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Abstract 

Global populations of sea turtles have suffered major declines over the past century. Thus, it is 

critical to determine accurate demographic parameters and abundance estimates to fill current 

data gaps and inform effective conservation and recovery strategies. Population models with 

greater complexity and predictive capacities are necessary to more accurately assess population 

trends and responses. This study examines the relationships between track width, female body 

size (as measured by straight and curved carapace lengths and widths), and nesting variables 

(chamber depth, clutch size, and hatching success) of loggerhead turtles (Caretta caretta) nesting 

in southeastern Florida. Track width was significantly positively related to body size, and body 

size was significantly related to both chamber depth and clutch size. Only chamber depth showed 

a significant positive relationship with track width and could be predicted from track width 

measurements taken by a flexible measuring tape. Models such as these provide a low-cost tool 

that can allow for the analysis of sea turtle population changes over time in conjunction with 

environmental variation, as well as enable comparisons between past, present, and future nesting 

populations at much larger scales than currently possible. 
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Introduction 

 Sea turtles inhabit coastal and oceanic ecosystems across the globe, most commonly in 

tropical, subtropical, and temperate climates. They facilitate many ecosystem services that 

promote the overall health and long term success of their core-use habitats, including increasing 

nutrient cycling and availability throughout neritic, pelagic, benthic, and beach environments 

(Heithaus 2014). Unfortunately, global turtle populations are widely impacted by climate change, 

which can affect their supply of food and resources, foraging habits, and alter reproductive 

processes. They also continuously suffer from increasing anthropogenic destruction of nesting 

and foraging habitats, fisheries bycatch, and increasing boat traffic (Bjorndal et al. 2013; Hart et 

al. 2014; Bjorndal et al. 2017). Of the seven extant sea turtle species, six of these inhabit the 

waters of the United States: loggerhead (Caretta caretta), green (Chelonia mydas), leatherback 

(Dermochelys coriacea), hawksbill (Eretmochelys imbricata), Kemp’s ridley (Lepidochelys 

kempii), and olive ridley (Lepidochelys olivacea). All six species are federally protected in the 

United States through the Endangered Species Act of 1973 and are listed as either endangered: 

green (Seminoff 2004), hawksbill (Mortimer, Donnelly, and IUCN SSC Marine Turtle Specialist 

Group 2008), and Kemp’s ridley (Wibbels and Bevan 2019); or vulnerable: loggerhead (Casale 

and Tucker 2017), leatherback (Wallace, Tiwari, and Girondot 2013), and olive ridley turtles 

(Abreu-Grobois, Plotkin, and IUCN SSC Marine Turtle Specialist Group 2008) (Ocean Studies 

Board and National Research Council 2010; Marine Turtle Specialist Group 2018). 

The Atlantic coast of Florida is a critical nesting habitat for loggerhead turtles in the 

western hemisphere (Weishampel, Bagley, and Ehrhart 2004; Bovery 2014). Florida enforces 

state protections for this species and hosts approximately 90% of nesting for the North Atlantic 

loggerhead population, as well as 40% of total global loggerhead nesting (Florida Fish and 

Wildlife Conservation Commission 2016). Their imperiled status highlights the pressing 

importance of recording accurate demographic parameters (e.g., growth rates, fecundity) and 

abundance estimates to fill in gaps in the data records and create effective conservation 

strategies. Historically, these data have been difficult to obtain due to many life-history 

characteristics of sea turtles, such as long lifespans with delayed maturity and iteroparity, low 

hatchling survival rates, wide habitat ranges, and highly migratory behavior (Crouse, Crowder, 

and Caswell 1987; Van Buskirk and Crowder 1994; Heppell 1998; Miller 2002; Ocean Studies 

Board and National Research Council 2010; Avens et al. 2013; Bjorndal et al. 2013; Avens et al. 
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2015). These characteristics result in slow population growth rates; and while sea turtles are 

naturally vulnerable to a variety of environmental threats throughout their different life-stages, 

they are now also vulnerable to anthropogenic influences at every life-stage. These factors, 

combined with the challenge of accessing the species on a consistent basis, consequently 

contribute to delayed observation of how populations are responding to environmental changes 

(Frazer and Richardson 1985; Mazaris, Fiksen, and Matsinos 2005; Casale, Mazaris, and Freggi 

2011; Bjorndal et al. 2017).  

