
Nova Southeastern University
NSUWorks

Marine & Environmental Sciences Faculty Articles Department of Marine and Environmental Sciences

4-1-1998

A Near-Surface Microstructure Sensor System
Used During TOGA COARE. Part I: Bow
Measurements.
Alexander Soloviev
Nova Southeastern University, <<span class="elink">soloviev@nova.edu

Roger Lukas
University of Hawaii - Manoa

Sharon DeCarlo
University of Hawaii - Manoa

Jefrey Snyder
University of Hawaii - Manoa

A. Arjannikov
Granit - St. Petersburg, Russia

See next page for additional authors

Find out more information about Nova Southeastern University and the Halmos College of Natural Sciences
and Oceanography.
Follow this and additional works at: https://nsuworks.nova.edu/occ_facarticles

Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and
Meteorology Commons

This Article is brought to you for free and open access by the Department of Marine and Environmental Sciences at NSUWorks. It has been accepted
for inclusion in Marine & Environmental Sciences Faculty Articles by an authorized administrator of NSUWorks. For more information, please contact
nsuworks@nova.edu.

NSUWorks Citation
Alexander Soloviev, Roger Lukas, Sharon DeCarlo, Jefrey Snyder, A. Arjannikov, Vyacheslav Turenko, M. Baker, and Dmitry
Khlebnikov. 1998. A Near-Surface Microstructure Sensor System Used During TOGA COARE. Part I: Bow Measurements. .Journal of
Atmospheric and Oceanic Technology , (2) : 563 -578. https://nsuworks.nova.edu/occ_facarticles/632.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Focc_facarticles%2F632&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Focc_facarticles%2F632&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Focc_facarticles%2F632&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/occ_facarticles?utm_source=nsuworks.nova.edu%2Focc_facarticles%2F632&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/cnso_mes?utm_source=nsuworks.nova.edu%2Focc_facarticles%2F632&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.nova.edu/
https://cnso.nova.edu
https://cnso.nova.edu
https://nsuworks.nova.edu/occ_facarticles?utm_source=nsuworks.nova.edu%2Focc_facarticles%2F632&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1126?utm_source=nsuworks.nova.edu%2Focc_facarticles%2F632&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/186?utm_source=nsuworks.nova.edu%2Focc_facarticles%2F632&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/186?utm_source=nsuworks.nova.edu%2Focc_facarticles%2F632&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nsuworks@nova.edu


Authors

Vyacheslav Turenko
Granit - St. Petersburg, Russia

M. Baker
Johns Hopkins University

Dmitry Khlebnikov
Russian Academy of Sciences - Moscow

This article is available at NSUWorks: https://nsuworks.nova.edu/occ_facarticles/632

https://nsuworks.nova.edu/occ_facarticles/632?utm_source=nsuworks.nova.edu%2Focc_facarticles%2F632&utm_medium=PDF&utm_campaign=PDFCoverPages


APRIL 1998 563S O L O V I E V E T A L .

q 1998 American Meteorological Society

A Near-Surface Microstructure Sensor System Used during TOGA COARE.
Part I: Bow Measurements

ALEXANDER SOLOVIEV,* ROGER LUKAS, SHARON DECARLO, AND JEFREY SNYDER

School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii

ANATOLI ARJANNIKOV AND VYACHESLAV TURENKO

Granit, St. Petersburg, Russia

MARK BAKER

Applied Physics Laboratory, The Johns Hopkins University, Baltimore, Maryland

DMITRY KHLEBNIKOV

P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia

(Manuscript received 13 November 1996, in final form 13 May 1997)

ABSTRACT

High-resolution probes mounted on the bow of the vessel at a 1.7-m depth in an undisturbed region ahead
of the moving vessel were used for microstructure and turbulence measurements in the near-surface layer of
the ocean during TOGA COARE. The probes measured temperature, conductivity, pressure, three-component
fluctuation velocity, and two components of acceleration. Accumulation of large amounts of high-quality near-
surface data poses a difficult challenge, and deployment from the bow of a ship, such as is done with these
sensors, requires rugged, well-calibrated, and low-noise sensors. The heaving motion of the ship that causes the
sensors to break through the surface requires data processing algorithms unique to this application. Due to the
presence of surface waves and the associated pitching of the vessel, the bow probes ‘‘scanned’’ the near-surface
layer of the ocean. Combining the bow sensor’s signals with the ship’s thermosalinograph pumping water from
3-m depth resulted in the near-surface dataset with both fine temporal/spatial resolution and high absolute
accuracy. Contour plots calculated using the bow signals reveal the spatial structure of the diurnal thermocline
and rain-formed halocline. The localization in narrow frequency bands of the vibrations of the bow sensors
allows calculation of dissipation rates. The characteristics of the sensors and the data processing algorithms
related to the periodic surface penetration by the sensors are discussed in this paper.

1. Introduction

A better understanding of microstructure and turbu-
lence in the near-surface layer of the ocean is important
to provide boundary conditions for general circulation
models; to estimate air–sea fluxes of heat, momentum,
and gases; to interpret and calibrate satellite images;
and to study the biogeochemistry of the ocean. A region
of the ocean where the near-surface processes are of
particular importance is the western equatorial Pacific

*Current affiliation: Oceanographic Center, Nova Southeastern
University, Dania, Florida.

Corresponding author address: Dr. Alexander V. Soloviev, Ocean-
ographic Center, Nova Southeastern University, 8000 North Ocean
Drive, Dania, FL 33004.
E-mail: soloviev@ocean.nova.edu

warm pool (Lukas and Lindstrom 1991). This is the
domain of the Tropical Ocean Global Atmosphere
(TOGA) Coupled Ocean–Atmosphere Response Exper-
iment (COARE). The TOGA COARE project is de-
signed to describe, model, and predict the variability of
the coupled ocean–atmosphere system on timescales of
months to years (Webster and Lukas 1992). The coupled
ocean–atmosphere system in the western Pacific warm
pool is very sensitive even to small boundary condition
changes. Wind speeds are often small in the western
Pacific warm pool. Under low wind speed conditions,
substantial temperature, salinity, and current velocity
differences can be localized in the upper meters of the
ocean (Bruce and Firing 1974; Soloviev and Vershinsky
1982; Kudryavtsev and Soloviev 1990).

Small-scale measurements near the air–sea interface
are complicated by the presence of strong sources of
perturbations. The orbital velocity of surface waves is
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a dominant disturbance. A typical scale of surface-wave
vertical orbital velocities is approximately 1 m s21. Con-
currently, the scale of small-scale turbulent fluctuations
in the near-surface layer of the ocean is approximately
1 cm s21. Thus, there is a problem with measuring sig-
nals at the air–sea interface because the background
disturbance is approximately 100 times stronger than
the desired signal.

