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Hypothesis/Introduction. Recent studies suggest involvement of the renin-angiotensin system (RAS) in cancers, including colorectal
cancer (CRC). This study focuses on the association of genes encoding 17 proteins related to the RAS within a Japanese male CRC
population.Materials andMethods. Quantitative expression of the RNA of these 17 genes in normal and cancerous tissues obtained
using chip arrays from the public functional genomics data repository, Gene Expression Omnibus (GEO) application, was
compared statistically. Results. Expression of four genes, AGT (angiotensinogen), ENPEP (aminopeptidase A) MME (neprilysin),
and PREP (prolyl endopeptidase), was significantly upregulated in CRC specimens. Expression of REN (renin), THOP (thimet
oligopeptidase), NLN (neurolysin), PRCP (prolyl carboxypeptidase), ANPEP (aminopeptidase N), and MAS1 (Mas receptor) was
downregulated in CRC specimens. Conclusions. Presuming gene expression parallel protein expression, these results suggest that
increased production of the angiotensinogen precursor of angiotensin (ANG) peptides, with the reduction of the enzymes that
metabolize it to ANG II, can lead to accumulation of angiotensinogen in CRC tissues. Downregulation of THOP, NLN, PRCP,
and MAS1 gene expression, whose proteins contribute to the ACE2/ANG 1-7/Mas axis, suggests that reduced activity of this
RAS branch could be permissive for oncogenicity. Components of the RAS may be potential therapeutic targets for treatment of
CRC.

1. Introduction

1.1. Colorectal Cancer. Colorectal cancer is the second lead-
ing cause of cancer-related deaths in the USA and it is the
third most common cancer in males and in females [1].
Globally, it is the second leading cause of cancer in females
and third leading cause in males, with over half of the cases
occurring in developed regions [2]. While there has been a
large focus on CRC prevention by screening modalities,

much remains undiscovered regarding better treatment
options for this often-fatal disease. The current gold standard
modality for diagnostic screening and early intervention is
colonoscopy. With colonoscopies, physicians can directly
visualize, locate, biopsy, and resect areas of concern. The
incidence for CRC has decreased by 6.24% between 2005
and 2017 in both genders, across all ages and ethnicities [3].
However, the prevalence of the disease remains high. Due
to socioeconomic factors such as barriers to initial screening
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and access to follow-up care, CRC contributes to a lethal
diagnosis in ~20% of newly diagnosed colon cancers, as
many have already metastasized at initial presentation [4].
The use of lower-cost screening methods, such as fecal
immunochemical tests (FIT) [5] or epigenetic changes and
fecal hemoglobin, e.g., Cologuard®, while not as accurate as
colonoscopy, is an option that is FDA approved [6]. Many
CRC patients also have genetic predispositions and increased
lifestyle risk factors for CRC including alcohol and tobacco
use, lack of physical activity, and obesity [4]. Current treat-
ment options vary depending on the stage of the disease.
CRC lesions are staged using TNM (primary tumor (T),
regional lymph node involvement (N), and distant metastasis
(M)) staging of the combined American Joint Committee on
Cancer (AJCC)/Union for International Cancer Control
(UICC) [7]. According to the National Comprehensive Can-
cer Network guidelines (http://NCCN.org), treatment will
depend on the stage and location of the disease as well as
in-patient factors. Generally, for localized colon cancer, the
curative treatment is surgical resection in surgical candidates.
Nonsurgical options are available for patients with more
advanced cancer. For patients with cancer that has metasta-
sized, the therapy is surgery and/or adjunctive chemotherapy
and radiation, depending on the stage of the disease. The cur-
rent treatment options are invasive, and patients experience
adverse side effects such as pain, disruption of their alimen-
tary system, the need for colostomy bags, and systemic side
effects of chemotherapy and radiation. Our study findings
imply that already-existing, noninvasive, and well-tolerated
therapies may be of benefit for the prevention and adjunctive
treatment of CRC.

1.1.1. Pathophysiology of Colorectal Cancer. As reviewed by
Cappell [8], the pathophysiology of CRC is well established.
It can arise from a variety of mechanisms including sporadic
mutation and familial syndromes or originate from a serrated
hyperplastic polyp or adenomatous polyp (AP) through the
adenoma-carcinoma sequence. The National Cancer Insti-
tute’s (NCI’s) Physician’s Data Query (PDQ) cancer infor-
mation summary about CRC states that the majority of
colon cancers today arise from an AP through the adenoma
to carcinoma sequence, although serrated-type hyperplastic
polyps can also transform into CRC via a BRAF (B-Raf
proto-oncogene serine/threonine kinase) mutation [9].
Molecular transformations such as those seen in epigenetic
alterations, e.g., DNA methylation defects and microRNA
instability, which can be affected by lifestyle and environ-
mental factors, play a role in the development and pathogen-
esis of CRC as well [10]. Physicians routinely screen for the
presence of APs with colonoscopy and the lesions are easily
biopsied during the procedure for histological evaluation.
Histological evaluation is imperative to determine the malig-
nant potential of the cells [8]. Once a lesion is biopsied and
evaluated histologically, the sample is classified. Adenoma-
tous polyps can be classified as tubular, villous, or tubulovil-
lous, with the villous subtype having a high risk for
transformation to cancer [11].

Syndromes that place patients at high risk for CRC
include familial adenomatous polyposis (FAP), the result of

an autosomal dominant (AD) germline mutation of the
APC (adenomatous polyposis coli) gene on chromosome
5q, and hereditary nonpolyposis colon cancer (HPNCC) that
is a result of mutated mismatch repair genes; see reviews [12,
13]. Patients with FAP will inevitably develop CRC via the
growth of hundreds of colonic adenomas after puberty, and
they require colectomy at a young age to prevent the inevita-
ble development of CRC. Patients with HNPCC will not have
the growth of hundreds of polyps typically seen in FAP
patients; however, they will have growth of several, usually
right-sided, sessile polyps during their middle-aged years.
This, with the use of Amsterdam II diagnostic criteria [8],
enables practitioners to establish a clinical diagnosis of
HNPCC.

