College of Psychology: Faculty Articles

Title

A Life-like Virtual Cell Membrane Using Discrete Automata

Document Type

Article

Publication Date

1-1-2004

Publication Title

Molecular and Cellular Proteomics

ISSN

1386-6338

Volume

5

Abstract

A framework is presented that captures the discrete and probabilistic nature of molecular transport and reaction kinetics found in a living cell as well as formally representing the spatial distribution of these phenomena. This particle or agent-based approach is computationally robust and complements established methods. Namely it provides a higher level of spatial resolution than formulations based on ordinary differential equations (ODE) while offering significant advantages in computational efficiency over molecular dynamics (MD). Using this framework, a model cell membrane has been constructed with discrete particle agents that respond to local component interactions that resemble flocking or herding behavioral cues in animals. Results from simulation experiments are presented where this model cell exhibits many of the characteristic behaviors associated with its biological counterpart such as lateral diffusion, response to osmotic pressure gradients, membrane growth and cell division. Lateral diffusion rates and estimates for the membrane modulus of elasticity derived from these simple experiments fall well within a biologically relevant range of values. More importantly, these estimates were obtained by applying a simple qualitative tuning of the model membrane. Membrane growth was simulated by injecting precursor molecules into the proto-cell at different rates and produced a variety of morphologies ranging from a single large cell to a cluster of cells. The computational scalability of this methodology has been tested and results from benchmarking experiments indicate that real-time simulation of a complete bacterial cell will be possible within 10 years.

This document is currently not available here.

Peer Reviewed

Find in your library

Share

COinS