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Abstract 
 

A primary goal of climate change research is to determine if species will be able 

to persist in a warmer environment. Most studies predict climate change will cause many 

species to become extinct. However, these predictions are based on experiments where 

only a single life stage or generation of a species was exposed to predicted future 

conditions (i.e. shock treatments), and thus overlook the possibility of species adapting or 

acclimatizing to new environmental conditions over multiple generations. As a result, 

current projections of species persistence through climate change are likely to 

overestimate species extinction. In this study, the rate and extent to which adaptation and 

transgenerational acclimation may allow species to persist through climate change was 

measured. Marine rotifers, Brachionus plicatilis, were reared for ~75 generations at: i) 

Optimal temperature (25°C), ii) Optimal temperature (25°C) with weekly sub-lethal 

shocks (35°C), iii) Maximum temperature (33°C), and iv) Maximum temperature (33°C) 

with weekly sub-lethal shocks (35°C). Changes in population growth rates and fitness 

were assessed weekly through rotifer density, adult size and aerobic performance 

(respiration rate). There was no adaptation observed, but there was evidence of 

transgenerational acclimation. However, populations were unable to acclimate when 

exposed to high temperature shocks. This study shows that acclimation through the 

selection of thermally tolerant individuals can occur over multiple generations in a 

thermally stable environment, as seen by a reversible increase in aerobic performance, 

and thus species with short life cycles may be better able to keep up with the pace of 

climate change. This multi-generational study can enhance our understanding of the rate 

and extent in which transgenerational acclimation may allow species to persist through 

climate change. These estimates can then be incorporated into models to improve 

projections of survival through climate change of species with longer lifespans. 

 

Keywords: Rotifer, acclimation, adaptation, transgenerational, reproduction, population, 

respiration 
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1. Introduction 

 

1.1 Increasing Sea Surface Temperatures 

 

 Rising carbon dioxide levels in the atmosphere have caused an increase in global 

temperatures since the industrial revolution (IPCC 2014). With no reduction of 

greenhouse gas emissions (particularly carbon dioxide, CO2) in sight, temperatures are 

expected to be 0.3°C to 0.7°C higher than present by 2035, and 3°C to 8°C warmer by the 

end of the century (IPCC 2014). Sea surface temperatures are also predicted to rise within 

this century (Friedlingstein et al. 2006). Since 1971, the upper 75 m of the ocean has 

warmed by an average of 0.11°C per decade (IPCC 2014). Temperatures down to 3,000m 

have also increased 0.037°C between 1961 and 2003 (Solomon 2007). These data do not 

only undeniably show that the Earth’s surface and its oceans are warming, but that this 

trend of increasing temperatures has no evidence of decelerating.  

 

1.2 Effect of Increased Temperature on Species Persistence 

 

Changing environmental conditions are projected to lead to the extinction of a 

great number of species (Thomas et al. 2004, Dawson et al. 2011, Bellard et al. 2012). 

High temperatures directly reduce the survival, growth and reproduction of plants and 

animals (Thomas et al. 2004, O'Connor et al. 2007). For example, a study conducted in 

Texas projects that climate change would lead to the loss of suitable habitats for a 

number of species of rodents, ultimately leading to their extinction (Cameron 2001). 

Montane Australian Queensland forests are predicted to have a 7-13% and 43-58% 

extinction risk due to climate change (for positive and business as usual climate 

scenarios, respectively) (Thomas et al. 2004). Elevated temperatures also cause an 

increase in the frequency and intensity of severe storms, as well as the melting of sea ice 

platforms and sea level rise, which results in the loss of suitable feeding, resting and 

breeding habitats for many animals (Burek et al. 2008). A rise in ocean temperature is 

predicted to have negative impacts on marine species’ abilities to persist in future 

environmental conditions (Johansen and Jones 2011, Donelson and Munday 2012). 
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However, most projections of species persistence through climate change are based on 

the results of short-term experiments and/or models, which assume that species response 

to environmental stress will remain unchanged. 

 Current projections of species persistence through climate change use baseline 

experimental studies that test the effect of the future environmental conditions on a single 

life stage or generation of a species (Munday et al. 2013). Short-term experiments 

overlook evolutionary processes that could lead to a higher tolerance for the future 

climate, such as acclimatization and adaptation. Adaptation differs from acclimatization 

in that it is a genetic change that helps an organism survive and reproduce better in its 

environment, and therefore tends to be passed down from one generation to the next (i.e. 

naturally selected). Acclimatization is a process in which an individual organism adjusts 

to a gradual change in its environment through gene expression, allowing it to maintain 

performance across a range of environmental conditions, without genetic change 

(Kinnison et al. 2007, Munday et al. 2013, Sunday et al. 2014). Furthermore, animals are 

often exposed to environmental conditions predicted for the end of the century, which are 

outside of their current environmental temperature range, and therefore only reflect shock 

responses to stress. As a result, these experimental designs and resulting current model 

projections of species persistence through climate change are likely to overestimate 

species extinction. Multi-generational studies are needed to determine the extent of the 

impacts of global climate change on species persistence (Sunday et al. 2014). To 

accurately assess an organisms’ ability to cope, they should be exposed to stressors 

incrementally rather than exclusively with “shock” treatments. The rate and extent in 

which acclimatization and adaptation (individually or in combination) may contribute to 

species persistence under climate change remains unknown. 

 

1.3 Adaptation and Acclimation 

 

To accurately predict future species abundance and distribution, it is imperative to 

understand how species respond to climate change and the mechanisms that may underlie 

such responses. Adaptation, a process that involves genetic change within a population or 

species, has been shown to contribute to the survival of a species under new 
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environmental conditions. If some individuals within a population survive exposure to a 

new environmental condition, it can be concluded that there is enough variation within 

the population for natural selection, and therefore adaptation, to occur (Lohbeck et al. 