Syndromic CRCs have allowed for the study and under-
standing of sporadic CRCs. We now understand that colon
cancer is the result of a cascade of mutations that eventually
lead to accelerated colonic cell multiplication, such as the
mutations that occur in familial syndromes. In sporadic
CRC, mutations of genes including the APC regulatory gene,
k-ras cell-signaling gene, P53 or DCC tumor suppressor
genes, or the mutation of mismatch repair genes may sponta-
neously occur and lead to CRC in patients without a germline
mutation. Environmental factors also play a role in the evolu-
tion of sporadic CRC via the DNA methylation process that
can lead to the inactivation of tumor suppressor genes by
hypermethylation of the CpG islands in their promoter
regions [14].

1.2. Renin-Angiotensin System. Several studies describe the
possible involvement of the RAS in the pathophysiology of
CRC [15–18]. While the RAS is primarily associated with
the regulation of the cardiovascular system as well as fluid
and electrolyte balance, we now know it to be involved in a
wide range of cellular processes [19–21]. The modern-day
RAS as shown in Figure 1 is a complexly organized system
with many divergent pathways. Indeed, some of the enzy-
matic pathways of the RAS intersect with other metabolic
pathways, e.g., ACE is also kininase II which metabolizes bra-
dykinin and several other peptides; neprilysin, which forms
Ang 1-7 from Ang I, also degrades atrial natriuretic peptide
and several other peptides; neurolysin, which metabolizes
Ang I to Ang 1-7 and Ang II at the Tyr-Ile bond, metabolizes
neurotensin and other peptides. The signaling pathways of
the RAS through its receptors, AT1, AT2, AT4, Mas, and
MrgD, are also complex and divergent, involving G
protein-activated enzymatic pathways, beta-arrestin-
activated pathways, transactivation of EGF, and activation
of NADPH oxidase, as reviewed [22–25]. Dysregulation of
the RAS has been implicated in several cancers, including
CRC, lung cancer, and gliomas [26–29].

1.3. Constituents of the “Classical” and “Neoclassical” Renin-
Angiotensin System

1.3.1. Angiotensinogen (AGT) and Renin (Classical): AGT
and REN. Angiotensinogen is an essential component of
the RAS. It is the sole precursor of all of the angiotensin pep-
tides, which play a critical role in the regulation of blood
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pressure as well as fluid and electrolyte balance, primarily
through the actions of angiotensin II (Ang II) acting on
the AT1 Ang II receptor subtype (AT1R) [30]. Human
AGT is primarily, but not exclusively, synthesized in the
liver and constitutively secreted into the bloodstream. It
has 485 amino acids, including a 33-amino acid signal
peptide that is cleaved prior to circulation in the blood-
stream. Circulating AGT is cleaved by renin to produce
angiotensin I (Ang I), a 10-amino acid peptide cleaved
from the N terminus of this protein. Renin is an aspartyl
protease that is synthesized predominantly in the juxtaglo-
merular apparatus of the kidney and secreted into the cir-
culation as the mature enzyme. The precursor protein
(prorenin) is secreted from several tissues other than the
juxtaglomerular apparatus including the adrenal gland,
ovary, testis, placenta, retina, brain [31, 32], and collecting
duct [33]. Renin is responsible for the cleavage of angio-
tensinogen to form Ang I. Prorenin (see also the next sec-
tion), when bound to the prorenin receptor prorenin, can
also form Ang I from angiotensinogen [34].

1.3.2. Prorenin Receptor (Neoclassical): ATP6AP2. Prorenin is
the precursor of renin. It exists in circulating blood at con-
centrations that are 5 to 10 times higher than those of renin
[35]. Previously, prorenin was considered to be an inactive
form of renin with no physiological role. However, it has
been known for some time that circulating levels of prorenin
are elevated in diabetic subjects [36]. We now know that the
prorenin receptor binds prorenin, uncovering the active site
of the enzyme, as well as renin, subsequently enabling prore-
nin to cleave Ang I from angiotensinogen [34]. When prore-
nin and renin bind to the prorenin receptor, they also activate

a protein kinase cascade response [34]. In addition to activat-
ing prorenin and generating an intracellular response [34],
the prorenin receptor is also an accessory protein component
of the V-ATPase proton pump ATPase 6 and a component of
the Wnt signaling pathways; see review [37].

1.3.3. Angiotensin-Converting Enzyme (ACE) (Classical):
ACE. Ang I is converted to Ang II, the primary hormone of
the RAS, predominantly by ACE, a di-peptidyl carboxypepti-
dase also known as kininase II based upon its ability to
metabolize bradykinin. It also metabolizes other peptides,
notably substance P and enkephalins [38].

1.3.4. Chymase (Neoclassical): CMA1. Chymase is a serine
protease that cleaves Ang I at the same site as ACE. Due
to a high affinity for angiotensin I, chymase converts
Ang I to Ang II at a substantially greater rate than does
ACE [39]. Chymase is expressed in mast cells and is
thought to also function in the degradation of the extracel-
lular matrix and the regulation of submucosal gland secre-
tion, as well as to oppose inflammation by inactivating
allergens and neuropeptides causing inflammation [40].
While chymase has yet to be implicated in any cancers,
it has been shown that chymase expression is upregulated
in the human diabetic kidney, specifically in mesangial
cells and vascular smooth muscle cells [41, 42] and in
polycystic kidney disease [41].