Due to the difficulty of studying real-time sea turtle abundances and demographics at 

large scales, which results from their life-history characteristics, models must be used to estimate 

population parameters (Frazer 1984; Crouse, Crowder, and Caswell 1987; Heppell 1998; Miller 

2002; Mazaris, Fiksen, and Matsinos 2005; Snover, Avens, and Hohn 2007; LeBlanc et al. 2014; 

Fujisaki, Lamont, and Carthy 2018). Historically, models have been based overwhelmingly on 

data acquired from nesting females, which only make up about 1% of the overall population 

(Ocean Studies Board and National Research Council 2010). Although females emerging on the 

beach to nest are of greatest convenience for data collection, there is still a large proportion of 

the population that goes unrepresented in these models. A large data deficit exists for the 

majority of male and juvenile sea turtles, as well as for offshore behaviors of both males and 

females (Schroeder, Foley, and Bagley 2003; Goshe et al. 2010; Avens et al. 2015). Most current 

models are also limited by the highly variable age at maturation within and between species, 

which depends on the growth rates of individual turtles and the specific method used to 

determine age. There is also a lack of long-term time-series data to reference current population 

data back to, which make it challenging to assess true survival rates and population growth 

changes over time (Congdon and van Loben Sels 1993; Goshe et al. 2010; Ocean Studies Board 

and National Research Council 2010; Avens et al. 2013; Prieto-Torres and Hernández-Rangel 

2015). Environmental factors, such as air and sea surface temperatures, storms, and beach 

erosion, affect parts of the nesting process, including nest abundances, the timing of nest 

deposition, clutch size, hatching success, foraging and migration patterns, and growth rates of 

different sea turtle species (Weishampel, Bagley, and Ehrhart 2004; Hart et al. 2014; Lamont and 

Fujisaki 2014). The high variability of environmental factors and their effects on population 

structure make it challenging to quantify and incorporate such elements into a model. Until it is 

more feasible to integrate this natural variability into population models, focus can be shifted 
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towards recording the most accurate demographic parameters to use in predictive models to fill 

in current data gaps and best improve conservation strategies (Schroeder, Foley, and Bagley 

2003; Ocean Studies Board and National Research Council 2010). This study will contribute to 

filling these data gaps by establishing relationships between turtles and how they nest that 

previously have not been investigated. 

The use of body size as an indicator for different physiological and ecological 

characteristics amongst vertebrates and using morphological traits to model body size trends is 

an established approach in many species (Sauer and Slade 1987). For example, human foot 

dimensions can be used as an indicator of height and weight (Gordon and Buikstra 1992; Fawzy 

and Kamal 2010); wing length in some species of birds can be an estimate for overall body size 

(Hamilton 1961; Wiklund 1996); and snout length in Chinese alligators (Alligator sinensis) can 

predict body length (Wu et al. 2006). Additionally, organism size often correlates with different 

aspects of fecundity, not only in turtles, but also in many species of fish, like the Coho salmon 

(Oncorhynchus kisutch) (Bagenal 1978; Berghe and Gross 1984), snakes (Seigel and Fitch 

1985), lizards (Tinkle and Ballinger 1972), gray seals (Halichoerus grypus) (Anderson and 

Fedak 1985), and baboons (Sauer and Slade 1987). Population models incorporating turtle size 

typically use measurements of straight carapace length (SCL) and curved carapace length (CCL) 

as the body size indicator (Avens et al. 2012; Eguchi et al. 2012; Avens and Snover 2014; 

Bjorndal et al. 2017; Le Gouvello, Nel, and Cloete 2020). Some models have attempted to use 

body size to estimate age, often times from the back-calculation of growth rates through the use 

of skeletochronology, which analyzes growth marks on bones (Crouse, Crowder, and Caswell 

1987; Snover, Avens, and Hohn 2007; Goshe et al. 2010; Avens et al. 2012; Avens et al. 2015). 

