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ABSTRACT 

Most studies examining predictors of treatment outcomes among problem drinkers have 

used a traditional statistical approach that examines group outcomes (e.g. analysis of 

variance, multiple regression analysis). Contrary to traditional methods, a person-

centered approach identifies commonalities among clusters of individuals and provides 

the opportunity to examine the relationship between multiple individual differences and 

outcomes in a longitudinal manner. Specifically, the person-centered approach makes it 

possible to cluster individuals into subgroups based on their change patterns, and to 

examine the relationship between those subgroups and other variables of interest (e.g., 

drinking problem severity). This approach allows the inclusion of a relatively large 

number of variables to test complex hypotheses. The present study is a secondary data 

analysis of early (first three-month) Timeline Followback (TLFB) post-treatment 

drinking data from 200 problem drinkers who completed a short outpatient intervention. 

Using a growth mixture modeling (GMM) analysis, the goal was to identify different 

outcome drinking trajectories and examine the relationship between problem severity 

levels, treatment modality (i.e. individual versus group format), and goal choice (i.e. low-

risk drinking versus abstinence) to those trajectories. Results demonstrated the existence 

of different outcome subgroups among problem drinkers. In addition, problem severity 

level was associated with outcomes and class membership. Observed significant 

differences in the relationships between predictor variables and specific outcome 

subgroups, and evidence of different drinking fluctuation patterns in the outcomes 

suggest that using a person-centered approach adds value beyond traditional statistical 



2 

 

outcome analyses. The person-centered approach can facilitate the identification of 

relevant variables for patient-treatment matching hypotheses for problem drinkers. 
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CHAPTER 1:  

Statement of the Problem 

Individuals with alcohol use disorders (AUD) can differ on many dimensions 

including premorbid level of drinking, developmental trajectories, demographic 

characteristics, manifestation of symptoms, level of functional impairment, and types of 

high-risk drinking situations (i.e. Annis & Graham, 1995; Bucholz, Heath, Reich, 

Hesselbrock, & et al., 1996; Fuzhong, Duncan, Duncan, & Hops, 2001; Monga et al., 

2007; Rindskopf, 2006; Schulenberg, O'Malley, Bachman, Wadsworth, & Johnston, 

1996; Zucker, 1994). Taking account of these differences, studies have tried to identify 

client characteristics that predict treatment outcomes using a variety of therapeutic 

approaches, as no single treatment has proven effective with all alcohol abusers 

(Donovan et al., 1994; Project Match Research Group, 1993).  

Problem drinkers are a not severely dependent subgroup among individuals with 

AUDs (Sobell & Sobell, 1993). Demographic variables, severity levels, number of 

alcohol-related consequences, positive outcomes of low-risk drinking, and a good success 

rate for brief interventions have been found to differentiate problem drinkers from more 

severely dependent alcohol abusers (Graham, Annis, Brett, & Venesoen, 1996; Marques 

& Formigoni, 2001; Sobell, Sobell, & Agrawal, in press). Problem drinkers have been 

found to respond positively to Motivational Interviewing (MI) and to Cognitive-

Behavioral Treatment (CBT) conducted in either an individual or group format (e.g. 

Agosti, 1995; Graber & Miller, 1988; Graham et al., 1996; Heather et al., 2000; Marques 

& Formigoni, 2001; Project Match Research Group, 1997; Sanchez-Craig, Annis, Bornet, 

& MacDonald, 1984; Sobell et al., in press; Weiss, Jaffee, deMenil, & Cogley, 2004). 
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However, while the majority of problem drinkers demonstrate improvement after 

treatment, some individuals do not respond well to treatment. Therefore, examining 

client-treatment interactions might provide valuable information for creating client-

treatment hypotheses specific to problem drinkers.  

In this study, data from a randomized controlled clinical trial that found no 

outcome differences between problem drinkers who were assigned to individual or group 

treatment using the Guided Self Change (GSC) model of treatment (Sobell et al., in press) 

will be used to examine types of drinking patterns shown by clients shortly after 

treatment, and the relationship of pretreatment characteristics to these patterns. The GSC 

intervention consists of a brief, outpatient treatment using both motivational interviewing 

and cognitive-behavioral techniques to aid in changing an individual’s drinking behavior. 

The GSC model has been extensively evaluated and is an empirically-supported, cost-

effective treatment for problem drinkers (Sobell & Sobell, 2005).  

Although several studies have examined the relationship of predictors to treatment 

outcomes among problem drinkers over the past thirty years (e.g. Adamson & Sellman, 

2001; Blume, Marlatt, & Schmaling, 2000; Booth, Dale, & Ansari, 1984; Booth, Dale, 

Slade, & Dewey, 1992; Brown, Carrello, Vik, & Porter, 1998; Chang, McNamara, Orav, 

& Wilkins-Haug, 2006; Cronkite & Moos, 1984; Donovan, Kivlahan, Kadden, & Hill, 

2001; Edwards, Brown, Oppenheimer, Sheehan, Taylor, & Duckitt, 1988; Graber & 

Miller, 1988), the relationship of pre-treatment drinking patterns to treatment outcomes 

has been relatively unstudied. To some extent, such inquiries have been limited by the 

use of traditional group-centered statistical methods (e.g. analysis of variance, regression 

analysis). A person-centered approach is a new technique that examines individual 
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differences by using cluster, latent class, and latent transition analyses (Muthén & 

Muthén, 2000). Due to the observed multidimensional dysfunction in alcohol abusers, it 

cannot be expected that a single variable would account for a large proportion of the 

variance in outcomes (Project Match Research Group, 1998). Therefore, a realistic 

research objective would be to find subgroups defined by multiple variables and examine 

their relationship to treatment outcomes. An important advantage of a person-centered 

approach is in the analysis of a bimodal distribution (Witkiewitz, van der Maas, Hufford, 

& Marlatt, 2007). For most treatment studies in the addiction field, the analysis of 

outcome data involves groups of responders and non-responders, forming a bimodal 

distribution. Since group approaches involve the assumption of normality, this type of 

distribution is not the most optimal for traditional statistical methods (e.g. analysis of 

variance, regression analysis). 

Using traditional statistical methods, researchers have largely failed to find 

significant results for client-treatment interactions in alcohol studies (Project Match 

Research Group, 1993, 1997). With regard to problem drinkers, many potentially 

important matching variables have been relatively unexamined. Regarding treatment 

format (individual versus group modality), very few controlled studies have compared 

efficacy levels of treatment formats in problem drinkers (Weiss et al., 2004). These 

studies that have been conducted have found no significant differences between formats. 

Another important variable in the problem drinker literature is goal-choice, as many 

problem drinkers will seek to reduce rather than stop their drinking (Sobell & Sobell, 

1995). Such factors can be included in a person-centered analytic data approach. 
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Surprisingly, a limited number of studies have examined the nature of individuals’ 

specific pretreatment drinking patterns as predictors of outcomes, even though 

consumption is the cardinal symptom of alcohol use disorders. Sobell, Sobell, and Gavin 

(1995) argued for examining alcohol variables other than summary measures (e.g. 

percentage of drinking days) since this type of measurement does not consider drinking 

pattern fluctuations. Information gathered by studying such relationships may suggest 

client-treatment matching hypotheses for future studies (Project Match Research Group, 

1993; Sobell & Sobell, 1999). Some studies have used percentage of drinking days and 

the number of drinks per drinking days to reliably classify individuals based on their 

drinking patterns after treatment (Witkiewitz, 2008; Witkiewitz & Masyn, 2008; 

Witkiewitz et al., 2007).  

The current study uses person-centered analyses to classify a set of outcome 

trajectories based on drinking patterns after treatment and to examine the relationship of 

alcohol-related consequences, pretreatment drinking patterns, goal choice and treatment 

format to those outcomes. It should be cautioned that the post-treatment interval analyzed 

was limited to 90 days for these analyses, and thus any clusters identified should be 

considered as not necessarily representing stable outcomes. It is hypothesized that 

meaningful classes will be obtained from the post-treatment drinking trajectories, and that 

alcohol-related consequences, pre-morbid drinking patterns, goal choice, and treatment 

modality will be associated with treatment outcomes. 
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CHAPTER II: 

Review of the Literature 

Overview of Person-Centered Statistical Methods 

Over the past 20 years, some researchers in the alcohol field have began using 

advanced longitudinal statistical techniques to analyze trajectory patterns in the drinking 

of alcohol abusers (i.e. Bucholz et al., 1996; Fuzhong et al., 2001; Monga et al., 2007; 

Rindskopf, 2006; Zucker, 1994). New methodologies have been developed to examine 

the dynamic relationship between variables predicting outcomes as a function of time and 

covariates (Witkiewitz & Masyn, 2008). These techniques allow for the creation of a 

number of classes based on both cross-sectional and longitudinal information. Therefore, 

the use of a person-centered approach for data analysis can highlight differences within 

and between effects of important variables in identified outcome subgroups.  

Latent Class Analysis and Latent Profile Analysis 

 The objective of latent class (LCA) and latent profile analyses (LPA) is to 

discover a small number of unobserved classes that best articulate the association 

between categorical and continuously observed variables (McCutcheon, 1987; Muthén & 

Muthén, 2000). Since a latent variable accounts for the relationship between observed 

variables, both models can be compared to factor analysis. However, in LCA and LPA, 

the residuals are assumed to be uncorrelated and the assumption of independence of the 

observed variables is more likely to hold true. Latent class analysis is used when the 

observed variables are categorical, whereas LPA is used when the variables are 

continuous. The aim of the LCA and LPA is to find clusters of individuals who share 

similarities among a number of observed, concentrated variables. Both models assist in 
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the detection of a set of variables that describe the probability of inclusion of any 

individual into an unobserved category. For example, the observed variables can be 

presence or absence of a number of alcohol-related consequences, and the latent 

(unobserved) classes may describe different patterns of these consequences.  

 In LCA and LPA, the parameters of the model are the probabilities of 

membership in categories and of satisfying class membership criteria. Individuals are 

assigned to the different latent classes based on their posterior probabilities for class 

membership, according to the selected standards. The probability of a particular 

individual belonging to a class is determined solely by the data and that the necessary 

number of classes results in conditional independence among the observed outcomes 

(Muthén, 2002). Dependence among the variables exists within each class as LCA and 

LPA allow the grouping of individuals into different clusters according to the observed 

indicators included in the analysis. Then, the process estimates the probability that a 

particular individual is a member of a specific class. In finding the appropriate number of 

classes, the analysis adds classes stepwise until the model has the best fit to the data 

(Muthén & Muthén, 2000).  

Figure 2.1 describes LCA. Figure 2.1a shows a corresponding model diagram for 

Figure 2.1b. The square boxes in Figure 2.1a represent the indicators, which are the 

observed variables and the circle represents the categorical latent variable C with four 

categories. The LCA has the following two key elements: (a) the influence of C to the 

indicators and (b) the prevalence for the four classes. Figure 2.1b displays the probability 

of individuals in that class endorsing the indicator. The graph shows four latent classes 

that are homogeneous, yet different across classes according to the four indicators. That 
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is, individuals across classes differ in their probability of endorsing the different 

indicators.  

 

 

Figure 2.1 

Path Diagram and Graph for a Latent class analysis (LCA)   

 

Latent Class Growth Analysis 

 Latent class growth analysis (LCGA) is a group-based trajectory model. LCGA 

uses a single outcome variable measured across several time points to describe a number 

of latent class models, where there is correspondence to different growth curve shapes for 

the outcome variable (Muthén & Muthén, 2000). The goal is to find the probability of 

class membership, as well as the different growth curve shapes. Individuals belong to 

different classes characterized by different trajectory types, where one can exhibit two 

classes, in which the shapes of change differ among the classes. For example, one may 

have a linear shape while the other may have a quadratic shape. While the groups will 

differ in their trajectory, the model assumes no further variation within the group (Kreuter 
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& Muthén, Draft). As seen in Figure 2.2a, this suggests that the categories are completely 

independent of one another; therefore, no relationship is assumed among the categories 

(Muthén, 2001a). Figure 2.3a shows the path diagram for a LCGA with quadratic growth 

function, where the growth parameters, the intercept factor (0), the linear slope factor 

( 1), and the quadratic slope factor (2) vary across categories (Kreuter & Muthén, Draft). 

The observed variables that account for the time points for the outcome variable are 

represented by u1-u4. Notice that there are no residual errors in the growth parameters, 

which suggest that individuals within each C class are treated as identical in relation to 

their trajectory. Variations are seen across each class with respect to the set of intercept 

and slopes among classes. Figure 2.3b represents how the classes differ among the three 

growth parameters (intercept and slope). Differences across the classes within the 

parameters result in different trajectories for the outcome variable.  
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Figure 2.2 

Differences among the Latent Class Growth Model (LCGA) and General Mixture Model 

(GMM) Categories 

Note: As Figure 2.2a represents, the LCAG categories are independent of each other. The actual variation 
in the growth factors is represented by discrete points, therefore, no distribution is assumed. In contrast, the 
GMM allows the categories to have some variation or random effects within the classes. Thus, categories in 
the GMM are allowed to correlate.  
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Figure 2.3 

Path Diagram and Graph for a Latent Class Growth Model (LCGA) 

 

Growth Mixture Modeling 

Growth mixture modeling (GMM) is employed when the research provides a 

theoretical basis for how different antecedents and consequences affect individuals’ 

outcomes. The model analyzes longitudinal data by relating an observed outcome 

variable to time or time-related variables (e.g., age) and capturing individual variations 

on a number of continuous latent variables (Muthén & Muthén, 2000). Growth mixture 

modeling is based on the conventional growth curve modeling technique where a growth 

curve is estimated for the population and individual differences are obtained through the 

variability of the growth factors (intercept and the different slopes types). Individual 

variations on the outcome variable at the different time points are captured by random 

coefficients or random effects, which are the continuous latent variables or growth factors 

(intercept and slopes) that vary across individuals. Random effects capture the individual 
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differences over time in an heterogeneous sample by using the Laird and Ware (1982) 

type of model. These differences can be observed by different start rates (intercept) and 

growth rates (slope). Therefore, the random coefficients let the intercept and slope vary 

across individuals. 