There are two principal questions associated with col-
lecting small-scale data near the surface. 1) What ref-
erence system should be used? 2) How can surface wave
disturbances be eliminated from the signal?

A reasonable approach is to make (or at least to in-
terpret) the measurements near the air–sea interface in
a Lagrangian coordinate system. Csanady (1984) sug-
gested that ‘‘. . . depth should be expressed in the co-
ordinate system connected with the surface produced by
the nearly irrotational component of the wave field.’’

Buoy devices (Jones and Kenney 1977; Price et al.
1986; Kudryavtsev and Soloviev 1990; Farmer and
Gemmrich 1995), upward rising profilers (Vershinsky
and Soloviev 1977; Dillon et al. 1981; Soloviev and
Vershinsky 1982; Imberger 1985; Soloviev et al. 1988;
Mammen and von Bosse 1990), dropsondes (Bruce and
Firing 1974; Azizjan et al. 1984), towed devices (Fe-
dorov and Ginzburg 1992; Thorpe 1985), and bow- or
submarine-mounted devices (Stewart and Grant 1962;
Volkov et al. 1989; Soloviev 1990; Osborn et al. 1992)
have been utilized to obtain measurements in the upper
few meters of the ocean. Among the key factors that
can affect the quality and interpretation of measure-
ments in the near-surface layer are surface wave per-
turbations, influence of the ship wake, instability of the
sensor motion, impact of bubbles on conductivity (and
hence salinity and density) measurements, and strong
electrical currents coupled to the water near the vessel
due to the ship’s electrical field. The sharp vertical gra-
dients in the near-surface physics can also be a factor
depending on the measurement approach.

Each approach offers different insights into the near-
surface physics and suffers from different limitations.
For example, moored buoy measurements are the only
approach that yields temporal measurements. However,
there is no clear separation in frequency space of the
velocity field induced by surface waves or by turbu-
lence. The lack of a dependable mean speed prevents
conversion to the spatial domain, which complicates
correct estimation of the kinetic energy dissipation rate.
Vertical profiling methods can provide such estimates
if the vertical speed of the profiler is much greater than
the surface wave-induced orbital velocities. However,
vertical profiling is inefficient for obtaining large sample
sets of turbulence statistics in the near-surface region
due to the large changes of the turbulent statistics as a
function of depth. It is also difficult to detect and ad-
equately measure regions of large horizontal gradients.
Towed methods can efficiently generate large sample
sets of dissipation estimates but then are typically de-

graded by broadband motion contamination due to the
nonstationary push–pull motion of these devices. The
measurements are also affected by the large area of in-
fluence of the ship’s wake. Bow- or submarine-mounted
devices can also efficiently produce large sample sets.
As with all other approaches, measurements from the
bow- or submarine-mounted devices offer unique chal-
lenges. For example, to obtain meaningful data from
these types of systems, ship motion-induced effects must
be assessed and minimized.

This paper describes the new bow-mounted system
developed for TOGA COARE to study microstructure
and turbulence in the upper meters of the ocean. The
purpose of the paper is to document the sensors char-
acteristics and processing algorithms, to support future
papers that will address analysis of the near-surface
measurements collected during TOGA COARE. The
high speed of the measurements (5–10 kt) produces
scale separation between the wave-induced velocity
field and turbulence and allows transformation to the
spatial domain for the estimation of turbulence statistics.
As is demonstrated in this paper, vibration contamina-
tion for the bow-mounted system deployed during the
COARE experiments is limited to narrow frequency
bands. The ship motion induced by the surface wave
field produces scans of the near-surface layer. Depth
variation due to ship motion can be sorted out using a
high-resolution pressure device.

Section 2 outlines the techniques and instrumentation
for small-scale measurements from the bow of the ves-
sel. Section 3 presents calibrations of the sensors, sensor
response functions, and noise spectra. Section 4 de-
scribes the processing algorithms, including the ap-
proach to detect surface penetration and contamination
by air bubbles. Section 5 presents examples of the data
collected during TOGA COARE. Section 6 is the sum-
mary.

2. Instrumentation and techniques

For the TOGA COARE project, we developed two
configurations of the bow sensor system. The first con-
figuration was used during the COARE IOP-3 and EQ-
2 legs of the R/V Moana Wave in January to March
1993. This paper describes the second configuration of
the bow sensor system that was used during the COARE
MW9410 and EQ-3 legs of the R/V Moana Wave in
March to May 1994. A more detailed description of both
modifications is in Soloviev et al. (1995).

The probes were originally designed in ‘‘Granit’’ (St.
Petersburg, Russia) for microstructure and turbulence
measurements within the depth range of 0–500 m. They
included conductivity, temperature, and electromagnetic
velocity probes and their associated electronics. For the
TOGA COARE project, pressure and acceleration sen-
sors were added to the bow probes. A photograph of
the bow probes is shown in Fig. 1a. The device on the
left is the electrical conductivity, temperature, and pres-
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FIG. 1. Bow probes photograph: (a) on the deck and (b) mounted on the bow of Moana Wave.

TABLE 1. Mechanical characteristics of bow probes.

Maximum speed of water flow
Lifetime
Resource
Weight (ECTP)
Weight (EMVA)

25 kt
10 yr

15 000 h
15 kg
12 kg

FIG. 2. Schematic construction of the bow probes.

sure (ECTP) probe; the device on the right is the elec-
tromagnetic velocity and acceleration (EMVA) probe.
The bodies of the probes are made from titanium. Di-
agrams of the construction of the ECTP (top) and
EMVA (bottom) probes are shown in Fig. 2. The me-
chanical characteristics of the bow probes are in Table
1. The bow probes have a functional control (FC) mode
that is intended for checking normal operation of the
electronics of the probes. Table 2 gives the ECTP
probes’ main technical characteristics for the different
COARE cruises. A special metal frame was designed
to install the probes in an undisturbed region ahead of
the moving vessel. Figure 1b is a photograph of the bow
probes mounted on the Moana Wave.

a. Conductivity and temperature (ECTP) probe

1) CONDUCTIVITY SENSOR

The conductivity probe consists of a conductivity cell
(of the throughflow type) and its associated electronics.
A diagram of the conductivity cell is in Fig. 3b. This
inductive sensor consists of two coaxial toroid induc-
tors. In a conductive medium, an inductive conductivity
cell has an isolated ‘‘conductivity loop’’ composed of
two inductors. A 16-kHz ac voltage is applied to the
primary voltage inductor, which induces current into the
‘‘conductivity loop’’ (seawater). The secondary current
inductor converts the current from the conductivity loop
into an output voltage of the conductivity cell. The value
of the current in the conductivity loop depends on the
conductivity of the water. The output ac voltage is am-
plified and then rectified into the dc signal by the elec-
tronic circuits. An important advantage of inductive
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TABLE 2. Main technical characteristics of ECTP probes.

