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Abstract: 

Monochloramine (MCA) is a secondary disinfectant used by water treatment facilities to 

eliminate lingering bacteria in basins, filters, and pipelines.  While an effective disinfectant, 

monochloramine can have negative effects on aquatic organisms.  Organisms affected by the 

chemical can include species whose environment is near to effluent sites and aquaculture 

facilities that use tap water lines or has water intake pipes near to effluent sites.  Three species 

commonly found in south Florida that are likely exposed to MCA by effluent sites or aquaculture 

facilities are mosquitofish (Gambusia affinis), pink shrimp (Farfantepenaeus duorarum), and the 

hard clam (Mercenaria mercenaria).   These species were acutely exposed to MCA over a 48-

hour trial at concentrations below the maximum legal residual disinfectant level of 4.0 mg/l 

(ppm).  The probability of mortality for each species was determined using standard toxicology 

protocols.  All species were found to have a greater probability of death at higher MCA 

concentrations.  The probability of death drastically decreased over time at moderate to low 

MCA concentrations.  Gambusia affinis and Farfantepenaeus duorarum exhibited extreme signs 

of stress when exposed to MCA in the form of erratic swimming and loss of buoyancy.  

Mercenaria mercenaria was the only species to survive the 48-hour trials and had the greatest 

probability of survival.  Based on these results, marine and freshwater species are sensitive to 

monochloramine and the chemical should be removed from the water prior to aquaculture or 

aquarium use.  Although monochloramine is a threat to individuals kept in tanks, it may not pose 

a threat to wild individuals due to MCA’s instability and decay over time. 
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Introduction 

Chloramines have been used as a water disinfectant since the 1930’s.  The chemical has 

been cleared by the Environmental Protection Agency’s (EPA) regulatory standards and is safe 

for drinking, bathing, and cooking uses.  Although chlorine is primarily used as the main 

disinfectant for drinking water, many water treatment facilities have switched to 

monochloramine as their secondary water disinfectant (Environmental Protection Agency 2020).    

Monochloramine is a species of organic chloramine that forms when free chlorine and 

ammonias combine, as well as smaller amounts of dichloramine and trichloramine depending on 

factors such as temperature, pH, and the amount of free chlorine and ammonia present (Pasternak 

et al. 2003).  In an aqueous solution, chlorine reacts with ammonia to form chloramines 

(LeChevallier and Au 2004). 

HOCl + NH3 → NH2Cl (monochloramine) + H2O 

The primary anthropogenic use for monochloramine is to disinfect drinking and 

wastewater.  Monochloramine is favored over chlorine because of lower volatility in water 

relative to chlorine (Farrell et al 2001).  Lower volatility allows monochloramine to eliminate 

lingering bacteria in basins, filters, and pipelines (Shull 1981).  While chlorine has been a choice 

disinfectant previously, it has several drawbacks from a municipal water treatment perspective, 

including odor and difficulty in maintaining effective concentrations.  In contrast, 

monochloramine’s advantages stem from its greater effect on bacterial cell penetration (Coventry 

et al. 1935).  Turetgen (2004) demonstrated that monochloramine could penetrate biofilms in 

cooling tower water systems more effectively than free chlorine.  Monochloramine is often used 

when disinfection by-products (DBPs) are in excess (Vikesland et al 2001).  DBPs can include 

trihalomethanes (THMs), halocetic acids, bromate, and chlorite.  THMs include chemicals such 

as chloroform, bromodichloromethane, dibromochloromethane, and bromoform, and these 

chemicals have been previously linked to cancer (Shafiee and Lobat 2012).  DBPs form when 

chlorine reacts with organic compounds and has also been linked to cancer and reproductive 

defects (Hua and Yeats 2010).  Used as a primary or secondary disinfectant, monochloramines 

produce less DBPs, helping water treatment facilities stay under the regulatory limits of DBPs 

(Hua and Reckhow 2008).  Monochloramines also help prevent the formation of trihalomethanes 

(Brodtmann & Russo 1979).  Although monochloramine is more stable than chlorine, it is still a 

relatively unstable chemical, with varying half-lives depending on temperature and pH.  
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Monochloramine can auto-decompose, meaning that it will begin to decay without the presence 

of any other sources (Sacher et al. 2019).  In an aqueous solution, when monochloramine decays, 

it decomposes into dinitrogen and ammonium chloride:  

3 NH2Cl → N2 + NH4Cl + 2 HCl 

The residual ammonia produced by monochloramine decay can cause nitrification, a process 

where ammonia is oxidized to nitrite and then to nitrate by bacteria (Kulkarni et al. 2018) 

   Many counties within the United States use monochloramine as their secondary 

wastewater disinfectant.  A survey taken in 2004 saw that 29% of community water systems used 

monochloramines as its secondary disinfectant, 3% were in the process of changing to 

monochloramines, and an additional 12% were considering monochloramine as a secondary 

disinfectant (Seidel et al. 2005).  Seidel et al. (2005) also surveyed water treatment facilities 

around the United States, asking why the facilities used chlorine or monochloramine.  The 

survey was advertised nationwide, using a variety of forums such as emailing utility managers 

and workers, the American Water Works Association e-journal subscribers, and subscribers to a 

safe drinking water alert service. The results of the survey are shown in Table 1. 
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Table 1: Results from Seidel et al. (2005) survey of water treatment facilities across the United 

States showing explanations by the facility managers or other supervisory bodies for current 

disinfection practices. 
 

