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The Role of Cognitive Disposition in Re-examining the Privacy Paradox: A 

Neuroscience Study 
 

by 

Zareef A. Mohammed 

 

The privacy paradox is a phenomenon whereby individuals continue to disclose 

their personal information, contrary to their claim of concerns for the privacy of their 

personal information. This study investigated the privacy paradox to better understand 

individuals' decisions to disclose or withhold their personal information. The study 

argued that individuals’ decisions are based on a cognitive disposition, which involves 

both rational and emotional mental processes. While the extended privacy calculus model 

was used as the theoretical basis for the study, the findings of cognitive neuroscience was 

applied to it to address its limitation in assuming individuals are purely rational decision-

makers. Three within-subjects experiments were conducted whereby each subject 

participated in all three experiments as if it were one. Experiment 1 captured the neural 

correlates of mental processes involved in privacy-related decisions, while experiment 2 

and 3 were factorial-design experiments used for testing the relationship of neural 

correlates in predicting privacy concerns and personal information disclosure. The 

findings of this study indicated that at least one neural correlate of every mental process 

involved in privacy-related decisions significantly influenced personal information 

disclosure, except for uncertainty. However, there were no significant relationships 

between mental processes and privacy concerns, except Brodmann’s Area 13, a neural 

correlate of distrust. This relationship, however, had a positive relationship with privacy 

concerns, opposite to what was hypothesized. Furthermore, interaction effects indicated 

that individuals put more emphasis on negative perceptions in privacy-related situations. 

This study contributed to the information privacy field by supporting the argument that 

individuals’ privacy-related decisions are both rational and emotional. Specifically, the 

privacy paradox cannot be explained through solely rational cost-benefit analysis or 

through an examination of individuals’ emotions alone.  
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Chapter 1 

Introduction 

1.1. Introduction 

 The introduction and evolution of information and communication technologies 

(ICTs) have delivered a plethora of benefits such as the increase of communication and 

innovative means of marketing products and services. The impact of information systems 

(IS) on everyday human life is considered a utility similar to that of water, electricity, gas 

and telephone (Buyya, Yeo, Venugopal, Broberg, & Brandic, 2008). Yet, despite the 

advantages provided by information systems, there are disadvantages that are potentially 

dangerous to the individuals that use them. For instance, information privacy is a major 

concern (Mason, 1986), whereby personal information could often be compromised and 

used negatively. 

 Through the use of information systems, individuals can leverage their personal 

information to attain something else of value. This can be observed through the example 

of ecommerce websites, which allows individuals to purchase products and services, but 

require individuals to disclose their personal information. In turn, organizations could use 

the personal information of their customers to profile them, whereby organizations could 

develop stronger rapport with their customers, thereby growing their business (Awad & 

Krishnan, 2006; Culnan & Armstrong, 1999). Yet, the trade of personal information is 

considered a “double-edged sword” whereby personal information could be both an asset 

to an individual and a risk (Malhotra, Kim, & Agarwal, 2004). Organizations could use 

the personal information they have collected about an individual unethically such as 

selling it to third parties (Culnan, 1993; Smith, Milberg, & Burke, 1996), as well as reuse 
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the collected personal information legally, but in ways that are unsanctioned by the 

owners (i.e. clients/customers) of the personal information (Culnan & Williams, 2009). 

Due to these risks, consumer reports and surveys have often revealed that individuals 

have great concerns over the privacy of their personal information (Dinev & Hart, 2006; 

Madden, Fox, Smith, & Vital, 2007; Smith, Dinev, & Xu, 2011).  

 Privacy concerns increase individuals’ reluctance to disclose personal 

information, and subsequently impedes the use of information systems, such as 

ecommerce or ehealth, which requires individuals to disclose their personal information 

(Angst & Agarwal, 2009; Dinev & Hart, 2006; Li, Sarathy, & Xu, 2011). This is reflected 

by United States (US) trade data where ecommerce sales accounted for only 7% of total 

retail sales, indicating that the adoption and growth of ecommerce have not reached its 

full potential (US Census Bureau News, 2015). Similarly, while governments have 

invested in ehealth for safer and more efficient healthcare systems (Angst & Agarwal, 

2009), patients are concerned about their personal medical records (Bishop, Holmes, and 

Kelley, 2005). It is therefore necessary to understand how both individuals and 

organizations could capitalize on the benefits provided by information systems, without 

compromise to personal information. 

 Researchers identified the privacy paradox as a fundamental issue whereby a 

conflict of interest exist between individuals’ stated intentions and actual behavior 

regarding privacy related decisions (Norberg, Horne, & Horne, 2007). The privacy 

paradox occurs when individuals claim privacy concerns, yet continue to disclose their 

personal information (Dinev & Hart, 2006; Smith et al., 2011). By understanding the 

privacy paradox, organizations could potentially grow their businesses through the 
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benefits of information systems. Similarly, the benefits through the use of information 

systems should be maximized by individuals, while reducing the vulnerability to 

information privacy.  The privacy paradox becomes a key issue in understanding why 

individuals are willing to disclose their personal information, and if their decisions are 

reflective of good judgment regarding their information privacy. 

 

1.2. Research Problem and Argument 

 This study investigated the privacy paradox to better understand individuals’ 

decisions to withhold or disclose their personal information. Researchers have studied the 

privacy paradox in the context of ecommerce (Acquisti, 2004; Dinev & Hart, 2006; 

Norberg et al., 2007), personalization (Awad & Krishnan, 2006; Culnan & Armstrong, 

1999), ehealth (Anderson & Agarwal, 2011; Angst & Agarwal, 2009), location based 

services (Xu, Teo, Tan, & Agarwal, 2012), and web 2.0 technologies (Dinev, Smith, & 

Xu, 2009). Yet, despite the impact the context may have on influencing individuals’ 

decisions to disclose personal information, privacy concerns are consistent in negatively 

affecting the disclosure of personal information (Anderson & Agarwal, 2011; Awad & 

Krishnan, 2006; Dinev and Hart, 2006; Xu et al., 2010). Therefore, despite the difference 

in value of the medium in influencing individuals’ disclosure of personal information 

(Awad & Krishnan, 2006), it is necessary to understand the role of individuals’ 

perceptions in shaping their privacy related decisions.  

 In seeking to understand the privacy paradox, researchers have often assumed 

individuals are rational decision-makers (Acquisti, 2004; Acquisti & Grossklags, 2005), 

where multiple factors may subvert the negative effect privacy concerns have over 
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personal information disclosure (Smith et al., 2011). Trust has often been found to be a 

plausible explanation as to why individuals would disclose their personal information 

despite claims of concerns (Belanger, Hiller, & Smith, 2002; Dinev & Hart, 2006; 

Pavlou, Liang, & Xue, 2007; Van Slyke, Shim, Johnson, & Jiang, 2006). Essentially, an 

individual’s propensity to trust an entity to properly handle the personal information 

he/she is required to disclose would override their privacy concerns. Yet, trust and 

privacy concerns are not the only factors to be considered since privacy risk has also been 

observed to be a salient factor in the privacy paradox (Dinev & Hart, 2006; Malhotra et 

al., 2004; Norberg et al., 2007). While privacy concerns and privacy risks are closely 

related, Dinev and Hart (2006) considered them to be distinct. Furthermore, risk may not 

be one dimensional as often assumed, but may involve both the assessment of loss as well 

as the probability of avoiding a risky action (Peter & Tarpey, 1975; Smith et al., 2011).  

 The conflicting nature of the privacy paradox has led to the development of the 

privacy calculus, which assumes individuals perform a cost-benefit analysis when they 

decide to disclose their personal information (Culnan & Bies, 2003; Dinev & Hart, 2004; 

2006; Smith et al., 2011). The privacy calculus assumes that individuals would be more 

likely to disclose their personal information if the benefits outweigh the costs (Laufer & 

Wolfe, 1977). Based on this cost-benefit assumption, Dinev and Hart (2006) argued that 

individuals’ decisions to disclose their personal information consists of contrary but 

salient factors, which included trust, privacy concerns, and privacy risks. Additionally, 

Dinev and Hart (2006) considered personal interest as a factor that could override the 

negative impacts of privacy risk and privacy concerns. Similarly, Van Slyke et al. (2006) 

found similar factors of trust, privacy risk, and privacy concerns as key indicators to 
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individuals’ decisions to disclose personal information. Yet, the cost-benefit assumption 

is limited by the reality that humans are not purely rational decision-makers (Acquisti & 

Grossklags, 2005). 

 Acquisti (2004) explained that several psychological deviations limit rationality 

from individuals. Acquisti (2004) explained that people are subject to bounded 

rationality, whereby they do not have knowledge of all the parameters governing a 

privacy-related decision, and even if they did, they would not be able to accurately 

process all of these parameters. Moreover, cognitive biases such as hyperbolic 

discounting, where individuals prefer short-term gratifications, affect rationality in 

privacy-related decisions (Acquisti, 2004). Evidently, research from the cognitive 

neuroscience field has identified a number of brain areas that are correlated with mental 

processes such as perceptions of risk and trust (Dimoka, Pavlou, & Davis, 2007; 2011). 

Furthermore, these brain activations occur in both the prefrontal cortex (rational 

decisions) and limbic system, which are responsible for emotional responses (Dimoka et 

al., 2007). The prefrontal cortex and limbic system interacts with one another extensively, 

indicating that rationality and emotions are often intertwined (Phelps, 2006). Essentially, 

no decision is purely rational or purely emotional. Based on the findings of cognitive 

neuroscience, it can be assumed that both rationality and emotions play a role in 

individuals’ decisions to disclose their personal information. As such, this research 

argued that individuals’ disclose their personal information based on their cognitive 

disposition, which includes rational and emotional mental processes.  
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1.3. Importance of Research Problem 

 Privacy is a concept that has been present in philosophical debates and social 

science research, such as psychology, sociology, political science, as well as other fields 

(Smith et al., 2011). The emergence of ICTs has highlighted the importance of a specific 

subset of privacy, i.e. information privacy, as a major concern in the digital age (Mason, 

1986). Specifically, the evolution of ICTs allows for increased surveillance, computation, 

storage and retrieval of individuals’ personal information (Mason, 1986). Organizations 

gain valuable strategies for continued development through data mining techniques using 

individuals’ personal information (Li & Sarker, 2006; Mason, 1986). Additionally, the 

growth of the internet provides convenient business transactions for individuals, as well 

as increased communications. Moreover, individuals use the internet and other innovative 

web applications to become content providers (Hong & Thong, 2013). Essentially, this 

leaves individuals vulnerable to privacy-related threats (Culnan & Williams, 2009; Hong 

& Thong, 2013). While individuals continue to voice concerns for the privacy of their 

personal information (Dinev & Hart, 2006; Smith et al., 2011), specific laws and 

regulations are enacted by governments in hope of protecting individuals’ personal 

information (Culnan & Williams, 2009; Greenaway, Chan, & Crossler 2015). Yet, many 

such regulations are ineffective in adequately protecting individuals’ personal 

information (Culnan & Willaims, 2009); while individuals’ behavior deviate from their 

voiced privacy concerns in their increased disclosure of personal information using ICTs 

(Smith et al., 2011).  

 Individuals’ contradictory behavior of stating their concerns for the privacy of 

their personal information, yet continuing to disclose their personal information for 
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certain benefits, termed the privacy paradox, has been extensively studied by multiple 

researchers (Acquisti, 2004; Acquisti & Grossklags, 2005; Awad & Krishnan, 2006; 

Belanger & Crossler, 2011; Dinev & Hart, 2006, Norberg et al., 2007; Smith et al., 2011). 

It was found that individuals’ privacy beliefs and their associated privacy-related 

behavior could be classified into three categories: privacy fundamentalists, privacy 

pragmatists, and privacy unconcerned (Harris Interactive & Westin, 2002). While privacy 

fundamentalists were more skeptical of disclosing their personal information, and fought 

for privacy regulations, privacy pragmatists were more likely to estimate the risks and 

costs in disclosing their personal information (Angst & Agarwal, 2009; Awad & 

Krishnan, 2006; Harris Interactive & Westin, 2002). Individuals who were identified as 

privacy unconcerned, however, would readily disclose their personal information, 

without much concern or emphasis to the concept of information privacy (Angst & 

Agarwal, 2009).  

The beliefs of individuals with regards to information privacy, and subsequently 

personal information disclosure, has often been investigated by researchers (Dinev & 

Hart, 2006; Norberg et al., 2007; Pavlou et al., 2007; Van Slyke et al., 2006), while often 

connecting these beliefs to the three privacy categories of individuals (Awad & Krishnan, 

2006; Angst & Agarwal, 2009). A number of contradictory beliefs (negative and positive 

factors) emerge from extant literature that is found to directly influence individuals to 

disclose or withhold their personal information (Dinev & Hart, 2006). Among these 

beliefs are privacy concerns, privacy risk, institutional trust (i.e. the propensity to trust), 

and uncertainty (Awad & Krishnan, 2006; Belanger et al., 2002; Dinev & Hart, 2006; 

Malhotra et al., 2004; Norberg et al., 2007; Pavlou et al., 2007; Van Slyke et al., 2006). 
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Additionally, studies have indicated that other factors such as culture, regulations, 

organizations’ privacy practices (such as privacy seals, privacy statements, and 

organizations’ transparency of the use of collected personal information), and methods of 

persuasion were related to privacy beliefs (Awad & Krishnan, 2006; Angst & Agarwal, 

2009; Dinev, Bellotto, Hart, Russo, Serra, & Collautti, 2006; Li et al., 2006; LaRose & 

Rifon, 2006; Milberg, Smith, & Burke, 2000).  

While an individuals’ privacy beliefs, along with other related antecedents may 

inform privacy-related behavior, some researchers point out that privacy-related decision-

making may be limited by individuals’ cognitive capabilities (Acquisti & Grossklags, 

2005). As argued by Acquisti (2004), multiple cognitive biases, such as cognitive 

overload (inability to cognitively process all parameters of a given situation), may affect 

individuals’ privacy-related decisions. Specifically, individuals’ decisions are not purely 

rational, which may often result in outcomes that seem contrary to their beliefs. Similarly, 

Sim, Liginlal, and Khansa (2012) advocated that individuals’ decisions with regards to 

the privacy of their personal information may be subjected to situational awareness (an 

individual’s ability to handle a situation in space and time with their restricted cognitive 

abilities).  

While understanding the intrinsic beliefs, as well as the extrinsic factors that may 

influence such beliefs could provide an explanation to the privacy paradox, a better 

understanding of individuals’ privacy-related decision-making could be elicited by 

examining individuals’ perceptions in privacy situations. Specifically, while intrinsic and 

extrinsic factors may be antecedents of privacy concerns and privacy-related decisions, 

the momentary cognitive and affective state before an individual makes a decision with 
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regards to information privacy should be considered. Current literature has investigated 

individuals’ privacy beliefs (Dinev & Hart, 2006; Van Slyke et al., 2006), the factors 

which may affect these beliefs (Angst & Agarwal, 2009; Li et al., 2011), as well as the 

cognitive limits of individuals in privacy-related situations (Acquisti, 2004; Anderson & 

Agarwal, 2009). However, a gap in the literature exists in observing how individuals’ 

perceptions are formed and relate to one another when they are in a situation requiring 

them to disclose their personal information. Findings in cognitive neuroscience has 

indicated that human behavior is often influenced by the processing of some external 

stimuli, before conscious thought (Dimoka, 2010; Dimoka et al., 2007; 2011; Sur & 

Sinha, 2009; Vance, Eargle, Anderson, & Kirwan, 2014). Essentially, while long held 

beliefs and other intrinsic and extrinsic factors may play a role in privacy-related 

decisions, the state of an individual produced by a privacy-related decision (such as 

whether to disclose personal information to an online seller or for entry into an electronic 

health system) may be more effective in determining privacy-related decisions. Thus, this 

study argued that individuals disclose their personal information based on their cognitive 

disposition, which is both rational and emotional. Since rationality and emotions are often 

interconnected (Phelps, 2006), this study contributes to the field of information privacy 

by providing a better explanation of the privacy paradox by addressing the current gap in 

the literature.  

With the proliferation of data produced at an exponential rate, information privacy 

has become an issue that affects both society and organizations. Organizations continue 

to invest in and promote the use of various ICTs for data mining purposes to remain 

competitive (Awad & Krishnan, 2006; Culnan & Armstrong, 1999). So as to not waste 
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investments and resources into innovative ICTs, organizations could enact strategies 

based on knowledge derived from understanding the privacy paradox, to motivate 

individuals to disclose their personal information. However, the rise of big data and 

emergence of new technologies, such as virtual reality and the internet-of-things (IoT), 

individuals’ information privacy become further threatened. Understanding the privacy 

paradox could enable individuals, privacy-activists, and government to increase 

awareness of information privacy issues and develop strategies for individuals to further 

protect their personal information, such as the development and use of privacy enhancing 

technologies, as well as laws and regulations that are designed more proactive as opposed 

to reactive (Culnan & Williams, 2009; DeGeorge, 2006) 

 

1.4. Definition of Key Terms 

Personal Information – also referred to as ‘personally identifiable information’, can be 

defined as information that can specifically identify someone, such as name, address, 

social security number; as well as financial information such as credit card numbers 

(Caudill & Murphy, 2000; Dinev & Hart, 2006). Additionally, personal information may 

comprise of aggregated non-identifying information used for market analysis, or for 

profiling when used in combination with identifiable information (Caudill & Murphy, 

2000; FTC, 1998). Personal information may often be defined based on context, such 

financial information in ecommerce, electronic health records in ehealth, digital content 

hosted by content providers, digital surveillance in the workplace and in individuals’ 

homes (Hong & Thong, 2013; Smith et al., 2011). Essentially, personal information is 
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broad enough to include a variety of situations that currently exist and evolve throughout 

space and time (Hong & Thong, 2013; Smith et al., 2011).   

Privacy – General privacy has been applied to almost all fields of the social sciences, yet 

does not have a clear definition consistent across all disciplines (Smith et al., 2011). 

Warren and Brandeis (1890) defined privacy as the human right to be left alone. 

According to Smith et al. (2011), privacy as a human right was the first definition of 

general privacy, whereby privacy is considered integral to a society's moral value system. 

Due to the broadness of privacy, different disciplines assigned different meanings to it, 

such as the commodity view of privacy with regards to the field of economics (Smith et 

al., 2011). Specifically, researchers across disciplines may not be able to fully articulate 

what privacy means due to the outcomes of each context to which privacy is applied 

(Belanger & Crossler, 2011; Smith et al., 2011; Solove, 2006). However, privacy is an 

overarching concept which incorporates information privacy (Smith et al., 2011).  

Information Privacy – Information privacy is a subset of the overall concept of general 

privacy because of the complex issues arising from the introduction and evolution of 

ICTs (Belanger and Crossler, 2011; Smith et al., 2011). There are many definitions for 

information privacy, whereby researchers have classified information privacy into two 

broad categories of value-based and cognate-based definitions (Smith et al., 2011). 

Value-based definitions regard information privacy as an objective societal value, 

whereas cognate-based definitions are related to individual's mind, perceptions and 

cognitions (Smith et al., 2011). For the purposes of this dissertation, Westin's (1967) 

definition of information privacy is adopted which refers to the control an individual has 

over the collection, use and dissemination of his/her personal information. A cognate-
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based definition of information privacy as a control is suited for this study as an 

individual's belief of the control he/she has over his/her personal information may drive 

his/her rational and emotional perceptions that influence his/her privacy-related 

decisions. 

Privacy Paradox – The privacy paradox refers to the inconsistency of individuals' 

decisions whereby they disclose their personal information despite claiming concerns for 

the privacy of their personal information (Dinev & Hart, 2006; Norberg et al., 2007). 

Researchers have often used privacy concerns as a measure of an individual’s perception 

of privacy (Smith et al., 2011). Studies have thus found privacy concerns to inhibit 

individuals from disclosing their personal information (Awad & Krishnan, 2006; Dinev 

& Hart, 2004; 2006; Smith et al., 2011). Yet, despite these privacy concerns, there is 

some growth in the use of ICTs that require individuals to disclose their personal 

information. As such, the privacy paradox exists when individuals' claim that information 

privacy is important, but their behavior is contradictory to their claims.  

Cognitive Disposition – An individual's cognitive disposition refers to the rational and 

emotional mental processes that govern the decisions the individual makes (Dimoka et 

al., 2007; 2011). An individual's mental processes correlate with specific areas of the 

brain. In the brain, the prefrontal cortex is responsible for processing rationality, whereas 

the limbic system processes emotions (Dimoka et al., 2007). However, both the prefrontal 

cortex and limbic system interact with one another, suggesting that rationality and 

emotional processing are intertwined (Dimoka et al., 2007; 2011; Phelps, 2006). 

Essentially, an individual does not make a decision that is based solely on rationality, nor 
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purely emotions, but rather an individuals' decisions consist of both rational and 

emotional mental processes. 

 

1.5. Summary 

 The privacy paradox is a phenomenon whereby individuals claim concerns for the 

privacy of their personal information, but act contrarily by disclosing their personal 

information to organizations and websites in return for small benefits. The information 

privacy field studies this phenomenon so that both organizations and individuals may 

obtain the maximum benefit of using ICTs, but without the compromise to individuals’ 

personal information. The privacy paradox has often been studied as a phenomenon that 

occurs due to some rational thought process or calculation by individuals. However, 

individuals are not purely rational, and may be subjected to emotional impulses. 

Essentially, studying the privacy paradox from individuals’ cognitive disposition (i.e. 

both rational and emotional mental processes) should enhance the current understanding 

of individuals’ privacy-related decisions, which is the objective of this study. 
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Chapter 2 

Literature Review 

2.1. Introduction 

This chapter reviews literature which is related to the topic of this dissertation. 

The findings and contributions of prior literature need to be understood so that gaps 

within the literature could be identified, and arguments could be clearly articulated. This 

literature review is separated into three main sections, which begins with discussing the 

concept of information privacy followed by how information privacy has often been 

studied by researchers using privacy concerns as a measure of information privacy. 

Literature pertaining to the privacy paradox is then reviewed to complete the literature 

review of this study. 

 

2.2. Information Privacy  

 Privacy is an issue within the disciplines of philosophy and other social sciences 

that is at least over a century old (Belanger & Crossler, 2011; Smith et al., 2011). 

However, the introduction of ICTs within the everyday lives of individuals has brought 

an invested interest in the implications of the privacy of individuals' personal 

information. Specifically, information privacy is a subset of general privacy that has 

incited numerous studies by researchers (Belanger & Crossler, 2011; Pavlou, 2011; Smith 

et al., 2011). However, while information privacy is of great relevance to society, it is 

still a fragmented concept which has not yet been fully defined (Solove, 2006). 

 The most inclusive definition of information privacy explains that it is the control 

an individual has over the collection and use of his/her personal information (Smith et al., 
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1996; Westin, 1967). Yet, personal information is a resource from which individuals and 

organizations could gain multiple benefits. As such, individuals and organizations 

continue to exchange personal information for these benefits despite the presence of 

risks. Researchers have attempted to understand the role of information privacy in 

society, as well as how it impacts the adoption of ICTs (Belanger & Crossler, 2011; 

Smith et al., 2011). 

 Prior studies have found that the concept of information privacy could be 

categorized as either value-based or cognate-based (Smith et al., 2011). Within the value-

based category, information privacy is regarded as either a right or a commodity, 

whereby individuals' personal information has an actual value within the framework of 

society (Smith et al., 2011). However, the cognate-based approach to information privacy 

interprets privacy as an individuals' subjective value assessment of his/her personal 

information. The cognate-based definitions of information privacy further categorize 

information privacy as a state or a control (Smith et al., 2011). Essentially, the value-

based category of information privacy differs from the cognate-based category since it 

assumes that privacy is an assigned value of the society, whereas the cognate-based 

category is related to individuals' mind, perceptions and cognitions (Smith et al., 2011).  

 

2.2.1. Privacy Defined as a Value 

 When privacy is regarded as a value, it is further categorized as either a right, or a 

commodity. Privacy defined as a human right to be left alone is deemed as a necessity in 

maintaining a society's moral value system (Clarke, 1999; Skinner, Han, & Chang, 2006; 

Smith et al., 2011). Explaining information privacy as a right stem from the debates of 
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general privacy as a human right which is highly discussed in the legal and political fields 

(Smith et al., 2011). Stemming from an article by Warren and Brandeis (1890), which 

defined general privacy as the "right to be left alone", influenced US law in recognizing 

privacy as a salient issue to society. This led to numerous legal cases which advocated 

privacy as each individual's right to be left alone and covered a number of themes such as 

privacy and the press, privacy and law enforcement, privacy and voyeurism, and privacy 

in the workplace (Alderman & Kennedy, 1997; Smith et al., 2011). 

 The US established the “Privacy Act of 1974” based on the notion that privacy is 

a human right, whereby individuals could still be protected from unwarranted invasion of 

their privacy by government agencies (The Privacy Act of 1974). The recognition of 

privacy as a societal issue within the information age led to the development of the 

federal trade commission (FTC) fair information practices (FIPs) which described four 

main dimensions of notice, access, choice and security within the electronic marketplace 

for the protection of individuals’ personal information (Liu & Arnett, 2002). While the 

US FIPs allowed for organizations to regulate themselves by establishing the FIPs within 

their business processes, other regulations and laws were established for different 

industry sectors to better protect the personal information organizations collected (Culnan 

& Williams, 2009). For example, the Health Insurance Portability and Accountability Act 

(HIPAA) is one such regulation to which healthcare organizations are required to adhere 

(Culnan & Williams, 2009). 

