Theses and Dissertations

Copyright Statement

All rights reserved. This publication is intended for use solely by faculty, students, and staff of Nova Southeastern University. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.

Defense Date

12-21-2012

Document Type

Thesis - NSU Access Only

Degree Name

M.S. Marine Biology

Second Degree Name

M.S. Coastal Zone Management

Department

Oceanographic Center

First Advisor

Joshua S. Feingold

Second Advisor

Peter Glynn

Third Advisor

Bernhard M. Riegl

Abstract

Porites lobata is an important reef building coral in the tropical eastern Pacific and the dominant Porites species in the Galápagos archipelago. Following the 1982-83 El Niño-Southern Oscillation the Galápagos Islands experienced 97-99% coral mortality, leaving many areas throughout the archipelago denuded of corals. Because very few long term assessments have been conducted on the growth and resilience of P. lobata to natural disturbances in the Galápagos Islands (Glynn et al., 2001; Glynn et al., 2009), benthic surveys were performed on a uniquely dense aggregation of P. lobata colonies at Devil’s Crown, Floreana Island between 1993 and 2011. Annual changes in live tissue area were calculated for the majority of the population (n=17) using Coral Point Count with Excel extensions (CPCe 3.6) software to determine growth and recovery trends for this aggregation. Total live tissue area (n=10) increased from 1993 to 2011, however due to high interannual variability this increase was not significant. Within this overall pattern, a general trend of decline was observed in live tissue cover from 1993 to 2000, with increases in tissue area observed from 2000 to 2011. Severe bleaching (85-100%) was observed during the 1998 survey, followed by 42% tissue loss (n=10), coinciding with sea water warming associated with the very strong 1997-1998 El Niño-Southern Oscillation event. Subsequent regrowth of coral tissue was observed during the 2001 survey with continued recovery through 2009. Multiple comparison testing revealed a significant difference between the impacted state (1999) and the recovered state (2009), (p = 0.002, Dunn’s method, n=17), suggesting this aggregation required a period of ten years to recover from this disturbance. During this recovery period the moderately strong 2007-2008 La Niña, with accompanying stressful low temperatures, occurred but did not interrupt tissue regrowth. Warmer than average sea surface temperatures occurred during the warm months from 2008 to 2011, during which time a cool period occurred from 2010 to 2011. While the magnitude and duration of temperature anomalies during warming were not as great as those observed during the 1997-98 ENSO, low temperatures observed during the cool period were similar to those experienced throughout the 2007-08 La Niña. During this time total live tissue cover was reduced by 19% (n=10); however it is unknown whether this was due to warming or the following cool period. Based on results from the 1997-98 El Niño and 2007-08 La Niña, this reduction in live tissue was most likely caused by elevated sea surface temperatures. Data on the growth and resilience of P. lobata populations at Devil’s Crown will be used for conservation and management of this important resource.

To access this thesis/dissertation you must have a valid nova.edu OR mynsu.nova.edu email address and create an account for NSUWorks.

Free My Thesis

If you are the author of this work and would like to grant permission to make it openly accessible to all, please click the Free My Thesis button.

Share

COinS