Theses and Dissertations

Copyright Statement

All rights reserved. This publication is intended for use solely by faculty, students, and staff of Nova Southeastern University. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.

Defense Date

1988

Document Type

Thesis - NSU Access Only

Degree Name

M.S. Ocean Science

Department

Oceanographic Center

First Advisor

Nathaniel Apter

Second Advisor

Patricia Blackwelder

Third Advisor

Robert Gore

Abstract

A mathematical analysis of gastropod shell geometry is employed as a tool for examining the taxonomy and phylogenetic structure of a group of cryptic, sibling littorinid species, herein termed the Nodilittorina ziczac species-complex. The constituent members of the complex are Nodilittorina ziczac, N. lineata and N. lineolata. The species-complex was previously described by Borkowski and Borkowski (1969), but these authors overlooked ontogenetic changes in shell geometry, and the possibility of geometric variation in the complex's geographic range, which is Florida to Brazil.

Populations were sampled at one site in Florida and two sites in St. Croix, U.S.V.I. Shells were examined using an application of Raup's (1966) description of shell geometry, which makes it possible to examine shell geometry in a combined ontogenetic and allometric approach. Of the three species, N. lineolata and N. lineata were found to differ in shell geometry between Florida and St. Croix, thus dispelling any hope of deriving a geometric signature for each species. The cause of this variation is believed to be morphological plasticity, rather than genetic variation or local selection for a particular genotype. There is, however, the possibility that N. lineolata is actually two separate sibling species, N. riisei and N. glaucocincta. This idea would then be supported by the geometric differences presented in this study.

The study concludes that shell geometry is a limited descriptor of taxonomic identity, and bears dubious phylogenetic information at the specific level, particularly when the subjects belong to widely dispersing, panmictic populations. Moreover, it is absolutely necessary to utilize several analytical methods in order to gain any understanding of phylogenetic relationships. Shell geometry is, however, an important indicator of the interaction of genotype and environment at the population level, and can thus be used locally as a taxonomic discriminator.

Comments

Supported in part by a grant from the Karlen Fund for Research in Conservation.

Files over 10MB may be slow to open. For best results, right-click and select "Save as..."

To access this thesis/dissertation you must have a valid nova.edu OR mynsu.nova.edu email address and create an account for NSUWorks.

Free My Thesis

If you are the author of this work and would like to grant permission to make it openly accessible to all, please click the Free My Thesis button.

Share

COinS