 Yet, the debate about privacy as a human right as integral to the structure of the 

society's moral system suffers from the limitation that privacy does not hold the same 

value in the varied cultures and governmental bodies throughout the world (Smith et al., 
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2011). In fact, the European Union (EU) differs from the US in the view of privacy, 

where they focus on the implementation and enforcement of safeguards for organizations 

to fairly manage individuals' personal information (Rose, 2006). Also, despite the view 

that individuals' privacy is a human right, when examining consumer behavior, a privacy 

paradox was observed whereby individuals continue to trade their personal information 

for specific benefits (Smith et al., 2011). This lead to the shift in the definition that the 

value of privacy was more regarded as a commodity than a human right (Smith et al., 

2011).   

 Researchers adopted the commodity-based definition of information privacy when 

they observed the apparent cost-benefit analysis individuals undergo when deciding to 

disclose or withhold their personal information. (Acquisti & Grossklags, 2005; Culnan & 

Armstrong, 1999; Dinev & Hart, 2006; Norberg et al., 2007). Essentially, the commodity-

based definition holds that an individual's personal information is valuable, but he/she 

may be willing to trade his/her personal information for something else of equal value. 

Assigning an economic value to information privacy differentiates the definition of 

privacy as a commodity from privacy as a right (Smith et al., 2011). Specifically, while 

both definitions regard information privacy as an objective value in society, when privacy 

is defined as a commodity, it essentially means that the individual may lose ownership of 

his/her personal information. Conversely, privacy as a human right retains the notion that 

even if an individual were to disclose his/her personal information to some other person 

or organization, the individual's personal information would still be required to be 

protected and used only based on the individual's permission (Culnan & Williams, 2009; 

Solove, 2006; Smith et al., 2011).  
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2.2.2. Privacy Defined as Cognate-based 

 The cognate-based definitions of state and control assumes that privacy is decided 

by the individual him/herself. Schoeman (1984) explained that general privacy is a state 

of "limited access to a person" (p. 3), whereby Westin (1967) viewed privacy as 

consistent of an individual's anonymity, solitude, reserve and intimacy. Essentially, the 

paradigm of privacy as a state is defined by an individual's choice to seek privacy or 

disclose his/her personal information, which is influenced by situations which includes 

self-ego, environmental, and interpersonal factors (Laufer & Wolfe, 1977). With regards 

to information privacy, a state-based definition posits that individuals’ subjective 

cognitions of the situations in which they are asked to disclose their personal information 

would direct their decisions. 

 A widely accepted definition of privacy within the field of information systems, 

as well as other fields such as philosophy, social and political sciences, psychology and 

marketing assumes that privacy is based on the level of control an individual has over 

his/her personal information (Smith et al., 2011). Specifically, as long as an individual 

assumes that he/she can control the use of his/her personal information, and minimize the 

risks posed by disclosing it, he/she would be willing to provide his/her personal 

information to other entities. The control-based definition of general privacy is rooted in 

the definition by Westin (1967), as well as that of Altman (1975) as "the selective control 

of access to the self" (p. 24). Margulis (1977) captured the essence of the control-based 

definition of privacy by explaining "privacy, as a whole or in part, represents the control 

of transactions between person(s) and other(s), the ultimate aim of which is to enhance 

autonomy and/or to minimize vulnerability" (p. 10). Yet, there exists another debate 



19 
 

 
 

between researchers by what is meant by “privacy is a control” (Smith et al., 2011). 

Smith et al. (2011) explained that some researchers considered privacy in and of itself as 

a control, whereas others assumed that control is a key factor of privacy. As explained by 

Laufer and Wolfe (1977), an individual may assert some level of control over his/her 

personal information, however that does not equate to privacy. Control, however, may be 

a key factor in achieving privacy (Laufer & Wolfe, 1977; Smith et al., 2011). 

 

2.2.3. Privacy within the Information Systems Field 

 With regards to the information systems field, researchers have conducted a 

number of studies by categorizing privacy in one of the four above mentioned definitions, 

so as to gain a better understanding of the concept (Smith et al., 2011). Adopting a 

definition to information privacy allows researchers to better understand how the concept 

of information privacy relates to other factors (Pavlou, 2011; Smith et al., 2011). 

Essentially, the only way to understand the role of information privacy in individuals' 

lives is by understanding its meaning and relationship with other factors that drive 

individuals' behavior towards specific tasks.  

 Similar to the fields of law and political sciences where privacy is often defined as 

a human right (Smith et al., 2011), a number of studies in the IS discipline have also 

adopted a right-based definition (Liu, Marchewka, Lu, & Yu, 2005; Malhotra et al., 

2004). Yet, a review of empirical studies suggest that this view of privacy is limited in 

the IS field. Schwaig, Kane, and Storey (2006) found that less than four percent of the 

Fortune 500 companies' websites actually complied with all aspects of fair information 

practices. If privacy is a right, then individuals should be reluctant in disclosing their 
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personal information to organizations that have ambiguous privacy practices. Yet, as Hsu 

(2006) found, individuals stated privacy concerns do not match their behavior in 

disclosing personal information. As such, a large number of studies in the IS field have 

adopted a control-based definition of information privacy assuming that individuals’ 

perceptions of control over their personal information drive them towards decisions of 

information disclosure (Belanger & Crossler, 2011; Culnan & Bies, 2003; Dinev & Hart, 

2004; Van Slyke et al. 2006). Alternatively, a growing number of studies adhere to the 

rational commodity trade-off of information privacy to specific benefits, since it logically 

explains the current paradox of individuals’ personal information disclosure, yet high 

levels of privacy concerns (Acquisti, 2004; Dinev & Hart, 2006; Norberg et al., 2007).  

 Due to the multiple streams of research into information privacy, as well as the 

conflicting findings, the concept is still inconsistent and requires much study (Pavlou, 

2011; Smith et al., 2011). Researchers have often used privacy concerns as a means of 

measuring information privacy, since information privacy is often regarded as complex 

and near impossible to measure by itself (Dinev et al., 2009; Smith et al., 2011). While 

Dinev et al. (2009) regarded privacy concerns as inadequate to fully understand 

information privacy, privacy concerns as a construct is a representation of the negative 

perceptions an individual has over the collection and use of his/her personal information 

he/she may be required to disclose to another person or organization.  

 

2.3. Measuring Information Privacy Through Privacy Concerns 

 Privacy concerns have often been studied as a proxy for measuring the concept of 

information privacy, due to the complexity and immeasurable nature of information 
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privacy itself (Dinev et al., 2009; Smith et al., 2011). Understandably, studies in the IS 

discipline seek to examine how information privacy affects the use of technologies, and 

as such, researchers have treated information privacy as a negative factor (Dinev et al., 

2009). This is further justified based on the evidence presented from polls whereby 

individuals claim a high level of concern for the privacy of their personal information 

(Dinev & Hart, 2006; Madden et al., 2007; Smith et al., 2011). Similarly, numerous 

studies have found that privacy concerns inhibit individuals from disclosing their 

personal information (Dinev & Hart, 2006; Li et al., 2011; Pavlou et al., 2007; Van Slyke 

et al., 2006). 

 Smith et al. (1996) developed the concern for information privacy (CFIP) 

instrument which consisted of four dimensions to measure individuals' concerns over the 

information handling techniques of organizations. The CFIP consists of four dimensions 

of concerns individuals have over their personal information: collection, errors, 

secondary use, and improper access (Smith et al., 1996). Collection refers to the 

extensive collection and storage of the personal information of individuals, whereas 

secondary use pertains to the use of such personal information of individuals for purposes 

apart from that which was stated (Smith et al., 1996). This would include selling the 

personal information to third party organizations. Individuals are also concerned about 

the access others may have to their personal information, despite the lack of proper 

authorization. Finally, errors refer to the concern individuals may have over the deliberate 

and accidental errors to their personal information, and the lack of safeguards towards 

such cases (Smith et al., 1996).   
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 While the CFIP instrument was developed to capture individuals' privacy 

concerns, and measure these concerns with regards to other factors in relation to 

individuals' adoption of ICTs (such as ecommerce, or ehealth), Stewart and Segars (2002) 

found that CFIP may be better represented as a higher-order factor structure rather than a 

set of first-order factors. Essentially, these findings indicated that individuals are 

concerned with all the dimensions of CFIP rather than one dimension (Stewart & Segars, 

2002). As such, modeling the CFIP as a higher-order construct would allow for more 

accurate findings when measured with regards to other factors, which, may drive 

individuals to disclose or withhold their personal information (Stewart & Segars, 2002). 

However, Malhotra et al. (2004) explained that there were limitations to CFIP which did 

not account for the overall privacy concerns of individuals in situations where they are 

required to disclose their personal information.  

 Malhotra et al. (2004) developed the Internet Users' Information Privacy 

Concerns (IUIPC) instrument because of limitations of previous instruments such as the 

global information privacy concern (GIPC) and CFIP. Malhotra et al. (2004) explained 

that GIPC suffered from the lack of dimensionality in explaining individuals' privacy 

concerns, and CFIP was not an absolute scale. The change of the marketing environment 

because of the internet could impact the dimensions of privacy concerns individuals may 

have (Malhotra et al., 2004). As such, the IUIPC accounted for these limitations by 

developing a better scale for measuring and studying individuals' privacy concerns. 

Specifically, while CFIP is focused on individuals’ perceptions of how organizations 

handle collected personal information, IUIPC concentrated on the perceptions of fairness 

individuals may have when deciding to disclose their personal information (Malhotra et 
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al., 2004).  Therefore, the IUIPC essentially consists of individuals' perceptions of the 

collection of their personal information, the control they have over it, and also their level 

of awareness of privacy practices (Malhotra et al., 2004). However, despite the 

advantages of IUIPC over CFIP, researchers have often chosen to use the CFIP 

instrument when measuring privacy concerns (Rose, 2006; Van Slyke et al., 2006). 

 While researchers have often extensively used privacy concerns as a measure of 

information privacy (Dinev & Hart, 2006; Pavlou et al., 2007; Van Slyke et al., 2006), 

privacy concerns may be lacking to truly represent information privacy (Dinev et al., 

2009). Essentially, privacy concerns may not represent individuals' overall perception of 

information privacy since a person's privacy may not be violated despite his/her high 

levels of privacy concerns (Dinev et al., 2009). Similarly, privacy concerns are negative, 

and therefore, contradicts the value of information privacy to any individual or society 

(Dinev et al., 2009). Essentially, the overall concept of information privacy may be a 

result of the relationship between factors such as privacy awareness, privacy beliefs, and 

privacy attitudes. Dinev et al. (2009) found that individuals’ privacy attitudes were 

influenced by privacy beliefs which were preceded by privacy values. Similarly, 

Belanger and Crossler (2011) indicated that individuals' privacy attitudes differed from 

their privacy concerns. Therefore, while prior literature has indicated the saliency of 

privacy concerns with regards to information privacy, there are other measurable factors 

of information privacy that might provide a better understanding of the concept. 
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2.4. Privacy Paradox 

 The phenomenon of the privacy paradox involves the contradictory behavior of 

individuals whereby they express concerns for the privacy of their personal information, 

yet continue to disclose personal information to organizations (Dinev & Hart, 2006; Li et 

al., 2011; Norberg et al., 2007; Smith et al., 2011). It is expected that individuals would 

abstain from information disclosure since they express high concerns over the privacy of 

their information, yet anecdotal and empirical evidence suggest otherwise, thereby 

indicating that while privacy is an important issue to individuals, there are other factors 

which drive behavior beyond privacy (Dinev & Hart, 2006; Smith et al., 2011). The 

commodity-based definition of information privacy was based on the existence of the 

privacy paradox (Smith et al., 2011). Essentially, it is reasonable to assume that logically 

privacy is only one asset that could be traded for an equal or better asset.  

 Since information technologies are becoming a utility of modern society (Buyya 

et al., 2008), organizations and governments seek to influence individuals to disclose 

their personal information. From the organizational perspective, individuals' personal 

information could be used to increase rapport between the organization and their clients, 

thus contributing to organizational growth (Awad & Krishnan, 2006; Culnan & 

Armstrong, 1999). Similarly, from the individual and societal perspective, there are 

multiple benefits that could be gained from using innovative information technologies 

(Angst & Agarwal, 2009). It is only by understanding the privacy paradox, organizations, 

government, and society could maximize the benefits of information exchange and 

minimize the costs. 
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Research within the privacy paradox has been centered on various ICTs. Often, 

researchers would examine the privacy paradox with regards to online transactions 

(Acquisti, 2004; Dinev & Hart, 2006; Norberg et al., 2007). Findings have indicated that 

individuals’ privacy concerns are an impediment to ecommerce transactions (Dinev & 

Hart, 2006; Li et al., 2011), yet individuals’ online purchasing behavior outweigh their 

stated intentions (Norberg et al., 2007). Through the use of ICTs, organizations are able 

to gather a great deal of information on individuals' online shopping behavior and 

browsing habits. Furthermore, the collection of individuals' personal information could 

be used for online profiling. While online profiling could be used for both the benefits of 

organizations and individuals, it can incur heavy privacy concerns (Awad & Krishnan, 

2006; Culnan & Armstrong, 1999; Sutanto, Palme, Tan, & Phang, 2013). Moreover, 

when the sensitivity of information is increased, there exists reluctance to personal 

information disclosure, such as in the case of medical information (Anderson & Agarwal, 

2011; Angst & Agarwal, 2009; Bansal, Zahedi, & Gefen, 2010; Hsu, 2006). In essence, 

despite the context, privacy concerns have been found to have a negative effect in the 

disclosure of personal information (Dinev & Hart, 2006; Pavlou et al., 2007; Van Slyke 

et al., 2006). 

 The inconsistency posed by the privacy paradox has driven researchers to seek an 

understanding as to why individuals would provide their personal information despite 

their stated privacy concerns (Acquisti, 2004; Awad & Krishnan, 2006; Dinev & Hart, 

2006; Norberg et al., 2007; Pavlou et al., 2007). Studies have indicated that as long as 

individuals retain a level of control of their personal information, they will be willing to 

disclose their personal information online (Awad & Krishnan, 2006; Culnan, 1993; 2000; 
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Culnan & Bies, 2003; Dinev & Hart, 2004). Culnan (1993) found that individuals with a 

positive attitude towards secondary information use were different from those with 

negative attitudes because of the level of control they had over their personal information.  

Awad and Krishnan (2006) found that the importance of information 

transparency, which was defined as the “features that give consumers access to the 

information a firm has collected about them, and how that information is going to be 

used” (p. 14), influenced individuals to disclose their personal information. Similarly, 

when individuals perceived fairness in the handling of their personal information and 

subsequently felt they had control over their personal information, they were more likely 

to disclose their personal information (Culnan & Armstrong, 1999; Lin & Wu, 2008; 

Malhotra et al., 2004). However, Awad and Krishnan (2006) also found that between 

personalized services and personalized advertisement, individuals were more willing to 

participate in the former since it was more valuable, which essentially indicated that there 

was some perception of equivalent trade present. Thus, further investigations of the 

privacy paradox were carried out by researchers to elicit a more thorough understanding 

of individuals' privacy-related behaviors (Dinev & Hart, 2007; Kehr, Wentzel, & 

Kowatsch, 2014; Pavlou et al., 2007). 

Privacy concerns contribute towards individuals’ decisions to withhold personal 

information (Dinev & Hart, 2006; Van Slyke et al., 2007). However, as explained by 

Kehr et al. (2014), empirical evidence has shown that in the presence of other factors, 

privacy concerns are either insignificant, or more often, have small correlations with 

individuals’ personal information disclosure, despite individuals’ claims of privacy 

concerns. Essentially, privacy concerns may be subverted by other factors. Malhotra et al. 
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(2004) indicated that information sensitivity was a salient factor impacting individuals’ 

behavioral intentions, risk beliefs and trust beliefs. Similarly, Dinev et al. (2009) found 

information sensitivity significantly impacted individual’s perceived vulnerability, which 

in turn influenced individuals’ privacy perception.  

 Studies have found that an important factor which was related to information 

privacy is that of trust (Belanger et al. 2002; Smith et al., 2011). Specifically, the trust 

built between organizations and individuals has been found to influence personal 

information disclosure (Malhotra et al., 2004; Smith et al., 2011), as well as mitigate 

privacy concerns (Belanger et al. 2002; Pavlou et al., 2007; Xu, Teo, & Tan, 2005). Yet, 

other studies have found that trust was negatively predicted by individuals’ privacy 

concerns (Bansal, Zahedi, & Gefen, 2008; 2010; Chellappa, 2008; Malhotra et al., 2004). 

Dinev and Hart (2006) found trust to influence individuals’ intentions to provide personal 

information, and subsequently transact online. Their findings were consistent with those 

of Van Slyke et al. (2006), who also found that if individuals' privacy concerns were 

higher, their trust would be lower. While individuals' privacy concerns significantly 

influenced their perceived uncertainty in ecommerce transactions, trust was found to be a 

mitigator of both information privacy and security concerns; and subsequently also 

mitigated the two other antecedents of perceived uncertainty: perceived information 

asymmetry and fears of seller opportunism (Pavlou et al., 2007). As such, the results of 

Pavlou et al. (2007) suggested that trust could influence individuals to provide their 

personal information, and transact online, to some degree. 

  Research has been done which identified the conditions under which individuals 

would trust an organization. With regards to building trust, Culnan and Armstrong (1999) 
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found FIPs were significant in influencing individuals’ disclosure of personal 

information. Their findings were consistent with that of Xu et al. (2012), whereby both 

industry self-regulation and government regulation of FIPs reduce the perceived risks of 

information disclosure. Similarly, individuals’ trust in organizations increases with the 

use of privacy policies (Andrade, Kaltcheva, & Weitz, 2002; Hui, Teo, &Lee, 2007; 

Milne & Boza, 1999). The platform for privacy preferences project (p3p) compliance was 

found to increase trust which in turn influenced individuals to disclose their personal 

information (Xu et al., 2005). Likewise, Rifon, La Rose, and Choi (2005) found privacy 

seals positively influenced individuals trust perceptions, while Miyazaki and 

Krishnamurthy (2002) found privacy seals added to the positive effect privacy statements 

had on trust. However, contrary findings from Hui et al. (2007), as well as Moores 

(2005), both found privacy seals as insignificant in addressing privacy concerns. 

Specifically, while Hui et al. (2007) found privacy seals were less important than privacy 

statements, Moores (2005) found that individuals barely understand the role of privacy 

seals. Similarly, Norberg et al. (2007) questioned the overall influence of trust on 

individuals’ behavior to disclose personal information when the results of their study 

found trust to be insignificant.  

 

2.4.1. Privacy Calculus 

 Researchers within the field of information privacy have found that one of the 

most plausible explanations to individuals’ behavior with regards to information privacy, 

is the privacy calculus (Dinev & Hart, 2006; Smith et al., 2011). While studies have 

found that individuals could be influenced to disclose their personal information; they 



29 
 

 
 

could also choose to withhold their personal information under certain circumstances. As 

such, the privacy calculus delivered a logical explanation, in which individuals’ privacy-

related behavior was subject to a cost-benefit analysis (Smith et al., 2011). Specifically, 

the privacy calculus posited that there exists a rational calculus of salient but contrary 

factors in which individuals undergo when they are asked to disclose their personal 

information (Dinev & Hart, 2006). If individuals perceived a higher level of negative 

consequences in disclosing their personal information, they were less likely to do so; and 

similarly, a perception of greater benefits led to information disclosure (Dinev & Hart, 

2006).  

 The origins of the privacy calculus lie in the studies that argued that individuals’ 

behavior to disclose personal information was subject to a trade-off of benefits and costs, 

whereby economic or social benefits should outweigh the negative consequences (Culnan 

& Armstrong, 1999; Laufer & Wolfe, 1977; Posner, 1984; Stone & Stone, 1990). In their 

study, Dinev and Hart (2004) utilized the privacy calculus, which consisted of perceived 

vulnerability as the negative factor, and perceived ability to control as the positive factor. 

Their research model was rooted in the procedural justice framework which was found to 

motivate individuals to disclose their personal information (Culnan & Armstrong, 1999). 

As such, the perceived ability to control was posited to decrease individuals’ privacy 

concerns, whereas perceived vulnerability increased privacy concerns (Dinev & Hart, 

2004). The privacy calculus used by Dinev and Hart (2004) essentially emphasized how 

individuals’ perceptions were formed when contrary but salient factors were present. 

 Following the study by Dinev & Hart (2004), an extended privacy calculus model 

was developed and tested in the context of online transactions (Dinev & Hart, 2006). The 
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extended privacy calculus posited that when individuals undergo situations whereby they 

are required to disclose their personal information, a calculus of risk beliefs, as well as 

confidence and enticement beliefs existed (Dinev & Hart, 2006). Among the risk beliefs 

were privacy risk and privacy concerns, which, were both found to negatively influence 

individuals’ personal information disclosure. Likewise, Dinev and Hart (2006) included 

trust and personal internet interest as the confidence and enticement beliefs, and found 

that they both positively influenced individuals' disclosure of personal information. The 

findings of Dinev and Hart (2006) were consistent with that of studies whereby trust 

influenced personal information disclosure (Bansal et al., 2010; Malhotra et al., 2004). 

Similarly, Dinev and Hart’s (2006) findings of privacy risk’s negative impact on an 

individual’s personal information disclosure corroborated with the findings of prior 

research, such as that of Malhotra et al. (2004).  

 The privacy calculus is adaptable to multiple definitions of privacy. For instance, 

while the most apparent definition (based on the extended model) is that of a commodity-

based definition (Dinev & Hart, 2006; Smith et al., 2011), it has been adopted by a 

number of researchers, and in some instances has been aligned with a control-based 

definition (Dinev & Hart, 2004; Xu, Dinev, Smith, & Hart, 2008; Xu et al., 2010; 2012). 

However, the privacy calculus assumed that individuals were rational in their decision-

making (Dinev & Hart, 2006). This assumption was consistent with a number of other 

studies which assumed that there existed some rational process behind individuals’ 

personal information disclosure (Acquisti & Varian, 2005; Awad &Krishnan, 2006; 

Culnan & Armstrong, 1999; Pavlou et al., 2007; Van Slyke et al., 2006), thereby 
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neglecting the emotional and situational aspects of individuals’ decision-making (Li et 

al., 2011).  

 

2.4.2. Debates that Privacy-Related Decisions Are Not Purely Rational 

 According to Acquisti (2004), individuals are unable to make purely rational 

decisions with regards to privacy concerns due to ‘bounded rationality’. Specifically, 

individuals do not possess all the information of the parameters governing a given 

situation (Acquisti & Grossklags, 2005). Moreover, even if the individual had all the 

information required for a rational decision, his/her cognitive ability would be limited in 

the processing of all this information (Acquisti, 2004). Therefore, studies have examined 

other arguments to better explain individuals’ privacy decisions (Acquisti, 2004; Angst & 

Agarwal, 2009; Li et al., 2011). Acquisti (2004) proved that a number of psychological 

distortions may be enacted when individuals make decisions concerning their information 

privacy, such as hyperbolic discounting of future costs and benefits. As such, individuals’ 

decisions of privacy may be affected by their estimations which differ at different points 

of time, which may lead to individuals having faulty assessments and undermining their 

risks (Acquisti, 2004).  

 Studies also found psychological features contributed to individuals’ perceptions 

of privacy and decisions to provide or withhold personal information (Acquisti & 

Grossklags, 2005; Bansal et al., 2010). In their study, Bansal et al. (2010) found 

personality differences affected individuals' privacy-related decisions, along with positive 

factors (such as trust and prior positive experiences), and negative factors of risk beliefs, 

prior online invasions and privacy concerns. Acquisti and Grossklags (2005) found that 
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incomplete information, bounded rationality and systemic psychological deviations (such 

as overconfidence in risk assessments), affected individuals’ privacy-related decision 

making.  

 Consistent with explaining the privacy-paradox based on psychological arguments 

that discounted a purely rational perspective, Li et al. (2011) argued that various 

situational factors affected individuals when they interact with a website. Due to the 

situational factors, privacy-related decision-making is dynamic (Li et al., 2011). 

Essentially, despite any preconceptions an individual may have with regards to disclosing 

their personal information, situational factors would influence their behavior. As such, Li 

et al. (2011) adopted the stimulus-organism-response (S-O-R) model, whereby the 

affective and cognitive states of an individual is based on the environment. Emotions, 

such as joy or fear incorporated the affect-based state, whereas the cognition-based state 

comprised of perceived relevance of information and awareness of privacy statements. Li 

et al. (2011) posited that the affective and cognate states had an impact on the privacy 

calculus which individuals undergo. While Li et al. (2011) found that individuals’ privacy 

concerns shaped their privacy beliefs; initial emotions (affect-based state) and fairness 

levers (cognate-based state) were also influential to privacy beliefs and subsequently, 

individuals’ decisions to disclose personal information. In essence, the study by Li et al. 

(2011) corroborated the arguments that individuals’ privacy behavior was not purely 

rational.    

