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Abstract The lower limit on the drag coefficient under hurricane force winds is determined
by the break-up of the air–sea interface due to Kelvin–Helmholtz instability and formation
of the two-phase transition layer consisting of sea spray and air bubbles. As a consequence,
a regime of marginal stability develops. In this regime, the air–sea drag coefficient is deter-
mined by the turbulence characteristics of the two-phase transition layer. The upper limit on
the drag coefficient is determined by the Charnock-type wave resistance. Most of the obser-
vational estimates of the drag coefficient obtained in hurricane conditions and in laboratory
experiments appear to lie between the two extreme regimes: wave resistance and marginal
stability.

Keywords Air–sea interface · Drag coefficient · Hurricane · Kelvin–Helmholtz instability ·
Marginal stability

1 Introduction

Improved understanding of the physical processes near the air–sea interface is required for
the development of a better forecast of hurricane strength. Hurricanes extract thermal energy
from the ocean, convert it into kinetic energy, and then dissipate a significant fraction of
their kinetic energy into the ocean. The strength of the hurricane thus depends on the bal-
ance between exchanges of heat and momentum with the ocean (Emanuel 1995). The effi-
ciency of heat energy transfer from the ocean and mechanical energy dissipation in the ocean
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366 A. Soloviev, R. Lukas

Fig. 1 Microscale wave breaking under a moderate and b very high wind-speed conditions. A small projec-
tion appearing on the downwind slope of the wave near the crest destroys the capillary wave train and aqueous
viscous sublayer, which results in the air-flow detachment from waves and the drag reduction. Simultaneously,
spume is torn from the wave crest

significantly depends on the structures of the near-surface turbulent boundary layers and the
properties of the sea surface.

Under high winds, breaking waves disrupt the air–sea interface producing a two-phase
layer—air bubbles in water and sea-spray droplets in air. The sea surface is almost com-
pletely covered with the two-phase environment during wind speeds exceeding 25–30 m s−1

(Powell et al. 2003; Black et al. 2007). This mixed-phase environment changes the dynamics
and thermodynamics of air–sea interaction (Emanuel 2003; Barenblatt et al. 2005; Soloviev
and Lukas 2006; Kudryavtsev 2006; Bye and Jenkins 2006).

The air–sea interface is stabilized by the forces of gravity and surface tension. Wind stress
and pressure fluctuations disturb the sea surface, while gravity and surface tension restore it,
producing surface waves. For light to moderate winds, the upwind wave surface is relatively
smooth, but small ripples—capillary waves—are observed on the downwind surface near
the crest (Cox 1958). The presence of sharp-crested wavelets results in the development of
a high-vorticity area—“roller”—accompanied by a parasitic capillary-wave train (Longuet-
Higgins 1992). This process leads to “microscale wave breaking” (Banner and Phillips 1974)
(Fig. 1a). Microscale wave breaking occurs much more often than the wave breaking resulting
in white capping; thus, it is an important mechanism in the momentum transfer between the
atmosphere and ocean. It is also an effective mechanism for interfacial gas transfer (Csanady
1990; Jessup et al. 1997).
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Effects of Bubbles and Sea Spray on Air–Sea Exchange 367

Wave breaking that results in white capping and large droplet (spume) generation starts at
wind speeds exceeding 7–9 m s−1 (Andreas 2004). The amount of spume generated during
wave breaking, however, is apparently not sufficient to maintain a continuous two-phase
environment, unless the wind speed reaches approximately 25–30 m s−1 (Powell et al. 2003;
Black et al. 2007).

Based on laboratory experimentation Koga (1981) suggested that there is a mechanism
of direct disruption of the air–sea interface under very high wind speeds, viz. Kelvin–
Helmholtz (K–H) instability. The K–H instability is a rapidly growing type of instability
(Thorpe 1969), and the break-up of the air–sea interface due to K–H instability results in
the separation of the airflow from the wave crests, which is schematically shown in Fig. 1b.
According to Donelan et al. (2004), Kudryavtsev and Makin (2007), Kukulka and Hara
(2008), and Mueller and Veron (2009), the air-flow separation may considerably reduce the
wave resistance (though not without adding stress in some situations).

According to Koga (1981) and Soloviev and Lukas (2006), the K–H instability of the
air–sea interface occurs when the wind speed is achieved for which the speed of surface
wind-drift current Us exceeds the minimum phase speed of gravity-capillary waves, cmin =
0.232 m s−1. The threshold for the K–H instability at the air–sea interface can therefore be
defined by the condition, Us/cmin = 1.

