Chemistry and Physics Faculty Articles

Title

Qualitative Analysis of Sequence Specific Binding of Flavones to DNA Using Restriction Endonuclease Activity Assays

Document Type

Article

Publication Date

8-1-2013

Keywords

Flavones, DNA, Sequence specificity

Publication Title

Biopolymers

ISSN

0006-3525

Volume

99

Issue/No.

8

First Page

530

Last Page

537

Peer Reviewed

1

Abstract

Flavones, found in nature as secondary plant metabolites, have shown efficacy as anti-cancer agents. We have examined the binding of two flavones, 5,7-dihydroxy-3,6,8-trimethoxy-2-phenyl-4H-chromen-4-one (5,7-dihydroxy-3,6,8-trimethoxy flavone; FlavA) and 3,5-dihydroxy-6,7,8-trimethoxy-2-phenyl-4H-chromen-4-one (3,5-dihydroxy-6,7,8-trimethoxy flavone; FlavB), to phiX174 RF DNA using restriction enzyme activity assays employing the restriction enzymes Alw44, AvaII, BssHII, DraI, MluI, NarI, NciI, NruI, PstI, and XhoI. These enzymes possess differing target and flanking sequences allowing for observation of sequence specificity analysis. Using restriction enzymes that cleave once with a mixture of supercoiled and relaxed DNA substrates provides for observation of topological effects on binding. FlavA and FlavB show differing sequence specificities in their respective binding to phiX. For example, with relaxed DNA, FlavA shows inhibition of cleavage with DraI (reaction site 5′TTTAAA) but not BssHII (5′GCGCGC) while FlavB shows the opposite results. Evidence for tolological specificity is also observed, Molecular modeling and conformational analysis of the flavones suggests that the phenyl ring of FlavB is coplanar with the flavonoid ring while the phenyl ring of FlavA is at an angle relative to the flavonoid ring. This may account for aspects of the observed sequence and topological specificities in the effects on restriction enzyme activity.

Comments

©2013 Wiley Periodicals, Inc. Biopolymers 99: 530–537, 2013.

DOI

10.1002/bip.22212

This document is currently not available here.

Find in your library

Share

COinS