 In the conventional growth model, it is assumed that the covariates have the same 

influence on the growth factors. However, this assumption may not apply to alcohol and 

substance abuse research (Li, Duncan, & Hops, 2001) since this group usually represents 

a heterogeneous population where the covariates affect the various subpopulations in 

different manners. Therefore, GMM may be a more realistic statistical approach to data 

analysis because it allows the covariates to influence the growth factors in different ways.  

Growth Mixture Modeling combines features of conventional growth modeling 

and LCGA (Muthén & Muthén, 2000). While conventional growth modeling estimates 

the growth factor variances for a homogeneous population, GMM considers a 

heterogeneous population by capturing a mixture of distinct subgroups, which have been 

defined by a prototypical growth curve (Wiesner & Windle, 2004). Like in LCGA, GMM 

projects a mean curve for each class. However, unlike LCGA, the individuals’ variations 

are captured by the latent class, which is represented by random effects and are set to be 

correlated in GMM. This approach captures the variation of the mean growth curves of 

each class, as well as the individual variation of the growth curves by estimating the 

growth factor variances (Muthén, 2001b; Muthén & Muthén, 2000). Figure 2.4a shows a 

path diagram for a GMM with a quadratic growth function (Kreuter & Muthén, Draft). 

The growth parameters, the intercept factor (0), the linear slope factor (1), and the 

quadratic slope factor (2), vary by classes C with random effects on the intercept, linear 



14 

 

slope, and quadratic slope within classes, which are represented by the small arrowheads. 

In the GMM model, all the growth factor variances are not set at zero, but can vary 

within class. If the growth factors are set to zero, a GMM model provides the same 

results as an LCGA. With GMM, researchers are able to examine how individuals with 

certain characteristics respond differently to the effects of a specific treatment modality 

by analyzing the latent trajectory class for the repeated measures as in LCGA. However, 

with GMM a more parsimonious model is obtained yielding fewer categories due to the 

assumption that within the same class individual variability exists (see Figure 2.2). These 

class disparities or residual errors are assumed to be normally distributed. As in the 

LCGA, Figure 2.4b represents how the classes differ among the three growth parameters 

(intercept and slope). Distinctions across the classes within the parameters result in 

different trajectories for the outcome variable.  

 

 
 

Figure 2. 4 

Path Diagram and Graph for a Growth Mixture Model (GMM) 
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 Growth Mixture Models allow researchers to understand how certain trait-like 

characteristics affect individuals’ change across time by categorizing them according to 

similar characteristics. For example, there are a number of alcohol-related triggers that 

affect alcohol abusers’ abilities to resist urges to drink. Generally, individuals differ in 

what stimuli prompt their drinking and to what extent this happens. It may be the case 

that the type of triggers manifested by each individual significantly affects their treatment 

outcomes and how they change over time.  

General Growth Mixture Modeling 

General growth mixture modeling (GGMM) involves models that incorporate the 

GMM covariates, distal outcomes or sequential processes, among other factors (Muthén 

& Muthén, 2000). Since this method involves the characteristics of all the prior models, 

Table 2.1 summarizes the similarities and differences (Muthén, 2001a). In GGMM, 

researchers potentially include categorical as well as continuous observed variables to 

define the latent class. As with GMM, class variances are allowed. One can estimate 

growth curve shapes from longitudinal data, where the different class growth curve 

shapes are not only influenced by the variables used to predict the classes, but also by 

other relevant variables. 
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Table 2.1 

Summary of Techniques Using Latent Classes 

 

Class 

Outcome/Indicator 

Scale 

Number of 

Time Points 

 

Within Class Variation 

LCA Categorical (u) Single No 

LPA Continuous (y) Single No 

LCGA Categorical (u) Multiple No 

GMM Continuous (y) Multiple Yes 

GGMM Categorical (u)/ 

Continuous (y) 

Multiple Yes 

Note: LCA – latent class analysis, LPA – latent profile analysis, LCGA – latent class 
growth analysis, GMM – growth mixture modeling, GGMM – general growth mixture 
modeling. 
  

General Growth Mixture Modeling has different beneficial applications (Muthén, 

2002). Allowing for heterogeneity analysis in the population and assumption of 

individual growth curves, this model identifies a mixture of subpopulations with varying 

fixed effects.  Group level characteristics, random effects, and individual variation are 

estimated (Fuzhong et al., 2001). Growth General Mixture Models also allow for the 

influence of time-variant and time–invariant covariates in growth trajectory analyses. The 

model examines the impact of covariates on the probability of group membership 

(Muthén, 2002). For instance, an investigator may be interested in examining how latent 

classes found before treatment can relate to outcome trajectories of classes based on 

treatment modality. Another type of analysis consists of using the latent trajectory classes 

as predictors of distal outcomes in the form of binary u variables, such as exploring the 



17 

 

predictive power of drinking pattern class trajectories on a distal outcome like alcohol 

dependence. In a third application, covariates can be used as either time-variant or time-

invariant (Muthén, 2002). While the former covariates have an effect on the outcomes, 

the latter covariates have an effect on the classes. Figure 2.5a represents a GGMM model 

that includes a covariate (x), a latent class variable (c), and repeated continuous outcomes 

(y). Here, the covariate x influences c and has a direct effect on the growth factors 0, 1, 

and 2. In the prediction of the latent class variable by the covariate, the probability of 

inclusion in either class changes as a result of the covariate. As illustrated in Figure 2.5b, 

the odds of inclusion in a class are different based on gender. The covariate may also 

have an effect on the growth factors (intercept and shape of the slope) that can change as 

a result of the covariate. As shown in Figure 2.5b, for instance, the intercept and slopes 

for each of the classes change when males and females are separated.  
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Figure 2.5  

Path Diagram and Graph for a General Growth Mixture Model (GGMM) with a 

Covariate 

 

 A different GGMM model is the sequential GMM, where more than one growth 

mixture model is estimated and the latent classes of the second model are related to the 

latent classes of the first process (see Figure 2.6). For each process, three growth factors 

are used corresponding to the intercept (0), linear ( 1) and quadratic slope (2). Each of 

the growth factors is influenced by a latent class variable specific to the process, so that 

the means of the growth factors change over classes (Muthén, 2001a). It is a type of latent 

transition analysis (LTA), which is particularly suited to modeling change in group 
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membership over time (Muthén & Muthén, 1998-2007). In these models, transition 

probabilities describe the prospect of transitioning from a given class to another in the 

next process. For example, a researcher may want to determine whether a population of 

individuals, who were classified in two classes, heavy drinkers and moderate drinkers, 

tend to use more or less drugs according to another GMM (see Figure 2.6). The aim is to 

understand how members of one class transition to the next class.  

 

 

Figure 2.6 

A Sequential Process GMM for Continuous Outcomes with Two Categorical Latent 

Variables 

 

Growth General Mixture Models provide researchers with the opportunity to 

analyze not only the effect that classes have on change patterns, but also how certain 

time-invariant variables affect the trajectories of the classes. Given the heterogeneous 

characteristic of alcohol abusers, adding covariates to the models is essential to improve 

C1 

  y2 y3 y4 y1 

1 0 1 1 1 2 

C2 

  y6 y7 y8 y5 

2 0 2 1 2 2 



20 

 

the fit of the model.  Covariates are essential because they can significantly alter the 

number of classes formed, the probability of an individual being included in a specific 

class, and the criteria used to create each class. Therefore, GGMM allows the testing of 

models that investigate more complex relationships among variables, thus providing a 

more appropriate statistical approach meeting the multifaceted demands of substance 

abuse research. 

Applying Person-Centered Methods to Alcohol Abusers 

Witkiewitz, in conjunction with other colleagues, conducted secondary data 

analyses on alcohol abusers undergoing outpatient treatment (Witkiewitz & Masyn, 2008; 

Witkiewitz et al., 2007). These three studies discovered three different post-treatment 

drinking trajectories: infrequent moderate, prolapsed, and frequent heavy drinkers. These 

series of studies demonstrated the possibility of finding distinct classes among alcohol 

treatment outcomes based on longitudinal data. Additionally, Witkiewitz’s work on 

secondary data analyses has demonstrated the value of identifying classes and variables 

that predict treatment success among the classes (Witkiewitz & Masyn, 2008; Witkiewitz 

et al., 2007). Witkiewitz (2008) found that better coping over time was related to less 

frequent drinking. Also, individuals with higher severity scores were more likely to be 

classified as the heaviest, most frequent drinkers and had the worst outcome. With this 

type of statistical analysis, Witkiewitz et al. (2007, 2008) provided evidence and support 

for some of the original Project MATCH (matching alcoholism treatment to client 

heterogeneity) hypotheses (Project Match Research Group, 1998). Individuals with low 

self-efficacy who received cognitive-behavioral treatment performed better than 

individuals who also had low-efficacy and received motivational interviewing 
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(Witkiewitz et al., 2007). Also, clients with social networks supportive of drinking had 

better outcomes when they were assigned to the twelve step program (Wu & Witkiewitz, 

2008).   

Guided Self-Change Treatment Model: Individual and Group Settings 

Guided Self Change (GSC) is a brief, outpatient treatment that uses both 

motivational interviewing and cognitive-behavioral techniques to facilitate change in 

individuals’ addictive behaviors (Sobell & Sobell, 1993; Sobell & Sobell, 2005). The 

GSC model has been extensively evaluated and found to be an empirically supported, 

cost-effective treatment for problem drinkers. Guided Self Change uses Motivational 

Interviewing (MI) techniques to enhance internalized motivated change in individuals 

with an alcohol problem (Miller & Rollnick, 2002). The use of personalized feedback is 

an important component of MI, in which clients are presented with personalized 

information about their drinking levels, national norms, and health risks to increase 

motivation to change. Self-monitoring logs are used in GSC both for data collection, and 

to provide clients with feedback about their changes. Another feature of GSC is based on 

Bandura’s cognitive social learning theory which suggests that people will be more 

committed to self-created rather than assigned goals (Bandura, 1986). Because research 

demonstrated that alcohol abusers will select their own treatment goal, regardless of 

therapist instruction (Sobell & Sobell, 1995), GSC allows clients to choose their 

treatment goal, be it abstinence or low-risk drinking. Clients are provided advice about 

risks and limits, and they are informed of any contraindications to drinking. Through 

homework, clients perform a functional analysis of their drinking by identifying high-risk 

situations and the consequences of drinking in those situations. Clients also develop their 
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own treatment plans by generating options and action plans for changing their drinking. 

Finally, GSC also involves a cognitive component of relapse prevention to offer clients a 

realistic perspective on change and tools for managing and conceptualizing possible 

setbacks in their recovery process.  

 Several studies have found that GSC delivered as an individual format is 

associated with outcomes comparable to other brief treatment interventions, yielding 

about a 50% reduction in alcohol consumption after 1 year of treatment (Sanchez-Craig, 

Neumann, Souzaformigoni, & Rieck, 1991; Sanchez-Craig, Spivak, & Davila, 1991; 

Sobell & Sobell, 1995). Only one study has examined the efficacy of the GSC model in a 

group format (Sobell et al., in press). The results of that study, which serves as the 

database for the secondary data analyses reported here, found no significant outcome 

differences between individual and group treatment; however, the group format resulted 

in a cost savings of 41% compared to individual treatment.  

The few other studies that have compared individual and group formats using MI 

or CBT in alcohol abusers have similarly found that both delivery methods are effective 

in reducing alcohol use (Duckert, Amundsen, & Johnsen, 1992; Graham et al., 1996; 

Marques & Formigoni, 2001; Weiss et al., 2004). However, some differences in non-

drinking outcome variables have been found. For example, Graham et al. (1996) found 

that compared to individual treatment, clients who were assigned to a relapse prevention 

group as an aftercare had better levels of psychosocial functioning.  

In summary, the GSC dataset available for the present analyses provides a unique 

opportunity to investigate the nature of GSC treatment outcomes in problem drinkers, and 

to identify variables associated with different types of outcomes. The latter relationships 
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could suggest client-treatment matching hypotheses for future studies and could perhaps 

identify clients for whom GSC treatment is particularly well suitable.  

Predictors of Treatment Outcomes 

The identification of variables associated with good and with poor outcomes is 

important for suggesting client-treatment matching strategies. Although studies 

investigating the relationship of pretreatment and within-treatment factors to outcomes do 

not provide evidence of causality, they can provide a basis for predicting outcomes and 

also can stimulate thinking about mechanisms of change (i.e., what might explain the 

relationship of a particular factor to a good outcome?). The following various factors will 

be examined as predictors in the present study. 

