  In total, over half (n = 

119, 61.03%) of the 195 photographed dFADs reported to the CFTP were non-compliant with 

ICCAT Rec. 19-02.  An additional 20 dFADs were determined to be non-compliant based on 

finder reports but were not photographed to confirm these claims and were thus not included in 

statistical analyses. 

The lack of compliance with ICCAT Rec. 19-02 may be attributed to fishers disregarding 

dFAD construction and marking requirements, or a may be the result of the introduction of new 
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mandatory policies after deployment, thus rendering the dFAD non-compliant.  There is the 

possibility that vessels that are already operating illegally may be deploying non-compliant 

FADs as the likelihood that they can be traced back to them is minimal.  Due to the nature of 

illegal, unreported, and unregulated (IUU) fishing, it would be difficult to confirm this without 

onboard observer efforts and increased CPC enforcement of recommendations and penalties for 

infractions.  Although minimum time at sea can be estimated based on the presence and size of 

gooseneck barnacles (Lepas anatifera; Magni et al. 2015), due to the lack of photographic 

evidence and physical samples, this calculation was not possible.  A bar graph of all reports 

made to the CFTP dating from May 1999 to May 2021 depicts the trend of increasing numbers 

of dFADs of all levels of compliance over time (Fig. 14).  The number of non-compliant dFADs 

was consistently greater than that of compliant dFADs, with the exceptions of 2012, 2016 and 

2017, when the number of compliant and non-compliant FADs reported were equivalent (2012; n 

= 1, 2016; n = 8, 2017; n = 5) (Table 3).   

As previously noted, enforcement of ICCAT recommendations is primarily the 

responsibilities of individual CPCs.  Since its establishment in 1966, ICCAT has occasionally 

referred to the need to “encourage non-Contracting Parties, Entities or Fishing Entities… to 

abide by these measures” first stated in 1995 (ICCAT Rec. 94-02).  ICCAT has not provided 

guidelines to CPCs and non-CPCs as to how best to enforce these mandatory recommendations, 

creating an environment that promotes the lack of compliance observed in this study.  The 

observed failure of compliance may be unintentional and resulting from the abandonment or loss 

of a FAD and the subsequent change in mandatory ICCAT recommendations. Non-compliant 

FADs may be intentionally deployed without regard to t-RFMO legislation, though without 

transparency from CPCs and t-RFMOs regarding dFAD ownership, deployment, loss, and 

deactivation, this is difficult to distinguish.  There are few penalties in place for CPCs that fail to 

enforce these recommendations, and very little accountability from the level of an individual or 

vessel to that of CPCs or the ICCAT Commission.  This lack of accountability and transparency 

is emphasized by the majority of reported ALDFG dFADs in ICCAT’s convention area being 

non-compliant with regard to ICCAT Rec. 19-02.    

We recognize that there are numerous inherent biases due to the crowd-sourced nature of 

our sampling.  The initial “reports” that were collected by Thomas Pitchford were made via 

keyword searches on search engines and social media platforms.  Internet searches are influenced 
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by previous searches, and access to reports may be limited by user account privacy settings, 

meaning it is likely that reports were published online that we do not have access to.  The flyer 

and emails that were distributed soliciting reports from citizen scientists were only provided in 

English with no translations made available, thus excluding individuals who could not read or 

speak English and did not have the ability to translate such materials.  Additionally, these 

materials were distributed to a small group of organizations that the Caribbean FAD Tracking 

Project was aware of, with limited efforts to contact groups or individuals that were not directly 

affiliated with the project.  Online reports also require that the person who found the raft be 

knowledgeable enough to use identifying terminology that is accessible through keyword 

searches.  All reports made directly to the Caribbean FAD Tracking Project were made via email 

or to our Facebook page.  First-hand reports require that the person who recovered the dFAD be 

aware what a dFAD is, and what they may look like, as well as know of the Caribbean FAD 

Tracking Project and how to make a report to us.  The FADs that were reported include only 

those that were durable enough or were at sea for a short enough period of time that they did not 

succumb to weathering, theft, or sinking.  The majority of dFADs reported to the Caribbean FAD 

Tracking Project were beached, thus excluding abandoned, lost, or otherwise discarded dFADs 

that had not yet made it to shore.   