1.3.5. Angiotensin-Converting Enzyme-2 (ACE2)
(Neoclassical): ACE2. ACE2, while having a high homology
to ACE, is a monocarboxypeptidase and has an entirely dif-
ferent spectrum of activity. It is primarily known for its
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ability to convert Ang II to angiotensin 1-7; although, it can
also convert Ang I to angiotensin 1-9 [43, 44]. While unre-
lated to its functionality in the RAS, ACE2 is also notable
for its role as the primary receptor for SARS and SARS-
CoV-2 coronaviruses [45, 46].

1.3.6. Prolylcarboxypeptidase (Angiotensinase C) (Classical):
PRCP. Prolylcarboxypeptidase is one of several enzymes
capable of cleaving a post proline amino acid. It was previ-
ously known as angiotensinase C based upon its ability to
efficiently cleave the carboxy-terminal phenylalanine from
Ang II [47].

1.3.7. AT1 Receptor, Ang II Receptor Subtype (Classical):
AGTR1. The AT1 receptor is the primary mediator of Ang
II. It causes vasoconstriction, sodium retention, thirst, salt
appetite, and aldosterone synthesis and release. It has a vari-
ety of signaling pathways including mobilization of intracel-
lular calcium, opening of calcium ion channels, activation of
NADPH oxidase, transactivation of the EGF receptor, and
activation of mitogen-activated protein (MAP) kinase cas-
cades [48]. Increased activation of EGF receptors and
mitogen-activated protein kinases is found in many cancer
cell types [49]. Additionally, the AT1 receptor has some con-
stitutive activity as well as being activated by stretch indepen-
dently of Ang II [50].

1.3.8. AT2 Receptor, Ang II Receptor Subtype (Classical):
AGTR2. The AT2 receptor also has a G protein-coupled
receptor motif, but it behaves in an idiosyncratic fashion
[51, 52]. The most interesting characteristic of the AT2 recep-
tor is that its actions tend to oppose those of the AT1R [50,
53]. For example, the AT2 receptor activates phosphatase
activity and opens a potassium channel, which inhibits cellu-
lar activation [54]. The AT2 receptor is highly expressed in
utero [55, 56], but it has a limited expression in the postnatal
period. It is also expressed on atretic follicles [57]. Like the
AT1 receptor, the AT2 receptor is also constitutively active
and may respond to ligands other than Ang II [50, 58].

1.3.9. MAS Protein (Ang 1-7 Receptor) (Neoclassical): MAS1.
Mas encodes a class A seven-transmembrane-spanning G-
protein-coupled receptor, identified as a receptor for Ang 1-
7 [59], which is a peptide derived from Ang II by the actions
of ACE2 [43] and prolylcarboxypeptidase, formerly known
as angiotensinase C [47]. Mas plays a role in multiple pro-
cesses, including vasodilation with reduction of blood pres-
sure, thereby exhibiting cardioprotective properties by
mediating the effects of Ang 1-7 [59]. Thus far, a decrease
in MAS1 expression has been associated with tumor growth,
lymph node metastasis, and grade of invasive ductal carci-
noma [60], while treatment with Ang 1-7 is reported to
reduce breast tumor volume [61].

1.3.10. Aminopeptidases (Neoclassical). The two primary
aminopeptidases acting upon angiotensin peptides are ami-
nopeptidase A (APA), encoded by ENPEP, and aminopepti-
dase N (APN), encoded by ANPEP.

Aminopeptidase A, also known as glutamyl aminopepti-
dase, releases amino-terminal Glu and Asp residues from

proteins and peptides. Aminopeptidase A is found diffusely
throughout the brush borders of intestinal enterocytes [62].
Aminopeptidase A converts Ang II to angiotensin III (Ang
III), which is reported to be equipotent to Ang II at both
the AT1 and AT2 receptors [63]. In the brain, Ang III is
reported to be the primary effector of vasopressin release
[64, 65] although this has been disputed [66].

Aminopeptidase N, also known as CD13, is a multifunc-
tional enzyme that is present in many different human tis-
sues. It serves as a receptor for several viruses including a
coronavirus that causes colds [67, 68]. It plays a significant
role in trimming of antigens and is involved in antigen pre-
sentation; it can also influence immune functions including
angiogenesis and cell proliferation [67]. Aminopeptidase N
is known to serve a role in the processing of various peptides
including conversion of Ang III to angiotensin IV (Ang IV)
as well as metabolizing different chemokines and playing a
role in the final digestion of peptides derived from gastric
and pancreatic processes [69]. With respect to the RAS, its
primary role is to metabolize Ang III to Ang IV, which termi-
nates the ability of the Ang peptide to activate the AT1 and
AT2 receptors. Metabolism of Ang IV to the pentapeptide
(Ang 4-8) and smaller fragments by other aminopeptidases
generates angiotensin peptides for which no function has
yet been identified.

1.3.11. AT4 Receptor, Insulin-Regulated Aminopeptidase
(Neoclassical): LNPEP. The AT4 receptor, akin to the prorenin
receptor, was previously characterized under a different name
based upon a different functionality. The AT4 receptor is bet-
ter known as insulin-regulated aminopeptidase (IRAP) [70,
71]. It is a membrane-bound aminopeptidase that associates
with GLUT-4, which is involved in glucose transport. It is a
multifunctional peptidase whose substrates include vasopres-
sin and oxytocin. When Ang IV binds to IRAP, it inhibits its
peptidase activity. It is suggested that the pharmacological
actions of Ang IV may be attributable to an increased abun-
dance of IRAP’s substrates [72]. A second type of receptor
for Ang IV was identified as c-met, the receptor for the hepa-
tocyte growth factor [73], at which Ang IV is also reported to
act as an inhibitor. Additional potential receptors for Ang IV
are several Mas-related G protein-coupled receptor-like pro-
teins, e.g., MrgD, MrgH, and MRG [74].

