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Abstract 
 Anthropogenic changes to the landscape, storm events and sea level rise are 

contributing to the erosion of beaches leading to an increase of the sediment load in near 

shore marine environments. Palm Beach, Florida is host to unique near shore hardbottom 

habitats. These areas are distinct from the vast expanses of surrounding sediments and 

play and important role of habitat and shelter for many different species. In this study, 

remotely sensed images from 2000-2015 were used to look at the movement of sediment 

and how it contributes to exposure rates of near shore hardbottom habitats in Palm Beach, 

Florida and how these factors affect the benthic community.  

GIS was used to determine areas of hardbottom with high exposure (exposed in 

>60% of aerial images), medium exposure (40-60%), and low exposure (<40%). 

Remotely sensed imagery and manual GIS interpretation were successful in determining 

hardbottom exposure over time. Large differences in exposed areas were seen in 

relatively short time periods, and beach nourishments coincided with decreases in 

exposure.  

I strived to determine if one can detect a successional relationship of benthic 

communities in a dynamic environment with annual mapping. I also examined if areas 

with higher exposure rates have more complex successive communities than those with 

lower exposure rates, and what implications this has on near shore benthic communities. 

In situ surveys conducted at 117 sites determined the community structure (corals, 

octocorals, macroalgae, and hydroids).  

This study confirmed that periodic mapping was successful in identifying 

hardbottom burial and exposure, which fluctuate both spatially and temporally. This 

periodic mapping along with manual delineation did identify hardbottom burials and 

exposures that fluctuate between years and relate to benthic community differences. The 

near shore hardbottom coral reef communities aligned with the observed exposure 

categories with the greater coral species richness and octocoral morphologies found at 

sites classified as highly exposed. Statistical analyses showed differences in communities 

shallower and deeper than three meters’ depth. Increasing the frequency of imagery 

captures and in situ observation would further increase our comprehension of the metrics 

of hardbottom exposures in reference to community structure.  

 

 

 

 

 

Keywords: Near shore hardbottom – Palm Beach, FL – Change detection – Benthic 

habitat mapping – Sediment movement– Spatial analysis – Exposure – Periodic mapping
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1. Introduction 

1.1 Benthic Community Succession  

Ecological succession is the process of change in the species structure and 

population of a community over time, and is disturbance driven (Connell and Slatyer, 

1977). Succession begins after a disturbance takes place that results in bare or semi-bare 

substrate. The colonizing stage of succession occurs when pioneer species move in to 

colonize the bare substrate. These pioneer or R-strategy species have high reproductive 

and growth rates, and typically have a shorter life span. Following this stage, the 

successional stage of species begins. During the successional stage K-strategy species 

begin to colonize. These are species with lower reproductive rates, slow growth rates and 

long life span. They also have a high competitive ability (Littler et al. 1983; Weinbauer 

and Höfle, 1998; CSA International, Inc. 2009). Eventually, without disturbance, a 

climax community of a diverse variety of slower growing species develop. As time 

passes following a disturbance species size, population and species richness, would 

usually increase, thus community structure metrics can give incite to the length of time 

since the last disturbance or frequency of disturbance a community has experienced 

(Walker and Alberstadt, 1975). 

Many factors can cause succession of communities on benthic substrate. Sediment 

movement can be a major perturbation on shallow marine benthic communities. 

Increased sedimentation can significantly impact the health of corals and other sessile 

organisms. Sedimentation is considered a major cause of coral reef ecosystem 

degradation worldwide (Nugues and Roberts, 2003). Rogers (1990) noted that both the 

structure and the function of benthic ecosystems could be negatively affected by physical 

and biological processes altered by excessive sediment movement.  

 

1.2 Sediment Movement 

 Sediment movement and sedimentation are natural processes of the erosion and 

accretion, which operate in dynamic equilibrium (Dean et al. 2013). Sedimentation refers 



2 

 

to the deposition of sediment grains that were once suspended in the water column. 

Sediment movement refers to the movement of particles too large to be suspended in the 

water column, so they move by saltation or by rolling along the bottom. Excessive 

amounts of sedimentation in one location cause accretion and possibly burial of benthic 

organisms or entire hardbottom features. Mass sediment movements can also expose 

previously buried hardbottom below depending on energy regimes.  

Increased sediment movement and sedimentation (as well as erosion) can be a 

direct result of anthropogenic activities. Coastal construction, disruption of natural 

sediment flows, poor land use patterns, sea level rise, dredging and the removal of 

mangroves, sea grasses, and marshes have increased sedimentation and erosion on coasts, 

depleting beaches and producing elevated levels of sedimentation in coastal waters. 

Elevated coastal erosion has necessitated attempts to restore beaches, shorelines and 

property through beach nourishment, which involves depositing dredged or hauled in 

sand onto beaches from other locations. Sediments suspended by dredging are carried by 

currents, which lead to much larger overall impacted area. The increase in turbidity 

(sediment suspended in the water column) causes stressful conditions for corals and leads 

to a reduction in photosynthetic efficiency and potential smothering (Rogers, 1990). 

Dodge and Vaisnys (1977) point out that even years after the dredging takes place, the 

deposited sediment can continue to be re-suspended due to the deterioration of the 

substrate and loss of benthic fauna, leading to potential long-term effects. Consequently, 

construction projects can have lasting effects increasing stress in organisms which can 

lead to a decrease in fecundity and increase disease and/or death rates affecting the 

overall benthic community composition (Erftemeijer et al. 2012). 

Increased sediment on coral communities can decrease coral abundance, density, 

productivity and biodiversity (Dodge and Vaisnys, 1977). High levels of sediment reduce 

fecundity (Gilmour, 1999), survival of coral recruits (Babcock and Smith, 2002), 

calcification rates (Erftemeijer et al., 2012) and rates of photosynthesis (Fisher et al. 

2008). Elevated sediment levels can also increase energy needed for sediment removal, 

alter coral morphology (Jordan et al. 2010), cause smothering (Loya, 1976), change 

recruit behavior (Babcock and Davies, 1991), affect coral distribution (Hodgson, 1990) 
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and change community structure (Dodge and Vaisnys, 1977; Erftemeijer et al., 2012). 

Sedimentation on near shore habitats has increased globally with the increase of 

anthropogenic practices such as dredging, beach nourishment, coastal construction, 

removal of mangroves, dune grass and sea grass beds. Up to fifty percent of all reefs are 

considered threatened due to increases in sedimentation resulting directly from 

anthropogenic activities (Prouty et al. 2014).  The increase in burials and exposures 

brought on by mass sediment movement caused by natural and anthropogenic events 

have widespread impacts throughout the near shore hardbottom ecosystem. The loss of 

primary productivity, structure, and function affect organisms across all functional 

groups. 

Although near shore hardbottom burial and exposure occurs naturally through 

seasonal changes and storm events, burial resulting from beach nourishment projects can 

intensify and prolong the loss of hardbottom habitats (CSA International, Inc. 2009). 

Beach nourishment is a common practice throughout southeastern Florida due to the loss 

of sand, stemming from the creation and hardening of inlets and shorelines, coastal 

erosion brought on by rising sea levels and the changes in the coastal morphology. To 

restore beaches depleted by erosion or anthropogenic activities, sand is either suctioned 

or excavated from offshore borrow areas or imported from terrestrial sources (Jordan et 

al. 2010). Sand is then pumped on to beaches in quantities much larger than would 

naturally occur, temporarily widening the shoreline (Colosio et al. 2007). The increased 

sediment load decreases productivity and function on near shore and beach habitats 

(Peterson and Bishop, 2005). When beach nourishment projects occur, it increases the 

cross-shore sediment transport to the offshore, and eventually causes sediment 

accumulation in the lower part of beach profile. When waves re-shape such profile 

massive volumes of nourished sand is eroded from the fill which often causes sediment 

accumulation over nearshore hardbottom (Kosmynim per comm). 

1.2.1 Florida’s Littoral Processes 

Southern Florida beaches are classified as intermediate beaches, where sediment 

migrates towards the shoreline building up beaches in the summer months during phases 

of lower wave heights (Benedet et al. 2004).  During periods of higher wave energy, as 
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those typically seen during the winter months, sediments are transported from the upper 

beach profile and deposited to the lower part of the beach profile, further offshore 

(Absalonsen and Dean, 2011). Sediment transport seasonality creates a cycle of cross-

shore sediment movement, ensuing periods of erosion and accretion of sediments 

throughout southeastern Florida (Absalonsen and Dean, 2011). Along with sediment 

cross-shore movement, longshore drift is also a factor. Longshore drift, which carries 

sediment along the coast, is generated by waves breaking at an angle to the coastline 

(Dean et al. 2013). Longshore and cross shore currents account for most of the near shore 

sediment transport, corresponding to annual changes in coastal energy regimes (Stauble, 

1993). The dynamics of southeast Florida beaches are unique, with high rates of sediment 

transport greatly influenced by both geographical characters and by the presence of inlets 

and other man-made structures. The south Florida coastline is composed of a series of 

long barrier islands. There are semi-diurnal tides with a mean tidal range of 1 m (Stauble, 

1993). South Florida’s waters are influenced by the Florida Current which flows north 

through the corridor between southeast Florida and the Bahamas (Banks et al. 2008).   

The continental shelf is composed of linear reefs and hardbottom ridges which run 

parallel to shore (Finkl and Andrews, 2008; Banks et al. 2007; Walker, 2012). 

