
Nova Southeastern University Nova Southeastern University 

NSUWorks NSUWorks 

Mathematics Faculty Articles Department of Mathematics 

12-1-2012 

Maximal Specht Varieties of Monoids Maximal Specht Varieties of Monoids 

Edmond W. H. Lee 
Nova Southeastern University, edmond.lee@nova.edu 

Follow this and additional works at: https://nsuworks.nova.edu/math_facarticles 

 Part of the Mathematics Commons 

NSUWorks Citation NSUWorks Citation 
Lee, Edmond W. H., "Maximal Specht Varieties of Monoids" (2012). Mathematics Faculty Articles. 6. 
https://nsuworks.nova.edu/math_facarticles/6 

This Article is brought to you for free and open access by the Department of Mathematics at NSUWorks. It has 
been accepted for inclusion in Mathematics Faculty Articles by an authorized administrator of NSUWorks. For more 
information, please contact nsuworks@nova.edu. 

http://nsuworks.nova.edu/
http://nsuworks.nova.edu/
https://nsuworks.nova.edu/
https://nsuworks.nova.edu/math_facarticles
https://nsuworks.nova.edu/cnso_math
https://nsuworks.nova.edu/math_facarticles?utm_source=nsuworks.nova.edu%2Fmath_facarticles%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=nsuworks.nova.edu%2Fmath_facarticles%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/math_facarticles/6?utm_source=nsuworks.nova.edu%2Fmath_facarticles%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nsuworks@nova.edu


Moscow Mathematical Journal 12 (2012) 787–802

MAXIMAL SPECHT VARIETIES OF MONOIDS

EDMOND W. H. LEE

Abstract. A variety of algebras is a Specht variety if all its subvarieties
are finitely based. This article presents the first example of a maximal
Specht variety of monoids. The existence of such an example is counter-
intuitive since it is long known that maximal Specht varieties of semi-
groups do not exist. This example permits a characterization of Specht
varieties in the following four classes based on identities that they must
satisfy and varieties that they cannot contain: (1) overcommutative va-
rieties, (2) varieties containing a certain monoid of order seven, (3) vari-
eties of aperiodic monoids with central idempotents, and (4) subvarieties
of the variety generated by the Brandt monoid of order six. Other re-
sults, including the uniqueness or nonexistence of limit varieties within
the aforementioned four classes, are also deduced. Specifically, over-
commutative limit varieties of monoids do not exist. In contrast, the
limit variety of semigroups, discovered by M.V.Volkov in the 1980s, is
an overcommutative variety.

2010 Math. Subj. Class. 20M07.

Key words and phrases. Monoids, varieties, Specht varieties, limit varieties,
finitely based, hereditarily finitely based.

1. Introduction

In 1950, while investigating polynomial identities of rings, Specht questioned
whether or not every variety of associative rings over a field of characteristic zero
is finitely based [31]. This question was affirmatively answered by Kemer [17] in
the 1980s. Nowadays, the finite basis problem for all the main varieties of universal
algebras is commonly known as the Specht problem. Unlike the aforementioned
positive result of Kemer [17], not every variety of algebras is finitely based in general;
there exist non-finitely based varieties of associative rings over a field of any positive
characteristic [1], [8], [29] some of which are even nilpotent [5], [10]. For results
and comments regarding the Specht problem for varieties of groups and varieties
of semigroups, refer to the surveys of Gupta and Krasilnikov [9] and Volkov [34]
respectively. The present article is solely concerned with varieties of monoids, with
references made to varieties of semigroups only for comparison. Unless otherwise
specified, all varieties are varieties of monoids.
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A variety that contains only finitely based subvarieties is called a Specht variety,1

while a monoid that generates a Specht variety is called a Specht monoid. A variety
is periodic if it satisfies a nontrivial identity of the form xn+k ≈ xn; if k = 1 in
this identity, then the variety does not contain any nontrivial groups and is said
to be aperiodic. It is well known and easily shown that a non-periodic variety
must contain the variety Com of commutative monoids and so is also said to be
overcommutative. The variety Com is itself Spechtian [11] and vacuously over-
commutative. An example of an overcommutative Specht variety that properly
contains Com, due to Pollák, is the variety defined by the identity xyx ≈ x2y [25].
Apparently, no other larger overcommutative Specht variety containing Pollák’s
variety is known. The main objective of this article is to present an example that
is not only new but also maximal.

Theorem 1.1. (i) The variety O of monoids defined by the identities

xhxyty ≈ xhyxty, xhytxy ≈ xhytyx (0)

is a Specht variety.
(ii) The variety O and its dual variety Oδ are maximal Specht varieties.
(iii) The varieties O and Oδ are the only maximal overcommutative Specht va-

rieties.

Theorem 1.1(ii) is quite counterintuitive since it is long known that maximal Specht
varieties of semigroups do not exist [30, Proposition 15.2]. Presently, the varieties
O and Oδ are the only known examples of maximal Specht varieties of monoids.

Corollary 1.2. The varieties in the intervals [Com, O] and
[

Com, Oδ
]

are pre-

cisely all overcommutative Specht varieties of monoids.

Let X ∗ denote the free monoid over a countably infinite alphabet X . Elements of
X ∗ are called words. For any set W of words, let S(W) denote the Rees quotient of
X ∗ over the ideal of all words that are not factors of any word in W . Equivalently,
S(W) can be treated as the monoid that consists of every factor of every word in
W , together with a zero element 0, with binary operation · given by

u · v =

{

uv, if uv is a factor of some word in W;

0, otherwise.