2012). In other words, individuals that have a higher tolerance to higher temperatures are 

more likely to survive and reproduce in an environment with increasing temperatures. As 

the genes of these individuals are passed on to their offspring, a greater proportion of 

individuals in the new generation will also be better able to cope with the increasing 

temperatures (Munday et al. 2013). Mutations that confer higher resistance to the new 

environmental conditions can also accumulate over multiple generations. Individuals 

possessing favorable mutations will likely be positively selected, i.e. exhibit 

disproportionally higher survival and reproduction, and the overall population should 

become better adapted (Munday et al. 2013). For example, a study on the wild rabbit, 

Oryctolagus cuniculus, showed a genetic difference in body core shape and ear and foot 

size among regional populations when reared under different temperatures (Williams and 

Moore 1989). In another study performed to assess the response of coccolithophores to 

increasing CO2 levels through 500 generations, a direct positive adaptation via genotypic 

selection enhanced calcification by 50% relative to a non-adapted culture (Lohbeck at el. 

2012). However, adaptation is a slow process which requires multiple generations, 

leading some researchers to suggest that the rate of climate change will outpace the rate 

of adaptation (Lynch and Lande 1993).  

Natural populations can also enhance their chances of survival in a new 

environment through acclimation (here meaning both natural acclimatization and 

laboratory-based acclimation), which does not require genetic change, but rather the 

expression (up-regulation or down-regulation) of already existing genes caused by new 

environmental conditions (Sunday et al. 2014). There are three types of acclimation: 

reversible, developmental and transgenerational. Reversible acclimation can occur over 

very short periods of time within a life stage, e.g. seasonal physiological or behavioral 

adjustment, as opposed to developmental acclimation, which occurs when exposure to a 

novel environment during ontogeny (embryonic and/or larval development) enhances 

performance in that environment later in life. For example, the juvenile and adults of the 

spiny chromis damselfish, Acanthochromis polyacanthus, which have been exposed to 
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higher temperatures during early ontogeny, are better able to cope with higher 

temperatures than individuals reared through ontogeny at current conditions (Donelson et 

al. 2011). In particular, transgenerational acclimation consists of developing a phenotype 

(physiological, morphological, or behavioral) that is better suited to the environment to 

which the previous generations were exposed (Marshal 2008, Donelson et al. 2012, 

Miller et al. 2012). To maximize the chances of survival of the next generation, parents 

can include certain proteins in the eggs that can shutoff/deactivate certain parts of the 

DNA, and turn on/activate other parts (Rossiter 1996). Examples of transgenerational 

acclimation range from plants to humans. For example, the increase in atmospheric CO2 

levels since the Industrial Revolution has altered the density of the stomata (minute 

openings on the leaves of plants through which CO2 enters and water leaves the plant) in 

some deciduous trees; experimental results indicate that this response is reversible and 

thus a result of phenotypic plasticity (Wagner et al. 1996). Transgenerational acclimation 

has also been recorded in juvenile damselfish whose parents were exposed to high 

temperatures and were able to compensate for the negative effects of elevated seawater 

temperature on metabolic rate and aerobic scope (Donelson et al. 2014). Identifying and 

understanding the capacity for acclimation will aid in the prediction of species 

persistence in response to global climate change.  

To determine the rate and extent in which transgenerational acclimation and 

adaptation will facilitate species persistence, the two mechanisms need to be studied 

separately and concurrently (Munday et al. 2013). Adaptation is expected to eventually 

confer a greater resistance to the new environmental conditions, although it occurs 

slowly. In contrast, acclimation can quickly help species survive smaller environmental 

changes. It remains unclear if acclimation will hinder or help species to adapt to future 

environmental conditions. Interpretation of results in studies on multiple generations 

often assume that the changes in populations’ fitness are solely due to genetic adaptation, 

and ignore the chance for transgenerational acclimation (Sunday et al. 2014). 

Acclimation may allow populations to cope with initial environmental changes and thus 

“buy time” for adaptation to eventually occur. In other words, the process of acclimation 

may provide time for heat-resistant individuals to be selected (survive and reproduce 

better over multiple generations) (Chevin et al. 2010). However, acclimation may also 
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impede adaptation. Acclimated individuals may survive regardless of having good or 

mal-adapted genes, meaning that genes conferring higher survival (or fitness) will not be 

preferentially transferred to the subsequent generations.  

To fully understand the impacts of global climate change on Earth’s organisms, it 

is imperative to determine the potential for acclimation and/or adaptation to elevated 

temperature in a variety of species (Logan et al. 2014). Efforts to determine the effects of 

climate change need to concentrate on key functional groups (Sunday et al. 2014), such 

as organisms at lower trophic levels. Changes in abundance, distribution and composition 

of organisms that occupy the lower trophic levels will inevitably impact upper trophic 

levels (Sunday 2014). It has been theorized that any significant change in plankton 

biomass will ultimately ascend up the food chain, ultimately leading to worldwide 

extinctions (Lynch and Land 1993). To better estimate persistence in a less extensive 

time period, species from a key functional group with a relatively short life cycle should 

be used as model organisms.   

 

2. Objectives 

 

The overall aim of this study was to increase our understanding of what role 

adaptation and acclimation have in allowing species to persist through climate change. 

Specifically, I used a species that occupies the lower trophic level of the food web, the 

marine rotifer Brachionus plicatilis, as a model organism to:  

 

(1) Quantitatively assess the rate and extent of the contribution of 

transgenerational acclimation to the size, growth and fitness (aerobic 

performance) of a population at elevated temperatures; 

(2) Determine the rate and extent of the contribution of adaptation to the size, 

growth and fitness (aerobic performance) of a population at elevated 

temperatures; 

(3) Evaluate the interaction between acclimation and adaptation processes in 

conferring enhanced size, growth and fitness to a population at elevated 

temperatures. 
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3. Methods 

 

3.1 Species Description 

 

Rotifers of the species Brachionus plicatilis are microscopic aquatic animals 

(Figure 1) found in a variety of saltwater environments and play an important role in the 

distribution of energy and dynamics of the ocean food web (Wallace and Smith 2013). 

They are primarily omnivorous and their lifespan is estimated to be between 4 and 7 

days, generally reaching adulthood between 0.5-1.5 days (Lavens and Sorgeloos 1996). 