 
 

Practice Chloramine Chlorine None 

Responses % Responses % Responses % 

Distribution System residual 

maintenance 

96 90.6 201 81.7 0 0.0 

Additional secondary contact 

time is necessary to achieve 

primary disinfection contact 

time 

9 8.5 31 12.6 0 0.0 

Disinfection by-product 

minimization 

81 76.4 47 19.1 1 9.1 

Taste and odor control 31 29.2 41 16.7 0 0.0 

State requirement 22 20.8 112 45.5 1 9.1 

Other 13 12.3 11 4.5 1 9.1 
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The results from the surveys in Seidel et al. (2005) included here as Table 1 shows that 

water treatment facilities primarily use monochloramine as disinfectant either when doing 

distribution system residual maintenance, to minimize DBPs, control taste and odors, or because 

it was a state requirement.  It should be noted that drinking water suppliers are required by the 

U.S. Environmental Protection Agency (EPA) to maintain a residual disinfectant throughout the 

drinking water distribution system to rid the water of bacterial growth (Virginia Department of 

Health, 2020).  The survey also asked water treatment facilities who used chloramines if they 

had experienced any problems.  Some facilities reported chloramine-related problems such as 

positive coliform bacterial samples, corrosion control problems, taste and odor complaints, 

gasket material failure, and difficulty meeting disinfectant concentration times contact time (C x 

T) requirements (Seidel et al. 2005).    

  In the United States, the federal Safe Drinking Water Act (SDWA) of 1974 had the 

intention of creating national drinking water standards.  Creating national primary drinking water 

regulations established maximum contaminant levels for various disinfectants.  The maximum 

residual disinfectant level (MRDL) of monochloramine is 4.0 mg/ L or 4 ppm, a concentration 

with no known negative effects on humans (City of Fort Lauderdale 2019).  A review of the 

annual water quality reports in 2019 from several different cities in southern Florida (Monroe, 

Miami-Dade, Broward, Collier, and Palm Beach Counties) found that chloramine concentrations 

were usually between 2.50-2.90 ppm (mg/L).  In addition, these reported concentrations were not 

consistent throughout the year, with high and low ranges provided for each location.  The highest 

concentration was 4.30 ppm (mg/L) in Stuart, Florida, which is 0.30 ppm (mg/L) higher than 

what is accepted by the EPA (City of Naples Utilities Department 2019).   

 Other than being redistributed into cities and used for drinking water, treated wastewater 

is also distributed back into the environment by way of effluent sites.  After wastewater 

completes primary and secondary disinfection, it is often released into nearby rivers, streams, 

estuaries, and bays (EPA 2004).  Being that monochloramine is used as a secondary disinfectant 

and has proven beneficial in preventing bacteria and pathogens from growing in water, it also has 

negative effects on drinking water and the environment.  Monochloramine has been linked to 

corrosion of pipes, leading to an increased copper concentration in drinking water (Switzer et al. 

2006).  When released into freshwater environments by way of effluent or leakage, it can cause 

physiological damage to aquatic life.  A study by Travis and Heath (1981) determined that 
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rainbow trout exposed to small amounts of monochloramine (average concentration of 0.16-0.23 

mg/l) exhibited an increase in methemoglobin, a form of hemoglobin unable to carry oxygen to 

tissues (Travis and Heath 1981). 

Monochloramine toxicity is relatively well studied within fresh-water aquatic 

communities, as there are many more studies similar to the Travis and Heath (1981) research.  

Laboratory bioassays of the freshwater hornsnail (Pleurocera unciale unciale) resulted in 96 

hour LC50 values of 0.252 ppm (mg/L) monochloramine (Goudreau et al. 1993), the same study 

found glochidia of the freshwater rainbow mussel (Villosa iris) to have a lower tolerance to 

monochloramine, with 24 hour LC50 values of 0.084 ppm (-mg l-1).  Farrell et al. (2001) 

determined LC50s for juvenile chinook salmon and the freshwater invertebrate water flea 

(Ceriodaphnia dubia). They found that chinook salmon and water flea had an LC50 of 0.144 

mg/L (ppm) and 0.056 mg/L (ppm), respectively after 96 hours of exposure.  Table 3 

summarizes monochloramine LC50 values of freshwater invertebrate and vertebrate species.   

In a similar acute toxicity study by Roseboom and Richey (1977), bluegill and channel 

catfish were exposed to residual chlorine and ammonia, a by-product of monochloramine, for 96 

hours.  Median tolerance limits (TL50) for each species were determined.  TL50s are the chemical 

concentration at which 50% of the test organisms survive for a specific exposure time (Rand 

1995).  Results showed that residual chlorine TL50s for bluegill ranged from 0.18-0.33 mg/L 

(ppm) and ammonia TL50s ranged from 0.40-1.3 mg/L (ppm) depending on temperature and 

weight.  Channel catfish were more sensitive to residual chlorine with a TL50 of 0.09 mg/L (ppm) 

and an ammonia TL50 range of 1.5-3.0 mg/L (ppm) (Roseboom and Richey 1977).  
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Table 2: Summary of the 2019 Annual Water Quality Report for chloramines in several cities in    

Southeast Florida (City of Fort Lauderdale 2019; [Hollywood] Department of Public Utilities 

2019; [Stuart] Martin County Utilities and Solid Waste Department 2019; City of Naples 

Utilities Department 2019; [Boca Raton] Utilities Services 2019; [Miami] Water and Sewer 

2019). 