Drinking Patterns of Alcohol Use 

Alcohol consumption is a primary domain of dependent variables in the 

assessment of alcohol treatment outcomes (Allen, Litten, & Anton, 1992). Several 

methods have been used to quantify drinking, including retrospective quantity-frequency 

questionnaires, self-monitoring, calendar-based timeline reconstruction, and retrospective 

grids representing a typical period (Miller & Del Boca, 1994). Most outcome studies 

have aggregated alcohol consumption variables into categories (e.g., drinks per day, 

number of days abstinent, number of drinking days per week) that exclude between- and 

within- individual variation. These variables usually summarize individuals’ alcohol 

consumption over a specific time period.  An instrument that allows the examination of 

patterns over time is the Timeline Followback (TLFB), a calendar-based retrospective 

method to assess daily alcohol consumption that yields a variety of outcome variables 

(e.g., daily drinking total, monthly drinking total, number of days on which drinking 
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occurred, number of drinks per drinking day, maximum number of drinks in 1-day, 

maximum number of continuous abstinent days; Sobell & Sobell, 1992). Although TLFB 

assessment data could be useful for identifying drinking patterns and change in patterns, 

most studies aggregate the longitudinal data and do not examine change over time. The 

TLFB’s unique ability to generate information regarding the change process of alcohol 

abusers over time is important because alcohol abusers display a high level of drinking 

pattern fluctuation (Sobell & Sobell, 2002).  

Drinking patterns have been classified using a host of different methodologies and 

operationalizations of categories. The inconsistencies across studies make it very difficult 

to compare investigations. In the literature, drinking patterns are often divided into 

categories such as “light,” “heavy,” and “excessive,” with the operationalization of the 

definitions shifting across studies (Sobell & Sobell, 1982). For example, Cahalan (1987) 

confusingly classified “heavy” drinkers as those who drank two-three times a month with 

five or more drinks nearly every time or more than half the time or those who regularly 

drank three or more drinks a day. In contrast, other authors such as Fear and colleagues 

(2007) used psychometrically proven measures such as the Alcohol Use Disorder 

Identification Test (AUDIT) to classify individuals as heavy drinkers.    

 The terms binge, periodic, and bout drinking have also been used to classify 

drinking patterns, again with variations across populations and studies. In nonclinical 

samples, binge drinkers are considered to be those who drink at least five (for men) and 

four (for women) drinks in a day at least once in two weeks (Wechsler, Lee, Kuo, & Lee, 

2000).  However, this definition has little value in clinical populations since these 

individuals often consume five or more drinks in a day (Kahler, Epstein, & McCrady, 
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1995). Therefore, investigators, such as Connors, Tarbox, and McLaughlin (1986), 

classified bout drinkers as those who drank for several days, weeks, or months, separated 

by periods of abstinence. Still, others suggest that it is more effective to classify 

individuals as binge drinkers by estimating their blood alcohol concentration (BAC), 

since there are a number of personal aspects (e.g., gender, weight, & height) that 

determine the amount a person needs to drink to reach intoxication (Perkins, Linkenbach, 

& Dejong, 2001). Similarly, Schuckit (1998) has advocated using other variables, such as 

levels of intoxication, time intoxicated, and functional impairment to define binge 

drinkers. 

 Steady drinking is another term that has been used in the literature to classify 

alcohol abusers with fluctuations across authors and studies. Some researchers classify 

steady drinkers as those who drink approximately 5 times per week (Corrigan & Butler, 

1991). In contrast, Marlatt and Miller (1984) defined steady drinking as drinking heavily 

at least once per week, focusing on the importance of drinking the same amount each 

occasion separated by periods of abstinence.  

 Historically, there has been huge variability in the way drinking patterns have 

been defined. Timeline Followback data have been used in two different studies to 

empirically identify four drinking categories in two different samples: binge, episodic, 

sporadic, and steady (Epstein, Kahler, McCrady, Lewis, et al., 1995; Epstein, Labouvie, 

McCrady, Swingle, & Wern, 2004). These categories were based on percentage of total 

drinking days and abstinent days, and specific clustering of light, moderate, and heavy 

drinking days using the TLFB. This type of classification involved a complex analysis 

that combined number of drinks per day with patterns of use over time. Although 
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including temporal variation, this method still provides a categorical rather than a 

continuous approach for the classification of alcohol abusers.  Categorical approaches 

provide less information (i.e., everyone within categories is treated alike) than continuous 

approaches where individuals are considered by the extent to which they have same 

characteristics. An alternative approach providing reliable classes for post-treatment data 

involves a person-centered statistical approach for data analysis (Witkiewitz, 2008; 

Witkiewitz & Masyn, 2008; Witkiewitz et al., 2007). As mentioned earlier, in three 

studies using a person-centered approach, the same three drinking trajectories were 

obtained with post-treatment longitudinal data: infrequent moderate, prolapsed, and 

frequent heavy drinkers. Trajectory pattern findings for alcohol abusers based on pre-

treatment TLFB data have not been conducted using a person-centered statistical 

approach.   

Problem Severity Levels 

Severity of AUD involves not only the amount of consumption, but also the 

impact the use has on the individual’s life. Several studies have documented that problem 

severity is related to treatment outcomes (Akerlind et al., 1988; Hesselbrock et al., 1987; 

John et al., 2003; Shaw et al., 1990). The negative consequences of alcohol abuse can 

have a substantial impact on emotions, occupation, legal matters, financial situation, 

psychological wellbeing, and interpersonal relationships.  

As is typical of most health problems, studies have found that heavier alcohol use 

and more psychological and social alcohol-related problems are associated with a lower 

likelihood of improvement after treatment (e.g., Armor & Meshkoff, 1983; Carroll et al., 

1993; Hesselbrock et al., 1987; John et al., 2003; Moos & Moos, 2006; Moos et al., 2001; 



27 

 

Moos et al., 2002; Shaw et al., 1990). Some of the severity indicators that have been 

examined are length of the problem, frequency and quantity of alcohol use, history of 

alcohol treatment, and the abuse of other substances (Booth et al., 1991; Moos et al., 

2001; Pettinati et al., 1999; Phibbs et al., 1997). Other studies have found that individuals 

with more alcohol dependence symptoms are more likely to show a rapid fluctuation in 

their drinking patterns (Babor et al., 1987; Witkiewitz, 2008). With regard to 

psychosocial functioning, lack of social support, legal history, aggressive behaviors, and 

emotional and interpersonal difficulties have all been related to relapse (Akerlind et al., 

1988; Gordon & Zrull, 1991; John et al., 2003; Marlatt & Gordon, 1985; Moos et al., 

2001).  

 Even though the research strongly suggests an inverse relationship between 

problem severity and outcomes, the majority of studies have been done using severely 

dependent alcohol populations. Only two studies have involved problem drinkers as part 

of their sample (Hesselbrock et al., 1987; Witkiewitz, 2008). Thus, the relationship of 

problem severity to outcomes with the restricted range of severity associated with 

problem drinkers is relatively unexplored.  

 Finally, no longitudinal studies were found examining the relationship of negative 

consequences to drinking pattern changes. It is not known whether specific alcohol-

related consequences predispose individuals either to follow a stable pattern of change or 

to display major fluctuations in their drinking patterns.  

Goal Choice 

 The primary goal for problem drinkers in alcohol abuse treatment is to achieve 

either abstinence or low-risk levels of alcohol consumption within recommended 
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guidelines. In some studies, the goal is set by the treatment program (e.g., Project 

MATCH 1993), but as already stated, the evidence demonstrated that, ultimately, the goal 

is chosen by the client (Sobell & Sobell, 1995). The National Epidemiologic Service on 

Alcohol and Related Conditions (Dawson, Grant, Stinson, Chou, Huang, & Ruan, 2005) 

found that over the long run low-risk drinking recoveries are about as common as 

abstinence recoveries even for individuals who previously met alcohol dependence 

criteria.  

Only a few studies have investigated how individuals who choose low-risk 

drinking versus abstinence goals differ at baseline with pre-morbid levels of alcohol use 

and severity levels having received the most attention. Individuals who choose 

moderation as their drinking goal tend to have a primary diagnosis of mild to moderate 

alcohol dependence, whereas individuals who tend to choose abstinence are more likely 

to have a more severe alcohol dependence diagnosis (Adamson & Sellman, 2001; Sobell 

& Sobell, 1995). Those with a goal of moderation also tend to have had a drinking 

problem for a shorter period of time than those who opt for abstinence (Pachman, Foy, & 

Van Erd, 1978).  

Psychological and social stability have also been found to be associated with the 

choice of abstinence or a low-risk drinking goal. Individuals with  employment and 

occupational stability tend to choose a low-risk drinking goal (Heather & Robertson, 

1981; Rosenberg, 1993). Similarly, Nordstrom and Berglund (1987) discovered in an 

inpatient Swedish sample that greater baseline social stability was more frequent among 

those who chose moderation versus abstinence. Regarding psychological functioning, a 
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study found that low-risk drinkers have a greater sense of well-being than abstainers 

(Adamson & Sellman, 2001; Heather & Robertson, 1981).  

Demographic variables such as gender, age, and education have also been found 

to be related to goal choice. Adamson and Sellman (2001) found that more educated 

individuals were more likely to choose a moderation goal. Individuals who choose 

moderation also tend to be younger than those who choose abstinence (Booth et al., 1984; 

Heather & Robertson, 1981; Polich et al., 1981). Considering gender, several studies 

have found that a greater proportion of women than men select a moderation goal 

(Edwards et al., 1988; Foy, Nunn, & Rychtarik, 1984).  

Concerning outcomes associated with goal choice, most studies have found no 

differences in outcomes between individuals who choose abstinence versus moderation 

(Booth et al., 1984; Booth et al., 1992; Ojehagen & Berglund, 1989; Orford, 

Oppenheimer, & Edwards, 1976; Sanchez-Craig et al., 1984). Only one study found 

selecting a moderation goal to be associated with better outcomes after treatment 

(Pachman et al., 1978). Not surprisingly, in two studies, individuals who chose 

abstinence goals had a higher rate of abstinent days at outcome than those who chose a 

low-risk drinking goal (Foy et al., 1984; Hodgins, Leigh, Milne, & Gerrish, 1997). In 

both cases, the participants had high severity pre-morbid levels of alcohol problems.  
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CHAPTER III: 

 Method 

Participants 

Participants were part of a randomized controlled trial that involved individuals 

with either a primary alcohol problem (n = 231) or a primary drug problem ( n = 56; 

Sobell et al., in press). They had voluntarily entered outpatient treatment at the GSC Unit 

of the Addiction Research Foundation (ARF) in Toronto, Canada. Treatment was 

provided at no cost. Only participants with a primary alcohol problem were included in 

the present secondary analysis (n = 231). The present secondary data analysis was 

approved by the Nova Southeastern University Institutional Review Board (IRB), and the 

clinical study was approved by the University of Toronto/Addiction Research Foundation 

IRB.  

Eligibility criteria for the study included the following (Sobell et al., in press): (a) 

volunteered (via a signed informed consent form) to participate in a brief treatment 

intervention; (b) were 18 years of age or older; (c) had not been mandated to treatment 

(e.g., employer, courts); (d)  had no evidence of organic brain damage as determined by 

age-adjusted scores on the Trail Making Test and Digit Symbol subscale of the WAIS 

(Wilkinson & Carlen, 1980); (e) had adequate reading abilities as indicated by the Wide 

Range Achievement Test (Jastak & Jastak, 1965); (f) were not currently in psychiatric or 

psychological treatment; (g) were living in stable housing; and (h) agreed to be available 

for a 12-month post-treatment follow up. 

Since the GSC treatment was designed for individuals with a mild to moderate 

severity level of substance use disorders, criteria were also used to exclude individuals 
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with a history of severe dependence (Sobell et al., in press): (a) history of major alcohol 

withdrawal symptoms (e.g., hallucinations, seizures, delirium tremens) by self-report or 

medical history; (b) a score of   25 on the Alcohol Dependence Scale  (Skinner & Allen, 

1982); (c) on average, drank  12 standard drinks (1 standard drink = 13.6 g absolute 

ethanol) on  5 days per week during the year prior to treatment (M. B. Sobell, Sobell, & 

Leo, 2000); (d) a score of >15 on the Drug Abuse Screening Test-20 (Skinner, 1982); (e) 

intravenous (IV) drug use because IV drug abusers typically have more serious drug 

problems (Gavin, Ross, & Skinner, 1989; Skinner, 1982); or (f) primary drug problem 

was heroin.  