 

1.3 Near Shore Hardbottom Characteristics of South Florida  

Near shore hardbottom habitats are areas of exposed rock or immobile coarse 

sediments that facilitate benthic communities. Near shore hardbottom habitats are found 

in patchy or expansive distributions in southeast Florida. They are unique from the 

surrounding loose sediment accumulations in shallow marine or intertidal environments 

at depths less than 6 m (Street et al. 2005; CSA, 2009), and are characteristic geologic 

features prevalent off the shores of south Florida (Van Dolah et al. 1987, Walker, 2012). 

In south Florida, hardbottom habitats generally have low relief, broad flat surfaces, are 

non-continuous and typically run parallel to shore (Walker et al. 2008; Walker et al. 

2009; CSA, 2009; Walker, 2012). The near shore hardbottom benthic community 

changes latitudinally southward from Palm Beach County, typically with an increase in 
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the complexity of communities illustrated by the increase of coral species diversity and 

abundance (Banks et al. 2008; CSA, 2009; Klug 2015).  

Throughout south Florida, near shore hardbottom is typically classified as an 

ephemeral habitat, depending on its distance from shore and relief. Ephemeral habitats 

are disturbance-mediated non-equilibrium systems (FDEP NHB Study; CSA 2009). The 

shallowest portions of the near shore hardbottom are greatly affected by wave energy, 

and thus are highly susceptible to sediment movement. Along with the natural 

progressions of sediment movements with the summer and winter seasons, anthropogenic 

activities and tropical storm systems often increase the sediment movement leading to 

mass burial, scouring and exposure events. Frequency of stress from sediment movement 

is variable, depending on the relief of the hardbottom and its proximity to the beach.  

Typically, highly stressed environments would have low relief, be geographically close to 

the beach, and dominated by species adjusted to ephemeral conditions, e.g. turf algae and 

a few species of macroalgae. Less stressed environments would typically be found farther 

offshore in areas of higher relief. Habitats experiencing less disturbance from sediment 

stress are more stable and have longer succession, leading to complex hardbottom 

communities with perennial macroalgae, higher numbers of coral species and higher 

diversity of the benthos.  

Near shore hardbottom provides an important ecological role in the south Florida 

marine ecosystem, acting as habitat, settlement sites, nesting and spawning sites, nursery 

areas, and feeding sites and shelter across many functional groups (CSA, 2009). These 

areas serve as substrate for many benthic species of algae, sponges, stony corals and 

octocorals (Moyer et al. 2003; CSA, 2009; Walker, 2012; Walker and Gilliam 2013; 

Klug 2015). Octocorals, hydroids and macroalgae are some of the most abundant 

organisms on south Florida’s hardbottom habitats (Gilliam et al. 2013; Klug 2015). 

Although less abundant, corals and sponges are important components of near shore 

hardbottom communities. The living organisms and their skeletons create habitat 

complexity that attracts many important fish and invertebrate species, increasing the 

biodiversity of the ecosystem (Van Dolah et al. 1987).  
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 CSA (2009) reports that the near shore hardbottom throughout southeast Florida 

serves as habitat to an estimated 520 invertebrate species, 300 algal species and 250 fish 

species, with a large population of juveniles. Hardbottom is listed as Essential Fish 

Habitat, and as a habitat Area of Particular Concern (SAFMC, 1998).  The hardbottom 

also serves as an important habitat for juvenile green turtles, which are currently 

classified as threatened under the Endangered Species Act (U.S. Fish and Wildlife 

Service, 1999, 2016; Holloway-Adkins, 2005; CSA, 2009). Hardbottom in Broward and 

Miami-Dade counties also host some of the oldest known Orbicella faveolata colonies 

(Walker and Klug, 2015) and dense Acropora cervicornis patches (Vargas-Ángel et al. 

2003; Klug, 2015) which are listed as threatened under the Endangered Species Act. 

 

1.4 Sedimentation Impacts on Scleractinian Corals and Octocorals 

Stony corals are important primary producers on near shore hardbottom habitats 

and play a key role in providing structural complexity. The corals structure provides 

protection and cover for fish and many invertebrates, and serves as a site for fish 

spawning activities or as juvenile nurseries.  They also work to disperse wave energy, 

protecting the coastline and reducing erosion. An increase in the sediment load can have 

a number of negative impacts on coral species. Suspended particles reduce light 

penetration and increase scattering, reducing photosynthetic potential in corals (Dodge 

and Visanys, 1977; Fisher et al. 2008; Erftemeijer et al. 2012).  Sediment deposited on 

corals can lead to smothering or burial, reducing productivity and decreasing respiration 

(Fisher et al. 2008). Elevated turbidity (suspended sediments in the water column) under 

high-energy conditions can abrade coral tissue and erode coral heads, leading to a 

reduction in reef rugosity (Nugues and Roberts, 2003). Reduced reef rugosity decreases 

available habitat space affecting reproduction and survival rates. Though corals are able 

to remove sediment through cilia movement, polyp swelling and mucus production, the 

physical removal of sediment is energetically taxing and can reduce fecundity, growth 

rate, and increases coral stress (Erftemeijer et al. 2012). However, impacts from 

increased sedimentation can vary depending on local oceanographic conditions, relief of 
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the benthic habitat, the area and duration of the impact and the presence of other known 

stressors (Díaz-Ortega and Hernández-Delgado, 2014). 

Sedimentation on near shore hardbottom habitats strongly affects survival of coral 

recruits, thus affecting populations and biodiversity (Babcock and Davies, 1991). 

Sediment that settles on near shore hardbottom or substrate greatly reduces the success of 

larval recruitment due to the lack of suitable areas for anchorage (Hodgson, 1990). If 

coral recruits do manage to settle, they are susceptible to burial by sediment, resulting in 

post-settlement mortality. Babcock and Davies (1991) found that sedimentation resulted 

in significant changes in Acropora millepora settlement patterns including fewer recruits 

relative to a control environment and an increase in settlement to undesirable vertical 

substrates and undersurfaces. Babcock and Smith (2002) stated that fewer coral recruits 

combined with decreased post-settlement survival rates would significantly affect reef 

population structure and diversity.  

Members of the subclass Octocorallia (octocorals) are responsible for most of the 

living structural complexity found on the near shore hardbottom habitats in southeast 

Florida, serving as invaluable habitat for many organisms (Klug 2015).  Octocorals also 

function as a substratum for benthic invertebrates and algae. Therefore, impacts from 

sedimentation and burial can play a role in reducing biodiversity and the abundance of 

octocorals (Yoshioka and Yoshioka, 1989). Like stony corals, octocorals recruits can also 

be negatively affected by the burial of hardbottom due to the loss of suitable settlement 

sites. However, octocorals are thought to be some of the most sediment tolerant species in 

Florida (Erftemeijier et al. 2012). Rogers (1990) suggested that their morphology was 

more resistant to the accumulation of sediments, which increased their tolerance to 

heavier levels of sedimentation when compared to that of stony corals. However, burial 

of the holdfast ceases holdfast growth while the rest of the octocoral continues to 

develop, sometimes resulting in the eventual death of the octocorals.   

1.5 Sediment Impacts on Macroalgae and Sponges 

Macroalgae is found throughout the near shore hardbottom habitats of south 

Florida, where the hardbottom provides suitable substrate for attachment and growth.  
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The algae play a number of important roles on hardbottom habitats.  They are responsible 

for a large amount of primary productivity and contribute to complex trophic interactions 

(Duarte, 2000; CSA, 2009). Some macroalgae species are also important nitrogen fixers 

on near shore hardbottom communities (Blair and Flynn, 1989). Macroalgae also 

contribute to benthic structural complexity and serve as shelter and/or food for many 

organisms including endangered and threatened species of sea turtles (Blair and Flynn, 

1989; CSA, 2009).  Sediment movement affects benthic algae’s ability to survive much 

in the same way that it affects coral recruits. Burial, increased turbidity and lack of 

suitable substrate for settlement greatly increases algal mortality and prevents the growth 

of new algae.  

Crustose coralline algae (CCA) is also an important contributor to near shore 

coral reef ecosystems. These algae deposit calcium carbonate, cementing and reinforcing 

reef structure e.g. by filling in cracks in the substrate (Fabricius and De'Ath, 2001). Some 

of these algae act as a substrate on which some corals depend for locating appropriate 

settlement sites (Harrington et al. 2004). CCA also serves as substrata for many other 

species of benthic invertebrates (Harrington et al. 2005). Coverage of CCA is inversely 

related to sediment levels (Fabricius and De'Ath, 2001). Hardbottom inundated with 

sediments will prevent the CCA from settling, thus reducing coral recruitment and 

consequently the biodiversity and composition of the reef community (Fabricius and 

De'Ath, 2001). 

Along with stony and soft corals, sponges also increase the structural complexity 

of the hardbottom habitat and provide shelter for a number of organisms spanning many 

trophic levels. Some species such as brittle stars even depend on sponges as necessary 

habitat. Along with their importance adding to the structural complexity, sponges serve as 

a food source for some fish and sea turtle species and may play a role in removing 

nutrients from the water column. Like the other structural counterparts of the near shore 

hardbottom communities, sediment burial and mass movements of sand also negatively 

affect sponges; however, infrequent fragmentation events resulting from sand scour could 

aid in sponge distribution (CSA International, Inc. 2009). 
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1.6 Sediment Impacts on Motile Species 

In south Florida, green (Chelonia mydas), loggerhead (Caretta caretta) and 

hawksbill (Eretmochelys impricata) turtles use near shore hardbottom habitats as crucial 

resting sites, foraging grounds, as shelter and as developmental habitats for juveniles 

(Makowski, 2006, Garrido, 2007). Green turtles, which are currently listed as endangered 

are highly associated with near shore hardbottom habitats (Baillie, 2004; Makowski, 

2006; CSA, 2009). Previous studies suggest that green and hawksbill turtles use the near 

shore hardbottom as developmental habitat between 2-5 years (CSA International, Inc. 