The speed of the surface wind drift current is Us ≈ bu∗w, where the average value of
coefficient b is approximately equal to 16 based on surface drifters measurements (Wu 1975)
and 7.4 from infrared imaging (Zhang and Harrison 2004). The latter authors attributed this
difference to different experimental methods. In both cases, the value of coefficient b notice-
ably did not reveal any significant dependence on wind speed (though the wind-speed range
up to 12–15 m s−1 only was studied). The minimum of the phase speed of gravity-capillary
waves is determined by the relation cmin = (4gσs/ρw)1/4 (Phillips 1977).

One can consider the following non-dimensional ratio:

Us

cmin
≈ bu∗w

(4gσs/ρw)1/4 = b

21/2

u∗a (ρa/ρw)1/2

(gσs/ρw)1/4 ∼ u∗a
(
gσsρw/ρ2

a

)1/4 = K, (1)

where u∗w is the friction velocity in water, u∗w = (ρa/ρw)1/2 u∗a, and u∗a is the friction
velocity in air, ρw and ρa are the water and air densities, respectively, σs is the surface tension,
and g is the acceleration due to gravity.

We call the non-dimensional number,

K = u∗a
(
gσsρw/ρ2

a

)1/4 , (2)

the Koga number. Soloviev and Lukas (2006) introduced a similar number, but due to a
misprint, it appeared in a dimensional form. Note that the coefficient b does not enter
definition (2).

The K–H instability occurs when

K > Kcr, (3)

implying that the near-surface wind has accelerated past the point of the critical Koga num-
ber. From the laboratory experiments of Koga (1981), an upper estimate of the critical Koga
number is Kcr ≈ 0.26, which corresponds to u∗a =1.24 m s−1 and approximately to a wind
speed U10 ≈ 30 m s−1 at 10-m height. Note that the estimate of Kcr from Eq. 1 with condition
Us/cmin = 1 at b = 16 (following from Wu 1975) results in Kcr ≈ 0.09, which corresponds
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368 A. Soloviev, R. Lukas

to U10 ≈ 10 m s−1. This suggests that sporadic direct disruptions of the air–sea interface
may start at wind speeds as low as 10 m s−1.

Note that a somewhat similar dimensionless parameter R
1/4
u = u∗/ (gσs/ρw)1/4 was

introduced by Emanuel (2003) as a criterion for the lofting of spray by turbulence. Fairall
et al. (2009) implemented this parameter in an advanced sea-spray production function.

In this paper, we derive a formulation of the equivalent bulk air–sea drag coefficient in the
presence of the two-phase environment. For this purpose, we exploit and further develop the
concept of direct disruption of the air–sea interface during very high wind-speed conditions.

In the following, Sect. 2 describes the two-phase transition layer at the air–sea interface
in hurricane conditions. Section 3 introduces a hypothesis of self-regulation and regime of
marginal stability in the two-phase layer at the air–sea interface; based on this hypothesis we
develop a relation for the thickness of the transition layer. Section 3 also provides a discussion
of the effect of sea spray and air bubbles outside the two-phase transition layer. Section 4
develops the law of aerodynamic resistance of the two-phase environment, and Sect. 5 gives
conclusions.

2 Kelvin–Helmholtz Instability of the Air–Sea Interface

The break-up of the air–sea interface in very strong winds leads to the growth of sheets,
fingers, and intense droplet and bubble production (Lozano et al. 2001; Yecko et al. 2002). A
two-phase environment is formed near the air–sea interface as schematically shown in Fig. 2.
The transition layer, once created, is subject to another type of Kelvin–Helmholtz instability
due to shear across it.

The following necessary condition for the K-H instability in the two-layer system follows
from linear theory (see, Cushman-Roisin and Beckers 2009):

g
(
ρ2

w − ρ2
a

)
< kρaρw (Ua − Uw)2 , (4)

where k is the wavenumber of a sinusoidal perturbation (corresponding to wavelength 2π/k).
The non-linear development of the instability is likely to be related to the initial linear insta-
bility (Lefebvre 1989; Lasheras and Hopfinger 2000). The most rapidly growing mode of the
linear K–H instability in a two-layer system is determined from the relationship (Miles and
Howard 1964):

kH ≈ m. (5)

Fig. 2 Self-regulating state of
the air–sea interface layer
(regime of marginal stability)
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Effects of Bubbles and Sea Spray on Air–Sea Exchange 369

where H is the mixing layer thickness formed as a result of the K–H instability, and m ≈ 0.8,
which is consistent with the Cushman-Roisin and Beckers (2009) order of magnitude estimate
m ∼ 1 but requires future validation.