1.3.12. Endopeptidases That Act upon Angiotensin Peptides.
Several endopeptidases metabolize angiotensin peptides.
With respect to the functionality of the RAS, four endopepti-
dases metabolize Ang I to Ang 1-7: neprilysin, thimet oligo-
peptidase, neurolysin, and prolyl endopeptidase [75].

(1) Neprilysin (Neoclassical).MME is a neutral endopeptidase
that is highly expressed in kidney and lung tissues. Neprilysin
is responsible for inactivating many regulatory peptides of
the mammalian nervous, cardiovascular, inflammatory, and
immune systems [76]. By inhibiting neprilysin, the bioavail-
ability of natriuretic peptides, bradykinin, and substance P
increases. As a result, these effects allow an effective antihy-
pertensive response. A neprilysin inhibitor (sacubitril) is
being used clinically to treat congestive heart failure in
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combination with the angiotensin receptor blocker valsartan
[77]. The beneficial effects of neprilysin inhibition suggest
that the preservation of natriuretic peptides outweighs the
reduction in Ang 1-7 formation from Ang I.

(2) Thimet Oligopeptidase (Neoclassical). THOP is a neuro-
peptidase in the metallopeptidase family that is responsible
for forming enkephalins, while degrading other peptides
[78]. Thimet oligopeptidase preferentially metabolizes neu-
ropeptides under 20-amino acid residue long and forms
Ang 1-7 from Ang I [79].

(3) Neurolysin (Neoclassical). NLN is an oligopeptidase that
hydrolyzes many different peptides including neurotensin,
bradykinin, and dynorphin A [80]. Neurotensin is particu-
larly important because it regulates luteinizing hormone
(LH), prolactin release, and blood pressure; it may also be
neuroprotective in stroke [81]. It can both form Ang 1-7
from Ang I as well as cleave Ang II and likely other angioten-
sin peptides at the Tyr-Ile bond [80].

(4) Prolyl Endopeptidase (Prolyl Oligopeptidase) (Neoclassi-
cal). PREP is serine peptidase that cleaves peptides distal to
the carboxy end of a proline [82]. It can metabolize both
Ang I and Ang II to form Ang 1-9 and Ang 1-7. It also can
metabolize Ang III and Ang IV to the corresponding des
Phe metabolites [82].

2. Materials and Methods

Seventeen genes (Figures 2–4, S1-S2) of the RAS and related
enzymes were selected for analysis in 148 laser capture micro-
resected (LCM) and homogenized tissue samples of male
patients with CRC [83]. The quantitative expression of the
RNA of these 17 genes in normal and cancerous tissue samples
was obtained using chip arrays from the public functional
genomics data repository, Gene Expression Omnibus (GEO)
application. There were 24 pairs of normal tissue and cancer-
ous tissue arrays available for analysis of these specific genes.

2.1. Statistical Analysis. We analyzed the log2 RNA expres-
sion of the selected genes in normal and cancerous tissues
for statistical significance using a paired t-test with GraphPad
Prism software (version 8.0 for windows, GraphPad Inc., San
Diego, California, USA).

In some cases, the data was not normally distributed
based upon the D’Agostino and Pearson normality test
and/or the Shapiro-Wilk normality test, whereupon compar-
isons between the normal and cancer tissue were made using
the Wilcoxon matched-pairs signed rank test with GraphPad
Prism software (version 8.0 for windows, GraphPad Inc., San
Diego, California, USA). The nonnormally distributed
expression of RAS-related genes in the tumor samples were
ATP6AP2 (prorenin receptor), PREP (prolyl endopeptidase),
LNPEP (Ang IV receptor), andNLN (neurolysin) which were
negatively skewed, as well as ANPEP (aminopeptidase N)
which was positively skewed. Of note, two normal tissue gene
expression distributions were also nonnormally distributed:
PREP (prolyl endopeptidase), which was negatively skewed,

and LNPEP (Ang IV receptor), which was positively skewed.
All the nonnormally distributed genes showed kurtosis,
meaning that there was an excess of values to the left or right
of the average depending on whether the values were nega-
tively or positively skewed, respectively.

Two levels of significance are reported: one which is not
corrected for multiple comparison in view of the large num-
ber of comparisons that were made and one that was cor-
rected for the multiple comparisons (Figures 2–4, S1-S2).
The uncorrected significance level is reported because the
likelihood of making a type II error (failure to reject a false
null hypothesis) increases with the number of multiple com-
parisons, albeit the chances of making a type I error (failure
to accept a true null hypothesis) also increases. For 17 com-
parisons using the Sidak’s correction at a level of p ≤ 0:05
after correction, the significance level would need to be p <
0:003013 = ½1 − ð1 − 0:05Þ1/17�. For p < 0:01 after correction,
the significance level would need to be p < 0:000591 = ½1 −
ð1 − 0:01Þ1/17�.

Tissue stages of tumor samples were based upon TNM
staging as described by Tsukamoto et al. [83]. All nonredun-
dant tumor samples (N = 108) were analyzed with log2 RNA
expression of the 17 genes at different stages of cancer using a
one-way ANOVA with post hoc Bonferroni comparisons.
Values shown are mean ± SEM or median where the sample
set did not have a normal distribution.

2.2. Literature Search Terms. The literature search used
PubMed with the following key words: renin-angiotensin
system, colorectal cancer, angiotensin metabolism, and
angiotensin receptors, in combination or alone, with/without
the additional search term review. In addition, derivative ref-
erences were obtained from review articles found in the orig-
inal literature search.