 Because GMM does not allow for missing data, only data from the 200 

participants who completed the first 6-month TLFB follow-up were included in the 

analysis. Since there were data collected for 231 total participants with a primary alcohol 

problem, statistical comparisons were performed comparing those with full 6-month 

TLFB data to those without TLFB data. A Bonferroni adjustment was used to maintain 

the family wise error rate at a .05 level. Independent t-tests were conducted for 

continuous variables and z-score tests for the dichotomous variables.  This allows for 

evaluation of demographics and alcohol history differences for participants who 

completed and for those who did not complete the first 6-month TLFB follow-up (see 

Table 3.1). The Levene’s test for equality of variance was shown to be significant for one 

variable, years of education; therefore, adjustment on the t-statistic was performed for 

this variable. No significant differences were found for any of the variables tested.  
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Table 3.1 

Pretreatment Characteristics 

Variable Participants who 

completed 6-month 

TLFB follow-up 

(n = 200) 

Participants who did 

not complete 6-month 

TLFB follow-up 

(n = 31) 

Ta or 

Zb 

Mean (SD) age (yrs) 43.16 (11.16) 39.90 (11.29) 1.51a 

Mean (SD) education (yrs) 14.52 (2.56) 13.94 (2.74) 1.11a 

Full-time or self-employed (%) 73.5% 54.8% 1.92b 

Male (%) 67.5% 64.5% 0.12b 

Married (or common-law) (%) 57.0% 48.4% 0.70b 

Mean of (SD) % of days use any 

alcohol 

70.18 (27.67) 64.52 (29.50) 1.05a 

Mean (SD) of standard drinks per day 6.65 (3.44) 7.45 (4.01) -1.22a 

Mean (SD) alcohol arrests  0.56 (1.18) 0.45 (0.77) 0.47a 

Mean (SD) alcohol hospitalizations  0.16 (0.76) 0.10 (0.30) 0.46a 

Goal choice – low-risk drinking (%) 73.50% 91.7%c 1.89b 

Individual Treatment (%) 50.0% 61.3% 0.98b 

Note. There were no statistically significant differences between participants who 

completed and who did not complete the first 6-month TLFB follow-up. 

aT = two-tailed independent sample t-tests. bZ = two-tailed independent sample z-scores. 

cn = 12. 

*p < .001, alpha level adjusted for multiple tests. 
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Procedure 

As described in Sobell et al. (in press), following the screening and initial 

assessment participants were randomly assigned to one of the two treatment modalities 

(individual or group). During the first contact, clients completed a battery of forms and 

questionnaires related to demographics and alcohol-related history variables. Alcohol 

clients, for whom there were no medical contraindications, were also asked to complete a 

goal statement form (i.e., abstinence or low-risk drinking). 

Participants that were randomized to the individual format received treatment 

from a single therapist, while every group had two therapists (Sobell at el., in press). Both 

conditions consisted of an assessment and four sessions. Individual treatment sessions 

were 60 minutes, while group sessions were 90 to 120 minutes. Group size ranged from 4 

to 8 clients (no new members were allowed after Session 1).  

After the fourth GSC session, follow-up interviews were scheduled at 6 and 12 

months post treatment (Sobell et al., in press). Research assistants, who were blind to 

participants’ treatment conditions, conducted the follow-up interviews. Participants 

interviewed at the ARF were paid $25.00 for their follow-up participation. With the 

clients’ permission, collaterals (e.g., relatives, friends) were interviewed by phone at 6- 

and 12-months post-treatment to corroborate clients’ self-reports of substance use and 

consequences. Collaterals also provided reports about negative consequences related to 

clients’ substance use.  
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Baseline and Outcome Measures 

Assessment Questionnaire 

A semi-structured clinical interview was used to collect demographic information 

(e.g., education, gender, age), substance abuse history (e.g., years of problem, 

hospitalizations, number of arrests), as well as alcohol-related consequences. Individuals 

indicated if they had experienced negative consequences as a result of drinking in the 

year prior to treatment in the following areas: health, cognitive impairment, affective 

impairment, interpersonal, vocational, legal, financial problems, and aggression. 

Timeline Followback (TLFB) 

The TLFB employs a retrospective, self-report calendar format and memory 

prompts to aid in a subject’s day-to-day recall of a targeted behavior over a specified time 

window (i.e., weeks, months; Agrawal, Sobell, & Sobell, 2007; Sobell & Sobell, 1992). 

The TLFB is one of the most psychometrically sound instruments currently available for 

retrospectively assessing daily drinking (Agrawal et al., 2007). In this study, the TLFB 

was used to collect drinking data for 12-month pretreatment and the 6- and 12-month 

follow-ups (Sobell et al., in press). Little was known about the representativeness (i.e., 

stability) of different TLFB time windows until a recent study using assessment data 

from 825 problem drinkers found that a 3-month interval (i.e., the 3 months prior to 

treatment entry) provided a satisfactory representation of pretreatment annual drinking 

for a sample of problem drinkers (Vakili, Sobell, Sobell, Simco, & Agrawal, 2008). The 

pretreatment data for the three months prior to entering treatment were used in the present 

analyses. However, research on the adequacy of time windows using the TLFB for 

follow-up has not been reported. For the analyses constituting the present study, TLFB 
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data for the first three months of follow-up were used in order to achieve a manageable 

size data set. It should be cautioned that early follow-up data, such as used here, may 

have less stability than longer term follow-up. Given the current state of research, it 

would be inappropriate to interpret the present findings as representing long-term 

outcomes.  

Goal Statement 

 The Goal Statement form prompted participants to specify their drinking goal for 

the next 6 months (Sobell et al., in press). In particular, the first question asked whether 

the individual intended to abstain or engage in low-risk drinking (Sobell & Sobell, 1993). 

Those who chose the latter, then, answered several questions concerning the specific 

drinking limits in terms of average number of drinks per drinking day, maximum number 

of drinks per occasion, maximum number of days per month of drinking at the upper 

limit, the maximum number of drinking days per week, and the conditions under which 

drinking would (low-risk) and would not (high-risk) occur. All subjects who chose a low-

risk goal were informed about low-risk drinking guidelines and those with medical 

contraindications to drinking were strongly advised to choose an abstinence goal. 

Guided Self Change Treatment Components 

 The major treatment components involved the following: (a) the use of a MI style 

throughout treatment to increase and maintain clients’ commitment to change; (b) 

personalized feedback to clients regarding their assessment results (e.g., extent of use, 

health risks); (c) decisional balancing to evaluate and consolidate motivation to change; 

(d) treatment goal choice by clients with advice about contraindications and low-risk 

drinking guidelines; (e) the use of self-monitoring logs within-treatment; (f) homework 
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assignments to help clients identify high-risk situations and then, develop options and 

action plans for those situations; and (g) cognitive relapse prevention techniques (Sobell 

et al., in press). 

Group Treatment Procedure 

 Regardless of their treatment condition, all clients were treated using the same 

GSC procedure and assignments (Sobell et al., in press). The content of groups differed 

from individual in that the format of the interaction between group members occurred in 

a round robin discussion manner. Feedback and advice came mainly from the group 

members rather than the therapist, consistent with group processes (Dies, 1994; Yalom & 

Leszcz, 2005). Another difference between the individual and group treatment format 

was that group members did not receive as much time to discuss their homework and 

concerns as those assigned to the individual treatment. If a client missed a group meeting, 

he or she met with one of the therapists individually to review the components of that 

session.   

Statistical Analysis 

The Mplus v5.0 software program (Muthén & Muthén, 1998-2007) was used to 

estimate the GMM with and without covariates and the sequential GMM. This statistical 

package uses a maximum likelihood estimation with robust standard errors (called the 

MLR estimator in Mplus) to add robustness to non-normal data. This allows the error 

variance to differ over time, but keeps it constant for all individuals in the same category 

for each time period (Bollen, 2006). The first step in the analysis was to model the 

individuals’ trajectories of post-treatment drinking frequencies and the average 

percentage of functional days per week. Functional days were defined as days when 
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individuals were abstinent or did not consume more than three drinks. This descriptive 

analysis then allowed each case to have a distinct intercept and slope to describe linear 

and non-linear trajectories of percentage of functional days within the 3 months after 

treatment (Bollen, 2006). The objective was to examine the various onsets and rates of 

change in order to allow GGM to fit linear and/or nonlinear latent curves. 

Even though the TLFB was used to record the participant’s level of daily drinking 

for a 12-month pre-treatment and follow-up period (Sobell et al., in press), as previously 

mentioned for data analysis purposes only the 3-month before treatment and after 

treatment data sets were used in the present study.  In addition to evidence previously 

described showing that a 3-month pretreatment interval was sufficient for studies 

involving problem drinkers (Vakili et al., 2008), the main reason for using 3-month data 

was because a weekly aggregation of time-point data was used in the analyses, and time 

points have to be limited to decrease the complexity of the model as a result of the 

sample size.   

The latent curves of GMM were set according to the most feasible number of 

trajectories observed in the data. Therefore, the models were fixed to a linear function 

and a quadratic model according to the individual trajectories (Bollen, 2006). After 

setting the different latent trajectories of change, the following four covariates were 

investigated to explore their effects on the growth factors and class membership: (a) pre-

morbid level of alcohol use, (b) number of alcohol-related consequences, (c) goal choice, 

and (d) treatment modality. These models expressed the probability that an individual i 

was a member of class k as a function of the covariate x. Assigning one class as a 

reference allowed for the log odds estimation of class membership for each covariate. 
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These models also included regression of the growth parameters on the covariates, with 

the regression coefficient to vary across classes. Ultimately, the objective was to evaluate 

the covariates’ effects on the growth factors within each category. 

Since the GMM includes a number of model variations, it is essential to find the 

best fitting and the most parsimonious model that fits the data (Muthén, 2001b). The 

adjusted Bayesian Information Criterion (aBIC), the adjusted likelihood ratio test (LRT), 

and the bootstrapped likelihood ratio test (BLRT) were employed to accomplish this 

objective. The aBIC balances two components, maximum likelihood and model 

parsimony. According to the aBIC, a good model has a high likelihood value and uses the 

least number of parameters, with a low aBIC value indicating a better fitting model. The 

aBIC also considers the number of parameters and sample size in order to account for the 

complexity of the model. This method was recently found to be the best likelihood-based 

indicator of model fit for latent variable mixture models (Henson, Reise, & Kim, 2007). 

The LRT and BLRT models were used to test the fit of k – 1 classes against k classes, 

with a significant p value indicating that the null hypothesis of k – 1 classes should be 

rejected in favor of at least k classes (McLachlan & Peel, 2000; Nylund, Muthén, & 

Asparouhov, in press). 

The second indicator, which examines the quality of group data classification, is 

the posterior probabilities. This is determined by locating the highest average posterior 

probability for individuals, which is found in the diagonal elements. Within each class, 

posterior probabilities are related to the likelihood that an individual endorses an 

indicator (Bucholz et al., 1996). These probabilities provide information on class 

membership assignment according to the indicators. The posterior probabilities are 
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summarized by the entropy measure (Ramaswamy, DeSarbo, Reibstein, & Robinson, 

1993), with numbers closer to 1 indicating more precise classification. Finally, in order to 

choose the best model, the utility, distinctiveness, and interpretability of the classes 

yielded by each model were considered (Witkiewitz & Masyn, 2008). 

Once the best model fit was selected, the second stage tested specific hypotheses 

regarding the relationship between the previously mentioned covariates (treatment 

modality, goal choice, number of negative alcohol-related consequences, and pre-

treatment levels of alcohol consumption) in the prediction of drinking trajectories and 

trajectory class membership. The goals of the covariate analyses were twofold: (a) to 

assess the degree to which these covariates predict class membership, and (b) to evaluate 

the within-class effects of these covariates on the intercept and slope of each class. When 

covariates were added to the GMM models that had the same number of classes, the 

likelihood-ratio chi-square difference test was used. If the model with the covariate was 

found to be significantly smaller than the GMM without the covariate, the former model 

was concluded to show a better fit and was, therefore, preferable. A multinomial logistic 

regression was used to evaluate the association between the covariates and the latent class 

membership. Here, each covariate association was characterized by k-1 regression 

coefficients where k was the number of latent classes. Each coefficient represents the 

change in the log odds of being in a given class, relative to the reference class for a 1-unit 

change in the covariate. The significance of the coefficient as well as the corresponding 

odds ratios was calculated for each covariate. In addition, covariates were incorporated as 

predictors of within-class variation in growth trajectories using standard linear regression. 
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As an alternative analysis to aid in understanding the relationship between 

drinking severity levels at pre-treatment and follow-up, a sequential process GMM and a 

cross-tabulation chi-square analysis was conducted with SPSS v14.0. The two analyzed 

indicators of drinking severity level from the assessment data were the number of 

functional days for the 3-month pre-treatment TLFB and alcohol-related consequences. 

For the TLFB data, individuals’ trajectories for the 3-month pre-treatment drinking data 

were modeled in order to understand the growth parameters of the GMM. To choose the 

best GMM, the same procedure was followed for the follow-up data. In the case of the 

alcohol-related consequences data, a LCA was conducted to yield the latent classes. For 

the Latent Class Analysis (LCA) models, both the Bayensian Information Criterion (BIC) 

and the BLRT have been shown to be the best indicators of the number of classes 

(Nylund et al., in press). The BIC balances two components, maximum likelihood and 

model parsimony (Schwartz, 1978). According to the BIC, a good model has a high 

likelihood value using the least number of parameters, thus resulting in a low BIC value 

and indicating a well-fitting model (BIC). The estimated item probabilities were used to 

attach substantive meaning to the latent classes by presenting the mean probability for 

each client endorsing an alcohol-related consequence in a given class. Both the LCA and 

the GMM determined different drinking-related classes prior to treatment to generate the 

class information necessary for understanding the relationship between pre-treatment 

alcohol severity levels and treatment outcome within a latent class framework. 