Cruise on R/V Moana Wave

Parameter

COARE IOP-3
EQ-2

ECTP #A283

COARE MW9410

ECTP #1

COARE EQ-3

ECTP #1

Temperature
Range (8C)
Accuracy (8C)
Stability during 8 h (8C)
Digital resolution (8C)
Response time of primary sensor (ms)

22–35
,0.1
,0.01

0.003
35

14–34
,0.1
,0.01

0.005
35

14–34
,0.1
,0.01

0.005
35

Fluctuation temperature
Range (8C)
Noise level (8C)
Digital resolution (8C)
Frequency range (Hz)
Amplification factor, Af

12.5
0.001
0.0012
0.012–50

25

61.0
0.001
0.0005
0.012–50

10

61.0 (62.0 from 11 Apr 94)
0.001
0.0005 (0.001 from 11 Apr 94)
0.012–50

10

Conductivity
Range (S m21)
Accuracy (S m21)
Stability during 8 h (S m21)
Digital resolution (S m21)
Spatial resolution (m)

1.5–7.0
,0.01
,0.001

0.00056
0.1

3.1–6.1
,0.01
,0.001

0.0012
0.1

3.1–6.1
,0.01
,0.001

0.0012
0.1

Fluctuation–conductivity
Range (S m21)
Digital resolution (S m21)
Noise level of output voltage (S m21)
Frequency range (Hz)
Amplification factor, Af

62.5
0.00012
0.0001
0.012–50

50

60.1
0.00005
0.0001
0.012–50

25

60.1 (60.2 from 11 Apr 94)
0.00005 (0.0001 from 11 Apr 94)
0.0001
0.012–50

25

Pressure
Range (db)
Accuracy* (db)
Digital resolution (db)

0–25
0.1
0.01

0–25
0.1
0.01

0–25
0.1
0.001

* After correction for temperature dependence.

FIG. 3. (a) Construction of the primary temperature sensor: 1) the locations of laser welds, 2) the copper microwire of 20-mm diameter,
3) titanium body with 100-mm-thick walls, 4) isolation cover by nitride of silicon, and 5) compound filling. The balloon shows a cross
section of the sensitive element wall in more detail. (b) Theoretical field of the inductive conductivity cell: 1) the epoxy body of the cell,
2) voltage transformer, 3) current transformer, 4) control winding, and 5) the ‘‘conducting loop.’’
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conductivity cells is that biological growth on its ex-
posed surfaces does not substantially interfere with the
conductivity measurement. Also, because no electrodes
directly contact seawater, there is no electrical polar-
ization.

2) TEMPERATURE SENSOR

The temperature probe consists of a primary tem-
perature sensor (of the throughflow type) and its asso-
ciated electronics. The primary temperature sensor is
made of copper wires placed between two thin-walled
(100 mm) titanium cylinders (Fig. 3a) that are welded
together using a laser welding technique. This construc-
tion provides a hermetic seal for protection of the mi-
crowire from the seawater. Using pure copper as the
material for the primary temperature sensor provides a
good linearity of the probe in a wide temperature range
(228–1358C). The small diameter of microwire and
thin-walled cylinders (especially the internal cylinder
on which the microwire is wound) provides a response
time of the temperature sensor of 35 ms for water-flow
speeds greater than 3 m s21. The internal surfaces of
the cylinders are covered by insulation, nitride of sili-
con, to provide isolation of the microwire from the in-
ternal and external cylinders. A filler compound be-
tween cylinders is used to decrease the influence of wire
strain caused by environmental effects. Construction-
ally, the temperature sensor is installed behind the
throughflow conductivity cell. The conductivity cell
protects the temperature sensor from mechanical dam-
ages. However, the body of the conductivity cell disturbs
the flow. The response time of the temperature sensor
thus depends on the water-flow speed and only asymp-
totes to the inherent response of the microwire at speeds
greater than 3 m s21.

3) FLUCTUATION TEMPERATURE AND

CONDUCTIVITY CHANNELS

There are also fluctuation temperature and fluctuation
conductivity channels in the ECTP probe. The fluctu-
ation channels are derived from the temperature and
conductivity sensors. They are processed differently
than the dc temperature and conductivity channels to
emphasize higher frequencies. The fluctuation channels
are bandpass filtered in the frequency range of 0.012–
50 Hz, followed by additional amplification. The fluc-
tuation channels have a substantially lower digitizing
noise level than the dc channels because of the addi-
tional amplification factors (Af ) shown in Table 2 and
because the high pass reduces the dynamic range and
hence the least significant bit of the digitizer. The fluc-
tuation channels are used for microstructure statistics,
whereas the mean temperature and conductivity chan-
nels are used for salinity and density calculations. Orig-
inally, the fluctuation channels in the ECTP probe were
constructed to increase the dynamical range of the de-

vice for analog transfer of the signals to the data ac-
quisition system. The fluctuation channels are also used
to detect possible external electrical disturbances on the
temperature and conductivity channels during the trans-
mission of the analog signals to the data acquisition
system. After mean and fluctuation signals are converted
into the physical units, the real signals should be con-
sistent in the frequency range of 0.012–50 Hz with each
other. The electrical disturbances picked up on the line
between sensors and data acquisition system should be
a factor of Af weaker on the fluctuation channel com-
pared to the mean channel. The amplification factor Af

is equal to 25 or 10 for the fluctuation temperature and
50 or 25 for the fluctuation conductivity channel (see
Table 2).

4) PRESSURE

For the COARE expedition, the strain-gauge pressure
sensors (serial type D) produced by the Prompribor
Plant (Orel, Russia) were added to the ECTP probes.
The pressure sensor is installed in the tail section of the
ECTP probe.

b. Electromagnetic velocity and acceleration (EMVA)
probe

The EMVA probe consists of a three-component fluc-
tuation velocity vector and vibrational-acceleration sen-
sor(s).

1) FLUCTUATION VELOCITY SENSOR

The fluctuation velocity sensor generates signals pro-
portional to the longitudinal, transverse, and vertical
components of the fluctuation velocity vector, which
appear at the output of the low-frequency amplifiers.
The operation of the sensor is based on the principle of
electromagnetic induction. In the area of interaction of
the flow (V) of the conducting water and magnetic field
(B), an electrical field E is induced with the appropriate
distribution of the electric potential (w). Potential dif-
ferences between the two points of the interaction area
are determined by directions of the vectors V and B and
are proportional to the product of their moduli (Fig. 4).