 Anderson and Agarwal (2011) further improved the explanatory power of the 

privacy calculus with regards to the privacy paradox by including emotions as a 

necessary factor for consideration. Anderson and Agarwal (2011) argued that the 
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examination of privacy concerns within the healthcare context need to differ from 

previous privacy studies since there exists a “consideration of risk that is substantially 

more granular than has been explored in past privacy studies” (p. 471). As such, emotions 

played a significant role in influencing individuals’ decisions to disclose their personal 

information (Anderson & Agarwal, 2011). Their findings suggested that the emotions 

individuals perceive over their health status influenced them to disclose or withhold their 

personal information, however, so did the privacy calculus, which consisted of trust and 

privacy concerns (Anderson & Agarwal, 2011). While the findings of Anderson and 

Agarwal (2011) differed from Li et al. (2011) in that emotion influenced individuals to 

disclose their personal information directly, and not the privacy calculus; essentially, a 

major contribution from their study was that individuals’ decision making could be 

dominated by emotional states as opposed to being purely rational. Despite the argument 

of Anderson and Agarwal (2009) that privacy within the healthcare context needed to be 

studied differently, their findings lent support to the debates that emotions need to be 

considered along with rationality when examining individuals’ privacy behaviors, despite 

the context.  

 

2.5. Summary 

 Information privacy is a subset of the general field of privacy, which has been 

defined by researchers as either a value or cognate-based (Smith et al., 2011). 

Specifically, privacy is defined as a value as a human right or a commodity that could be 

traded for something in return. Privacy as a cognate-based definition, however, refers to 

the subjective value an individual place over the privacy of their personal information, 
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and may be regarded as either a cognitive state or control (Smith et al., 2011). The 

definitions of information privacy have allowed researchers to develop theoretical 

research models for empirically examining the privacy paradox, which is the 

contradictory actions of individuals who claim concerns for information privacy, but 

continue to disclose their personal information (Dinev & Hart, 2004; 2006; Norberg et 

al., 2007; Van Slyke et al., 2006). The privacy calculus has often been used to explain the 

privacy paradox (Laufer & Wolfe, 1977; Dinev & Hart, 2006), which assumes that 

individuals make decisions rationally. Yet, individuals are not purely rational decision-

makers (Acquisti & Grossklags, 2005). Studies have therefore integrated emotions as key 

factors in individuals’ privacy-related decision-making (Anderson & Agarwal, 2011; Li 

et al., 2011). Essentially, a better understanding of the privacy paradox could be achieved 

by considering both the rationality and emotional thought processes behind individuals’ 

privacy-related decisions.  
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Chapter 3 

Theory 

3.1. Introduction  

 This chapter consists of the theory used for the development of the research 

model and hypotheses for this study. Section 3.2 presents the theory used for this study, 

how it was expanded upon using cognitive neuroscience, as well as relevant information 

of the neuroanatomy of the human brain to better understand how cognitive neuroscience 

is used to better explain the privacy paradox. Section 3.3 presents an overarching 

research model for the study, along with the hypotheses, and their separate models. 

Section 3.4 then summarizes and ends the chapter.  

 

3.2. Theoretical Basis 

The privacy calculus has often been used to explain individuals' privacy-related 

decisions, particularly in understanding the privacy paradox, positing that individuals' 

would trade their personal information based on a cost-benefit analysis (Culnan & Bies, 

2003; Dinev & Hart, 2004; Laufer & Wolfe, 1977, Smith et al., 2011). The principles of 

the privacy calculus have often been adopted by researchers greatly in extant literature in 

the information privacy field (Bansal et al., 2010; Dinev & Hart, 2004; 2006; Dinev et al., 

2006; Li et al., 2011; Malhotra et al., 2004; Xu et al., 2010). Essentially, researchers have 

often explained the privacy paradox using the privacy calculus, highlighting the 

numerous cost-related and benefit-related factors that influence privacy-related decisions. 

For instance, in their study, Dinev and Hart (2006) found factors of trust and personal 
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interest (benefits) acted against factors of privacy concerns and privacy risk (costs) in 

individuals’ decisions to disclose personal information.  

The privacy calculus is limited in assuming individuals are purely rational 

decision makers, yet, researchers have recognized the need to include emotions in 

investigating individuals' privacy-related decisions (Anderson & Agarwal, 2011; Li et al., 

2011). Following the studies that sought to gain a better understanding of the privacy 

paradox, this study adopted the extended privacy calculus model developed by Dinev and 

Hart (2004) as the theoretical basis. However, the extended privacy calculus model is 

limited in the assumption that individuals are purely rational decision-makers. To address 

this limitation, the findings from cognitive neuroscience were applied to the extended 

privacy calculus model. The introduction of cognitive neuroscience thus enhanced the 

explanation provided by the extended privacy calculus model in interpreting the privacy 

paradox.   

 

3.2.1. Extended Privacy Calculus Model 

 This study used the extended privacy calculus model developed by Dinev and 

Hart (2006), as the basis for the research model. Despite the limitations of the privacy 

calculus in assuming individuals’ decisions are purely rational, it greatly contributes to 

explaining the privacy paradox. The cost-benefit tradeoff has been adopted by many 

researchers with regards to personal information disclosure, most often including privacy 

risk beliefs, trusting beliefs and other contrary but influential factors (Bansal et al., 2010; 

Dinev & Hart, 2004; 2006; Li et al., 2011; Malhotra et al., 2004; Norberg et al., 2007; Xu 

et al., 2010). 
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Depicted in Figure 1, the extended privacy calculus model posited that 

individuals’ intentions to disclose personal information were inhibited by privacy risk 

and privacy concerns, but influenced by trust and personal interest (Dinev & Hart, 2006). 

Privacy risk was defined as the risk of opportunistic behavior towards the personal 

information an individual disclosed, which was associated with the possibility of loss and 

uncertainty (Dinev & Hart, 2006). Privacy risk correlated positively with privacy 

concern, but negatively with trust (Dinev & Hart, 2006). Essentially, if an individual 

perceived more trust in disclosing his/her personal information, his/her perception of 

privacy risk would be lower. Trust was one of the confidence and enticement beliefs, 

which positively influenced individuals’ intentions to disclose personal information. 

Personal interest is the other confidence and enticement belief factor that was defined as 

the intrinsic motivation toward performing an action, and the satisfaction derived from 

doing so (Dinev & Hart, 2006).  

 

 
Figure 1. Extended Privacy Calculus Model developed by Dinev & Hart (2006) 
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3.2.2. Using Insights from Cognitive Neuroscience to Enhance the Extended Privacy 

Calculus 

 Acquitsi and Grossklags (2005) explained that privacy-related decisions may be 

limited by bounded rationality, and cognitive biases. Specifically, Acquisti (2004) 

explained the cognitive bias of hyperbolic discounting as a cause for individuals’ 

decisions to disclose personal information despite claiming concerns for their information 

privacy. Essentially, individuals would prefer short-term benefits rather than the better 

choice of long-term benefits (Acquisti, 2004). However, explaining the privacy paradox 

by arguing for the saliency of cognitive biases, such as hyperbolic discounting, ignores 

the rational aspects involved in privacy-related decisions. While individuals’ disclosure 

of personal information may not be purely rational, findings from cognitive neuroscience 

have explained that decisions are complex enough to involve multiple mental processes 

(Dimoka et al., 2007).  

Findings of cognitive neuroscience indicated that there are correlations between 

mental processes and specific brain areas. Rational cognitive processes are often 

correlated with brain activity in the prefrontal cortex, while emotions are often correlated 

with the limbic system (Dimoka et al. 2007). Furthermore, these systems of rationality 

(prefrontal cortex) and emotional processing (limbic system) interact with one another 

(Phelps, 2006). Essentially, no decision is purely rational, nor is any decision purely 

emotional. Furthermore, Dimoka (2012) explained that individuals’ brain activity does 

not necessarily mean that only one mental process is occurring. There exists a many-to-

many relationship between brain activity and mental processes (Dimoka, 2012). For 

instance, when an individual perceives some activity will yield specific rewards, several 
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key brain areas are activated, such as the orbitofrontal prefrontal cortex, medial prefrontal 

cortex, amygdala, nucleus accumbens, and caudate nucleus (Dimoka et al., 2007). The 

brain areas activated in assessing rewards include areas present in both the prefrontal 

cortex and the limbic system (Dimoka et al., 2007). Therefore, to elicit a better 

understanding of the privacy paradox, it would be essential to observe how individuals 

decide to withhold or disclose their personal information.  

Cognitive neuroscience provides a number of tools and techniques to measure 

individuals’ brain activity, and associate brain functions with mental processes. Popular 

within brain mapping literature, is the use of the functional magnetic resonance imaging 

(fMRI) scanner to track the flow of oxygenated and deoxygenated blood to specific brain 

areas (Dimoka, 2012; Riedl et al., 2009). Yet, many studies in cognitive neuroscience 

have used the electroencephalogram (EEG) to track individuals’ electrophysiological 

responses. These electrophysiological responses are electric potentials produced from 

neurons within the brain, and is categorized by different frequency bands (Guyton & 

Hall, 2001). These frequencies, measured in Hertz (Hz), correspond to a variety of 

functions (Demos, 2005). The frequency bands and their associated functions are 

summarized from Demos (2005) in Table 1. 

 

Table 1. Frequency bands of electric potentials 

Waves Frequency Function 

Delta waves 1-4 Produced more in infants and children than adults, and 

pertains to the functioning of the immune system, natural 

healing, and deep sleep. 

Theta waves 4-8 Connected to feelings of deep and raw emotions. High 

frequencies of theta waves are associated with depression, 
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impulsivity, hyperactivity, and inattentiveness. Low 

frequencies of theta waves are associated with anxiety, 

poor emotional awareness, and stress. Optimal 

frequencies of theta waves are associated with intuition, 

relaxation, creativity and emotional connection.  

Alpha 

waves 

8-12 The state between the conscious and subconscious mind, 

often produced in resting state, with eyes closed. High 

frequencies of alpha waves relate to daydreaming, 

excessive relaxation, and the inability to focus. Low 

frequencies of alpha waves relate to anxiety, high stress, 

insomnia, and obsessive-compulsive behavior. Optimal 

levels of alpha waves pertain to relaxation.  

Beta waves 13-21 Relates to conscious thought, logical thinking, focus and 

problem solving.  

High Beta 

waves 

20-32 Pertains to intensity, anxiety and hyper alertness. 

Gamma 

waves 

38-42 Involved in higher processing tasks and cognitive 

functioning. 

 

While the extended privacy calculus model (Dinev & Hart, 2006) consisted of 

privacy risk, privacy concern, trust and personal interest, cognitive neuroscience has 

found these factors correlated with neural activity in specific areas of the brain. Different 

brain areas are responsible for different functions, such as motor control, executive 

functions, and emotional processing. Thus, these brain areas associated with the mental 

processes or factors involved in the extended privacy calculus enhances the investigation 

of individuals’ privacy-related decisions. Furthermore, other factors such as uncertainty 

and distrust are important in considering since uncertainty was found to be an antecedent 

of personal information disclosure (Pavlou et al., 2007), and distrust as a distinct factor 
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from trust (Dimoka, 2010). Thus, the findings of cognitive neuroscience were applied to 

the extended privacy calculus model, to elicit a better explanation of the privacy paradox, 

identifying both the involvement of emotions and rationality in individuals’ privacy-

related decisions.  

 

3.2.3. Neuroanatomy – Structure and Function of Key Brain Areas 

 Adequately applying the findings of neuroscience to the field of Information 

Systems to better understand IS problems, require a basic understanding of the structure 

of the human brain (i.e. its anatomy), as well as some key functions of these brain areas. 

The human brain is part of the central nervous system, which consists of gray and white 

matter, and are divided into three principle areas, the forebrain, midbrain and hindbrain. 

The gray matter are nerve cells, called neurons, while the white matter are axons, which 

are linked to the neurons for neuronal communication (Demos, 2005; Hanaway, 

Woosley, Gado, & Mellville, 1998; Snell, 2010). Connected to the spinal column is the 

hindbrain, which contains the medulla oblongata, pons, and cerebellum, with the 

midbrain connecting the hindbrain to the forebrain (Snell, 2010). The forebrain consists 

of the telencephalon and diencephalon. The telencephalon is composed of the cerebrum, 

separated into a right and left hemisphere, composed of an outer layer, known as the 

cerebral cortex, and subcortical structures such as the basal ganglia (Cannon, 2012; 

Demos, 2005). The diencephalon is the inner part of the forebrain consisting of the 

thalamus and hypothalamus. The diencephalon is comprised mainly of gray matter, and is 

situated at the head of the brain stem, thus linking lower brain stem structures to the 

cerebral cortex (Cannon 2012). The cerebral hemisphere is partitioned into four lobes: the 
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frontal lobe, temporal lobe, parietal lobe, and occipital lobe. Each hemisphere consists of 

a number of bulges, known as gyri (pl. gyrus), and small and large grooves known as 

sulci (pl. sulcus) and fissures, respectively (Goldberg, 2010). As depicted in Figure 2, the 

frontal lobe is the anterior part of the brain, the temporal lobe is located to the side, and 

the parietal lobe is behind the frontal lobe, but above the occipital lobe. The occipital 

lobe, which is located at the base of the brain, is primarily associated with vision (Demos, 

2005).  

 

Figure 2. Lobes of the Cerebral Cortex 

  

Further division of the cerebral cortex into specific areas was developed by 

Korbinian Brodmann in 1908 into a cytoarchitectural map consisting of Brodmann Areas 

(BA) labeled 1 to 52 (Cannon, 2012). The BA’s were developed based on the 

organization of neurons, and have since been the most widely accepted cytoarchitectural 

map of the cerebral cortex, which, over the years, have undergone re-evaluations and 

further divisions (Cannon, 2012).  BA’s are responsible for many different functions 

ranging from somatosensory perceptions, such as temperature and pain, located in BA’s 
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1, 2, and 3 (also known as the Somatosensory Cortex), to decision-making, which is 

located in BA 8. Brodmann areas exist in both hemispheres. For instance, there are right 

and left BA 5’s. Figure 3a and 3b depicts the Brodmann Areas within the brain, while 

table 2 illustrates some of the functions found to be associated with these Brodmann 

Areas.         

 

Figure 3a. Brodmann Areas of the Cerebral Cortex (outer view) 

 
Figure 3b. Sagittal View of Brodmann Areas in the Brain 
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Table 2. Brief overview of Brodmann Areas and some of their Associated Functions 

Brodmann 

Areas 

Name of Areas Functions References 

1, 2, 3  Postcentral Gyrus Temperature, pain, 

proprioception and nociception 

processes  

Kirimoto, Ogata, Onishi, Oyama, Goto, & Tobimatsu 

(2010); McCaslin, Chen, Radosevich, Cauli, & Hillman 

(2010); Straube & Miltner (2011); Zhang, Jiao, & Sun 

(2011) 

4 & 6 Premotor Cortex  Motor functions Luria (1966) 

5 & 7 Superior Parietal 

Lobule 

Motor execution, spatial 

imagery in deductive reasoning  

Knauff, Mulack, Kassubek, Salih, & Greenlee (2002); 

Stephan, Fink, Passingham, Silbersweig, Ceballos-

Bauman, Frith, & Frackowiak (1995) 

8, 9, 10 Prefrontal Cortex Decision-making, uncertainty, 

executive attention, self-

regulation, emotion, arithmetic 

processes 

Cannon, Congedo, Lubar, & Hutchens (2009); Cannon, 

Sokhadze, Lubar, & Baldwin (2008); Jahanashi, 

Dirnberger, Fuller, & Frith (2000); Volz, Schubotz, & von 

Cramon (2005) 

11, 12, 25 Orbitofrontal Cortex Emotional regulation, self-

regulation, encoding and 

retrieval, decision-making 

involving rewards 

Cannon (2012); Ernst et al. (2004) 

13, 14, 15, 

16 

Insular Cortex Fear, risk-taking Phelps, O’Connor, Gatenby, Gore, Grillon, & Davis 

(2001); Paulus & Frank (2003) 

17, 18, 19 Primary & Secondary 

visual cortices 

Associated with vision Cannon (2012) 

20, 21, 22 Inferior Temporal, 

Fusiform & 

Parahippocampal Gyri 

Attribution of attention to 

others 

Brunet, Sarfati, Hardy-Bayle, & Decety (2000) 
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23, 26, 29, 

30, 31 

Posterior Cingulate 

Gyrus 

Emotions and episodic 

memory processes 

Cannon (2012) 

24, 25, 32, 

33 

Anterior Cingulate 

Gyrus 

Consciousness, learning, 

reward, and decision-making 

Devinsky, Morrell, & Vogt (1995) 

27, 28, 34, 

35, 36, 48 

Hippocampal Areas Emotional memories, fear  Reinders, Gascher, de Jong, Willemsen, den Boer, & 

Buchel (2006); Richardson, Strange, & Dolan (2004).  

37 Fusiform Gyrus Visual recognition Tanaka (1997) 

38 Temporal Pole Social and emotional 

processes, decision-making 

Dupont (2002) 

39 Angular Gyrus Integration of visual and tactile 

stimuli in addition to speech 

Cannon (2012) 

40 Supramarginal Gyrus Writing of single letters Rektor, Rektorova, Mikl, Brazdil, & Krupa (2006) 

41 & 42 Primary Auditory 

Cortex 

Basic auditory processing Stefanatos, Joe, Aguirre, Detre, & Wetmore (2008) 

43 Subcentral Area Sign and spoken language Soderfeldt, Ingvar, Ronnberg, Eriksson, Serrander, & 

Stone-Elander (1997) 

44 & 45 Broca’s Area Involved in the production of 

language 

Cannon (2009) 

46 Anterior Middle 

Frontal Gyrus 

Processing emotions and self-

reflections in decision-making 

(left) 

Deppe, Schwindt, Kugel, Plassman, & Kenning (2005) 

47 Inferior Frontal Gyrus Decision making involving 

conflict and rewards (right) 

Rogers, Own, Middleton, Williams, Pickard, Sahakian, & 

Robbins (1999) 
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3.3. Research Model 

 The research model is based on the application of the findings of cognitive 

neuroscience to the extended privacy calculus model developed by Dinev and Hart 

(2006). The privacy calculus has often been used by researchers to study the beliefs 

individuals have concerning the disclosure of their personal information in various 

contexts, such as ecommerce, ehealth, social media, and profiling (Awad & Krishnan, 

2006; Bansal et al., 2010; Dinev & Hart, 2006), due to the influence certain factors, such 

as trust and risk. However, a distinction should be made between the oft-measured 

beliefs, when researchers use the privacy calculus, and the perceptions or mental 

processes identified in this study. 

Factors such as risk beliefs and trust beliefs, often used in the literature (Dinev & 

Hart, 2006; Li et al., 2011), pertains to an individuals’ enduring perceptions or beliefs of 

a given situation. However, individuals’ attitudes (i.e. their perceptions or mental 

processes) may be different due to situational factors and cognitive limitations (Acquisti 

& Grossklags, 2005; Belanger & Crossler, 2011; Sim et al., 2012), often triggered by 

some stimuli. Specifically, the extended privacy calculus model developed by Dinev and 

Hart (2006) identified a number of salient factors (such as trust and risk) present in 

privacy-related decisions. While these factors were measured as beliefs, research in 

cognitive neuroscience has identified these factors as mental processes, which may be 

derived from a both internally held beliefs and external stimuli (Angst & Agarwal, 2009; 

Dimoka, 2010; 2012; Dimoka et al., 2007; Li et al., 2011). Additionally, factors of 

uncertainty and distrust were added to the privacy calculus based on the findings of 

cognitive neuroscience that these factors were distinct from factors such as risk or trust 
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(Dimoka, 2010; Dimoka et al., 2007; 2011). Specifically, Dimoka (2010) found distrust 

was associated with brain areas different from the brain areas associated with trust. 

Figure 4 presents the overarching research model for this study developed from the 

extended privacy calculus and pertaining to the mental processes predicting privacy 

concerns and personal information disclosure. This model is further broken in the next 

two subsections, displaying the inclusion and relationships between these mental 

processes and brain areas in predicting privacy concerns and personal information 

disclosure.  

 
Figure 4. Overarching research model  

 

 

3.3.1. Hypotheses Development – Neural Correlates 

The following hypotheses were developed mainly from research using positron 

emission tomography (PET) scans and fMRI techniques for source localization. 
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Localization of brain activity may not be the same across neuroimaging technologies; 

however, past research can provide an idea as to where neural activity may take place in 

specific situations. Thus, these hypotheses are developed more as a guideline to where 

brain activity might occur. Specifically, exploring neural activity for specific mental 

processes might produce varied results from past literature based on a number of factors 

such as the design of experiments and neuroimaging tools selected. As explained by 

Cannon (2012), the brain is a complex system of systems, whereby findings in current 

neuroscience literature can be challenged as new findings can refute previous 

understanding of the brain. Figure 5 depicts the hypotheses of brain areas correlated with 

the mental perceptions of the extended privacy calculus model.  

 

Figure 5. Neural Correlates of Mental Processes 
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Researchers in the field of information privacy have often treated privacy risk as a 

one-dimensional construct (Dinev & Hart, 2006; Malhotra et al., 2004; Norberg et al., 

2007; Smith et al., 2011). However, privacy risk may actually be a multidimensional 

construct whereby an individual's perception of risk may assess the likelihood and 

severity of consequences in engaging or avoiding a risky action (Peter & Tarpey, 1975; 

Smith et al., 2011). Privacy risk is essentially an individual's perception of risk but in the 

context of information privacy. According to Dinev and Hart (2006), privacy risk wis 

defined as the possibility of loss, which is related to the uncertainty caused by the 

possibility of harm to the individual if he/she were to disclose his/her personal 

information. Findings in cognitive neuroscience have explained that risk may be multi-

dimensional as there are different brain activations, based on different situations. The 

nucleus accumbens, which is primarily attributed to the anticipation of rewards (Knuston, 

Fong, Adams, Varner, & Hommer, 2001), is activated when individuals sought to avoid 

risky behavior (Matthews, Simmons, Lane, & Paulus, 2004). However, brain activity in 

the insular cortex correlated with risky games when individuals perceived high loss 

predictions (Paulus & Frank, 2003). Additionally, Brown and Braver (2007) indicated 

that the anterior cingulate cortex might be involved in avoiding risks. Similarly, Massar, 

Rossi, Schutter, and Kenemans (2012) found that individuals with high behavioral 

inhibition system (BIS) scores (i.e. an assessment of punishment severity) had a high 

theta/beta ratio correlated with low feedback related negativity (a component of an event-

related potential), whereby the baseline theta activity was generated in the anterior 

cingulate cortex.    

H1a: Privacy Risk is associated with brain activity in the nucleus accumbens. 
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H1b: Privacy Risk is associated with brain activity in the insula cortex. 

H1c: Privacy Risk is associated with brain activity in the anterior cingulate 

cortex. 

 

The extended privacy calculus model found trust to be a salient factor that 

positively influenced individuals to disclose their personal information (Dinev & Hart, 

2006). Trust is defined as the confidence of an individual that organizations would act 

benevolently in protecting them from harm caused by the personal information they 

collect (Dinev & Hart, 2006). The extended privacy calculus model neglected the impact 

of distrust because researchers have often assumed that trust and distrust lay at opposite 

ends of a single continuum (Dimoka, 2010). However, Dimoka (2010) found that trust 

correlated with brain activity in the caudate nucleus and putamen, whereas distrust 

correlated with the amygdala and insular cortex (Dimoka, 2010). These findings 

indicated that trust and distrust are distinct from each other. Moreover, the effect of 

distrust was more influential than trust when subjects made decisions about price 

premiums (Dimoka, 2010).  

H2a: Trust is associated with brain activity in the caudate nucleus. 

H2b: Trust is associated with brain activity in the putamen. 

H3a: Distrust is associated with brain activity in the amygdala. 

H3b: Distrust is associated with brain activity in the insula cortex. 

 

Studies in neuroscience found uncertainty correlates with the orbitofrontal cortex 

and inferior parietal cortices (Krain, Wilson, Arbuckle, Castellanos, & Milham, 2006), 
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which are different from the neural correlates in risky situations. Pfeffer and Salancik 

(1978) explained uncertainty as the inability to accurately anticipate the future state of a 

situation because of a lack of enough information. Specifically, when using ICTs, such as 

ecommerce, uncertainty may exist when an individual is unsure of the outcome if he/she 

were to disclose his/her personal information. This is often due to a lack of information 

regarding the parameters of such a situation, such as the case with buyers and sellers in 

ecommerce transactions (Acquisti, 2004; Pavlou et al., 2007). Yet, uncertainty is different 

from ambiguity and risk. An individual may be privy to a great deal of information when 

deciding to disclose his/her personal information, and may assess the situation as risky. 

Alternatively, ambiguity is not necessarily considered as negative, as opposed to risky or 

uncertain situations (Krain et al., 2007).  

H4a: Uncertainty is associated with brain activity in the orbitofrontal prefrontal 

cortex. 

H4b: Uncertainty is associated with brain activity in the inferior parietal cortex.  