Location Level Detected 

(ppm) 
Range of 

Results (ppm) 

Hollywood, FL 2.58 1.00-3.90 

Boca Raton, FL  2.80 0.74-3.50 

Miami, FL  2.90 (0.70 – 3.0) 

Stuart, FL  2.80 0.60-4.30 

Ft. Lauderdale, FL 2.70 2.30-3.10 



 

13 

Table 3. Monochloramine LC50 summary of findings from three different monochloramine toxicity studies.  

Monochloramine (MCA), residual chlorine (RC), and inorganic chloramine (ICA) were measured.  Chinook salmon 

with an LC50 of 2.56 ppm (mg/L) died after 0.167 hours (10 minutes) 

 

Species 
Fish/ 

Invertebrate 
Chemica

l 

LC50 

(mg/L; 

ppm) 

Exposure 

Time  

(hours) 
Study 

Chinook Salmon 

Oncorhynchus tshawytscha 
Fish 

MCA 2.56 0.167 Farrell et al. 2001 

Chinook Salmon 

Oncorhynchus tshawytscha 
Fish 

MCA 0.197 48 Farrell et al. 2001 

Chinook Salmon 

Oncorhynchus tshawytscha 
Fish 

MCA 0.144 96 Farrell et al. 2001 

Water Flea  

Ceriodaphnia dubia 

Invertebrate 

MCA 0.118 48 Farrell et al. 2001 

Water Flea 

Ceriodaphnia dubia 
Invertebrate 

MCA 0.056 96 Farrell et al. 2001 

Liver Elimia 

Goniobasis livscens 
 

Invertebrate MCA 0.045 96 
Goudreau et al. 

1992 

Hornsnail 

Pleurocera unicale unicale 

Invertebrate 

MCA 0.252 96 
Goudreau et al. 

1992 

Bladder Snail 

Physa integra 

Invertebrate 

MCA >0.810 96 
Goudreau et al. 

1992 

Pointed Campelona 

Campelona decisum 

Invertebrate 

MCA >0.810 96 
Goudreau et al. 

1992 

Coho Salmon-alevin 

Oncorhynchus kisutch 
Fish 

RC 0.083 96 Larson 1978 

Coho Salmon-fry 

Oncorhynchus kisutch 
Fish 

RC 0.079 96 Larson 1978 

Coho Salmon-Juvenille 

Oncorhynchus kisutch 
Fish 

RC 0.082 96 Larson 1978 

Brook trout-alevin 

Salvelinus fontinalis 
Fish 

ICA 0.1055 96 Larson 1978 

Brook trout-fry 

Salvelinus fontinalis 
Fish 

ICA 0.0818 96 Larson 1978 

Brook trout-juvenille 

Salvelinus fontinalis 
Fish 

ICA 0.0906 96 Larson 1978 

Cutthroat trout-juvenille 

Oncorhynchus clarkii 
Fish 

ICA 0.0745 96 Larson 1978 
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Other than natural freshwater systems, the effects of monochloramine can be seen in 

breweries and dialysis patients.  For example, chloramine can add a medicinal taste to beer if not 

properly removed (Palmer 2006).  The Center for Disease Control and Prevention (CDC) states 

that all dialysis centers treat their water to remove all chemical disinfectants before treating 

patients (CDC 2020).  Failure to remove chloramines from water used for dialysis treatment can 

cause the patient’s red blood cells to become more susceptible to oxidant damage (Klein 1986).  

Similar to dialysis patients, monochloramine can cause oxidative damage to aquatic life 

in aquaculture facilities if not properly removed from the water.  A recent study by Bakhiet et al. 

(2020) determined that residual chlorine causes tissue damage in the Nile tilapia, Oreochromis 

niloticus, in the form of severe congestion of blood vessels, edema of epithelial cells at the 

lamellae, hyperplasia of mucous cells, and gill filament damage.  In aquariums and aquaculture 

facilities, chloramines are known to be dangerous because they enter the bloodstream directly, 

decreasing the oxygen-carrying ability of blood and thereby suffocating the fish (Skipton and 

Dvorak 2007).   

Monochloramine’s effect on aquatic life can affect aquaculture production and the 

aquarium industry if not properly removed from municipal water.  The reliance on farmed 

marine organisms to meet the demand for seafood is shown through increases in aquaculture’s 

total production.  In 2011, aquaculture provided 40.1% of total world fish production and 

produced 62.7 million tons of fin fish, mollusks, and crustaceans (FAO 2011). Since 2011, the 

global fish, crustacean, and mollusk production has been rising, with fish production increasing 

at an average annual rate of 5.7% per year, crustacean production at an average annual rate of 

9.92% per year, and mollusk production at 3.46% per year (Tacon 2020).  As for aquariums, the 

industry continues to grow, with the American Pet Products Association (2020) reporting that 

13% of households in the United States have freshwater or saltwater fish.  Home aquarists often 

use municipal tap water as their main source of water for the aquariums, thus exposing aquatic 

organisms to monochloramine if not properly removed. 