Adult females usually lay eggs every four hours and can produce either mictic or amictic 

eggs, depending on environmental conditions (Figure 2). Amictic eggs do not need to be 

fertilized and develop into females. Mictic eggs will develop into males if left 

unfertilized, or females if fertilized by the mictic male (Lavens and Sorgeloos 1996).  

 

 

Figure 1 (above): Female B. 

plicatilis. Female on top is 

carrying an egg. 

 

Figure 2 (right): Lifecycle of 

marine rotifer, B. plicatilis, 

depicting sexual and asexual 

reproduction (adapted from 

Hoff and Snell, 1987).  
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 This species was selected for three main reasons, the first of which is their 

ecological relevance. Marine rotifers are planktonic animals at the base of the marine 

food web (Wallace and Smith 2013), i.e. constitute the food for marine larvae, small 

invertebrates and smaller fish, which are in turn consumed by larger organisms. Changes 

in abundance, distribution and composition of planktonic organisms will ultimately affect 

organisms at higher trophic levels, potentially leading to the collapse of food webs and 

worldwide extinctions (Lynch and Land 1993). A better understanding of this key 

functional group's ability to cope with climate change is essential to model the ability of 

marine ecosystems to persist in projected future conditions. Secondly, marine rotifers 

have a well-established culture methodology.  They have been cultured in captivity for 

more than fifty years to be used as feed for larval fish in aquaculture farms. The optimal 

conditions to raise them in captivity have been extensively described (Hoff and Snell 

1987, Arnold and Holt 1991). And lastly, because marine rotifers have a relatively short 

lifespan (less than a week, Arnold and Holt 1991), this allows for studying multiple 

generations in a laboratory setting under controlled environmental conditions. 

 

 3.2 Population Development and Culture Maintenance 

 

 The original culture batch of B. plicatilis was purchased through Pentair Aquatic 

Eco-systems®. Upon arrival, the batch was transferred to a 10L plastic cylindrical tank 

kept at 25°C (ambient) under a 16h light: 8h dark light cycle with constant moderate 

aeration (to prevent anoxic conditions and allow equal mixing of rotifers and food). The 

rotifers were fed daily with a commercial algae paste of Instant Algae® 

(Nannochloropsis sp.). Food quantities were based on population densities (which were 

assessed every day). The population remained in these conditions until the start of the 16-

week experiment. To avoid water quality issues, each tank received a 50% water change 

three times a week, and a 100% water change once a week. All water changes were 

performed after all measurements (see below) had been completed. During water 

changes, the rotifer cultures were filtered through a 56 μm sieve, which allowed (broken 

down) dead rotifers, detritus and all other small organic matter to filter out while the 
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larger rotifers of all ages/sizes remained in the sieve. The tanks were cleaned and the 

rotifers were returned to their tanks with adequately cleaned and heated seawater, and 

subsequently fed. Rearing rotifers at high concentrations have direct repercussions for 

reproduction, and a concentration at or above 500 rotifers/mL is considered high density. 

It was determine that keeping the population density between 200-300 rotifers/mL would 

allow for best growing conditions. For the temperature tolerance experiments (section 

3.3), rotifer populations were reared at a starting population density of 300 rotifers/mL. 

However, because of the larger size of the tanks used for the 16-week experiment 

(section 3.4) and the exponential population growth rate of the rotifers, it was determined 

that the best starting population density for the 16-week experiment was 200 rotifers/mL. 

The population density for the 16-week experiment was checked before every 100% 

water change (section 3.5.1). If the population density was found to be above 200 

rotifers/mL, then excess individuals were removed before beginning the water change to 

bring the culture back to 200 rotifers/mL. If the population density was at or below 200 

rotifers/mL, then the culture population was left alone and the water change continued 

per usual. These conditions remained the same throughout the entirety of the experiment. 

 

3.3 Temperature Tolerance  

 

 Prior to conducting the experiments to assess the rate and extent to which rotifer 

B. plicatilis can acclimate and/or adapt to ocean warming, two preliminary experiments 

were conducted. One experiment was performed in order to identify the optimal 

temperature (Topt, temperature at which the population growth rate is the highest) and the 

maximum survivable temperature (Tmax, temperature higher than the optimal in which 

population density is similar to the initial density, i.e. a temperature in which populations 

survive but do not increase). Using this information, a second experiment was performed 

to determine the shock temperature (Tshock, temperature at which 50% of the population 

dies within 24 hours). 
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 3.3.1 Optimal and Maximum Temperature 

 

 Twenty-four 400mL batches of rotifers, at an average density of 300 rotifers/mL, 

were removed from the initial culture and randomly assigned to a water bath at one of the 

following temperature treatments: 25, 27, 29, 31, 33, 35, 37 and 39°C (three replicates 

per temperature. Mass culture of marine rotifers are maintained best at temperatures 

between 20-30°C, with optimal growth between 18-25°C (Hirayama and Kusano 1972, 

Hoff and Snell, 1987). Therefore, these experimental temperatures range from 

temperatures at which rotifers are best maintained, to temperatures above this optimal 

range. The culture density within each replicate was measured (section 3.5.1) every day 

for a total of 14 days (ca. ~10 generations). The water was moderately aerated and the 

cultures were fed every day. After 14 days, population growth rate was calculated using 

the population density at the beginning and end of the trial for each temperature and these 

data were then used to determine the temperatures for TOpt and TMax. 

 

 

 3.3.2 Shock Temperature 

 

 Sixteen 400mL batches of rotifers, at an average density of 300 rotifers/mL, were 

removed from the initial culture and randomly assigned to a water bath at one of the 

following temperature treatments: 35, 36, 37 and 38°C (two replicates per temperature). 

Based on the results in the previous experiment (see Results), this temperature range was 

chosen to determine which temperature would kill 50% of the initial population in 24 

hours, i.e. what temperature (Tshock) would lead to a population growth rate of -0.5/day. 