 

 In the extended privacy calculus model, personal interest is defined as an 

enticement that would influence individuals to disclose personal information (Dinev & 

Hart 2006). This may be based on an individual's intrinsic motivation to use a system 

despite the requirement to disclose his/her personal information and the risk associated 

with doing so. This decision may not be altogether rational, but rather impulsive as 

suggested in the findings of Belanger et al. (2002), where individuals preferred the 

pleasure of online shopping to security and privacy. In a similar manner to the 

impulsivity of consumer behavior, personal interest was assumed to be associated with 
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the similar cognitive processes of high activations in the ventromedial prefrontal cortex 

and inferior parietal lobule (right BA 40), but low activations in the dorsolateral 

prefrontal cortex (Deppe et al., 2005).    

H5a: Personal Interest is associated with high brain activity in the ventromedial 

prefrontal cortex, but low activity in the dorsolateral prefrontal cortex. 

H5b: Personal Interest is associated with brain activity in the inferior parietal 

lobule. 

 

3.3.2. Hypotheses Development – Relationship with Privacy Concerns and Personal 

Information Disclosure 

 Dimoka (2010) found that the neural activity of brain areas correlated with 

perceptions of trust and distrust provided a better explanation to decisions of price 

premiums than psychometric data. Similarly, the neural activity of brain areas correlated 

with the perceptions of privacy risk, trust, distrust, uncertainty and personal interest 

should be better predictors than self-reported data. Thus, the following hypotheses were 

formed on the basis that neural correlates of the predictors of the extended privacy 

calculus would influence individual’s perceptions of privacy concerns, as well as their 

decisions to withhold or disclose their personal information. 

In the extended privacy calculus model, privacy risk influenced privacy concerns, 

while inhibiting personal information disclosure (Dinev & Hart, 2006). Privacy risk has 

been seen in a number of studies as an inhibitor to personal information disclosure 

(Malhotra et al., 2004; Norberg et al., 2007; Van Slyke et al., 2006). However, privacy 

risk may be more complicated than past studies have suggested, as it may entail both the 
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perceptions of loss, as well as the anticipation of outcomes if a risky action were averted. 

Furthermore, findings in neuroscience suggest that risky situations involve brain areas 

that are involved in strong negative emotions (such as the insula cortex) as well as reward 

centers (Knuston et al., 2001; Paulus & Frank, 2003). While the full extent of the role 

privacy risk may be unknown in relation to privacy-related situations, the following 

hypothesis was developed based on findings from prior literature. 

H6a: The neural correlates for privacy risk are positively related to privacy 

concerns. 

H6b: The neural correlates for privacy risk are negatively related to personal 

information disclosure.   

 

The extended privacy calculus model found that high levels of risk were 

negatively related to high levels of trust (Dinev & Hart, 2006). Similarly, the neural 

correlates of risk and trust may have a negative relationship. Trust was found to 

positively influence personal information disclosure (Dinev & Hart, 2006; Pavlou et al., 

2007; Van Slyke et al., 2006). However, as trust and distrust were found to be distinct 

from each other with regards to their neural correlates, it is expected that both the neural 

correlates of distrust and trust would have some influence on personal information 

disclosure. Additionally, in the same manner that privacy risk, which has been considered 

as a negative construct in previous studies (Dinev & Hart, 2006; Malhotra et al., 2004; 

Van Slyke et al., 2007), has a relationship with privacy concerns, it is also expected that 

the neural correlates of distrust may enforce individuals’ privacy concerns.  
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H7a: The neural correlates of privacy risk are negatively related to the neural 

correlates of trust. 

H7b: The neural correlates of trust are positively related to personal information 

disclosure. 

H8a: The neural correlates of distrust are positively related to privacy concerns. 

H8b: The neural correlates of distrust are negatively related to personal 

information disclosure. 

 

The extended privacy calculus model by Dinev and Hart (2006) found personal 

interest directly influenced individuals to disclose their personal information. Similarly, 

the neural correlates associated with personal interest should be related to individuals’ 

decisions to disclose their personal information. Similarly, perceptions of uncertainty, 

and the associated neural correlates would increase privacy concerns, while inhibiting 

personal information disclosure. Specifically, in the context of information privacy, 

uncertainty is often considered negative, which may be related to privacy concerns 

(Pavlou et al., 2007). While Pavlou et al. (2007) found privacy concerns influenced 

individual's perceived uncertainty; it is also possible that because of uncertain situations, 

an individual's privacy concerns are heightened. Similarly, uncertainty would also 

influence individuals to withhold their personal information.  

H9: The neural correlates of personal interest are positively related to personal 

information disclosure. 

H10a: The neural correlates of uncertainty are positively related to privacy 

concerns. 
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H10b: The neural correlates of uncertainty are negatively related to personal 

information disclosure. 

 

Privacy concerns are often used in information privacy field as an appropriate 

measure of information privacy (Smith et al., 2011). Dinev & Hart (2006) defined 

privacy concerns as the concerns an individual has over the opportunistic behavior of 

another entity to which an individual would disclose his/her personal information. Dinev 

and Hart (2006) distinguished privacy risk from privacy concerns by explaining that 

privacy risk was a perception based on the individual's overall perception of disclosing 

his/her personal information, while privacy concerns was an internalization of what 

happens to the personal information the individual has disclosed. Studies have often 

categorized privacy concerns as a multi-dimensional construct reflecting dimensions of 

concerns for the collection, unauthorized secondary use, improper access and errors of 

personal information (Smith et al., 1996; Stewart & Segars, 2002). The IUIPC asserted 

that the dimensions of privacy concerns in the era of the internet were based on the 

concerns for the collection and control of personal information, as well as the individual's 

awareness of how the personal information he/she has disclosed to an entity is handled. It 

is assumed that the greater an individual's degree of privacy concerns, the more likely 

he/she would withhold his/her personal information. Figure 6 depicts the research model 

that was tested in the study (except for hypothesis 12). 

 

H11: Privacy Concerns are negatively related to personal information disclosure 
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Figure 6. Research Model Depicting Hypothesized Relationships 

 

Based on the findings of cognitive neuroscience, the constructs or mental 

processes that are involved in individuals’ privacy concerns, as well as their decision to 

disclose their personal information are distinct (Dimoka et al., 2007). As found by 

Dimoka (2010), a high level of trust does not dictate that a low level of distrust would be 

perceived by an individual. In the same manner that both distrust and trust can be 

perceived at the same time and at varying degrees (Dimoka, 2010), individuals may 

perceive other mental processes such as risk and personal interest at the same time and at 

varying degrees. However, the effect of an independent variable on the dependent 

variable can be changed due to the presence of other independent variables. These effects 

are referred to as interaction effects. It should be noted that the following hypotheses on 

interaction effects are not represented in the research model, since interaction effects 

should not alter the direction of the relationships between the independent variables and 
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the dependent variables. For instance, the interaction effects would not alter hypotheses 

such as 6b, which posits that risk would negatively influence personal information 

disclosure, but would determine the amount of change in the dependent variable based on 

the interactions between independent variables.   

 

H12a: An interaction effect would exist between the independent variables 

(privacy risk, trust, distrust, personal interest, uncertainty) and privacy concerns. 

H12b: An interaction effect would exist between the independent variables 

(privacy risk, distrust, personal interest, uncertainty, privacy concerns) and 

personal information disclosure. 

 

3.4. Summary 

The extended privacy calculus model developed by Dinev and Hart (2006) was 

used as the theoretical basis for this study. However, the extended privacy calculus model 

is limited in assuming individuals are purely rational decision-makers. To address this 

limitation, the findings of cognitive neuroscience were added to the extended privacy 

calculus. The findings of cognitive neuroscience aid in identifying the neural correlates of 

mental processes, which predict individuals’ privacy-related decisions. Identifying these 

neural correlates allow for examining the nature of these mental processes (such as 

rational and/or emotional) as well as observes the relationships between these mental 

processes in privacy-related decisions. 
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Chapter 4 

Research Design 

4.1. Introduction 

 This chapter consists of the research design used for testing the research model 

and hypotheses for this study. Section 4.2 presents the research method used, while 

section 4.3 explains how the data was collected. Section 4.4 details the design of the 

research method to adequately capture data for analysis and achieving the objectives of 

this study. Section 4.5 explains the data analysis, including the preprocessing of data 

before analysis. Section 4.6 concludes the chapter with a summary.  

 

4.2. Research Method 

 Three within-subject experiments were conducted using an EEG device to 

measure subjects’ brain activity. All subjects participated in the three experiments as if it 

were one experiment, while the conditions associated with each experiment were later 

separated and analyzed accordingly. Experiments were chosen as the selected research 

method, as it allows researchers to control the environment through manipulations (i.e. 

treatments or conditions) to observe specific behavior, and retain strong internal validity 

(Sekaran & Bougie, 2013). However, experiments are often used for examining causal 

relationships (Sekaran & Bougie, 2013), yet, inferring a causal relationship between 

mental processes and research constructs can lead to erroneous assumptions, referred to 

as “reverse inference” (Poldrack, 2006). This is because there exists a many-to-many 

relationship between mental processes and brain activity, whereby a research construct, 

such as trust, may generate brain activity in multiple regions of the brain, while another 
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construct may generate activity in similar brain regions (Dimoka, 2012). However, 

experiments using an EEG expose subjects to treatments, where data is recorded and 

analyzed, and a conclusion can be drawn over the neural correlates associated with 

specific mental processes and certain decisions. It should be noted, however, that as the 

brain is considered extremely complex with multiple sub-systems, whatever results are 

discovered in current studies can easily be challenged with newer neuroimaging tools and 

techniques, resulting in vastly different results that are more accurate (Cannon, 2009).  

EEG captures brain activity through electrodes which detect the voltage 

fluctuations on the scalp which “results from the changes in membrane conductivity 

elicited by synaptic activity and intrinsic membrane processes” (Riedl et al., 2009, p. 

246). While EEG provides lower spatial resolution in comparison to neuroimaging 

technology such as fMRI and PET, it provides a high temporal resolution, where brain 

activity is captured in milliseconds (Riedl et al., 2009), and epochs are extracted from 

continuous records for thorough analysis of event-related potentials. This lack of spatial 

resolution leads to the “inverse problem”, whereby the location of origination of neural 

activity is often too ambiguous to identify (Grech et al., 2008). However, this inverse 

problem can be addressed using a number of mathematical formulations such as the low-

resolution electrical tomography (LORETA) and the standardized LORETA 

(sLORETA), thus increasing the detection of localized neuronal activity (Grech et al., 

2008; Pascual-Marqui, 1999; Pascual-Marqui, Esslen, Kochi, & Lehmann, 2002).  

While studies have often used self-reported data, such as survey questionnaires, 

there are more advantages to using neuroimaging tools that could directly measure brain 

activity. Self-reported data is often limited by the participants' lack of knowledge or 
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biases (Dimoka et al., 2011). For instance, an individual may fail to accurately answer 

psychometric measures in a given situation because he/she may be unaware of what 

drove he/she to specific decisions. However, directly measuring neural activity or 

physiological functions could produce more objective and generalized findings, thereby 

enhancing the information privacy field (Dimoka et al., 2011), particularly in providing a 

better understanding of the privacy paradox. Moreover, using a neuroimaging tool to 

measure brain activity allows for identifying the mental processes that are present when 

individuals make privacy-related decisions. These mental processes are distinct from 

beliefs, as they are spontaneous and less enduring, and maybe influenced by internal 

beliefs and external stimuli, as mentioned earlier (Angst & Agarwal, 2009; Dimoka 2012; 

Li et al., 2011). 

 

4.3. Data Collection 

 The study was approved by the institutional review board (IRB) before any data 

was collected. IRB approval ensures that subjects are not mistreated, and data collected is 

handled carefully and safely so as to protect the subjects from any harm in the course of 

the study. To attain approval, the benefits and risks to participants, the method of data 

collection and data analysis, how the data is kept, as well as the overall importance of the 

study were documented. Appendix A contains the approval letter by IRB, indicating the 

study could proceed.  

A within-subjects experiment (also called a repeated-measures experiment) is an 

experiment whereby each subject undergoes all the treatments (also called experimental 

conditions), with some control available to separate the effects of each treatment 
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(Dimoka, 2010; 2012). Essentially, each treatment consists of one or more of the 

independent variables, and usually at some level (Dimoka, 2012). For instance, the 

independent variable for a particular treatment, such as trust, is introduced at a high level 

and used to determine the subject’s decision to disclose personal information. This same 

independent variable would then be introduced at a low level to measure subjects’ 

decisions. Essentially, the independent variable is introduced at varying levels (such as 

high and low) to determine what effect it has on the dependent variable. Within-subject 

experiments reduce the number of participants necessary for adequate power, since all 

participants are exposed to all of the treatments, thus making it advantageous in reducing 

sample sizes and cutting costs for neuroimaging studies (Dimoka, 2012).  

 Studies in neuroscience sometimes have a small number of subjects, such as the 

study of Zotev et al. (2014) with six participants. Generally, however, the number of 

participants is often over twenty (Seeley, Smith, MacDonald, & Beninger, 2016; Xu, 

Shen, Chen, Ma, Sun, & Pan, 2011; Zotev, Yuan, Misaki, Phillips, Young, Feldner, & 

Bodurka, 2016). In this study, a total of twenty-seven subjects participated in the three 

experiments (where the three experiments were conducted as one experiment). Five of 

the subjects’ data were used for analysis in a pilot study, which was used as feedback for 

improving on any drawbacks in the design of the experiment, as well as exploring 

drawbacks in the collection of continuous EEG data used for analysis. The data collected 

from the remaining twenty-two participants was used for analysis and testing the 

hypotheses. For the pilot study, three subjects were male, while two were female (n=5), 

while the main study consisted of eleven males and eleven females each (n=22), 

indicating an equal ratio of males to females.  
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As per IRB, participants were required to sign a consent form indicating they 

understood what was required of them in the study, the benefits and the risks, as well as 

their rights before beginning the experiments. Similarly, participants were required to 

sign a screening form indicating they were not pregnant, diagnosed with any 

psychological illnesses, or took any psychotropic medications.  Pregnant women were 

excluded from the study so as to not induce any stress that could be caused when 

collecting data using an EEG, as well as to avoid any varied neuronal activity that may be 

caused by pregnancy. Brain activity in individuals who use psychotropic medications or 

suffer psychological illnesses may be different from individuals who do not use 

psychotropic medications or have psychological illnesses. This is evident, where theta 

brain waves can be moderated by dopamergic inputs in attention deficit hyperactivity 

disorder (ADHD) patients (di Michele, Prichep, John, & Chabot, 2005). Similarly, the 

use of psychotropic medications can induce specific hormonal changes to improve brain 

activity in specific areas (Demos, 2005).   

 

4.3.1. Emotiv EPOC+ EEG 

 The experiments captured brain data using an EEG device known as the Emotiv 

EPOC+. The emotive EPOC+ is a 14-electrode commercial EEG device with two 

reference points. The fourteen electrodes corresponded to the following channels of the 

10-20 system: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4. The 10-20 

system is an international standard used for EEG, which describes where electrodes 

should be placed (Teplan, 2002). Figure 7 depicts the emotive EPOC+ as well as the 
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channel locations and their associated positions in the 10-20 system as detected by 

EEGLab.  

 
Figure 7. Emotiv Epoc+ Adapted from Emotiv Website and Channel Locations Depicted 

from EEGLab 

 

4.4. Experiment Design 

 As explained above, the study is divided into three experiments, in which all 

subjects participated as if it were one experiment. Each experiment was designed as a 

within-subjects experiment. Experiment 1 was designed solely to capture the neural 

correlates of the independent variables of this study (i.e. privacy risk, trust, distrust, 

personal interest, and uncertainty). Experiment 2 was designed as a 2x2x2x2 factorial 

experiment whereby the independent variables of privacy risk, distrust, trust and personal 

interest were measured on two levels: high and low. Experiment 3 was designed as a 2x1 

factorial experiment, where there were two levels of personal interest, and one level of 

uncertainty. Experiments 2 and 3 were designed for testing the relationships between the 

independent variables, privacy concerns and personal information disclosure.  

Before subjects began the experiments, the emotiv EPOC+ EEG was fitted on 

their scalps according to the 10-20 system, and each electrode was tested to ensure 
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electric potentials were captured for each channel. When all channels were responsive, 

subjects began the experiments, as if it were one experiment. During the experiments, 

subjects were allowed to take a break if they felt uncomfortable or stressed, at which 

point the emotiv EPOC+ was removed and recordings were stopped. When subjects were 

ready to resume, the emotiv EPOC+ was once again placed on the scalp, and all 

electrodes tested for data acquisition. In total, there were only two subjects who took a 

break. If at any point an electrode stopped collecting data or became faulty, the subjects 

were asked to stop and the electrode(s) was re-adjusted until data was once more 

captured. At times, this entailed an electrode moving out of position, bad connectivity 

using Bluetooth, or the electrode becoming dry.  

Taken as one experiment, the least amount of time taken by one subject was 

fifteen minutes, while the longest was one hour and five minutes. However, every other 

subject took between thirty to forty-five minutes to complete the experiments. Overall, 

subjects were given the freedom to take as much time as they needed, so as to not apply 

any pressure on them. The times associated for when subjects were introduced to stimuli, 

and when they made their decisions were recorded for the creation of epochs for later 

analysis. When subjects completed the experiments, they were offered $50 as 

compensation for their participation.  

 

4.4.1. Experiment 1: Neural Correlates 

 Experiment 1 consisted of five conditions/treatments, each pertaining to the 

mental processes identified in the external privacy calculus. Condition 1 pertains to 

privacy risk, condition 2 pertains to trust, condition 3 pertains to distrust, condition 4 
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pertains to uncertainty, and condition 5 pertains to personal interest. Conditions 1 to 4 

utilized review profiles of simulated organizations and/or websites. Review profiles have 

been used in prior studies to elicit specific perceptions and observe subjects’ decision-

making (Ba & Pavlou, 2002; Dimoka, 2010). For example, Dimoka (2010) used feedback 

profiles to examine subjects’ neural activity to the constructs of trust and distrust. In the 

context of ecommerce transactions, feedback profiles were found to be adequate 

treatments since they help buyers to accept or reject sellers (Pavlou & Dimoka, 2006). 

Similarly, the internet has been used by reviewers to provide useful feedback and reviews 

for organization and websites.  

Conditions 1 to 3 reflected the factors of privacy risk, trust and distrust, 

respectively. Essentially, the profiles for conditions 1 and 3 consisted of negative reviews 

indicating the unsafe and opportunistic nature of the organization or website, while the 

profile for condition 2 consisted of positive reviews indicating the safety and benevolence 

of the organization or website. For the factor of uncertainty (condition 4), a similar 

review profile was used, but instead, there was very little and ambiguous information for 

the simulated organization or website. As explained above, uncertainty is related to 

ambiguity, but is often related to an assessment with doubtful outcomes (Pfeffer and 

Salancik, 1978). Alternatively, because of the ambiguous nature of a situation, 

uncertainty may not necessarily be considered as risk, but may influence risk (Krain et 

al., 2007). Condition 5, personal interest, was measured by allowing subjects to choose 

either an ecommerce product category that they would be highly interested in obtaining 

from online sellers, or an e-service which they may be more interested in using. Personal 

interest is the intrinsic motivation of the individual for the content requiring him/her to 
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disclose his/her personal information (Dinev & Hart, 2006). Since peoples’ personal 

interests are diverse, and they may decide to disclose their personal information for a 

variety of reasons such as convenience or the desire to obtain a specific item that can only 

be found online, an accurate means of measuring personal interest would be to actually 

let subjects choose something in which they have a vested interest. The profiles for 

experiment 1 are located in Appendix B. 

For each profile (conditions 1-4), subjects were exposed to one review comment, 

and clicked the screen to move on to the subsequent comments, until all comments were 

read. All the previous comments were then aggregated on one screen, where questions 

were asked pertaining to their perception of the factor the treatment reflected, their 

privacy concerns for the organization or website they just read reviews for, as well as the 

likelihood that they would disclose their personal information to such organization or 

website. Specifically, subjects would be asked questions like “Do you believe it is a risk 

to disclose your personal information to LTPC?”, “How concerned are you about the 

privacy of your personal information if you were to disclose it to LTPC?” and “Would 

you agree to disclose your personal information to LTPC?”. Subjects answered each 

question on a seven-point Likert scale, ranging from 1 being the least likely to 7 being the 

most likely, which was used to stimulate brain activity regarding the treatment they were 

currently undergoing. This method of triggering brain activity has been used by Dimoka 

(2010), since the subjects would be processing the information about the organization or 

website they have just been exposed to (Dimoka, 2012). After answering all questions, 

subjects were then directed to a screen where they were asked to randomly click any 

number between 1 to 9. This acted as the control treatment to erase any perceptions from 
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the treatment they had currently undergone, thus reducing any carryover effects. This 

method of control in a within-subjects experiment was used by Dimoka (2010), in her 

fMRI experiment of trust and distrust when buying online. Subjects iterated this process 

for conditions 1 to 4. 

For condition 5, measuring the neural correlates of personal interest, subjects 

were exposed to a screen with a number of options from which to choose. After choosing 

a product category they were highly interested in obtaining online or an e-service (such as 

online banking, online education, e-health), subjects would click the screen to answer a 

similar set of questions as in the first four treatments. Since this study is not context-

specific (i.e. ecommerce, ehealth), and is more concerned about individuals’ decisions to 

disclose their personal information, the review profiles for simulated organizations or 

websites were altered to reflect the privacy practices of the organization or website. 

It should be noted that the review profiles were developed to mimic feedback 

comments from Google Play, where users can rate an application on a five-point scale 

(represented as stars), and leave a comment about what they thought about the 

application. This is also similar to Amazon reviews. The mean score of users’ ratings are 

then calculated to give the profile an overall score, and was also represented as a bar 

chart with a spectrum of colors (red means 1, green means 5) at the top of the profile. For 

this study, the profiles are all simulated, but developed to reflect the positive and negative 

comments that are associated with the variables of the study. For instance, a profile that 

reflected high trust would retain more review comments with 4-5 stars, and overall score 

closer to 5 (i.e. closer to 100% satisfaction), while a profile reflecting distrust would 

receive more 1-2 stars and an overall score closer to 1.  
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4.4.2. Experiment 2: 2x2x2x2 Factorial Experiment 

 Experiment 2 is a 2x2x2x2 within-subjects factorial experiment, whereby the 

independent variables of privacy risk, trust, distrust and personal interest each have two 

levels: high and low. The factorial experiment allows for studying both the main effects 

and the interaction effects of the independent variables against the dependent variables. 

Experiment 2 therefore had sixteen conditions in total, as seen in Table 3. 

 

Table 3. 2x2x2x2 Factorial Design for Privacy Risk, Trust, and Distrust 

Conditions Privacy Risk Trust Distrust Personal 

Interest 

1 High High High High 

2 High Low High High 

3 High Low Low High 

4 Low Low Low High 

5 Low Low High High 

6 Low High High High 

7 Low High Low High 

8 High High Low High 

9 High High High Low 

10 High Low High Low 

11 High Low Low Low 

12 Low Low Low Low 

13 Low Low High Low 

14 Low High High Low 

15 Low High Low Low 

16 High High Low Low 

 

As stated earlier, experiments 1, 2 and 3 were designed as if subjects performed 

one experiment. This made it easier for them to complete each experiment without having 
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to reschedule a meeting to do the other experiments. As such, the first eight conditions of 

the 2x2x2x2 factorial experiment followed on directly where experiment 1 ended. In so 

doing, the choice of product category obtained online or e-service subjects had the most 

interest in (condition 5 of experiment 1) was used as the means of manipulating the first 

eight conditions of experiment 2 for having a high level of personal interest. Subjects 

were asked to keep their choice in condition 5 of experiment 2 in mind, while proceeding 

to the next eight conditions, as if the website or organization offered the interested 

product category or service of choice.  

Subjects were then exposed to the first eight conditions, each of which consisted 

of a review profile, similar to experiment 1. For each condition, subjects read one review 

comment before clicking to the subsequent review comments until they arrived at a 

screen where all comments were aggregated and questions were asked pertaining to their 

level of personal interest, risk, trust and distrust perceptions, as well as their privacy 

concerns and willingness to disclose their personal information to the organization or 

website. In essence, experiment 2 followed the same format as experiment 1, and the 

questions asked were similar, each of which was rated on a seven point Likert scale.  

Review profiles were also designed similarly, as those in experiment 1. The 

review comments for each condition consisted of comments and aggregated scores to 

reflect the levels of each variable per condition. For instance, the profile that reflected 

high risk, high distrust, and low trust (conditions 2 and 10), had a lower mean score than 

the profile that had high risk, high distrust, and high trust (conditions 1 and 9), since the 

latter profile included a few positive comments reflecting trust. Alternatively, the profile 

that reflected high risk, low distrust and low trust (conditions 3 and 11) had a slightly 
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higher mean score than the profile with high risk and high distrust, but low trust 

(conditions 2 and 10), since the former profile consisted of more negative comments.  

Between each condition, subjects were asked to select a number between 1 and 9 

before proceeding to the subsequent conditions. This acted as the control condition to 

reduce any carryover effects. When subjects completed the first eight conditions, they 

were presented with a similar screen as that of condition 5 from experiment 1, but instead 

of choosing a product category or e-service they were most interested in, they chose the 

one that they were least interested in. This acted as the manipulation for a low level of 

personal interest. Subjects then proceeded to complete the remaining conditions 9-16 in 

the same manner as they did for conditions 1-8. Conditions 9-16 utilized the same 

profiles as conditions 1-8, but under the condition that the subjects were looking at an 

organization or website for a product category they could obtain online or e-service in 

which they had little interest in.  