The empty factor, more conveniently written as 1, is the identity element of the
monoid S(W). If W = {w1, . . . , wr}, then write S(W) = S(w1, . . . , wr).

Rees quotients of free monoids constitute a significant source of examples in the
study of the finite basis problem for semigroups and monoids. In 1969, Perkins
published the first two examples of non-finitely based finite semigroups: the well-
known Brandt monoid

B1
2 =

〈

a, b, 1 | a2 = b2 = 0, aba = a, bab = b
〉

1In the study of varieties of groups and varieties of semigroups, Specht varieties are also
commonly called hereditarily finitely based varieties. See, for instance, Bryant and Newman [3],
Pollák [25], and Shevrin and Volkov [30].
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of order six and the monoid

P25 = S(xyzyx, xzyxy, xyxy, x2z)

of order 25 [24]. More recent work of Jackson [14], Sapir [28], and their collabo-
ration [16] shed more light on the finite basis problem for Rees quotients of free
monoids and demonstrated how non-finitely based monoids can be located. In the
early 2000s, Jackson proved that the varieties J1 and J2, generated by the monoids

J1 = S(xhxyty) and J2 = S(xhytxy, xyhxty)

respectively, are minimal non-finitely based varieties [15], or limit varieties.

Remark 1.3. Presently, the varieties J1 and J2 remain the only explicitly known
examples of non-group limit varieties of monoids. In contrast, Kozhevnikov demon-
strated that continuum many limit varieties of monoids consisting of groups exist
[18], but none has yet been explicitly described; see Gupta and Krasilnikov [9]. As
for non-group limit varieties of semigroups, countably infinitely many belonging to
a few classes have been explicitly described [23], [26], [27], [32].

By Zorn’s lemma, any non-finitely based variety contains some limit subvariety.
It follows that a variety is Spechtian if and only if it does not contain any limit
subvarieties. Therefore the more complete the classification of limit varieties, the
better the understanding of Specht varieties. It is evident from Lemmas 2.1 and
2.2 that the identity system (0) or its dual system is satisfied by any variety that
contains the monoid S(xyx) but excludes the varieties J1 and J2; it is precisely
this result that inspired the formulation of Theorem 1.1(i). More information on
the varieties J1 and J2 and other related preliminary results are given in Section 2.

In Section 3, Theorem 1.1(i) is applied to show that all Specht varieties from the
following classes are characterized precisely by the exclusion of the limit varieties
J1 and J2:

(Ocom) overcommutative varieties;
(Cxyx) varieties that contain the monoid S(xyx);
(Acent) varieties of aperiodic monoids with central idempotents;
(SB1

2

) subvarieties of the variety B1

2
generated by the Brandt monoid B1

2 .

Parts (ii) and (iii) of Theorem 1.1 then follow from this characterization. Other
results are also deduced; these include the existence and uniqueness of limit varieties
within the classes Cxyx, Acent, and SB1

2

, and their nonexistence from the class Ocom:

Theorem 1.4. Overcommutative limit varieties of monoids do not exist.

This result is again unexpected since the very first published example of a limit
variety of semigroups, due to Volkov [32], is overcommutative.

Sections 4 and 5 are devoted to proving Theorem 1.1(i). Specifically, identities
that can be used to define noncommutative subvarieties of O are described in
Section 4; based on this description and results of Head [11], Higman [12], and
Volkov [33], the finite basis property of every subvariety of O is established in
Section 5.
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2. Preliminaries

Let x be any letter and w be any word. The number of times x occurs in w is
denoted by occ(x, w). If occ(x, w) = 1, then x is simple in w; if occ(x, w) > 2,
then x is non-simple in w. Denote by sim(w) the set of simple letters of w and by
non(w) the set of non-simple letters of w. The content of a word w is the set of
all letters occurring in w and is denoted by con(w). Define the relation ⊜ on X ∗

by u ⊜ v if occ(x, u) = occ(x, v) for all x ∈ X .
A n ide nt ity is w rit t e n as u ≈ v , w he re u and v are none mpty words. A monoid

M satisfies an identity u ≈ v if, for any substitution ϕ from X intoM , the elements
uϕ and vϕ of M coincide. A variety V satisfies an identity u ≈ v if every monoid
in V satisfies u ≈ v. The variety defined by a set Σ of identities is the class of all
monoids that satisfy all identities in Σ; in this case, Σ is a basis for the variety.
A variety is finitely based if it possesses a finite basis. For any variety V, the
subvariety of V defined by a set Σ of identities is denoted by V{Σ}. Refer to the
monograph of Burris and Sankappanavar [4] for more information on varieties and
universal algebra.

A word w is an isoterm for a variety if the variety does not satisfy any nontrivial
identity of the form w ≈ v. The set of all isoterms for a variety V is denoted
by iso(V). The notion of an isoterm is a convenient method to determine when a
monoid of the form S(W) belongs to a variety.

Lemma 2.1 (Jackson [15, Lemma 3.3]). Let V be any variety and W be any set

of words. Then S(W) ∈ V if and only if W ⊆ iso(V).

Lemma 2.2. Let V be any variety such that xyx ∈ iso(V).