2009). In Palm Beach County, juvenile green turtles move out to the open ocean for their 

first years of life, and then recruit to near shore hardbottom habitats until they reach 

sexual maturity (Makowski, 2006). It has also been observed that green sea turtles have 

specific ranges consisting of feeding grounds and resting places. When sediment 

movement and accretion reduces the complexity of the hardbottom relief, sea turtles’ 

home ranges, resting places and food sources (macroalgae, sponges, crustaceans) can be 

negatively affected (Makowski, 2006; Garrido, 2007; CSA, 2009).   

Many fish depend on near shore hardbottom habitats for refuge, spawning sites, 

juvenile nurseries, and feeding grounds. Therefore, they can be negatively impacted by 

increased sedimentation rates (Street et al. 2005). Fish populations on near shore 

hardbottom are juvenile-dominated, making the habitat important nursery grounds for 

many species. Studies performed in Palm Beach found that over 80% of fish sampled on 

near shore hardbottom sites were juveniles (Lindeman and Snyder, 1999; Fisco, 2016). 

Reduction in the relief complexity of the near shore hardbottom habitat as a result of 

increased sediment loads decreases the available space for juvenile fish to shelter and 

settle and has wide spread impacts on fish survival rates and successful spawning. These 

habitats are unique and act as oases for the fish because they are surrounded by vast areas 

of sediment.  

Reductions in growth rates, reproduction, and photosynthetic ability of benthos 

because of sedimentation and burial can cause ecosystem-wide impacts on hardbottom 

communities, affecting not only coral and algal species, but many coral–associated and –

dependent organisms. Reductions in overall biodiversity and population sizes on 
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hardbottom habitats affect organisms across all trophic levels (Nugues and Roberts, 

2003). 

1.7 Change detection through time using visual interpretations and GIS 

Change detection is the analysis of remotely sensed imagery on a temporal scale 

(Costa et al. in press). Temporal change detection is accomplished using a number of 

different methodologies, typically utilizing aerial or satellite imagery to visually or 

through automated processes, interpret change through time depending. This process 

depends on the quality of imagery required, spatial extent of the project, budget and the 

resolution of the desired output (Aronoff, 2005; Costa et al. in press). 

Aerial photography is an effective way to detect spatial and temporal change in 

coral reefs and other benthic habitats (Goodman et al. 2013). Imagery acquired aerially 

typically produces excellent spatial resolution and high thematic accuracy with little 

interference from noise such as cloud cover or sun angle. However, large spatial extents 

are expensive and difficult to collect (Mumby et al. 1998; Goodman et al. 2013; Costa et 

al. in press).  

Visual interpretation (manual digitization with GIS) is an effective method to 

detect change on a temporal scale, or map the extent of benthic habitats (Goodman et al. 

2013).  Visual interpretation is useful in areas with smaller spatial extents, and those that 

need precise delineations. The finer detail mapped using visual interpretation allows for 

changes occurring overtime to be better represented (Goodman et al. 2013). However, 

visual interpretations are difficult to replicate, rely on the knowledge and skill of the 

interpreter and depending on the size of the team of interpreters needed, may be less 

efficient than digital interpretations (Coppin and Bauer, 1996; Costa et al. in press). 

Digital interpretation approaches are potentially more efficient for mapping large 

scale (whole reef systems) when compared to that of visual interpretation (Maeder et al. 

2002; Mishra et al. 2006; Costa et al. in press). Large projects with varying spatial scales 

would potentially find digital interpretations more effective (Costa et al. in press). 

However, digital interpretations are prone to misclassification of areas where reflectance 

reads as conditions that are not present (Coyne et al. 2003; Costa et al. 2013). Digital 
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interpretations also are susceptible to error when imagery is poor quality or has excess 

noise (Costa et al. in press).   

The movement of sediment in Palm Beach, Florida can be seen in remotely 

sensed imagery over the past 14 years. The imagery has been used by several entities to 

delineate exposed hardbottom throughout the extent of Palm Beach. These images 

provide an opportunity to observe how the exposed hardbottom footprint has changed 

over the years. Presumably, the change in outline of hardbottom exposure from year-to-

year reflects changes in sediment burials, based on the assumption that hardbottom not 

seen in the imagery is likely buried. Thus, the differences in hardbottom footprints 

provide some indication of relative hardbottom exposure and burial rates through time. 

1.8 Study Site 

The Florida Reef Tract (FRT) spans approximately 595 km from the Dry Tortugas 

in the southwest to Martin County in the northeast (Walker 2013). The southern 135 km 

portion is oriented east west, then it arcs northeast over a 245 km span. The final 215 km 

extends north through Martin County. The northern part is comprised of three main reefs 

and extensive near shore hardbottom (Walker, 2012). The northern region has been 

subdivided based on benthic habitat morphology (Walker, 2012; Walker and Gilliam 

2013) and corroborated with benthic (Klug, 2015) and fish results (Fisco, 2016). The 

south Palm Beach region, where this study takes place, reef habitats are mainly the outer 

reef and deep ridges (Walker, 2012); however, some near shore hardbottom parallel to 

shore exists as well.  

The near shore hardbottom of Palm Beach County is represented by limestones of 

the Anstasia Formation, which are dated by the late Pleistocene, and is a part of the 

Anastasia Formation (Stauble, 1993). Just south of Lake Worth Inlet, in northern Palm 

Beach County, is the site of the northern terminus of coral reef growth in Holocene 

(Banks et al. 2007; Finkl and Andrews 2008; Walker, 2012; Walker and Gilliam, 2013). 

Palm Beach is subjected to a large volume of sediment flowing from the sediment rich 

environments of the north in comparison to the rest of southeast Florida (Banks et al. 

2007). The Lake Worth Inlet has been deepened significantly, which typically has a great 
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effect on sediment transport processes, leading to high levels of erosion causing concern 

for coastal management (Dean et al. 2013). In 1996, “The United States Army Core of 

Engineers(USACE) estimated that 98,000 m³/year of sediment reaches Lake Worth Inlet, 

in contrast to 4,590 m³/year reaching Government Cut just north of Biscayne Bay in 

Miami-Dade County” (Banks et al. 2007). Palm Beach County sites near Lake Worth 

Inlet are important to study, because historically there has been a high abundance of 

benthic organisms present on the near shore hardbottom that contribute to the 

productivity in the ecosystem (Blair and Flynn, 1989), and they have been nourished 

many times due to high erosion rates. It is also some of the northern-most near shore 

hardbottom with tropical reef communities on the Florida reef Tract (Walker, 2012).   

1.9 Purpose of Study  

     Palm Beach Florida’s near shore hardbottom habitats play an important 

ecological role in the south Florida marine ecosystem and serve as settlement sites and 

juvenile habitat for many ecologically beneficial species of fish, turtles, algae, sponges, 

and corals. This study aimed to achieve the following: 

1) Describe the near shore hardbottom benthic communities.  

2) Evaluate the current near shore hardbottom designations (near shore, 

intermediate, and offshore). 

3) Elucidate how sediment movement is affecting the benthic communities on 

these habitats across depth and latitude. 

4) Determine if a successional relationship can be detected a dynamic 

environment with periodic mapping. 

5) Serve as baseline data for future studies in the area, including monitoring 

projects conducted as a part of the better management practices of beach 

nourishment projects in south Florida. 

 A better understanding of the near shore benthic community and sediment 

movement, especially with the influx of external sediment sources from beach 
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nourishment, can help inform us of community succession and help advise near shore 

habitat management and conservation practices. 

 

1.9.1 Objectives 

The main objective in this study was to understand if we could detect a 

successional relationship of benthic communities in a dynamic environment with annual 

mapping. We wanted to find how the frequency of sediment burial affects near shore 

hardbottom benthic communities in Palm Beach County, Florida. Benthic community 

structure (measured by diversity and size of corals and octocorals; e.g. larger corals are 

older and therefore are a part of a more complex community) was surveyed in 

hardbottom areas of differing burial and exposure rates and depth. More established 

communities were expected in areas with higher rates of exposure (less burial) and in 

deeper water because the longer exposure allows more time for organisms to settle and 

grow, when compared to sites with more frequent burial. More established communities 

were expected in deeper water presumably due to the lessening of wave energy with 

depth. 

 

2. Methods  

This study was conducted along 15.7 miles of Palm Beach County Florida 

coastline between north Lake Worth Inlet and south Lake Worth (Boynton Beach) Inlet 

(Figure 1). 
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Figure 1.  The study area, Palm Beach County, Florida. The extent of the area begins just 

south of Lake Worth Inlet at reference monument 76, and ends north of the Boynton 

Beach inlet at reference monument 137+400 (Reaches 1-9 in accordance to the BMA 

management plan (appendix I). 

 

A comprehensive dataset from previous work at the local, state, and federal level 

including all the Town of Palm Beach and Palm Beach County aerial photographs and 

hardbottom delineations (2000-2012) was assembled in ArcGIS to support seafloor 

feature identification. This data was used as a reference to help guide polygon 

delineations, classification, and exposure.  
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2.1 Benthic Habitat Mapping 

Aerial photographs were collected within the Town of Palm Beach limits (R-76 

south to R-137, in accordance with the BMA management plan (appendix I) on July 3, 

2014, November 11 and 14, 2014 and May 20, 2015 and provided by the Town of Palm 

Beach and Palm Beach County. 

