Medical Education Digest, Vol. 18 No. 2 (March-April 2016)

Follow this and additional works at: https://nsuworks.nova.edu/hpd_com_med

Part of the Osteopathic Medicine and Osteopathy Commons

NSUWorks Citation
University, Nova Southeastern, "Medical Education Digest, Vol. 18 No. 2 (March-April 2016)" (2016). Medical Education Digest. 62. https://nsuworks.nova.edu/hpd_com_med/62

This Magazine is brought to you for free and open access by the College of Osteopathic Medicine at NSUWorks. It has been accepted for inclusion in Medical Education Digest by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.
NYU PROGRAM PROVIDES DATABASE FOR INTERPRETATION OF MEDICAL INFORMATION

While medical students are trained in basic science to diagnose and treat patients, they are not taught how to find and interpret massive stores of data in medical school. Every first- and second-year medical student at New York University (NYU) Medical School is required to be part of a Health Care by the Numbers project.

The curriculum provides access to a database for about 50,000 outpatients called the Lacidem Care Group (Lacidem, or medical spelled backwards). The data is derived from the NYU faculty members' practices, with the names of the patients and doctors blocked out so neither faculty members nor patients can be identified.

Students examine quality measures such as heart failure, diabetes, smoking, and hypertension. One student wanted to know if the cost to patients for hip replacement surgery around the state varied like the cost of a fast-food hamburger. He used his own "Whopper Index" to prove that the price of a giant burger was higher in New York City than in Albany, New York. He also found that the price of hip replacement paid by patients varied similarly around the state of New York, but with a much larger margin for health care than hamburgers.

Another project performed by two students looked at the cost of cesarean births around the state and found the cost also varied widely. NYU is offering the database and the program to other medical schools, with seven sites already incorporating the program into their curricula.

(Rovner J. Med school teaches science and data mining. Medscape; November 3, 2015.)

CONGRESSIONAL ACTION SUGGESTED TO INCREASE GROWTH IN PHYSICIAN WORKFORCE

Without an increase in graduate medical education support, there may not be enough residency positions for the additional medical school graduates needed to address the growing physician shortage. The Association of American Medical Colleges (AAMC) said medical school graduates are having trouble finding residency positions since 412 graduates did not match in 2014.

Growth in the physician workforce will not keep pace with increasing demand without congressional action to lift the cap on Medicare support for residency positions. The AAMC projects a shortage of 12,500 to 31,100 primary care physicians in the next 10 years and 28,200 to 63,700 specialists, despite the record number of students applying to and attending medical school.

The physician shortage is mainly due to the expanding number of those over 65 who have the greatest health care needs. Heart disease alone accounts for 25 percent of deaths among seniors and nearly 33 percent of deaths over age 85. Cancer occurs 10 times more often in those over 70 compared to younger adults.

(AAMC STAT. Association of American Medical Colleges, February 29, 2016.)
The United States Medical Licensing Examination (USMLE) Step 1 is a one-day, multiple-choice examination that assesses mastery in the sciences, providing a foundation for the safe and competent practice of medicine and the scientific principles needed to maintain competence through lifelong learning.

It is designed, written, and reviewed, with minimum test scores set by representatives of the U.S. medical education and medical licensure communities. Some evidence states that the examination predicts future clinical quality and outcomes. Step 1, however, is often used to screen applicants for residency selection, but the examination was not designed to be a primary determinant of the likelihood of success in residency.

No evidence has been provided that USMLE Step 1 scores are able to identify the medical students most likely to succeed in the acquisition of competencies expected during residency. In spite of this, many residency directors use the examination as the sole primary screen to determine which applicants will be interviewed. The practice is prevalent in the more competitive residencies, such as orthopedic surgery, radiation oncology, dermatology, ophthalmology, and otolaryngology.

The authors' examination said it is ill-advised to use the test for this purpose and emphasize that the scores have not been directly validated to do so. Program directors indicate that because there are so many applicants for the competitive residency positions, they require an easy-to-apply mechanism to reduce the applicant pool. The authors said using the USMLE Step 1 makes decisions about medical school graduates that could affect graduates' career choices by using a method not supported by strong evidence and repeated that the test was not designed for such a purpose.

Students who score around the mean decide to abandon plans to pursue certain specialties, since they believe their application will not be considered in the initial screening process. The authors believe that there is too much emphasis on USMLE Step 1 in screening for residency selection and that it also creates undue stress. They made a plea, as part of curricular reform and quality improvement, to move away from a focus on acquiring testable facts.