Despite these biases, these data provide a minimum number of truly beached FADs in the 

Atlantic Ocean, a preliminary geographic distribution region, and substantiates the findings of 

the modelling studies of Maufroy et al. (2015) and Imzilen et al. (2021), as well as those of other 

dFAD studies.  Maufroy et al. (2015) determined that some beaching events occurred along the 

north coast of South America, but this study did not consider outliers in the Caribbean region.  

Imzilen et al. (2021) also identified beaching events on the east coast of South America, as well 

as Caribbean nations and the southern United States of America, similar to the reported beaching 

locations of reported dFADs.  Maufroy et al. (2015) concluded that dFADs that drifted west of 

30° W (west of the Azores and Cape Verde) were “unlikely to be recovered by purse seiners” 

due to their distance from fishing grounds.  This is supported by the reported beaching locations 

of this study, with 1.5% (n = 4) of all reported dFADs beached east of 30° W.  This study also 

confirmed the findings of Imzilen et al. (2021) with regard to the effect of the Atlantic hurricane 

season on the number of annual beaching events.  There was no significant difference in the 

number of beaching events in the Atlantic during hurricane season and the dry season (χ2 = 
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0.25397, df  = 1, p = 0.6143), although 15 beaching events were excluded from analyses due to 

uncertainty of the find date at the time of reporting.  The number of dFADs reported to the CFTP 

without an affiliated satellite-linked buoy (n = 83, 31.09%) was comparable to that of Balderson 

et al. (2015) in the Seychelles, where ~40% of all dFADs were without a buoy at the time of 

observation.  The dFADs reported to the CFTP were primarily constructed of synthetic materials, 

n = 108 (75.52%) (referring to raft construction material, and excluding aFADs and rafts of 

unspecified design), while similarly, in the Indian Ocean, “more than 70% of FADs encountered 

were made of synthetic material” (Zudaire et al. 2018).  
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Figure 13.  The reported stranding locations, and affiliated level of compliance (regarding 

ICCAT Rec. 19-02) of all dFADs reported to the Caribbean FAD Tracking Project in the 

Atlantic Ocean, Caribbean Sea, and Gulf of Mexico dating from 1999 to 2021. Compliance was 

determined by reference to reports and photographs. Red dots represent non-compliant FADs, 

yellow dots stand for FADs of uncertain compliance, and green dots correlate with compliant 

FADs. Reports were made by the public to the Caribbean FAD Tracking Project’s Facebook and 

email accounts or collected by keyword searches on various websites. Map made with ArcGIS 

ArcMap 10.8. 
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Figure 14. The number of reports received per year by the Caribbean FAD Tracking Project by 

all methods of communication (Email, Facebook, personal communication), categorized by 

compliance with mandatory ICCAT Rec. 19-02. Compliance was determined by reference to 

reports and associated photographs.  
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The documentation of abandoned and beached dFADs in the western North Atlantic 

Ocean by the CFTP has illustrated the gap in enforcement and adherence with ICCAT 

Recommendation 19-02.  The use of non-compliant and non-recommended construction methods 

and materials, as well as the prolific number of “lost and abandoned” dFADs suggests a 

substantial gap in ICCAT intentions and CPC and vessel follow-through.  IATTC has developed 

and implemented a simple methodology for buoy marking and identification, while IOTC has 

publicized the goal of creating a comprehensive marking scheme for all active instrumental 

buoys.  Despite these developments by other t-RFMOs, ICCAT recommendations regarding 

dFAD construction and identification markings are simple and not as specific, allowing 

flexibility in interpretation by deploying vessels, and penalizing CPCs.  The utilization of the 

Kobe Process could prove to be beneficial in implementing a global dFAD buoy identification 

system or a reporting center for the loss of dFADs.   

