Chemistry and Physics Faculty Articles

Document Type

Article

Publication Date

6-30-2005

Publication Title

Environmental Science & Technology

ISSN

0013-936X

Volume

39

Issue/No.

15

First Page

5674

Last Page

5688

Abstract

The Aerodyne aerosol mass spectrometer (AMS) was used to characterize physical and chemical properties of secondary organic aerosol (SOA) formed during ozonolysis of cycloalkenes and biogenic hydrocarbons and photooxidation of m-xylene. Comparison of mass and volume distributions from the AMS and differential mobility analyzers yielded estimates of “effective” density of the SOA in the range of 0.64−1.45 g/cm3, depending on the particular system. Increased contribution of the fragment at m/z 44, CO2+ ion fragment of oxygenated organics, and higher “Δ” values, based on ion series analysis of the mass spectra, in nucleation experiments of cycloalkenes suggest greater contribution of more oxygenated molecules to the SOA as compared to those formed under seeded experiments. Dominant negative “Δ” values of SOA formed during ozonolysis of biogenics indicates the presence of terpene derivative structures or cyclic or unsaturated oxygenated compounds in the SOA. Evidence of acid-catalyzed heterogeneous chemistry, characterized by greater contribution of higher molecular weight fragments to the SOA and corresponding changes in “Δ” patterns, is observed in the ozonolysis of α-pinene. Mass spectra of SOA formed during photooxidation of m-xylene exhibit features consistent with the presence of furandione compounds and nitro organics. This study demonstrates that mixtures of SOA compounds produced from similar precursors result in broadly similar AMS mass spectra. Thus, fragmentation patterns observed for biogenic versus anthropogenic SOA may be useful in determining the sources of ambient SOA.

DOI

10.1021/es048061a

Peer Reviewed

Find in your library

Share

COinS