However, this method still has many limitations, including typically being restricted to deceased 

turtles with unknown causes of death, which can be problematic because diseased or 

malnourished turtles may not be representative of normal growth in populations (Avens and 

Snover 2014). These types of models, in conjunction with total track counts, have previously 

been used to estimate overall reproductive efforts of nesting females (Ocean Studies Board and 

National Research Council 2010). Previous studies have found positive relationships between 

turtle body size and track width, but each study used different measurements for body size. 

Plummer (1977) related track widths of the freshwater smooth softshell turtle Tryionyx muticus, 
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to plastron length; and Miller (2002) related track widths of southeast Florida loggerheads to 

SCL. 

This study examines the relationships between sea turtle track width, female body size, 

and three nesting variables of loggerhead turtles nesting on southeast Florida beaches. Body size 

will be measured by straight and curved carapace lengths (SCL and CCL, respectively) and 

straight and curved carapace widths (SCW and CCW, respectively). Many previous studies have 

shown that female body size positively correlates with multiple nesting variables, including: 

chamber depth (Chen and Cheng 1995; LeBlanc et al. 2014), clutch size (Frazer and Richardson 

1986; Bjorndal and Carr 1989; Hays and Speakman 1991; Miller 2002; Broderick et al. 2003; 

LeBlanc et al. 2014; Avens et al. 2015; Prieto-Torres and Hernández-Rangel 2015; Le Gouvello, 

Nel, and Cloete 2020), egg size (Bjorndal and Carr 1989; Van Buskirk and Crowder 1994; 

LeBlanc et al. 2014), foraging mode and fecundity (Hawkes et al. 2006), hatchling health (Chen 

and Cheng 1995), and overall reproductive effort (Van Buskirk and Crowder 1994). This study 

specifically examines chamber depth, clutch size, and hatching success of nests and how they 

relate to body size and track width. First, we examined how body size affects track width, and 

next examined how body size affects the three nesting variables. Finally, we investigated if track 

width is related to each of the nesting variables with the ultimate goal of creating models that can 

predict the nest variables and body size using only track width data of nesting female 

loggerheads.  

Acquiring body size and nesting data from track width measurements is advantageous for 

many reasons. First, it is a low cost, non-invasive method that requires low effort from 

researchers and could lend itself to easy carapace length conversions (Miller 2002). Second, the 

technique is simple, which allows for large quantities of data to be amassed in relatively short 

amounts of time. These aspects combined could expand the benefits of the proposed predictive 

models to numerous conservation programs, especially if programs lack the resources to measure 

carapace lengths and gather extensive nesting data. Models that successfully predict turtle size 

and nesting variables can provide accurate estimates to fill in current data gaps. This could lead 

to the standardization of nesting data across various programs and geographical regions, 

eventually enabling comparisons between subpopulations and analysis of population trends at 

larger scales than was previously possible. Furthermore, a predictive model will allow for the 

analysis of population changes over time in conjunction with environmental variation, as well as 
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enable comparisons between past, present, and future projected populations. The hypotheses for 

this study are: (1) Track width is positively related to female body size; (2) female body size is 

positively related to chamber depth, clutch size, and hatching success; and (3) track width is 

predictive of chamber depth, clutch size, and hatching success. 
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Materials and Methods 

Study Site 

The study occurred in Broward County, which contains roughly 38 km of sandy beach 

nesting habitat and is located along the southeast Florida coastline, USA (Fig. 1). Broward 

County can host upwards of 3,000 or more sea turtle nests per season, 80-95% of which are laid 

by loggerheads (Burkholder and Slagle 2018). The specific survey zones included Hillsboro and 

Fort Lauderdale beaches, with Hillsboro having the highest nesting density in the county.  