 

4.4.3. Experiment 3: 2x1 Factorial Experiment 

 For uncertainty, a 2x1 within-subjects factorial experiment was designed. As 

mentioned above, uncertainty may consist of doubt for the outcome of a situation, but is 

differentiated from ambiguity in that it is more negative. As such, it was not included as a 

factor in experiment 2, since a review profile that contains comments over whether an 

organization or website is risky, or should be trusted or distrusted, should help better 

inform individual’s decisions and would not be representative of uncertainty. However, 

uncertainty must be tested with personal interest to observe if there are any interaction 

effects. Specifically, while the research model in Chapter 3 did not hypothesize a 
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significant relationship between personal interest and uncertainty, it is incumbent to test 

for any effects that may exist between the constructs when conducting an experiment. 

Therefore, a 2x1 factorial design (two levels for personal interest, one level for 

uncertainty) would be used. 

 The first condition of the 2x1 factorial experiment utilized the choice subjects 

made for condition 5 of experiment 1 to elicit a high level of personal interest. Subjects 

were asked to keep this choice in mind while reviewing the profile for the first condition 

of experiment 3. Similar to experiment 1 and 2, each comment was read by the subjects, 

then the screen was clicked to move on to the subsequent comments. When all the 

comments for the condition were read, they were aggregated and questions pertaining to 

the personal interest and uncertainty perceptions were asked, along with privacy concerns 

and willingness to disclose personal information. Each question was similar to those in 

experiments 1 and 2, and were all rated on a seven point Likert scale.  

  Subjects were asked to select a random number between 1 to 9 before moving on 

to the second condition of the experiment as the control condition to reduce any carryover 

effects. The second condition of the 2x1 factorial experiment utilized the choice subjects 

made for the least interested product category or e-service in experiment 2 in representing 

a low level of personal interest. Subjects then reviewed the profile and were asked to 

answer the same questions as in previous condition of this experiment.  

 

4.4.4. Summary of Experiments 

The study utilized three within-subjects experiments. However, all three 

experiments were conducted as if it were one experiment for the convenience of the 
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subjects. Experiment 1 consisted of five conditions, used for assessing the neural 

correlates of privacy risk, trust, distrust, uncertainty and personal interest, respectively. 

Experiments 2 and 3 were factorial experiments, where experiment 2 consisted of sixteen 

conditions (2x2x2x2) and experiment 3 consisted of 2 conditions (2x1). In total, each 

subject underwent twenty-three conditions. A control condition was included to remove 

carryover effects between conditions, and entailed subjects randomly choosing a number 

between 1 to 9.  

 

4.4.5. Validity Criteria 

 Experiments are used in social science research when the investigators want to 

observe a phenomenon, in a strictly controlled environment, where one or more variables 

are varied, but other variables are kept constant (Zimney, 1961). Essentially, the strict 

controlled environment in experimental research often sacrifices external validity for 

internal validity (Sekaran & Bougie, 2013). Specifically, in lab experiments, there is 

often a high level of internal validity, whereby researchers are able to make inferences 

over the causal relationships between independent and dependent variables, as opposed to 

the low level of external validity (Sekaren & Bougie, 2013). External validity refers to 

the generalizability of the results from an experiment to the field or organizational setting 

(Sekaren & Bougie, 2013). Essentially, the controlled environment of a lab experiment 

may not adequately represent the real world setting of a situation being examined, 

therefore sacrificing the external validity of the experiment. However, this tradeoff of 

external validity for strong internal validity is necessary in experimental research when 

the investigators wish to better understand a phenomenon, by examining the factors that 
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influence the phenomenon (Sekaran & Bougie, 2013), such as in the case of this study, 

where a better understanding of the privacy paradox is the end-goal.  

There are seven major threats to internal validity in any experiment, which are: 

history effects, maturation effects, testing effects, selection bias effects, mortality effects, 

statistical regression effects, and instrumentation effects (Sekaren & Bougie, 2013). 

History effects refers to unplanned effects on the dependent variable, when a relationship 

between in independent and dependent variable is being tested, that occur from 

extraneous variables that were not accounted for (Sekaren & Bougie, 2013). History 

effects were mitigated in experiments 1 to 3 due to the timeframe it took for each subject 

to complete the experiments, which lasted on average thirty to forty-five minutes, as 

discussed above. Additionally, each task in the experiments required the subjects to focus 

on the review profiles and answer specific questions (measurement items) based on what 

they read.  

Maturation effects are similar in that there may be unplanned psychological 

changes over time on the subject that influences the relationship between the independent 

and dependent variable in an experiment (Sekaran & Bougie, 2013). The probability of a 

maturation effect in this experiment could have occurred because of its within-subjects 

design. However, this was mitigated through the control condition in place, where 

subjects chose a random number between conditions. Testing effects occur in situations 

whereby the subjects’ responses are changed from the second administration of a test 

(Sekaran & Bougie, 2013). Testing effects usually occur when subjects are exposed to a 

pre-test (i.e. given a test to measure the dependent variable before being exposed to the 

treatment) and post-test (i.e. given a test to measure the dependent variable after being 
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exposed to the treatment). A within-subjects experimental design with a proper control in 

place mitigates testing effects, such as in the case of this study. 

Selection bias effects occur when the selection of participants do not match the 

criteria for the study (Sekaren & Bougie, 2013). An example of this would be selecting 

individuals who use psychotropic medications for the EEG experiment, which may affect 

their decision-making processes. However, a few criteria for subject participation was set 

to minimize selection bias, which mitigates the selection bias effects that may affect 

internal validity. Mortality effects refer to the attrition of members assigned to the 

different groups over the course of the experiment (Sekaren & Bougie, 2013). 

Specifically, over the course of the experiment, members of the various groups could 

drop out, which could affect the results of the experiment. Since this study utilized 

within-subjects experiments, there was no threat to internal validity from mortality 

effects, since there is essentially one group, where each subject is exposed to all the 

treatments.  

Statistical regression effects occur when members chosen for a particular group 

has extreme scores on the dependent variable on the second administration of the test 

used to measure the dependent variable (Sekaran & Bougie, 2013). Random assignments 

of subjects to each group is a proposed means of addressing this issue, since it is most 

probable that subjects would be distributed between groups evenly. Statistical regression 

effects are even less of a problem in within-subjects designs, similar to mortality effects. 

Finally, the instrumentation effect occurs when the researcher makes changes as to what 

he/she wishes to observe during the course of the experiment (Cook & Campbell, 1979). 
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The use of a measurement item to assess the dependent variable, as well as the lack of a 

between-subjects experimental design helps in mitigating this threat. 

 

4.5. Data Analysis 

Before any data could be analyzed, data preprocessing of the raw EEG took place. 

Essentially, EEG data is collected in a continuous stream, and then chopped into a 

specific set of timeframes corresponding to key events (i.e. introduction to stimuli) 

known as epochs. These epochs are then used for analysis. Data is also cleaned to remove 

artifacts.  

Since EEG captures a lot of data points, there are a number of techniques that can 

be used for analysis. One such method is the analysis of frequency bands (delta, theta, 

alpha, low beta, high beta, and gamma), which are compared against baseline brain 

activity (Massar et al., 2012; Schonwald & Muller, 2014). Frequency analysis is also 

quite common in neurofeedback research (Zotev et al., 2014; 2016). Alternatively, time-

domain research of event related potentials (i.e. the brain activity after a subject is 

exposed to stimuli) analyzes the reflexive brain activity of subjects before conscious 

thought begins (Sur & Sinha, 2009). The P100, N100, P200, P300, mismatch negativity 

(MMN), and feedback related negativity (FRN) are some of the more popular 

components of event related potentials (ERPs) in EEG research (Massar et al., 2012; 

Sumich, Kumari, Heasman, Gordon, & Brammer, 2006; Sur & Sinha, 2009; Vance et al., 

2014). Time-domain research has been used for a number of studies for assessing 

emotions and precognitive reactions of the brain (Olofsson, Nordin, Sequeira, & Polich, 

2008). Massar et al. (2012) used time-domain research, specifically the effect of FRN in 
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studying risk-taking behavior of individuals. In IS security research, Vance et al. (2014) 

measured the effect of the P300 in predicting individuals disregard of safety warnings. 

EEG source analysis of event related potential constitutes another method of 

analysis, where the goal is to determine the localization of neuronal activity.  While EEG 

has low spatial resolution, leading to the inverse problem, a number of techniques have 

been developed to estimate the dipoles of evoked potentials. The dipole is the flow of 

ions through the axons of neural tissue, whereby a scalp potential distribution map is 

generated based on the points within the cerebral cortex where estimated potential occurs 

(Scherg, 1990). Methods of dipole estimations fall into two categories: parametric and 

non-parametric. Dipole parameters are estimated based on a priori determined number of 

dipoles in parametric techniques, while non-parametric techniques estimate the dipoles’ 

magnitude and orientation of at fixed positions in the brain volume. However, non-

parametric techniques present a linear problem which are solved by different 

mathematical formulations (Grech et al., 2008). 

Grech et al. (2008) reviewed a number of parametric and non-parametric 

techniques to solve the inverse problem, such as beamforming, BESA, MUSIC, FINES, 

simulated annealing and computational intelligence algorithms for parametric techniques. 

For non-parametric techniques, Grech et al. (2008) reviewed minimum norm estimates, 

(s)LORETA, variable resolution electrical tomography (VARETA), quadratic 

regularization and spatial regularization (S-MAP) using dipole intensity gradients, spatio-

temporal regularization (ST-MAP), the Backus-Gilbert method, local autoregressive 

average (LAURA), shrinking LORETA FOCUS (SLF), standardized shrinking LORETA 

FOCUS (SSLOFO), and adaptive standardized LORETA FOCUS (ALF) for non-
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parametric methods. While different methods had their advantages with regards to 

specific constraints and parameters, LORETA was found to give satisfactory results, with 

sLORETA giving the best solution for localization (Grech et al. 2008). For this study, 

neural correlates of specific brain areas for mental processes were predicted to have an 

effect on privacy concerns and individuals’ decisions to withhold or disclose their 

personal information. As such, sLORETA was the chosen method for analysis for all 

three experiments.  

 

4.5.1. Preprocessing of Data  

 All EEG data were captured continuously with a sampling rate of 128Hz. 

Specifically, data are sampled 128 times per second, producing 128 timeframes per 

second. Key events were marked, when subjects were responding to the questions in each 

condition to be epoched for analysis (i.e. chopped into segments for analysis of key 

events). These questions were used to trigger brain activity as subjects were processing 

the stimuli with which they were presented (Dimoka, 2012). Continuous EEG files were 

exported from the emotiv PURE.EEG software in European data format (.edf) format, 

and converted using the PURE.EEG tool into comma separated value (.csv) files.  

Data recorded on each channel were recorded as floating point values, where the 

direct current (DC) level of each signal occurred at approximately 4200 uV. Negative 

voltages were expressed as less than 4200, while positive voltages were expressed as 

more than 4200. Each .csv file was then cleaned as it contained information pertaining to 

timeframes per EEG, data captured by each electrode, contact quality, gyros, etc. Every 

additional piece of data other than the data captured by the fourteen channels were erased 
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and saved as tab delimitated text files (.txt). Each file was then imported into EEGLab, a 

toolbox for Matlab for processing EEG data for removing the DC offset (i.e. changing the 

floating point values into root-mean squared (RMS) microvolts), removal of artifacts, and 

epoching. 

 Channel locations were first added to the imported data, where each channel’s 

parameters were specified in the “channel locations” toolbox of eeglab. When the 

parameters were first entered, they were saved as a .ced file so that they could be 

imported for subsequent continuous EEG files. A high-pass band filter was applied with a 

lower tail frequency of 0.16. This changed the floating point values to RMS microvolts 

for analysis. Artifacts were removed manually, through each continuous EEG file. 

Artifacts are waveforms that are not of cerebral origin, and may consist of specific 

actions such as muscle movements and the blinking of eyes (Libenson, 2010). Artifacts 

can be gleaned based on wave morphology, such as in the case of eyeblinks, where a 

downward deflection of the waves occur (Libenson, 2010). There are numerous other 

artifacts such as eye movements, electrode pops, bad electrodes, among others. Usually, 

however, artifacts can be detected through distortion of waveforms in continuous EEG 

(Libenson, 2010). Figure 8 displays a snippet of artifact removal from one subject, where 

highlighted blue lines indicate selected waves as an artifact to be rejected. After the 

removal of artifacts, each file was epoched according to criteria described above, where 

128 timeframes were extracted before subjects responded to questions (1000 

milliseconds). A similar method of epoching based on subjects answering questions was 

done by Cannon (2009).  
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Figure 8. Artifact Removal in EEGLab 

 

4.5.2. Transformation into sLORETA Images. 

After preprocessing and epoching the data, all files (stored as tab delimitated text 

files) were sent to sLORETA for transformation into sLORETA images. This required 

the creation of an electrode coordinate text file, with all channels corresponding to the 

order in which data values per channel were recorded (i.e. AF3 recorded data in the first 

column of all data files, and was therefore the first electrode specified in the electrode 

coordinate file). The sLORETA utility was used to create an .sxyz electrode coordinate 

file, which was then used to create the transformation matrix required for performing the 

computational analysis of localized brain areas. Using the transformation matrix, all 

epoched data files were transformed into .slor files which produced sLORETA images, 

current source density and localization for each timeframe per file, per subject. 

LORETA calculates the volume elements (voxels) of the cortical gray matter 

(Pascual-Marqui et al., 2002). LORETA uses realistic electrode coordinates for a three-

concentric shell spherical head model co-registered on a standardized MRI atlas with 
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talairach coordinates (Cannon, 2012). Talairach coordinates system is a 3-dimensional 

atlas of the human brain, that maps locations of brain structures from individual 

differences in the size and shapes of the brain (Talairach, 1998). It consists of three axes, 

the x-axis which corresponds to the left and right sides of the brain, y-axis which 

corresponds to the posterior and anterior locations of the brain, and z-axis corresponding 

to the dorsal (upwards) and ventral (downwards) positions of the brain. Current source 

density is mapped to 2,394 voxels of 7mm3 dimensions, with a maximum error of 14mm 

(Pascual-Marqui, 1999). The improved version of LORETA, the sLORETA, which was 

used for this study, utilizes the MRI atlas from the Montreal Neurological Institute 

(MNI), an alternative to the Talairach atlas, which consists of 6,329 voxels of 5mm3 

(Cannon, 2012). In comparison to the 1mm resolution of fMRI and PET (Huettel & Song, 

2008), sLORETA is proposed as an adequate solution to the inverse problem, whereby 

Pascual-Marqui (2002) argued that localization error cannot be improved beyond 

sLORETA. 

 

4.5.3. Data Analysis for Experiment 1 

 Single group zero-mean t-tests were used by Pascual-Marqui et al. (2002) to 

compare three methods of source localization in an experiment where seventeen subjects 

were exposed to neutral facial affect. Hotspots (i.e. areas of brain activity) were captured 

and compared between each technique, where all brain areas had an equal probability of 

containing a hotspot (Pascual-Marqui et al., 2002). Specifically, there was no favored 

brain area, and the experiment was used to determine where statistically significant brain 

activity occurred in the seventeen subjects. Similarly, single group zero-mean t-tests 
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utilizing Statistical non-Parametric Mapping (SnPM) were used for each of the conditions 

of experiment 1. Essentially, the group means of brain activity were compared against a 

group with brain activity of zero-mean. 

EEG data transformed to sLORETA images produce localized brain activity for 

every timeframe. SnPM allows for testing the timeframe of interest where statistical 

significance is met, and the location of brain activity for this timeframe is determined 

(Pascual-Marqui et al., 2002). Specifically, t-tests are produced for every timeframe for 

each subject, whereby three numbers corresponding to MNI coordinates (X, Y, and Z 

axes) are multiplied by the total number of voxels (i.e. 3x6329), resulting in 18,987 

variables (Pascual-Marqui et al., 2002). For each subject, the total number of variables 

are multiplied by the timeframes (i.e. given 128 timeframes, 18,987x128), resulting in 

2,430,336 t-tests. Pascual-Marqui et al. (2002) argued that the univariate t-distribution 

cannot determine statistical significance for testing brain activity, as multiple 

comparisons of nearly one million variables (in this case, based on the data produced 

from the experiments and the use of sLORETA, nearly 2.5 million variables), do not 

correspond to a univariate t-distribution, nor is the t-statistic representative of the 

Student’s t-test if current source density does not have a normal Gaussian distribution. 

Thus, SnPM solves statistical errors used for testing neural activity by estimating the 

probability distribution through the randomization procedure, while retaining the highest 

possible statistical power (Pascual-Marqui et al., 2002).  

For each condition, all subjects per condition were tested using SnPM, where 

threshold t-values at significance levels of 0.01, 0.05, and 0.10 for two-tailed and one-

tailed tests were produced, as well as t-statistics for each timeframe. This was done by 
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first analyzing the raw EEG data from epoched files per condition. Threshold t-values 

and t-statistics for each timeframe were determined through randomization tests of 5000 

(Nichols & Holmes, 2001). Timeframes with a t-statistic meeting or surpassing the 

threshold values at p ≤ 0.05 were group-transformed into sLORETA images for the brain 

area where localization occurred using the .slor files produced for each subject, for each 

condition.  

 

4.5.4. Data Analysis for Experiments 2 & 3. 

 Data analysis techniques were the same for experiments 2 and 3. Firstly, for 

experiment 2, region of interest (ROI) seed files were created using sLORETA utility for 

all sixteen conditions, where each ROI seed pertained to the neural correlates of brain 

activity for the conditions 1, 2, 3 and 5 of experiment 1 (condition 4 pertained to 

uncertainty, which was excluded from experiment 2), as can be seen in Appendix C. The 

ROI seed file was then used to extract the log of current source density values for every 

timeframe in the .slor epoched files of conditions 1-16 in experiment 2. This resulted in a 

text file of the log transformation of CSDs for each ROI specified and one single voxel 

(its nearest neighbor), for each subject for each condition in experiment 2. Log 

transformation of data is one technique of many data transformation techniques that are 

used to simplify complex data, as well as provide normality to otherwise non-normal data 

(Osbourne, 2002). As violations of normality could hinder certain parametric tests, data 

transformations are often used in fields such as social sciences (education, psychology) 

and biology, where normality is rare (Micceri, 1999; Osbourne, 2010). 
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 ROI analysis has been used in fMRI research (Poldrack, 2006), and was used by 

Dimoka (2010) to determine the effect neural correlates of trust and distrust had in 

predicting price premiums. Additionally, Dimoka (2010) then developed a regression 

model with independent variables based on ROI values to predict price premiums. 

Following such method of analysis, the average log CSD per ROI was extracted for each 

subject in each condition of experiment 2, and placed in a regression model denoted by 

𝑦 = 𝛽0 + 𝛽1  +  𝛽2 + ⋯ + 𝛽𝑗 +  𝜀      (1) 

where: 

y is the dependent variable, 

x is the dependent variable, 

β0 is the value of y when each value of x = 0, 

βj is the value of y based on unit change of xj 

as independent variables against the dependent variable of privacy concerns. This was 

done to test the hypotheses related to the neural correlates of the mental processes of the 

extended privacy calculus model (see Chapter 3), and privacy concerns. A second 

regression model was developed using the average log CSD per ROI of brain areas for 

the neural correlates of risk (independent variables) and trust (dependent variables). A 

third regression model was developed where the average log CSD per ROI per subject in 

each condition, and the response of each subject in each condition for privacy concerns 

were regressed against their willingness to disclose their personal information.  

The regression models produced unstandardized beta coefficients of each 

independent variable (βjxj) which represented the amount of change in the dependent 

variable based on one unit change in the independent variable, y (Sekaran & Bougie, 
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2013). Positive beta coefficients represent an increase in y when xj increases by one unit, 

while a negative beta coefficient represents a decrease in y when xj increases by one unit. 

Similarly, for each beta coefficient, standardized beta coefficients were produced, 

whereby the beta coefficients are standardized to a mean of zero and a standard deviation 

of one (Sekaran & Bougie, 2013). The t-statistic and p-values were used to determine the 

significance of the relationships between the independent variables and dependent 

variables. Together with the sign (positive or negative) of the beta coefficients, as well as 

the significance of the relationships between independent and dependent variables, the 

hypotheses 6 to 11 (both experiment 2 and 3) were rejected or accepted for main effects. 

All analysis was done using SPSS. Interaction effects (hypothesis 12) were tested using 

R, where the same statistics were used to test the relationships of the interactions (i.e. 

beta coefficients to determine the effect, and t-value and p-value to determine the 

significance).  

The regression models produced a coefficient of determination called the R-

squared value denoted by, 

R2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
        (2) 

where SSE is the error sum of squares (the degree to which the data points vary when 

compared to the estimated regression line), and SST is the total sum of squares (the degree 

to which data points vary when compared to their mean). The coefficient of 

determination explains the extent to which the variation in the independent variables vary 

from the dependent variables (Sekaran & Bougie, 2013). The adjusted R-square value 

was also calculated, denoted by 

𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 1 −  
(1− 𝑅2)(𝑛−1)

(𝑛−𝑝−1)
       (3) 
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where, 

n is total sample size, 

p is the number of predictors 

The adjusted R-square adjusts the R-square statistic based on the number of independent 

variables in the model.  

 An Analysis of Variance (ANOVA) test was produced for each regression model 

to explain how well the independent variables explain the dependent variables with an F-

statistic denoted by 

 𝐹 =  
𝐵𝑒𝑡𝑤𝑒𝑒𝑛−𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑊𝑖𝑡ℎ𝑖𝑛−𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
     (4) 

where an F-value significant at p ≤ 0.05 indicates the model’s independent variables are a 

better predictor of the dependent variables as opposed to the constant-only (i.e. β0) model. 

Finally, the tolerance (equation 5) and variance inflation factors (VIF, denoted in 

equation 6) were used to test for multicollinearity of the independent variables where 

 𝑇 = 1 − 𝑅𝑖
2        (5) 

 𝑉𝐼𝐹 = 1/(1 −  𝑅𝑖
2)       (6) 

where, 

 𝑅𝑖
2 relates proportion of variance in the ith independent variable that is not related 

to other independent variables in the model (O’Brien, 2007). Several “rules-of-thumb” 

are given concerning the tolerance and VIF values for detecting multicollinearity. The 

higher the tolerance value (i.e. the closer to 1) the less likely multicollinearity exists, 

while a lower VIF indicates lower multicollinearity. While some researchers use a 

tolerance value as high as 0.70 to indicate multicollinearity (Dimoka, 2010), values as 
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low as 0.10 are accepted, while VIF values as high as 10 and lower are considered 

acceptable (O’Brien, 2007).  

 Experiment 3 followed the same type of analysis as experiment 2. An ROI seed 

file was created using the sLORETA utility for brain areas associated personal interest 

and uncertainty identified in experiment 1 (conditions 4 and 5). The ROI seed file was 

then used to extract log CSD of each subject in each condition of experiment 3 for each 

ROI, from the .slor epoched files for experiment 3. The log CSD of each ROI was 

produced, whereby the average log CSD per ROI was input into a regression model as 

independent variables against the dependent variable of privacy concerns. The second 

regression model was developed using the average log CSD per ROI and privacy 

concerns as independent variables and subjects’ willingness to disclose their personal 

information as the dependent variable. The statistics used for testing the hypotheses and 

model fits were the same as described for experiment 2.  

 

4.5.5. Summary of Data Analysis for all Experiments and Hypotheses Testing. 

 Hypotheses 1 to 5 were developed to determine the neural correlates of privacy 

risk, trust, distrust, uncertainty and personal interest, respectively, in experiment 1. Data 

analysis was carried out on the epoched text files containing data collected by each 

electrode for each subject per condition using paired groups zero-mean SnPM t-tests. 

Essentially, the timeframes per subject per condition were compared, where threshold t-

distributions were produced to determine which timeframes were statistically significant. 

The .slor transformed files were then analyzed as a group, where the statistically 

significant timeframe(s) indicated the localized source of brain activity. 
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 Hypotheses 6 to 9 and hypothesis 11 corresponded to experiment 2. These 

hypotheses were tested by producing an ROI seed file using sLORETA for all the brain 

areas identified in conditions 1-3, and 5 of experiment 1. The ROI seed file was then used 

to extract the log transformation of CSD of each ROI per subject per condition, and its 

nearest neighbor voxel. The average log CSD per subject per condition per ROI was used 

as independent variables in a regression model against the dependent variable of privacy 

concerns. A second regression model was developed to test the relationship between the 

neural correlates of trust and risk, using the average CSD of the ROI of the neural 

correlates for trust and risk identified in experiment 1. The third regression model tested 

the relationship of the log CSD of each ROI and privacy concerns as independent 

variables, against the dependent variable of personal information disclosure. 

 Hypotheses 10 and 11 corresponded to experiment 3, where an ROI seed file was 

produced for the brain areas identified in conditions 4 and 5 for experiment 1 were 

produced. Similar to experiment 2, the ROI seed file was used to extract the log 

transformation of CSD for each ROI for each subject in each condition. The average log 

CSD was used as independent variables for a regression model against privacy concerns, 

and a second regression model where privacy concerns were also an independent variable 

was used against the dependent variable of personal information disclosure.  