(i) If xhxyty /∈ iso(V), then V satisfies the first identity in (0).
(ii) If xhytxy /∈ iso(V), then V satisfies the second identity in (0).

Proof. It suffices to verify part (i) since part (ii) follows similarly. Suppose that
xhxyty /∈ iso(V). Then the variety V satisfies a nontrivial identity of the form
xhxyty ≈ w. The assumption xyx ∈ iso(V) implies that

(a) occ(x, w) = occ(y, w) = 2 and occ(h, w) = occ(t, w) = 1;
(b) the h in w is sandwiched between the two occurrences of x in w;
(c) the t in w is sandwiched between the two occurrences of y in w.

If t occurs before h in w, then the variety V satisfies the identity ht ≈ th and so
also the system (0). If h occurs before t in w, then it follows from (a)–(c) that
w = xhyxty. �

Lemma 2.3. (i) The monoid S(xyx) belongs to the varieties J1 and J2.
(ii) The monoids J1 and J2 belong to the variety B1

2
.

(iii) For any W ⊆ X ∗, the monoid S(W) is aperiodic and contains only central

idempotents.
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Proof. (i) This follows from Jackson [15, Section 5]; see also Figure 1.
(ii) It is easily verified that xyx ∈ iso

(

B1

2

)

, and that the variety B1

2
does not

satisfy any identity from the system (0) or its dual system. Hence S(xyx) ∈ B1

2
by

Lemma 2.1, and xhxyty, xhytxy, xyhxty ∈ iso
(

B1

2

)

by Lemma 2.2. Consequently,

J1, J2 ∈ B1

2
by Lemma 2.1.

(iii) This follows from the easy observation that the elements 0 and 1 of any
monoid S(W) are the only idempotents. �

The subvarieties of J1 and J2 constitute the lattices in Figure 1 [15, Section 5].
In this figure, each ⊙• represents a non-finitely based variety, each • represents a
finitely based variety, S(W) denotes the variety generated by the monoid S(W),
and 0 denotes the variety of trivial monoids.

⊙•

s

s

s

s

s

J1 = S(xhxyty)

S(xyx)

S(xy)

S(x)

S(∅)

0

⊙•

s s

s

s

s

s

s

�
�
�

�
��

@
@

@
@

@@

J2 = S(xhytxy, xyhxty)

S(xhytxy) S(xyhxty)

S(xyx)

S(xy)

S(x)

S(∅)

0

Figure 1. Subvarieties of J1 and J2

Remark 2.4. The monoid S(xyx), when treated as a semigroup, generates a va-
riety of semigroups with continuum many subvarieties [13]. It follows that with
respect to varieties of semigroups, neither the identity system (0) defines a Specht
variety nor the monoids S(xhxyty) and S(xhytxy, xyhxty) generate limit varieties.
Consequently and unfortunately, none of the results from the present article applies
to varieties of semigroups.

3. Other Results

3.1. Specht varieties in Ocom, Cxyx, Acent, and SB
1

2

. For a characterization
of Specht varieties from the four classes stated in Section 1, it is convenient to
define the distinguished class D to consist of all varieties V such that S(xyx) ∈ V
or V ⊆ O or V ⊆ Oδ.

Lemma 3.1. The following statements on any variety V ∈ D are equivalent :
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(I) V is Spechtian;
(II) J1, J2 * V;

(III) V ⊆ O or V ⊆ Oδ.

Proof. The implication (III)⇒ (I) follows from Theorem 1.1(i) while the implica-
tion (I)⇒ (II) needs no comment. Suppose that (II) holds. If S(xyx) /∈ V, then
(III) holds by the definition of D. Hence assume that S(xyx) ∈ V. By (II) and
Lemma 2.1, either xhxyty, xhytxy /∈ iso(V) or xhxyty, xyhxty /∈ iso(V). By
Lemma 2.2, the variety V satisfies the identity system (0) or its dual system. �

Theorem 3.2. The statements (I)–(III) are equivalent for any variety V from the

classes Ocom, Cxyx, Acent, and SB
1

2

.

Proof. By Lemma 3.1, it suffices to show that the four classes are contained in D.
This is achieved by showing that any variety V from Ocom ∪ Cxyx ∪ Acent ∪ SB1

2

belongs to D. If V ∈ Cxyx, then V ∈ D because the inclusion Cxyx ⊆ D holds
by definition. Therefore further assume that V /∈ Cxyx, whence S(xyx) /∈ V. By
Lemma 2.1, the variety V satisfies a nontrivial identity of the form xyx ≈ w.

Case 1. V ∈ Ocom. Then occ(x, w) = 2 and occ(y, w) = 1 so that w ∈
{x2y, yx2}. It follows that either V ⊆ O or V ⊆ Oδ, whence V ∈ D.

Case 2. V ∈ Acent. Then arguments of Jackson [15, Proof of Lemma 4.1] can be
repeated to show that w ∈

{

x2y, yx2
}

. It follows that either V ⊆ O or V ⊆ Oδ,
whence V ∈ D.