Information also showed that medical students study an average of four to nine weeks for Step 1. Authors said that if each of the approximately 20,000 medical students spent six weeks dedicated to the study of this examination, there would be 2,000 person years devoted to this activity. The authors recommended that greater attention be given to other qualities among residency applicants, including clinical reasoning, patient care, professionalism, and being able to function as part of the healthcare team.

In addition, the authors supported other parts of a holistic review, such as research experience and accomplishments, community engagement, leadership, unique personal attributes, and diversity. Further consideration can be derived from performance during clinical rotations with recommendations from clinical faculty members, patients, residents, other health professionals, and peers.

They recommended that weight be given to performance during core clinical clerkships, performance during specialty specific subinternships, and electives. Such an initiative would be a much more relevant representative measure of competencies than USMLE Step 1 scores alone.

(Prober CG, Kolars JC, Lewis R. First LR, Metnick DE. A plea to reassess the role of United States Medical Licensing Examination Step 1 scores in residency selection. Academic Medicine. (91) (1); January 2016.)
Virtual interprofessional health care teams may be more effective, manage information better, have more reliable channels for communication, and receive greater contributions from team members holding a lower status in the team hierarchy. Such teams are successful when they—both students and providers—obtain specific training, leading to outcomes similar to non-virtual teams. Being an effective member of a virtual health care team requires competency in interprofessional practice and information technology.

Information technology, however, has not been integrated into health professions education. The electronic health record (EHR) is the dominant form of information technology in health care. It is an essential tool virtual teams use to coordinate care, decrease errors, and improve the quality of care, but training in using EHRs does not always include the concept of asynchronous teamwork.

The authors developed a web-based case system to teach and assess interprofessional practice competencies. The system simulates select features of the EHR, such as data retrieval, documentation, and messaging. Logistical barriers were overcome by aligning students’ schedules and locating appropriate classrooms. Student work was structured to simulate collaboration, creating an educational work process that promoted interaction as well as including methods to track and assess student behaviors. The case system contained an electronic message board for the purpose of communication of team answers between team members, thus facilitating the work.

All fourth-year M.D. and B.S. in Nursing students were enrolled along with 60 fourth-year pharmacy student volunteers and all second-year students in the clinical practice concentration of the Master of Social Work program. The students were placed on teams of four to nine members for a six-week interval. Every team completed four modules of a single unfolding case, each lasting about 10 days.

Prior to completing each block, participants attended a two-hour, face-to-face orientation while simultaneously being introduced to their team members as well as to the case system. Additionally, there was a faculty member serving as a preceptor who wrote the case for each team. While faculty members observed the students and provided occasional feedback regarding the function of the team, they did not help teams answer case questions.

Overcoming logistical difficulties such as space and scheduling, students answered case-related knowledge questions individually and worked asynchronously to answer the same questions as a team. As a result, a longitudinal interprofessional education team experience provided extensive and detailed objective assessment data of both individual and team performance. The case system should provide a new approach to student assessment in interprofessional practice as well as in the use of EHRs.

Fewer African American men choose to attend medical school. The Association of American Medical Colleges (AAMC) released a report in August 2015 that found that while there has been an increase in the number of African American men graduating from college over the past three decades, the number of those men who apply to medical school decreased from just below 1,400 in 1978 to 1,330 in 2014.

In addition, there has been a decrease in African American men who enroll in medical school from 542 in 1978 to 515 in 2014. Fewer African American men choose the science, technology, engineering, and math fields, which also affects the medical school applicant pool.

Darrell Kirch, M.D., president of the AAMC, said “We have to redouble our efforts in the health professions to improve the talent pipeline of African American males in order to have a physician workforce that is representative of the population.”

The information was presented at the National Medical Association convention—the largest gathering of black physicians and health care professionals in the United States.
A study showed that students who were exposed to free clinics during medical school are more likely to become or remain committed to practicing in underserved areas. The presence of longitudinal clerkships in underserved areas, other community-based field experiences, or curricula related to public health or health disparities may also influence student commitment to practice in underserved areas.

Students with opportunities to participate in free clinics greatly varied among medical schools, with proportions that ranged from 15 percent to 100 percent. A higher proportion of students with exposure to free clinics expressed continuing commitment to practicing in underserved areas compared with students without such exposure. Students were 1.65 times more likely to indicate a willingness to practice in an underserved area if they had a free clinic experience than students without such an experience. After controlling for race, ethnicity, age, and gender, a free clinic experience predicted a student's intent to practice in underserved communities and may enhance a student's interest and commitment.