The primary sensor is made of dielectric material (an
epoxy compound) in the form of a rotation body (Fig.
4a). Four permanent magnets are shaped according to
the form of the dielectric body. The magnets are placed
symmetrically with respect to the nose of the sensor
(Fig. 4b). Four measuring platinum electrodes coated
with platinum black are placed symmetrically within
lines of the dielectric body with respect to the nose of
the sensor. Electrodes are placed at the centers of the
magnetic gaps. The exposed tips of the electrodes are
polished to the surface of the dielectric body.

The coordinate system with respect to the measured
fluctuation velocity vector (Fig. 4c) is determined by
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FIG. 4. Three-component fluctuation velocity sensor: (a) view of
dielectric body and electrode locations; (b) cross-sectional view of
the location of the magnets (1), electrodes (2), and the geometry of
the E, V, and B fields; (c) fluctuation velocity coordinate system with
respect to orientation of the sensor view shown in (a); and (d) the
relationships between electrode voltage outputs and fluctuating ve-
locity components.

TABLE 3. Main technical characteristics of EMVA probes.

Cruise on the R/V Moana Wave

Parameters

COARE IOP-3
COARE EQ-2

EMVA #465

COARE MW9410

EMVA #2

COARE EQ-3

EMVA #1

Longitudinal fluctuation velocity (Vx)
Range (m s21)
Precision (%)
Digital resolution (m s21)
Frequency range (Hz)

62.3
,5

0.0011
0.05–600

62.5
,5

0.0011
0.05–200

62.5
,5

0.0011
0.05–200

Transversal fluctuation velocity (Vy)
Range (m s21)
Precision (%)
Digital resolution (m s21)
Frequency range (Hz)

62.8
,5

0.0014
0.05–600

65
,5

0.0022
0.05–200

65
,5

0.0022
0.05–200

Vertical fluctuation velocity (Vz)
Range (m s21)
Precision (%)
Digital resolution (m s21)
Frequency range (Hz)

62.8
,5

0.0014
0.05–600

65
,5

0.0022
0.05–200

65
,5

0.0022
0.05–200

the position of the magnetic gaps. The potential differ-
ences between the measuring electrodes are proportional
to orthogonal components of the fluctuation velocity
vector (Fig. 4d).

In contrast to traditional internal-flow electromag-
netic sensors, this sensor exploits an external part of the
magnetic field. The potential field is formed only by the
part of the magnetic field that emerges beyond the limits
of the magnetic gap. The use of the external part of the
magnetic field improves the hydrodynamic form of the
primary sensor, as shown in Fig. 4. The main technical
characteristics of the fluctuation velocity probes are in
Table 3.

2) ACCELERATION SENSORS

The acceleration sensors measure vibrational accel-
erations of the EMVA probe. Three types of acceleration
sensors were used in different legs. The technical spec-
ifications for each sensor are listed in Table 4. For the
EQ-3 cruise acceleration sensor ‘‘ICSensors’’ (model
3145) was used. The model 3145 is a precision accel-
erometer intended for instrumentation applications. The
module consists of a silicon micromachined acceler-
ometer, amplification, signal conditioning, and temper-
ature compensation from 2208 to 1858C. A single sup-
ply is required, and full-scale output is 62 V about a
2.5 V offset. It is designed with built-in damping, there-
by allowing a wide usable bandwidth. In addition, the
accelerometer element is protected from shock by over-
range stops in the silicon microstructure. The light-
weight Valoxy housing provides easy attachment to the
measurement surface. A detailed calibration sheet that
provides the measured test and calibration data for the
sensor is included with each unit.

c. Deck connector, electrical cables, and lab unit

Analog signals are transmitted to the data acquisition
system in the lab of the ship by an approximately 50-
m-length, waterproof, shielded conducting cable. This
cable is also used to provide a 620-V power supply to
the bow sensors from the lab source, signal return wire,
and power ground. A deck connector junction box is
used to join the two underwater cables from the ECTP
and EMVT into a single deck cable. The junction box
and the cables are hermetically constructed to ensure
waterproof integrity. A deck unit is used for anti-alias
low-pass filtering of the signals from the bow probes
prior to transmitting to the recording system. The cutoff
frequency of the filters was set up equal to or one-third
lower than the sampling rate. The deck unit also supplies
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TABLE 4. Vibrational acceleration sensors installed on EMVA.

Cruise on the R/V Moana Wave

Parameter

COARE IOP-3/
COARE EQ-2

EMVA #465

COARE MW9410

EMVA #2

COARE EQ-3

EMVA #1

Type of vibration sensors Krylov’s Institute,
St. Petersburg,
Russia (type VP-7)

‘‘Brüel and Kjæ’’ (damper problem
was detected)

‘‘ICSensors’’
(type 3145)

Measured components
Range (m s22)
Precision (%)
Frequency range (Hz)

gx

610
2

1–900

gx

610
5 (within the range 66 m s22)

0.5–200

gx , gz

625
0.2

0–200

FIG. 5. Calibration of pressure sensor of ECTP #1. Error estimates
correspond to 50% confidence interval.

power to the bow probes and initiates a functional con-
trol mode (FC).

After installation of the probes on the bow of the
vessel, an additional dc bias occurs for the conductivity
channel because the conductivity probe is mounted rel-
atively close to the metal body of the vessel and bow
frame. The electrical field of the conductivity cell at-
tenuates strongly out of its approximately 10-cm sen-
sitive area. However, the massive metal parts of the bow
construction (conductivity of which is much higher than
of the seawater) result in some dc bias on the conduc-
tivity channel. It is equivalent to a shift of the calibration
of DC 5 0.05 S m21. This shift corresponds to a 0.9%
change in the conductivity cell constant. This constant
bias was corrected during data processing.

d. Data acquisition

The data were acquired in digital form by the National
Instruments’ data acquisition board (AT-MIO-16, 12 bit,
40 000 samples per second) with a Dell 486 computer.
An acquisition program provided the possibility of se-
lecting any individual record time length with 9 or 10
channels. Typically, an individual record length of 10

min was used, with no gaps between the individual 10-
min segments. Data were acquired at two sampling
rates: 400 and 40 Hz. The records were usually made
in series. Data were transmitted simultaneously to the
Dell PC and to a Sun Microsystems Workstation and
stored on hard disks. Real-time processing of turbulence
parameters was available to help provide selective sam-
pling of regions.

3. Calibrations and bench tests

Calibrations and tests were performed with the power
supply, anti-aliasing filters, and electrical cables that
were used during field measurements.

a. ECTP

Precruise calibration of the pressure sensor, including
temperature dependence, was made at the University of
Hawaii. Figure 5 shows the calibration characteristics
of the pressure sensor of ECTP#1. Temperature depen-
dence of the pressure sensor was determined to be equal
to 20.04 db 8C21. To reduce the influence of the tem-
perature dependence, the pressure at 0 m was corrected
each time the bow sensors surfaced into the air.