Case 3. V ∈ SB1

2

. It is easily checked that the monoid B1
2 satisfies the identities

x3 ≈ x2, x2yx ≈ xyx2, x2y2 ≈ y2x2 (3.1)

so that the variety V also satisfies (3.1). Since the variety V satisfies the identity
xyx ≈ w, it is routinely shown that V satisfies the identities

xyx ≈ x2yx ≈ xyx2. (3.2)

Since

xhxyty
(3.2)
≈ xhx2y2ty

(3.1)
≈ xhy2x2ty

(3.2)
≈ xhyxty,

xhytxy
(3.2)
≈ xhytx2y2

(3.1)
≈ xhyty2x2

(3.2)
≈ xhytyx,

the variety V satisfies the identity system (0) so that V ⊆ O. Hence V ∈ D. �

3.2. Maximal Specht varieties: proof of Theorem 1.1 parts (ii) and (iii).
Theorem 1.1(iii) follows from the equivalence of (I) and (III) of Lemma 3.1. As for
Theorem 1.1(ii), any variety properly containing either O or Oδ is overcommutative
and so cannot be Spechtian by the equivalence of (I) and (III) of Lemma 3.1.

3.3. Uniqueness of limit varieties. The varieties J1 and J2 are known to be the
only finitely generated, limit varieties in the class Acent [21]. This result can now
be generalized to other classes that also include non-finitely generated varieties.

Theorem 3.3. The varieties J1 and J2 are the only limit varieties in the classes

Cxyx, Acent, and SB1

2

.

792 E. W. H. LEE



Proof. By Lemma 2.3, the varieties J1 and J2 belong to the classes Cxyx, Acent,
and SB1

2

. The uniqueness of these varieties then follows from the equivalence of (I)

and (II) of Lemma 3.1. �

Let P25 denote the variety generated by the monoid P25 introduced in Section 1.

Corollary 3.4. The varieties J1 and J2 are the only limit subvarieties of P25.

Proof. By Lemma 2.3(iii), the variety P25 belongs to the class Acent. The argu-
ments in the proof of Lemma 2.3(ii) can be repeated to show that J1, J2 ∈ P25.
The result now follows from Theorem 3.3. �

3.4. Nonexistence of overcommutative limit varieties: proof of Theo-
rem 1.4. By Theorem 3.2, any overcommutative variety that excludes the limit
varieties J1 and J2 must be Spechtian and so cannot be a limit variety.

3.5. Rees quotients of X ∗. Sapir [28] has shown that for any word w ∈ {x, y}∗,
the monoid S(w) is finitely based if and only if w is one of the following words:

xmyn, ymxn, xmyxn, ymxyn, m, n > 0. (3.3)

It is easily checked whether or not the monoid S(w) is Spechtian for any word w
from (3.3). If m, n > 2, then the monoids S(xmyn) and S(ymxn) do not satisfy the
first identity in (0) and so are not Spechtian by Theorem 3.2. For any word w from
(3.3) that contains neither x2y2 nor y2x2 as a factor, the monoid S(w) satisfies the
identity system (0) and so is Spechtian by Theorem 1.1(i).

In general, it is unknown if there exists an algorithm that decides, given a finite
set W of words, whether or not the monoid S(W) is finitely based; see Shevrin and
Volkov [30, Question 7.1]. Now by Lemma 2.3(iii), the monoid S(W) generates a
variety in the class Acent. Therefore by Lemma 3.1, the monoid S(W) is Spechtian
if and only if it satisfies the identity system (0) or its dual system; checking this
latter condition is a problem of complexity O

(

|S(W)|4
)

.

3.6. Direct products of monoids. It is easily seen from Figure 1 that the
monoids S(xhytxy) and S(xyhxty) are Spechtian, while their direct product gener-
ates the limit variety J2 and so is not Spechtian. The following result provides a
more general method for obtaining similar examples.

Proposition 3.5. (i) Let M be any monoid such that M /∈ O∪Oδ . Then the direct

product M × S(xyx) is not Spechtian.
(ii) For any cancellative monoid M, the direct product M × S(xyx) is Spechtian

if and only if M is commutative.

Proof. (i) The variety V generated by the monoid M ×S(xyx) clearly contains the
monoid S(xyx) so that V ∈ Cxyx. Since V * O and V * Oδ by assumption, the
variety V is not Spechtian by Lemma 3.1.

(ii) It is routinely verified that S(xyx) ∈ O. If the monoid M is commutative,
then the monoid M × S(xyx) satisfies the identity system (0) and so is Spechtian
by Theorem 1.1(i). Conversely, suppose that the monoid M is noncommutative.
Since the monoid M is cancellative, it cannot satisfy any identity from the identity

MAXIMAL SPECHT VARIETIES OF MONOIDS 793



system (0) or its dual system. By Lemma 3.1, the monoid M × S(xyx) is not
Spechtian. �

Example 3.6. The monoid

A1
0 =

〈

a, b, 1 | a2 = a, b2 = b, ba = 0
〉

of order five is Spechtian [20]. Since the monoid A1
0 does not satisfy the identity

xhxyty ≈ xhyxty, the direct product A1
0 × S(xyx) is not Spechtian by Proposi-

tion 3.5(i). The word xhxyty is an isoterm for the variety A1

0
∨S(xyx) generated by

A1
0×S(xyx) so that by Lemma 2.1, the limit variety J1 is contained in A1

0
∨S(xyx).

Example 3.7. The regular band

ReB =
〈

a, b, 1 | a2 = a, b2 = b, aba = a, bab = b
〉

of order five is well known to be Spechtian [2], [6], [7]. Since the monoid ReB
does not satisfy the identities xhytxy ≈ xhyxyx and xyhxty ≈ yxhxty, the direct
product ReB × S(xyx) is not Spechtian by Proposition 3.5(i). The words xhytxy
and xyhxty are isoterms for the variety ReB∨S(xyx) generated by ReB×S(xyx)
so that by Lemma 2.1, the limit variety J2 is contained in ReB ∨ S(xyx).