Understanding the effects of monochloramine on different organisms can aid in the 

cooperation between counties, water treatment plants, and aquaculture facilities.  For example, 

after water is treated with monochloramine, it could be filtered through an activated carbon filter, 

shown by Perez-Garcia and Rodriguez-Benitez (1999) to an effective method for the elimination 

of residual chloramines.  Another method of eliminating chloramines is to add the alkali metal 
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formaldehyde bisulfite (CH4NaO4S
+), which neutralizes chloramines and is often used in 

aquaculture (Kuhns 1987).  More recent methods for chloramine removal include reverse 

osmosis (RO) and nanofiltration membranes (Al Habobi et al. 2012).  Aquariums and 

aquaculture facilities that use municipal tap water lines or draw water from sources near effluent 

sites need to remove chloramines and chlorines from the water before used.   Clear knowledge 

about the chemical can result in improved water quality management practices at municipal 

levels.  In addition, aquaculture facilities rearing marine organisms can improve their 

understanding of how monochloramine effects their stocks as well as improve preventative 

measures against mortality rates.  

Water treatment facilities will likely not stop using monochloramine to disinfect the 

waters, as it remains a convenient and effective disinfectant, as well as being cost-effective for 

local taxpayers.  However, it would be environmentally responsible for the treatment facilities to 

understand how the chemical effects organisms within their respective ecosystems.  Some 

organisms that are affected by monochloramine are those found in bait shops, grocery stores, 

aquaculture species, ornamental fish, or organisms with habitats close to freshwater input, such 

as estuaries, mangroves, salt marshes, or marinas where municipal water is used to rinse boats.  

Pink shrimp, hard clams, and mosquitofish are species commonly found in southern Florida, 

used as bait and food sources, and inhabit environments that could be near effluent sites, making 

monochloramine exposure likely.   

 

Mosquitofish (Gambusia affinis) 

 Mosquitofish are native to the southeastern region of North America and are known as 

one of the most widely distributed freshwater fish in the world (Pyke 2005).  Being opportunistic 

feeders and residing in habitats such as ponds and streams, mosquitofish have a wide diet 

consisting of algae, crustaceans, and insects.  Mosquitofish can tolerate various physical 

properties (temperature, salinity, and dissolved oxygen) as well as exposure to numerous toxic 

chemicals found in pesticides (Pyke 2005).  Since mosquitofish have been known to tolerate 

various harsh water quality conditions, they have been introduced to aquatic habitats across the 

globe to help decrease mosquito populations (Nordlie 2006).  Although mosquitofish are tolerant 

of many different water qualities, they can exhibit effects from water contaminant exposure, and 

have been used as biomarkers of contamination from pesticides and effluent sites (Pyke 2005). 
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Pink Shrimp (Farfantepenaeus duorarum): 

 Regionally, pink shrimp is often used for human food and bait in southern Florida.  

Shrimp landings, the amount of shrimp harvested, are often transported to stores or bait shops 

where they are held until sold.  Estuaries and bays, specifically in southern Florida, are 

considered nursery habitats for pink shrimp and are an important stage in their life history 

(Roessler and Rehrer 1971).  In 2005, annual landings of bait pink shrimp in Biscayne Bay alone 

were valued at over $1 million (Johnson et al. 2012).  Shrimp landing values have only increased 

since then and is currently estimated over $17 million in Florida in 2020 (Florida Fish and 

Wildlife Conservation Commission 2020).  In addition to its commercial value, the species was 

selected as an ecological indicator by the Comprehensive Everglades Restoration Plan (CERP) 

because freshwater management and restoration actions effect its distribution, growth, 

abundance, survival, and productivity.   The organisms that feed on pink shrimp are also of great 

ecological and economic importance, making the shrimp a critical trophodynamic link (Browder 

and Robblee 2009; Zink et al. 2017). 

 

Hard Clam (Mercenaria mercenaria) 

 Clam aquaculture has been a successful industry in the eastern United States.  In 2016, 

the United States produced 9.7 million pounds of clams, estimated at a value of $138 million 

(NOAA 2019).  In 2018, bivalve sales reached over $15.5 million in Florida, ranking Florida 

third in the nation for total clam sales (United States Department of Agriculture 2019).  Hard 

clams are found in environments such as estuaries and lagoons with various temperatures and 

sediment types and have been known to live for decades.  Due to their wide distribution of 

environments and long lifespan, clams can provide insight on the overall health of its habitat 

(Bricelj et al. 2017).  Generally, bivalves have been useful in marine pollution monitoring and 

water quality due to their ability to accumulate various kinds of contaminants.  Clams play an 

important role in their ecosystem by filtering excess nutrients such as nitrogen and phosphorus 

from the water (Reyna et al. 2019).   
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Objectives: 

The purpose of this study was to determine the toxicity of monochloramine on species 

that are likely to be exposed to the chemical.  Exposure can come from environments near to 

effluent sites and aquaculture facilities that use chloraminated tap water lines or have intake 

pipes near to effluent sites.  Based on prior research listed in Table 3, pink shrimp, hard clam, 

and mosquitofish are expected to be less tolerant to acute monochloramine exposure.  Along 

with determining monochloramine toxicity, behavior of the species during exposure was 

observed.  This study hopes to provide insight on the effects of monochloramine on inshore 

environments and aquaculture facilities.   

