Biology Faculty Articles

Title

Conservation of Human vs. Feline Genome Organization Revealed by Reciprocal Chromosome Painting

Document Type

Article

Publication Date

1997

Publication Title

Cytogenetics and Cell Genetics

ISSN

0301-0171

Volume

77

Issue/No.

3-4

First Page

211

Last Page

217

Abstract

We employed fluorescence in situ hybridization (FISH) with probes established by flow sorting metaphase chromosomes of the domestic cat (Felis catus, 2n = 38) to "paint" homologous segments on human chromosomes and, reciprocally, using human chromosome paints on feline metaphase preparations. The results revealed, by direct microscopic observation, widespread conservation of genome organization between the two mammalian orders and confirmed 90% of the homologous genes mapped to both species. Fourteen of 23 human chomosomes were hybridized with single cat probes, and 9 of 19 cat chromosomes were entirely labeled by a single human probe. All other chromosomes were labeled with only two or, at most, three probes of the respective species. Y-chromosome probes gave no signals. Approximately 30 syntenic segments were identified, and the number of translocations could be estimated to be on the order of one new translocation per 10 million years in the phylogenetic lines leading to human and cat. Using the principle of maximum parsimony, the primitive vs. derived human chromosome segments were identified by comparison to the feline, cattle, and pig genomes, a first step in reconstructing the evolutionary heritage of the mammalian radiations. The results suggest that reciprocal chromosome painting will help reconstruct the history of genomic changes by determining the polarity of chromosomal rearrangements and establishing the ancestral karyotype for each principle branching point in mammalian evolution.

ORCID ID

0000-0001-7353-8301

ResearcherID

N-1726-2015

This document is currently not available here.

Find in your library

Share

COinS