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Agenda

I Introduction to Bayesian statistics.

I Bayesian Multiple Binary Classifier.

Wensong Wu, wenswu@fiu.edu Make Decisions Like a Bayesian



Bayesian Statistics

What is Bayesian Statistics?
I To most statisticians: An approach to the philosophy of science,

different from classical (Frequentist) statistics.

I To most practitioners: A convenient methodology to analyze data,
usually highly computational.

An introduction today:
I Bayes’ Rule: A Probability rule that makes all happen.

I Bayesian inference: What Bayesian can do.

I Why Bayesian has become popular.

I Bayesian decision theory: Making decision as a Bayesian!
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Bayes’ Rule: Poxy Disease

Suppose you are a doctor, confronted with a patient who is covered
in spots all over his face. The patient’s symptoms are consistent
with chickenpox, but they are also consistent with another, more
dangerous, disease, smallpox. Decision to make: A diagnosis.
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Bayes’ Rule: Poxy Disease

I Observed data x= spots

I Unknown truth of disease, θ, could be θc=chickenpox or
θs=smallpox.
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Bayes’ Rule: Poxy Disease

Likelihood: You know that 80% of people with chickenpox have
spots, but also that 90% of people with smallpox have spots.

I Likelihood(θc) = p(x |θ = θc) = P(spots|chickenpox) = 0.8

I Likelihood(θs) = p(x |θ = θs) = P(spots|smallpox) = 0.9

Principle of classical statistical inference: the estimated unknown
truth would maximize the likelihood function (MLE).

Based on MLE principal, what’s your diagnosis?
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Bayes’ Rule: Poxy Disease

Prior probabilities: As a knowledgeable doctor, you know that
chickenpox is common, whereas smallpox is rare, and is therefore
intrinsically improbable. The prevalence of both diseases are 100
and 1 in every 1,000 individuals, respectively.

I p(θc) = P(chickenpox) = 0.1

I p(θs) = P(smallpox) = 0.001

Need to combine the prior information and the data likelihood.
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Bayes’ Rule: Poxy Disease

Posterior probabilities: Use Bayes’ rule to find probability of
disease given data, “Bayesian update”,“weighted likelihood”.

p(θc |x) = P(chickenpox |spots) =
P(chickenpox and spots)

P(spots)

=
p(x |θc)p(θc)

p(x |θc)p(θc) + p(x |θs)p(θs)

=
0.8 ∗ 0.1

0.8 ∗ 0.1 + 0.9 ∗ 0.001
= 0.989.

p(θs |x) =
p(x |θs)p(θs)

p(x |θc)p(θc) + p(x |θs)p(θs)

=
0.9 ∗ 0.001

0.8 ∗ 0.1 + 0.9 ∗ 0.001
= 0.011.
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Bayes’ Rule: Poxy Disease

One Bayesian principle: the estimated unknown truth would
maximize a posterior (MAP). Diagnosis based on MAP principle?
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Bayesian Inference

I Frequentist: fixed θ. Bayesian: random θ according to the
prior distribution p(θ), a belief before gaining the current data.

I Choices of prior distribution: subjective, objective, Empirical
Bayes, hierarchical prior, nonparametric Bayes,...

I Bayesian version of almost all inference: estimation,
“confidence” interval, hypothesis “testing”, prediction, model
assessment and selection...
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Why Bayesian Statistics Becomes Popular?

The theory is straightforward and with good properties.

I Credible interval: Mid 95% under posterior distribution.

I Hypothesis test based on post. probability of alternative
P(Ha|x) or Bayes factor.

I Select model based on post. probability of models P(Model |x).

I Automatic shrinkage and parsimony.

Computation is feasible, now.

I Not all models have a conjugate prior, so that the posterior
distribution may not be in a closed form.

I Luckily, we have Monte Carlo methods to approximate.

I In the case of high dimension of parameters MLE fails, but
Bayesian works!
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Bayesian Decision Theory

I Unknown truth of parameter: θ.

I Data X has a distribution given the value of θ.

