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Abstract
The first-order equation relating object and image location for a mirror of
arbitrary conic-sectional shape is derived. It is also shown that the parabolic
reflecting surface is the only one free of aberration and only in the limiting case
of distant sources.

1. Introduction

Most elementary treatments of reflecting surfaces restrict their attention to the spherical case.
In this standard case, and assuming the paraxial approximation (all angles are small and all
rays are close to the optical axis), the resulting equation relating the axial object and image
positions and the radius of curvature of the reflecting spherical surface is

1

v
+

1

u
= 2

r
, (1)

where all parameters are one-dimensional coordinates which locate the image (v), object (u)
and centre of curvature (r) with respect to the vertex (the intersection of the surface with the
optical axis) [1]. This paper adopts the typical convention in which light rays travel from
left to right in all figures. The origin of the one-dimensional coordinate system employed
coincides with the vertex, and locations to the right (left) of the vertex are positive (negative).
The paraxial approximation is equivalent to a first-order approximation in the height (h) of the
incidence point (on the surface) of a reflecting ray. To higher order, it is found that

v = v(u, r, h). (2)

Consequently, spherical mirrors are aberrant at higher order since the image location is not
independent of the height, h.

The reflecting surface is assumed to be a conicoid, the surface of revolution generated by
a conic. Equation (1) is then derived as the special case of a spherical surface and to first order
in h. Special cases are analysed as a function of asphericity, or departure from the spherical,
of the reflecting surface. The parabolic surface is shown to be uniquely special in that

dv

dh
= 0 (3)

to all orders for objects at infinity (u → −∞).
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Figure 1. The spherical reflecting surface.

Figure 2. Conicoid mirror.

This paper represents a more general treatment of a mirror than is typically found in
the introductory literature. The main analyses require nothing more than some differential
calculus and are therefore accessible to university level students interested in the subject. It
may be of use to instructors as well who have a limited background in geometrical optics or
who wish to offer a simple introduction to the aspherical mirror. A cursory review of the
textbook literature indicates that even at the intermediate level there is scant or no mention of
aspherical mirrors and no significant or extensive analyses of such. Even the parabolic case is
only mentioned in passing. In contrast, this paper derives the first-order equation for a conical
mirror, equation (18), and presents a simple proof of the distinctiveness of parabolic mirrors
culminating in equation (24) which is particularly straightforward and illuminating.

2. Analysis: conicoid case

In figure 2, a conicoid reflecting surface is depicted with the equation

x2 = 1

a
y − σy2, a = − 1

2r
> 0, (4)

where r is the radius of curvature of the surface at the vertex, and σ = 1 − e2 is the shape
factor and is related to the standard eccentricity (see appendix A or, for example, [2]). For a
sphere, σ = 1, whereas for a paraboloid σ = 0. Note that the xy coordinate system is set on
its side so that +ŷ coincides with the negative direction on the optical axis (OA) as defined in
figure 1 of the introduction. Consequently, the radius of curvature, r, at the origin for
any concave conicoid (i.e. opening to the left) will be considered negative. In figure 2, a
representative case is depicted with u < 0, the location of the object, and v < 0, the location
of the image. The figure displays an incident ray, OP , emanating from the object at O and a
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reflected ray, IP , passing through the image at I. From the figure, the line OP has equation
in the xy-plane

y − (−u) = x tan (−α̃) = − x

tan α
. (5)

Similarly, the line IP has equation

y − (−v) = x tan α̃′ = x

tan α′ . (6)

Consequently,

tan α = − x0

y0 + u
, (7)

tan α′ = x0

y0 + v
, (8)

where (x0, y0) is the point of reflection, P, on the surface. From the figure, it follows that

φ = α + θ, (9)

where

tan φ = dy

dx

∣∣∣∣
P

= 2ax0

1 − 2σay0
, (10)

and

α′ + θ + φ = π. (11)