There is limited industry transparency or accountability within the tropical tuna purse 

seine industry.  Restricted access to pertinent records such as those of FAD deployment, visit and 

losses, FAD ownership, and drift path prevents a full understanding of the total number of 

dFADs in an ocean, as well as allowing the proliferation of IUU fishing with limited penalization 

for infractions.  A comprehensive marking scheme that included more than the buoy’s serial 

number would likely increase accountability as ownership would be more easily attributed, 

therefore leading to better FAD recovery, diminished losses, and greater compliance with RFMO 

recommendations as accountability would improve.  The ownership of FADs is difficult to 

determine without access to ICCAT registration records, as the mandatory post manufacture 

markings do not include information such as vessel name, IMO or MMSI (Maritime Mobile 

Service Identity), both of which are unique vessel identification numbers.  As it stands, 

identifying the drift path and time at sea of a dFAD is nearly impossible without access to 

deployment and visit records, and the ownership of dFADs cannot be determined through 

ICCAT specified post-manufacture markings.  Additionally, without deployment dates, it is 

nearly impossible to determine what mandatory t-RFMO recommendations were in place at the 

time, and whether dFADs were non-compliant at the time of deployment or if they aged out of 

compliance after they entered the water.  Access to such materials is not made public through 

ICCAT, therefore limiting understanding of deployment patterns and their relation to eventual 

recovery or beaching.  By involving the other t-RFMOS in such management efforts, the 
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Caribbean FAD Tracking Project may begin to document greater compliance with such 

recommendations as the use of non-entangling materials and unique buoy identification codes in 

dFAD construction.  

Conclusion 

 This study addresses the gaps in knowledge regarding the intricacies of drifting FADs as 

ALDFG in the northern Atlantic Ocean, including beaching locations, construction materials, 

and compliance with mandatory t-RFMO regulations.  We have concluded that of the total 267 

drifting FADs reported, 22.8% stranded in protected regions in North and South America, where 

commercial fishing is restricted or prohibited entirely.  The majority of reported dFADs were 

reported on United States coastlines (n =145, 54.3%) and on the east coasts of 17 Caribbean 

nations (n = 92, 34.46%), with outliers in Central America, South America, the Middle Atlantic, 

and the west coast of Europe.  Reported beaching events substantiated the findings of Maufroy et 

al. (2015) and Imzilen et al. (2021) with regard to beaching locations in the Atlantic Ocean west 

of 30° W, and a lack of seasonal variation in the number of beaching events resulting from the 

Atlantic hurricane season.  The composition of reported FADs ranged from simple, hand-made 

anchored FADs to FAD platforms containing over 40 5L oil containers wrapped in shadecloth 

and netting within a PVC frame.  The majority of FADs were made primarily of durable, 

synthetic materials (n = 113, 73.86%), 52.21% of which were non-compliant with the 

specifications of ICCAT Rec. 19-02.  A total of 139 (52.06%) dFADs (including lone buoys, 

lone FAD platforms, and “full FADs”) were non-compliant with ICCAT Rec. 19-02.   

 Accordingly, further research surveying the distribution of beached dFADs is needed.  

Furthermore, solicitation of reports in Spanish and French, in addition to English, would be 

beneficial in reaching individuals that did not have access to the original materials due to a 

language barrier.  The composition, construction methods, and marking schemes of such FADs 

are relevant to a multitude of environmental impacts that ALDFG dFADs impose on their 

surroundings, including megafauna and benthic entanglement, introduction of macro and 

microplastics, navigational hazards and socioeconomic costs.  There have been countless 

suggestions over the past several decades as to how best to mitigate the effects of dFADs, and 

many of the arguments come down to ownership and accountability.  The implementation of a 

comprehensive marking scheme could begin address this issue, but better understanding of how 

dFADs are currently marked is necessary to determine best practices.  Further research is also 
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needed to determine the types of incentives that would increase CPC and vessel compliance with 

regulations.  The widespread distribution of ALDFG dFADs in the North Atlantic, in 

conjunction with the understanding that dFAD use and subsequent abandonment is increasing 

annually creates a dismaying image of prolific wildlife entanglement and habitat damage.  By 

understanding the nuances of dFAD composition and compliance with RFMO regulations, the 

development of effective mitigation efforts may be possible, serving to curb this widespread 

threat to biodiversity and marine environments.  
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Appendix I 

