Title

Accretion History and Stratigraphy of mid-Holocene Coral Reefs from Southeast Florida, USA

Event Name/Location

2013 Meeting of the Americas

Document Type

Conference Proceeding

Publication Date

5-14-2013

Keywords

Macropaleontology, Micropaleontology, Abrupt/Rapid climate change, Coral Reef Systems, Corals

Abstract

he southeast Florida shelf is a well-studied coral reef region previously used in studies of late Quaternary sea-level, reef geomorphology, and paleoecology in the sub-tropical Atlantic. Situated on the shelf is the southeast Florida continental reef tract; a ~125 km long Holocene fringing/barrier coral reef complex, composed of three shore-parallel linear reefs (‘outer’, ‘middle’, and ‘inner’ reefs) of varying age. Since few detailed stratigraphic descriptions exist, drill cores were extracted to further understand the composition, character, and radiometric ages of reef material in order to reconstruct the accretion history. Sixteen reef cores from the shallow inner reef were collected along and across the reef axes and were combined with lidar bathymetric data for stratigraphic and geomorphologic analyses. Macroscopic and microscopic (petrographic thin sections) examinations of reef clasts were performed to identify coral and reef infauna species compositions, diagenetic facies, and taphonomic features for interpretation of former reef environments/zonation. The southeast Florida continental reef tract was characterized by dynamic reef terminations, backstepping, and re-initiation in response to post-glacial sea-level rise and flooding of topography suitable for reef initiation and growth. Results suggest that the outer reef accreted from ~10.6-8.0 ka cal BP, the middle reef from at least ~5.8-3.7 ka cal BP, and the inner reef from ~7.8-5.5 ka cal BP. The outer reef is the best-developed reef, followed by the inner reef, while the middle reef apparently has relatively little framework buildup. New data from this study and a lack of significant age overlaps confirm that reef backstepping from the outer to the inner reef occurred within a few hundred years after outer reef termination. This is consistent with temporal and spatial scales reported from backstepped reefs in St. Croix and Puerto Rico. The cause of the backstep is still unknown however some studies suggest the mid-Holocene (~8-5 ka) was punctuated by a transition to a more moist and warm climate and/or a potentially rapid sea-level rise. The color and texture of cements support increased freshwater input as a likely agent of reef demise. We also observed that the once-dominant Caribbean reef builder Acropora palmata was mostly present throughout the early and mid-Holocene but absent thereafter. Reef geomorphology was strongly determined by the length of presence of this species, as the thickness, size, and shape of the three linear reefs clearly reflect its declining importance during the Holocene in Florida.

Comments

Identifer: PP54A-02

Section: Paleooceanography and Paleoclimatology

Session: Paleoceanography and Paleoclimatology General Contributions II

ResearchID/ORCID ID

0000-0002-6003-9324; F-8807-2011