Document Type

Article

Publication Date

1-19-2012

Publication Title

PLoS One

Keywords

Beaches, Biogeography, Coral reefs, Florida, Habitats, Marine conservation, Marine ecosystems, Reefs

ISSN

1932-6203

Volume

7

Issue/No.

1 e30466

First Page

1

Last Page

14

Abstract

Marine organism diversity typically attenuates latitudinally from tropical to colder climate regimes. Since the distribution of many marine species relates to certain habitats and depth regimes, mapping data provide valuable information in the absence of detailed ecological data that can be used to identify and spatially quantify smaller scale (10 s km) coral reef ecosystem regions and potential physical biogeographic barriers. This study focused on the southeast Florida coast due to a recognized, but understudied, tropical to subtropical biogeographic gradient. GIS spatial analyses were conducted on recent, accurate, shallow-water (0–30 m) benthic habitat maps to identify and quantify specific regions along the coast that were statistically distinct in the number and amount of major benthic habitat types. Habitat type and width were measured for 209 evenly-spaced cross-shelf transects. Evaluation of groupings from a cluster analysis at 75% similarity yielded five distinct regions. The number of benthic habitats and their area, width, distance from shore, distance from each other, and LIDAR depths were calculated in GIS and examined to determine regional statistical differences. The number of benthic habitats decreased with increasing latitude from 9 in the south to 4 in the north and many of the habitat metrics statistically differed between regions. Three potential biogeographic barriers were found at the Boca, Hillsboro, and Biscayne boundaries, where specific shallow-water habitats were absent further north; Middle Reef, Inner Reef, and oceanic seagrass beds respectively. The Bahamas Fault Zone boundary was also noted where changes in coastal morphologies occurred that could relate to subtle ecological changes. The analyses defined regions on a smaller scale more appropriate to regional management decisions, hence strengthening marine conservation planning with an objective, scientific foundation for decision making. They provide a framework for similar regional analyses elsewhere.

Comments

©2012 Brian K. Walker. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Additional Comments

NOAA award #: NA03NOS4260046

DOI

10.1371/journal.pone.0030466