 

4.6. Summary 

 Three within-subjects lab experiments using an EEG were conducted to collect 

data and test the hypotheses of this study. However, subjects performed all three 

experiments as if they were one. Experiment 1 consisted of five conditions, used for 
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capturing the neural correlates of privacy risk, trust, distrust, uncertainty and personal 

interest. Experiment 2 was a 2x2x2x2 factorial experiment, whereby personal interest, 

privacy risk, trust and distrust were all varied on two levels. Experiment 3 was a 2x1 

factorial experiment where personal interest varied on two levels, but uncertainty 

remained at only one level. Review profiles were used for simulated organizations and/or 

websites as manipulations for the various conditions in the experiments. However, 

personal interest was manipulated by asking subjects to choose a product category or 

service they were interest in, using ICTs. 

Neural correlates were derived using sLORETA, a mathematical formulation for 

identifying the localization of brain activity. SnPM t-tests of zero-means were used to 

analyze the neural correlates in experiment 1. Regression models were developed for 

experiments 2 and 3, where log-transformed CSDs of ROIs of brain areas identified in 

experiment 1 were used as independent variables, while privacy concerns were used as a 

dependent variable for the first model, and an independent variable in the second model, 

for each experiment.   
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Chapter 5 

Results 

 

5.1. Introduction 

This chapter presents the results of the experiments used to test the research 

model and hypotheses. Section 5.2 describes the outcome of the pilot study, while section 

5.3 contains the results of experiment 1. Sections 5.4 and 5.5 present the results for 

experiment 2 and 3 respectively. Section 5.6 contains the summary, included in which, 

highlights the hypotheses that were rejected and supported.  

 

5.2. Pilot Study 

 Five subjects were used for the pilot study, whereby three were males and two 

were females. The primary objective of the pilot study was not used for acquiring neural 

correlates, as the sample size was too low for any significant results, nor for examining 

relationships between variables used for the regression models in experiment 2 and 3. 

The pilot study was first used to identify limitations in the experiments themselves (i.e. 

flaws in presenting the stimuli to subjects, and marking the key timeframes to which 

events took place). The pilot allowed for making adjustments to the questions which at 

first may have been difficult for subjects to interpret. Data acquired from the pilot study 

was preprocessed, epoched and transformed into sLORETA images. SnPM was used on 

the pilot data for each of the experiments, but there were no significant timeframes.  

However, the pilot study did provide some insights for the analysis of the actual 

experiments. Firstly, instead of log-transformed CSD for each ROI, the pilot study 
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initially used the actual CSD values. However, this led to a lot of outliers, skewed 

datasets, and non-normal distributions. Moreover, when actual CSD values were not 

computed well in the regression models, which led to almost all variables being removed. 

Utilizing the log-transformation of the pilot data corrected many of these errors and led to 

better model fits indicating that log-transformations should be used for the actual 

experiments. Analysis of the pilot data also led to extracting the CSD for a single voxel 

and its nearest neighbor for ROIs, rather than selecting all the voxels associated with one 

ROI. Essentially, the CSD of all voxels for a specific ROI produces results that are often 

inaccurate with very high multicollinearity.  

 

5.3. Experiment 1: Neural Correlates 

 Zero-mean t-tests were used to acquire significant neural correlates for the mental 

processes that predict privacy concerns and personal information disclosure in the 

extended privacy calculus model. SnPM was used with a randomization of 5000 to 

establish threshold t-distributions for each condition, where timeframe(s) that surpassed 

the threshold t-value at p ≤ 0.05 were significant. Group analysis of significant 

timeframes then revealed the location of neural correlates associated with mental 

processes for privacy risk, trust, distrust, uncertainty and personal interest. 

 

5.3.1. Neural Correlates for Privacy Risk 

For privacy risk (condition 1), threshold values were calculated by sLORETA 

SnPM, where significant t-values for one-tailed t-tests were 4.014 and -3.994, and 4.3 for 

two-tailed tests at a p-value of 0.05. There was significant activation in the right BA 32 
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(MNI coordinates: 10, 35, 20), which is part of the right anterior cingulate cortex in the 

limbic lobe (t-value: -5.67, p < 0.01). Additionally, there was significant activity in the 

left BA 9, the medial frontal gyrus, which is part of the frontal lobe (MNI coordinates:  -

5, 55, 20; t-value: -4.30, p < 0.05). While brain activity in the insular cortex (BA 13) was 

produced, the t-values were below the threshold levels and thus insignificant. Figure 9 

depicts the significant brain activity for risk perceptions in privacy-related situations. 

Significant brain activity is shown in bright yellow, at 0 mm, where LORETA values 

were at their highest (LORETA values are in the square brackets after the [X, Y, Z] MNI 

coordinates at the top of each image). 

 
Figure 9. Neural Correlates of Risk Perceptions. Significant activity in yellow; A (BA 32) 

and B (BA 9) at 0mm. Brain slices from left to right depicting horizontal, sagittal and 

coronal planes. 
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To check for activation in the nucleus accumbens, the methodology developed by 

Lacadie, Fulbright, Constable, and Papadematris (2008) was used to determine the MNI 

coordinates for brain areas. This methodology was proposed by Lacadie et al (2008) as a 

better and more accurate means of determining functional neuroanatomical regions since 

it compensates for the actual differences between MNI templates and the Talairach atlas. 

The MNI coordinates for the right nucleus accumbens are (10, 10, -12), while the left 

nucleus accumbens has the coordinates (-11, 9, -11). However, there were no significant 

activations at these MNI coordinates. The results rejects hypotheses 1a and 1b, but 

supports hypothesis 1c.  

 

5.3.2. Neural Correlates of Trust  

Threshold values for condition 2, trust perceptions, for a zero-mean t-test were 

calculated where t-values at 4.082 and -4.121 were significant at p-value 0.05 for one-

tailed tests, and 4.367 for a two-tailed test. There was significant activation of brain 

activity in the right BA 47, which is part of the inferior frontal gyrus in the frontal lobe 

(MNI coordinates: 15, 20, -15; t-value: 6.13, p < 0.01 at a two-tailed level). While MNI 

coordinates (15, 20, -15) are considered to be BA 47 based on sLORETA, the 

methodology by Lacadie et al. (2008) designates these coordinates as BA 11. Both BA 47 

and BA 11 are considered as part of the orbitofrontal pre-frontal cortex along with BA 10 

(Kringelbach, 2005). Dimoka (2010) found that the caudate nucleus and putamen were 

activated in trusting situations. To test if these areas had any significant activations, the 

MNI coordinates of the caudate nucleus (right: 13, 13, 11, left: -11, 13, 10), and putamen 

(right: 25, 3 -1, left: -26, 0, 2), were derived based on the methodology of Lacadie et al. 
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(2008). However, there were no activity at any of these MNI coordinates. Figure 10 

depicts the brain activity related to trust perceptions in privacy-related situations. Based 

on these results, neither hypothesis 2a nor 2b are supported. However, the test did reveal 

right BA 47 as the source of localization for trust perceptions.  

 
Figure 10. Neural Correlates of Trust Perceptions. Significant activity in yellow; BA 47 

at 0mm. Brain slices from left to right depicting horizontal, sagittal and coronal planes. 

 

5.3.3. Neural Correlates of Distrust 

Threshold values for condition 3 (distrust) were calculated by sLORETA SnPM, 

where t-values of 4.290 and -4.254 were significant at p-value 0.05 for one-tailed tests, 

and 4.548 was significant at p-value 0.05 for a two-tailed test. Significant activity was 

found in the right BA 31 (MNI coordinates: 15, -25, 45; t-value: -4.41, p < 0.05), which 

is a part of the posterior cingulate gyrus, in the limbic lobe. There was also brain activity 

in the right BA 13 (MNI coordinates: 35, -5, 20; t-value: -4.29, p < 0.05), which 

constitutes part of the right insula cortex. Neural correlates for distrust are depicted in 

Figure 11. The methodology developed by Lacadie et al. (2008) gives the amygdala the 

MNI coordinates (right: 21, -1, -22 and left: -24, 0, -21). However, there was no activity 

at either right or left MNI coordinates of the amygdala at significant timeframes. 
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Hypothesis 3a was not supported, but the source localization for distrust occurred in the 

right BA 31, and right BA 13, the insula cortex, indicating hypothesis 3b was supported.  

Figure 11. Neural Correlates of Distrust Perceptions. Significant activity in yellow; A 

(BA 31) and B (BA 13) at 0mm . Brain slices from left to right depicting horizontal, 

sagittal and coronal planes. 

 

5.3.4. Neural Correlates of Uncertainty  

Neural correlates were assessed in condition 4, where threshold values were 

calculated using sLORETA SnPM. T-values at 4.307 or -4.317 were significant at p-

value 0.05 for one-tailed tests, while a two-tailed test required a t-value of 4.636 for a p-

value of 0.05. There was significant brain activity in the right BA 40 (MNI coordinates: 

50, -50, 55; t-value: -4.441, p < 0.05). BA 40 is a part of the inferior parietal lobule in the 
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parietal lobe. There was also significant activation in the right BA 47 the inferior frontal 

gyrus in the frontal lobe (MNI coordinates: 45, 30, -5, t-value: -4.663, p < 0.05). BA 47 is 

a part of the orbitofrontal prefrontal cortex, along with BA 10 and BA 11 (Kringelbach, 

2005). Thus, hypotheses 4a and 4b were supported. Figure 12 illustrates the localization 

of neural correlates for uncertainty perceptions.  

 
Figure 12. Neural Correlates of Uncertainty Perceptions. Significant activity in yellow; A 

40 and BA 47 at 0mm. Brain slices from left to right depicting horizontal, sagittal and 

coronal planes. 

 

5.3.5. Neural Correlates for Personal Interest 

Threshold t-values were calculated for zero-mean t-tests for condition 5 (personal 

interest). For one-tailed tests, t-values at 4.077 and -4.099 were significant at p-value 

0.05, while a t-value of 4.393 is significant at p-value 0.05 for two tailed tests. There was 
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significant activation in left BA 40, inferior parietal lobule (MNI coordinates: -40, -50, 

60; t-value: -4.20; p < 0.05), and left BA 37, middle temporal gyrus in the temporal lobe 

(MNI coordinates: -60, -65, 5; t-value: -4.34, p < 0.05). Thus, hypothesis 5a was not 

supported; however, hypothesis 5b was supported and localization for personal interest 

was inferred to be correlated with neuronal activity at left BA’s 40 and 37. Figure 13 

depicts the brain activity for subjects choosing an e-service or product they are personally 

interested in obtaining online.  

 
Figure 13. Neural Correlates for Personal Interest. Significant activity in yellow; A (BA 

40), and B (BA 37) at 0mm. Brain slices from left to right depicting horizontal, sagittal 

and coronal planes. 

 

5.4. Experiment 2: 2x2x2x2 Factorial Experiment 

 Using sLORETA, a seed file with the ROIs of BAs based on experiment 1 for 

neural correlates of personal interest, risk, trust and distrust was created. This seed file 
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was used to extract the log-transformed CSD values for each ROI voxel and its nearest 

neighbor, for each subject for each of the sixteen conditions. The average log CSD per 

ROI was then plugged into a regression model to determine the effect of each neural 

correlate in influencing privacy concerns and in a second model to determine the 

influence of each neural correlate in influencing personal information disclosure. Table 4 

shows the descriptive statistics for the variables of the sixteen conditions. 

 

Table 4. Descriptive Statistics for Experiment 2 

Variables Mean Standard 

Deviation 

Right BA32 5.21 1.19 

Left BA 9 5.68 1.17 

Right BA 47 5.98 1.10 

Right BA 31 4.45 1.21 

Right BA 13 5.49 1.17 

Left BA 40 4.99 1.17 

Left BA 37 5.32 1.04 

Privacy Concerns 5.48 1.58 

Personal Information Disclosure 3.03 1.92 

 

 

 

5.4.1. Regression Model for Privacy Concerns 

 Using SPSS and R, a regression model was developed to determine the change in 

the dependent variable of privacy concerns due to the influence of the independent 

variables of Right BA32, Left BA9, Right BA47, Right BA31, Right BA13, Left BA40, 

and Left BA37. The model had an R-square value of 0.055 (R2 = 0.055), while the 

adjusted R-square value was 0.036. This indicated that the variance predicted by the 

independent variables was poor. However, the model had an F-value of 2.852 at p = 
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0.007, indicating its significance in predicting the dependent variable, privacy concerns, 

with the independent variable.  Table 5 presents regression coefficients for the dependent 

variable privacy concerns. 

 

Table 5. Regression Model for Dependent Variable: Privacy Concerns 

Independ-

ent 

Variables 

Beta 

Coeffici-

ent 

Standardiz-

ed Beta 

Coefficient 

Significan-

ce (t-value) 

Signific-

ance (p-

value) 

Toleran-

ce 

VIF 

Right BA32 0.421 0.317 1.654 0.099 0.075 13.4 

Left BA9 -0.075 -0.055 -0.405 0.686 0.147 6.78 

Right BA47 0.355 0.247 1.853 0.065 0.154 6.48 

Right BA31 0.029 0.022 0.143 0.887 0.113 8.85 

Right BA13 -0.396 -0.294 -2.199 0.029* 0.153 6.52 

Left BA40 -0.116 -0.086 -0.752 0.452 0.210 4.77 

Left BA37 -0.025 -0.016 -0.232 0.816 0.561 1.78 

* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 

  

The results of Table 5 indicated that only right BA 13 is significantly related to 

privacy concerns. All other variables are above the threshold 0.05 p-value. However, BA 

13 has a standardized beta coefficient of -0.294, indicating a negative relationship with 

privacy concerns. Essentially, higher neural activity in BA 13 is related to lower privacy 

concerns. This result is opposite to hypothesis 8a. Thus, while the relationship is 

significant, the hypothesized direction of the relationship is not supported. Similarly, 

hypothesis 6a was not supported since the relationships are not significant. There were 

also no significant relationships when checking the interaction effects of the independent 

variables on the privacy concern. Thus, hypothesis 12a was rejected.  
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5.4.2. Regression model to Determine the Relationship between Risk and Trust 

 The neural correlates of risk (right BA 32 and left BA 9) were regressed against 

the dependent variable of trust (right BA 47). The regression model contained an R-

squared value of 0.799 and an adjusted R-squared value of 0.798, indicating a high power 

in explaining the variance of the dependent variable with the variance of the independent 

variables. The model produced an F-value of 693.95 at p < 0.001. This indicated the 

independent variables were better predictors of the dependent variable than the constant-

only model. As seen in Table 6, right BA 32 was significant at p < 0.01, but had a 

standardized beta coefficient of -1.039. While standardized beta coefficients are assumed 

to be less than 1, there are instances where they can exceed 1, such as in the case where 

two or more predictors are highly correlated (Deegan, Jr., 1978). However, left BA9 has 

a standardized β of -0.163, and is significant at the p < 0.01 level. Thus, hypothesis 7a 

was supported. Tolerance values were also above 0.10 and VIF values below 10, 

indicating that multicollinearity may not have been a problem in this model.  

Table 6. Regression Model for Dependent Variable of Trust (right BA47) 

Independ-

ent Variable 

Beta 

Coeffici-

ent 

Standardiz-

ed Beta 

Coefficient 

Significan-

ce (t-value) 

Signific-

ance (p-

value) 

Toleran-

ce 

VIF 

Right BA 32 0.960 -1.039 -18.042 0.000*** 0.174 5.76 

Left BA 9 -0.153 -0.163 -2.822 0.005** 0.174 5.76 

 

5.4.2. Regression Model for Personal Information Disclosure 

 The dependent variable, personal information disclosure was regressed against the 

independent variables, Right BA 32, Left BA 9, Right BA 47, Right BA 31, Right BA 13, 

Left BA 40, Left BA 37, and privacy concerns. The regression model had an R-square 
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value of 0.483 (R2 = 0.483), with an adjusted R-square value of 0.471. The R-square and 

adjusted R-square values indicated the variance predicted by the independent variables in 

the model was fair enough. Specifically, R-square values when predicting human 

behavior are not always extremely high. The adjusted R-square value for this regression 

model of 0.471 is close to the adjusted R-square value of Dimoka’s (2010) regression 

model of 0.49. The regression model had an F-value of 40.05 (p < 0.001), indicating that 

the independent variables significantly predicted the dependent variables. Table 7 

displays the regression coefficients of the independent variables on personal information 

disclosure. 

Table 7. Regression Model for Dependent Variable of Personal Information Disclosure 

Independ-

ent Variable 

Beta 

Coeffici-

ent 

Standardiz-

ed Beta 

Coefficient 

Significan-

ce (t-value) 

Signific-

ance (p-

value) 

Toleran-

ce 

VIF 

Right BA 32 -0.464 -0.228 -2.016 0.045* 0.074 13.5 

Left BA 9 0.404 0.246 2.434 0.015* 0.147 6.79 

Right BA 47 0.501 0.287 2.890 0.004** 0.153 6.55 

Right BA 31 0.084 0.053 0.489 0.646 0.113 8.85 

Right BA 13 -0.413 -0.253 -2.532 0.012* 0.151 6.61 

Left BA 40 -0.169 -0.103 -1.120 0.227 0.209 4.78 

Left BA 37 0.201 0.109 2.097 0.037* 0.561 1.78 

Privacy 

Concerns 

-0.830 -0.683 -17.104 0.000*** 0.945 1.06 

* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 

 

 

 Apart from the right BA 31 and left BA 40, all Brodmann Areas were 

significantly related to personal information disclosure.  As indicated in the results from 

experiment 1, privacy concerns are related to brain activity in both the right BA32 and 

left BA 9. Right BA 32 has a significant and negative relationship with personal 
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information disclosure (standardized β = -0.228, p < 0.05), indicating that an increase in 

brain activity in the right BA 32 is related to a decrease in an individuals’ decision to 

disclose his/her personal information. The results of BA 32, when regressed on personal 

information disclosure partially supports hypothesis 6b. However, left BA 9 has a 

positive relationship with personal information disclosure (standardized β = 0.246, p < 

0.05), whereby an increase in an individual’s decision to disclose personal information is 

related to an increase in brain activity in the left BA 9. Similarly, right BA 47, the 

associated neural correlate for trust, also has a significant and positive relationship with 

personal information disclosure (standardized β = 0.287, p < 0.01), supporting hypothesis 

7b.  

Right BA 31, one of the neural correlates for distrust, had a positive relationship 

with personal information disclosure; however, the relationship was not significant.  The 

other neural correlate for distrust, the insula cortex, BA 13, had a negative relationship 

with personal information disclosure, with a standardized β = -0.253 (p < 0.05). 

Essentially, an increase in brain activity in BA 13 is related to a decrease in personal 

information disclosure. Hypothesis 8b is thus partially supported based on the result of 

BA 13 on personal information disclosure. Left BA 40 and 37 are associated with a high 

level of an individual’s personal interest, and both had positive beta coefficients, 

indicating an increase in BA 40 or BA 37 would increase an individual’s decision to 

disclose personal information. However, only BA 37 was significant, with a standardized 

β = 0.109. Hypothesis 9 was thus partially supported. Privacy concerns, were negatively 

and significantly related to personal information disclosure, with a standardized β = -

0.683 (p < 0.001), indicating an increase in privacy concerns will cause a decrease in 



102 
 

 
 

personal information disclosure, supporting hypothesis 11. Tolerance and VIF values 

were collected for each variable, whereby each variable, apart from BA 32 were above 

the 0.10 threshold for tolerance, and below the 10 threshold for VIF indicating 

multicollinearity may not be present. 

Table 8 displays the interaction effects of independent variables on the dependent 

variable of personal information disclosure that were significant at p ≤ 0.05. The results 

from Table 8 supports hypothesis 12b, in that interaction effects would occur. In total, 

there are twelve interaction effects, with beta coefficients used to explain how much 

change occurs in the dependent variable based due to interactions between the 

independent variables.  

 

Table 8. Significant Interaction Effects 
Interacting Variables Beta Coefficients Significance 

(t-values) 

Significance 

(p-values) 

BA9L:BA47R:BA13R -5.49 -2.046 0.0432* 

BA47R:BA31R:BA40L:Privacy Concern  -5.62 -2.07 0.0409* 

BA32R:BA9L:BA37L:Privacy Concern 1.36 2.211 0.0292* 

BA31R:BA13R:BA37L:Privacy Concern 1.64 2.102 0.038* 

BA9L:BA47R:BA31R:BA13R:BA40L  -1.33 -2.044 0.0435* 

BA32R:BA9L:BA47R:BA40L:BA37L  1.68 2.045 0.0434* 

BA32R:BA9L:BA13R:BA40L:BA37L  -9.28 -2.241 0.0271* 

BA32R:BA9L:BA31R:BA40L:Privacy Concern -1.47 -2.139 0.0347* 

BA47R:BA31R:BA13R:BA37L:Privacy Concern  -7.00 -2.118 0.0366* 

BA32R:BA9L:BA31R:BA13R:BA40L:BA37L   -2.20 -2.153 0.0336* 

BA9L:BA47R:BA31R:BA13R:BA40L:Privacy Concern  -2.20 -2.153 0.0336* 

BA32R:BA9L:BA13R:BA40L:BA37L:Privacy Concern -2.36 -1.992 0.049* 

* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 
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5.5. Experiment 3: 2x1 Factorial Experiment 

 The current source densities for the ROIs for uncertainty and personal interest 

were extracted using sLORETA for the 2x1 factorial experiment, where uncertainty had 

one level, and personal interest had two levels (high and low).  The average (log) CSD 

per ROI were then placed in regression models against privacy concerns, and personal 

information disclosure. The regression model for privacy concerns had an R-square of 

0.072 and an adjusted R-square of 0.024. These values were low in predicting the 

dependent variable of privacy concerns. However, the model had an insignificant F- 

value of 0.753 (p = 0.562). The relationship between uncertainty (right BA’s 40 & 47) 

and privacy concerns was not significant, neither were the relationships between personal 

interest (left BA 40 and BA 37) and privacy concerns. Thus, hypothesis 10a was rejected.  

 For the regression model against personal information disclosure, an R-squared of 

0.438 and an adjusted R-squared of 0.364 was achieved suggesting a fair degree of 

predicting the dependent variable (personal information disclosure). The model also had 

an F-value of 5.930 (p < 0.001).  However, similar to the privacy concerns model, neither 

the brain areas associated with uncertainty (right BA 40 and right BA 47) nor those of 

personal interest (left BA 37 and 40) were significant. Hypothesis 10b was thus rejected. 

However, privacy concerns were significantly and negatively related to personal 

information disclosure (standardized β = -0.618, p < 0.001), supporting hypothesis 11, as 

in experiment 2. Additionally, there were no significant interaction effects between the 

neural correlates of uncertainty and personal interest on either privacy concerns or 

personal information disclosure. Table 9 summarizes the results for the privacy concerns 
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regression model, while Table 10 summarizes the results for the personal information 

disclosure regression model.  

 

Table 9. Experiment 3: Regression for Privacy Concerns 

Variabl-

es 

Beta 

Coeffici-

ent 

Standardiz-

ed Beta 

Coefficient 

Significa-

nce (t-

values) 

Significanc-e 

(p-values) 

Toleran-

ce 

VIF 

BA 40R -0.150 -0.142 -0.382 0.705 0.171 5.84 

BA 47R 0.149 0.121 0.397 0.693 0.257 3.89 

BA 40L 1.680 1.379 1.547 0.130 0.030 33.3 

BA 37L -1.699 -1.351 -1.562 0.126 0.257 31.4 

 

Table 10. Experiment 3: Regression for Personal Information Disclosure 

Variabl-

es 

Beta 

Coeffici-

ent 

Standardiz-

ed Beta 

Coefficient 

Significan-

ce (t-values) 

Significan-

ce (p-

values) 

Toleranc-e VIF 

BA 47R 0.411 0.229 0.952 0.347 0.256 3.91 

BA 40R 0.274 0.179 1.608 0.547 0.171 5.86 

BA 40L -0.215 0.121 0.167 0.868 0.028 35.4 

BA 37L -0.119 -0.065 -0.092 0.927 0.030 33.4 

Privacy 

Concerns 

-0.901 -0.618 -4.853 0.000 0.928 1.08 

 

5.6. Summary 

 Paired groups zero-means t-tests using SnPM were conducted for experiment 1 to 

identify the neural correlates of the mental processes of privacy risk, trust, distrust, 

uncertainty and personal interest. The results of experiment 1 revealed that risk 

perceptions are associated with brain activity in right BA 32 and left BA 9, while trust 

perceptions are associated with right BA 47. Distrust perceptions are associated with 

brain activity in the right BA’s 31 and 13, while uncertainty and personal interest 

perceptions are associated with right BA’s 40 and 47, and left BA’s 40 and 37, 

respectively. Experiment 1 supported hypotheses 1c, 3b, 4a and 4b.  

For experiment 2, the average log CSD of ROI for each brain area identified in 

experiment 1 for each subject of the sixteen conditions were plugged into a regression 
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model with the dependent variable of privacy concerns. The results indicated the model 

was a bad fit, and the only neural correlate that predicted privacy concerns was BA 13. 