Imagery were imported into a geodatabase as a mosaic dataset in ArcGIS and 

visually interpreted where color variations and textural disparities visible at a 1:500 scale 

indicated exposed hardbottom. Temporary histogram gamma stretches of 2 and 2.5 

standard deviations were used for optimal visualization. Polygons were drawn at a 

minimum mapping unit of 0.75 m² (8 ft²) for each set. All polygons were then checked 

against known artificial structure areas. Polygons that crossed previously designated 

artificial habitat were clipped and categorized as artificial over hardbottom, artificial or 

hardbottom. 

All polygons (Hardbottom, Artificial and Artificial over Hardbottom) were 

classified by distance from shore/depth as Near shore, Intermediate, and Offshore (Figure 

2) using a previously derived polygon layer supplied by the Florida Department of 

Environmental Protection.  The three zones (Figure 3) were based on Town of Palm 

Beach profile data collected by Sea Diversified Inc. on August 9, 2010 and are referenced 

to North American Vertical Datum (NAVD) 88, North American Datum (NAD) 83/90. 

Any near shore hardbottom habitats that occurred within each classification were 

categorized accordingly.  

Near shore: categorized as - ~mean high water line to the -13.1 ft (~-4 m). North 

American Vertical Datum (NAVD) 88 depth contour 

Intermediate: between -13.1 ft. and -26.2 ft. (~-8 m) NAVD 88 depth contour 

Offshore: between -26.2 ft. and -40.0 ft. (~-12 m) NAVD 88 depth contour (as 

defined by FDEP in the BMA).  

The exposure categorization was accomplished by evaluation of frequency of 

exposure in previous mapping efforts. The number of times each area was mapped in the 
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previous imagery was assumed to relate to the exposure frequency; therefore, the 

polygons of all previous exposed hardbottom mapping efforts in the same area of interest 

were compiled and unioned together into a file with all previous delineations. Reaches 

were mapped 15 times between August 2000 and March 2012. The polygons were 

merged into 3 classes with frequency values of: <6 (i.e. exposed in <6 years of imagery) 

as Low, 6-10 as Medium, and >10 as high exposure. The bins for the 15 mapped 

exposure areas equated to the percentages of exposure: <40% = Low, 40%-60% = 

Medium, and >60% = High exposure (Figure 5). 
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Figure 2. Classification scheme, Hardbottom, 

Artificial and Artificial over Hardbottom 

followed by near shore, intermediate and offshore 

than categorized by low, medium and high 

exposure. 
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Figure 3. Near shore, Intermediate and Offshore hardbottom designations (based on 

shapefiles provided by FDEP based on 2010 Town of Palm Beach profile data). 
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Allocations of sites to be ground truthed were based on the proportional area of 

the combination of exposure frequency (Figure 4) and a previously assigned hardbottom 

designation (Figure 3) which equated to nine classes (near shore, intermediate, offshore 

and low, medium and high exposure rates) in the final layer (Figure 5).  Six sites per class 

(e.g. near shore intermediate exposure) were chosen at random, and then the remaining 

sites were split proportionally between classes (Figure 6). The site locations were 

spatially reviewed to ensure that each was assigned to the correct category and that each 

transect would be logistically feasible (enough area to contain transect, far enough from 

other sites) to survey.  Directional heading limitations were noted on sites that were 

closer than 20 m from each other or any habitat boundary in order to avoid surveys 

overlapping or crossing habitats. 

2.2 Field surveys 

Surveys were conducted to assess the community structure of the near shore 

hardbottom in relation to their mapped exposures and distance from shore/depth. To 

establish the study sites, a combination of the last four years (2010-2014) of aerial 

imagery and exposed hardbottom delineations were used. The hardbottom polygons from 

July 2010 – March 2012 (July/2010, October/2010, May/2011, October/2011 and 

March/2012) were unioned into one layer and dissolved to form a single polygon 

displaying the footprint of all exposed hardbottom since 2010. This was used to clip the 

total exposed hardbottom file to remove any areas not mapped (exposed) in the past four 

years. 

A total of 117 ground truthing sites (Figure 6) were randomly selected stratified 

by exposure frequency (Figure 4) and distance/depth (near shore, intermediate and 

offshore) regions (Figure 3). This equated to nine classes (near shore, intermediate, 

offshore and low, medium and high exposure rates) in the final layer. Allocations of sites 

were based on the proportional area of the combination of exposure frequency (Figure 4) 

and a previously assigned hardbottom designation (Figure 3) with a minimum of six sites 

per stratum. The site locations were reviewed to ensure that each was assigned to the 

correct category and that each transect would be logistically feasible to survey.  Transect 

headings were defined for those sites that were closer than 20 m from each other or any 
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habitat boundary in order to avoid surveys overlapping or crossing habitats. If any part of 

the transect was covered with sand but over hardbottom the area was still included in the 

analysis. However, if no buried hardbottom was found, sites were excluded.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Exposure Frequency 2000-2014 
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Figure 5. Exposure frequency and hardbottom designation habitat map. 
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Figure 6. In situ survey locations based on the frequency exposures of hardbottom and 

spatial designations. 
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A handheld Global Positioning System (GPS) (Garmin GPSMAP 76CSx) or 

survey-grade Trimble Differential GPS was used to locate each randomized survey site 

(Figure 6). A dive flag was deployed to mark the location of each site. Each survey site 

consisted of a transect used to determine stony coral and octocoral density, and a belt 

quadrat transect to quantify percent cover of algae, hydroids, and sediment, and 

maximum sediment depth. The following survey methods were conducted at each site: 

- General area assessment 

The general area was assessed and categorized as: exposed hardbottom, 

partially exposed hardbottom, buried hardbottom, mostly sediment, all 

sediment, or established benthic communities. The presence of high relief 

ledges (> 1 m in height) within 5 m of transect were also noted.  

- One 20 x 0.5 meter transect (10 m²) 

Stony coral colonies were identified to species, and categorized by size class 

(diameter) (2-5 cm, >5-10 cm, 10-25 cm and >25 cm). Octocorals were 

identified by morphology (rod, plume, fan, or encrusting) and categorized by 

size classes (height) (<5 cm, 5-10 cm, 10-25 cm, >25 cm).  

- Five 0.5 m2 quadrats  

The quadrats were set at intervals of 5 m (0, 5, 10, 15, 20 m) along each 20 m 

transect. Percent cover of algae, hydroids, sponges, sediment, and exposed 

bare substrate and crustose coralline algae were calculated, and the two most 

dominate algae species were identified and cover was estimated. Maximum 

sediment depth was measured within each quadrat location. 

 

2.3 Statistical Analysis Methods 

A cluster analysis and corresponding non-metric, multi-dimensional scaling 

(MDS) plot was constructed using Bray-Curtis similarity indices (PRIMER v6) of the 

percent benthic cover quadrat data and hard and soft coral density (square-root 
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transformed) to evaluate similarities between sites. The MDS plot shows statistical 

similarities and differences in multivariate data by plotting them in two dimensions where 

the relative distance apart is indicative of their similarity.  Thus, sites very close together 

are more similar than those further apart and the sites furthest apart are the least similar. 

The sites were analyzed by several factors in PRIMER (e.g. hardbottom designation, 

exposure frequency, depth) to evaluate how well these factors relate to the similarities in 

the community data. A cluster analysis was performed on each dataset to determine 

similarities. A MDS plot was configured to illustrate the analyses’ results by factors. An 

Analysis of Similarity (ANOSIM) was performed for different factors to determine 

significance. The R statistic indicates the strength of the relationship where the closer the 

value is to 1, the stronger the dissimilarity between groups. Then Similarity Percentages 

by factor (SIMPER) were calculated to determine which species were driving the 

similarities identified in the ANOSIM. One way non-parametric analysis of variance 

(ANOVA) tests were used to find significant univariate differences. A post hoc Wilcoxon 

Each Pair test was used in JMP (v 10.0) to determine which habitats significantly 

differed.  

3. Results 

3.1 Benthic Habitat Mapping 

 The total mapped area for July 2014 was 212.15 acres (0.86 km²; 85.85 hectares) 

(Figure 7), for November 2014 was 212.64 acres (0.86 km²; 86.05 hectares) (Figure 8), 

and for May 2015 was 188.81 acres (0.76 km2; 76.41 hectares) (Figure 9).  Although 

July and November 2014 have very similar total acreages, many reaches had very 

different acreages. For example, Reach 7 has an exposed area of 10.13 acres in July 2014, 

than four months later in November 2014 there are only 5.47 acres exposed (Table 1).  

The acreage was broken down into the nine reaches on Palm Beach Island in 

accordance with the BMA management plan (appendix I) to compare across all years 

(Table 1). Reach 1 (just south of Lake Worth Inlet to slightly past reference monument 

98) was the smallest area (0.87 km of coastline) and had the lowest amount of exposed 

hardbottom (x̄ = 0.07 acres). Reach 2 was the largest area (3.99 kilometers of coastline) 
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and had the highest acreage of exposed near shore hardbottom (x̄ = 62.11 acres) (Table 

2). Reach 7 was the second largest area (3.76 km of coastline), but averaged only 4.58 

acres of exposed hardbottom (Table 2.) The area of exposed hardbottom fluctuated 

greatly in each reach. Reaches 2, 3 and 4 had the greatest variance, 202, 105 and 100 

respectively. These were also the three reaches with the greatest overall area of exposed 

hardbottom averaging 62 acres, 52 acres and 41 acres. Although reach 6 only averaged 7 

acres, it had a relatively large variance of 45 indicating large fluctuations of exposed 

hardbottom (Figure 10). 