This 24h trial was repeated three times (three separate runs). After each 24h period, total 

populations were counted for all treatments. All population totals were compared and 

analyzed to determine the TShock.  
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3.4 Experimental Design  

 

To assess the rate and extent at which rotifers can acclimate and/or adapt to ocean 

warming, the rotifers were reared for 16 weeks (approximately 75 generations) under 

four temperature treatments (Figure 3). In the first treatment (Optimal), rotifers were kept 

at 25°C (Topt), and this represented the control. This temperature was determined during 

the preliminary experiment to give the highest population growth rate and therefore 

serves as the ambient (optimal) temperature. In the second treatment (Max), rotifers were 

kept at 33°C (Tmax). This temperature was found in the preliminary experiment to be the 

maximum temperature within their natural thermal tolerance range and guarantees that 

the population is not shocked (i.e. individuals with heat-sensitive genes are not excluded 

from the population). Additionally, this temperature has the potential to alter gene 

expression over multiple generations to produce heat-resistant individuals through 

transgenerational acclimation. In the third treatment (Optimal+Shock), rotifers were kept 

at Topt (25°C) temperature with weekly 24-hour shocks at 37°C (Tshock). The temperature 

shocks were determined from preliminary experiments and intended to eliminate 

individuals from the population whose genes are less adapted to higher temperatures. In 

other words, individuals with warm-resistant genes have the potential to become more 

prevalent in subsequent generations through adaptation. In the fourth treatment 

(Max+Shock), rotifers were kept at Tmax (33°C) with weekly 24-hour shocks at 37°C 

(Tshock). This purpose of this treatment was to assess the interaction between the process 

of transgenerational acclimation and adaptation.  
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   Figure 3: Schematic of all four treatments displaying their corresponding temperatures. 

 

Each treatment had four replicates. Sixteen 10L tanks, with a stocking density of 

200 rotifers/mL, were assigned to one of the four temperature treatments and each tank’s 

location was randomly placed so that the replicates of each treatment were never in the 

same row or column (Figure 4). Each tank was supplied with constant, moderate aeration 

(to prevent anoxic conditions and allow equal mixing of rotifers and food) and a light 

cycle of 16h light: 8h dark. The tanks were heated with a 250watt titanium heater (one 

per tank) regulated by an Aqua Logic® 115V temperature controller (one per heater). 

Tanks were cleaned and fed as described previously. In the treatments for Max and 

Max+Shock, rotifers were acclimated to their treatment temperature at a rate of 1°C per 

day, until reaching their respective temperature of 33°C (Tmax). The remaining tanks 

(Optimal and Optimal+Shock) stayed at 25°C (Topt). For the two treatments requiring 

weekly shocks (Optimal+Shock and Max+Shock), once a week (on the same day every 

week) the temperature was increased to 37°C (Tshock) instantly by resetting the heater, and 

remained at that temperature for 24 hours, after which the heater was returned to the 

original temperature prior to the shock. The weekly 100% water change occurred on the 

day after the weekly shock treatment. To differentiate between acclimation from 

	

Treatment 1 (Optimal) 

Tshock 

Tmax 

Topt 

Treatment 2 (Max) 

Treatment 3 (Optimal+Shock) 

Tshock 

Tmax 

Topt 

0          7            14            21           28           35 

Time (days) 

T
e
m

p
er

a
tu

r
e
 

Treatment 4 (Max+Shock) 

0          7            14            21           28           35 
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adaptation, at the conclusion of the 16-week experiment, Max and Max+Shock were 

returned to Topt, so that all treatments were at 25°C, and remained at that temperature for 

four more weeks. During the 16-week experiment and the four weeks at which all 

populations were at Topt, measurements were taken weekly. 

 

 

 

 

 

3

3.5 Measurements 

 

The culture density (population growth rate) and adult size (area of rotifer, mm2) in 

each replicate of each treatment were measured over time. Once a week, rotifers were 

randomly selected from each replicate of each treatment to measure aerobic performance 

as a representation of overall fitness. All measurements were recorded over 16 weeks. At 

the conclusion of the four weeks at Topt (after the 16-week experiment), culture density, 

adult size and aerobic performance were also assessed for each treatment. 

Figure 4: Experimental schematic showing the placement each treatment. Blue represents the treatments 

that were kept at Topt (Optimal and Optimal+Shock). Red represents the treatments that were kept at Tmax 

(Max and Max+Shock). The circles filled with yellow are the treatments at either Topt or Tmax that were 

shocked weekly (Optimal+Shock and Max+Shock) for 24 hours at 37°C (Tshock). 
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 3.5.1 Population Growth Rate  

 

To estimate population growth rate, the culture density of each treatment was 

measured by removing 1mL samples from each replicate of each treatment and placing 

them on a Sedgewick-Rafter slide (1mL). Each 1mL sample was fixed with iodine and 

the number of rotifers were counted under a compound microscope. The total population 

of rotifers for each replicate of each treatment was determined by multiplying the culture 

density (number of rotifers/mL) by the volume of the culture (10L). The population 

growth rate was then estimated using the following equation: 

 

μ =
(𝑁𝑡 − 𝑁0)

𝑁0
 𝑥 100 

Where μ is the population growth rate, N0 is the initial density, and Nt is the final density 

at day (t) of culture period.  

 

 3.5.2 Adult Size 

 

 To determine changes in adult size between treatments at the conclusion of the 

16-week experiment and after four weeks at Topt, a minimum of 50 individuals per 

treatment were fixed in a solution of iodine and measured. Pictures of each individual 

were taken with an Olympus LC20 digital camera attached to an Olympus SZ61 

dissecting microscope (4.5x magnification) and CellSens was used to measure surface 

area (mm2).  