Data Collection 

 Nighttime beach surveys were conducted from early May to the end of August, the peak 

nesting period locally, in the years 2019 and 2020. Beaches were patrolled by a small crew of up 

to six surveyors between the hours of 9:00 pm and 5:00 am for female loggerheads that had 

completed nesting or were returning to the ocean after a “false crawl” (i.e., an unsuccessful 

nesting attempt). Individual turtles were detained on a flat portion of the beach within a portable 

four-sided corral, following methods similar to those in Hart et al. (2010). After being safely 
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detained, turtles were measured and their carapace dimensions were recorded. Trained, permitted 

surveyors recorded straight carapace length from notch to notch (SCL notch), notch to tip (SCL  

tip), and straight carapace width (SCW) using straight-forked tree calipers. Curved carapace 

length was recorded from notch to notch (CCL notch), notch to tip (CCL tip), and curved 

carapace width (CCW) using flexible measuring tape. SCL and CCL from notch to notch was 

measured as the distance from the midline of the nuchal scute to the midline between the 

supracaudals. SCL and CCL from notch to tip was measured as the distance from the midline of 

the nuchal scute to the posterior tip of the supracaudals. Carapace width measurements were 

taken at the widest point of the carapace (Fig. 2). 

 Track width measurements were also taken at night for each turtle sampled. Loggerhead 

crawls are characterized by alternating comma-shaped rear flipper marks. Thus, track widths for 

loggerheads represent the minimum distance between indentations left by the claws of the rear 

flippers, taken as the distance from the bottom of one claw indent to the average distance 

between the opposite indents (Fig. 3). Tracks of each turtle were measured at two points along 

the incoming crawl, one point at or near the tide line where the sand was typically wet, and 

another point approximately midway to the nest laid or to the apex of the crawl if the turtle did 

not nest, where the sand was typically dry (weather permitting). Both points were measured with 

flexible measuring tape as well as with straight-forked tree calipers. This method produced four 

track width measurements per crawl for each surveyor that measured: (1) the high tide point 

measured with flexible tape (FHT), (2) the high tide point measured with calipers (CHT), (3) the 

midway point measured with flexible tape (FMD), and (4) the midway point measured with 

calipers (CMD). If crawls were measured by more than one surveyor, each of the four points 

were averaged with the measurements of the other surveyors to give only one FHT, FMD, CHT, 

and CMD measurement per turtle. Each crawl was measured by as many surveyors on the crew 

as possible, typically between two and four, to control for sampling error as well as accounting 

for natural variations in width along the crawl. All nighttime data collection was taken in 

collaboration with an ongoing research project of Dr. Derek Burkholder and Glenn Goodwin 

under the Florida Fish and Wildlife Conservation Commission Marine Turtle Permit #MTP-255.  

The nesting variables (chamber depth, clutch size, and hatching success) were measured 

and recorded during morning survey nest inventories conducted by permitted researchers of the 

Broward County Sea Turtle Conservation Program (BCSTCP) under FWC Marine Turtle Permit 
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#MTP-214. Chamber depth is defined here as the distance from the bottom of the egg chamber to 

the level sand at the top of the nest; clutch size is the total number of eggs per nest; and hatching 

success is the percentage of eggs that hatched per nest. Nest inventories followed the protocol 

outlined in Burkholder and Slagle (2018) and the FWC Marine Turtle Conservation Handbook 

(Florida Fish and Wildlife Conservation Commission 2016). BCSTCP employees also took one 

measurement of track width for nest-associated crawls on their daily morning nesting surveys. 
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They used only flexible measuring tape, usually near the high tide line on the incoming track, 

following the same method illustrated in Figure 3. Chamber depth measurements that had noted 

sand accretion from heavy tides or storms, as well as track widths that noted rear flipper injuries, 

were excluded from all analysis. 

Statistical Analysis 

 Paired T-tests were used to first determine if the four track width measurements taken at 

night were statistically different from each other. If there was no statistical difference between 

measurements taken with the flexible tape or calipers and no difference between measurements 

at the tide line or midway up the track, all four track measurements were averaged to give one 

track width measurement per turtle. Pearson’s parametric correlations determined the covariance 

between each of the morphometric measurements and were used to decide which body size 

metric, or metrics, to test against track width. If body metrics showed high covariance (r > 0.90) 

with other body metrics of the same measuring method (i.e., curved or straight), then only one of 

those metrics would be selected for use in further analysis. 