Average exposed acreage for all reaches was 200.84 (Table 2). May 2015 had the 

second lowest area of exposed hardbottom since 2010. The lowest recorded hardbottom 

exposed was July 2003 (163.76 acres), while the highest was October 2008 (244.43 

acres) (difference 80.67 ac). Exposed hardbottom fluctuated throughout the years from a 

minimum of 0.33 acres (July 2010 – October 2010) to a difference of 56.21 acres (May – 

October 2011) (Table 1, Figure 11).  

The area of exposed hardbottom fluctuated greatly in each reach. Reaches 2, 3 

and 4 had the greatest variance, 201.56, 104.84 and 100.29 respectively. These were also 

the three reaches with the greatest overall area of exposed hardbottom averaging 62.11 

acres, 52.56 acres and 41.06 acres (Table 2). Although reach 6 only averaged 6.52 acres, 

it had a relatively large variance of 44.86 indicating large fluctuations of exposed 

hardbottom.  
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Figure 7. July 2014 hardbottom polygon delineation  
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Figure 8. November 2014 hardbottom polygon delineation  



28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. May 2015 hardbottom polygon delineation
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Table 1.  Acreage of mapped hardbottom by Reach for each 

Reach 08/2000 7/8/2001 7/2003
7/16, 7/17, 

2004 

7/25 & 8/6, 

2005 
7/26/2006

7/15, 7/20, 

2007 
7/31/2008 10/22/2008

10/2, 10/-3, 

2009 
7/10/2010 10/10/2010 5/8/2011 10/10/2011 3/30/2012 7/3/2014

11/11, 

11/13, 2014
5/20/2015

Reach 1 0.05 0.44 0.01 0.00 0.00 0.00

Reach 2 46.69 43.96 36.35 42.86

0.00 0.00 0.26 0.26 0.060.00 0.00 0.00 0.210.00

77.23 74.4387.81 67.37 68.47

0.000.00

59.83 49.08

Reach 3 39.39 45.03 44.95 42.28 48.29

68.98 80.42 62.59 59.61 63.4656.04 72.75

51.7753.10 57.0667.93 51.86 55.4644.43 81.21 53.92 53.95 63.5947.49 44.43

39.76 44.50 43.9526.81 50.57 50.70 51.40 50.69 50.68

Reach 5 18.35 18.07 19.79 17.46

31.80 41.9339.08 26.73Reach 4 34.53 43.48 48.00 47.27 17.11

19.40 18.05

Reach 6 19.01 20.58 4.87 1.77

19.97 21.08 21.57 12.57 19.6817.32 10.42 17.09 19.5716.58

1.10 2.1313.74 17.23 11.67

18.4119.69

1.77 2.03

Reach 7 1.72 2.67 6.58 9.18 18.70

1.23 1.73 4.17 2.15 2.264.84 5.01

9.4510.13 5.470.34 1.02 2.243.04 5.53 1.72 1.86 1.450.09 1.28

9.57 10.05 3.632.23 9.21 0.45 3.53 2.72 1.86

Reach 9 8.52 2.17 0.61 8.62

4.35 2.5314.90 11.37

12.85 8.81 3.06 1.0310.90 18.77

Reach 8 7.44 8.60 2.61 5.34 12.91

15.46 14.57 10.866.21 3.42 5.19 5.07 2.52

226.04 224.63 194.12 212.64 188.81213.15 229.97 173.70 186.17 212.15190.61 244.43 205.92 213.48Total Acreage 175.70 185.00 163.76 174.79
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Table 2. Averages of hardbottom acreages by reach, throughout all years. 

Reach Average Acreage 

Reach 1 0.07 

Reach 2 62.11 

Reach 3 52.56 

Reach 4 41.06 

Reach 5 18.06 

Reach 6 6.52 

Reach 7 4.58 

Reach 8 6.29 

Reach 9 7.70 

Total Av. Acreage          200.84 

  

 

Figure 10. Box and whisker plot of the variability of total hardbottom area by reach, with 

reaches across the x axis and acres across the y. Whiskers represent the minimum and 

maximum values observed, while the boxes display the 1st and 3rd quartiles and the 

middle line represents the median of the data. 
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Figure 11. Total mapped hardbottom by year. October 2008 had the highest amount of 

mapped hardbottom, the line represents the linear trend.  

 

3.1.2 Inter-Annual Hardbottom Exposure  

 The maps created in July 2014 - May 2015 were examined to evaluate seasonal 

sediment movement. July and November 2014 total areas of exposed hardbottom were 

very similar (212.15 acres and 212.65 acres respectively) (Table 3). In May 2015, total 

exposed hardbottom dropped to a total of 188.62 acres. The major losses from 2014 to 

2015 were seen in Reaches 2, 3, 8, and 9 (Table 3; Figure 12). However, in May 2015 

Reach 6 had a net gain of 0.26 acres and Reach 7 had a net gain of 3.98 acres since 

November. Although acreage was gained in the six-month period, total acreages for 

Reaches 6 and 8 were still not as high as in July 2014.  November 2014 showed the 

highest overall acreage of near shore hardbottom, with higher areas in Reaches 3, 4, 5, 

and 8. 
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Table 3. Areas of exposed hardbottom (acres) of reaches 1-9 as mapped for July and 

November 2014, and May 2015. 

BMA Reach 

Designation 

FDEP Reference 

Monuments  

July 3, 

2014 

November 

11-13, 2014 

May 20, 

2015 

Reach 1             R-76 to R-78 0.00 0.00 0.00 

Reach 2 R-78 to R-90+400 63.46 59.83 49.08 

Reach 3 R-90+400 to R-95 53.10 57.06 51.77 

Reach 4 R-95 to R-102+300 39.76 44.50 43.95 

Reach 5 R-102+300 to R-110+100 18.41 19.40 18.05 

Reach 6 R-110+100 to R-116+500 2.26 1.77 2.03 

Reach 7 R-116+500 to R-128+530 10.13 5.47 9.45 

Reach 8 R-128+530 to T-133+500 9.57 10.05 3.63 

Reach 9 T-133+500 to R-137+400 15.46 14.57 10.86 
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Figure 12. Area of mapped hardbottom since July 2014 by reach. November 2014 shows 

the highest amount of hardbottom present in 2014-2015.  
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3.2 Community Structure 

A total of 117 sites were surveyed between September 9 and September 18, 2014. 

Twenty-eight sites were bare sediment and excluded from the hardbottom analyses. The 

93 sites with hardbottom were used to assess benthic cover, density and species 

composition. 

3.2.1 Stony Corals 

 A total of 865 colonies comprised of 7 stony coral (scleractinian) species were 

identified. Siderastrea spp. was the dominant coral throughout the survey sites. 

Siderastrea spp. contributed 92.1% (797 of the 865 colonies) to the total stony coral 

assemblage. Most of the colonies (81%) were less than 5 cm in diameter. Other species 

identified in the survey area included (in decreasing abundance) Solenastrea bournoni 

(36), Stephanocoenia intersepta (27), Porites astreoides (2), Montastraea cavernosa (1), 

Pseudodiploria clivosa (1), and Oculina diffusa (1) (Table 3). Ten Millepora alcicornis 

hydrozoan colonies were also counted. High exposure sites had significantly higher 

abundance of Siderastrea spp. than low or medium exposure sites. Stephanocoenia 

intersepta were also found in higher abundance in areas of high exposure. Solenastrea 

bournoni had the highest abundance in areas classified as medium exposure. 

 Mean (±SD) stony coral density within the 93 hardbottom sites was 0.96 ± 1.56 

colonies/m², but was 0.085 ± 0.215 colonies/m² when Siderastrea spp. colonies were 

excluded. Mean (±SE) density of all stony coral colonies ≤5 cm diameter within the 

hardbottom sites was 0.83 ± 1.31 colonies/m², but was 0.057 ± 0.17 colonies/m² with 

Siderastrea spp. colonies excluded.  

3.2.2 Octocorals 

 A total of 1,371 octocoral colonies of four morphologies (rods, plumes, fans or 

encrusting) were identified within the 117 sites (Table 4). Rods were the dominant 

octocoral throughout the survey sites contributing 73.7% (1,010 of the 1,371 colonies) to 

the total octocoral assemblage. Of all octocorals observed, 42.7% of the colonies (586) 

were less than 5 cm in diameter. Plumes were the next dominant octocoral contributing to 

25.6% (352 colonies) of the assemblage. Fans and encrusting octocorals were rarely 
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encountered (Table 5). High exposure sites had significantly higher plume abundance 

than low or medium exposure sites and fans were only found at high exposure sites. 

Encrusting octocorals were found at medium and high exposure sites 

Mean (±SD) octocoral density within the 93 hardbottom sites was 1.51 ± 4.2 

colonies/m², but was 0.4 ± 1.3 colonies/m² when rod colonies were excluded. Mean 

(±SD) density of all octocoral colonies ≤ 5 cm (diameter) within the hardbottom sites was 

0.64 ± 2.37 colonies/m², but was 0.10 ± 0.27 colonies/m² with rod colonies excluded.  

Table 4. Stony coral species abundance based on size identified within the survey sites. 

Species are listed in decreasing abundance and density within the 93 hardbottom sites. 