 

3.5.3 Aerobic performance 

  

 To evaluate aerobic performance, one 800 mL sample was removed from each 

replicate of each treatment and placed in a water bath at the respective treatment 

temperature. Each 800 mL sample was moderately aerated to create a homogenous 

sample and to saturate the samples with oxygen. From each 800 mL sample, nine 1 mL 
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samples were removed and each placed into a Wheaton vial. Eight of the vials were 

topped off with salt water (heated to the same temperature as the respective treatment and 

saturated with oxygen) and sealed with ParafilmTM. The remaining vial was fixed with 

iodine and the number of rotifers in that vial were counted (see below) in order to 

calculate respiration rate. Vials from each replicate of each treatment were randomly 

assigned to a water bath at one of the following temperatures:  25, 27, 29, 31, 33, 35, 37 

and 39°C (4 vials per temperature, one vial for each replicate). An oxygen sensor spot 

(SP-PSt3-NAU, Presens) was glued on the inside wall of each vial prior to measuring 

oxygen concentration. Each vial was given 30 minutes to acclimate to the temperature 

before any measurements were taken. A non-invasive polymer optical cable (POF, 

Presens) was then used to scan the oxygen sensor spot at 30 minutes and then again at 60 

minutes. At each measurement, vials were removed from the water bath and gently 

inverted to ensure equal mixing. The O2 saturation (%O2) was measured at the water bath 

temperature using the POF (Presens) which transfers a light from the cable to the sensor 

spot, back to the Fibox 4® meter (Presens). The number of rotifers in each vial was 

determined by placing the contents of the fixed vial on a Sedgewick-Rafter slide (1mL) 

and counting the number of rotifers under a dissecting microscope. Respiration rate was 

then calculated by taking the oxygen consumed (given in %O2) between minute 30 and 

minute 60 and dividing this number by the number of rotifers in the vial for each 

treatment to get the oxygen consumed per rotifer in 30 minutes. This number was then 

divided by time to get oxygen consumed per rotifer per minute. The formation of an 

anoxic environment in the vials placed in the water baths was prevented by B. plicatilis’ 

natural tendency to swim continuously within the water column and rarely attach or 

settle, thus creating their own mixing within the vial and eliminating the need for a stir 

bar or any other similar mechanism. In order to determine rate of oxygen consumption by 

the oxygen probe, measurements of vials containing only salt water in each temperature 

were also made in order to determine rate of oxygen consumption by the oxygen probe. 

These measurements were then adjusted accordingly for each respiration trial in order to 

compensate for loss of oxygen by the probe or diffusion of oxygen into the vial. For each 

treatment, the respiration rate (% O2.rotifer-1.min-1) was considered to be the aerobic 

performance of the population for that treatment at that temperature. It is important to 
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note that oxygen consumption (respiration rate) is inversely related to aerobic 

performance in that an increase in oxygen consumption translates to a decrease in aerobic 

performance (fitness). Measurements were performed weekly, however, when the 

concentration of each vial reached below 100 rotifers/mL, the error was too high to 

properly assess aerobic performance. Therefore, only measurements from week 1, week 

16 and week 20 were used. 

 

3.6 Data Analysis 

 

The software R was used to conduct all analysis. 

 

 3.6.1 Optimal and Max Temperature 

 

 A one-way ANOVA was used to compare population growth rates between 

temperatures followed by a post-hoc multiple comparisons test (Tukey) to determine 

differences between the treatments. Those results were then aligned with a graphical 

representation to determine Topt. In order to establish Tmax, a one sample T-test was used 

to determine which temperature had a population growth rate closest to 0.0/day. 

 

3.6.2 Shock Temperature 

 

A one-way ANOVA was used to compare population growth rates between 

temperatures after 24h of exposure. A post-hoc multiple comparisons test (Tukey) was 

then used to determine differences between the temperatures. In order to determine Tshock, 

a one sample T-test was used to determine which temperature had a population growth 

rate closest -0.5/day. 

 

3.6.3 Population Growth Rate 

 

 A two-way repeated measures ANOVA was used to compare population growth 

rates between treatments over time. There was a significant effect of time and treatment, 
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so a one-way ANOVA was used to analyze how each treatment changed over time and 

also to analyze how treatments differed in each week. A one-way ANOVA was used to 

compare population growth rate between treatments after four weeks of Topt.  

 

 3.6.4 Rotifer Size 

  

 A one-way ANOVA was used to compare rotifer size post 16 weeks between 

treatments and also to compare size after four weeks of Topt.  

  

 3.6.5 Aerobic Performance 

 

 To evaluate aerobic performance, the respiration rate in each treatment was 

compared at each temperature (25, 27, 29, 31, 33, 35, 37, 39°C) for week 1 and week 16 

using a factorial ANOVA. One-way ANOVA was performed for each treatment and each 

week to determine which factor was significant at each temperature. A one-way ANOVA 

was then used to compare each treatment after four weeks of Topt. 

 

4. Results 

 

4.1 Optimal and Max Temperature 

 

There was a significant difference in population growth rate between temperatures 

(p=0.0006302). The optimal temperature (Topt), i.e. temperature at which the population 

growth rate significantly increased the most, was 25°C (Figure 5). The temperature at 

which populations survived but did not increase significantly in population growth rate 

(Tmax) was 33°C (Figure 5). Population growth rates between 31°C and 33°C were 

similar, but because the temperature controllers vary by ±1°C, setting the temperature at 

31°C puts the treatment at risk for fluctuating too close to a significantly better 

temperature in terms of population growth rate. Therefore 25°C (Topt) was the 

temperature used for Optimal and Optimal+Shock treatments, and 33°C (Tmax) was the 

temperature used for Max and Max+Shock treatments.  
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Figure 5: Population growth rate after 14 days of rearing populations at 25, 27, 29, 31, 33, 35, 37, 39°C. 

 

4.2 Shock Temperature 

 

The previous preliminary experiment established that 33°C was the maximum 

temperature (Tmax) at which populations survived but did not increase. Since a 

temperature of 39°C would eventually kill the entire population, the temperature range of 

35-38°C was used to determine Tshock. Population growth rate significantly decreased 

with increasing temperature (p=0.04321). The population growth rate reached -0.5/day 

(where population was reduced by 50%) between 36-38°C (Figure 6). The mean 

population growth rate was not significantly different between 36°C and 37°C (Figure 6).  