Caribbean FAD Tracking Project Flyer 
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Appendix II 

Initial Email Contacts 

The Barbados Sea Turtle Project, University of the West Indies Cave Hill Campus, WIDECAST 

Affiliate 

Broward County Sea Turtle Conservation Program, Broward County, Florida 

Fisheries Department, Ministry of Agriculture, Fisheries, Physical Planning, Natural Resources 

and Co-operatives, St. Lucia 

Florida Chiefs Beach Patrol Association, FL 

Foreign Affairs, National Oceanic and Atmospheric Administration (NOAA), Silver Spring 

Maryland 

Gumbo Limbo Nature Center, Boca Raton, FL 

Loggerhead Marine Life Center, Juno Beach, FL 

Miami-Dade County Office of Parks, Recreation and Open Spaces, Miami-Dade County, FL 

MOTE Marine Laboratory and Aquarium, Sarasota, FL 

The Rosenstiel School of Marine and Atmospheric Science ListServ, Miami, FL 

Sea Turtle Conservancy, Gainesville, FL 

Sea Turtle Oversight Protection, Broward County, FL 

Sea Turtle Program, Florida Fish and Wildlife Conservation Commission, Tallahassee, FL 

The Wider Caribbean Sea Turtle Conservation Network (WIDECAST), Godfrey, Illinois, 

serving 40 countries and territories in the Wider Caribbean Region 
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Appendix III 

Publicity featuring the Caribbean FAD Tracking Project 

 

Date Publication 

May 31, 2019 Caribbean FAD Tracking Facebook Page Launched 

June 2019 Caribbean FAD Tracking Project Flyers distributed (Appendix I) 