Precruise calibration of the temperature and conduc-
tivity probes was done in Granit using a temperature-
controlled water bath with precision thermostat TWP-
6 with a certified accuracy of 0.0058C. Water temper-
ature was measured by two mercury thermometers with
accuracies of 0.018 and 0.18C. Conductivity was mea-
sured by conductometer CL4 (produced in Russia) with
a rated accuracy of 0.25%. TWP-6, CL4, and mercury
thermometers were annually tested by the D. I. Men-
deleev’s Institute of Metrology (St. Petersburg, Russia).

After transporting the devices from Granit, the tem-
perature probes were tested at the University of Hawaii
during March 1994. The ECTP probes and a reference
temperature probe, Sea-Bird Electronics SBE-3, were
placed in a well-circulated water tank. The water was
cooled down with ice, then left to warm naturally. This
resulted in some hysteresis of the calibration depen-
dencies caused by the large thermal mass of the titanium
bow probe. The objective of the test done at the Uni-
versity of Hawaii was to check the probes functionally
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FIG. 6. Comparison of temperature calibrations and tests of ECTP
#1; ‘‘o’’ denotes the calibration points obtained in Granit by ther-
mometer with 0.018C accuracy; ‘‘*’’ denotes the points obtained dur-
ing testing at the University of Hawaii; straight line is the regression
estimated by JHU/APL from the JHU/APL calibration data.

FIG. 7. Comparison of conductivity calibrations for ECTP #1 made
in Granit and at JHU/APL; ‘‘C’’ denotes calibration points obtained
in Granit; the straight line is their regression. ‘‘*’’ and ‘‘1’’ denotes
calibration points measured by JHU/APL on 19 and 23 May 1995,
respectively.

TABLE 5. Comparison of ECTP #1 calibrations.

Place Date 1994 Calibration Sensor Gain Offset Rms error of fit Range

Granit
JHU/APL
Granit
JHU/APL

Jan
May
Jan
May

Precruise
Postcruise
Precruise
Postcruise

T
T
C
C

0.4992 V/8C
0.4956 V/8C
2.00 V/(S m21)
1.98 V/(S m21)

211.956 V
211.805 V
27.20 V
27.094 V

0.00398C
0.00158C
0.0011 S m21

0.0018 S m21

248–348C
248–348C
5.1–6.1 S m21

5.1–6.1 S m21

before the field work and to verify that the bow sensors
were not damaged during transportation.

The postcruise calibration of ECTP#1 was done at
The Johns Hopkins University Applied Physics Labo-
ratory (JHU/APL) on 19 May 1994. The calibrations
are based on a temperature-controlled circulating water
bath that uses National Institute of Standards and Tech-
nology standards for temperature and salinity. The cir-
culating bath has spatial temperature stability to within
60.2 m8C. A Neil Brown Instrument Systems’ Model
CT-2 Conductivity and Temperature Standard provides
the reference conductivity and temperature values. The
CT-2 temperature accuracy over the range from 08 to
308C is checked against the triple point of water at
0.018C and the melting point of gallium at 29.77178C.
The conductivity accuracy over the range from 2.8 to
6.4 S m21 is checked against the salinity of standard
seawater. The CT-2 sensor has calibration accuracies of
61 m8C and 60.0002 S m21 for temperature and con-
ductivity, respectively. The calibration of ECPT #1 cov-
ered a range from 5.48 to 358C and 0.66 to 6.4 S m21.
Figure 6 compares all available temperature calibrations
and tests of ECTP #1 with the JHU/APL calibration.
The precruise calibrations agree within the 95% con-
fidence interval of the postcruise calibrations done at
JHU/APL. The maximum difference between these cal-

ibrations is 0.028C in the COARE range of surface tem-
peratures (248–348C).

Figure 7 compares the pre- and postcalibrations of
conductivity sensor of ECTP #1. Only points within a
linear range of the output voltage (65 V) were used.
The calibrations display good agreement. The maximum
difference between the calibrations from Granit and
JHU/APL, within the range of conductivity in the near-
surface layer of the ocean in the COARE domain (5.1–
6.1 S m21), is equivalent to 0.0038 S m21. Table 5
compares pre- and postcalibrations of the temperature
and conductivity for ECTP #1.

The response time of the temperature sensor was de-
termined using data from a free-rising profiler with the
same type of temperature sensor as well as a 3-ms re-
sponse cold-film thermoanemometer (DISA). The mea-
suring cycle of the free-rising profiler included the de-
scent of the device into the water, positioning at a pre-
scribed depth, and then the collection of data in the
vertically oriented rising regime. Details of these mea-
surements are in Soloviev et al. (1995). The conductivity
signal was an indicator of intersection of the air–water
interface. The speed of the profiler at the initial air–sea
intersection was greater than 3 m s21. When the tem-
perature sensors were immersed in the ocean they started
to observe a water temperature that was about 28C dif-
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FIG. 8. Spatial response for (a) Vx and (b) Vz channels. Here |H(ik)|
is the wavenumber response-function magnitude, k is the radian wave-
number (k 5 2p /l, where l is the wavelength in meters per cycle),
and i2 5 21.

TABLE 6. Postcruise calibration of fluctuation–velocity probes
(EMVA) at JHU/APL.

EMVA Gain
Precision of
calibration

#1
#2

3.33 V m21 s
4.57 V m21 s

3%
3%

ferent from the air temperature. This transitional process
provided an estimate of the response. The temporal lag
of the regular temperature sensor was determined to be
35 ms.

b. EMVA

The precruise calibration of the fluctuation velocity
probes was done in Granit using two mean speeds of a
turbulent jet, 1.1 and 2.2 m s21. The test was made at
facility HDF-FJ, which is a water tank with submerged
flow. The jet emerges from a 60-mm-diameter nozzle
converging with the flow. The initial diameter of the
pipe is 100 mm. The probe to be calibrated is placed
in the region of developed turbulence at a distance of
10 diameters of the nozzle along the axis line of the jet.
Characteristics of the mean flow were determined using

the Pitot tubes annually calibrated by the D. I. Men-
dellev’s Institute of Metrology. The fluctuation char-
acteristics of the flow had been known from measure-
ments at the two flow speeds, 1.1 and 2.2 m s21, by a
hot-film thermoanemometer DISA 55D01 with sensor
55A87. Calibration of the thermoanemometer was done
at the same facility but in the region of minimal fluc-
tuation velocities (0.5%) near the face of the nozzle. An
HP 8064 spectrum analyzer was used for spectral anal-
ysis of the signals. The absolute accuracy of estimating
the gain using this technique was only about 20%. At
the same time, the estimate of the response function of
the velocity sensors is expected to be within 5% ac-
curacy because the response function does not depend
on the absolute calibration of the flow.