3. Results

3.1. Gene Expression in Normal versus Cancerous Colorectal
Tissue. The changes in gene expression for each of the 17
RAS-related genes are described in Figures 2–4, S1-S2, and
Table 1. Both the corrected and uncorrected levels of signifi-
cance are shown with corrected levels indicated as p < 0:05 or
p < 0:01 in Table 1. Genes of the classical RAS showing sig-
nificant differences at the p < 0:01 level after correction are
shown in Figure 2, while genes encoding nonclassical RAS-
related proteins showing significant differences at the p <
0:01 level after correction are shown in Figure 3. Genes
encoding prorenin receptor (ATP6AP2) and aminopeptidase
A (ENPEP) which showed significant differences at the p <
0:05 level after correction are displayed in Figure 4. The
remaining gene expression values which were not significant
after correction for multiple comparisons are reported in
Figures S1-S2.

There were significant increases in gene expression for
angiotensinogen (AGT), aminopeptidase A (ENPEP), prore-
nin receptor (ATP6AP2), neprilysin (MME), and prolyl
endopeptidase (PREP), while there were significant decreases
in gene expression for renin (REN), aminopeptidase N
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(ANPEP), Mas receptor (MAS1), thimet oligopeptidase
(THOP), and neurolysin (NLN). There were nonsignificant
(after correction for multiple comparisons) trends for
increases in gene expression for prolylcarboxypeptidase
(PRCP) and the AT2 receptor (AGTR2), while there were
similarly nonsignificant trends for decreases in gene expres-
sion for angiotensin-converting enzyme (ACE) and chymase
(CMA1).

The relative expression of genes of the RAS and RAS-
related enzymes varied considerably in tumor tissue
(Table 1, Figures 2–4, and S1, S2), with the prorenin receptor
having the highest expression followed by prolyl endopepti-
dase, ACE2, and angiotensinogen. The lowest relative expres-
sion of genes of the RAS and RAS-related enzymes was
chymase, with renin and the AT2 receptor also showing low
relative expression.
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Figure 2: RAS components that showed highly significant differences in gene expression between normal and tumor tissues. (a, b) Describe
angiotensinogen gene (AGT) expression, (c, d) describe renin gene (REN) expression, and (e, f) describe Mas receptor gene (MAS1)
expression. (a, c, and e) Show pairing of samples with connecting lines. (b, d, and f) Show mean, SEM, and individual data points. All of
these comparisons were significant at the p < 0:01 level after correction for multiple comparisons.
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Figure 3: RAS-related enzymes that showed highly significant differences in gene expression between normal and tumor tissues. (a–j)
Describe neprilysin gene (MME) expression, thimet oligopeptidase gene (THOP) expression, neurolysin gene (NLN) expression, prolyl
endopeptidase gene (PREP) expression, and aminopeptidase N gene (ANPEP) expression. (a, c, e, g, and i) Show pairing of samples with
connecting lines. (b, d, f, h, and j) Show mean, SEM, and individual data points. All of these comparisons were significant at the p < 0:01
level after correction for multiple comparisons.
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There were no systematic differences in relative gene
expression of the RAS and RAS-related enzymes with the
stage of the tumor. There was a marginally significant reduc-
tion in gene expression for PRCP,ACE2, and AGT in stage 2B
relative to stage 1, but this did not approach statistical signif-
icance for a multiple comparison correction. In general, gene
expression was consistent for all genes surveyed across all
stages and did not show evidence for trends toward increases
or decreases with increasing stage number. A representative
example wherein expression of AGT in stage 2B was signifi-
cantly lower than those in stages 1 and 4 (p < 0:01) by post
hoc Bonferroni comparison is shown in Figure S3.

3.1.1. Angiotensinogen (AGT). There was a large highly sig-
nificant increase of 2.413 log units in AGT gene expression
suggesting increased production of the angiotensinogen pre-
cursor of the angiotensin peptides in colorectal tumor tissue
(Table 1).

3.1.2. Renin (REN). There was a highly significant reduction
of −0.4336 log units of REN gene expression, which could
indicate reduced Ang I formation and buildup of angiotensi-
nogen (Table 1).

3.1.3. Prorenin Receptor (ATP6AP2). There was no signifi-
cant change in expression of this receptor in normal versus
cancerous tissue samples.

3.1.4. Chymase (CMA1). There was no significant change in
expression of this receptor in normal versus cancerous tissue
samples.

3.1.5. Neprilysin (MME). There was a highly significant
increase of 1.809 log units in neprilysin (CD10, CALLA) gene
expression in colorectal tumor tissue (Table 1). Neprilysin
metabolizes Ang I to form Ang 1-7, competing with ACE,
thereby reducing the formation of Ang II. However, neprily-
sin metabolizes a wide variety of peptides including atrial
natriuretic peptide which is the basis for the use of sacubitril,
a neprilysin inhibitor in the heart failure drug, Entresto®.

3.1.6. Neurolysin (NLN). Neurolysin has a similar role in the
RAS as neprilysin (MME). There was a highly significant
decrease, −0.41 log units, in expression of NLN in CRC tis-
sues (Table 1). In view of the increased expression of MME
and decreased expression of NLN, but with higher gene
expression of NLN (Table 1), the change in formation of
Ang 1-7 from Ang I would likely be small.
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Figure 4: RAS-related components that showed significant (p < 0:05) differences in gene expression between normal and tumor tissues. (a, b)
Describe prorenin receptor gene (ATP6AP2) expression, and (c, d) describe aminopeptidase A gene (ENPEP) expression. (a, c) Show pairing
of samples with connecting lines. (b, d) Show mean, SEM, and individual data points. All of these comparisons wesssre significant at the p
< 0:05 level after correction for multiple comparisons.
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3.1.7. Angiotensin-Converting Enzyme (ACE). There was a
decrease in expression of ACE gene in CRC tissues that was
significant only in the uncorrected comparison (Table 1).
ACE is responsible for the conversion of Ang I to Ang II. A
decrease of ACE expression in CRC tissues implies a reduc-
tion in the conversion of Ang I to Ang II, known for its vaso-
constrictive properties.