 Ordinary Least Squares Regressions (OLS) were first used to determine if a relationship 

existed between average track widths and each of four body metrics (SCL tip, CCL tip, SCW, 

and CCW), with track width as the response variable. This model was used to predict track width 

values from carapace measurements taken in 2018, and a paired T-test determined if there was a 
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significant difference between the predicted values and the actual track widths of those turtles 

taken by BCSTCP. 

 Next, Pearson’s correlations and OLS were used to investigate relationships between the 

morphometric measurements and each of the nesting variables: chamber depth, clutch size, and 

hatching success. Once a significant relationship between a body metric and nest variable was 

identified, OLS was again used to explore predictive relationships between the significant 

nesting variables and track width, this time with track width as the predictor and nest variable as 

the response. When a nest variable showed a significant relationship with track width, the model 

was used to predict nest variable measurements for each nest from the 2018 BCSTCP track 

width measurements of the corresponding turtles. A paired T-test determined if there were 

significant differences between the predicted values for each nest and the actual values measured 

in 2018. All data were tested for normality with Shapiro-Wilk and linearity by examining the 

Residuals vs. Fitted values plot. All variables were normally distributed and linear except for 

hatching success, which was transformed using the arcsine transformation to achieve normality. 

Statistical analyses were conducted using RStudio, version 3.6.3 and statistical significance was 

determined by p ≤ 0.05.  
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Results 

 Track width and carapace measurements were taken for 44 loggerhead turtles in 2019 and 

35 loggerheads in 2020 (n = 79; Table 1). The four track width measurements taken at night 

along each crawl were not significantly different from each other, so track widths for each turtle 

were consistent regardless of the measuring tool used and the point along the crawl. The four 

measurements (FHT, FMD, CHT, and CMD) were then averaged for each turtle to produce only 

one average track width measurement per turtle for simplification of the models going forward. 

The morning track width measurements taken by BCSTCP were also not significantly different 

from the nighttime track width averages taken for the same turtles, so measuring methods were 

followed consistently across all surveyors and comparisons could be made across nighttime and 

daytime track width measurements.  

The morphometric data showed high covariance among both straight and curved 

measurements (Fig. 4). When SCL and CCL notch and SCL and CCL tip measurements were 

correlated with SCW and CCW measurements, respectively, all correlations were positive and 
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significant but had coefficients below 0.90 (Table 2). There were very strong positive 

correlations between SCL tip and SCL notch (r = 0.978, p = < 0.001), and CCL tip and CCL 

notch (r = 0.984, p = < 0.001). Therefore, in order to reduce redundancy in the models, only SCL 

tip, CCL tip, SCW, and CCW measurements were chosen to test for relationships with average 

track widths while SCL notch and CCL notch were excluded from further analysis due to their 

strong covariance with SCL tip and CCL tip. Some carapaces lacked distinct posterior notches 

due to natural variation in carapace shape, therefore measurements to tip were more consistent.  

The relationships between track width and body size varied slightly with the 

morphometric parameter used, but the overall trend showed that larger loggerhead females had 

larger track widths (Fig. 5). The linear relationship between CCL tip and track width (F1,76 = 

10.47, R2 = 0.121, p = 0.0018) was stronger than the linear relationship between SCL tip and 

track width (F1,76 = 3.85, R2 = 0.048, p = 0.0534), with the latter showing only marginal 

significance. Both models predicted track width without a significant difference (pSCL = 0.3079, 

pCCL = 0.2116) from the actual track width measurements recorded in 2018 by BCSTCP on their 
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morning surveys. The linear relationship between SCW and track width (F1,75 = 10.21, R2 = 

0.120, p = 0.002) was about as strong as that of CCW and track width (F1,74 = 10.35, R2 = 0.123, 

p = 0.0019). Both models were again able to predict track width without significant difference 

(pSCW = 0.3943, pCCW = 0.3195) from the actual 2018 measurements.  