 

Materials and Methods 

 

Specimen Acquisition and Husbandry 

 Live hard clams were purchased from the local Publix grocery store.  Clams were housed 

in fifteen-gallon tanks filled with artificial seawater from the brand Instant Ocean (Instant Ocean; 

Spectrum Brands; Blacksburg, VA).  Water temperature was maintained between 20-23⁰ C and 

salinity between 30-35 practical salinity unit (PSU).  Water changes were conducted every other 

day to keep water quality at optimal conditions.  The tanks did not contain substrate or 

vegetation and the clams were fed Instant Algae (Reed Mariculture; CA) containing six types of 

microalgae at least three times before trials begin, but not proceeding 24 hours before they were 

exposed.  Clams that were not actively feeding prior to trials were not used in the experiments 

and individuals chosen were not fed during a trial.  To avoid acute health problems during trials, 

individuals were given a minimum of two days to acclimate to the laboratory environment (Rice 

et al 2012).  

Pink shrimp were purchased from a Dania Beach bait shop (Angler’s Bait and Tackle) 

and kept in a five-gallon bucket with a portable aerator until arrival at the lab.  Angler’s Bait and 

Tackle collects pink shrimp primarily from Biscayne Bay.  Like the clams, shrimp were kept in a 

fifteen-gallon tank filled with artificial seawater.  Water temperature was maintained between 

20-23⁰ C and salinity between 30-35 PSU.  Water changes were conducted every other day to 

ensure optimal water quality. Hikari Crab Cuisine (Kyorin Food Industries; Japan) was 
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purchased from Pet Supermarket or PetSmart and fed to the shrimp sparingly. The shrimp were 

acclimated for at least two days and fed once before trials began. Shrimp that were not actively 

feeding or responding to stimuli were not chosen for trials. 

The mosquitofish were sampled from freshwater sources in Weston, Plantation, and 

Dania Beach, Florida.  Fish were sampled from freshwater areas with high vegetation using a 

five-and-a-half-foot dip net and cast net.  Fish were stored in a five-gallon bucket with aeration 

until transported back to the laboratory.  All fish were sampled under Florida Fish and Wildlife 

Conservation Commission (FWC) freshwater fishing license number 1004037846.  Once fish 

were brought to the laboratory, they were kept in a fifteen-gallon tank filled with reverse osmosis 

water.  Water temperature was maintained between 20-23⁰ C.  Mosquitofish were slowly 

acclimated to artificial seawater with a low salinity of 20 PSU.  They were given at least seven 

days to acclimate to the artificial seawater (Rice et al. 2012).  Mosquitofish were fed Tetra 

Goldfish flakes purchased from Pet Supermarket or PetSmart at least four times before trials 

began.  Similar to the invertebrates, mosquitofish were not fed during the trials. 

   

Experimental Design 

All experimental procedures were conducted in the Guy Harvey Oceanographic Center 

(GHOC) room 238, a pass-card protected wet lab at the NSU Oceanographic Center campus in 

Dania Beach, FL.  Experiments took place in 1,000 mL beakers, filled with artificial seawater.  

Trials were in the form of an acute toxicity test, the relative toxicity of a chemical to aquatic 

organisms under short-term exposure at different concentrations.  Due to the volatility of 

monochloramine, this project used a predetermined length of time (thus, a time-dependent acute 

toxicity test) of 48-hour trials.   During trials, the temperature, salinity, pH, dissolved oxygen, 

monochloramine concentration, and mortality were recorded.  To test the toxicity of 

monochloramine hard clams, pink shrimp, and mosquitofish, a static acute test was performed.  

In a static acute test, the organisms and the test solutions are kept in the same chamber for the 

duration of the trial.  Acute toxicity tests do not usually exceed 96 hours because of issues that 

occur with longer duration tests, such as metabolic products increasing above desired 

concentrations or a significant decrease in test material concentrations due to the uptake by the 

test organisms (Ward and Parrish 1982).  Although less volatile than chlorine, Figure 1 shows 

the volatility of open and closed containers of monochloramine.  Silva et al. (2005) study aimed 
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to determine the stability of monochloramine and found that in a closed container, 

monochloramine concentrations were almost constant.  The same study also determined that 

monochloramine concentrations can decrease from evaporation.  Beakers were covered to 

decrease the rate of evaporation.  
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Figure 1: Silva et al. (2005) experiment comparing the volatility of monochloramine in an open 

versus closed container. 
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For each species, one individual was placed in a beaker, with a total of five beakers per 

trial.  One beaker would act as the control, meaning that no monochloramine dosage was added 

during the experiment.  Each beaker was gently aerated and maintained at the same temperatures 

and salinities as the species’ holding tanks.  During the 48-hour experiments, individuals were 

observed at set logarithmic checkpoints.  After the initial measurement, the following 

measurements took place at 1.5, 3, 6, 12, and 24 hours.  If the trial exceeded twenty-four hours, 

the second day consisted of the same measurement checkpoint times (Rice et al. 2012).   The 

time of mortality and concentration of monochloramine within the 48-hour trial was recorded.  