Remark 3.8. Even though the monoid A1
0 × ReB does not satisfy any identity

from the system (0) or its dual system, it is Spechtian not only as a monoid but also
as a semigroup [22]. The variety of semigroups generated by A1

0 × ReB contains
countably infinitely many subvarieties, while the variety of monoids generated by
A1

0 ×ReB contains only 28 subvarieties [19].

4. Identities of Noncommutative Subvarieties of O

The present section establishes restrictions on the type of identities that can be
used to define noncommutative subvarieties of O. This result will then be used in
Section 5 to prove that the variety O is Spechtian.

Proposition 4.1. Each noncommutative subvariety of O can be defined by the

identities (0) together with some of the following identities :

xe0
r
∏

i=1

(hix
ei) ≈ xf0

r
∏

i=1

(hi 

xf i ),ψ ( 4.1 a )

where e0, f0, . . . , er, fr > 0 and r > 0;

xe0yf0
r
∏

i=1

(hix
eiyfi) ≈ yf0xe0

r
∏

i=1

(hi 

xei yf i ),ψ ( 4.1 b)

where e0 

, 0 

> 1, e1 

, 1 

, r 

, r 

> 0, 

∑r

i = 0 

ei 

> 2, 

∑r

i = 0 

fi 

> 2, a nd r

794 E. W. H. LEE

to put identities satisfied by
subvarieties of O into specific forms. The proof of Proposition

b)

where e0 

,ψ f0 

> 1, e1 

,ψ f1 

,ψ .ψ .ψ .ψ ,ψ er 

,ψ fr 

> 0, 

∑r

i = 0 

ei 

> 2, 

∑r

i = 0 

fi 

> 2, a nd rψ > 0.

A list of r e sult s is de ve lop e d in Se c t ions 4.1 and 4.2
is then given in

Section
4.1

4.3.



4.1. Canonical form. Suppose that x is any letter and thatw is any word written
in the form w0

∏r
i=1(x

eiwi), where e1, . . . , er > 1 and w0, . . . , wr are words that
do not involve the letter x, with w0 or wr possibly being empty. Then the factors
xe1 , . . . , xer are called x-stacks, or simply stacks, of w. Specifically, xe1 is the
primary x-stack of w, while xe2 , . . . , xer are secondary x-stacks of w.

For any set Y of letters from X , define

Ys =
{

xe11 · · ·xerr | x1, . . . , xr ∈ Y are distinct, e1, . . . , er > 1, and r > 0
}

.

Note that every stack of every word in Ys is primary.

Example 4.2. (i) {x}s = {∅, x, x2, . . .}.
(ii) {x, y}s = {∅, xe, yf , xeyf , yexf | e, f > 1}.

A word w is said to be in canonical form if

w = w0

r
∏

i=1

(hiwi) (4.2)

for some r > 0 such that sim(w) = {h1, . . . , hr} and w0, . . . , wr ∈ non(w)s.

Lemma 4.3. Any word can be converted by the identities (0) into a word in canon-

ical form.

Proof. It is clear that any word w can be written in the form (4.2) for some r > 0
with sim(w) = {h1, . . . , hr} and w0, . . . , wr ∈ non(w)∗. If a letter x ∈ non(w)
occurs more than once in some wi, then the identities (0) can be used to gather
any non-first occurrence of x in wi with the first occurrence of x in wi. Repeat
this gathering on every letter of every wi results in w0, . . . , wr ∈ non(w)s. �

4.2. Regular identities and well-balanced identities. An identity u ≈ v is
said to be regular if

(R1) u and v are in canonical form,
(R2) sim(u) = sim(v) and non(u) = non(v),
(R3) the order of appearance of the simple letters of u coincides with the order

of appearance of the simple letters of v.

The words u and v that form a regular identity can therefore be written as

u = u0

r
∏

i=1

(hiui) and v = v0

r
∏

i=1

(hivi), (4.3)

where sim(u) = sim(v) = {h1, . . . , hr} and ui, vi ∈ non(u)s = non(v)s for all i.
Such a regular identity is said to be well-balanced if ui ⊜ vi for all i. The identity
u ≈ v is not well-balanced at x if occ(x, ui) 6= occ(x, vi) for some i.

Lemma 4.4. Let σ : u ≈ v be any regular identity that is not well-balanced. Then

O{σ} = O{Aσ, σ′}

for some finite set Aσ of identities from (4.1a) and some well-balanced identity σ′.
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Proof. By assumption, the words u and v can be assumed to be those from (4.3).
Suppose that the identity σ is not well-balanced at precisely the letters x1, . . . , xm.
For each i ∈ {0, . . . , r}, let ei = occ(x1, ui) and fi = occ(x1, vi) so that ui =

aix
ei
1 bi and vi = cix

fi
1 di for some ai, bi, ci, di ∈ X ∗. Then

u = a0x
e0
1 b0

r
∏

i=1

(hiaix
ei
1 bi) and v = c0x

f0
1 d0

r
∏

i=1

(hicix
fi
1 di).