I In order to discover the truth we make an action a.

I Loss function L(a, θ) represents the loss of an action vector a
when the parameter is θ.

I The decision making process is represented by a decision
function δ : data→ action.

I The risk of decision is the average loss over all possible sample
data: R(δ, θ) = EX (L(δ(X ), θ)).

I Classical decision theory has many different criteria to select
the best decision function with the smallest risk.
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Bayesian Decision Theory

I Bayesian decision theory assigns a prior distribution of
θ ∼ p(θ).

I Bayes risk is the average of risk over all possible values of θ:
r(δ) = Eθ(R(δ, θ)).

I The optimal decision making procedure is the δ∗ that
minimize the Bayes risk.

I As a Bayesian, you would go for the Bayes optimal action
a∗ = δ∗(data)!
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Agenda

I Introduction to Bayesian statistics.

I Bayesian Multiple Binary Classifier.

Wensong Wu, wenswu@fiu.edu Make Decisions Like a Bayesian



An Example: Diagnosis of Disease

Disease Symptom 1 Symptom 2 ... Symptom 20

Yes Yes No . . . Medium
No No Yes . . . Low
...

...
...

...
...

Yes Yes Yes . . . High

? No No . . . Medium
? Yes Yes . . . Low

?
...

...
...

...
? No Yes . . . Low
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An Example: Diagnosis of Disease

Disease Sym1 Sym2 ...

Y1 X11 X12 . . .
Y2 X21 X22 . . .
...

...
...

...
YN XN1 XN2 . . .

W1 V11 V12 . . .
W2 V21 V22 . . .

...
...

...
...

WM VM1 VM2 . . .

Multiple Binary Classification

I For N subjects on file (training set),
observe Yi=I(Disease), and Xi1, Xi2,
. . . ,Xip, P categorical traits,
i = 1, 2 . . . ,N.

I For M new subjects, observe
Vm1,Vm2, . . . ,Vmp, m = 1, 2 . . . ,M

I Want to predict who have the disease
by predicting Wm,m = 1, 2, . . . ,M
simultaneously.

Wensong Wu, wenswu@fiu.edu Make Decisions Like a Bayesian



An Example: Diagnosis of Disease

Disease Sym1 Sym2 ...

Y1 X11 X12 . . .
Y2 X21 X22 . . .
...

...
...

...
YN XN1 XN2 . . .

W1 V11 V12 . . .
W2 V21 V22 . . .

...
...

...
...

WM VM1 VM2 . . .

Sparse Logic Models

I Sparsity: Only a few of symptoms are
relevant.

I Want to discover the logic rule of
symptoms, for example, higher risk if
Symptom 1 and Symptom 2 are
present, or Symptom 3 is at the low
level.
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Importance and Framework

I High-Dimensional Classification.
I Screening for ADHD students in a new school based on the

records of previously studied students in other schools;
I Admission of future students based their records and on the

records of previous admitted students;
I Issue of credit cards among many applicants;
I ...

I Theoretical framework.
I Decision-theoretic.
I Bayesian.

I Computational issues.
I Make optimal multiple classifications.
I Search for the best Logic rules.
I Bayesian implementations.
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Boolean Functions

I Bq : {0, 1}q → {0, 1} is a Boolean function of dimension q if
Bq(u1, u2, . . . , uq) is a logic expression built from binary
inputs u1, u2, . . . , uq by using the operators ∧ (“and”), ∨
(“or”), and brackets.

I Example: B3(u1, u2, u3) = (u1 ∧ u2) ∨ u3 = I(Symptom 1 and
Symptom 2 are present, or Symptom 3 is low), where

I u1 =I(Symptom 1 is present),
I u2 =I(Symptom 2 is present),
I u3 =I(Symptom 3 = Low).
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Sparse Logic Regression Models

I Xi
d
= Vm

iid∼ G (·; η), η ∈ E unknown.