Coral spp.  Size Class 

(Diameter) 

Abundance Mean Density (m2) SD 

Siderastrea spp  < 5 cm 711 0.867 1.331 

Siderastrea spp  5 - <10 cm 82 0.100 0.298 

Stephanocoenia intersepta  < 5 cm 26 0.031 0.129 

Solenastrea bournoni  < 5 cm 21 0.025 0.094 

Solenastrea bournoni  5 - <10 cm 13 0.015 0.073 

Siderastrea spp  10 - < 25 cm 4 0.005 0.027 

Solenastrea bournoni  10 - < 25 cm 2 0.002 0.016 

Pseudodiploria clivosa  5 - <10 cm 1 0.001 0.011 

Oculina diffusa  5 - <10 cm 1 0.001 0.011 

Porites astreoides  < 5 cm 1 0.001 0.011 

Porites astreoides  5 - <10 cm 1 0.001 0.011 

Stephanocoenia intersepta  10 - < 25 cm 1 0.001 0.011 

Montastraea cavernosa  

Total 

5 - <10 cm 1 

865 

0.001 0.011 
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Table 5. Octocoral abundance and mean density across the 93 hardbottom sites.  

Octocoral Class Size Class Abundance Mean Density (m2) SD 

Rod < 5 cm 490 0.598 2.306 

Rod 5 - <10 cm 263 0.321 1.350 

Rod 10 - < 25 cm 146 0.178 0.564 

Plume 10 - < 25 cm 123 0.150 0.556 

Plume 5 - <10 cm 114 0.139 0.530 

Rod ≥ 25 cm 111 0.304 0.567 

Plume < 5 cm 90 0.110 0.276 

Plume ≥ 25 cm 25 0.031 0.129 

Fan  < 5 cm 4 0.005 0.044 

Encrusting < 5 cm 2 0.002 0.022 

Encrusting  10 - < 25 cm 2 0.002 0.022 

Encrusting 5 - <10 cm 1 0.001 0.011 

Total  1,371   

 

3.2.3 Benthic Macroalgae 

 Mean total macroalgae percent cover was assessed in 5, 0.5 m2 quadrats along the 

20m transect. Mean percent cover between all hardbottom sites was 13.5% (±1.75). 

Macroalgae were found on every hardbottom site and in relatively high occurrence 

between all sites. Of the 546 quadrats assessed on hardbottom, 66% (361) recorded 

macroalgae. Twenty-five genera were documented as one of the two dominant genera 

within a quadrat (Table 6). dictyota was found as one of the most dominant algae the 

most frequently (37.4%) followed by dasycladus (23.1%), gelidiella (15%), and dasya 

(8.6%). Mean cover hardbottom sites indicated that dictyota was highest (5.4%)  
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Table 6. Frequency of occurrence and mean percent cover of the macroalgae species. 

Genera 

 

Overall Frequency 

of Occurrence 

% Frequency of 

Occurrence 

Mean Percent Cover 

Dictyota 204 37.4% 5.44 

Dasycladus 126 23.1% 1.41 

Gelidiella 82 15.0% 0.94 

Dasya 47 8.6% 0.84 

Gelidium 43 7.9% 0.76 

Bryothamnion 39 7.1% 0.35 

Halimeda 39 7.1% 0.28 

Jania 23 4.2% 0.07 

Caulerpa 10 1.8% 0.06 

Ceramium 8 1.5% 0.05 

Wrangelia 8 1.5% 0.04 

Laurencia 7 1.3% 0.03 

Padina 7 1.3% 0.03 

Hypnea 7 1.3% 0.03 

Digenea 7 1.3% 0.02 

Chondria 4 0.7% 0.02 

Chaetomorpha 3 0.5% 0.02 

Udotea 2 0.4% 0.02 

Dictyopteris 2 0.4% 0.02 

Sargassum 2 0.4% 0.01 

Herposophinia 2 0.4% 0.01 

Gracilaria 2 0.4% 0.004 

Amphiroa 1 0.2% 0.002 

Avrainvillea 1 0.2% 0.001 

Acetabularia 1 0.2% 0.001 
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followed by dasycladus (1.4%), bryothamnion (0.94%), gelidiella (0.84%), and dasya 

(0.76%) (Table 6). Low exposure sites were composed of 79% dictyota, whereas medium 

and high exposure sites were comprised of 30% and 40% dictyota respectively (Figure 

13). Low exposure sites had lower number of algal genera. Bryothamnion, chondria, and 

hypnea were only found in medium and high exposure sites and dictyopteris and 

avrainvillea were only found in sites classified as highly exposed.  

 

 

Figure 13. Sum of average percent cover by exposure type. Dictyota was dominant 

across all exposre categories. The highest total cover occuried in areas of high exposure 
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3.2.4 Sponges  

 Sponges were assessed by presence/absence. Of the hardbottom sites assessed, 32 

sites documented sponges >10 cm (height), equating to 38.5% of all sites. Broken down 

by exposure category, 15.6% of high exposure sites were observed to have sponges larger 

than 10 cm. Sites categorized as medium exposure had the lowest percentage of presence 

of observed large sponges with only 9.6%. Low exposure sites fell just below that of high 

exposure with 13.2% of sites with large sponges present. (Figure 14)  

 

 

Figure 14. Percentage of sites with sponges >10 cm by exposure 

 

3.4 Community Analysis 

3.4.1 Hardbottom Designation 

Multivariate statistical analyses uncovered patterns in the benthic community data 

and their relationship to the present hardbottom designations and the exposure categories. 

Density data for each size class of every coral species and octocoral morphology were 

placed into a matrix. Sites categorized by hardbottom designation showed no significant 

relationship in benthic cover (Figure 15; Table 7). Hard and soft coral size class densities 

categorized by near shore and offshore Hardbottom Designations were significantly 
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dissimilar from each other, yet the difference was slight (Figure 16; Table 8). This weak 

dissimilarity was driven by the Offshore having a lower number of Siderastrea spp < 5 

cm and higher large octocoral densities (Table 9). 

 

 

Figure 15. Multidemensional scaling plot of benthic cover (sand, macroalgae and 

hydriods) data categorized by hardbottom designation. 

 

Table 7. Analysis of similarity results testing hardbottom designation classes by benthic 

cover site data. 

Pairwise Tests      

         R Significance     Possible       Actual Number >= 

Groups Statistic      Level % Permutations Permutations  Observed 

Near shore, Intermediate     0.007         25.5   Very large          999       254 

Near shore, Offshore    -0.086         97.6   Very large          999       975 

Intermediate, Offshore    -0.027         68.6   Very large          999       685 
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Figure 16. MDS plot of coral and octocoral density data categorized by Hardbottom 

Designation. 

 

Table 8. Analysis of similarity results testing Hardbottom Designation classes by density 

and size class data. 

 

Pairwise Tests       

 R Significance  Possible Actual Number >= 

Groups Statisti

c 

Level %  Permutations Permutations Observed 

Near shore, Intermediate 0.064 0.8  Very large 999 7 

Near shore, Offshore 0.197 1.4  Very large 999 13 

Intermediate, Offshore 0.047 23  Very large 999 229 
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Table 9. Similarity Percentages (SIMPER) analysis of coral density (individuals per m²) 

data between near shore, intermediate and offshore Hardbottom Designations.  SID = 

Siderastrea. 

Average dissimilarity = 94.73 

 Near shore Offshore                                

Species Av. Dens Av.Dens Av.Diss Diss/SD Contrib% Cum.% 

SID spp < 5 cm 0.01 0.03 2.56 1.02 2.71 100.00 

ROD 10 - < 25 cm 0.08 0.28 25.63 1.02 27.06 27.06 

ROD 5 - <10 cm 0.34 0.18 21.33 0.84 22.51 74.84 

ROD < 5 cm 0.28 0.12 23.94 0.83 25.28 52.33 

PLUME 10 - < 25 cm 0.04 0.33 21.27 0.73 22.45 97.29 

 

3.5 Spatial Analysis 

The multivariate data were then evaluated as outlined in Costa et al. (in press) to 

determine if sites of more similar data exhibited a spatial relationship. The main 

clustering in the benthic cover data occurred at 74% similarity (Figure 17) whereas the 

density data showed distinct clusters at 25% (Figure 18). Factors were created at the 

respective similarity levels for cover and density and the sites were categorized by in 

which cluster they resided. These data were then displayed in GIS to visualize where the 

different clusters spatially occurred and overlain on the hardbottom designations to 

visualize any relationships. There was no obvious spatial patterning between habitat 

designation and benthic cover (Figure 19). Clusters of sites with similar data were 

interspersed and spread throughout much of the map and across all classes. Although 

density cluster B (green dots in Figure 20) mostly occurred in the deeper areas in Mid-

town. 
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Figure 17. Benthic cover dendrogram from Cluster analysis (top) and corresponding 

MDS plot (bottom). The dashed line in top and symbology in both represent clusters at 

74% similarity. 
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Figure 18. Hard and soft coral density data dendrogram from Cluster analysis (top) and 

corresponding MDS plot (bottom). The dashed line in top and symbology in both 

represent clusters at 25% similarity. 
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Figure 19. Map of groundtruthing sites categorized by multivariate cluster ananlysis 

(74% similarity) of benthic cover data overlaying the previously-defined hardbottom 

designations. Green is high sand cover and red and teal are high algae cover. 
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Figure 20. Map of groundtruthing sites categorized by multivariate cluster ananlysis 

(25% similarity) of hard and soft coral size class density data overlaying the previously-

defined hardbottom designations. 
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3.6 Exposure  

The community had significant relationships with the exposure frequency 

categories. A cluster analysis, MDS plot, and analysis of similarity (ANOSIM) of sites 

categorized by exposure frequency showed significant relationships in benthic cover 

between all comparisons (Figure 21; Table 10). The ANOSIM of benthic cover data 

indicated a medium strength dissimilarity between the high and low exposure classes. 