February 28, 2020 Santa Rosa’s Press Gazette 

February 28, 2020 Jacksonville.com 

February 28, 2020 The Ledger 

February 28, 2020 TCPalm.com 

February 28, 2020 The St. Augustine Record 

February 28, 2020 Daily Commercial 

February 28, 2020 The Daytona Beach News-Journal 

February 28, 2020 Panama City News Herald 

February 28, 2020 USA Today 

February 28, 2020 The Destin Log 

February 28, 2020 The Crestview Bulletin 

February 28, 2020 The Walton Sun 

February 28, 2020 Ocala StarBanner 

February 28, 2020 Nfwdailynews.com 

March 1, 2020 The Gainesville Sun 

March 1, 2020 The El Paso Times 

March 1, 2020 The Daytona Beach News-Journal 

March 1, 2020 The Palm Beach Post 

March 1, 2020 The Herald Tribune 

https://www.facebook.com/fadtrackers
https://www.srpressgazette.com/news/20200228/what-heck-are-these-things-washing-up-on-floridarsquos-beaches
https://www.jacksonville.com/story/sports/outdoors/fishing/2020/02/28/what-heck-are-these-things-washing-up-on-floridarsquos-beaches/112240234/
https://www.theledger.com/news/20200228/what-heck-are-these-things-washing-up-on-floridarsquos-beaches
https://www.tcpalm.com/story/news/newswire/2020/02/28/fish-catching-devices-west-africa-washing-ashore-florida-caribbean-beaches-across-atlantic/4901355002/
https://www.staugustine.com/news/20200228/what-heck-are-these-things-washing-up-on-floridarsquos-beaches
https://www.dailycommercial.com/news/20200228/what-heck-are-these-things-washing-up-on-floridarsquos-beaches
https://www.news-journalonline.com/news/20200228/what-heck-are-these-things-washing-up-on-floridarsquos-beaches
https://www.newsherald.com/news/20200228/what-heck-are-these-things-washing-up-on-floridarsquos-beaches
https://www.usatoday.com/story/news/nation/2020/02/28/florida-beaches-dealing-fads-scientists-worried/4901675002/
https://www.thedestinlog.com/news/20200228/what-heck-are-these-things-washing-up-on-floridarsquos-beaches
https://www.crestviewbulletin.com/news/20200228/what-heck-are-these-things-washing-up-on-floridarsquos-beaches
https://www.waltonsun.com/story/sports/outdoors/fishing/2020/02/28/what-heck-are-these-things-washing-up-on-floridarsquos-beaches/42025813/
https://www.ocala.com/news/20200228/what-heck-are-these-things-washing-up-on-floridarsquos-beaches
https://www.nwfdailynews.com/news/20200228/what-heck-are-these-things-washing-up-on-floridarsquos-beaches
https://www.gainesville.com/news/20200301/what-heck-are-these-things-washing-up-on-floridas-beaches/1
https://www.elpasotimes.com/picture-gallery/news/2020/03/01/what-the-heck-are-these-things-washing-up-on-floridarsquos-beaches/41843101/
https://www.news-journalonline.com/news/20200301/what-heck-are-these-things-washing-up-on-floridas-beaches/1
https://www.palmbeachpost.com/story/sports/outdoors/fishing/2020/03/01/what-heck-are-these-things-washing-up-on-floridarsquos-beaches/112244428/
https://www.heraldtribune.com/news/20200301/what-heck-are-these-things-washing-up-on-floridarsquos-beaches
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March 2, 2020 Southern Living 

May 4, 2020 Palm Beach Daily News 

May 4, 2020 Miami Herald (Link no longer available) 

May 4, 2020 The Walton Sun 

May 4, 2020 The Gadsden Times 

May 4, 2020 The St. Augustine Record 

May 5, 2020 UPI.com 

May 6, 2020 Florida Conservation Coalition News Brief 

May 29, 2020 Florida Fish and Wildlife Conservation Commission via Facebook 

July 25, 2020 Jacksonville.com 

October 24, 2020 Gumbo Limbo Nature Center via Facebook 

November 19, 2020 United Nation’s Environmental Programme’s 2021 Action Plan for the 

Conservation of Marine Mammals (MMAP) in the Wider Caribbean: A 

Scientific and Technical Analysis 

December 19, 2020 Wild Cumberland via Facebook 

 

 

 

https://www.southernliving.com/news/mysterious-devices-keep-washing-up-on-the-shore-in-palm-beach
https://www.palmbeachdailynews.com/news/20200504/weird-ufo-looking-disk-found-on-beach--but-itrsquos-not-as-unusual-as-you-may-think
https://www.waltonsun.com/story/sports/outdoors/fishing/2020/05/04/weird-ufo-looking-disk-found-on-beach--but-its-not-as-unusual-as-you-may-think/112596264/
https://www.gadsdentimes.com/news/20200504/weird-ufo-looking-disk-found-on-beach--but-its-not-as-unusual-as-you-may-think
https://www.staugustine.com/news/20200504/weird-ufo-looking-disk-found-on-beach--but-its-not-as-unusual-as-you-may-think/1
https://www.upi.com/Odd_News/2020/05/05/Disc-shaped-object-on-Florida-beach-identified-as-African-fishing-device/6551588702477/
https://www.wearefcc.org/news/2020/fcc-news-brief-march30-rp9mb-h7dha-3jtdr-g4ezd-w9xbr-9w7h6-63r8e-sl8xx-69l5z-rkk2j-mbpsm-a87sg-9p2ac-nh66j-47bzy-958ec-rf7cm-4lnd2-edgth-cz9mw-52x4c-xjdph-a7fgc-zsehe-k3che
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