Therefore

tan(α − α′) = tan(2φ − π) (12)

tan α − tan α′

1 + tan α tan α′ = 2 tan φ

1 − tan2 φ
. (13)

Substituting for the tangents from above yields(
1

v
+

1

u

) [
1 − 4σa2y2

0

(1 − 2σay0)
2

]
−

(
1

uv

)
2y0 [1 + 2 (1 − σ) ay0]

(1 − 2σay0)
2 = − 4a

1 − 2σay0
(14)

(
1

v
+

1

u

) [
1 − 4σay0 − 4σ (1 − σ) a2y2

0

] −
(

1

uv

)
2y0 [1 + 2 (1 − σ) ay0]

= − 4a (1 − 2σay0) . (15)

Now let h ≡ x0 be the height of the incidence point P for a particular ray from the source
object at O; then in the paraxial approximation (h � 1)

y0 = ah2 + σa3h4 + O(h6). (16)

Equation (15) can then be rewritten to fourth order as(
1

v
+

1

u
− 2

r

)
=

[
2a

(
1

uv

)
− 8σa3

]
h2

+

[
4σa4

(
1

v
+

1

u

)
+ 2 (3σ + 2) a3

(
1

uv

)
− 24σ 2a5

]
h4. (17)

Note that there is aberration in imaging a finite axial point since there is no confluence in the
rays from O. Also note that there is no fixed shape factor σ that eliminates aberration to second
order and higher. To first order, all conicoids obey the same relation

1

v
+

1

u
= 1

f
+ O(h2), (18)
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which coincides, of course, with the Gaussian (first-order approximation) equation for a
spherical mirror with focal length f = r/2.

From equation (15) it follows that for objects at infinity (u → −∞) and a parabolic shape
(σ = 0), the image forms at v = f regardless of the height of the incidence ray; therefore,
there is no aberration for such imaging.

3. Analysis: general case

It is desirable to know to what extent the results of the previous section are pathological to
conicoids. With this in mind consider the most general axisymmetric surface of revolution
(about the y-axis) as a reflector

y =
∞∑

n=1

c2nx
2n. (19)

Equation (13) is easily generalized to

tan α − tan α′

1 + tan α tan α′ = 2y ′

1 − y ′2 , (20)

where y ′ = dy

dx

∣∣
P

. In general, for a given axial object location, the image location (or
intersection point of the reflected ray with the optical axis) is a function of the object location
and the reflection point

v = v(u, x0) with y0 = y(x0). (21)

A reflecting surface is free of aberration if

v′ ≡ dv

dx0
= 0 ∀u. (22)

Equation (20) can be implicitly differentiated to yield

v′

v

{
2y ′ +

x − xy ′2 + 2yy ′

u

}
=

(
1

v
+

1

u

) {
(1 + y ′2)(xy ′′ − y ′)

y ′

}
1

+ 2

(
1

uv

) {
(1 + y ′2)[(xy ′′ − y ′)y + xy ′2]

y ′

}
2

. (23)

The aberration-free surface must satisfy {· · ·}1 = {· · ·}2 = 0. However, it is evident from
equation (23) that this cannot be obtained trivially. For the special case in which the object is
at infinity though, the aberration-free surface must only satisfy {· · ·}1 = 0, and this leads to a
defining equation for the surface

xy ′′ − y ′ = 0. (24)

This is a linear differential equation whose general solution can most easily be found by the
reduction in order method to give the general solution y = Ax2 + B. This further reduces to
the particular solution of equation (B.4), found by another method, after the two necessary
boundary conditions are invoked.