The identity α1 : x
e0
∏r

i=1(hix
ei) ≈ xf0

∏r

i=1(hix
fi) from (4.1a) is a consequence

of σ, whence O{σ} = O{α1, σ}. Let v
(1) = c0x

e0
1 d0

∏r

i=1(hicix
ei
1 di). The identity

v ≈ v(1) is clearly a consequence of α1 so that

O{σ} = O{α1, σ
(1)},

where σ(1) : u ≈ v(1) is a regular identity that is not well-balanced at precisely the
letters x2, . . . , xm.

Now for any j with 1 6 j < m, suppose that the identity σ(j) is not well-balanced
at precisely the letters xj+1, . . . , xm. Then the argument in the previous paragraph
can be repeated on the letter xj+1 to obtain

O{σ(j)} = O{αj+1, σ
(j+1)},

where αj+1 is some identity from (4.1a) and σ(j+1) is a regular identity that is not
well-balanced at precisely the letters xj+2, . . . , xm. Hence

O{σ} = O{α1, σ
(1)} = O{α1, α2, σ

(2)} = · · · = O{α1, . . . , αm, σ
(m)}.

Since σ(m) is a well-balanced identity, the lemma holds with A
σ = {α1, . . . , αm}.

�

Lemma 4.5. Let σ be any nontrivial, well-balanced identity. Then

O{σ} = O{Bσ}

for some finite set Bσ of identities from (4.1b).

This lemma can be established in the same manner as Lee [21, Lemma 4.11]. Full
details are provided here for the sake of completeness.

For the rest of this subsection, let σ : u ≈ v be the nontrivial, well-balanced
identity in Lemma 4.5. If either u or v is a simple word, then by (R2) and (R3),
the identity σ is contradictorily trivial. Therefore both words u and v are non-
simple, and they can be assume to be those from (4.3). The prefixes u0 and v0 are
clearly products of primary stacks. For each i ∈ {1, . . . , r}, any secondary stack
of ui can be moved by the identities (0) to any position within ui. Specifically,
all secondary stacks of ui can be gathered to the left and arranged in alphabetical
order. Hence the word u can be rewritten as

u
(0)
= p0

r
∏

i=1

(hisipi),

where the word pi is a possibly empty product of some primary stacks of u that
occur in ui, the word si is a possibly empty product of some secondary stacks of
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u that occur in ui, and the stacks in si are arranged in alphabetical order. Since
ui ⊜ vi for all i, gathering the stacks of v in a similar manner results in

v
(0)
= q0

r
∏

i=1

(hisiqi), (4.4)

where the word qi is a possibly empty product of some primary stacks of v that
occur in vi.

Remark 4.6. (i) pi ⊜ qi for all i since u ≈ v is well-balanced.
(ii) pr = qr = ∅ since ur and vr cannot contain any primary stacks.

It is convenient to call pi the i-th primary stack product of u, and qi the i-th
primary stack product of v.

Lemma 4.7. Let ℓ be the least integer such that the ℓ-th primary stack products of

u and v are different, that is, p0 = q0, . . . , pℓ−1 = qℓ−1, and pℓ 6= qℓ. Then

O{σ} = O{B, u ≈ v†}

for some set B of identities from (4.1b) and some word v† of the form (4.4) such that

for each i ∈ {0, . . . , ℓ}, the i-th primary stack products of u and v† are identical.

Proof. Let z ∈ X ∗ be the longest suffix that is common to both pℓ and qℓ. Then
pℓ = ayfz and qℓ = byfxe11 · · ·xess z for some a, b ∈ X ∗ and distinct stacks
xe11 , . . . , x

es
s , y

f with s > 1. It suffices to show how v can be rewritten, by in-
voking some identities of O{σ}, into a word v′ such that the ℓ-th primary stack
products of u and v′ share the longer prefix yfz. This procedure can then be
repeated to obtain the required word v†.

Recall from Remark 4.6(i) that pℓ ⊜ qℓ. Hence

(a) the stacks xe11 , . . . , x
er
r of qℓ must appear in the factor a of pℓ.

Further, the secondary y-stacks and secondary x1-stacks of both u and v must
occur in some of sℓ+1, . . . , sm. Therefore, for any i > ℓ, if either an x1-stack (say
xp1) or a y-stack (say yq) or both occur in si, then the identities in (0) can be applied
to gather these stacks to the left of si resulting in wis

′
i, where wi ∈ {xp1, y

q, xp1y
q}

and s′i is obtained from si by eliminating all occurrences of x1 and y. Therefore

u
(0)
= p0

(

ℓ−1
∏

i=1

(hisipi)

)

hℓsℓay
fz

r
∏

i=ℓ+1

(hiwis
′
ipi),

v
(0)
= q0

(

ℓ−1
∏

i=1

(hisiqi)

)

hℓsℓby
fxe11 x

e2
2 · · ·xess z

r
∏

i=ℓ+1

(hiwis
′
iqi). (4.5)

Recall from (a) that the stack xe11 appears in the factor a. Therefore retaining only
the letters x1, y, hℓ+1, . . . , hr in the identity u ≈ v results in the identity

β1 : x
e1
1 y

f

r
∏

i=ℓ+1

(hiwi) ≈ yfxe11

r
∏

i=ℓ+1

(hiwi)
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from (4.1b). Hence O{σ} = O{β1, σ}. Now it is easily seen that the identity β1 of
O{σ} can be used to interchange the primary y-stack and primary x1-stack of v in
(4.5) to obtain

v(1) = q0

(

ℓ−1
∏

i=1

(hisiqi)

)

hℓsℓbx
e1
1 y

fxe22 · · ·xess z

r
∏

i=ℓ+1

(hiwis
′
iqi).