Mortality of the hard clam was determined if the clam did not respond to needle stimuli or if the 

clam was unable to close.  Pink shrimp and mosquitofish were considered dead if unresponsive 

to needle stimuli.  Lack of operculum movement also determined death for mosquitofish.  At the 

set times of measurement, the following parameters were assessed: temperature, salinity, 

dissolved oxygen, free and total chlorine (chloramine concentration), and mortality.  

Monochloramine levels were measured using the portable colorimeter, a model WL0020-ATC 

refractometer (Agriculture Solutions; Kingfield, ME) was used to measure salinity, a pH meter 

(7Pros) measured pH, and dissolved oxygen pen (Fisher Scientific; Waltham, MA) measured 

dissolved oxygen.   

At the end of the 48-hour trial, all individuals were humanely euthanized.  All 

methodology met the guidelines and regulations of NSU’s Institutional Animal Care and Use 

Committee (IACUC), including protocol approval prior to experimentation with vertebrate fishes 

(NSU protocols 2019.03.-DK11 and 2020.03.-DK11).  Mosquitofish were immersed in an ice-

slurry to achieve death by hypothermia (Blessing and Balcombe 2010), while invertebrates 

underwent a two-step euthanasia procedure to confirm death, the first step being a chemical 

introduction (1-5% concentration of ethanol) and the second step an ice-slurry (Underwood et al. 

2013).   

Monochloramine Synthesis 

Monochloramine stock solution was prepared by the reaction of ammonium chloride 

solution with sodium hypochlorite.  Three moles of ammonium chloride was mixed with one 

mole of sodium hypochlorite and sodium hydroxide used to buffer pH (Farrell et al. 2001).  

Concentrations of monochloramine in the stock solution were measured using a multi-parameter 

portable DR 900 colorimeter (Hach Inc.; Loveland, CO), that can detect levels of 
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monochloramine as low as 0.02 ppm (mg/L).  The colorimeter was calibrated by the 

manufacturer prior to use.  Calibration was confirmed once the colorimeter was received using a 

secondary gel standards for monochloramine from Hach.   

 

Statistical Analyses 

A power analysis was accomplished using the software G*Power (v. 3.1; G*Power), with 

the results below in Figure 2.  Power analyses calculate the minimum sample size needed to 

obtain a statistically significant result.  The power of a statistical test is also the probability that 

the null hypothesis will be rejected (Cohen 1992).  To calculate a statistical test’s power, an 

effect size is need.  An effect size is the magnitude of the effect of interest in the population 

(Salkind 2010), and based on previous monochloramine toxicity studies and their results, a 

medium effect size (0.25) was used for the power analysis calculations.  Calculations also 

assumed three trial groups.  Based on these parameters, minimal sample size of 323 was 

determined by the G*Power software.  For each species, trials containing five organisms were 

repeated (22 trials per species until 110 individuals were tested, surpassing the minimum 

estimated for statistical significance. 

A log-rank (Mantel-Cox test) was used to compare survival distributions between 

salinity, pH, temperature, dissolved oxygen, and monochloramine.  Only the monochloramine 

provided a significant p-value, meaning that monochloramine was the only variable attributable 

to species’ deaths.  Since monochloramine was the only variable related to species’ mortality, a 

Mantel Haenszel test was then used as it estimates the relation between monochloramine 

exposure and death.  A Kaplan-Meier estimator was then used to show the survival function of 

monochloramine for each species.  The monochloramine concentrations were divided into three 

groups (low, mid, and high; see Figure 4) to display a range of mortality probabilities. The plot 

of the Kaplan-Meier estimator shows the probability of mortality of a species over time at the 

three ranges of monochloramine concentrations.   
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Figure 2: The results of a power analysis to determine sample size using G*Power 3.1 software. 
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Results 

While most of the pink shrimp and mosquitofish died, most clams survived (Table 4).  

Monochloramine concentrations were attributable to the death of pink shrimp (chisq = 112, df = 

4, p = <2e-16), hard clams (chisq = 61.7, df = 2, p = 4e-14) and mosquitofish (chiq =46.4, df=2, 

p=9e-11).  All p-values were below 0.05, indicating that MCA concentrations were significant to 

the death of individuals.  Mosquitofish showed a strong response to the addition of 

monochloramine with many of the deaths occurring within the first thirty minutes of the trial 

(Figure 3 and Table 4).  Figures 3, 5, and 7 plot the monochloramine concentrations against the 

time of death for each species.  In addition to the log-rank test, a Kaplan-Meier mortality curve 

showing the probability of mortality of different levels of monochloramine concentrations was 

used.  Figures 4, 6, and 8 show that the probability of death for each species decreased as time 

elapsed.  Higher concentrations of monochloramine were more likely to cause death during the 

trial.  Mid to low monochloramine concentrations showed a drastic decrease in the probability of 

death over time. 