A sequential process GMM with pre-treatment and follow-up TLFB drinking data 

was examined to evaluate individuals’ class transitions. For each GMM, process growth 

factors were estimated according to the observed individual trajectories before 
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determining the latent growth factors of the model. Each of the growth factors was 

influenced by a latent class variable specific to the process, causing the means of the 

growth factors to change across classes. Posterior probabilities and transition 

probabilities were used to determine meaningful relationships between classes. 

Probabilities closer to one indicated a higher relationship among the classes, meaning that 

an individual had a higher chance to transition from a specific pre-treatment latent class 

to a post-treatment one. Regarding alcohol-related consequences, the classes obtained by 

the LCA were related to the latent classes obtained by the GMM model for the TLFB 

follow-up data by conducting a cross-tabulation analysis in SPSS v14. In addition, 

posteriori class probabilities for the two models were associated to account for some of 

the error variance in class membership assignments. The relationship between the two 

latent classes was determined by the statistical significance of chi-square at an alpha level 

of .05. 

 

CHAPTER IV: 

Results  

Growth Mixture Models for TLFB Follow-up Data 

After examining the individual trajectories of follow-up drinking data, three 

growth factors were used in the GMM (Figure 4.1) corresponding to the intercept (0), 

linear slope (1), and nonlinear quadratic slope (2). The fit indicators for the 1- to 6-

class trajectories models are shown in Table 4.1, with specific class trajectories shown in 

Figure 4.2. The aBIC rate of decrease is highest when comparing differences from a 1- to 

a 2-class model (8BIC = 94.22); then decreases 46.78 points from a 2- to a 3-class model. 
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From a 3- to a 4-class model this difference increases once again (8BIC = 74.90). The 

difference between a 4- and a 5-class model decreases and then, increases again between 

a 5- and a 6-class model (8BIC = 39.99 and 77.62, respectively). Since the largest 

difference occurred between the 1- and 2-class models, a 2-class model, therefore, 

demonstrates the most parsimonious, best fitting model. Although, in general, all the 

models showed high entropies, the 4-, 5-, and 6-class models showed the highest entropy 

(0.98). The BLRT indicates that all the class models fit significantly well; however, based 

on the LRT indicator a 2-class model is the only one that shows a good fit. As seen in 

Table 4.1, the 2-class model appears to strike the best balance between parsimony and fit, 

providing a significantly better overall fit than the 1-class model according to the 

LRT/BLRT outcomes. The 4-class model also appears to be a good option according to 

all indicators except the LRT method. For both, a 2-class model and a 4-class model, a 

theoretical explanation fits well. 
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Figure 4.1. Growth Mixture Model for Pre-Treatment and Post-Treatment TLFB Data. 

 

Table 4.1 

Model Fit for Growth Mixture Models 

Outcome 

k-class 

model 

Log-likelihood 

(# free 

parameters) 

Entropy aBIC LRT BLRT p-value 

1-class 1882.38 (22) -- 22009.72 -- -- 

2-class -10801.24 (14) 0.93 21632.31 89.48, p = .002 93.71, p < .0001 

3-class -10902.19 (30) 0.95 21868.72 52.88, p = .28 55.36, p < .0005 

4-class -10860.45 (34) 0.98 21793.82 97.63, p = .16 102.22, p < .0005 

5-class -10835.66 (38) 0.98 21753.83 63.98, p = .28 66.99, p < .0005 

6-class -10793.06 (42) 0.98 21676.21 46.521, p = .09 48.71, p < .0005 

 

C 

 TLFB2 TLFB3 TLFB... TLFB1 

0 1 2 

TLFB13 
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 (a) 2- Class Model          (b) 3- Class Model 

 

(c) 4- Class Model           (d) 5- Class Model 

 

(e) 6- Class Model 

 

Figure 4.2. Change Trajectories for the 2-Class to the 6-Class Model. 

Note: the y-axis represents the number of functional days and the x-axis represents the 3 months (12 weeks) 
of TLFB data.  
 

Two-Class Model for TLFB Follow-up Data 
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Figure 4.3 shows the trajectories for the estimated means of the 2-class model. 

This model represents two distinct groups of participants based on their number of 

functional days after treatment. The two classes can be divided into high functioning 

clients (HFC; n = 161, 80.5% of the total sample) and low functioning clients (LFC; n = 

39, 19.5% of the total sample). Figures 4.4a and b show the estimated means of the 

individuals’ observed values for HFC and LFC, respectively. The HFC group is 

characterized by individuals who, as a group, have relatively high stable rates of 

functioning throughout the 3-month follow-up (estimated means of percentage of 

functional days ranged from 85.40 to 89.31), while the LFC group represents those who 

had relatively poor functioning after treatment (estimated means of percentage of 

functional days ranged from 15.13 to 38.62). Table 4.3 represents the parameters of the 

growth mixture modeling for each of the two classes. Within the high functioning group, 

neither the linear nor quadratic slopes were significant (
�

1 = -0.19, p = .56; 
�

2 = 0.00, p = 

.93), indicating that individuals generally had a similar number of average functioning 

days across the 3-month follow-up. This suggests that participants in this class had a high 

level of stability in their alcohol use after treatment. In contrast, both the linear and 

quadratic slopes for the low functioning group were statistically significant (
�

1 = -6.09, p 

< .001; 
�

2 = 0.44, p < .001), thus indicating fluctuating of drinking patterns during the 

first three months of follow-up.  
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Figure 4.3. Estimated Means for Change Trajectories for the 2-Class Model. 

Note: the y-axis represents the number of functional days and the x-axis represents the 3 months (12 weeks) 
of TLFB data.  
 

 (a) High Functioning Clients (HFC)      (b) Low Functioning Clients (LFC) 

  

Figure 4.4. Estimated Means and Observed Individual Values for HFC and LFC. 

Note: the y-axis represents the number of functional days and the x-axis represents the 3 months (12 weeks) 
of TLFB data.  
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Table 4.2 

Growth Factor Means for Each Drinking Class 

 Rate of Change 

Drinking Classes Intercept (
�

0) Linear Slope (
�

1) Quadratic Slope (
�

2) 

High Functioning Clients 

(HFC) 

87.85* -0.19 0.00 

Low Functioning Clients 

(LFC) 

39.58* -6.09* 0.44* 

* p<.001 

 

Four-Class Model for TLFB Follow-up Data 

Figure 4.5 illustrates the trajectories for the estimated means of the 4-class model. 

The four classes can be described as high functioning clients (HFC; n = 131, 64.7%), low 

functioning clients (LFC; n = 19, 10.8% of the total sample), fluctuating clients (FC; n = 

46, 22.5% of the total sample), and delayed-changers (DDC; n = 4, 2.0% of the total 

sample). As with the 2-class model, the HFC group is characterized by individuals who 

did well during follow-up (estimated means range from 89.29 to 91.84; see Figure 4.6a), 

and the LFC represent the people who did not improve at follow-up (estimated means 

range from 5.06 to 14.99; see Figure 4.6b). The DDC group consisted of individuals who, 

immediately after treatment, had low functioning days (estimated mean = 39.24), but, 

then, increased their number of functional days as the follow-up period progressed 
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(estimated mean = 99.99; Figure 4.6c) The participants in the FC group represent 

individuals who generally had a middle range of functional days across the 3-month 

follow-up (estimated means range from 52.29 to 63.42). However, it should be kept in 

mind that this pattern fit only a very small number of participants. As shown in Figure 

4.6c, this group fluctuated between weeks of high and low functioning throughout the 

follow-up. Table 4.3 represents the parameters of the GMM for each of the four classes. 

Unlike the HFC group’s outcome for the 2-class model, the linear slope is negative and 

significant (
�

1 = -0.99, p = .007) indicating that individuals in this category slowly 

decreased their functional days as the weeks progressed. Regarding the LFC group, 

neither the linear nor the quadratic slopes were significant indicating that members had a 

constant level of low-functioning days across the 3-month follow-up (
�

1 = -1.73, p = .10; 

�
2 = 0.13, p = .007). Within the FC category results showed that individuals typically had 

a stable number of days within the middle range of functioning days percentages with a 

significant and slow improvement according to the linear slope (
�

1 = -2.39, p = .04). 

However, when examining the observed values for the FC group (see Figure 4.6c), it 

should be noted that these trajectories represent individuals whose functional days across 

the weeks vary with no identifiable pattern. According to both the linear and quadratic 

slopes, the clients in the DDC group generally appear to have low functional days 

immediately after treatment, but improve as follow-up progresses (
�

1 = -8.02, p = .09; 
�

2 

= 1.26, p = .001). The quadratic slope also reveals that before these individuals improve, 

they have less functional days than when they completed treatment.  
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Figure 4.5. Estimated Means for the Trajectories of Change of a 4-Class Model. 

Note: the y-axis represents the number of functional days and the x-axis represents the 3 months (12 weeks) 
of TLFB data.  Class 1 = LFC, Class 2 = FC, Class 3 = HFC, Class 4 =DDC. 
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 (a) High Functioning Clients (HFC)                    (b) Low Functioning Clients (LFC) 

 

(c) Fluctuating Clients (FC)                     (d) Delayed-Changers (DDC) 

 

Figure 4.6. Estimated Means and Observed Individual Values for HFC, LFC, R, and SC. 

Note: the y-axis represents the number of functional days and the x-axis represents the 3 months (12 weeks) 
of TLFB data.  
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Table 4.3 

Growth Factor Means for Each Drinking Class 

 Rate of Change 

Drinking Classes Intercept (
�

0) Linear Slope (
�

1) Quadratic Slope (
�

2) 

High Functioning Clients 

(HFC) 

96.18*** -0.99** 0.036 

Low Functioning Clients 

(LFC) 

12.71*** -1.73 0.13* 

Fluctuating Clients (FC) 61.00*** -2.39** 0.18* 

Delayed-Changers (DDC) 34.49*** -8.02* 1.26** 

*** p<.001; ** p<.05; * p<.1 

 

Growth Mixture Models with Covariates for TLFB Follow-up Data 

Two-Class Model with Covariates 

As indicated by Tables 4.4 and 4.5, for the GMM with covariates, the results 

show several significant relationships between the covariates and the within-class growth 

factors for the two-class model. Within the high functioning group (n = 175, 87.84%), 

individuals who chose an abstinence goal at intake finished treatment with a significant 

higher percentage of functional days than those who chose a moderation goal (
�

0 = -

14.47, p < .001). The estimated mean of percentage of functional days at post-treatment 
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for HFC who chose abstinence was 94.64%, whereas for individuals who chose 

moderation, it was 86.14%. This relationship remained stable across time since neither 

the linear nor the quadratic slopes were significant (
�

1 = -0.62, p = .35; 
�

2 = 0.07, p = 

.21). Forty-two individuals with an abstinence goal versus 133 with a moderation goal 

were classified as HFC. Regarding pre-treatment data, HFC who finished treatment with 

lower functional days had a significantly higher number of alcohol-related consequences 

and drank 5 or more drinks per occasion on more days at intake than those who had a 

higher percentage of functional days after treatment (
�

0 = -2.76, p = .007, and 
�

0 = -0.25, 

p = .002 respectively). Estimated means of follow-up functional days for individuals who 

endorsed a higher number of consequences at intake was 82.86% versus 91.43% for 

individuals who endorsed a lower number of consequences. In the same direction, 

estimated means of functional days for individuals who, at pretreatment, had a higher 

number of days when they consumed 5 or more drinks was 67.14% versus 94.29% for 

individuals with a lower number of days consuming 5 or more drinks. As with goal 

choice, this relationship was stable across time for the number of alcohol-related 

consequences (
�

1 = 0.06, p = .78; 
�

2 = 0.01, p = .59). However, the linear and quadratic 

slope for the number of days where 5 or more drinks were consumed was significant (
�

1 

= -0.02, p < .05; 
�

2 = 0.002, p < .05), indicating that individuals who had a higher 

number of days drinking 5 or more drinks in one occasion prior to entering treatment, 

tended to show more variability of percentage of functional days across the follow-up 

period (see Figure 4.7). 

Regarding LFC (n = 25, 12.06%), there was only a significant relationship 

between alcohol related consequences and the intercept (
�

0 = 18.26, p < .001, see Table 
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4.5). In contrast to the HFC, LFC who had a higher number of alcohol-related 

consequences showed better outcome after treatment (estimated mean = 97.62%) than 

individuals with lower number of alcohol-related consequences (estimated mean = 

42.86%). This relationship was sustained over time (
�

1 = -0.29, p = .82; 
�

2 = -0.12, p = 

0.28). Cautious interpretation should be made for this last finding as the sample size for 

this group was small. In addition, based on covariates significant results were obtained 

from the multinominal logistic regression of class membership. Table 4.6 shows the odds 

ratio for the covariates’ effects on class membership. Here, individuals who consumed 

less days 5 or more drinks at intake were more likely classified as HFC.  
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Table 4.4 

Parameter Estimates for Growth Factors Regressed on Covariates for High Functioning 

Clients (HFC) 

 Rate of Change 

Covariates Intercept (
�

0) Linear Slope (
�

1) Quadratic Slope (
�

2) 

Modality 0.72 -0.88 0.03 

Goal Choice -14.47** -0.62 0.07 

Number of Consequences -2.76* 0.06 0.01 

Number of days consumed 

5 or more drinks per day 

-0.25* -0.02* 0.002* 

** p<.001; * p<.05 
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Figure 4.7. Estimated Means Comparison for Individuals in the HFG with High and Low 

Number of Days Consumed 5 or More Drinks. 