3.1.8. Angiotensin-Converting Enzyme 2 (ACE2). There was
an insignificant decrease in expression of ACE2 gene in
CRC tissues. ACE2 inactivates Ang II by forming Ang 1-7,
the putative agonist for the Mas receptor.

3.1.9. Thimet Oligopeptidase (THOP). There was no signifi-
cant change in expression of this enzyme in normal versus
cancerous tissue samples.

3.1.10. Aminopeptidase A (ENPEP)/Aminopeptidase N
(ANPEP). There was a significant increase of −0.9306 log
units in ENPEP gene expression, suggesting an increase in
aminopeptidase A-mediated conversion of Ang II to Ang
III. Additionally, there was a highly significant decrease of
4.253 log units in ANPEP gene expression, suggesting a
decrease in aminopeptidase N-mediated conversion of Ang
III to Ang IV. These changes would greatly increase the
amount of Ang III in tumor tissue, which could indicate that
Ang III might be a better tumor promoter than Ang II.

3.1.11. AT4 Receptor/Insulin-Related Aminopeptidase
(LNPEP). There was no significant change in expression of
this receptor/enzyme in normal versus cancerous tissue
samples.

3.1.12. Prolyl Carboxypeptidase (PRCP). There was an
increase in PRCP gene expression in CRC tissue samples
compared to their normal counterpart, but it was significant
only in the uncorrected comparison (Table 1). PRCP also
mediates inactivation of Ang II by metabolizing it to Ang
1-7.

3.1.13. Prolyl Endopeptidase (PREP). There was no significant
change in expression of this enzyme in normal versus cancer-
ous tissue samples.

3.1.14. Type 1 AT1R Ang II Receptor (AGTR1) and Type 2
AT2R Ang II Receptor (AGTR2). AT1 and AT2 receptor gene
expression was unchanged in normal and in cancerous
tissues.

3.1.15. Mas (MAS1). There was a highly significant reduction
of 0.985 log units in MAS1 gene expression in CRC tissue.

4. Discussion

Components of the modern-day RAS (Figure 1) and their
role in various cancer pathways have been described recently
with attention to the quantitative expression of genes in can-
cerous tissues and their normal tissue counterparts. Multiple
studies have described a possible role of the RAS in various
types of cancer, including lung cancer, breast cancer [60,
84–87], CRC, and CRC liver metastases [15, 27] (Table 2).

There is considerable evidence of a relationship between
polymorphisms in ACE and gastric cancer [88], lung cancer
[89, 90], prostate cancer [91], and cancer in general [92].

We were particularly interested in recent studies that
describe the RAS in CRC primary and metastatic tissues.
The studies that focused on RAS components in CRC gener-
ally found a consistent correlation between RAS-related gene
expression in CRC tissues with ACE, MasR, AT1R, and
AT2R expression being altered in CRC primary and metasta-
tic tissues [15, 27]. Protumoral associations of the RAS pro-
teins may be related to gliomas as well [26].

We observed statistically significant alterations in gene
expression of many, but not all, RAS-related components in
CRC specimens. The significant increase in angiotensinogen
gene expression in the CRC (Figure 2) is suggestive of an
increased supply of the precursor protein of the RAS leading
to a general increase in activity of the system. However, the
genes encoding the enzymes that process angiotensinogen,
renin and ACE, to form Ang II, are decreased in the CRC
samples compared to normal tissue, so it is not possible to
speculate whether Ang II formation is increased or
decreased. It is possible that there may be non-RAS-
mediated effects of the increased angiotensinogen in the
CRC tissues. Both angiotensinogen and des-Ang I angioten-
sinogen promote weight gain and liver steatosis in mice that
are independent of the RAS [93]. Interestingly,
angiotensinogen-deficient mice exhibited an increase in vas-
cular endothelial growth factor A (VEGF-1) which may
imply that overexpression of angiotensinogen could have
an antiangiogenic effect [93].

Medications that target ACE and angiotensin receptors,
such as angiotensin-converting enzyme inhibitors (ACEIs)
and angiotensin receptor blockers (ARBs), respectively, are
widely used as antihypertensive agents and therapies for
patients with heart failure and diabetic complications [94].
Newer therapeutic agents have emerged that inhibit other
components of the RAS, such as neprilysin, although neprily-
sin has a variety of peptide substrates other than angioten-
sins. Accordingly, if the proteins encoded by the RAS genes
play a significant role in CRC pathophysiology, then, already
existing therapies could potentially treat CRC.

The expression of genes encoding the major receptors for
angiotensin peptides, AT1R and AT2R, was not different
between tumor and normal tissue samples (Figures S1 and
S2) which might argue against a major pathophysiological
involvement of the classical RAS in CRC despite the
mitogenic potential of AT1R signaling [95]. Increased
AGTR1 gene expression is associated with breast cancer
[85], and ARBs inhibit mammary tumor formation in mice
[86, 87]. Similar, to the observation of no increase in AT1R
gene expression in this study, ARB usage did not have a
protective effect against CRC in a retrospective study of a
large Spanish population [96].