Figures 8a and 8b show the results of measurements
of the wavenumber response function magnitude |H(ik)|
of EMVA #1 in Granit at 1.1 and 2.2 m s21 flow speeds,
respectively. Here, H(ik) represents the spatial response
of the sensor on a small scale; |H(ik)| is defined by

|H(ik)|2 5 Em(k)/Er(k), (1)

where k is the wavenumber (rad m21), Em is the wave-
number spectrum measured by the tested sensor, and Er

is the wavenumber spectrum measured by the reference
velocity sensor. The wavenumber spectrum E(k) is de-
rived from the measured frequency spectra S( f ) using
G. T. Taylor’s hypothesis of ‘‘frozen turbulence’’ by the
following well-known formulas:

k 5 2p f /U0

and

E(k) 5 S( f )U /(2p), (2)0

where f is the frequency (Hz) and U0 is the relative
flow speed.

At wavenumbers exceeding 500 m21 [log10(500) 5
2.7], the spectrum is dominated by sensor noise (Fig.
8). Curves (shown in the figures) were visually fit to
the measured transfer functions. These interpolated
transfer functions are used to correct the turbulence
spectra in high wavenumber range.

A standard gain, 4.0 V (m s21 )21, for the
Vx(longitudinal) fluctuation velocity channel for both
EMVT#1 and EMVT#2 probes was installed in Granit;
the accuracy of the available fluctuation velocity testing
equipment was 20%. Estimation of the gain factor for
the Vx fluctuation velocity channel was done at JHU/
APL (Table 6). The Vx channel was dynamically cali-
brated by oscillating the sensor longitudinally in the
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presence of a mean flow in the JHU/APL flow channel.
Each calibration run lasts for 30 min. The sensor tra-
verses a distance of 62R (R 5 2.54 cm) during an
oscillation period. The oscillation generates a sinusoidal
output, resulting in a spectral peak approximately two
orders of magnitude above the spectrum due to the back-
ground flow. The frequency of the oscillation, v0 (rad
s21), is estimated from the location of the spectral peak,
and the amplitude, A (V), is estimated by integrating
the spectral peak. The peak speed of the translation
velocity is 6Rv0 and the gain factor V (m s21)21 is A/
Rv0. The mean speed was 0.5 m s21, and the sensor
was oscillated at 0.4 Hz or at a speed of 0.064 m s21.
The combined flow velocity and sensor velocity there-
fore is 0.5 6 0.064 m21. This method uses only the
mean speed to determine what oscillation frequency to
select. The oscillation frequency is selected such that
the peak oscillation speed is typically 10%–15% of the
mean flow speed. The method does not require accurate
knowledge of the mean flow speed. The accuracy, lim-
ited only by the accuracy of the estimates of the oscil-
lation frequency and the amplitude (derived from in-
tegration of the spectral peak), is estimated to be ap-
proximately 63%. The calibrations made at JHU/APL
differ from the Granit calibrations by 217% and 14%
for probes #1 and #2, respectively. This is within the
20% accuracy of the testing equipment for the fluctu-
ation velocity that is used in Granit for adjustment of
the gain to the standard value, 4.0 V (m s21)21.

Calibration of the acceleration sensors ‘‘ICSensors’’
(Model 3145) was taken from their technical descrip-
tion.

4. Processing the signals

a. Pressure-to-depth conversion

To accurately maintain a coordinate system fixed to
the surface, the pressure is corrected by the amount the
pressure sensor reads when the probe surfaces, thereby
zeroing it in the air. Each time the probe surfaces this
correction changes. Between surface events the previous
value is used. Penetration of the surface is determined
from the conductivity signal.

The dynamical pressure is a complicating factor in
the pressure-to-depth conversion. The pressure signal is
P 5 Pd 1 Ph. The hydrostatic component Ph is used to
calculate the depth of the probe. The dynamical com-
ponent Pd depends on the relative flow and on the lo-
cation of the pressure sensor. The orbital velocities of
the surface waves and the ship’s pitching produce fluc-
tuations of the relative flow that affect the dynamical
pressure. To reduce the influence of the dynamical com-
ponent, the pressure sensor is installed in the tail section
of the ECTP probe.

The 0.6-m horizontal separation between the con-
ductivity cell and the pressure sensor results in some
additional uncertainty in relative positions of the sensors

with respect to the air–sea interface at the probes’ sur-
facing. The total rms uncertainty in pressure-to-depth
conversion for the bow measurements is estimated by
Soloviev and Lukas (1996) as being between 0.02 and
0.1 db.

b. Temperature and conductivity

The bow probes collect data in the near-surface layer
of the ocean, sometimes surfacing or encountering water
with air bubbles. There are also many electromagnetic
sources on the ship that sometimes produce influences
on the electrical circuits. Algorithms have been devel-
oped at the University of Hawaii to detect and remove
these sections from the signals. The temperature and
conductivity processing flowchart are shown in Fig. 9.

The conductivity channel is a good indicator for de-
tecting when the probe surfaces because a change of
conductivity signal at the intersection of the air–sea in-
terface is by several orders of magnitude more than the
natural conductivity fluctuations in seawater. This pro-
gram first locates data segments in which conductivity
C is lower than 4.6 S m21. Next, it finds the beginning
and ending points where the record is disturbed. For
this purpose the salinity difference is analyzed. The first
point in the backward direction where the difference
becomes equal to zero and the first point in the forward
direction where the difference becomes equal to zero
are determined. Then 0.1 s prior to the first point and
0.9 s after the second point are identified as the begin-
ning and ending points of the segment that is to be
removed. After returning to water the conductivity cell
retains some air inside it. It takes time for the air bubbles
to dislodge from the cell, which is why the number of
points removed before and after surfacing is different.
Predicting the time interval when the conductivity signal
still contains air bubbles is difficult, as it depends on
the wind–wave conditions in addition to the ship speed
and direction with respect to the waves. Due to the
unpredictable nature of this time interval, after remov-
ing the out-of-water data, spikes of a negative direction
are sometimes still present on the conductivity signal
segments next to the removed areas. The areas next to
the surfacing are examined for points where the salinity
differences are negative. These points are then removed
to the point where the salinity difference first becomes
positive. The standard deviation is calculated on the
whole 10-min file after removing segments that were
out of the water. Segments of the salinity records where
the difference is more than five standard deviations are
eliminated.

The temperature-sensitive element is smaller in size
than the conductivity cell and is located on the axis line
of the conductivity cell. The temperature-sensitive el-
ement intersects the ocean–air interface when half of
the conductivity cell is in the air. The processing pro-
gram removes out-of-water temperature data from when
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FIG. 9. Temperature and conductivity processing flowchart.

the conductivity is less than 4.6 S m21 until the last time
conductivity is less than 4.6 S m21.