Instability criterion (4) can be expressed as,

Ri∗ < mRicr (6)

where

Ri∗ = g
H (ρw − ρa)

ρ (Uw − Ua)
2 , (7)

ρ = ρaρw

(ρa + ρw) /2
, (8)

where Ricr is the critical value of Ri, ρw and ρa are bulk densities, and Uw and Ua are veloc-
ities for water and air at the lower and upper boundaries of the transition layer, respectively.

Remarkably, Eq. 4 is applicable to the air–sea interface where the density change is
not small, because this equation is not limited by the Boussinesq approximation requiring
small density changes. Note that, under the Boussinesq approximation and linear velocity
and density profiles, Ri defined here via Eqs. 7–8 transforms into the conventional gradient
Richardson number.

For a two-layer system, it follows from Eqs. 4–8 that Ricr = 1/2. However, the theo-
retical analysis by Cushman-Roisin (1994) and Cushman-Roisin and Beckers (2009) for a
three-layer system including a transition layer with linear profiles of velocity and density
resulted in Ricr = 1/4. The difference in Ricr between discontinuous and linear density and
velocity profiles can be explained by the consumption of kinetic energy by vertical motions
for the case of a continuous environment. This is also consistent with the fact that Ricr =
1/2 refers to the onset of the instability, while Ricr = 1/4 corresponds to complete mixing
(Gramer 2007; Cushman-Roisin and Beckers 2009).

It should be noted that the surface tension, which is a determining parameter in the for-
mulation for the Koga number, does not enter Eq. 4. Indeed, after the disruption of the sea
surface and formation of the transition layer, surface tension is no longer a relevant param-
eter because the clearly defined interface does not exist. The surface tension effects are still
important for air bubbles and spray droplets constituting the transition layer (though at the
smaller-size end of their size spectra only).

The maximum thickness of the transition layer can be estimated from Eqs. 7–8 and con-
dition Ri∗ = mRicr as follows:

H = 2mRicr
ρa

ρw

�U2

g
, (9)

where �U is the velocity difference across the transition layer. Here we make use of the
fact that ρw � ρa. In Eq. 9, we have ignored the velocity gradient both below and above
the transition layer. We, however, take into account the velocity profile outside the transition
layer in Sect. 4.
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370 A. Soloviev, R. Lukas

3 Self-Regulating State of the Air–Sea Interface Layer

3.1 Regime of Marginal Stability

The equilibrium thickness H of the transition layer at the air–sea interface schematically
shown in Fig. 2 is determined by the balance between mixing in the transition layer due to
K–H instability and the gravity force acting on the immiscible environment consisting of
bubbles and droplets. Due to mixing, the thickness of the transition layer tends to increase
with time by entraining and fragmenting water and air parcels from outside the transition
layer; however, as soon as it exceeds H, the necessary condition for K–H instability (6) is no
longer satisfied, and the mixing ceases. The gravity force acting on bubbles and droplets tends
to shrink the transition layer and, with time, to reduce its thickness below H, thus restoring
condition (6) leading to the K–H instability and new mixing within the transition layer. This
cycle continuously repeats, maintaining the transition-layer thickness near H.

Turner (1973) defined the self-regulating state as a marginally stable regime of the flow
near the critical value of the gradient Richardson number. Development of a self-regulating
state has been observed under certain environmental conditions (strong stable stratification
and shear) in laboratory and natural flows (Turner 1973; Neuwstadt 1984; Kudryavtsev and
Soloviev 1988). According to Turner’s similarity theory for the stratified turbulent boundary
layer, in the self-regulating state of the flow the local gradients of density ∂zρ and velocity
∂zu depend on acceleration due to gravity (g) and density (�ρ) and velocity (�u) differences
across the boundary layer. From dimensional considerations, under this approximation the
velocity and density profiles can only be linear because the set of determining parameters
does not include any length scale.

The Turner (1973) similarity theory is expected to be applicable to the two-phase transi-
tion layer, and it is notable that this theory does not require the Boussinesq approximation.
Note that in the situation shown in Fig. 2, the distance from the air–sea interface is no longer
a determining parameter, because the interface is no longer defined.