4. Conclusion

Most elementary treatments of mirrors lack a discussion of the first-order equation relating
object and image locations in the case of arbitrary mirror shape. The default reflecting surface
is always the spherical one. In fact, a simple analysis yields that all axisymmetric, conic,
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reflecting surfaces of revolution (conicoids) in the first-order, paraxial approximation satisfy
the same (Gaussian) equation

1

v
+

1

u
= 2

r
, (25)

where r is the radius of curvature of the surface at its vertex.
Aberrations enter at second order and cannot be eliminated for finite object locations by

any fixed shape. However, for objects at infinity, or specifically, for incoming light parallel to
the optical axis, there is a unique reflecting shape that is free of aberration—the parabolic one.

Appendix A. Derivation of the conic section equation

Starting with the general form of a conic section in Cartesian coordinates,

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0, (A.1)

assume x-reflection symmetry, so that the equation reduces to

x2 + C ′y2 + E′y + F ′ = 0. (A.2)

Next the curve is shifted so the vertex coincides with the origin, y → y + k, with
2C ′k + E′ = ±√

E′2 − 4C ′F ′. If the form is further constrained so that the curve lies in
y � 0 half-plane, then the positive root is required, and this yields

x2 =
√

E′2 − 4C ′F ′y − C ′y2, (A.3)

or in terms of new parameters

x2 = 1

a
y − σy2, (A.4)

where a > 0. The signed curvature of this curve at the origin is

k ≡ y ′′

(1 + y ′2)3/2

∣∣∣∣
(0,0)

= 2a > 0. (A.5)

Given the optics conventions adopted here, as described in the introduction and depicted in
figures 1 and 2, the radius, r, of the osculating circle at the origin for a concave conicoid is
considered negative. The radius of curvature is therefore related to the parameter a:

k = 2a = −1

r
> 0 (A.6)

and
1

a
= −2r. (A.7)

From equation (A.4) it follows that σ = 0 corresponds to a parabola. By putting
equation (A.4) into the canonical form

x2(
1

4σa2

) +

(
y − 1

2σa

)2

(
1

4a2

) = 1, (A.8)

it becomes clear that σ = 1 corresponds to a circle with radius |r| = 1
2a

. The equation
describes a hyperbola when σ < 0. For 0 < σ < 1, the equation describes an oblate
ellipse (with respect to the y-axis), and it describes a prolate ellipse for σ > 1. In fact, from
equation (A.8), the shape factor, σ , can be related to the standard eccentricity:

σ = 1 − e2. (A.9)
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Figure B1. Paraxial incident ray on an unknown conicoidal surface.

Appendix B. Alternate derivation of the paraboloid in the limiting object
distance case

An alternate solution (to that of section 3) is presented for the exact conicoid shape in the limit
that the object distance approaches infinity (u → ∞). Applying the law of reflection (based
on Fermat’s principle of stationary optical path) to a parallel (to the optical axis) ray (from a
distant object) incident on an unknown conicoid surface results in the optical path displayed
in figure B1. Applying equation (8) to the present special case, it follows that

tan 2φ̃ = 2 tan φ̃

1 − tan2 φ
= x0

y0 − c
. (B.1)

If the notation is changed and the y variable is shifted for convenience, (x0, y0) →
(x, y + c), tan φ̃ = dx

dy
, then equation (B.1) can be reduced to either a homogeneous nonlinear

ordinary differential equation (ODE) of the form

dx

dy
= −y + k

√
x2 + y2

x
, k = 1, x(−c) = 0 (B.2)

or to a nonlinear Clairaut ODE [3] of the form

w = y
dw

dy
+

1

4

(
dw

dy

)2

, w = x2. (B.3)

Recall that Clairaut solutions are of the form w(y) = my + f (m) and have envelopes that are
also exact singularity solutions. Solving equation (B.2) or (B.3) yields the final form for the
unknown conicoid (and shifting back y → y − c):

y = 1

4c
x2, (B.4)

which is the equation for the (meridional) cross section of a paraboloid with focus at (0, c). It
is of note that equation (B.2) with k > 0 provides duality models and classroom projects for
a wide range of physical systems—from solar collectors and optical systems to various and
sundry airplane, ship and predator/prey pursuit problems [4].
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