Note: the y-axis represents the number of functional days and the x-axis represents the 3 months (12 weeks) 
of TLFB data. 
 

 

 

 

 

 

 

Higher # of Days of 5 or more drinks

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13

Time Points

%
 o

f F
u

n
ct

io
n

al
 D

ay
s

Lower # of Days of 5 or More Drinks

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13

Time Points

%
 o

f F
u

n
ct

io
n

al
 D

ay
s



56 

 

 

 

 

 

Table 4.5 

Parameters Estimates for Growth Factors Regressed on Covariates for the Low 

Functioning Clients (LFC) 

 Rate of Change 

Covariates Intercept (
�

0) Linear Slope (
�

1) Quadratic Slope (
�

2) 

Modality -17.03 0.58 0.36 

Goal Choice 0.09 3.20 -0.40 

Number of Consequences 18.26** -0.29 -0.12 

Number of days consumed 

5 or more drinks per day 

-0.05 -0.06 0.01 

** p<.001 

 

Table 4.6 

Odds Ratios (95% Confident Intervals) for the Covariates in the 2-Class Model 

Covariates ORa 

Modality 1.27 (0.38 – 3.39) 

Goal Choice 0.60 (0.19 – 1.89) 

Number of Consequences 1.00 (0.76 – 1.30) 

Number of days consumed 5 or more drinks 1.03 (1.01 – 1.05)* 
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* p<.05 

aHFC was the reference class 

 

 

Four-Class Model with Covariates 

In contrast to the two-class models, the classes in the four-class model changed as 

a result of the inclusion of the covariates. As seen in Figure 4.8, the four classes created 

were the high functioning clients (HFC; n = 143, 71.02% of the total sample), low 

functioning clients (LFC; n = 34, 17.75% of the total sample), fluctuating clients (FC; n = 

9, 4.57% of the total sample), and deteriorating clients (DC; n = 14, 6.67% of the total 

sample). Similar to the 4-class model without covariates, this model has a high 

functioning, a low functioning, and a fluctuating class. However, this model does not 

include a delayed-change class, but rather a new class is created (DC; see Figure 4.9).  
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Figure 4.8. Estimated Means for Trajectories of Change of the 4-Class Model with 

Covariates. 

Note: the y-axis represents the number of functional days and the x-axis represents the 3 months (12 weeks) 
of TLFB data. Class 1 = LFC, Class 2 = FC, Class 3 = HFC, Class 4 = DC. 
 

 

(a) High Functioning Clients (HFC)          (b) Low Functioning Clients (LFC) 

 

(c) Deteriorating Clients (DC)           (d) Fluctuating Clients (FC) 
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Figure 4.9. Estimated Means and Observed Individual Values for HFC, LFC, DC, and 

FC. 

Note: the y-axis represents the number of functional days and the x-axis represents the 3 months (12 weeks) 
of TLFB data.  

 

Tables 4.7 to 4.10 represent the parameters of the GMM for each class. Similar to 

the two-class model, HFC individuals who chose an abstinence goal at intake finished 

treatment with a significantly higher percentage of functional days than those who chose 

a moderation goal (
�

0 = -10.49, p < .001). The estimated mean of percentage of 

functional days at post-treatment for HFC who chose abstinence was 96.79%, whereas 

for individuals who chose moderation it was 89.36%. This relationship was stable across 

time since neither the linear nor the quadratic slopes were significant (
�

1 = -0.30, p = .58; 
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�
2 = 0.06, p = .33). Forty individuals with an abstinence goal versus 103 individuals with 

a moderation goal were classified as HFC. Regarding pretreatment drinking, HFC who 

finished treatment with lower functional days had a significantly higher number of days 

drinking 5 or more drinks than those who had a higher percentage of functional days 

prior to entering treatment (
�

0 = -0.14, p = .001). Estimated means of follow-up 

functional days for individuals with a higher number of days consumed 5 or more drinks 

pretreatment was 85.71% versus 94.29% for individuals with a lower number of days 

consumed 5 or more drinks pretreatment. As with goal choice, this relationship was 

stable across time (
�

1 = -0.02, p = .08; 
�

2 = 0.00, p = .08).  

Goal choice also showed significant results within LFC for all of the growth 

factors (
�

0 = 29.48, p < .001; 
�

1 = 7.23, p < .001; 
�

2 = 0.42, p < .001). Five individuals 

with an abstinence goal versus 29 individuals with a moderation goal were classified as 

LFC. The significance of the growth factors indicates differences observed in shape of 

the trajectories, such that individuals who chose moderation tend to have a more stable 

trajectory than individuals who chose abstinence (see Figure 4.10).   

Within FC, the growth factors for all covariates were statistically significant with 

the exception of the intercept for treatment modality and number of days consumed 5 or 

more drinks pretreatment (
�

0 = -17.49, p = 0.06; 
�

0 = 0.22, p = 0.17). Due to the small 

sample size (n = 9), from these results the only reasonable conclusion is that the 

significance of the growth factors suggest a high level of variability within individuals in 

this group (see Figure 4.11 to Figure 4.13). Within the DC group, goal choice also 

showed significant results for all of the growth factors (
�

0 = -53.33, p < .001; 
�

1 = 16.83, 

p < .001; 
�

2 = -1.36, p < .001; Figure 4.14). Two individuals with an abstinence goal 



61 

 

versus 12 individuals with a moderation goal were classified as DC. The significance of 

the growth factors indicates differences observed in shape of the trajectories where 

individuals who chose moderation tended to have a more stable trajectory than 

individuals who chose abstinence (see Figure 4.14), but again the sample is very small. 

Finally, individuals who had more instances where they consumed 5 or more drinks per 

occasion prior to entering treatment also demonstrated more variability after treatment 

(
�

1 = -0.23, p < .001; 
�

2 = 0.02, p < .001; See Figure 4.15). As with FC, due to the small 

sample size (n = 14), the significance of the growth factors suggests there was high level 

of variability within individuals in this group. 

Table 4.11 shows the odds ratio for the covariates’ effects on class membership. 

Individuals with lower alcohol-related consequences at baseline and lower number of 

days where they consumed five or more drinks pretreatment had a better chance of being 

classified as HFC than as LFC and DC. These results are in the same direction as for the 

two-class model.   
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Table 4.7 

Parameter Estimates for Growth Factors Regressed on Covariates for the High 

Functioning Clients (HFC) 

 Rate of Change 

Covariates Intercept (
�

0) Linear Slope (
�

1) Quadratic Slope (
�

2) 

Modality 3.44 -0.88 0.05 

Goal Choice -10.49** -0.30 0.06 

Number of Consequences 0.48 -0.09 0.00 

Number of days consumed 

5 or more drinks per day 

-0.14* -0.02 0.00 

** p<.001; * p<.05 
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Table 4.8 

Parameter Estimates for Growth Factors Regressed on Covariates for Low Functioning 

Clients (LFC) 

 Rate of Change 

Covariates Intercept (
�

0) Linear Slope (
�

1) Quadratic Slope (
�

2) 

Modality -2.02 -0.67 -0.08 

Goal Choice 29.48* -7.23* 0.42* 

Number of Consequences 0.58 0.72 -0.01 

Number of days consumed 

5 or more drinks per day 

-0.33 0.01 0.00 

* p<.001 

 

Table 4.9 

Parameter Estimates for Growth Factors Regressed on Covariates for the Fluctuating 

Clients (FC) 

 Rate of Change 

Covariates Intercept (
�

0) Linear Slope (
�

1) Quadratic Slope (
�

2) 

Modality -17.49 8.91** -0.66** 

Goal Choice -19.14*** 17.04*** -1.24*** 

Number of Consequences 19.33*** -2.00** -0.16** 

Number of days consumed 

5 or more drinks per day 

0.22 -0.36*** 0.03*** 

*** p<.001, ** p<.05 
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Table 4.10 

Parameter Estimates for Growth Factors Regressed on Covariates for Deteriorating 

clients (DC) 

 Rate of Change 

Covariates Intercept (
�

0) Linear Slope (
�

1) Quadratic Slope (
�

2) 

Modality -9.97 3.28 -0.08 

Goal Choice -53.33* 16.83* -1.36* 

Number of Consequences -6.39 1.10 -0.04 

Number of days consumed   

5 or more drinks per day 

0.26 -0.23* 0.02* 

** p<.001 
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Figure 4.10. Estimated Mean Comparison for Goal Choice among LFC. 

Note: the y-axis represents the number of functional days and the x-axis represents the 3 months (12 weeks) 
of TLFB data. 
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Figure 4.11. Estimated Mean Comparison for Treatment Modality among FC.  

Note: the y-axis represents the number of functional days and the x-axis represents the 3 months (12 weeks) 
of TLFB data. 
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Figure 4.12. Estimated Mean Comparison for Goal Choice Among FC. 

Note: the y-axis represents the number of functional days and the x-axis represents the 3 months (12 weeks) 
of TLFB data. 
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Figure 4.13. Estimated Mean Comparison for Number of Alcohol-Related Consequences 

Among FC. 

Note: the y-axis represents the number of functional days and the x-axis represents the 3 months (12 weeks) 
of TLFB data. 
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Figure 4.14. Estimated Mean Comparison for Goal Choice Among DC. 

Note: the y-axis represents the number of functional days and the x-axis represents the 3 months (12 weeks) 
of TLFB data. 
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Figure 4.15. Estimated Mean Comparison for Days consumed 5 or more Drinks Among 

DC.  

Note: the y-axis represents the number of functional days and the x-axis represents the 3 months (12 weeks) 
of TLFB data. 
 

 

 

 

 

 

 

 

 

 

 

Low # of Days of 5 or More 
Drinks

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 11 12 13

Time Points

%
 o

f 
F

u
n

ct
io

n
a
l D

a
y
s

High % of Days of 5 or More 
Drinks

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 11 12 13

Time Points

%
 o

f 
F

U
n

ct
io

n
a
l D

a
y
s



71 

 

Table 4.11 

Odds Ratio (95% confident intervals) for Comparisons between Four-Trajectory 

Covariates OR(95%CI) - HFC OR(95%CI)- LFC OR(95%CI) - DC 

Low-Functioning Clients (LFC)    

Modality 1.13 (0.51–2.53) -- -- 

Goal Choice 2.45 (0.85–7.04) -- -- 

Number of Consequences 0.79 (0.63–0.99)** -- -- 

Number of days consumed  5 or 

more drinks per day 

0.98 (0.97–0.99)** -- -- 

Deteriorating Clients (DC)    

Modality 2.12 (.61–7.45) 0.42 (0.02–1.60) -- 

Goal Choice 0.45 (0.09–2.26) 0.91 (0.15–5.50) -- 

Number of Consequences 1.74 (1.20–2.53)** 0.73 (0.49–1.08) -- 

Number of days consumed 5 or 

more drinks per day 

1.03 (1.01–1.05)* 0.99 (0.97–1.02) -- 

Fluctuating Clients (FC)    

Modality .91 (0.23–3.63) 1.03 (0.23–4.67) 0.43 (.07–2.53) 

Goal Choice 1.25 (0.29–5.37) 3.07 (0.57–16.65) 2.79 (0.35–22.15) 

Number of Consequences 1.35 (0.91– 2.01) 1.07 (0.70–1.64) 0.78 (0.46–1.30) 

Number of days consumed 5 or 

more drinks per day 

1.01 (0.99–1.03) 0.99 (0.96–1.01) 0.98 (0.96–1.01) 

Note: aClass reference HFC; bClass reference DC; cClass reference LFC 

** p<.05; * p<.10 
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Comparing the Growth Mixture Models With and Without Covariates 

The likelihood-ratio chi-square difference test was used to test whether the GMM 

model with covariates was preferable and created a better fit than the model without the 

covariates (Satorra, 2000). Table 4.12 shows the indicators and parameters to compute 

this analysis. The chi-square difference tests showed that for both the two- and four-class 

model, the models with the covariates were preferable and showed better fits (8X2 = 

143.33 and 307.54, respectively). 