However, this result is opposite to what was predicted in hypothesis 8a. Hypothesis 7a 

was assessed by developing a regression model for the dependent variable of the neural 

correlate trust (left BA 47) against the independent variables of the neural correlates for 

risk (right BA 32 and left BA 9). Hypothesis 7a was partially supported. The results of 

the regression model when plotted against a dependent variable of personal information 

disclosure found right BA’s 32, 47, and 13, and left BA’s 9 and 37 predicted personal 

information disclosure, as well as privacy concerns. Hypotheses 6b, 8b, and 9 were 

partially supported, while hypotheses 7b and 11 were fully supported. Also, there was a 

total of twelve significant interactions between the independent variables on the 

dependent variable of personal information disclosure. Therefore, while hypothesis 12a 

was rejected, 12b was supported. For experiment 3, for both the regression models 

against privacy concerns and personal information disclosure, there were no significant 

main or interaction effects, thus hypothesis 10a and 10b were rejected. 
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Chapter 6 

Discussion  

6.1. Introduction 

 This chapter discusses the results of the study, the contributions, as well as 

limitations and future research. Section 6.2 discusses the findings with regards to 

literature, while section 6.3 discusses the contributions of the study. Section 6.4 discusses 

the managerial implications derived from the results of this study, while section 6.5 

discusses limitations and section 6.6 suggests future studies. Section 6.7 then concludes 

the dissertation, with summary of the overall study. 

 

6.2. Findings 

 This study investigated the privacy paradox to better understand individuals’ 

decision to withhold or disclose their personal information. The privacy paradox is 

explained as the concerns individuals express over the privacy of their personal 

information, yet act contrarily by continually disclosing their personal information (Smith 

et al., 2011). Extant literature has found that while privacy concerns often have a 

significant and negative relationship to the use of various ICTs (Anderson & Agarwal, 

2009; Awad & Krishnan, 2006; Dinev & Hart, 2006; Xu et al., 2010), numerous other 

factors such as trust, personality, and culture plays an important role in shaping 

individuals decisions to disclose or withhold their personal information (Bansal et al., 

2010; Belanger et al., 2002; Dinev et al., 2006). However, many studies have often 

assumed that privacy-related decisions, and therefore, the privacy paradox, could be 

explained by investigating individuals’ rational decision-making processes (Dinev et al., 
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2006; Malhotra et al., 2004; Norberg et al., 2007; Pavlou et al., 2007; Van Slyke et al., 

2006). Yet, individual’ decisions are not completely rational, nor are they fully aware of 

all the parameters to make a completely justifiable decision in the context of information 

privacy (Acquisti & Grossklags, 2005).  

Individuals’ privacy-related decisions may in fact be clouded by emotions, that 

may not be reflective of a true calculus based on rewards and losses. Studies done by 

Acquisti (2004); Anderson and Agarwal (2011); and Li et al. (2011) establishes that 

individuals’ decisions are limited by their cognitive capabilities and can be often affected 

by emotions. Moreover, as all decisions are based on cognitive processing of the human 

brain, findings in the field of cognitive neuroscience reveals that many decision-making 

processes are distinct from one another, and may involve a heavy mixture of rationality 

and emotion (Dimoka et al., 2007; 2011). Thus, to better understand the privacy paradox, 

this study argued that privacy-related decisions are based on an individual’s cognitive 

disposition, which includes both rationality and emotions. 

This study used the extended privacy calculus model (Dinev & Hart, 2006) as the 

theoretical basis, and applied the findings of cognitive neuroscience to it, to address its 

limitations in assuming individuals are rational decision-makers. Three within-subjects 

experiments were conducted to test the hypotheses and research model developed to 

achieve the objective of this study. There was a total of twenty-two subjects that 

participated in the experiments, but each subject participated in all three experiments as if 

they were one experiment. Table 11 summarizes the hypotheses for experiment 1 that 

were rejected and supported for this study.  
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Table 11. Results of Hypotheses Testing for Experiment 1 

Hypothesis Support  

1a Privacy Risk is associated with brain activity in the 

nucleus accumbens 

Not Supported 

1b Privacy Risk is associated with brain activity in the 

insula cortex 

Not Supported 

1c Privacy risk is associated with brain activity in 

anterior cingulate cortex 

Supported 

2a Trust is associated with brain activity in the caudate 

nucleus 

Not Supported 

2b Trust is associated with brain activity in the putamen Not Supported 

3a Distrust is associated with brain activity in the 

amygdala 

Not Supported 

3b Distrust is associated with brain activity in the insula 

cortex 

Supported 

4a Uncertainty is associated with brain activity in the 

orbitofrontal prefrontal cortex 

Supported 

4b Uncertainty is associated with brain activity in the 

inferior parietal cortex 

Supported 

5a Personal Interest is associated with high brain 

activity in the ventromedial prefrontal cortex, but low 

activity in the dorsolateral prefrontal cortex 

Not Supported 

5b Personal Interest is associated with brain activity in 

the inferior parietal lobule 

Supported 

 

While several hypotheses were not supported in experiment 1, this was expected 

as many of these hypotheses were derived from fMRI and PET literature. EEG captures 

electric potentials in the human brain, while fMRI and PET measure blood oxygen level 

dependent (BOLD) signals in the brain. Furthermore, EEG provides greater temporal 

resolution at the cost of spatial resolution, and vice versa for fMRI and PET (Riedl et al., 

2009). However, despite the lack of support for many of the hypotheses, findings for key 

brain areas involved in the mental processing of factors such as privacy risk, trust, 

distrust, uncertainty and personal interest were found. Privacy risk found brain activity in 

the right BA 32 (anterior cingulate cortex), as well as in the frontal lobe of left BA 9. 

Right BA 47, which constitutes a part of the orbitofrontal prefrontal cortex was involved 
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in trust, while distrust included the right BA 31. Additionally, the neural correlates of 

personal interest were found to be left BA 40, the inferior parietal lobe, and left BA 37, 

the middle temporal gyrus in the temporal lobe. Figure 14 depicts the research model of 

neural correlates with the relationships that were supported (denoted with an *), while 

figure 15 depicts the research model with significant relationships (denoted by * for 

partial support and ** for full support) to personal information disclosure. The 

hypotheses for experiments 2 and 3 are summarized in Table 12, which are discussed in 

detail in the following subsections. 

 

 
Figure 14. Research Model depicting Significant Neural Correlates of Mental Processes 
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Figure 15. Research Model with Supported Hypotheses 

 

 

Table 12. Results of Hypotheses Testing for Experiments 2 and 3 

Hypotheses Neural 

Correlates 

Standardized 

 (p-value) 

Support 

6a The neural correlates of privacy risk 

are positively related to privacy 

concerns 

rBA32 0.317N.S. Not Supported 

lBA9 -0.055N.S. 

6b The neural correlates of privacy risk 

are negatively related to personal 

information disclosure 

rBA32 -0.228* Partially 

Supported lBA9 0.246* 

7a The neural correlates of privacy risk 

are negatively related to the neural 

correlates of trust 

rBA32 -1.039*** Supported 

lBA9 -0.153** 

7b The neural correlates of trust are 

positively related to personal 

information disclosure 

lBA47 0.287** Supported 

8a The neural correlates of distrust are 

positively related to privacy 

concerns 

rBA31 0.247N.S. Not Supported 

rBA13 -0.294* 

8b The neural correlates of distrust are 

negatively related to personal 

information disclosure 

rBA31 0.053N.S. Partially 

Supported rBA13 -0.253* 
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9 The neural correlates of personal 

interest are positively related to 

personal information disclosure 

lBA40 -0.103N.S. Partially 

Supported lBA37 0.109* 

10a The neural correlates of uncertainty 

are positively related to privacy 

concerns 

rBA40 -0.142N.S. Not Supported 

rBA47 0.121N.S. 

10b The neural correlates of uncertainty 

are negatively related to personal 

information disclosure 

rBA40 0.229N.S. Not Supported 

rBA47 0.179N.S. 

11 Privacy concerns are negatively 

related to personal information 

disclosure 

N.A. -0.683*** Supported 

12a An interaction effect would exist 

between the independent variables 

and privacy concerns 

N.A. Not Supported 

12b An interaction effect would exist 

between the independent variables 

and personal information disclosure 

See Table 8 of Chapter 5 Supported 

N.S. Not Significant, * p  0.05, ** p  0.01, *** p  0.001, r Right, l Left 

 

6.2.1. Privacy Risk 

 Privacy risk was found to be associated with the right BA 32 which is part of the 

anterior cingulate cortex. Similar results were found by Massar et al. (2012) when 

studying individuals with risk-taking and risk-aversive behavior. The anterior cingulate 

cortex is in the limbic lobe which controls emotions (Dimoka et al., 2007). Studies have 

found the anterior cingulate was involved in processing of emotions (Allman, Hakeem, 

Erwin, Nimchinsky, & Hof, 2001; Beuregard, Levesque, & Borgouin, 2001). While risk 

in the information privacy literature has often been treated as one-dimensional, it may be 

a multidimensional construct that assesses loss and considers the outcomes of avoiding a 

risk (Peter & Tarpey, 1975; Smith et al., 2011). Risk-avoidance behavior was reported to 

have been associated with brain activity in the nucleus accumbens, which is considered a 

reward center of the brain (Knuston et al., 2001; Matthews et al., 2004). Similarly, the 
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anterior cingulate was reported to be active during assessments of rewards (Bush, Vogt, 

Holmes, Dale, Greve, Jenike, & Rosen, 2001). 

 The results of experiment 1 also found left BA 9 was activated during processing 

of privacy risk perceptions. BA 9 has been shown to be associated with both pleasant and 

unpleasant emotions (Lane, Reiman, Bradley, Lang, Ahem, Davidson, & Schwartz, 

1997). The left BA 9 is considered a part of the dorsolateral prefrontal cortex, along with 

BA 46 (Pochon et al., 2001). The dorsolateral prefrontal cortex is considered one the 

most advanced areas of the human brain and is often involved in high cognitive functions 

(Dimoka et al., 2011). Furthermore, the cognitive neuroscience literature indicates that 

there seem to be some level of interaction between the right and left dorsolateral 

prefrontal cortices and the anterior cingulate, since they have been involved in attentional 

and executive tasks (Bench et al., 1993; Posner & Rothbart, 1998).  

 Essentially, privacy risk may be assumed to involve both the risk and reward 

centers of the brain, and may consist of a high degree of emotions. However, given that 

there is a great deal of interaction between emotional processing, and rationality (Phelps, 

2006), it can also be assumed that there is some degree of rationality to processing of risk 

in the context of information privacy. As explained by Demos (2005), when an individual 

experiences a real or imagined threat, it is first recorded by the thalamus, which sends 

two signals, firstly to the limbic system, and secondly to the executive portions of the 

frontal lobe. The processing of a threat leads to neurochemical responses, which may be 

shut down by the executive centers of the brain if the threat is recognized as false. 

Essentially, privacy risk may be the similar whereby emotions are triggered to avert a 

risk, while the executive portions of the brain manages this emotion and responds 
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accordingly. In such a case, individuals’ actions could thus be classified as risk-aversive 

or risk-taking.  

 When both right BA 32 and left BA 9 were regressed against privacy concerns, 

neither brain areas were significant predictors. These findings contradict the findings of 

Dinev et al., (2004; 2006) and Van Slyke et al. (2006), which used self-reported findings. 

However, as the data collected were perceptions based on the processing of stimuli as 

opposed to the enduring beliefs of risk, it is not surprising to find the results are different. 

The results also suggest that privacy risk may be understudied in the information privacy 

field and may require further investigations with regards to privacy concerns. There were, 

however, significant relationships between the neural correlates of privacy risk and 

personal information disclosure. The anterior cingulate cortex (right BA 32) did predict a 

decrease in personal information disclosure, however, the left BA 9 predicted an increase 

in personal information disclosure. Furthermore, the results of left BA 9 are consistent 

with the association of left prefrontal cortex in dominating positive emotions (Hellige, 

1993). Left BA 9 had a stronger effect that right BA 32 in personal information 

disclosure with a standardized  of 0.246 as opposed to -0.228.  This does not necessarily 

mean the neural correlates of risk perceptions contradict each other when predicting 

personal information disclosure. Rather, privacy risk may involve both the processing of 

losses and rewards in each privacy-related situation, which may involve the risk-taking 

and risk-aversion behaviors of individuals.  

 When regressed against the neural correlate of trust (right BA 47), both neural 

correlates of risk were significant. An increase of neuronal activity in either the right BA 

32 or left BA 9 led to a decrease in neuronal activity in the right BA 47, the neural 
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correlate of trust. Furthermore, standardized beta coefficients of the right BA 32 had a 

stronger effect than left BA 9. Essentially, the inference could be made that increased 

brain activity in regions associated with privacy risk could lead to decreased activity in 

brain areas associated with trust. 

 

6.2.2. Trust 

 Trust perceptions were associated with right BA 47, which constitutes a part of 

the orbitofrontal prefrontal cortex (Kringelbach, 2005). This is contrary to the results 

found by Dimoka (2010) who found that trusting situations led to a decrease in brain 

activity in the orbitofrontal prefrontal cortex. However, Rogers et al. (1999) found that 

the regions within the orbitofrontal prefrontal cortex (specifically, BA 47) may be 

involved in processing changes in reward-related information. It can be assumed, 

therefore, that deciding to withhold or disclose personal information, the neural correlate 

of trust, BA 47 is activated for estimating the likelihood of reaping rewards in privacy-

related transactions.  

The orbitofrontal prefrontal cortex is involved in several mental processes, such 

as emotional regulation, self-regulation and most cognitive processes (Cannon, 2012). 

BA 47 has been found to be associated with the assessment of rewards and higher 

emotional valence, along with other brain areas such as BA’s 24 (anterior cingulate) and 

the putamen (Hollander, Pallanti, Baldini, Sood, Baker, & Buchsbaum, 2005). When 

regressed against personal information disclosure, right BA 47 was significant, and the 

second highest effect among the other variables, with a standardized beta coefficient of 
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0.287. Essentially, these results indicated that an increase in the neural correlate of trust 

perceptions led to an increase in individuals’ decision to disclose personal information. 

 

6.2.3. Distrust 

 Distrust activated distinct areas of the brain as opposed to trust. Where trust 

activated right BA 47, distrust activated right BA 31, the posterior cingulate, and BA 13, 

the insula cortex. These results were aligned with the results of Dimoka (2010) in proving 

that trust and distrust did not lie along a single continuum. Furthermore, the activation of 

the insula cortex corroborates the findings of Dimoka (2010) that found distrust was 

correlated with brain activity in the amygdala and insula cortex. The insula cortex is more 

active in affective/emotional choices, as opposed to cognitive processes, and is often 

involved in strong negative emotional processing (Cannon, 2012; Dimoka, 2010; 

Sawamoto et al., 2000).   

 The right BA 13 was significant in predicting privacy concerns, however, the 

relationship indicated that an increase in right BA 13 led to a decrease in privacy 

concerns. These findings were contrary to the hypothesis, indicating more investigation is 

needed in better understanding privacy concerns. The right BA 13 did have a negative 

relationship with personal information disclosure, with a standardized beta coefficient of 

-0.253. When compared to the effect of the neural correlate of trust, right BA 13 had a 

weaker effect. This contradicts the findings of Dimoka (2010), who found distrust was 

more salient than trust in deciding price premiums. However, given that this study 

focused mainly on the disclosure of personal information, as opposed to money, it is 

possible that individuals’ judgments are different. Specifically, the loss of money may 
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trigger stronger negative emotions than the probable loss of privacy, similar to the 

findings of Hollander et al. (2005), where monetary value consisted of more brain 

activity in regions of high risk and high reward, as opposed to a computerized game point 

system. 

 Activation was found in the right BA 31, the posterior cingulate. The posterior 

cingulate cortex is involved in emotional processing, and as an evaluative region of the 

brain, that is involved in assessing environmental stimuli and memory functions (Vogt, 

Finch, & Olson, 1992). However, it is also involved in evaluative judgements, i.e. making 

an assessment to determine the quality of something (Zysset, Huber, Ferstl, & von 

Cramon, 2002). Yet, no significant relationships were established between right BA 31 

and privacy concerns nor personal interest. 

 

6.2.4 Uncertainty 

 The hypotheses were supported for assessing the neural correlates of uncertainty, 

which were found to be right BA 47 and right BA 40. As discussed above, the right BA 

47 is a part of the orbitofrontal prefrontal cortex that is often involved in both the 

processing of emotions and cognitive tasks. While right BA 47 was found as a neural 

correlate for trust, a positive mental process, neuronal activity and mental processes 

contain a many-to-many relationship (Dimoka, 2012). Studies have shown that activity in 

the right prefrontal cortex are often involved in processing unpleasant emotions 

(Davidson, 2002; Davidson, Coe, Dolski, & Donzella, 1999). Moreover, the orbitofrontal 

cortex was found to be involved in many cognitive and emotional thought processes 

(Cannon, 2012). Brain activity was also found in the right BA 40 is a part of the inferior 
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parietal lobule, which is involved in attentional tasks, as well as processing of cognition 

and emotion (Cannon, 2012; Krain et al., 2006) for uncertainty.  

The neural correlates of uncertainty were found to be insignificant predictors of 

privacy concerns and personal information disclosure. These findings are contrary to that 

of Pavlou et al. (2007) that found perceived uncertainty negatively impacted intentions to 

disclose personal information, highlighting the differences in results that are captured by 

neuroimaging tools as opposed to self-reported data. Additionally, these findings 

reinforce the position that brain areas and mental processes contain a many-to-many 

relationship, whereby right BA 47 was found significant for trust conditions, but 

insignificant for uncertainty conditions. Moreover, there may be similarities, in particular, 

the orbitofrontal prefrontal cortex, between the brain areas shared for assessing both 

rewards and punishments (Kringelbach & Rolls, 2004).  

 

6.2.4 Personal Interest 

 Brain activity in the left BA 40 was found to be associated with personal interest, 

providing support for hypothesis 5b. The results are similar to consumer behavior, where 

the right BA 40 was activity, and along with high activity in the ventromedial prefrontal 

cortex, and low activity in the dorsolateral prefrontal cortex, suggested impulsivity 

(Deppe et al., 2005). Left BA 37 was also found to be active for personal interest. BA 37 

is associated with visual recognition (Tanaka, 1997), but is also classified as a part of the 

temporal lobes which are involved in social and emotional processes, decision-making 

and has connections with the orbitofrontal cortex and amygdala (Dupont, 2002). 

Additionally, Leube, Erb, Grodd, Bartels, & Kircher (2001) found BA 37 to play a key 
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role in episodic memory. When testing for personal interest, instead of presenting the 

subjects with random items, product categories (for ecommerce) and e-service categories 

were displayed for subjects to choose from. Subjects were asked to choose which 

category best represented their personal interest, as well as keeping this category in mind 

for the subsequent experiments. The findings of left BA 37 and the manner in which the 

study tested for personal interest, suggests that there was some degree of memory 

involved in selecting a product category.  

 When regressed against privacy concerns, neither left BA’s 37 nor 40 had 

significant relationships. Similarly, left BA 40 was not found to have a significant 

relationship with personal information disclosure. However, left BA 37 was found to 

have a significant relationship with personal information disclosure, whereby an increase 

in left BA 37 would predict an increase in personal information disclosure. It should be 

noted, however, that based on the standardized  of 0.109, personal interest had the 

smallest effect as compared to the other independent variables on personal information 

disclosure.  

 

6.2.5. Privacy Concerns 

 Privacy concerns as a dependent variable had poor predictors which were 

insignificant, and bad model fit. The only significant variable to have a relationship with 

privacy concerns was right BA 13, and the relationship was contrary to the hypothesis. 

However, data collected for privacy concerns utilized a one-item survey question of self-

reported data. Essentially, privacy concerns, like privacy risk, have been found to be 

more complex and multidimensional, whereby researchers have developed instruments to 
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properly assess privacy concerns (Malhotra et al., 2004; Smith et al., 1999). As such, a 

more appropriate means of assessing privacy concerns may have presented more 

insightful findings. Moreover, neural correlates of privacy concerns were not assessed, 

which may have provided useful insights as to how the human brain processes 

information privacy.  

 When regressed against personal information disclosure, privacy concerns were 

statistically significant, and had the strongest effect when compared to all the other 

independent variables, with a standardized beta of -0.683. This relationship indicated that 

when privacy concerns increased by one unit, there would be a decrease of the dependent 

variable, personal information disclosure by a standard deviation of -0.683. This negative 

relationship is consistent with findings in the information privacy field, where privacy 

concerns negatively impact the use of ICTs that require individuals to disclose their 

personal information (Awad & Krishnan, 2006; Bansal et al., 2010; Dinev & Hart, 2006; 

Pavlou et al., 2007; Van Slyke et al., 2006).  

 

6.2.6. Interaction Effects 

 While experiment 3 did not produce any significant interaction effects, nor did the 

regression model with the dependent variable of privacy concerns for experiment 2, there 

were in total, twelve significant interactions between the independent variables for the 

dependent variable of personal information disclosure (see Table 8 in Chapter 5). In total, 

only three out of twelve interactions that had a positive relationship with personal 

information disclosure, each of which had beta coefficients higher than 1, but less than 2. 

Alternatively, all the significant interactions with negative relationships had a beta 
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coefficient of -1.33 as its lowest, but -9.28 as the highest, which was an interaction 

between the neural correlates of privacy risk, distrust (only BA 13) and personal interest.  

In all interactions where the independent variables positively predicted personal 

information disclosure, brain activity in left BA 37 (a neural correlate of personal 

interest) was present. The neural correlate of trust (right BA 47) often had little effect in 

predicting personal information disclosure. Interactions where both neural correlates of 

distrust and trust were present predicted a reduction of personal information disclosure 

(i.e. negative beta coefficients). These findings were similar to Dimoka (2010), which 

found distrust was more salient than trust in predicting price premiums. Additionally, the 

high number of interactions of the independent variables and their predicted negative 

relationships and magnitude (i.e. beta coefficients) with personal information disclosure 

reinforces the weight negative outcomes have over positive ones, when individuals make 

decisions regarding rewards and losses (Kahneman & Tversky, 1979).  

 

6.3. Contributions 

 There were four contributions from this study to information privacy research. 

Firstly, this study provides a better explanation to the privacy paradox in that individuals’ 

privacy-related decisions are based on both rational and emotional mental processes, that 

intertwine with one another. The findings thus supports the research argument that 

individuals disclosed their personal information based on their cognitive disposition. 

Essentially, individuals’ decision to withhold or disclose their personal information 

cannot be explained through rational behavior, nor solely through emotional impulses. 

Furthermore, this study addressed a gap in current privacy literature where the processing 
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of external stimuli was measured as predictors of privacy-related decisions, as opposed to 

internally held beliefs. The neural correlates of mental processes that were posited to 

affect privacy-related situations were identified using a neurological tool, the 

electroencephalogram. The findings of this study identified the nature of the mental 

processes involved in privacy-related decision-making. This led to the second 

contribution, where the findings of cognitive neuroscience was applied to the extended 

privacy calculus model to address its limitation in assuming individuals are rational 

decision-makers. The third and fourth contributions are methodological contributions by 

using sLORETA technique to identify the neural correlates of mental processes posited to 

be involved in explaining the privacy paradox, and using SnPM for the analysis. These 

contributions are discussed in more detail next. 

 

6.3.1. Research Contributions 

The first research contribution of this study, whereby the findings of this study 

supported the research argument that individuals would disclose their personal 

information based on their cognitive disposition, which includes both rational and 

emotional mental processes. The brain areas identified as neural correlates to the factors 

such as privacy risk, trust, distrust, and personal interest are responsible for 

rational/executive functions, emotions, emotional regulation, and calculation of rewards. 

Thus, a better explanation of the privacy paradox is derived based on the results of the 

significant relationships of this study, between the neural correlates of mental processes, 

privacy concerns, and personal information disclosure. This indicates that individuals’ 

privacy-related decisions are neither purely emotional nor rational, as there exists 
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interconnectivity between these brain areas as suggested by Phelps (2006). Essentially, 

the privacy paradox cannot be explained solely through a logical cost-benefit analysis or 

by examining individuals’ emotions only. Furthermore, the results of this study were 

based on studying real behavior influenced by the momentary perceptions formed in 

privacy-related situations as opposed to self-reported data on individuals’ beliefs 

concerning information privacy and personal information disclosure.  

The constructs of privacy risk, trust, privacy concerns and personal interest in the 

extended privacy calculus model were modeled as enduring (institutional) beliefs 

individuals have in the context of information privacy, which influences individuals’ 

decisions to withhold or disclose their personal information. Yet, these constructs have 

been found to be correlated with neural activity in specific regions of the brain when 

individuals are processing stimuli, i.e. they are produced based on situations and are more 

a ‘state-of-mind at a given time’ as opposed to an enduring belief (Dimoka et al., 2007; 

2011; Sur & Sinha, 2009). Additionally, studies have found that the activation of brain 

areas when individuals are in a specific situation influences behavioral outcomes 

(Dimoka, 2010; Vance et al., 2014). As Dimoka et al. (2011) indicated, the use of 

neuroscience can advance the IS field. One such opportunity occurs where antecedents of 

IS constructs could be used to predict certain behavior and challenge past IS assumptions. 