Therefore O{σ} = O{β1, u ≈ v(1)}. If the factor xe22 · · ·xess of v(1) is nonempty,
then the procedure in this paragraph can be repeated to interchange the primary
stacks yf and xe22 in v(1). Specifically, O{u ≈ v(1)} = O{β2, u ≈ v(2)} for some
identity β2 from (4.1b) and

v(2) = q0

(

ℓ−1
∏

i=1

(hisiqi)

)

hℓsℓbx
e1
1 x

e2
2 y

fxe33 · · ·xess z

r
∏

i=ℓ+1

(hiwis
′
iqi).

Continuing in this manner, the stack yf can be moved to the right until it imme-
diately precedes the factor z, that is, O{u ≈ v(s−1)} = O{βs, u ≈ v(s)} for some
identity βs from (4.1b) and

v(s) = q0

(

ℓ−1
∏

i=1

(hisiqi)

)

hℓsℓbx
e1
1 · · ·xess y

fz

r
∏

i=ℓ+1

(hiwis
′
iqi).

H e nc e O{σ} = O{B,ψ u ≈ v 

′ }, w he re B = {β1, . . . , βs} and v′ = v(s). �

Proof of Lemma 4.5. Since ℓ in Lemma 4.7 is arbitrary, the result can be repeated
so that O{σ} = O{Bσ, u ≈ v†} for some set Bσ of identities from (4.1b) and some
word v† of the form (4.4) such that for any ℓ, the ℓ-th primary stack products of u
and v† are identical. The identity u ≈ v† is then trivial so thatO{σ} = O{Bσ}. �

4.3. Proof of Proposition 4.1. Let V be any noncommutative subvariety of O.
Then V = O{Σ} for some set Σ of identities. To show that the identities in Σ
can be chosen from (4.1), it suffices to show that if σ : u ≈ v is any identity in Σ,
then O{σ} = O{Aσ, Bσ} for some set Aσ of identities from (4.1a) and some set Bσ

of identities from (4.1b). Since any group that satisfies the identity system (0) is
commutative, the variety V is not generated by groups, whence con(u) = con(v).

Case 1. sim(u) = sim(v). Then the identity σ satisfies both (R2) and (R3). By
Lemma 4.3, the words u and v can be chosen to be in canonical form so that (R1)
holds and the identity σ is regular. It then follows from Lemmas 4.4 and 4.5 that
O{σ} = O{Aσ, Bσ} for some finite set Aσ of identities from (4.1a) and some finite
set Bσ of identities from (4.1b).

Case 2. sim(u) 6= sim(v). Then the identity σ implies the identity xk ≈ x for
some k > 2. Let u′ be the word obtained by replacing every simple letter x in u with
xk , and le t v 

′ b e t he word similarly obt aine d f rom v . T he n O{σ} = O{xk ≈ x,ψ σ′ },
where the identity σ′ : u′ ≈ v′ satisfies sim(u′) = sim(v′) and the identity xk ≈ x

belongs to (4.1a). It follows from Case 1 that O{σ′} = O{Aσ′

, Bσ′

} for some finite

set A
σ′

of identities from (4.1a) and some finite set B
σ′

of identities from (4.1b).

H e nc e O{σψ} = O{A 

σ ,ψ B 

σ }, w he re A 

σ = {xk ≈ x} ∪ A 

σ 

′ 

and B 

σ = B 

σ 

′ 

.
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5. Finite Basis Property for Subvarieties of O

Lemma 5.1 (Head [11]). Every variety of commutative monoids is finitely based.

Lemma 5.2 (Volkov [33, Corollary 2]). Any set of identities from (4.1a) defines

a finitely based variety.

The main aim of the present section is to establish the finite basis property of
every subvariety of O. Let V be any proper subvariety of O. By Lemma 5.1, the
variety V can be assumed noncommutative. By Proposition 4.1, there exists some
set Σ of identities from (4.1) such that V = O{Σ}. By Lemma 5.2, it suffices to
show that any set of identities from (4.1b) defines a finitely based subvariety of O.
This result is established in Proposition 5.7.

A quasi-order on a set X is a binary relation 6 on X that is reflexive and
transitive; in this case, (X, 6) is said to be a quasi-ordered set. The direct product of
two quasi-ordered sets (X ′, 6′) and (X ′′, 6′′) is (X ′×X ′′, 6), where 6 = 6′ × 6′′

is given by (a′, a′′) 6 (b′, b′′) if a′ 6′ b′ and a′′ 6′′ b′′.
A quasi-order on a set X is a well-quasi-order if any nonempty subset Y of X

contains finitely positively many elements minimal in Y .

Lemma 5.3 (Higman [12]). The direct product of two well-quasi-ordered sets is

well-quasi-ordered.

In this section, let 6 denote the usual ordering on the set N0 of nonnegative
integers. In what follows, since finite sequences of symbols from the direct product
N2

0 = N0×N0 will be involved, notation will become less cumbersome if each element
(e, f) of N2

0 is abbreviated by ef . For instance the order 62 = 6 × 6 on N2
0 is

given by ef 62 pq if e 6 p and f 6 q. It follows from Lemma 5.3 that (N2
0, 62) is

a well-quasi-ordered set.