 

Table 4.12 

Comparison between Models with and without Covariates 

Models Chi-square Scaling Correlation 

Factor 

Number of Free 

Parameters 

2-Class -10955.63 2.460 14 

2-Class with Covariates -10685.088 2.036 54 

4-Class -10860.447 2.491 34 

4-Class with Covariates -10554.014 1.537 94 

 

Growth Mixture Models for TLFB Assessment Data  

After examining the individual trajectories of pre-treatment drinking data, three 

growth factors were used corresponding to the intercept (0) and linear (1) and quadratic 

slopes ( 2; see Figure 4.1). Each of the growth factors was influenced by the latent class 

variable. The fit indicators for the one to six-class trajectory models are presented in 

Table 4.13 and the specific class trajectories are shown in Figure 4.16. According to the 
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aBIC decrease rate, none of the models captured a significantly different parsimony. The 

rate of the aBIC difference (8aBIC) was generally constant and ranged from 32.32 to 

52.63 for the first five models; then the 8aBIC decreased to 17.25 from the five- to the 

six-class model. In general, all the models showed high entropy but the four- to the six-

class model showed the highest (0.94). Based on the LRT indicator, a 6-class model had 

the better fit compared to the k-1 model. Therefore, according to these indicators, either 

the two- or the six-class model seemed to produce the best fit. The 8aBIC indicates that 

the two-class model is more parsimonious than the six-class model (8aBIC = 48.27 and 

8aBIC = 17.25, respectively). However, the entropy for the six-class model is higher than 

the two-class model (.94 and .85, respectively). In this specific case, a two-class model 

was chosen for the sequential process GMM analysis since it has a theoretical root. This 

model represents the idea that there are individuals who come to treatment with different 

severity levels. 
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Table 4.13 

Model Fit for Growth Mixture Models with Assessment TLFB Data 

Outcome 

k-class 

model 

Log-likelihood 

(# free 

parameters) 

Entropy aBIC LRT BLRT p-value 

1-class -11602.29 (22) -- 23251.77 -- -- 

2-class -11573.87 (26) 0.85 23203.50 54.28, p = .21 56.84, p < .0005 

3-class -11553.42 (30) 0.91 23171.18 36.04, p = .29 37.73, p < .0005 

4-class -11522.81 (34) 0.94 23118.55 52.38, p = .10 54.85, p < .0005 

5-class -11492.86 (38) 0.94 23067.22 57.22, p = .15 59.91, p < .0005 

6-class -11479.93 (42) 0.91 23049.97 62.23, p = .04 65.16, p < .0005 
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 (a) 2-Class Model        (b) 3-Class Model 

 

(c) 4-Class Model          (d) 5-Class Model 

(e) 6-Class Model 

 

Figure 4.16. Pre-Morbid Alcohol Trajectories for the 2-Class to the 6-Class Model. 

Note: the y-axis represents the number of functional days and the x-axis represents the 3 months (12 weeks) 
of pretreatment TLFB data. 
 

Two-Class Model for Pre-Treatment Drinking Trajectories 

As seen in Figure 4.17, the classes in the two-class model can be described as the 

low drinking severity group (LSG; n = 104, 52%) and the high severity drinking group 
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(HSG; n = 95, 47%). Estimated means and individual observed values for each category 

can be seen in Figure 4.18. Participants in the LSG category are characterized by tending 

to function well for most days in the weeks leading up to treatment (estimated means 

range from 66.50 to 78.13; see Figure 4.18a). Individuals in the HSG group are 

characterized as reporting only a small percentage of functional days before entering 

treatment (estimated means range from 15.40 to 33.74; see Figure 4.18b). It is also 

obvious in Figure 4.18 that there is a great deal of pretreatment weekly variation among 

members of both classes. Table 4.14 presents the parameters of the GMM for each class. 

In the HSG, the intercept is significant, but neither the linear nor quadratic slopes were 

significant (
�

1 = 0.2, p = .83; 
�

2 = 0.07, p = .37), meaning that there was not a 

statistically significant level of variation within the three months prior to treatment. In 

contrast, in the LSG group, both slopes were statistically significant (
�

1 = -2.18, p = .002; 

�
2 = .13, p = .02), thus indicating individuals’ variability before treatment. 
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Figure 4.17. Estimated Means for the Pre-morbid Drinking Trajectories of the 2-Class 

Model. 

Note: the y-axis represents the number of functional days and the x-axis represents the 3 months (12 weeks) 
of pretreatment TLFB data. 
 

 (a) Low Severity Group – LSG         (b) High Severity Group – HSG 

 

Figure 4.18. Estimated Means and Observed Individual Values for the LSG and the HSG. 

Note: the y-axis represents the number of functional days and the x-axis represents the 3 months (12 weeks) 
of pretreatment TLFB data. 
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Table 4.14 

Growth Factor Means for Each Drinking Class for the Two-Class Model for the Pre-

morbid Alcohol Trajectories 

 Rate of Change 

Drinking Classes Intercept (
�

0) Linear Slope (
�

1) Quadratic Slope (
�

2) 

High Severity Group (HSG) 15.91** 0.2 0.07 

Low Severity (LSG) 78.48** -2.18* 0.13* 

**p<.001; *p<.05 

 

Sequential Process Growth Mixture Model 

Since the two-class model for both the pre-treatment and follow-up data showed 

the best balance between parsimony and fit, these models were used for the sequential 

process GMM (see Figure 4.19 and Figure 4.20). The classifications of clients into each 

drinking class according to posterior probability can be seen in Table 4.15. The posterior 

probabilities revealed that approximately 65% of the participants in the LSG tended to 

improve and reach a high number of functional days during follow-up with a stable 

change rate occurring after treatment (
�

12 = -0.58, p = .06; 
�

22 = 0.01, p = 0.86; see 

Figure 4.21a and Table 4.13). As shown in Table 4.16, individuals in the LSG had a .77 

probability of having a high percentage of functional days during follow-up. In this class, 

percentage of functional days ranged from 54.61 to 59.98 before treatment and 86.94 to 

95.62 after treatment (see Figure 4.21a). The remaining individuals in the LSG (19%) 

were classified as LFC (range = 53.93 to 62.23; see Figure 4.21b). These individuals 
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tended to be the ones among the LSG with lower functional days (range = 25.65 to 36.47) 

at intake. Even though these individuals were classified as LFC, they increased their 

functional days at follow-up compared to their baseline alcohol severity level (see Figure 

4.21b). As with the HFC, their change during follow-up appeared to be stable across time 

(
�

12 = 1.28, p = .47; 
�

22 = -0.10, p = 0.41; see Figure 4.21b).  

Regarding HSG, most of these individuals were classified as LFC (69%; see 

Figure 4.21c). This class seemed to fluctuate over time, during both the pre-treatment and 

follow-up time periods (
�

21 = -0.18, p = .04; 
�

22 = 0.21, p = .02; see Figure 4.21b and 

Table 4.17). Clients in this group had overall low functional days before and after 

treatment (range of estimated means = 10.30 to 32.22 and 4.69 to 21.30, respectively), 

although the remaining participants (23%) were classified as HFC. Before treatment, 

their estimated means ranged from 19.18 to 46.97. During follow-up, these individuals 

showed a variable pattern of functional days (
�

22 = 1.50, p = .01; range of estimated 

means = 6.66 to 66.77; see Figure 4.20d and Table 4.17). 

 

 

C1 

  y2 y3 y4 y1 

01 11 21 

C2 

  y6 y7 y8 y5 

02 12 22 
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Figure 4.19. Diagram for the Sequential Process GMM Analysis. 

 

 

Figure 4.20. Estimated Means for the Change Trajectories of the Sequential Process 

Growth Mixture Model. 

Note: the y-axis represents the number of functional days and the x-axis represents the 3 months (12 weeks) 
of pretreatment and post-treatment TLFB data. 
 

Table 4.15 

Estimated Posterior Probabilities for a Sequential Process Growth Mixture Model 

 Pre-Treatment  

Follow-up LSG HSG  

HFC .648 .050 .698 

LFC .191 .109 .300 

 .839 .159 ~1.00 
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Table 4.16 

Latent Transition Probabilities for a Sequential Process Growth Mixture Model 

 Pre-Treatment 

Follow-up LSG HSG 

HFC .77 .23 

LFC .31 .69 

 

 (a) LSG –HFC               (b) LSG - LFC 

 

(c) HSG- LFC             (d) HSG- HFC 

 

Figure 4.21. Estimated Means and Observed Individual Values the Sequential Process 

Growth Mixture Model. 
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Note: the y-axis represents the number of functional days and the x-axis represents the 3 months (12 weeks) 
of pretreatment and post-treatment TLFB data. 
 

 

Table 4.17 

Growth Factor Means for Each Drinking Class 

 Rate of Change 

 Pre-treatment Follow-up 

Drinking Classes 
�

01 
�

11 
�

21 
�

02 
�

12 � 22 

LSG –HFC 59.57** -1.13 0.10 95.52** -0.58 0.01 

LSG – LFC 27.88** 0.61 -0.03 56.23** 1.28 -0.10 

HSG- HFC 38.16** 0.41 -0.09 69.30** -17.27** 1.50** 

HSG- LFC 28.85** 1.14 -0.18* 12.12** -1.89 0.21* 

**p < .001; *p < .05 

 

Latent Class Analysis for Alcohol-Related Consequences 

Table 4.18 presents the observed sample sizes and the proportion of participants 

who endorsed each of the eight possible alcohol-related consequences assessed at intake. 

One- to four-class models were estimated (see Table 4.19) using LCA. Indicators are 

presented in Table 4.19. The lowest BIC value of the LCA models was for the two-class 

model (BIC = 1838.21). The non-significant p-value of the BLRT for the 4-class model 

indicated that the addition of one class to the model did not add any relevance to the 

model. The BIC increases for the three- and four-class models, indicating less parsimony. 

Thus, the two-class model was chosen as the best LCA model for these data. 
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Table 4.18 

Observed Sample Size and Proportion for the Eight Binary Alcohol-Related 

Consequences 

Consequences N Proportion (%) 

Cognitive 138 68.0 

Affective 127 62.6 

Interpersonal 127 62.6 

Financial 95 46.8 

Aggressive 91 44.8 

Vocational 82 40.4 

Health 36 17.7 

Legal 4 2.0 

 

 

Figure 4.22. Latent Class Analysis Diagram for Alcohol-Related Consequences. 

 

C 

Cognitive Financial Affective Health Interpersonal Aggressive Vocational Legal 
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Table 4.19 

Model Fit for the Latent Class Analysis 

k-class model Log-likelihood (# parameters) Entropy BIC BLRT p-value 

2-class -868.68 (19) 0.69 1838.21 121.14 p < .0005 

3-class -856.07 (29) 0.69 1866.08 25.21, p < .0005 

4-class -847.55 (39) 0.83 1902.12 17.05, p  = .31 

 

The estimated probabilities by item for the two classes are graphically presented 

in Figure 4.23. The first class, the Less Impacted Group (LIG), contains almost two-

thirds (60.6%) of the total sample. The second class, the Impacted Group (IG), contains 

39.4% of the sample. Estimated probabilities of endorsing an alcohol-related 

consequence for individuals within a given class are presented in Table 4.20. Within the 

LIG, estimated probabilities ranged from 0.02 to 0.54, whereas estimated probabilities in 

the IG ranged from 0.03 to 0.93. Regarding specific item responses, the estimated 

probabilities are at least 30% larger in the IG than in the LIG for all consequences except 

for the health and legal items. 
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Figure 4.23. Estimated Probabilities of Endorsing a Alcohol-Related Consequence for 

Each Class. 
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Table 4.20 

Estimated Probabilities for the 2-Class LCA Solution 

 Classes 

Alcohol consequences Less Impacted Group 

(LIG) 

Impacted Group (IG) 

Health 0.15 0.22 

Cognitive 0.54 0.91 

Financial 0.43 0.93 

Affective 0.32 0.69 

Interpersonal 0.44 0.90 

Aggressive 0.22 0.80 

Vocational 0.18 0.75 

Legal 0.02 0.03 

 

Cross-Tabulation Chi-square Analysis 

As shown in Table 4.21, the latent classes obtained by the LCA for alcohol-

related consequences and by the GMM for alcohol consumption for the 3 months after 

treatment were not related (Chi-square = 0.02, p = .89). A similar percentage of 

individuals classified in the LIG and the IG classes were clustered as HFC (80% and 

80.8%, respectively), indicating that neither the LIG nor the IG classes tended to classify 
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individuals in a particular class during follow-up. In addition, a point-biserial correlation 

between the estimated class probabilities for the classes in the model was not significant 

(r = 0.007, p = .93). 

 

Table 4.21 

Cross-Tabulation Analysis for Alcohol-Related Consequences and Functional Days at 

Follow-up 

Pre-treatment Classes  Follow-up Classes Total 

  LFC HFC  
 LIG  24 99 123 
  % within Pre-treatment 20.0% 80.0% 100% 
  % within Follow-up 62.5% 61.3% 61.6% 
  % of Total 12.3% 49.3% 61.6% 
 IG  15 62 77 
  % within Pre-treatment 19.2% 80.8% 100% 
  % within Follow-up 37.5% 38.7% 38.4% 
  % of Total 7.4% 31.0% 38.4% 
Total  39 161 200 
 % within Pre-treatment 19.7% 80.3% 100% 
 % within Follow-up 100% 100% 100% 
 % of Total 19.7% 80.3% 100% 

 

CHAPTER V: 

 Discussion 

Drinking Trajectories During Follow-Up 

This study evaluated whether a person-centered approach was able to identify 

different change patterns among problem drinkers who had completed a short, outpatient 

intervention. The first hypothesis was confirmed. Two reliable patterns of drinking 
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trajectories – high functioning clients (HFC) and low functioning clients (LFC) – were 

obtained from the early (3 months) post-treatment drinking data. The majority of 

individuals were classified as HFC, indicating that most participants improved after 

treatment. These results were similar to what Sobell, Sobell and Agrawal (in press) found 

using of a variable-centered approach. They found that most individuals who completed 

the GSC treatment, either in a group or individual format, reduced or stopped their 

drinking and maintained the change over time. 