I Yi |Xi = xi
ind∼ Bernoulli(ψ(xi ;β, (A, C,B))),

I ψ(xi ;β, (A, C,B)) = h[β0 + β1 B(xi ; (A, C)) ],

I h(·) is a known link function,
I β = (β0, β1) ∈ B is unknown regression coefficients,

I B(xi ; (A, C)) ≡ B∑
j∈A |Cj |({I (xij = C ) : C ∈ Cj , j ∈ A}) is a

Boolean expression involving a subset of traits
{xij : j ∈ A ⊂ {1, 2, . . . ,P}} at levels C = {Cj ⊂ X0j : j ∈ A}.

I Sparsity: |A| � P.

I Wm|Vm = vm
ind∼ Bernoulli(ψ(vm;β, (A, C,B)))

I θ = (η,β) ∈ Θ = E × B is the unknown parameter vector.

I Assume (A, C,B) uniquely determines the latent logic model.

I This defines a joint distribution of (S,W) = (X,Y,V,W)
given parameter θ and logic model M = (A, C,B).
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Bayes Multiple Binary Classifier (BaMBiC)

I Action a = (a1, a2, . . . , aM) ∈ A = {0, 1}M
I Interpretation: am = I (Classify Wm = 1).

I Multiple Decision Function: δ = (δ1, . . . , δM) : S → A.
I Loss function between an action a and an unknown truth w:

L(a,w).

I Prior Π = ΠMΠθ with independent prior on the model space
M = (A, C,B) ∼ ΠM and parameter space θ ∼ Πθ(·).

I Bayes risk of MDF: rΠ(δ) = EMEθE(S,W)|(M,θ)L(δ(S),W).

I Bayes Multiple Binary Classifier (BaMBiC) is the δ∗ such that

rΠ(δ∗) = inf
δ∈D

rΠ(δ).
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Loss Function Specification

General Form: L(a,w) = λL0(a,w) + L1(a,w),
I L0 is a Type I-type loss: about false postives.

I L0(a,w) =
1

M

∑M
m=1 am(1− wm) = FP

I L0(a,w) =

∑M
m=1 am(1− wm)

[
∑M

m=1(1− wm)] ∨ 1
= FPR=1-Specificity

I L1 is a Type II-type loss: about false negatives.

I L1(a,w) =
1

M

∑M
m=1(1− am)wm = FN

I L1(a,w) =

∑M
m=1(1− am)wm

[
∑M

m=1 wm] ∨ 1
= FNP=1-Sensitivity

I Many choices of (L0, L1) loss functions pairs.

I λ is a pre-determined cost ratio.
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Bayes Multiple Binary Classifier (BaMBiC)

I Bayes risk rΠ(δ) = ESE(W,M,θ)|SL(δ(S),W).

I Posterior average loss function of an action a ∈ A and data s

L̃(a, s) = E(W,M,θ)|S=s(L(a,W)).

I If the prior Π specifies the independence of η and β,

L̃(a, s) = EM|(X=x,Y=y)Eβ|(X=x,Y=y,M)EW|(V=v,M,β)L(a,W).

I Bayes optimal action of s = (x, y, v)

a∗(s) = arg min
a∈A

L̃(a, s).

I Form of the BaMBiC: δ∗ : S→ A with δ∗(S) = a∗(S).

I Difficulty 1: A = {0, 1}M has 2M elements.

I Difficulty 2: Too many possible logic models M = (A, C,B).
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Efficient Searching of the Bayes Optimal Action

A Two-Step Searching Strategy

I Step I: Find the best action in each of the sub-action space

Ak : {a ∈ A : aT1 = k}

for k = 0, 1, 2, . . . ,M. Denote these optimal actions by a∗k(x)
for k = 0, 1, 2, . . . ,M.

I Step II: Find the best among the a∗k(x), k = 0, 1, 2, . . . ,M.