Not all turtles that were measured for body size nested, and not all confirmed nests 

hatched or were able to be inventoried. This limited the sample size used to create the models 

incorporating the nesting variables compared to the models using only track width and carapace 

measurements. Chamber depth, clutch size, and hatching success were obtained from 15 

loggerhead nests in 2019 and 19 loggerhead nests in 2020 (n = 34; Table 3). Each of the four  

body size metrics individually had a significant effect on chamber depth, showing that overall 

larger turtles dig deeper egg chambers (Fig. 6). Ordinary Least Squares regression models using 

SCW (F1,32 = 13.4, R2 = 0.295, p = 0.0009) and CCW (F1,31 = 21.8, R2 = 0.413, p < 0.001) 

showed slightly stronger linear relationships with chamber depth compared to the models using 

SCL tip (F1,32 = 8.58, R2 = 0.211, p = 0.0062) and CCL tip (F1,32 = 12.3, R2 = 0.278, p = 0.0014) 

measurements. The relationship between CCW and nest chamber depth provided the best model 

(Fig. 6g), where CCW explains approximately 41% of the variability in chamber depth. 

Clutch size was also significantly affected by each of the four body size metrics 

individually. This time, the models using SCL tip (F1,34 = 38.3, R2 = 0.530, p < 0.001) and CCL 

tip (F1,34 = 73.4, R2 = 0.684, p < 0.001) showed slightly stronger linear relationships with clutch 

size and explained a greater percent of the variability than the models using SCW (F1,34 = 10.8, 
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R2 = 0.240, p = 0.0024) and CCW (F1,33 = 23.8, R2 = 0.419, p < 0.001). The relationship between 

CCL tip and clutch size provided the best model, with approximately 68% of the variability in 

clutch size explained by the CCL of the nesting female. Contrary to these findings, the hatching 

success rates of loggerhead nests were not significantly related to any of the body size metrics (p 

>> 0.05) and were not correlated to chamber depth or clutch size. 

Track width was significantly related to all four body size metrics (Fig. 5), and those 

morphometrics were all significantly related to both chamber depth and clutch size of loggerhead 

nests (Fig. 6). Additionally, chamber depth and clutch size were significantly correlated (r = 
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0.468, p = 0.0053). Therefore, it was expected that both nest variables would also relate to track 

width. Track width significantly affected chamber depth (F1,32 = 21.5, R2 = 0.402, p < 0.001) and  

explained approximately 40% of the variability in chamber depth (Fig. 7a). The model 

successfully predicted chamber depth values without significant difference (p = 0.144) from the 

actual 2018 measurements collected by BCSTCP. However, track width was not related to clutch 

size (p = 0.108) and could not be used to predict accurate clutch sizes (Fig. 7b).  

 

Discussion 

 This study is the first to show that a significant relationship exists between nest chamber 

depth and female track width, and that this specific model can predict chamber depth with no 

significant difference from the actual chamber depths solely from track width measurements 

using only a flexible measuring tape. This result could be related to the ability of longer rear 

flippers to reach further depths in the ground and allow for deeper nests to be excavated. Nest 
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depths measured in this study ranged from 41 cm to 68 cm, and this range was nearly mirrored 

by the range of loggerhead track widths recorded, which was from 38.5 cm to 68 cm (Figure 8; 

Table 1). This finding further promotes the use of track width as a useful indicator of chamber 

depth. Even though track width was not significantly related to clutch size in this study, clutch 

size did show a significant positive correlation with nest depth and significantly related to all 

measurements of body size. This indicates that larger turtles dig deeper nests and lay larger 

clutches, which supports the findings of a multitude of past studies (Frazer and Richardson 1985; 

Bjorndal and Carr 1989; Hays and Speakman 1991; Miller 2002; LeBlanc et al. 2014; Avens et 

al. 2015; Prieto-Torres and Hernández-Rangel 2015; Le Gouvello, Nel, and Cloete 2020). 

Therefore, predicted chamber depths may still indirectly provide insight to approximate clutch 

size estimates.  

Hatching success rates showed no relationship or correlation to any body size metric or 

other nest variable. This lack of association is not entirely surprising, probably because local 

environmental factors and the incubation environment play a larger role in successful embryonic 

development than any maternal characteristics (Foley, Peck, and Harman 2006; Erb, Lolavar, 
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and Wyneken 2018). Nests near the high tide line are at risk of excessive washing over by the 

tide, or even total washout by heavy tides which results in total loss of the nest. Nests in open 

sand with no shading nearby may be exposed to too much solar heating, reaching internal 

temperatures that exceed the optimal range for healthy embryo development (Erb, Lolavar, and 

Wyneken 2018). Root presence from surrounding vegetation, shade, heavy storms, and predation 

are all factors that affect, and further complicate the prediction of the hatching success rates of a 

nest. 