Additionally, three other classes readily explained by existing theories were 

identified. The four classes were the fluctuating clients (FC), delayed-change clients 

(DDC), and deteriorating clients (DC), representing a small percentage of the total 

sample. The FC involved individuals whose early follow-up trajectory was characterized 

by abrupt fluctuations between weeks. The DDC did not do well immediately after 

treatment but improved significantly over the short follow-up. Once covariates were 

included in the four-class model, a new class was formed called deteriorating clients 

(DC). Clients in this category displayed a high mean percentage of functional days after 

treatment, which decreased over time. These results suggest that a person-centered 

approach captures three types of trajectories: people who improve after treatment (HFC), 

people who do not change (LFC), and people with different fluctuating patterns after 

follow-up (e.g. FC, DDC, DC). The separate evaluation of the different fluctuating 

pattern categories should be considered tentative as the trajectories of change were 

examined over a relatively short time period. Since the categories changed when the 

covariates were incorporated into the model, the covariates seem to have an important 
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role in classifying these individuals and assigning meaningful interpretations to the 

different change patterns. 

 

 

Relationship of Pretreatment Variables to Drinking Trajectories at Follow-up 

Another objective of this study was to assess the extent to which pretreatment 

covariates were able to differentiate between different patterns of early outcomes. The 

goal was to examine whether a person-centered statistical approach provides valuable 

information for the identification of outcome predictors. The second hypothesis which 

posited that alcohol-related consequences, pre-morbid drinking patterns, goal choice, and 

treatment modality would be related to treatment outcomes was partially confirmed. The 

effects of the covariates were assessed by incorporating them into the two- and four-class 

latent models. Additionally, analyses of the relationship of drinking levels to groups were 

investigated by examining class transitions between the baseline alcohol latent 

trajectories and latent classes based on alcohol-related consequences and the drinking 

latent classes at post-treatment.  

In both the two- and the four-class model, goal choice was related to treatment 

outcome, but only for the high functioning outcome group. High functioning individuals 

who chose an abstinence goal at intake had a somewhat higher percentage of functional 

days than those who chose a moderation goal, although both subgroups had a very high 

mean percentage of functional days. This relationship was stable throughout the 3-month 

follow-up. It is important to consider this finding in context, however. First, the number 

of individuals who chose abstinence were a minority (n = 42; 31.6%) among HFC. 
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Second, this relationship was not sustained in the multinomial logistic regression of class 

membership. Third, the choice of a moderation goal was not manipulated but rather was 

self-selected, and thus it could reflect the influence of multiple variables not measured in 

the study. Fourth, this study only examined a three-month follow-up period, when results 

are less likely to be stable. Finally, the pursuit of low-risk drinking is likely to involve 

some trial and error, which could be reflected in early outcomes. The present results are 

not consistent with the scant literature on goal choice among problem drinkers (Booth et 

al., 1984; Booth et al., 1992; Ojehagen & Berglund, 1989; Sanchez-Craig et al., 1984), 

which shows a lack of relationship between goals and outcomes, but that literature 

involves aggregated outcomes over much longer intervals (e.g., two years).   

The number of alcohol-related consequences also was associated with the latent 

classes in the two- and four-class models. In the two-class model, members of the HFC 

class, who endorsed a lower number of consequences at intake, experienced more 

functional days during the follow-up period. Among LFC, this relationship was inverted 

in that individuals with more alcohol consequences at intake displayed more functional 

days after treatment. This last finding requires cautious interpretation since the sample 

size was small (n = 22). In the four-class model, individuals with a lower number of 

alcohol-related consequences at pretreatment had a higher chance of being classified as 

HFC than as LFC or DC.  

In contrast to the findings obtained for the GMMs with covariates, no 

relationships were found between the latent classes obtained for alcohol-related 

consequences at intake and those based on the level of alcohol consumption after 

treatment. According to the LCA, the two classes obtained from alcohol-related 
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consequences were the impacted group (IG) and the less impacted group (LIG). Group 

membership was not associated with number of functional days after treatment. These 

findings indicate that the relationship between alcohol-related consequences and 

treatment outcomes depends on how this variable is manipulated in the analyses. 

Significant findings associated with treatment outcomes were found when alcohol-related 

consequences was used as an interval variable (number of alcohol-related consequences), 

whereas a categorical analysis of alcohol-related consequences using a LCA model did 

not provide significant results on treatment outcomes. Other studies that have examined 

alcohol-related consequences and analyzed the effect of independent consequences 

supported the idea that alcohol-related consequences are associated with treatment 

outcomes (i.e. Gordon & Zrull, 1991; John et al., 2003; Marlatt & Gordon, 1985). The 

fact that the error variance was not taken into account in the classification analysis could 

explain the lack of significant results in the LCA. Another possible reason is that this 

sample did not include individuals with higher levels of drinking problem severity.  

Regarding baseline alcohol severity levels, in both the two- and the four-class 

model, HFC who had fewer days of consuming five or more drinks at baseline had more 

functional days during follow-up. In the two-class model, having more days where five or 

more drinks were consumed was associated with fluctuation of drinking patterns after 

treatment within the HFC class. Interestingly, class membership was associated with 

number of days consuming five or more drinks. High functioning clients had a lower 

number of days consuming five or more drinks at baseline than LFC for both the two- 

and four-class model, and DC for the four-class model. This relationship was confirmed 

in the sequential process GMM analysis. Here, a latent growth mixture analysis was used 
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as an innovative tool to classify drinking patterns based on assessment data. This analysis 

produced the low severity group (LSG) and the high severity group (HSG). These latent 

classes were associated with the two-class model obtained using the follow-up data. 

Findings from this analysis revealed that individuals who started treatment with lower 

severity levels had more than a 75% chance of being classified as HFC after treatment, 

whereas participants with higher severity levels at intake tended to have almost a 70% 

chance of being classified as LFC after treatment. These results support the idea that 

alcohol problem severity levels are related to treatment outcomes (Hesselbrock et al., 

1987; Witkiewitz, 2008; Witkiewitz et al., 2007).  

In relation to treatment format, it is important to highlight that similar to the 

results obtained by Sobell et al. (in press), the covariate effect of treatment modality was 

not significant and was not related to class membership. This finding is consistent with 

studies comparing treatment efficacy of MI or CBT in individual and group formats 

(Graham et al., 1996; Marques & Formigoni, 2001; Weiss et al., 2004). 

Significance of the Study 

The results from these analyses support the notion that problem drinkers do not 

constitute a homogeneous population, neither before nor after treatment. That is, problem 

drinkers can be classified into meaningful subgroups. Identification of such subgroups 

can assist in understanding the nature of alcohol problems, and it can also serve to 

generate client-treatment matching hypotheses. Beginning in the 1990s, more complex 

statistical techniques became available allowing for the testing of models that better 

represent the complex relationships involved in behavioral changes. Growth mixture 

modeling is one such technique for studying the complexity of the change process. This 
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model combines the general latent variable modeling framework with multivariate 

design, resulting in a flexible approach to analyzing longitudinal data in the social 

sciences (Hix-Small, Duncan, Duncan, & Okut, 2004). Thus, growth mixture modeling 

gives researchers the opportunity to explore and test complex theories that have not been 

statistically evaluated due to limitations of traditional statistical techniques. Such new 

statistical techniques can benefit researchers in examining the complexities of the 

phenomena and mechanisms that interact to affect human behavior. In the alcohol field, 

due to the high relapse rate following treatment, it is important to explore the individual 

differences and risk factors related to relapse rates and the individual’s change process. 

This information can potentially suggest treatment strategies that could be evaluated in 

clinical trials.    

Three major findings provide evidence of the value of using a person-centered 

approach in the evaluation of treatment outcomes. First, even though problem drinkers 

seem to constitute a homogeneous population, the significant differences observed among 

the classes in terms of frequency of alcohol use, and variability in change patterns 

demonstrates the feasibility of examining drinking data in aggregated subgroups in order 

to further understand the specific relationships between variables and outcomes. Second, 

the fact that covariates, such as alcohol severity levels, were significantly associated with 

the trajectories not only between classes, but also within classes illustrates the importance 

of examining these variables in a latent class framework. Third, the significant fluctuation 

observed among individuals demonstrates the importance of considering this factor in the 

evaluation of treatment outcomes. Related to this, trajectories of change varied according 

to the covariates introduced in the model, suggesting that introducing different covariates 
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may help understand the fluctuation patterns. The importance of considering fluctuation 

was particularly apparent in the sequential process GMM analysis. In that analysis, even 

though a percentage of individuals in the HSG class were classified as HFC due to the 

average of functional days across weeks, their progress showed major fluctuations after 

treatment.   

The present study demonstrated that a person-centered analysis can be an 

effective statistical technique to advance knowledge about variables related to treatment 

outcomes. Information about the clustering of variables can help create client-treatment 

matching hypotheses and predict cases (i.e., subgroups) unlikely to improve with certain 

interventions. Innovated interventions could then be developed for such cases and 

evaluated to see if they can improve treatment efficacy. Finally, recent studies have 

successfully found significant results in the use latent class analyses to validate client-

treatment matching hypotheses that failed to be validated by conventional statistical 

techniques (Witkiewitz et al., 2007; Wu & Witkiewitz, 2008).  

Limitations 

This study has several limitations related to methodological issues and statistical 

analysis. The follow-up time period and the sample size of the population are two 

significant limitations. Even though individuals completed a 12-month TLFB, only data 

from the first 3-months after treatment were used in these analyses to reduce the 

complexity of the model and to accommodate for the size of the sample. Therefore, 

results concerning the effect of covariates over time, such as goal choice, should be 

considered inconclusive. Additionally, due to the small number of individuals classified 
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in some groups, such as DDC, FC, and DC, the directionality of the significant effect of 

covariates was not interpretable.   

Regarding the limitations of GMMs, since these techniques are fairly new, little is 

known about requirements in relation to the necessary sample size and the number of 

time points needed in order to achieve a good estimation with strong power (Muthén, 

2004). A considerable limitation is the fundamental idea of the existence of a 

heterogeneous population, containing relatively homogenous subgroups, which entails 

different drinking distributions. These models provide an approximation of the mixture 

distributions of the data (Cudeck & Henly, 2003). Therefore, in mixture models it is 

difficult to know with certainty which are the exact underlying distributions and if they 

are reliable among all samples of alcohol users. Thus, the present results need to be 

interpreted with caution and should not yet be generalized to other populations (Bauer & 

Curran, 2004). They should be considered exploratory and in need of replication using a 

different dataset. Since the growth mixture model found in this sample provides a 

potentially useful representation of the heterogeneous population of problem drinkers 

after treatment, the utility of this model can be determined by future studies. It is 

important to note that these results do not suggest that these classes are the only 

subgroups that can be found among problem drinkers. As was demonstrated, there are 

many feasible solutions and the selection of the best model depends not only on the 

statistical indicators, but also on the theory underlying the dataset used and the research 

question under study. 

Future Directions 
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This study focused on how a person-centered statistical approach can identify 

predictors of outcomes. This type of study provides clues for hypothesis development for 

client-matching treatment method and for the application of stepped care treatment 

strategies. The present findings specifically provided information on drinking trajectories 

after treatment based on percentage of functional days. As there are many ways of 

characterizing alcohol use over time, future studies should examine which are the best 

parameters to use in the estimation of trajectories. More than one drinking variable, such 

as the number of drinks consumed per drinking day and the percentage of abstinent days 

can be used for a more complete exploration of latent classes in alcohol abusers. In 

addition, interactions between covariates, such as goal choice and severity levels, can 

provide information on patterns of relapse and the dynamics of alcohol abuse after 

treatment. It will also be important to understand which timeframe is reliable for this type 

of analysis, as well as which temporal grouping is the best option to capture drinking 

pattern fluctuations (i.e., days, weeks, months). 

Evaluating how this type of statistical technique can aid in understanding the 

relationship between individual characteristics and outcome results by comparing 

variable- and person-centered statistical findings can be an objective of future studies. 

Each method provides a different way of examining a data set, providing information 

about groups and individuals differences. Using more complex statistical techniques to 

test relevant hypotheses involved in client-treatment matching can be an objective of 

future studies.  

Future studies should also examine the relationship of within treatment 

performance as a predictor of outcomes. Strategies such as the stepped-care approach, 
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which focus on maximizing cost effectiveness, not only consider pre-treatment factors 

but also initial progress in treatment as aids in determining treatment strategies. Dawes 

(1994) found that when variables indicating early progress in treatment were entered in 

the analysis, pre-treatment drinking levels were no longer significant. This suggests that 

besides selecting the best initial intervention based on pre-treatment variables, clinicians 

may also obtain relevant information from examining progress in therapy. Therefore, it 

appears that selecting a criterion based on performance can help clinicians make 

informed decisions for alcohol abusers who seek treatment (Breslin, Sobell, Sobell, 

Cunningham, Sdao-Jarvie, & Borsoi, 1999; Sobell & Sobell, 2000). As GMMs provide 

the opportunity to examine time-variant and time-invariant covariates, the evaluation of 

both pre- and within-treatment variables as factors in treatment outcomes is possible. 

Future studies should determine the value of these statistical techniques for strategies that 

maximize cost-effectiveness of interventions thorough the evaluation of pre- and within-

treatment variables.  
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