Turner (1973) reported experimental values of the critical Richardson number Ricr

between 0.05 and 0.1 from observations in laboratory and natural flows. Kudryavtsev and
Soloviev (1988) reported Ricr ≈ 0.3 from observations of the marginal stability regime in
the slippery near-surface layer of the ocean arising due to diurnal warming. These numbers,
however, refer to situations with relatively small density differences.

3.2 The Effects of Sea Spray and Air Bubbles Outside the Transition Layer

There are three mechanisms of sea-spray production at the air–sea interface: (1) bursting
of entrained air bubbles, (2) splashing, and (3) tearing water from the wave crest. The first
mechanism creates film and jet droplets, which are relatively small, while the third mecha-
nism is responsible for the production of larger droplets—spume—that fall to the sea surface
and create smaller droplets by splashing. Plunging wave crests also create splash droplets
and air bubbles. The third mechanism dominates the bubble and spray production in hurri-
cane conditions (Koga 1981). Based on his laboratory experiments, Koga (1981) attributed
the third mechanism to the disruption of the air–sea interface due to the K–H instability.
According to our estimates in Sect. 1, sporadic K–H instability events may commence at
U10 ≈ 10 m s−1.

The rate of spray generation rapidly increases with wind speed (Andreas 2004), though
only relatively small spray droplets are entrained by the turbulent air flow. Larger droplets
tend to fall back into the water (into the transition layer in our model) due to relatively large
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Effects of Bubbles and Sea Spray on Air–Sea Exchange 371

Fig. 3 Schematic representation
of the velocity profile in the
atmospheric log layer (H, h10),
two-phase transition layer (0, H ),
wave-stirred near-surface layer
(−Hs, 0), and
turbulence-diffusion layer
(< −Hs)

terminal velocities (Soloviev and Lukas 2006). The largest droplets (spume) therefore elude
detection during the measurements conducted at some distance from the sea surface, which
results in a possible substantial underestimation in the contribution of large droplets in the
known sea-spray generation functions.

Buoyancy effects of the spray outside the relatively thin transition layer on the air–sea
drag coefficient depend on the spray generation rate and size distribution. Estimates provided
in Soloviev and Lukas (2006) suggest that, in the framework of existing sea-spray generation
functions (see e.g., Andreas 2004), the buoyancy effect of the spray outside the transition
layer alone is not sufficient to explain capping of the drag coefficient in hurricane conditions.

Below the transition layer, there is a wave-stirred layer schematically shown in Fig. 3. The
thickness of the wave-stirred layer is of the order of one significant wave height Hs (Terray
et al. 1996; Benilov and Ly 2002; Soloviev and Lukas 2003), which is much larger than the
thickness of the two-phase transition layer H as estimated from (8).

The effect of air-bubble buoyancy on turbulence is not expected to produce any significant
contribution in the average current velocity profile in the wave-stirred layer (Kudryavtsev
et al. 2008). A moderate increase of shear due to the effect of air-bubble buoyancy is possible
in the turbulence-diffusion layer located below the wave-stirred layer. The effect of bubbles
on the average current velocity profile in the turbulence-diffusion layer also appears to be too
small to produce any significant contribution to the air–sea drag coefficient in our model.

4 Resistance Law for the Regime of Marginal Stability

Figure 3 schematically shows the atmospheric logarithmic boundary layer, the transition
layer, the wave stirred layer, and the turbulence diffusion layer. The linear velocity profile in
the transition layer resembles the velocity profile in the viscous sublayer of a turbulent flow
near a smooth wall (see, e.g.,Van Driest 1956). This analogy will be employed here to derive
a formulation of the equivalent bulk air–sea drag coefficient in the two-phase environment
under strong winds.
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372 A. Soloviev, R. Lukas

Near a smooth flat surface, the surface roughness length scale is z0 ≈ 0.11ν/u∗, while
the thickness of the viscous sublayer δν ≈ c̃ν/u∗, where c̃ ≈ 5, 11, or 30 for definitions
using viscous, log-linear match, or a buffer-zone boundary respectively (see, e.g., Tennekes
and Lumley 1972; Hinze 1975). The coefficient c defined as c = z0/δν ≈ 0.11/c̃ is then
approximately equal to 0.022, 0.01, or 0.0037, respectively. We use these estimates of c for
subsequent drag-coefficient estimates.