Lemma 5.4. Let

ε : xe0yf0
r
∏

i=1

(hix
eiyfi) ≈ yf0xe0

r
∏

i=1

(hix
eiyfi),

π : xp0yq0
s
∏

i=1

(hix
piyqi) ≈ yq0xp0

s
∏

i=1

(hix
piyqi)

be any identities from (4.1b). Suppose that

(a) e0f0 62 p0q0,
(b) r 6 s and there exists a subsequence j1, . . . , jr of 1, . . . , s such that

e1f1 62 pj1qj1 , . . . , erfr 62 pjrqjr .

Then the inclusion O{ε} ⊆ O{π} holds.

Proof. It follows from (a) that p0 − e0, q0 − f0 ∈ N0. First suppose that r = 0 so
that the identity ε is simply xe0yf0 ≈ yf0xe0 . Since

xp0yq0
(0)
≈ xe0yf0xp0−e0yq0−f0

ε
≈ yf0xe0xp0−e0yq0−f0

(0)
≈ yq0xp0 ,

the identities (0) and ε imply the identity xp0yq0 ≈ yq0xp0 , which in turn implies
the identity π. Hence the inclusion O{ε} ⊆ O{π} holds.
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Now suppose that r > 1. Let ϕ be the substitution h1 7→ xp0−e0yq0−f0h1. Then

xp0yq0
r
∏

i=1

(hix
eiyfi)

(0)
≈ xe0yf0xp0−e0yq0−f0

r
∏

i=1

(hix
eiyfi)

=

(

xe0yf0
r
∏

i=1

(hix
eiyfi)

)

ϕ

ε
≈

(

yf0xe0
r
∏

i=1

(hix
eiyfi)

)

ϕ

= yf0xe0xp0−e0yq0−f0

r
∏

i=1

(hix
eiyfi)

(0)
≈ yq0xp0

r
∏

i=1

(hix
eiyfi).

Hence the identities (0) and ε imply the identity

ε′ : xp0yq0
r
∏

i=1

(hix
eiyfi) ≈ yq0xp0

r
∏

i=1

(hix
eiyfi).

By (b), it is easily seen that there is a substitution ψ that fixes both x and y such
that

(
∏r

i=1(hix
eiyfi)

)

ψ is a prefix of
∏s

i=1(hix
piyqi), that is,

[(

r
∏

i=1

(hix
eiyfi)

)

ψ

]

t =
s
∏

i=1

(hix
piyqi)

for some t ∈ X ∗. Then

xp0yq0
s
∏

i=1

(hix
piyqi) =

[(

xp0yq0
r
∏

i=1

(hix
eiyfi)

)

ψ

]

t

ε′

≈

[(

yq0xp0

r
∏

i=1

(hix
eiyfi)

)

ψ

]

t

= yq0xp0

s
∏

i=1

(hix
piyqi).

Therefore the identity ε′ implies the identity π, whence the inclusion O{ε} ⊆ O{π}
holds. �

Let (N2
0)

∗ denote the set of all finite sequences of symbols from N2
0. For any two

sequences e = (e1f1, . . . , erfr) and p = (p1q1, . . . , psqs) in (N2
0)

∗, define e 6∗
2 p if

there exists a subsequence j1, . . . , jr of 1, . . . , s such that

e1f1 62 pj1qj1 , . . . , erfr 62 pjrqjr.

Since (N2
0, 62) is a well-quasi-ordered set, it follows from the well-known Higman’s

lemma [12, Theorem 4.3] that ((N2
0)

∗, 6∗
2) is also a well-quasi-ordered set.

Lemma 5.5. The direct product (N2
0 × (N2

0)
∗, 4), where 4 = 62 × 6∗

2, is a well-

quasi-ordered set.
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Proof. This follows from Lemma 5.3 since (N2
0, 62) and ((N2

0)
∗, 6∗

2) are well-quasi-
ordered sets. �

Now associate each identity

ε : xe0yf0
r
∏

i=1

(hix
eiyfi) ≈ yf0xe0

r
∏

i=1

(hix
eiyfi)

from (4.1b) with the element ~ε = (e0f0, (e1f1, . . . , erfr)) in N2
0 × (N2

0)
∗. Then the

following result is a consequence of Lemma 5.4

Lemma 5.6. Let ε and π be any identities from (4.1b). If ~ε 4 ~π, then the inclusion

O{ε} ⊆ O{π} holds.

Proposition 5.7. Let B be any set of identities from (4.1b). Then the variety

O{B} is finitely based.

Proof. Since
(

N2
0 × (N2

0)
∗, 4

)

is a well-quasi-ordered set by Lemma 5.5, the subset
~B = {~ε | ε ∈ B} of N2

0 × (N2
0)

∗ contains finitely positively many elements that are

minimal in ~B. Let ε1, . . . , εm ∈ B be such that ~ε1, . . . , ~εm are all the elements

minimal in ~B. The inclusion O{B} ⊆ O{ε1, . . . , εm} holds vacuously. If π ∈ B,
then ~εi 4 ~π for some i so that by Lemma 5.6, the identity π is satisfied by the
variety O{εi}. The inclusion O{ε1, . . . , εm} ⊆ O{B} thus follows. �
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