 

Behavioral Observations 

 When monochloramine was added to the beakers, pink shrimp and mosquitofish reacted 

immediately to the chemical showing high signs of stress in the form of erratic swimming.  Most 

individuals began flailing, hitting the plastic covering the beakers.  After the erratic swimming 

and flailing ceased, individuals became lethargic, either sinking to the bottom or floating to the 

top of the beaker.  In mosquitofish, operculum movement was rapid at first but slowed once the 

fish became lethargic.  The clams also reacted immediately to the addition of monochloramine 

during the trials.  Once the monochloramine was added, most clams closed, and remained so for 

the duration of the trial.    Clams exposed to a low level of monochloramine opened occasionally 

but remained closed during most of the trial. 
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Table 4: Descriptive statistics showing the average weight, observed mortality, and average time 

of death for each species. 

Species Avg. Weight (g) Total Number Observed 

Mortality 

Avg. Time of 

Death 

Pink Shrimp 12.72 110 88 1.00 h 

Hard Clam 23.30 110 10 11.70 h 

Mosquitofish < 1.00 110 87 30.18 min 
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Figure 3: Monochloramine concentration at time of death during mosquitofish trials.  Due to the 

instability of monochloramine, some concentrations exceeded the colorimeter’s maximum 

reading, thus these readings are indicated at 4.5 mg/l.  
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Figure 4: Mortality curve depicting the probability of death of G. affinis at different 

monochloramine concentrations indicated by high (3.1-4.5 mg/l), mid (1.6-3.0), and low (0.0-1.5 

mg/l) levels.   
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Figure 5: Monochloramine concentration at time of death during pink shrimp trials. Most 

individuals died within the first hour, shown by points on the 0 marker.  Due to the instability of 

monochloramine, some concentrations exceeded the colorimeter’s maximum reading, thus these 

readings are indicated at 4.5 mg/l.  
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Figure 6: Mortality curve depicting the probability of death of pink shrimp at different 

monochloramine concentrations indicated by high (3.1-4.5 mg/l), mid (1.6-3.0), and low (0.0-1.5 

mg/l) levels.  The vertical drop at the end of each line indicates that there were no other 

individuals tested at the respective monochloramine concentrations (low, mid, and high), 

resulting in the end of the curve. 
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Figure 7: Monochloramine concentration at time of death during hard clams trials.  Most 

individuals survived the 48-hour trial.  Due to the instability of monochloramine, some 

concentrations exceeded the colorimeter’s maximum reading, thus these readings are indicated at 

4.5 mg/l 
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Figure 8: Mortality curve depicting the probability of death of the hard clam at different MCA 

concentrations indicated by high (2.0-3.0 mg/l), mid (1.1-2.0 mg/l) and low (0.0-1.0 mg/l) level
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Discussion 

 

Monochloramine was shown to be heavily toxic to mosquitofish and pink shrimp when 

tested at different concentrations under the MRDL of 4.0 ppm or mg/l.  Low concentrations of 

monochloramine proved to be toxic to mosquitofish and pink shrimp, with most individuals 

dying within the first hour of the trial (see Table 4).  It was observed that the addition of 

monochloramine caused great stress on mosquitofish and pink shrimp.  Immediately after the 

dosage was added, both species began swimming erratically and suffered loss of buoyancy until 

death.  Individuals exposed to lower monochloramine concentrations and thus survived longer 

than one hour experienced the same erratic swimming response when the chemical was first 

introduced but became more lethargic as time elapsed.  Mosquitofish operculum movement was 

rapid at first but following the first hour of exposure, movement became slow until no movement 

was detected, and death was recorded.  The erratic behavior of the mosquitofish and pink shrimp 

was most likely caused by monochloramine, as it decreased the blood’s oxygen-carrying 

capability, resulting in suffocation and gill damage (Bakhiet et al. 2020; Skipton and Dvorak 

2007).  The hard clam showed to be more resilient to the chemical with most individuals alive by 

the end of the 48-hour trial.  During trials, most clams stayed closed, rarely opening.  The ability 

to remain closed during trials may have aided the clam in its survival.  Bivalves’ filter-feeding 

rate (clearance rates) is directly related to water quality.  A study conducted by Galimany et al. 

(2017) determining the relationship between bivalve physiology and environmental variables 

found that hard clams in the Indian River Lagoon (IRL; Florida, USA) had decreased clearance 

rates in environments with poorer water quality, like environments near to freshwater releases 

(effluent).    

 This study showed that monochloramine is toxic to both mosquitofish and pink shrimp, 

but not very toxic to the hard clam.  Both the mosquitofish and pink shrimp have a high 

probability of death when exposed to both low and high monochloramine concentrations.  While 

the hard clam has a high probability of death at higher monochloramine concentrations, they are 

more likely to survive at lower concentrations.  However, because many clams remained closed 

during the trials, it is likely that they were not exposed to monochloramine or had a lower 

exposure time, resulting in a need for further research.   
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The probability of mortality decreases over time most likely because of monochloramine 

decay.  Species reared and raised in aquaculture facilities or home aquariums are sensitive and 

monochloramine should be removed from the water.  Although monochloramine is a threat to 

individuals kept in tanks, it may not pose a threat to wild individuals because of 

monochloramine’s instability.  Monochloramine’s volatility results in unstable and decreasing 

concentrations over time (Silva et al. 2005).  Monochloramine may deteriorate at faster rates in 

large bodies of water such as estuaries, resulting in no effect on the wildlife.  A study researching 

the dissipation of monochloramine in stormwater sewer systems found that natural organic 

matter (NOM) was the dominant factor controlling monochloramine dissipation, followed by 

ammonia (Zhang et al. 2016).  NOM levels in estuaries or other bodies of water where 

monochloramine might enter (boat basins or stormwater drainage areas) could be high enough to 

cause monochloramine to decay quickly, therefore showing no effect on wildlife.  A study by 

