Theses and Dissertations

Copyright Statement

All rights reserved. This publication is intended for use solely by faculty, students, and staff of Nova Southeastern University. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, now known or later developed, including but not limited to photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author or the publisher.

Defense Date

12-4-2009

Document Type

Thesis - NSU Access Only

Degree Name

M.S. Marine Environmental Sciences

Department

Oceanographic Center

First Advisor

Samuel Purkis

Second Advisor

Bernhard Riegl

Third Advisor

Erich Hochberg

Abstract

A growing number of scientists are investigating applications of landscape ecology principles to marine studies, yet few coral reef scientists have examined spatial patterns across entire reefscapes with a holistic ecosystem-based view. This study was an effort to better understand reefscape ecology by quantitatively assessing spatial structures and habitat arrangements using remote sensing and geographic information systems (GIS).

Quantifying recurring patterns in reef systems has implications for improving the efficiency of mapping efforts and lowering costs associated with collecting field data and acquiring satellite imagery. If a representative example of a reef is mapped with high accuracy, the data derived from habitat configurations could be extrapolated over a larger region to aid management decisions and focus conservation efforts.

The aim of this project was to measure repeating spatial patterns at multiple scales (10s m2 to 10s km2) and to explain the environmental mechanisms which have formed the observed patterns. Because power laws have been recognized in size-frequency distributions of reef habitat patches, this study further investigated whether the property exists for expansive reefs with diverse geologic histories.

Intra- and inter-reef patch relationships were studied at three sites: Andavadoaka (Madagascar), Vieques (Puerto Rico), and Saipan (Commonwealth of the Northern Mariana Islands). In situ ecological information, including benthic species composition and abundance, as well as substrate type, was collected with georeferenced video transects. LiDAR (Light Detection and Ranging) surveys were assembled into digital elevation models (DEMs), while vessel-based acoustic surveys were utilized to empirically tune bathymetry models where LiDAR data were unavailable. A GIS for each site was compiled by overlying groundtruth data, classifications, DEMs, and satellite images. Benthic cover classes were then digitized and analyzed based on a suite of metrics (e.g. patch complexity, principle axes ratio, and neighborhood transitions).

Results from metric analyses were extremely comparable between sites suggesting that spatial prediction of habitat arrangements is very plausible. Further implications discussed include developing an automated habitat mapping technique and improving conservation planning and delimitation of marine protected areas.

To access this thesis/dissertation you must have a valid nova.edu OR mynsu.nova.edu email address and create an account for NSUWorks.

Free My Thesis

If you are the author of this work and would like to grant permission to make it openly accessible to all, please click the Free My Thesis button.

Share

COinS