Mean percent cover of macroalgae and hydroids increased going from low to high 

exposures (1.45, 2.16, 3.74 and 0.66, 1.10, 1.52 respectively), while sand cover decreased 

along the same gradient (7.83, 5.92, 3.70). (Table 11). Sand cover was significantly 

higher at low exposure sites than at medium, or high exposure.(ANOVA; p < 0.0088) 

(Figure 22). Hydroid cover was higher in high exposure sites versus medium and low 

(ANOVA; p < 0.0390). Macroalgae cover was highest in high exposure sites, followed 

by low exposure sites and lowest in medium exposure sites (ANOVA; p < 0.0157).   

Figure 21. Multidemensional scaling plot of benthic cover data by site categorized by 

exposure frequency. 
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Table 10. Analysis of similarity results testing exposure frequency classes by benthic 

cover site data. Bold indicates medium strength significance. 

 

 

 

 

 

 

 

Table 11. Similarity Percentages (SIMPER) analysis of benthic cover site data 

between exposure frequency categories. 

Groups Low & Medium 

Average dissimilarity = 37.97 

 Group Low Group Medium                                

Species Av.Cover Av.Cover Av.Diss Diss/SD Contrib% Cum.% 

Sand 7.83 5.92 19.81 1.22 52.17 52.17 

Macroalgae 1.45 2.16 10.85 1.26 28.57 80.74 

Hydroid 0.66 1.10 5.25 1.30 13.84 94.57 

Groups Low & High 

Average dissimilarity = 50.87 

 Group Low Group High                                 

Species Av.Cover Av.Cover Av.Diss Diss/SD Contrib% Cum.% 

Sand      7.83       3.70   25.65    1.66    50.43 50.43 

Macroalgae      1.45       3.74   15.54    1.69    30.54 80.97 

Hydroid      0.66       1.52    6.29    1.62    12.37 93.35 

Pairwise Tests      

 R Significance Possible Actual Number >= 

Groups Statistic Level % Permutations Permutations Observed 

Low, Medium 0.09 0.3 Very large 999 2 

Low, High 0.335 0.1 Very large 999 0 

Medium, High 0.164 0.1 Very large 999 0 
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Table 11. Continued. 

Groups Medium & High 

Average dissimilarity = 41.36 

 Group Medium Group High                                

Species Av.Cover Av.Cover Av.Diss Diss/SD Contrib% Cum.% 

Sand         5.92       3.70   19.28    1.43    46.61 46.61 

Macroalgae         2.16       3.74   12.91    1.44    31.22 77.83 

Hydroid         1.10       1.52    5.70    1.41    13.77 91.61 

 

 

 

Figure 22. Mean sand cover is significantly lower at high exposure categories and vice 

versa for macroalgae and hydroids. Error bars indicate ±1 standard error of the mean. 

Letters indicate significance between exposure frequencies within categories. 
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Scleractinian and octocoral coral densities had no statistically significant increase 

with the increase of hardbottom exposure frequency. There were weak significant 

dissimilarities in density between low and high and medium and high exposures (Figure 

23; Table 12). Manyof the differences in similarity in all comparisons came from SID 

Spp < 5 cm, ROD < 5 cm, SID Spp 5 - <10 cm, and ROD 5 - <10 cm (Table 13). Rods < 

5 cm were significantly higher on areas of high exposure (ANOVA; p < 0.0070) (Figure 

24). Rods 5-10 cm in high exposure were significantly different from low and medium 

exposure sites, with the lowest cover in areas of medium exposure (ANOVA; p < 0.056). 

SID spp. < 5 cm were increasingly higher with higher exposures, with high exposure sites 

significantly different from medium and low sites (ANOVA; p < 0.0100). SID spp. 5-10 

cm densities were significantly higher in high exposure sites than low (ANOVA; p < 

0.0276). 

Hard coral and octocoral densities were significantly higher on high exposure 

sites than in medium or low sites (ANOVA; p < 0.0113 and p < 0.0008 respectively) 

(Figure 25). High exposure sites had significantly higher plume density than low or 

medium exposure sites (ANOVA; p < 0.0001). Rod density was significantly between 

every exposure site (ANOVA; p < 0.0001) with high exposure having the highest 

densities and medium exposure having the lowest (Figure 26). 
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Figure 23. MDS plot of coral and octocoral density data by site categorized by exposure 

frequency. 

 

Table 12. Analysis of similarity results testing exposure frequency classes by coral and 

octocoral density. Bold indicates medium strength significance. 

 

Pairwise Tests      

 R Significance Possible Actual Number >= 

Groups Statistic Level % Permutations Permutations Observed 

Low, Medium -0.033 75.4   Very large 999 753 

Low, High 0.253 0.1   Very large 999 0 

Medium, High 0.127 0.1   Very large 999 0 
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Table 13. Similarity Percentages (SIMPER) analysis of coral density data between 

exposure frequency categories. 

Groups Low & Medium 

Average dissimilarity = 61.08 
 Group Low Group Medium                                

Species Av.Density Av.Density Av.Diss Diss/SD Contrib% Cum.% 

SID Spp < 5 cm 0.71 0.66 20.26 1.10 33.17 33.17 

SID Spp 5 - <10 cm 0.05 0.17 6.23 0.54 10.19 53.69 

ROD < 5 cm 0.18 0.15 6.31 0.75 10.33 43.50 

ROD 5 - <10 cm 0.19 0.12 5.08 0.58 8.32 62.01 

ROD 10 - < 25 cm 

ROD ≥ 25 cm 

0.08 

0.00 

0.16 

0.12 

4.42 

2.75 

0.62 

0.38 

7.24 

4.50 

69.25 

73.75 

 

Groups Low & High 

Average dissimilarity = 69.02 
 Group Low Group High                                

Species Av.Density Av.Density Av.Diss Diss/SD Contrib% Cum.% 

SID Spp < 5 cm 0.71 0.90 14.38 1.11 20.84 20.84 

ROD < 5 cm 0.18 0.66 10.61 0.92 15.37 36.21 

ROD 5 - <10 cm 0.19 0.41 7.16 0.95 10.37 46.58 

SID Spp 5 - <10 cm 0.05 0.19 6.16 0.69 8.92 55.50 

PLUME < 5 cm 0.04 0.33 5.88 0.90 8.52 64.03 

PLUME 5 - <10 cm 0.04 0.31 5.32 0.81 7.71 71.73 

 

Groups Medium & High 

Average dissimilarity = 68.80 
 Group Medium Group High                                

Species Av.Density Av.Density Av.Diss Diss/SD Contrib% Cum.% 

SID Spp < 5 cm 0.66 0.90 13.82 1.05 20.09 20.09 

ROD < 5 cm 0.15 0.66 9.86 0.93 14.33 34.42 

SID Spp 5 - <10 cm 0.17 0.19 6.50 0.80 9.45 43.87 

ROD 5 - <10 cm 0.12 0.41 6.44 1.02 9.36 53.24 

PLUME < 5 cm 

ROD 10 - < 25 cm 

0.05 

0.16 

0.33 

0.27 

5.55 

5.22 

0.91 

0.87 

8.07 

7.59 

61.30 

68.89 

PLUME 5 - <10 cm 0.06 0.31 5.01 0.84 7.28 76.17 
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Figure 24. Mean cover of top four species/morphology size classes identified by 

SIMPER. Error bars indicate ±1 standard error about the mean. Letters indicate 

significance between exposure frequencies. 

 

Figure 25. Mean coral and octocoral density by exposure categories. Error bars indicate 

±1 standard error of the mean. Letters indicate significance between exposure categories. 
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Figure 26. Mean octocoral density by morphology and exposure category. Error bars 

indicate ±1 standard error of the mean. Letters indicate significance between exposure 

categories. 

 

At high exposure sites, the dominant stony coral densities were Siderastrea spp 

(1.18), Stephanocoenia intersepta (0.07), and Solenastrea bournoni (0.02). Only 

Siderastrea spp. were dense enough to perform analyses of variance by exposure 

category. Siderastrea spp. were significantly higher in density comparing sites of low to 

medium, and medium to high exposure (ANOVA; p < 0.0001) (Figure 27). Mean coral 

richness was also significantly higher at high exposure sites (ANOVA, p < 0.0134) 

(Figure 28). The absence of a species in record does not mean that species is not present 

in that habitat, but it can be some indication of rarity given the total sampling effort (93 x 

10 m²). Montastraea cavernosa and Oculina diffusa were only found at high exposure 

sites and Porites astreoides was only found at medium and high exposure sites. Fan 

octocorals were only found at high exposure sites and encrusting were found at medium 

and high exposure sites.  
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Figure 27. Mean density of the four most prolific corals. Error bars indicate ±1 standard 

error of the mean. Letters indicate significance between exposure categories. 

 

 

Figure 28. Mean coral richness by exposure category. Error bars indicate ±1 standard 

error of the mean. Asterisk indicates a significant result. 

* 

B 

C 

A 



56 

 

3.7 New Hardbottom Designations 

The hardbottom in Palm Beach County was previously defined into three 

designations (Near shore, Intermediate, and Offshore) based on different depth zones (0-4 

m, 4-8 m, and >8 m) and general distances from shore and did not consider exposure 

frequency. Many of the community differences were found in areas of high exposure. 