External electrical noise (generated from equipment
on the ship) is detected by comparing the signals on T
and C with the corresponding signals on the fluctuation
channels T9 and C9. The fluctuation channels represent
T and C signals processed by an analog high-pass fre-
quency filter with a cutoff frequency of 0.012 Hz and
are amplified prior to transferring to the lab for analog-
to-digitial conversion. When the mean and fluctuation
channels are compared on the same temperature and
conductivity scale, useful signals coincide in the fre-
quency domain that is greater than 0.012 Hz, but the
amplitude of any external electrical noise differs by a
factor of 25 or 10 times for temperature and 50 or 25
times for conductivity; see section 2a(3). During the
almost 1-month record in the EQ-3 cruise, only several
cases of external electrical noise contamination were
detected.

To compensate for the temperature and conductivity
sensors’ spatial separation of L 5 8.4 cm, conductivity
is lagged by the amount of time Dt 5 L/U0 it takes water
to travel that distance, which varies with different ship
speeds U0. To match the response time of the temper-
ature and conductivity signals before calculating salin-

ity, the conductivity channels are processed by an ex-
ponential filter (Fozdar et al. 1985) with a cutoff fre-
quency of 4.547 Hz, which corresponds to the 35-ms
response time of the temperature sensor (1.1 m for a
ship’s speed of 5 m s21).

A second filter is applied to both temperature and
conductivity to remove high-frequency noise on the
temperature channel and to maintain the temporal match
between temperature and conductivity induced by the
4.547-Hz exponential filter. This is a Hanning filter with
a cutoff frequency of 4 Hz and a window length of 8
points for 40 Hz and 81 points for 400-Hz data. This
filter also reduces the impact of mismatch between tem-
perature and conductivity by reducing the energy in both
channels at frequencies greater than 4 Hz. Salinity and
density, su, are computed using standard UNESCO rou-
tines. To reduce the results of a T and C mismatch due
to a residual difference in response time, which can
induce salinity spikes, and to avoid aliasing when dec-
imating the time series, the salinity signal is additionally
processed by a low-pass Hanning filter with a cutoff
frequency of 4 Hz that corresponds to smoothing the
salinity over 1.25 m in the horizontal direction for a
ship speed of 5 m s21. Note that gaps smaller than 0.6s
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FIG. 10. Comparison of the bow and thermosalinograph tempera-
tures and salinities. (a) Bounds of the observed depth range of the
bow sensors measurements (contiguous straight line represents 2.9-
m depth and dashed line represents the 4.4-m depth); (b) bow (dots)
and thermosalinograph (thermistor at bow intake) temperatures (solid
curve), and (c) bow (dots) and thermosalinograph (solid curve) sa-
linities.

long (24 points at 40 Hz or 240 points at 400 Hz) are
filled using linear interpolation.

c. Combining the bow sensors and the
thermosalinograph system

On the Moana Wave, there is a thermosalinograph
system that collects water from 3 m below the waterline
and pumps it onboard the vessel to a Sea-Bird Elec-
tronics (SBE-21) CTD (Shinoda et al. 1995). The ac-
curacy of the SBE-21 was 0.018C per 6 months and
0.001 S m21 per month. Figures 10b and 10c compare
the bow and thermosalinograph temperatures and salin-
ities. The bow sensor temperature and salinity data are
averaged in 10-min segments within the depth range
from 2.9 to 3.1 m and are represented by points. The
depth range of the bow sensors depends on the surface
waves and on the ship’s speed and direction. Figure 10a
shows the full range of depths observed during the
Moana Wave EQ-3 cruise. If strong pitching motions
of the vessel occur the thermosalinograph intake (at 3
m) can entrain air bubbles. These air bubbles produce
negative spikes in the conductivity signal. For this rea-
son the comparison excludes cases in which the max-
imum depth of the bow sensors was over 4.4 m, as well
as below 3.1 m. The first 10-min segments at the be-
ginning of each series were removed from the compar-
ison if the time interval between records was more than
20 min. This is because in some cases the power supply

was switched off, and it takes about 10 min to equilibrate
the electronics after switching on the electrical supply.

The differences in temperature and salinity between
the bow sensors and thermosalinograph were interpo-
lated by second-order polynomials. For the temperature
there was a constant offset of 0.0348C at the beginning
of the cruise and 0.0578C at the end, with a 50% fit
error of 60.0128C. For the salinity, the offset changed
from 20.013 to 0.001 psu, with a 50% fit error of
60.014 psu. The bow temperature and salinity are cor-
rected using the fitted second-order polynomials. Com-
bining the bow and thermosalinograph signals results
in a near-surface dataset with both fine temporal/spatial
resolution and high absolute accuracy.

d. Velocity and acceleration

The velocity measurements using the bow system are
affected by vibration noise from the ship’s body and
bow platform, depending on the ship’s speed and sea
surface conditions. The vibrations are dependent on the
ship’s heading with respect to the surface wave field.
The lowest vibrations are in the longitudinal direction,
coincident with the axis line of the ship. The highest
vibrations are in the transverse direction, perpendicular
to the ship axis line. The nature of the vibration noise
is principally different from that of measurements by
towed vehicles. In the case of a towed device, the me-
chanical disturbance of the vehicle motion is primarily
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FIG. 11. (a) Spectrum of longitudinal (Vx) fluctuation velocity
(dashes) in comparison to spectrum of integrated longitudinal (gx)
acceleration (solid line). (b) Wavenumber Vx spectrum (points) and
theoretical spectrum of turbulence in inertial subrange. Ship speed is
10.3 kt.

FIG. 12. Example of record made by bow sensors in the western
Pacific warm pool (along 1478W) for a strong diurnal warming event.
(a) Pressure, (b) temperature, (c) salinity, (d) density, and (e) ship
speed. Segments marked by the boxes are used to plot the contour
plots in Fig. 14 and 15. LST is for 1478W longitude.

due to the interaction of the vehicle with the tether line.
This disturbance has a form of sudden, purely correlated
pulses and has a wide frequency spectrum that practi-
cally cannot be removed from the signal. Moreover, such
disturbances have a spectral form that is close to the
spectrum of turbulence in the inertial subrange. Me-
chanical disturbance of the bow-mounted probes occurs
mainly at certain relatively narrow resonant frequencies
of the ship’s body and bow platform. Such noise can
be more easily detected and therefore effectively re-
moved from the contaminated signal, provided the ac-
celeration is measured. For this purpose, two acceler-
ation sensors, ICSensors model 3145, were installed into

the electromagnetic velocity probe during the EM and
EQ-3 cruises.