(Does free clinic experience enhance medical student commitment to underserved areas? Analysis in Brief. AAMC. (16)(2). February 2016.)
Continuing Medical Education Credit Form/March-April 2016

One (1) hour of continuing medical education credit may be obtained by reading the Medical Education Digest and completing the following evaluation that is being used to assess the reader’s understanding of the content. Please circle the answers you believe to be correct for all four questions located on this two-sided form. To acquire CME credit, physicians must mail, fax, or deliver the form (also available online at http://medicine.nova.edu), including both the completed quiz and evaluation form by April 15, 2016 to: Office of Education, Planning, and Research, Nova Southeastern University College of Osteopathic Medicine, 3200 South University Drive, Fort Lauderdale, Florida 33328. Email: lspeiser@nova.edu; Fax: (954) 262-3536. Please complete and return the evaluation form attached on the reverse side by fax or email.

AOA or AMA No. ___________________________ Print Full Name ___________________________

The correct answers will be published in the next issue of the Medical Education Digest.

1. The main reason for the physician shortage is:
 a. Expanding number of those over age 65
 b. Easier access due to the Affordable Care Act
 c. Availability of Medicare increased demand
 d. Too many specialty residency positions

2. The number of African American men entering medical school between 1978 and 2014:
 a. Has decreased
 b. Remained the same
 c. Has increased
 d. Is growing rapidly

3. Medical students provided an experience in free clinics:
 a. Are less likely to practice in an underserved area
 b. Are less likely to enter primary care
 c. Enhances a student’s intent to practice in an underserved community
 d. None of the above

4. A program designed to train medical students to find and interpret medical data is:
 a. Now included in Step 1 of the USMLE
 b. The Lacidem Care Group
 c. A revised electronic health record (EHR) training program
 d. A proposed addition to instruction about Medicare

Answers to the January/February 2015 CME questions: 1. (B) 2. (D) 3. (D) 4. (C)

Target Audience and Objectives

The target audience includes physicians who have faculty appointments at a medical school or who train residents and fellows in hospital-based environments. It also is for non-physician faculty members who have the responsibility for teaching medical students and others who seek education in the continuum of medical education (e.g., residency, continuing education). Also, since residents are typically responsible during their training to train medical students, they too are part of the audience to which the Medical Education Digest is directed.

- To provide an overview from the world literature of medical education knowledge, concepts, and skills of contemporary, new, and innovative ways to facilitate learning among medical students, residents, and practicing physicians
- To identify sources of information regarding the medical education process
- To create curiosity among those responsible for the medical education process to read in depth some of those articles that are summarized in the Medical Education Digest.
Evaluation Form
Medical Education Digest

In a continuing effort to fulfill your professional interests and to improve the educational quality of continuing education, please complete this form. Please darken bubble ☐

1) Your field / degree: ☐ MD ☐ DO/AOA # ______________________
 Strongly Agree Agree Neither Agree Nor Disagree Disagree Strongly Disagree

2) Reading this issue of Medical Education Digest has influenced the way that I will treat future patients. ☐ ☐ ☐ ☐ ☐

3) The contents of this issue will be useful in my practice. ☐ ☐ ☐ ☐ ☐

4) Was disclosure of commercial relationships made? ☐ Yes ☐ No

5) Were off-label products described? ☐ Yes ☐ No

6) Did you perceive any inappropriate commercial bias or influence? ☐ Yes ☐ No

7) What is the best way to contact you in reference to future articles?
 ☐ Phone ☐ Email ☐ Correspondence ☐ Other ________________________________

If you desire credit, please complete the areas below:

I have read this issue, approved for 1 hour of AMA-PRA category 1 credit & AOA category 1-B credit.

___ __________________________
Signature Date

PLEASE PRINT THE FOLLOWING:

Name: ___________________________ Tel: ___________________________ Fax: ___________________________
Mailing Address: ___
Email address: ___

Accreditation Statements

ACCME
Nova Southeastern University Health Professions Division is accredited by the ACCME to provide medical education for physicians. This activity has been planned and implemented in accordance with the Essential Areas and Policies of the Accreditation Council for Continuing Medical Education through Nova Southeastern University Health Professions Division. Nova Southeastern University Health Professions Division designates this educational activity for a maximum of one (1) hour towards the AMA Physician’s Recognition Award Category 1 Credit(s)™. Physicians should only claim credit commensurate with the extent of their participation in the activity.

AOA
Nova Southeastern University College of Osteopathic Medicine is an accredited Category 1 sponsor of the American Osteopathic Association. One (1) hour of continuing medical education credit in Category 1-B is being offered through the American Osteopathic Association for this program.

Grievance Policy
Complaints should be submitted in writing to the Department of Continuing Medical Education, Nova Southeastern University Health Professions Division, Terry Building, 3200 S. University Drive, Room 1459, Fort Lauderdale, FL 33328.