Receptor stimulation also depends upon agonist avail-
ability, which is subject to regulation by metabolic activity.
Relevant to angiotensins, there is a substantial increase in
aminopeptidase A gene expression. Aminopeptidase A is
the enzyme that metabolizes Ang II to form Ang III, suggest-
ing a reduction in the degree to which Ang II would be able to
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stimulate AT1 and AT2 receptors. With respect to Ang III,
there was a profound decrease in aminopeptidase N gene
expression in the tumor tissue. Aminopeptidase N is the
major inactivating enzyme for Ang III, so a reduction in its
expression coupled with an increase in aminopeptidase A
expression would cause a substantial accumulation of Ang
III-mediated activation of AT1 and AT2 receptors. Also,
reduced activity of aminopeptidase N would decrease Ang
IV formation, reducing stimulation of the AT4 receptor.
However, there was also no significant change in AT4 recep-
tor gene expression, making it unlikely that there was a sig-
nificant alteration in AT4 receptor signaling in the CRC
tumor tissue. Of note, blockade of aminopeptidase A in the
brain is reported to decrease stimulation of AT1 receptors,
implying that Ang III is a more efficacious agonist than
Ang II on brain AT1 receptors [65, 97]. Ang III was reported
to be more potent than Ang II in the rat brain [98], although
Ang III is generally considered to be near equipotent with
Ang II as an AT1 receptor agonist [63]. Also, it was recently
shown that Ang II and Ang III signal at AT1 receptors with
similar potency for G protein and beta-arrestin-mediated sig-
naling pathway profiles [99]. Thus, the evidence for involve-
ment of altered AT1 or AT2 receptor activation in tumor
tissue in this cohort is mixed.

Studies have previously demonstrated that established
therapies, particularly ACE inhibitors and ARBs, have a role
in reducing the risk of cancers, improving cancer survival
outcomes, delaying progression of invasive cancers, and
decreasing the quantity of tumor metastasis [15, 17, 18, 27,

86, 100, 101]. These studies have looked at RAS-related med-
ications in CRC and CRC metastasis, adenomatous polyps,
breast, prostate, renal, and small cell cancers (Table 3).

ACEIs or ARBs, when used in conjunction with COX-2-
selective inhibitors, resulted in the downregulation of tumor
growth in CRC patients [17]. Additionally, they found that
when used for 3 or more years, ACEIs or ARBs each resulted
in a decreased risk of CRC, while CCBs used for 3 or more
years resulted in no change in risk for CRC. ACEI use was
found to reduce adenomatous polyps (APs) in a dose-
related manner, thereby decreasing the risk of CRC via the
downregulation of these CRC precursors [18].

ACEIs were shown to improve survival outcomes in
breast, prostate, renal, and small cell cancers, while losartan,
an ARB, slowed the invasiveness of breast cancer tumors
[86]. The ACEI captopril reduced the volume of liver metas-
tases in a mouse model of CRC [15]. However, when ACEIs
and ARBs are used together, [101] there is a paradoxical
increased risk of developing cancer. Fortunately, this combi-
nation of medications is rarely seen in clinical practice,
because it causes more adverse drug reactions than treatment
with an ACE inhibitor or ARB alone, with no improvements
in key outcomes [102].

The gene expression data predicts significant alterations
in RAS components in this CRC population. While we did
not observe any changes in gene expression for AT1 and
AT2 receptors, there were alterations in the generation and
metabolism of angiotensin peptides in CRC tumor tissues
that could affect AT1 and AT2 receptor signaling. It remains

Table 2: Change of the RAS gene expression in various cancers.

Cancer type RAS gene RAS protein Change Citation

Invasive duct cell
breast cancer

MMP Neprilysin Downregulated Stephen et al. [113]

CRC liver metastases

AGTR1 AT1R Upregulated
Neo et al. [15], Zhou

et al. [27]

AGTR2 AT2R Upregulated Neo et al. [15]

AGT Angiotensinogen No change Neo et al. [15]

ACE
Angiotensin-

converting enzyme
Upregulated Neo et al. [15]

MAS1 Mas receptor Upregulated Neo et al. [15]

CRC

AGTR1 AT1R
Upregulated, protumoral, and dose dependent on

Ang II concentration
Zhou et al. [27]

AGTR2 AT2R
Biphasic, Ang II dose dependent (low = protumoral,

high = antitumoral) Zhou et al. [27]

AGTR2 AT2R
Protumor at low (Ang II), antitumoral effects at high

(Ang II)
Zhou et al. [27]

Breast cancer AGTR2 AT2R Upregulated Zhou et al. [27]

Pancreatic cancer
AGTR2 via

ATII
AT2R via ATII Upregulated Zhou et al. [27]

Chemically induced
lung cancer

AGTR2 AT2R Upregulated Zhou et al. [27]

CRC, lymph node
metastases

ACE
Angiotensin-

converting enzyme
Allele dependent Zheng et al. [16]
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to be seen whether there is a genetic or environmental deter-
minant of the tumor tissue gene expression that translates to
a more robust response to therapies that block the RAS and if
there is a dose-dependent mechanism that would provide
patients with an optimum response to therapy. In addition,
patient compliance and duration of therapy remain as possi-
ble confounders to individual patient responses. Our study
further demonstrates that the RAS potentially plays a role
in CRC and that the use of well-studied RAS-directed thera-
pies, such as ACEIs, ARBs, and renin inhibitors, may be of
benefit for adjunctive treatment of CRC. It is worth mention-
ing that many trials have been run to determine if RAS
blockers can cause cancer and the evidence is overwhelm-
ingly against any relation between RAS blockers and
increased risk of cancer in general [103–106].