This study is also one of the first to demonstrate a significant positive relationship 

between track width and female body size, and the first to illustrate the relationship exists with 

three different body size metrics (CCL, SCW and CCW), not just one length measurement. 

Additionally, models were created that allow for prediction of track width from body size 

measurements without significant difference from the actual track widths, and these equations 

can be rearranged to predict the body size from track width as well. However, it is important to 

note that even the strongest body size relationships, which were between track width and CCL, 

CCW, and SCW, only explained about 12% of the variability in track width. Therefore, despite 

the presence of the significant relationship, track width alone may not be the most accurate 

predictor of body size. Nevertheless the assumption that bigger turtles make wider tracks in the 

sand has been verified by very few studies and the application of predictive models founded on 

this could have major implications for the future of sea turtle conservation (Plummer 1977; 

Miller 2002). Such models have the potential to assess population demographics of nesting 

females without ever having to encounter them directly, which provides a new technique for 

analyzing nesting trends that is low cost, non-invasive, and lower effort compared to the 

approaches currently utilized.   

The physical size of sea turtles is known to be strongly related to fecundity, informing the 

basis of many modern population models (Crouse, Crowder, and Caswell 1987; Hawkes et al. 

2006; Avens et al. 2015). Fecundity encompasses the many aspects of maximizing reproductive 

output, and many of those aspects can be measured through beach surveys and post-hatch nest 

inventories, i.e., nest chamber depth. Analyzing a simple parameter such as this can offer 

insights to reproductive output that may not be immediately obvious (Marco et al. 2018). 

Chamber depth influences incubation temperatures, which directly affect sex determination of 

hatchlings (Chen and Cheng 1995; Avens et al. 2012; Wyneken, Lohmann, and Musick 2014). 
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Deeper nests typically have cooler incubation temperatures than shallower nests locally, and 

cooler incubation temperatures will favor a greater proportion of males hatched than females 

(Van De Merwe, Ibrahim, and Whittier 2006). By evaluating predicted chamber depth trends, it 

may be possible to inform some models on the productivity of future generations by contributing 

to ratio estimation of males to females that enter the population each year. However, this 

capability may be limited to regions with higher variability of local climates, because in places 

with consistently high air temperatures, such as south Florida, the differences in chamber depths 

may not be large enough to have a substantial impact on the sex of the hatchlings.  

Digging deeper nests could appear to be a drawback for the female and hatchlings 

because it requires greater energy expenditure from the females during the nesting process, 

increases time exposed to predators while digging, and forces greater effort from hatchlings 

while escaping the nest. But it has been shown that hatchling health is positively affected by 

maternal body size and that hatchlings from deeper nests exhibited quicker mobility responses, 

meaning they took significantly less time to right themselves when flipped on their backs, than 

the same number of hatchlings emerging from shallower nests (Chen and Cheng 1995; Marco et 

al. 2018). Thus, greater chamber depths dug by larger turtles may be indicative of nests that 

produce hatchlings with higher fitness levels and possess an early survival advantage. Overall, 

the ability to predict nest chamber depth from an indicator of body size could help improve the 

accuracy of population models and predictions of future population trends.  

Nevertheless, the relationship between chamber depth and body size is still equivocal. 

Marco et al. (2018) found no relationship between this nesting variable and female body length, 

also noting that nest depth for each individual female was inconsistent. This could be due to a 

possible seasonal variation in chamber depths of individuals, or perhaps the existence of an 

optimum depth range for nests that females dig to regardless of body size. The study also 

speculated that warming global temperatures from climate change could act as a possible buffer 

for any temperature effects that deeper nests could have on hatchling sex ratios. Marco et al. 

