College of Osteopathic Medicine Faculty Articles

Title

Physicochemical and Graph Theoretical Descriptors in Developmental Toxicity SAR: A Comparative Study

ISBN or ISSN

1062-936X

Publication Title

SAR and QSAR in Environmental Research

Volume

11

Issue

5-6

Publication Date / Copyright Date

2-1-2001

DOI Number

10.1080/10629360108035358

Abstract

Chemical insults to the developing fetus can lead to growth retardation, malformation, death, and functional deficits. The present study seeks to determine if physicochemical and/or graph theoretical parameters can be used to determine a structure-activity relationship (SAR) for developmental toxicity, and if consistency is observed among the selected features. The biological data utilized consists of a diverse series of compounds evaluated within the Chernoff-Kavlock in vivo mouse assay. Physicochemical parameters calculated correspond to electronic, steric, and transport properties. Graph theoretical parameters calculated include the simple, valence, and kappa indices. Both sets of parameters were independently applied to derive SARs in order to compare the quality of the respective models. Multiple random sampling, without replacement, was utilized to obtain ten training/test partitions. Models were built by linear discriminant analysis, decision trees, and neural networks respectively. Comparisons on identical sets of data were carried out to determine if any of the model building procedures had a significant advantage in terms of predictive performance. Furthermore, comparison of the features selected within and across the model building processes led to the determination of model consistency. Our results indicate that consistent features related to developmental toxicity are observed and that both physicochemical and graph theoretical parameters have equal utility.

Disciplines

Medical Specialties | Medicine and Health Sciences | Osteopathic Medicine and Osteopathy

This document is currently not available here.

Peer Reviewed

Find in your library

Share

COinS