The heaters fluctuate by ±1°C, so any population shocked at 38°C or higher could 

potentially have experienced 39°C and more than 50% of the population would be killed. 

Conversely, shocking a population at a temperature of 36°C means the heater could 

fluctuate to 35°C and would have the potential to not kill enough of the population in one 

day. Therefore, TShock was determined to be 37°C and was used as the weekly shock 

temperature for the populations reared in Optimal+Shock and Max+Shock treatments. 
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Figure 6: Population growth rates after 24h shock at 35, 36, 37, and 38°C. 

 

4.3 Population Growth Rate 

 

The population growth rate of the rotifers significantly differed between 

treatments (p=0.0132) and between weeks (p=7.145x10-05). The population growth rate 

of rotifers in Optimal did not significantly change throughout the 16 weeks (p=0.3792). 

The population growth rate significantly changed over time within Optimal+Shock, Max, 

and Max+Shock treatments (p=0.004452, 0.002528, 0.000145, respectively). The rotifers 

in Optimal+Shock displayed an increased population growth rate from week 1 to week 2, 

then decreased into week 3, followed by an increase into week 8 and no change in 

population growth rate from week 8 to week 16 (Figure 7). The population growth rate 

for the rotifers in Max increased from week 1 to week 2, and remained the same through 

week 16. The rotifers in Max+Shock had an increase in population growth rate from 

week 1 to week 2, followed by a decrease to week 3 and then an increase through week 

16 (Figure 7). Weeks 2, 3, and 8 had significantly similar population growth rates among 

treatments (p=0.275, 0.08056, 0.316, respectively). There were significantly different 
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population growth rates between treatments at week 1 and week 4 (p=0.002738 and 

0.002582, respectively). However, at week 4 the population growth rates of the rotifers in 

Optimal+Shock, Max and Max+Shock were similar to each other, but significantly lower 

than Optimal (Figure 7). At the conclusion of the experiment (week 16), population 

growth rates for rotifers were significantly different in all treatments (p=0.0055), with 

Max and Max+Shock having higher population growth rates than Optimal and 

Optimal+Shock. After returning all populations to Topt for four weeks, population growth 

rates were no longer significantly different between any treatments (p=0.8463) (Figure 

8). 
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Figure 7: Population growth rates in each treatment over time (weeks). 
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Figure 8: Population growth rate of each treatment after four weeks at Topt. 

 

4.4 Rotifer Size 

 

After 16 weeks of treatments, Optimal and Optimal+Shock did not have 

significantly different sizes of rotifers from each other (Figure 9). Max and Max+Shock 

did not have significantly difference sizes of rotifers bu had significantly smaller rotifers 

then Optimal and Optimal+Shock (Figure 9). After four weeks at Topt, the rotifer size in 

Max and Max+Shock had significantly increased from week 16 (p=0.002892 and 

0.0001109, respectively) (Figure 9). In fact, Max+Shock had the largest increase in 

overall rotifer body size for all treatments after four weeks at Topt. 
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Figure 9: Comparison of rotifer sizes in each treatment. Left: Rotifer size for each treatment after 

the 16-week experiment. Right: Rotifer size for the same treatments after they were returned back 

to optimal temperature (25°C) 

 

4.5 Aerobic Performance 

 

Respiration rate (inversely related to aerobic performance in that an increase in 

respiration rate translates to a decrease in aerobic performance, i.e. fitness) was found to 

be significantly different between weeks, treatments and temperatures (p=0.01858, 

3.704x10-06, 6.887x10-10, respectively). The respiration rates of the rotifers in the Optimal 

treatment were not significantly different between weeks (p=0.2351), but the respiration 

rates were significantly different between temperatures (p=0.0002963) with a gradual 

increase in respiration rate as the temperatures increased until reaching 31-33°C, where 

there was a slight decrease before the respiration rates increased up to the highest rate 

(poorest aerobic performance) at 39°C (Figure 10). The respiration rates of 

Optimal+Shock were significantly different between weeks (p=8.329x10-08) and 

temperatures (p=0.02406). The respiration rates for Optimal+Shock significantly 

increased (which translates to a decrease in aerobic performance) from week 1 to week 

16 (p=1.081x10-07), and then significantly decreased after being kept at Topt for four 

weeks (week 20) (p=0.01263). The respiration rates of the rotifers in Optimal+Shock 

between week 1 and the final week of being kept at Topt (week 20) were not significantly 
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different (p=0.8941), which means the respiration rates of the rotifers in the 

Optimal+Shock returned back to the same respiration rates present at the beginning of the 

treatment (week 1) after being reared in optimal temperatures with no sub-lethal shocks. 

The respiration rates of rotifers in the Max treatment were significantly different between 

weeks (p=0.001017), and had the highest respiration rate (poorest aerobic performance) 

in week 1 for all treatments. The respiration rates in week 1 were significantly higher 

than in week 16 (p=0.0002789) and in the final week of being kept at Topt (week 20) (p = 

0.035). The respiration rates of the rotifers in week 16 were significantly lower (higher 

aerobic performance) than after the four weeks in optimal temperatures (Topt) (p=0.8664). 

Max+Shock had significantly different respiration rates between weeks (p=0.0115) and 

temperatures (p=0.002555), with the highest respiration rate (poorest aerobic 

performance) present in week 16 in all treatments, but by week 20 (after four weeks of 

Topt), the respiration rate significantly decreased (increased in aerobic performance) 

(p=0.2759) back to a rate that was not significantly different from week 1 (p=0.69) 

(Figure 10). When comparing weeks, respiration rates in all treatments were significantly 

different between week 1 (p=2.226x10-06) and week 16 (p=1.507x10-08). However, by the 

end of the week 20 (after four weeks of all populations being reared at Topt), the 

respiration rates of all treatments were no longer significantly different (p=0.1162) 

(Figure 10).            
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Figure 10: Respiration rates (inversely related to aerobic respiration) for each treatment at each water bath 

temperature. Week 20 refers to the final week of the all populations being reared at Topt.    
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5. Discussion 

 

Exposure to higher temperatures within the natural range of the marine rotifer, 

Brachionus plicatilis, was found to facilitate transgenerational acclimation. However, 

acclimation became hindered when the rotifers were frequently exposed to severe 

disturbances in temperature, i.e. weekly sub-lethal temperature shocks. There was no 

indication of adaptation and higher temperatures were found to have an overall negative 

effect. Rotifers reared in higher temperatures were smaller in size, but once they were 

returned to optimal conditions after the 16-week experiment, their sizes increased. 