(2018) also proposed the idea that digging deeper nests could be a way for sea turtles to maintain 

historical hatchling sex ratios irrespective of their physical size. Despite the significant 

relationships found in the current study, relatively low R2 values were reported and likely due to 

high environmental variability and unaccounted external factors. The track width measurement is 

directly related to the turtle itself and any possible injuries it may have, as well as being 
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influenced by the substrate type, sand compaction, beach slope, weather, and foot traffic on the 

beach, which could all distort the track in different ways. For these reasons, it is necessary to 

control for consistency in track width measurements as much as possible to allow for meaningful 

comparisons. 

It is interesting that body size seemed to explain the most variability in, and relate most 

strongly to clutch size out of all the nesting variables tested, yet clutch size did not relate to track 

width. While larger females maximize their reproductive efforts by laying more eggs per clutch 

instead of more total clutches, loggerhead clutch sizes often tend to decrease throughout the 

nesting season as maternal resources are depleted, regardless of body size (Bjorndal and Carr 

1989; Congdon and van Loben Sels 1993; Broderick et al. 2003; LeBlanc et al. 2014). If deeper 

nests are dug to hold larger clutches, then it is possible that chamber depth could decrease 

steadily as clutch size decreases. Thus, it’s possible that larger turtles will still lay larger clutches 

in deeper nests than smaller turtles at similar points of resource depletion, which simultaneously 

maintains the body size gradient across nesting females and respective chamber depths. Clutch 

size ranges can be much more variable than chamber depth ranges, so track width measurements 

may not accurately reflect this seasonal progression towards smaller clutches, and there are still 

many unknowns about how resource depletion varies among individuals. Therefore, track width 

cannot be considered an accurate predictor of clutch size. 

There are still many uncertainties pertaining to sea turtle reproduction and population 

demographics. While one subpopulation may exhibit a particular trend, another subpopulation 

may not. It is known that loggerhead size significantly varies between geographical regions, for 

example: loggerheads of the western north Atlantic have similar size ranges at maturity (based 

on straight carapace length), but are significantly different than the size ranges of mature 

loggerheads in the Mediterranean (Stoneburner 1980; Tiwari and Bjorndal 2000). This suggests 

that variations in environmental conditions lead to different morphological responses, and 

subpopulations are shaped by the stressors and resources specific to their habitat (Lamont and 

Fujisaki 2014; Fujisaki, Lamont, and Carthy 2018). For this reason, track width to body size 

relationships must be investigated on a region-by-region basis to create useful population-

specific models, and it cannot be assumed that one model will fit all individuals of a species.  

Further progress could be made by evaluating the presence of these trends in other 

subpopulations of loggerheads, such as in the Mediterranean, to determine if similar models can 
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be applied to different populations. These relationships can also be investigated in other locally 

nesting species, i.e., green turtles in Broward County; and by looking for relationships with other 

nesting variables, or incorporating specific interactions of environmental variability. Future 

studies could also explore chamber depth or clutch size variation in subsequent nests of 

individuals throughout the season using mixed effect models with individual turtles as the 

grouping factor. Going forward, it is crucial to standardize methods of track width measurement 

for each species to expand the benefits of models based on track widths and enable model 

comparisons among different geographical regions.  

 

Conclusion 

The relationships established between track width and body size as well as between track 

width and chamber depth have numerous implications for conservation programs around the 

globe. They can increase the availability of crucial demographic and nesting trend data both 

locally and internationally. Generating models that can accurately predict specific aspects of 

fecundity from easily accessible track width data creates a valuable new technique for analyzing 

nesting trends. These models could entice programs to standardize the collection of nesting data 

to allow for larger scale analysis of sea turtle populations and how they change over time. 

Models will always have limitations, especially when working within the natural environment, 

but the impact potential of such low-cost and effective analysis tools are extensive and should 

not be overlooked. Although it may be difficult to tease apart the influences of maternally 

controlled factors and environmental factors, understanding any aspects that contribute to 

hatchling survival and provide early life advantages is crucial to finding the most effective 

conservation strategies (Van Buskirk and Crowder 1994; Marco et al. 2018; Le Gouvello, Nel, 

and Cloete 2020). It also aids in providing the most accurate predictions of population changes, 

which all together are essential to ensuring the survival of sea turtles in the modern world. 
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