I Remark: Searching order is no more than O(M2 logM).
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Efficient Searching: Step 1

Search for the best on the each sub-action space sliced by the
number of ”1”s;

Action Space When M = 4
k = 0 (0, 0, 0, 0)
k = 1 (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
k = 2 (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1),

(0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1)
k = 3 (1, 1, 1, 0), (1, 0, 1, 1), (1, 1, 0, 1), (0, 0, 0, 1)
k = 4 (1, 1, 1, 1)
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Efficient Searching: Step 1

Search for the best on the each sub-action space sliced by the
number of ”1”s;

Action Space When M = 4
k = 0 (0, 0, 0, 0)

k = 1 (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)

k = 2 (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1),
(0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1)

k = 3 (1, 1, 1, 0), (1, 0, 1, 1), (1, 1, 0, 1), (0, 0, 0, 1)

k = 4 (1, 1, 1, 1)
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Efficient Searching: Step 1

Search for the best on the each sub-action space sliced by the
number of ”1”s.

Action Space When M = 4
k = 0 (0, 0, 0, 0)

k = 1 (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)

k = 2 (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1),
(0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1)

k = 3 (1, 1, 1, 0), (1, 0, 1, 1), (1, 1, 0, 1), (0, 0, 0, 1)

k = 4 (1, 1, 1, 1)
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Efficient Searching: Step 2

Search for the best among the sub-bests.

Action Space When M = 4
k = 0 (0, 0, 0, 0)

k = 1 (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)

k = 2 (1, 1, 0, 0), (1,0,1,0), (1, 0, 0, 1),
(0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1)

k = 3 (1, 1, 1, 0), (1, 0, 1, 1), (1, 1, 0, 1), (0, 0, 0, 1)

k = 4 (1, 1, 1, 1)
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Model Selection Procedure for Logic Regression Models

I Instead of model averaging when calculating posterior average
loss, select one best model M = (A, C,B) given data S = s
for better interpretation.

I Logic regression (Ruczinski et al., 2003) and its Bayesian
versions (Fritsch and Ickstadt, 2007)

I Consider equivalent Logic Trees.
I Adaptive and stepwise tree-based algorithms.

I Our approach:

Step 1 APriori Algorithm for candidate “and” rules e.g. R1 = X1 ∧X2,
and R2 = X2 ∧ X3, . . ..

Step 2 Bayesian model selection to reduce the number of candidates.
Step 3 APriori Algorithm for candidate “or” rules of R1,R2, . . ., e.g.

R1 ∨ R2,....
Step 4 Bayesian model selection to select the best rule.
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APriori Algorithm

I Algorithm for frequent item set and association rule mining.

I A typical application: based on a list of shopping baskets, if a
customer buys an apple and bread, is she going to buy milk?

I Search for “and” rules based on (X,Y): Find rules
B(X; (A, C))⇒ (Y = 0) or B(X; (A, C))⇒ (Y = 1) with the
following properties, denoting the rules as LHS ⇒ RHS :

I Support(LHS ⇒ RHS) = P(LHS ∧ RHS) ≥ s.
I Confidence(LHS ⇒ RHS)= P(RHS |LHS) ≥ c .
I Length(LHS ⇒ RHS) =

∑
j∈A |Cj |+ 1 ≤ t.

I Parameters s, c , and t determine the number of selected rules.

I Search for “or” rules based on (X,Y): Apply to ”not X” and
by De Morgan’s Law. But the meaning of support, confidence
are different!
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Bayesian Model Selection

I Given a logic model M = (A, C,B) and parameter
β = (β0, β1), the likelihood of data (x, y) is

p((x, y)|M,β) =
N∏
i=1

ψ(xi ;β,M)yi (1− ψ(xi ;β,M))1−yi ,

where ψ(xi ;β,M) = h[β0 + β1B(xi ; (A, C))].

I On a candidate model space, assign higher prior probability to
shorter Boolean expressions: |A| ∼ d + Binomial(D − d , p0),
where d = min |A|, d = max |A|, and p0 ∈ (0, 1) close to 0.

I Given the length |A|, assign equal prior probabilities to the
models of the same length.