Figure 11a shows examples of longitudinal velocity
Vx and integrated acceleration gx spectra for a 10.3-kt
ship speed and 10.4 m s21 wind speed. There are four
vibration peaks between 16 and 110 Hz. Note the ex-
cellent agreement between the two sensors for the peak
at 50 Hz, indicating the accuracy of the velocity sensor
calibration. Three of the vibration modes are strong
enough to contaminate the velocity spectrum noticeably.
However, these peaks are relatively narrow. The tech-
nique of Stewart and Grant (1962)1 can be used to es-
timate the dissipation rate of the turbulent kinetic energy
from 10-min segments of the longitudinal Vx signal (Fig.
11b). This method yields « 5 6.3 3 1026 W kg21 for
the spectrum shown in Fig. 11b.

5. Examples of at-sea data obtained during TOGA
COARE

Figure 12 shows an example of the strong diurnal
warming event in the near-surface layer of the ocean.
High-frequency fluctuations of temperature T, salinity
S, and s t are primarily a result of the depth variation
of the probes. Until approximately 1600 local solar time
(LST), the diurnal warming was mainly localized in the
upper 1 m of the ocean (as a result of the prevailing
calm weather conditions). The amplitude of the tem-
perature high-frequency variability, therefore, strongly
depended on the pitching depth range of the sensors.

1 The universal spectrum of turbulence is fit to the data in the
inertial-viscous subrange.
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FIG. 13. Vertical profiles of temperature, salinity, and density ob-
tained by averaging 10-min intervals of the bow sensors’ data within
0.1-db pressure ranges. Each successive profile is shifted by 18C in
temperature, by 0.5 psu in salinity, and by 1.0 kg m23 in st. The time
below each profile corresponds to the middle of the 10-min segment.
Thin lines represent 61 std dev. FIG. 14. Contour plots of T vs P and of T vs st calculated during

strong diurnal warming of the upper 1-m layer of the ocean (wind
speed 2.2–2.4 m s21, ship speed 2.0 m s21).

FIG. 15. Contour plots of S vs P and of S vs st calculated during
intersection of a surface freshwater lens (wind speed 2.7–4.6 m s21,
ship speed 2.4 m s21).

To increase the pitching depth range of the bow sensors
the research vessel collected approximately 15-min sam-
ple sections every 2 h during 3 May 1994 with decreased
ship’s speed (;2 m s21) and with the ship’s heading
into the surface waves.

The vertical profiles calculated from 10-min segments
of the record during the sample sections illustrate the
diurnal warming of the ocean under low wind speed
conditions (Fig. 13). At 0905 LST, the profiles of T, S,
and s t showed a well-mixed upper layer (within the 3-
m depth variation range of the bow sensors). The tem-
perature profile at 1103 LST indicated that the diurnal
warming of the upper ocean layer had started. Because
of low wind speed conditions, the diurnal thermocline
was within the upper 1 m of the ocean. At 1302 LST,
the diurnal thermocline was still in the upper 1 m be-
cause of calm conditions. The temperature difference
across the diurnal thermocline sometimes achieved ap-
proximately 38C. There was also approximately 0.1 psu
salinity difference across the diurnal thermocline as a
result of evaporation from the ocean surface and ac-
cumulation of the excess salinity within the diurnal
mixed layer.

To study spatial structures, Soloviev and Lukas
(1996) suggested calculation of the contour plots of tem-
perature T, salinity S, and density st using the variation
of the probe’s depth due to the vessel’s pitching. The
contour plot of the temperature field near 1500 LST is
shown in Fig. 14. The corresponding section of the P,
T, and st records is denoted by rectangles in Fig. 12.

The vertical profiles of T, S, and st at 1900 LST (Fig.
13) reveal the intersection of a surface freshwater lens.
This time interval is shown in more detail in Fig. 15.

The corresponding section of the record is denoted in
Fig. 12 by rectangles. The salinity contour plot shows
a leeward edge of the freshwater lens formed by a pre-
vious rain. There is a strong near-surface front in the
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FIG. 16. (a) A segment of the P, T, and S record on 3 May 1994
at an intersection of the air–sea interface; (b) T and S as function of
P and T–S diagram calculated from the segment shown in (a). Thin
lines represent the raw signals, while the bold lines are the signals
after processing.

upper 2 m of the ocean associated with spreading of
this freshwater lens. The contour plot of salinity in den-
sity coordinate, however, shows no features.

An intersection of the air–sea interface by bow sen-
sors during measurements on 3 May 1994 (see Fig. 12)
is shown in Fig. 16a. Figure 16a includes the conduc-
tivity C record as well. The conductivity signal abruptly
drops at approaching the sea surface. This happens at
about 0.1-m depth, which is approximately equal to the
spatial resolution of the conductivity cell (Table 2). Dis-
turbed segments of T, C, and S (thin line) are auto-
matically removed by the processing algorithm (section
4b). In Fig. 16b, T, S, and st, plotted as function of the
pressure are shown. These data (Fig. 16) are obtained
within a strong freshwater lens (Fig. 15). A shallow
freshwater layer and a temperature inversion are clearly

seen in the upper approximately 1.5-m layer of the ocean
(Fig. 16b). However, the density stratification is stable.

There are some differences between the successive
salinity profiles measured at the intersection of the air–
sea interface in the reciprocal directions (Fig. 16b). The
differences between the successive temperature profiles
are smaller.

6. Summary

A rugged bow-mounted system that provides mea-
surements of temperature, salinity, and microstructure
statistics in the near-surface regime was developed for
COARE. The sensor characteristics, calibrations, re-
sponse functions, and noise levels have been docu-
mented in this paper as well as the data processing al-
gorithms. The sensors have been demonstrated to have
excellent calibration stability. The calibration stability
of the temperature and conductivity sensors coupled
with algorithms that generate clean well-matched sig-
nals yield salinity data absent of salinity spikes over
scales of 1.25 m. Vibration contamination, a key issue
for velocity measurements, has been shown to occur in
narrow-frequency bands that do not preclude accurate
estimates of the kinetic energy dissipation rate.

The large vessel speed, 5–10 kt, provides scale sep-
aration between the orbital velocities of the surface
waves and the turbulent velocity field; it also allows the
use of Taylor’s hypothesis to transform from the time
domain to the spatial domain for estimation of turbu-
lence statistics. The high-resolution pressure sensor, cor-
rected each time the sensors surface, maintains a co-
ordinate system fixed to the surface. The difficulties
posed by the surface wave field have been largely elim-
inated.

Samples of the unique observations generated by this
system are presented. Spatial structure of the near-sur-
face layer can be studied as well as sample sets of tur-
bulence statistics fixed in a reference frame anchored
to the ocean surface. Further analysis, including esti-
mates of turbulence statistics, of the dataset obtained
during the COARE experiments should yield key in-
sights into near-surface physics.
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