ACE gene expression was marginally significantly
reduced in the CRC tumor samples, i.e., it was significant
on its own, but not with the multiple comparison correc-
tion. This observation is in contrast to a previous study
which showed an increase in ACE mRNA expression in
CRC [107]. The involvement of ACE activity in tumors
may be tumor specific or limited to specific ethnic groups.
Having the DD (deletion) genotype of the ACE gene con-
fers increased ACE activity and is associated with
increased lymph node metastasis of CRC in a cohort of
Chinese patients [16]. A meta-analysis of studies of the
association of the DD and II ACE genotypes, a variety
of cancers, suggested that the II ACE genotype was weakly
associated with reduced risk of some cancers [108]. There
is considerable variance in the reported effects of ACE
inhibitors on cancer risk with some studies of CRC show-
ing a chemoprotective effect [18, 109]. Beneficial effects of
ACE inhibitors on CRC were found to be greatest in men
under 65 years of age [96].

There was a substantial increase in neprilysin (CD10,
CALLA) gene expression in colorectal tumor tissue. Neprily-
sin metabolizes Ang I to form Ang 1-7, competing with ACE,
thereby reducing formation of Ang II. However, neprilysin

metabolizes other peptides, which might affect tumorigene-
sis. Of note, neprilysin is a marker for several cancers, includ-
ing leukemias [110], and is also inhibited by sacubitril, a
component of the heart failure drug, Entresto® (sacubitril/-
valsartan). It will be of interest to determine if sacubitril or
other neprilysin inhibitors affect CRC incidence. There
was a substantial reduction in MAS1 gene expression.
MAS1 encodes the Mas receptor for angiotensin 1-7 [59],
which is reported to have antiproliferative properties
[28]. A reduction in Mas receptor expression may facilitate
unregulated proliferation of CRC cells [111]. There was
also a large increase in AGT gene expression suggesting
increased production of the angiotensinogen precursor of
the angiotensin peptides in colorectal tumor tissue. How-
ever, the reduction in REN could indicate reduced Ang I
formation and a build-up of angiotensinogen which might
explain the protumor effect of angiotensinogen on CRC
metastasis to the liver [112].

Finally, we examined RAS-related gene expression as a
function of different stages of CRC. Although in Figure S3,
expression of AGT in stage 2B was significantly lower than
those in stages 1 and 4, gene expression was generally
consistent for all genes surveyed across all stages and did
not show evidence for trends toward increases or
decreases with increasing stage number. This could
indicate that the changes in RAS-related components are
associated with tumorigenesis rather than progression of
CRC. Our current analysis examines the differential
genetic expression of a population of CRC patients in
Japan. We plan to pursue the evaluation of the
expression of these genes in surgically resected samples
from locally sourced tissues to determine if the findings
will translate across population demographics.

4.1. Limitations of Study. This Japanese population may not
generalize to other ethnic groups. Alterations in gene expres-
sion do not always translate into significant alterations in
protein expression and function. This study did not assess

Table 3: Use of RAS inhibitors and other medications in various cancers.

Medication Cancer type Effect of medication on cancer type Citation

ACEI/ARBs + COX − 2
inhibitors

CRC Downregulated tumor growth Makar et al. [17]

ACEI/ARB ≥ 3 years CRC Decreased RISK of CRC Makar et al. [17]

CCB high doseð Þ ≥ 3 years CRC No change Makar et al. [17]

Statins, ACEI, CCBs,
diuretics

CRC No change in risk of CRC
Boudreau et al.

[100]

ACEI (dose related) Adenomatous polyps
Decreased risk of CRC via downregulation of

adenomatous polyps
Kedika et al. [18]

ACEI and ARB
combination

Cancer (nonspecific) Increased risk of cancer
Bangalore et al.

[101]

ACEI
Breast, prostate, renal, and small

cell cancer
Improved survival outcomes

Coulson et al.
[86]

Losartan (ARB) Breast Cancer
Delays occurrence and progression of invasive breast

cancer
Coulson et al.

[86]

Captopril (ACEI) CRC liver metastases Decreased tumor metastases Neo et al. [15]
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MRGPRD expression, which encodes Mas-related G protein
receptor family member D (MrgD), one of the newer recep-
tor components of the RAS.

5. Conclusion

This analysis is consistent with the involvement of both the
ACE/Ang II/AT1R and ACE2/Ang 1-7/Mas axes of the
RAS in CRC. However, the pathological significance of the
changes in RAS-related gene expression requires continued
assessment of the effects of drugs that inhibit or enhance
the activities of these RAS-related components on the inci-
dence and the survivability of CRC.
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Figure S1: RAS components and related enzymes that
showed only uncorrected significant differences in gene
expression between normal and tumor tissues. From top to
bottom, the panels describe angiotensin-converting enzyme
gene (ACE) expression, chymase gene (CMA1) expression,
AT2 receptor gene (AGTR2) expression, and prolyl carboxy-
peptidase gene (PRCP) expression; left panels show pairing of
samples with connecting lines. Right panels show mean,
SEM, and individual data points. All of these comparisons
were significant at the p < 0:05 level before correction for
multiple comparisons but were not significant after correc-
tion for multiple comparisons. Figure S2: RAS components
that did not show any significant differences in gene expres-
sion between normal and tumor tissues. Top panels describe
AT1 receptor gene (AGTR1) expression, middle panels
describe AT4 receptor gene (LNPEP) expression, and lower
panels describe angiotensin-converting enzyme-2 gene
(ACE2) expression. Left panels show pairing of samples with
connecting lines. Right panels showmean, SEM, and individ-
ual data points. Figure S3: relative expression of angiotensi-
nogen gene (AGT), with different stages of CRC at time of
biopsy. One-way ANOVA revealed a significant
(F6,105 = 3:117, p = 0:0075) effect of the stage on gene expres-
sion. ∗∗Post hoc Bonferroni test indicated that AGT gene
expression during stage 2B was significantly less (p < 0:01)
than those during stage 1 or stage 4. (Supplementary
Materials)
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