Exposure to optimal conditions after the 16-week experiment had an overall positive 

effect in rotifer size, population growth rate and aerobic performance. 

 Transgenerational acclimation was observed when the population was exposed to 

a maximum temperature within their natural temperature range. In a matter of two weeks 

(ca. ~10 generations) there was a significant increase in population growth rates among 

rotifers were reared in a maximum temperature within their natural range (Max 

treatment) and among rotifers reared in the same maximum temperature but with weekly 

sub-lethal shocks (Max+Shock treatment), indicating transgenerational acclimation had 

occurred. Similarly, in a species of water flea, increasing temperatures were found to 

cause the water flea to mature at a younger age, leading to earlier reproduction, which 

ultimately increased overall population growth rates (Heugens at el. 2006). Comparably, 

it has also been observed that a decrease in temperature has a negative impact on the 

population growth rate of many species of insects (Frazier et al. 2017). Increased 

temperatures have been observed to accelerate physiological processes, such as 

metabolism, which cause population growth rates to accelerate (Cairns et al. 1975, 

Savage et al. 2004).  

Rotifer populations kept at a maximum temperature that was still within their 

natural range (Max treatment) showed a decrease in respiration rates at all temperatures 

over the 16 week experiment as a result of transgenerational acclimation. A decrease in 

respiration rate (inversely related to aerobic performance) translates to an increase in 

fitness (Ikeda 1985, Ikeda et al. 2001, Lehette et al. 2016). The observed increase in 

fitness of the rotifers in the Max treatment could be explained by a mechanism known as 
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gene expression plasticity, as seen in some corals under variable temperature 

environments (Kenkel and Matz 2016). In other words, as the rotifers were exposed to a 

higher temperature over time, it was likely that the parents were able to up-regulate 

specific genes within their genome that better suited their new environmental conditions 

and pass those genes on to subsequent generations, in turn allowing the population to 

better survive in higher temperatures. After exposure to 16 weeks of high temperatures in 

the Max treatment, the population was returned to optimal conditions of 25°C, for four 

weeks. The rotifers that had become acclimated to the higher temperatures in the Max 

treatment had better aerobic performance (lower respiration rates) than they did at the 

start of the 16-week experiment. However, the population of rotifers in the Max treatment 

had better aerobic performance across all temperatures when they were being kept at their 

maximum temperature than when they were put back to optimal temperatures (Figure 

10). This suggests that transgenerational acclimation occurred, and that the newest 

generations of rotifers were better able to cope with the higher temperatures than the 

cooler, optimal temperatures because they had acclimated to their higher temperature 

environment by up-regulating more heat-resistant genes that were within their genome.  

 Exposure to frequent temperature shocks did not allow transgenerational 

acclimation to occur.  When the parents were in an environment that was at their thermal 

maximum and was frequently unstable or fluctuating (such as being exposed to 

temperature shocks, i.e. Max+Shock treatments), it is likely that the parents were unable 

to pass the specific genetic information to their offspring that would allow their offspring 

to cope with the higher temperatures. As a result, the genome expression of the offspring 

did not reflect the environment to which the parents were exposed, so the population was 

unable to acclimate to their environmental conditions, even after 16 weeks. This was 

apparent in the increased respiration rates of rotifer populations in the Max+Shock 

treatments, translating to a decrease in aerobic performance and fitness among the 

population over time. Similar results were found in copepod species, in which increased 

temperatures caused increased respiration rates, suggesting an inability to acclimate to 

short-term temperature stressors (Isla and Perissinotto 2004, Lehette et al. 2016). Any 

change in temperature outside of the natural thermal range can lead to an increase in 

metabolic costs when related to short-term temperature fluctuations (Gaudy et al. 2000). 
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It is possible that an increase in metabolic costs (caused by the temperature shocks) could 

have compromised the ability of the population to acclimate to the warmer environment. 

Therefore, the subsequent generations were unable to cope with their higher temperature 

environment because the specific heat-tolerant genes were never passed from parent to 

offspring. When populations from the Max+Shock treatments were returned to optimal 

conditions, their respiration rates decreased (aerobic performance and fitness increased) 

back to rates similar to the ones observed at the beginning of the 16-week experiment. No 

matter what the specific mechanism is that is responsible for the decrease in aerobic 

respiration at higher temperatures and increase at lower temperatures, the results of this 

experiment indicate transgenerational acclimation to the warmer temperatures never 

occurred in the presence of weekly temperature shocks. 

 Although there was evidence of transgenerational acclimation, adaptation was 

never observed. Rotifers exposed to their optimal temperature but stressed with 

fluctuating high temperatures over multiple generations (i.e. Optimal+Shock treatment) 

did not show any increase in population growth rate, size or aerobic performance. The 

purpose of the temperature shocks was to eliminate individuals from the population 

whose genes were less adapted to higher temperatures. In other words, the temperature 

shocks would reduce the population and the remaining individuals would potentially 

possess favorable warm-resistant genes and would likely exhibit higher survival, growth 

and reproduction, creating a population better adapted to higher, fluctuating temperatures 

(Munday et al. 2013). There was no indication adaptation because the populations that 

were reared in the Optimal+Shock treatment did not increase in aerobic performance or 

size. There was an apparent negative effect of temperature on individual size of rotifers 

(Max+Shock treatments). In fact, there was an overall decrease in body size in rotifer 

populations that were subjected to constant higher temperatures (Max and Max+Shock 

treatments). These findings are consistent with previous studies showing that an increase 

in environmental temperature can cause a decrease in growth of individuals (Atkinson 

1995, Munday et al. 2008, Motson and Donelson 2017). A decrease in body size from 

increased temperatures is often explained by a decrease in individual growth (McLaren 

1963). Elevated and fluctuating temperatures can create an increase in metabolic costs, 

resulting in less available energy for things such as growth (Heugens et al. 2006). For 
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example, zebrafish reared in a thermally variable environment incurred significant 

energetic costs causing the population to be significantly smaller than zebrafish reared in 

more thermally stable environments (Schaefer and Ryan 2006). However, due to the 

rotifer’s short generation times and the difficulty in identifying adults versus juveniles in 

a given population, it cannot be determined what caused the decrease in rotifer sizes. 