Sacher et al. (2019) found that monochloramine’s half-life in river surface waters is short (0.06 

to 1.50 hours) and mainly affected by presence of sediment and temperature.   

Although the results of this study are important to understand how marine and freshwater 

organisms react when exposed to acute doses of monochloramine, the original goal of this study 

was to determine the LC50 of monochloramine for each species.  Species would be acutely 

exposed to five different concentrations of monochloramine over 96-hours.  The concentration 

and time of death would be recorded.  The data collected from the trials would be analyzed using 

a probit model, a regression showing the relationship between a dose and a response.  However, 

monochloramine concentrations were unable to be controlled, causing monochloramine exposure 

over various concentrations and failure to expose species for 96-hours due to rapid 

monochloramine decay, ultimately resulting in the inability to calculate LC50s.   

In March 2020, Nova Southeastern University mandated a COVID-19 campus-wide shut 

down.  For several weeks, the university was closed without any access to the laboratory.  Trials 

were delayed until students could get special permission from the department’s Dean to come to 

campus and conduct research.  Access was granted only if the student and their principal 

investigator followed a strict visitation schedule that provided proper supervision and social 

distancing.  Once granted access, research was able to continue, and the first trials of this study 

were conducted in late May 2020.   



 

34 

As mentioned previously, monochloramine is a very unstable chemical and it was 

difficult to control.  There are several parameters that are important to monitor when chloramine 

is added to water, including the chlorine to ammonia ratio, pH, chloramine species, and 

temperature.  Residual loss of monochloramine can be caused by warmer temperatures, neutral 

and acidic pH, sunlight and wind exposure, and free ammonia (Kirmeyer 2004).  During the first 

attempt at monochloramine synthesis, ammonium chloride and sodium hypochlorite solutions 

were kept at 1-4⁰ C.  Both solutions were mixed in a beaker and kept chilled until use.  The 

solution formed monochloramine, but it was highly unstable and deteriorated quickly when put 

in artificial salt water.  After further research, it was found that adding the ammonium chloride 

and sodium hypochlorite using a slow drip method allowed for monochloramine to form more 

successfully (Delalu et al. 2006).  However, the same issue occurred when mixed and added to 

artificial sea water.  It was first believed that the artificial salt, Instant Ocean, might be causing a 

reaction that stopped the formation of monochloramine.  After checking the ingredients with an 

Instant Ocean customer service representative, it was confirmed that Instant Ocean did not have 

any chemical properties that were prohibiting monochloramine to form.  Due to 

monochloramine’s extreme sensitivity to temperature changes, the ammonium chloride and 

sodium hypochlorite solutions were kept at the same temperature as the artificial salt water (20-

25⁰ C). When the monochloramine solution was added to the sea water, there was no drastic 

change in temperature.  This was successful and resulted in a more stable monochloramine 

solution.   

Although the chemical was more stable than before, it was not stable enough to maintain 

specific concentrations throughout a trial.  There was still a slow decaying of monochloramine 

during the 48-hour trials.  Because of this, an LC50 value could not be obtained.  Instead, this 

study’s main objective was modified to determine the probability of mortality of the three 

species when introduced to monochloramine.  The probability of mortality for each species was 

determined using the Kaplan-Meier estimate.  The Kaplan-Meier estimate is used to analyze non-

parametric data to determine survival functions.  Once survival functions were determined, a 

Kaplan-Meier curve was created.  The curve shows the probability of mortality of all three 

species used in this study over time. 
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In addition to the modification of this study’s objective, it should also be noted that the 

mummichog (Fundulus heteroclitus) was the original species chosen for this study.  Mummichog 

have been used in previous studies to determine water quality because it is known to tolerate 

various environmental conditions including temperature fluctuations and wide ranges of pH and 

salinity (Eisler 1986), as well as a wide geographic distribution in Atlantic coast regions.  Its 

high tolerance of environmental conditions and previous use in water quality studies also made it 

a preferred choice for this study.  However, no fish were caught despite numerous attempts in 

various locations using traps, seine nets, dip nets, and cast nets.  Additional efforts to procure 

mummichogs from commercial bait suppliers were also unsuccessful.  Mosquitofish were chosen 

as a replacement fish species because of both similar wide water quality tolerances and local 

abundance in southern Florida freshwaters. 

Further studies would need to be conducted to determine how quickly monochloramine 

can deteriorate in salt water.  Additional studies should include acute and chronic LC50 toxicity 

tests at different ages, sizes, and sex, gill analysis to determine if monochloramine causes 

internal damage, and species’ ability to detect monochloramine.   
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