In application to the air–sea interface in hurricane conditions, the value of the drag coef-
ficient with respect to the bulk of water (wave-stirred layer) is important. We have therefore
introduced in Fig. 3 a coordinate system referenced to the bottom of the two-phase transition
layer. The sea surface is no longer defined but the boundaries of the two-phase transition layer
can be defined, allowing us to use the lower boundary of the two-phase layer as a reference
surface for calculation of the air–sea drag coefficient.

The velocity difference across the aqueous viscous sublayer is critical for triggering the
initial K–H instability (determined by the Koga number), but is nevertheless irrelevant after
the two-phase transition layer becomes established. The inertial current velocity, which can
easily reach 1 m s−1 under hurricane forcing, is still much less than the wind speed. For the
purpose of the estimation of the drag coefficient at the air–sea interface we therefore ignore
any velocity differences in the water below the transition layer.

Interaction of waves with inertial currents can significantly influence the air–sea drag
coefficient and momentum exchange in hurricanes (Fan et al. 2009). However, our model is
aimed at the estimation of the lower limit of the drag coefficient in hurricane conditions due
to a two-phase environment. Merging this parameterization with the wave parameterizations
is the subject of future work.

A system of equations representing the situation shown in Fig. 3 is as follows:

U10 = u∗a

κ
ln

h10 + z0

z0
, (10)

�U = u∗a

κ
ln

H + z0

z0
, (11)

u∗a = C
1/2
10 U10, (12)

H = 2mRicr
ρa

ρw

�U2

g
, (13)

z0 = cH, (14)

where U10 is the wind speed at a nominal 10-m height, h10 is the height of the wind-speed
measurement, which is traditionally taken to be 10 m, C10 is the respective drag coefficient,
z0 is the surface roughness length, c is the dimensionless coefficient connecting the surface
roughness length z0 and the thickness of the transition layer H, g is the acceleration due to
gravity, and κ is the von Karman constant (κ = 0.4).

Equations 10 and 11 follow from the logarithmic wind speed profile in the air above the
transition layer. Equation 12 is the expression of the friction velocity via the air–sea drag
coefficient and wind speed at 10-m level. Equation 13 immediately follows from Eq. 9 and the
logarithmic profile of wind speed above the transition layer. Equation 14 defines the surface
roughness length as a portion of the transition-layer thickness. Based on the above-mentioned
analogy of the vertical velocity profile shown in Fig. 3 with that in the logarithmic boundary
layer and viscous sublayer near a wall, we assume that c is between 0.022 and 0.0037. Note
that the origin of the coordinate system is taken here as the base of the transition layer, since
practical applications require estimation of drag coefficient with respect to the bulk water.
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Fig. 4 Comparison of the available field and laboratory data on the air–sea drag coefficient with the tradi-
tional (COARE 3.0) and “marginal stability” parameterizations. COARE stands for the Tropical Ocean Global
Atmosphere Coupled Ocean-Atmosphere Response Experiment (Webster and Lukas 1992); CBLAST, for the
Coupled Boundary Layers Air–Sea Transfer Defense Research Initiative (Black et al. 2007)

The system of Eqs. 10–14 can be reduced to a single transcendental equation for C10,

C10 = κ2/ ln2

{

1 + h10

/(

2mRicrc
ρa

ρw

U2
10

g

C10

κ2 ln2
(

1 + 1

c

))}

(15)

which can be solved numerically, giving C10 as a function of the wind speed, U10. The solu-
tion is shown in Fig. 4 as the ‘marginal stability regime’ curve for two values of Ricr. This
solution represents the regime of marginal stability in the two-phase transition layer at the
air–sea interface. The dotted portions of the two curves for U10 < 30 m s−1 correspond to
sporadic instability events, when the two-phase coverage is incomplete.

Analysis of Eq. 15 shows that Ricr and c enter as a product Ricrc ln2
(
1 + c−1

)
. In Fig. 4,

the marginal stability parameterization derived from solving Eq. 14 is shown for m = 0.8
and two extreme values of the critical Richardson number, Ricr = 0.3 and Ricr = 0.05,

which have previously been reported from observations of the marginal stability regime in
different fluid mechanical problems (see Sect. 3.1). Using the corresponding maximum and
minimum values of c = 0.022 and c = 0.0037 ensures that the full range of variability due
to the sensitivity of C10 on Ricr and c is enclosed between the two curves. The thickness of
the two-phase transition layer H calculated from Eqs. 10–14 is relatively small: for �U from
30 to 85 m s−1, it ranges from approximately 1 mm to 0.1 m at Ricr = 1/4 and m = 0.8.