I Assign prior of β independent of model: β|M ∼ π(β).
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Bayesian Model Selection

I The posterior probability of model M given data (x, y) is

π(M|(x, y)) =
p((x, y)|M)π(M)∑
M′ p((x, y)|M′)π(M′)

,

where p((x, y)|M) =
∫
p((x, y)|M,β)π(β)dβ.

I The optimal model is selected as

M∗ = arg max
M

p((x, y)|M)π(M).

I In Step 2, select the “and” rules for the next step if

π(M|(x, y)) > 0.05π(M∗|(x, y)).

I If N is large, the (approximated) optimal model is selected as

M∗ = arg max
M

{
log p((x, y)|M, β̂) + log π(M)

}
,

where β̂ is the MLE under model M.
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An Illustration

I Xi ,Vm, i = 1, 2, . . . ,N = 100,m = 1, 2, . . . ,M = 100.

I P = 10, the first 8 are binary, and the last 2 are of three levels
with Binomial probability 0.5.

I Yi |Xi
ind∼ Ber(ψ(Xi ;β)), Wm|Vm

ind∼ Ber(ψ(Vi ;β)).

I ψ(x;β) = 1/(1 + exp(β0 + β1 (x1 ∧ x2))).

I Generate data with β0 = −1, β1 = 2.

I Prior β ∼ N(0, 502).

I APriori Algorithm: s=0.15, c=0.6, t=5
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One Simulated Data

Step 1: APriori Algorithm selected 69 “and” rules.

Scatter plot for 69 rules
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One Simulated Data

Step 2: 6 “and” rules among 69 were selected by Bayesian model
selection. (Identifiability issue!)

Rule 1 x.1=1, x.2=1 ⇒ Y=1

Rule 2 x.2=1 ⇒ Y=1

Rule 3 x.2=0 ⇒ Y=0

Rule 4 x.1=0 ⇒ Y=0

Rule 5 x.1=1, x.2=1, x.6=0 ⇒ Y=1

Rule 6 x.1=1, x.2=1, x.3=0 ⇒ Y=1
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One Simulated Data

Step 3: APriori Algorithm selected 13 “or” of previously selected 6
“and” rules.

Scatter plot for 13 rules
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One Simulated Data

Step 4: The best model is selected among 6 “and” rules and 13
“or” rules. It is the correct rule.

Rule 1 x.1=1, x.2=1 ⇒ Y=1

rule 2 or rule 4 ⇒ Y=1

Rule 2 x.2=1 ⇒ Y=1

Rule 3 x.2=0 ⇒ Y=0

rule 3 or rule 5 ⇒ Y=0

Rule 4 x.1=0 ⇒ Y=0

Rule 5 x.1=1, x.2=1, x.6=0 ⇒ Y=1

Rule 6 x.1=1, x.2=1, x.3=0 ⇒ Y=1

... ... ... ...
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Simulations

True model X1 ∧ X2. Correct model selection 67 times out of 100
simulations.
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Simulations

True model X1 ∨ X2. Correct model selection 70 times out of 100
simulations.

Selected Oracle
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Simulations

True model X1 ∧ (X2 ∨ X3). Correct model selection 11 times out
of 100 simulations.

Selected Oracle
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Lupus Disease Classification

A total of 167 Lupus patients with 19 binary symptoms and 1
three-level symptom. Among them, 111 are of one type of Lupus
disease called “SLE”, and the other are of “MCTD”.

Scatter plot for 3179 rules
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Lupus Disease Classification

After step 2, 10 “and” rules were selected. The final selected logic
model is an “or” type: History of proximal muscle weakness and
(Observed joint swelling or Sclerodactyly) ⇒ SLE.
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Conclusions

On Bayesian framework

I Bayesian framework brings prior belief of unknown truth into
decision making. After gaining data the posterior decision is a
update of the belief.

I It becomes popular mainly because of the advent of high
speed computing, especially when the unknown parameters
are high dimensional.

On Bayesian multiple decision problem

I Developed a general class of Bayes multiple binary classifier.

I Considered a class of loss functions of two types of error rates.

I Developed an efficient model selection procedure.

I Illustrated in simulations and real data analysis.
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