Once the populations were returned to optimal conditions (25°C), the individual body 

sizes of rotifers in Max and Max+Shock increased to the sizes they were prior to their 

increased temperature treatments and the aerobic performance of rotifers in the 

Max+Shock treatment returned to their rates previously observed at the beginning of the 

16-week experiment. This reverse of sizes and respiration rates suggests that adaptation 

did not occur. 

Adaptation has often been assumed to be the ultimate factor determining a species 

ability to outpace a changing environment (Munday et al. 2008a), however, acclimation 

has been known to induce adaptive changes allowing species to cope with their changing 

environment (Egginton and Sidell 1989). Plasticity has been known to act as a “buffer” 

against evolutionary change by producing phenotypes that can lead to persistence in a 

population (Chevin and Lande 2010, Pavey et al. 2010). Some fish species have been 

found to acclimate to warming ocean temperatures through phenotypic plasticity 

(Munday et al. 2008b). Similarly, in this study the rotifer populations kept at their 

thermal maximum (Max treatments) were given enough time to induce genomic 

expression (plasticity) of their heat-tolerant genes which were inherited by subsequent 

generations, allowing for better fitness. As opposed to waiting for a genetic mutation or 

recombination to promote survival in a changing environment, plasticity can provide the 

first steps in moving a population closer to optimum phenotypic advantages in the new 

environment (Ghalambor et al. 2007). 

The potential for species to acclimate, or even adapt, depends largely on their 

generation times and their potential for phenotypic plasticity (Munday et al. 2008a). 

Species with short generation times have the highest potential for adaptation because 

genetic selection can occur over a larger number of generations in a relatively short 

period of time. Genetic adaptation to climate change is already proceeding in a number of 

animal populations (Bradshaw and Holzapfel 2006, Skelly et al. 2007, Munday et al. 
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2008). Although adaptation was not evident in this study, it does not mean that it is not 

possible in this species. Sexual reproduction was never observed among any of the 

populations during this study, meaning all new generations were the result of asexual 

reproduction so no new genetic material was introduced in subsequent generations. Had 

there been sexual reproduction, adaptation through genetic recombination would have 

been more likely to occur. It is possible this study did not last for enough generations to 

allow for adaptation through selection to occur. This emphasizes the need to conduct long 

term (multi-generational) experimental studies to more accurately project species’ 

persistence through climate change.  

To increase the reliability of projections of species persistence through climate 

change, it is important to not only determine the potential for transgenerational 

acclimation and/or adaptation to projected future temperatures, but to also relate this 

temperature change to species’ natural temperature range. Many species have been found 

to have different thermal tolerance limits depending on their latitude, with a predicted 

pattern of increasing impact of climate change as latitudes decrease (Coles et al. 1976, 

Deutsch et al. 2008). The Mediterranean bivalve, Mytilus galloprovincialis, lives close to 

its thermal acclimation limits and long-term exposure to these limits was found to 

provoke lethal stress responses (Anestis et al. 2007). Contrastingly, Antarctic copepods 

exhibited higher tolerances when exposed to elevated temperatures (Lahdes 1995). 

Species with wider thermal ranges are likely to have different adaptation and/or 

acclimation rates than species with more narrow thermal ranges. Geographically based 

environmental temperatures are thought to be very important in determining temperature 

tolerances in species (Coles et al. 1976). With increasing temperatures, species are 

predicted to move closer to the poles (Parmesan and Yohe 2003). Two–thirds of the 

North Sea fish species have shown climate-related shifts in latitude and depth (Perry et al. 

2005). Therefore it is important to not only study the potential for acclimation and 

adaptation across generations, but also across latitudes (Logan et al. 2014). This study 

used a species that has a relatively large natural thermal range, so increasing the 

temperature in their environment by 1 or 2°C would have less of an effect that it would 

on a species with narrow thermal ranges, such as corals in the tropics. This emphasizes 
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the importance of incorporating other factors into future studies in hopes of accurately 

studying and predicting species’ acclimation and/or adaptation potentials.  

This study provided valid evidence that over time, transgenerational acclimation 

can occur, and also demonstrated that in the presence of frequent high temperature 

stressors, acclimation can be hindered. It required almost the entirety of the 75 

generations before the rotifer populations in Max and Max+Shock were able to surpass 

the population growth rate of rotifers in optimal temperature treatments. This highlights 

the importance of incorporating multiple generations into ocean warming studies (Sunday 

et al. 2014). Additionally, this study suggests that if a population is forced to live in an 

environment at or near its thermal limits, there is the possibility that the population will 

survive and eventually become acclimatized to the new environment, if given adequate 

adjustment time. If sexual reproduction had occurred among the populations of rotifers, 

there would be a greater potential for adaptation to have occurred within just 75 

generations, however, only asexual reproduction was present, therefore there was no 

mutation or genetic recombination. This study focuses specifically on temperature as the 

only stressor, and is a very simplified version of challenges in a very diverse and 

changing climate. For this reason, it is important for future studies to not only implement 

multiple generational studies, but also to incorporate multiple stressors with the aim of 

creating a more realistic experiment to represent real-life transgenerational acclimation 

and adaptation potentials. Data from this study provided valuable insight into 

mechanisms used by species to cope with climate change, and can be applied to other 

organisms to produce accurate projections of the potential outcome to increasing ocean 

temperatures.   
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