According to Fig. 4, transition to the regime of marginal stability implies a significant
decrease in the drag coefficient at approximately 30 m s−1 wind speed with its relatively
slow subsequent increase at higher wind speeds. The two-phase transition layer takes part of
its momentum from the wind, which results in a slow increase of the drag coefficient with
wind speed. A similar effect was anticipated by Andreas (2004) though based on a different
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374 A. Soloviev, R. Lukas

(heuristic) model involving sea spray outside the transition layer. Most of the observational
data presented in Fig. 4 (Powell et al. 2003; Donelan et al. 2004; Powell 2007; Black et al.
2007) are concentrated between the COARE 3.0 (Fairall et al. 2003) and marginal stability
(this work) parameterizations.

Note that conditions (3) and (6) together can lead to hysteresis. In principle, condition (6)
can be satisfied even below the wind speed corresponding to the critical value of the Koga
number according to (3). This means that the response of the air–sea interface to external
forcing depends not only on the present wind speed but also on the previous history of the
system. Expressed mathematically, the response to the external forcing is a doubled-valued
function; one value applies when the wind speed is increasing, the other applies when the
wind speed is decreasing.

Thus, the presence of hysteresis may extend the spume generation in the regime of marginal
stability below the 30 m s−1 wind-speed threshold. Moreover, such hysteresis in combination
with wind gustiness can explain the patchiness of the areas of spume generation under these
wind-speed conditions.

Air-flow separation reduces the wave-induced stress, but not without adding stress due to
separation and breaking (see e.g. Kudryavtsev and Makin 2001, 2007; Makin and Kudryavtsev
2002; Kukulka et al. 2007; Kukulka and Hara 2008; Mueller and Veron 2009). Furthermore,
the state of the sea surface in hurricane conditions varies in azimuth and distance from the
hurricane centre because of the variation in swell characteristics relative to the wind direc-
tion (Powell 2007). The relative contribution of the wave and two-phase layer mechanisms to
the drag coefficient is also expected to vary. Development of a parameterization taking into
account the impact of both mechanisms is a future task, which is important for the realistic
representation of the air–sea interface in hurricane models.

5 Conclusions

In our model, the direct disruption of the air–sea interface at very high wind speeds results
in detachment of the air flow from the wave crests and reduction of the drag coefficient.
In our previous work (Soloviev and Lukas 2006), we introduced the Koga number as the
criterion for this type of instability at the air–sea interface. The Koga number characterizes
the ratio between the velocity difference across the aqueous viscous sublayer and the min-
imum phase speed of gravity capillary waves, which takes into account surface tension and
gravity forces that work to prevent the air–sea interface from disruption. The upper estimate
of the critical value of the Koga number, based on the Koga (1981) laboratory experiment,
occurs at a wind speed of approximately 30 m s−1, which correlates with a Category 1
hurricane. The estimate using the Wu (1975) relation for the surface wind drift results in
a critical Koga number corresponding to a wind speed as low as 10 m s−1. Within the
wind-speed range from 10 to 30 m s−1 the K–H instability is sporadic; spume generation is
not sufficient to cover the sea surface completely and to maintain a continuous two-phase
environment. In the two-phase transition layer formed after the disruption of the air–sea inter-
face, a second type of K–H instability provides the mechanism for maintaining the regime
of marginal stability in the transition layer. The K–H instability in the transition layer no
longer directly depends on the surface tension and is determined by the shear and buoyancy
forces.

Since the initial K–H instability and subsequent K–H instability in the transition layer are
driven by different physical factors, hysteresis is possible in this system. The hysteresis in
combination with gustiness may result in a statistical widening of the wind-speed range in
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which the regime of marginal stability can be observed. The main effect of the two-phase
environment on the air–sea drag coefficient is associated with a relatively thin transition layer.
Consideration of the regime of marginal stability in the transition layer results in a new type
of parameterization for the lower limit on the air–sea drag coefficient in hurricane conditions.
This parameterization implies a significant decrease in the drag coefficient at wind speeds of
≈ 30 m s−1 with its relatively slow subsequent increase at higher wind speeds. The observa-
tional data on the drag coefficient lie between traditional parameterizations and the marginal
stability parameterization developed herein.

Development of a parameterization taking into account the impact of the air-flow separa-
tion from waves and the two-phase transition layer is an important future task for the realistic
representation of the air–sea interface in hurricane models.
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