The findings of this study fulfill this opportunity highlighted by Dimoka et al., (2011) 

where specific neural correlates, that included emotional responses and rational 

processes, significantly influenced individuals to disclose or withhold their personal 

information.  
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The second contribution of this study resulted from applying the findings of 

cognitive neuroscience to the theoretically enhance the extended privacy calculus model 

developed by Dinev and Hart (2006). The extended privacy calculus model is limited in 

assuming individuals are rational decision-makers. The constructs established in the 

extended privacy calculus model were mapped to brain areas of neural activity using the 

findings of cognitive neuroscience literature, which identified these mental processes as 

distinct. This led to challenging traditional assumptions such as the relationship between 

trust and distrust as existing along opposite ends of the same continuum. Mental 

processes such as uncertainty and distrust were therefore added to the extended privacy 

calculus model to better explain the privacy paradox.  

As indicated by the results of this study, privacy-related decisions are not purely 

rational, and involves several brain areas related to assessments of risks and rewards, 

emotions, emotional regulations, and high executive processing. While the neural 

correlates of uncertainty did not have any significant relationships with privacy concerns 

or personal information disclosure, there were significant relationships with the neural 

correlates of privacy risk, trust, distrust and personal interest to personal information 

disclosure. Essentially, this study establishes distrust as an integral factor in the extended 

privacy calculus model, and explaining the privacy paradox. This study also advances the 

IS field as IS constructs were mapped to specific brain areas, which would allow for 

better understanding the nature and dimensionality of these constructs as opposed to 

utilizing the metrics of self-reported data that would be inadequate in assessing and 

understanding these constructs in privacy-related decisions (Dimoka et al., 2011).  
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6.3.2. Methodological Contributions 

The third contribution of this study was related to the research methodology, and 

contributed to both the information privacy field, as well as NeuroIS in general. This 

study used (standardized) low tomography brain electromagnetic tomography to identify 

the neural correlates of mental processes posited to be involved in explaining the privacy 

paradox. While the use of PET and fMRI are considered better approaches to identifying 

the location of neural activity for given tasks, sLORETA provides specific advantages 

such as the increased temporal resolution of neuronal activity at specific moments in time 

(Cannon, 2012). The ability of sLORETA to capture neural activity in milliseconds 

addresses a fundamental limitation of fMRI research, where there are high degrees of 

overlap in brain areas during cognitive, affective, memory and attentional tasks, which 

leads to difficulty in accurately interpreting fMRI results (Cabeza & Nyberg, 2000). 

While sLORETA may have low resolution, it is able to detect neuronal activity in voxels 

of 5mm3, and detect even deeper brain structures such as the anterior cingulate cortex 

(Pizzagalli, Oakes, & Davidson, 2003), and hippocampal regions.  

While there is a growing body of literature in the neuroscience field that utilizes 

sLORETA techniques for analysis of localization of brain areas for specific tasks, at the 

time of writing this dissertation, the use of sLORETA seems very rare in IS, with the only 

other study found utilizing sLORETA was that of Kalgotra, Sharda, and Chakraborty 

(2014). A search for the keywords “privacy”, “NeuroIS”, “Information Systems”, 

“LORETA” (with variations of “sLORETA”, “standardized LORETA”, “exact 

LORETA”, and “eLORETA”) did not return any results on databases such as ProQuest, 

ABI/InFORMs, and Web of Science for sLORETA-based research in IS, much less 
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information privacy. The only result obtained from searching these databases with 

regards to neuroIS and information privacy returned an editorial calling for the use of 

neuroscience techniques in information privacy to better understand privacy constructs 

(Belanger & Xu, 2015).  

Essentially, this study contributed by answering such a call to use neuroscience 

techniques to better understand the privacy paradox, while also contributing to NeuroIS 

by using sLORETA, a technique for identifying brain areas with high temporal 

resolution. Other than the analysis of the localization for key brain areas, sLORETA 

provides additional advantages such as the ability to provide analysis of frequency 

domains involved in specific tasks, along with localization (i.e. origination) of these 

frequency domains (Cannon, 2012; Massar et al., 2012). Furthermore, functional 

connectivity analysis can be done using sLORETA (Cannon, 2012), to determine “the 

temporal dependency of neuronal activation patterns of anatomically separated brain 

regions” (Lang, Tome, Keck, Gorriz-Saez, & Puntonet, 2012, p. 1).  

An additional advantage of using sLORETA for identification of key brain areas 

entails the use of an EEG over an fMRI or PET, which reduces the monetary costs of 

collecting data drastically. Traditional neuroimaging tools such as fMRI and PET are 

very costly, with scans per subject for one-hour costing around $360-$540 and $450-

$900, respectively (Riedl et al., 2009). EEG devices, in comparison, are much cheaper 

than purchasing fMRI and PET machines, while using the equipment from third parties 

(i.e. research labs and hospitals) can be as cheap as $55 per subject per hour (Riedl et al., 

2009). Furthermore, the proliferation of commercial EEG devices such as emotiv EPOC+ 

and OpenBCI R&D kit, are much cheaper than traditional EEG devices, providing 
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researchers with more cost-effective devices. This becomes an advantage for research, 

particularly in neuroIS and information privacy, since fMRI and PET studies have 

smaller sample sizes which can hinder the generalizability of findings (Dimoka, 2012). 

Yet, the use of EEG devices could provide more forms of analysis (i.e. frequency 

analysis, event-related potential component analysis), with localization determined 

through techniques such as sLORETA, with larger sample sizes. Additionally, the design 

of experiments becomes more flexible, whereby instead of constraining experiments to 

within-subjects designs to increase power while limiting sample sizes (Dimoka, 2012), a 

number of designs such as between-subjects and mixed designs (i.e. both a between and 

within-subjects design) can be used. 

Finally, the forth contribution of this study was the use of SnPM for determining 

statistically significant brain areas involved in the mental processing of privacy-related 

decisions. Research in NeuroIS is limited, with a number of researchers appealing to the 

use of cognitive neuroscience to better understand information privacy (Dimoka et al., 

2007; 2011; Riedl et al., 2009). Statistical Parametric Mapping (SPM) using general 

linear models is an often used approach of analysis for functional neuroimaging data, 

even in the fields of neuroscience and neuropsychology (Dimoka, 2012; Nichols & 

Holmes, 2001). In NeuroIS fMRI research, Dimoka (2010) used SPM to test for 

significant brain areas associated with trust and distrust. However, Nichols and Holmes 

(2001) explained that SnPM can surpass SPM for analyses of brain data with low degrees 

of freedom. Additionally, Pascual-Marqui et al. (2002) argued that SnPM was a powerful 

technique to accurately test the significance of brain areas produced from sLORETA, 

where parametric tests would be inadequate. Essentially, SnPM not only accurately 
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analyzes data from sLORETA, but could also be used in the analysis of neuroimaging 

tools such as PET, fMRI, and single-photon emission computerized tomography 

(SPECT). 

 

6.4. Managerial Implications 

 Several practices are suggested for both organizations and society. An 

organization’s survivability and growth depends greatly on insights and predictions they 

gain from data mining techniques. This data allows for them to understand patterns and 

trends of their current clients as well as potential clients. However, acting opportunistically 

and selling data to third-parties or misrepresenting their practices of handling data could 

lead to a negative perception of the organization by society, such as in the case of 

ChoicePoint (Culnan & Williams, 2009). This can then lead to distrustful perceptions of 

an organization by society. As was evident in the case of ChoicePoint, this distrust of an 

organization could lead to major financial losses and loss of clientele. Organizations should 

therefore handle the personal information they collect from individuals with a high degree 

of ethical values (Culnan & Williams, 2009).  

 As can be seen from the findings, perceptions of trust and personal interest may 

consist of some degree of emotion targeting reward centers in the human brain, yet negative 

perceptions have more weight than positive ones. Thus organizations should reduce 

negative outcomes of privacy, in that the personal information they have collected and the 

data mining done to gain insights into client behavior should be handled carefully enough 

that negative reviews of an organization could easily be refuted (Mohammed & Tejay, 

2015). Additionally, by acting in a manner that suggests an organization’s ethical 
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disposition as morally altruistic, with high concern and practices reflecting a “proactive 

privacy” attitude could lead to increased trust between clients and organizations. 

Organizations could achieve this by creating and often reviewing comprehensive privacy 

policies, developing a culture of privacy within an organization, designing informative and 

easy to read privacy statements, and helping individuals that were affected by privacy 

breaches overcome the negative outcomes (Culnan & Williams, 2009; Mohammed & 

Tejay, 2015). Organizations should also invest in messages, slogans, and cues that 

highlights the importance of clients’ information privacy. As can be seen in cognitive 

neuroscience literature, as well as the findings in this study, specific stimuli trigger the 

neural activity associated with tasks. Essentially, creating positive messages to promote 

trusting perceptions and developing an environment of trust should impact individuals’ 

privacy-related decisions and challenge minor negative privacy-related outcomes.   

 For individuals, privacy-related decisions have been found to include both a degree 

of emotions and rationality, with antecedents activating brain areas related to rewards, as 

well as negative emotions. This generally means that individuals’ privacy-related decisions 

may not always reflect the best of judgements (Acquisti & Grossklags, 2005), and may 

also lead to taking risks in return for small rewards. Additionally, individuals may forego 

any rewards associated with specific ICTs due to fear of negative outcomes, which was 

found to have stronger weight in privacy-related decisions. To counteract many of these 

drawbacks, stronger regulations should be developed which balances the need for 

organizations and government to collect and analyze large sets of individuals’ personal 

information, while limiting the probability of harm caused to individuals due to privacy 

and security incidents.  
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As ICTs are fast becoming a utility in everyday life (Buyya et al., 2008), 

maximizing the opportunities of ICTs should not be hindered by the risks in society. 

Privacy advocates could use the findings of this study pertaining to how individuals make 

privacy-related decisions, to form better campaigns to promote the development of fair 

privacy practices through campaigns by both governments and organizations. Furthermore, 

privacy advocates, as well as firms that specialize in information privacy and security could 

develop awareness programs centered around the perceptions found to influence privacy-

related decisions in this study. These awareness programs could be used to aid individuals 

to make better privacy-related judgements, and promote the use of privacy enhancing 

technologies, such as Tor.  

 

6.5. Limitations  

 There were a few limitations within this study. Firstly, privacy-related mental 

processes, such as privacy risk and privacy concerns have been discussed as 

multidimensional factors, with empirical evidence indicating privacy concerns are better 

modeled as second-order factor rather than a first-order factor (Smith et al., 2011; Stewart 

& Segars, 2002). In this study, neural correlates for privacy risk were assessed as if it 

were a completely negative factor, yet the findings indicated that while one of the neural 

correlates were negatively related to personal information disclosure (i.e. right BA 32), 

the other neural correlate (left BA 9) positively influenced individuals to disclose their 

personal information. These findings of privacy risk implied that privacy risk cannot be 

looked at as one single factor, with a single relationship to personal information 
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disclosure, but may in fact pertain to the contradictory risk-behaviors of individuals who 

are considered either risk-taking or risk-aversive.  

With regards to the findings of privacy concerns, none of the hypotheses posited 

to predict it were significant, which suggested that complex modeling of privacy 

concerns may be necessary to truly understand the nature of this construct. Additionally, 

privacy concerns may be correlated with specific brain areas by itself, and the self-

reported metric used to determine a relationship within this study, was inadequate. 

However, privacy concerns did have the most significant effect on personal information 

disclosure, as well as the highest magnitude as compared to the other independent 

variables. This suggests the need for further investigation of mental processes such as 

privacy risk and privacy concerns. 

Another limitation of this study was in the choice of the EEG device used to 

capture brain activity. The emotiv EPOC+ provided a cheaper solution as opposed to 

clinical EEGs, or functional neuroimaging tools such as fMRI and PET, but consisted of 

only fourteen electrodes. While sLORETA was chosen as the method to analyze the EEG 

data to derive the neural correlates of mental processes, some of the spatial resolution 

was sacrificed due to the limited number of electrodes. However, studies have shown that 

sLORETA can produce accurate results with a small number of electrodes (Cannon, 

2012). While sLORETA can detect activity in deep brain regions such as the anterior 

cingulate (Pizzagalli et al., 2003), and other parts of the limbic lobe, such as the 

hippocampul gyrus, certain brain areas, such as the amygdala are more difficult to detect. 

In cases where such regions are of interest, high spatial resolution scans from fMRI and 

PET are recommended. However, both fMRI and PET contain poor temporal resolution, 
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whereby brain areas activated for a given task become difficult to interpret due to the 

length of time passed since the stimulus was produced and the neural activity occurred 

(Cabeza & Nyberg, 2000). The results produced by sLORETA are in the millisecond 

range, where approximately every 7.8125 milliseconds, brain areas associated with 

specific tasks are captured for an EEG device with a 128Hz sampling rate. These 

sLORETA images can then be tested using SnPM for identifying statistically significant 

brain areas activated in the processing of certain stimuli.  

It can be seen in the results that the statistics for assessing multicollinearity, the 

tolerance values were low, and the VIF values were high. However, despite this, all 

values for tolerance were above the minimum threshold, while VIF values were below 

the maximum threshold, except for right BA 32, in the regression model against personal 

information disclosure. This indicated that multicollinearity may not have been an issue 

in the study. However, even in the case of BA 32, multicollinearity does not invalidate 

the results of a regression model (O’Brien, 2007). Additionally, there is a high degree of 

connectivity in the brain, whereby, even if there were high correlations between the brain 

areas associated with mental processes, the functional connectivity of these areas alone 

cannot be decided simply through traditional multicollinearity tests, but may require 

connectivity analysis to better determine the degree of separation between the brain areas 

and their relationships. However, this was not an objective of this study.  

Finally, this study did not account for differences in neural activity between right 

and left-handed individuals. Dimoka (2012) suggested limiting subjects to right-handed 

individuals when conducting fMRI experiments used for analyzing the neural correlates 

of mental processes. Gut et al. (2007) found that dominance of the right hand was 
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controlled by the left hemisphere, while the non-dominant hand was controlled by both 

hemispheres of the brain. While investigations behind hand dominance and specific brain 

areas associated with perceptions of reward and losses are unclear, research does suggest 

that processing of motivation takes place in the hemisphere of dominance, i.e. right 

handed individuals had more activity in the left hemisphere and vice versa (Brookshire & 

Casasanto, 2012).  

 

6.6. Future Research 

 There are a few studies that can be developed based on the findings and 

limitations of this study. Firstly, this study could be re-examined utilizing neuroimaging 

tools with higher spatial resolution, such as fMRI and PET. As research has found the 

mental correlates identified in this study to be correlated with some deeper brain 

structures such as the putamen and caudate nucleus for trust, amygdala for distrust, and 

nucleus accumbens for risk (Dimoka, 2010; Matthews et al., 2004), neuroimaging tools 

with higher spatial resolution may detect certain brain areas that were not detected in this 

study. Secondly, connectivity analysis, used for understanding the functional 

interconnectivity of neurons in specific brain areas could be used to better understand 

how the brain areas in this study are related to one another. This may in turn lead to 

inferences of the causal relationship between brain areas associated with privacy-related 

decisions, which is identified as one of the opportunities to advance the IS field by using 

the tools, techniques and theories from cognitive neuroscience (Dimoka et al., 2011).  

Finally, a study on the differences on gender in privacy-related decision-making 

should be done. In this study, gender differences were not accounted for, however, 
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studies in functional neuroanatomy suggest there are differences between brain activity in 

men and women. Dimoka (2010) found women had stronger neural activity in the 

emotional areas of the brain than men in trusting and distrusting situations. Essentially, 

the corpus callosum (connection between the right and left hemispheres) is thicker in 

women than in men, whereby women have about thirty percent more connectivity 

between the right and left hemispheres in the brain, and use both hemispheres for 

emotional processing, while for men, there are more activity in the right hemisphere for 

processing emotions (Pease & Pease, 2000).  

 

6.7. Conclusions 

 As individuals are becoming more aware of the breaches information privacy, 

they have expressed a degree of privacy concerns, to which researchers have found were 

inhibitors to the use of ICTs (Li et al., 2011; Madden et al., 2007; Smith et al., 2011). 

Yet, despite expressing concerns over the privacy of their personal information, 

individuals continue to disclose their personal information; a behavior which is referred 

to as the privacy paradox. Researchers have often investigated the privacy paradox with 

regards to different ICTs, and found certain institutional beliefs, such as risk and trust 

were antecedents to explaining privacy-related decisions (Dinev & Hart, 2006; Pavlou et 

al., 2007; Van Slyke et al., 2005). However, a common assumption in information 

privacy research is that individuals are rational decision-makers. Acquisti and Grossklags 

(2005) argued that individuals are not able to make fully rational decisions, and their 

privacy-related decisions may be hindered by cognitive biases and limited cognition. 

Furthermore, a gap exists in the literature exists in observing how individuals’ 



134 
 

 
 

perceptions are formed and relate to one another when they are in a situation requiring 

them to disclose their personal information. Specifically, the perceptions based on the 

cognitive processing of external stimuli, to which studies in neuroscience have indicated 

influence decision-making (Dimoka et al., 2007; 2011). Thus, the objective of this study 

investigated the privacy paradox to better understand why individuals disclose or 

withhold their personal information. The study argued that individuals disclose their 

personal information based on their cognitive disposition, which includes rationality and 

emotions. 

 The findings of cognitive neuroscience were applied to the extended privacy 

calculus model developed by Dinev and Hart (2006), addressing the limitation that 

individuals were rational in their privacy-related decisions. Three within-subjects 

experiments were carried out to test the research model and hypotheses. A total of 

twenty-two subjects participated in all three experiments as if it was one, while a pilot 

study was conducted using five participants. The first experiment assessed the neural 

correlates of mental processes involved in privacy-related decisions, while the second and 

third experiments were conducted to determine the effect of these neural correlates on 

privacy concerns and personal information disclosure. Experiment 2 was a 2x2x2x2 

factorial experiment with high and low levels of personal interest, privacy risk, trust and 

distrust, leading to sixteen conditions in total, while experiment 3 was a 2x1 factorial 

experiment, with two conditions of a high and low level of personal interest and one high 

level of uncertainty. The results indicated that brain areas associated with emotional and 

rational functions, as well as emotional regulation, and risk and reward centers were 

involved in privacy-related decision-making. 
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 The study contributed to the information privacy field by supporting the argument 

that individuals disclose their personal information based on their cognitive disposition. 

This challenges the past assumption of the privacy calculus in explaining the privacy 

paradox, and finding the nature and effect of neural correlates associated with mental 

processes that predict personal information disclosure. This lead to contributing 

theoretically to the information privacy field by applying the findings of cognitive 

neuroscience to the extended privacy calculus model, accounting for both rationality and 

emotions, while including distinct factors such as distrust and uncertainty. The study also 

contributed using sLORETA to identify the neural correlates associated with mental 

processes in privacy-related situations. Finally, using SnPM provides an alternate method 

of analysis with comparable results to parametric tests, especially in specific 

circumstances, such as in experiments with low degrees of freedom (Nichols & Holmes, 

2001), which is a methodological contribution to information privacy research, and more 

broadly to the IS field.  
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To: Zareef A Mohammed, MSc. Information Systems  

College of Engineering and Computing 
 
From: Matthew Seamon, JD, PharmD  

IRB Chair, Institutional Review Board 
 
Date: September 18, 2016 
 

Re: 2016-393-The role of cognitive disposition in re-examining the 
privacy paradox: A  

neuroscience study. 
 

 

I have reviewed the revisions to the above-referenced research protocol by an 

expedited procedure. On behalf of the Institutional Review Board of Nova 
Southeastern University, The role of cognitive disposition in re-examining the 

privacy paradox: A neuroscience study. is approved in keeping with expedited 

review category # Expedited Category 4. Your study is approved on September 

13, 2016 and is approved until September 12, 2017. You are required to submit 

for continuing review one month prior to September 12, 2017. As principal 

investigator, you must adhere to the following requirements: 
 
1) CONSENT: You must use the stamped (dated consent forms) attached when 

consenting subjects. The consent forms must indicate the approval and its date. The 

forms must be administered in such a manner that they are clearly understood by the 

subjects. The subjects must be given a copy of the signed consent document, and a 

copy must be placed with the subjects’ confidential chart/file.  
 

2) ADVERSE EVENTS/UNANTICIPATED PROBLEMS: The principal 

investigator is required to notify the IRB chair of any adverse 

reactions that may develop as a result of this study. Approval may 

be withdrawn if the problem is serious.  
 
3) AMENDMENTS: Any changes in the study (e.g., procedures, 
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consent forms, investigators, etc.) must be approved by the IRB 

prior to implementation.  
 
4) CONTINUING REVIEWS: A continuing review (progress 

report) must be submitted by the continuing review date noted 

above. Please see the IRB web site for continuing review 

information.  
 
5) FINAL REPORT: You are required to notify the IRB Office within 30 

days of the conclusion of the research that the study has ended via 

the IRB Closing Report form.  
 
The NSU IRB is in compliance with the requirements for the protection of human 

subjects prescribed in Part 46 of Title 45 of the Code of Federal Regulations (45 CFR 

46) revised June 18, 1991. 
 
Cc: Gurvirender P Tejay, Ph.D.  

Ling Wang, Ph.D. 
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Appendix B 

Experimental Conditions 

 
Experiment 1 

Survey Questions per Condition 

The following survey questions were asked after each subject read the review profiles: 

Please rate on a scale of 1-7 the following items.  

1 – Strongly Disagree; 2 – Disagree; 3 – Slightly Disagree; 4 – Neither Agree nor 

Disagree; 5 – Slightly Agree; 6 – Agree; 7 – Strongly Agree 

1. Do you believe it is a risk to disclose personal information to LPTC?1 

2. How likely are you to trust RTaP?2 

3. Do you believe DisCV may not be completely honest?3 

4. Are you uncertain about disclosing your personal information to IntraCOM?4 

5. Are you personally interested in the product or service category you chose?5 

6. How concerned are you about the privacy of your personal information when 

attempting to obtain a product or service online from this website? 

7. How likely are you to disclose your personal information to obtain the product or 

service of your choice online from this website? 

  

                                                        
1 For condition 1 only. 
2 For condition 2 only. 
3 For condition 3 only. 
4 For condition 4 only. 
5 For condition 5 only. 
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Condition 1 – Privacy Risk 

 
Condition 2 – Trust 
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Condition 3 – Distrust 

 
Condition 4 – Uncertainty 
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Condition 5 – Personal Interest 

 
 

 

 

Experiment 2  

Survey Questions per Condition 

The following survey questions were asked in each condition 

Please rate on a scale of 1-7 the following items.  

1 – Strongly Disagree; 2 – Disagree; 3 – Slightly Disagree; 4 – Neither Agree nor 

Disagree; 5 – Slightly Agree; 6 – Agree; 7 – Strongly Agree 

1. Are you personally interested in the product or service category you chose? 

2. Do you believe it is a risk to disclose personal information to (_____)6? 

3. How likely are you to trust (_____)? 

4. Do you believe (_____) may not be completely honest? 

5. Are you concerned about the privacy of your personal information if you were to 

obtain a product or service online from (_____)? 

6. How likely are you to disclose your personal information to obtain the product or 

service of your choice online from (_____)? 

  

 

                                                        
6 The name of the simulated website/organization was placed in (______), for each condition. For 
instance, condition 1 of experiment 2 was a review profile for “C-Sect”, thus in each question C-Sect 
for that condition was placed in place of the parenthesis.  
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Condition 1 

 

Condition 2 
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Condition 3 

 

 

Condition 4 
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Condition 5 

 

 

 

Condition 6 
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Condition 7 

 

 

 

 

Condition 8 
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The following screen appeared to change the level of Personal Interest to Low: 

 

The same review profiles from conditions 1 to 8 in experiment 2 were repeated, under 

this condition of “Low Personal Interest”, completing conditions 9 to 16. 

 

Experiment 3  

Survey Questions per Condition 

The following survey questions were asked in each condition 

Please rate on a scale of 1-7 the following items.  

1 – Strongly Disagree; 2 – Disagree; 3 – Slightly Disagree; 4 – Neither Agree nor 

Disagree; 5 – Slightly Agree; 6 – Agree; 7 – Strongly Agree 

1. Are you personally interested in the product or service category you chose? 

2. Are you concerned about disclosing your personal information to IntraCOM? 

3. Are you concerned about the privacy of your personal information if you were to 

obtain a product or service online from (_____)? 

4. How likely are you to disclose your personal information to obtain the product or 

service of your choice online from (_____)? 
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Condition 1 of experiment 3 followed on from the choice made in condition 5 of 

experiment 1, while condition 2 of experiment 3 followed on from the choice made in 

experiment 2 concerned with low personal interest. 

 

Conditions 1 and 2 
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Appendix C 

Regions of Interest Seeds 

Experiment 2 

The single voxel and its nearest neighbor, where CSD was measured is represented as the 

red point in all images produced by sLORETA below.  

 

Privacy Risk – Right BA 32 and Left BA 9, respectively 
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Trust – Right BA 47 

 

 

Distrust – Right BA 31 and BA 13, respectively 
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Personal Interest – Left BA 40 and 37, respectively 
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Experiment 3 

Personal Interest 

 

 

 

Uncertainty – Right BA 40 and Right BA 47, respectively 
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