Multivariate analyses of cover showed that high exposure sites were most dissimilar from 

the low exposure sites and that medium and low were not very different overall (Table 

11). Hard coral and octocoral density and hard coral richness were also significantly 

higher in high exposed sites while medium and low were not different from each other. 

Furthermore, Macroalgae and hydroid cover were significantly highest at high exposure 

sites. Therefore, two exposure classes were created for the new stratification, Low and 

High. The high exposure class equated to the hardbottom being mapped (exposed) greater 

than 60% of the time since 2000. Everything else was considered Low exposure.  

The community data indicated that depth affected the benthic community 

composition as well. Octocorals were found in depths ranging from 6.7 to 30.1 feet (2 to 

9.2 m) (Figure 29) however, 94% of them were deeper than 9 ft (2.7 m). Large octocorals 

(>10 cm) occurred between 6.7 and 30.1 ft, but 99% of them (403) occurred deeper than 

9 ft (2.7 m). Siderastrea spp. < 5 cm were found from 0.25 to 29.6 feet (0.07 to 9 m) in 

this study, however 80.6% were found shallower than 12 ft (3.7 m) (Figure 30). All 

octocoral types were found in both depths; however, fans were only found in less than 9.8 

feet (3 m) depth at one site. 

 

 

 

Model        AICc BIC SSE MSE RMSE R-Square 

Linear  509.62174 516.91438 1280.616 14.229066 3.7721435 0.7939804 
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Figure 29. Linear regression of depth versus distance to shore at the BMA 

groundtruthing sites. 
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The benthic data analyses showed that 3 m was a point where many community 

metrics changed. Octocoral density was higher at sites deeper than 3 m, especially 

octocorals >10 cm in height, whereas small Siderastrea spp. density was lower on deeper 

sites. Additionally, five of the seven coral species were only found deeper than 3 m. 

Therefore, the data were also stratified by the 3m depth contour. 

 The new hardbottom designation stratification defined by the community data 

were Shallow High Exposure, Shallow Low Exposure, Deep High Exposure, and Deep 

Low Exposure. Using this classification, low exposure sites had the lowest mean density 

of all species/morphology by size class and high exposure had the highest (Figure 31, 32, 

Table 14, 15).  

 

 

Figure 31. Multidemensional scaling plot of density belt transect data by site categorized 

by Proposed Hardbottom Designation. 
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Table 14. Analysis of similarity results testing Proposed hardbottom designation classes 

by coral and octocoral density and size class data. 

Pairwise Tests      

 R Significance Possible Actual Number >= 

Groups Statistic Level % Permutations Permutations Observed 

Low Exposure: 0 < 3 m, 

Low Exposure: 0 > 3 m 
0.21 0.1 Very large 999 0 

Low Exposure: 0 < 3 m, 

High Exposure: 0 < 3 m 
0.386 0.1 Very large 999 0 

Low Exposure: 0 < 3 m, 

High Exposure: 0 > 3 m 
0.68 0.1 Very large 999 0 

Low Exposure: 0 > 3 m, 

High Exposure: 0 < 3 m 
0.073 10.7 Very large 999 106 

Low Exposure: 0 > 3 m, 

High Exposure: 0 > 3 m 
0.172 0.3 Very large 999 2 

High Exposure: 0 < 3 m, 

High Exposure: 0 > 3 m 
0.294 0.1 77558760 999 0 

Figure 32. Multidemensional scaling plot of benthic cover data by site categorized by 

Proposed Hardbottom Designation. 
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Table 15. Analysis of similarity results testing Proposed Hardbottom Designation classes 

by benthic cover site data. 

Pairwise Tests      

         R Significance     Possible       Actual Number >= 

Groups Statistic      Level % Permutations Permutations  Observed 

Low Exposure: 0 < 3 m, 

Low Exposure: 0 > 3 m 
0.053 4.1 Very large 999 40 

Low Exposure: 0 < 3 m, 

High Exposure: 0 < 3 m 
0.378 0.1 Very large 999 0 

Low Exposure: 0 < 3 m, 

High Exposure: 0 > 3 m 
0.28 0.1 Very large 999 0 

Low Exposure: 0 > 3 m, 

High Exposure: 0 < 3 m 
0.15 0.6 Very large 999 5 

Low Exposure: 0 > 3 m, 

High Exposure: 0 > 3 m 
0.069 9.7 Very large 999 96 

High Exposure: 0 < 3 m, 

High Exposure: 0 > 3 m 
0.104 2.5 5.66E+08 999 24 

  

Significant relationships were found in the community data between the new 

hardbottom designation classes. Mean percent cover of sand was higher in the low 

exposure shallow and deep than in the high exposure shallow and deep ( ANOVA p < 

0.0003) Hydroids were moderately significantly different between low exposure sites 

(ANOVA 0.0118) and significantly different between low shallow and high deep 

(ANOVA p < 0.0015). Macroalgae cover was highest in high shallow exposure sites, 

followed by high deep. High shallow and deep were significantly different from low 

shallow (ANOVA p < 0.0001) and high deep was significantly different from low deep 

(ANOVA; p < 0.0001) (Figure 33).    

Octocoral cover also had significant relationships between the new designation 

classes. Rod density was significantly higher in the high deep exposures (ANOVA p < 

0.0001) Plumes were also significantly higher in the high deep class (ANOVA p < 

0.0001). Plume density in the low deep to the high shallow were not significant (Figure 

34). Siderastrea spp. density was highest in the high exposure shallow class (ANOVA p 
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< 0.0001).  Siderastrea spp. density in high deep and shallow was significant from that of 

low deep and shallow (ANOVA p < 0.0001). Siderastrea spp. density was not significant 

between low shallow and deep (Figure 35).  

 

Figure 33. Belt transect data by the new hardbottom designation classes. Low and high 

shallow (0 < 3 m) and low and high deep (0 > 3 m). 

 

 

 

 

 

 

 

 

 

Figure 34. Octocoral cover data by the new hardbottom designation classes. Low and 

high shallow (0 < 3 m) and low and high deep (0 > 3 m). 
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Figure 35. Top three coral cover by the new hardbottom designation classes. Low and 

high shallow (0 < 3 m) and low and high deep (0 > 3 m). 

 

4. Discussion 

Environments that are subjected to frequent disturbance are expected to consist of 

habitats with smaller organisms, less diversity and more species present that exhibit  R-

life strategies (Walker and Alberstadt, 1975). We have seen that the hardbottom habitats 

in Palm Beach are continually changing, indicating they are disturbance driven with 

constant cycles of disturbance and recovery. Within these habitats we would expect to 

find more weedy species and other fast growing organisms in areas that experience 

higher frequencies of burial. Those areas with less burial events, we would expect to 

begin to see larger organisms, more stony corals and species exhibiting K- life strategies. 

Following burial events the first to recolonize a benthic community is usually encrusting 

algae, macroalgae followed by octocorals and colonization of stony corals (Littler et al. 

1983; Fairfull and Harriott, 1999). It is important to note that the near shore hardbottom 

environments we looked at are frequently disturbed, and communities would typically 

never reach climax communities. Also in this study we do not know the time series of the 

burial and exposure events, but communities are reminiscent of what you would expect to 

observe. 

  A 

     

* 

A 

        

B 

C 
 



64 

 

 

4.1 Community Structure  

Cycles of burial and exposure both prevent and promote new growth, influencing 

the structure and complexity of all species associated with the near shore hardbottom 

(Sousa, 2001). Exposed substrate is essential to host benthic communities with sessile 

organisms because it provides substrate for colonization (Street et al. 2005). Due to the 

higher energy environment, sedimentation can be elevated on near shore hardbottom 

habitats, especially those with low relief. This cycle of exposure and burial on near shore 

hardbottom habitats influences the structure and complexity of benthic communities. The 

disturbance caused by burial can result in mortality of sessile organisms and prevents 

new organisms from settling. Once the hardbottom becomes exposed, the succession of 

coral communities begins. The more frequent burial events occur the less opportunity for 

organisms to settle. When burial events occur on younger communities less sediment is 

required to bury the recruits, possibly affecting recruit survival (Babcock and Davies, 

1991).  In my thesis, benthic community structure and complexity measured by diversity 

and size of corals, octocorals, sponges and macroalgae were tested against exposure rates 

over time and by depth to determine the effect of sediment burial on the frequently 

disturbed near shore communities. Areas with higher rates of exposure (less burial) were 

expected to have more complex successive communities.  

Benthic communities mostly aligned with exposure rates with only a few 

expectations. The highest number of coral species and octocoral morphologies were 

found at high exposure sites (Figure 25). Mean species richness was also significantly 

higher at high exposure sites; signifying sites that were more often exposed did in fact 

have more established coral communities. Additionally, mean sand cover was lower in 

areas of high exposure as compared to that of areas of low exposure, indicating exposure 

categories were relatively accurate.  

Siderastrea spp. were the most dominant scleractinian throughout the survey sites 

accounting for 92.1% of colonies found. They were also found in significantly higher 

densities at medium and high exposure sites (Figure 24). Throughout the northern portion 

of the Florida Reef Tract (nFRT), Siderastrea spp. are abundant in both marginal and 
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disturbed environments (Moyer et al. 2003; Lirman and Manzello, 2009; Stein, 2012).  

Siderastrea radians are typically classified as stress-tolerant and an early successional 

species due to their life strategy; brooding, small size of maturity, and high recruitment 

rates (Lirman and Manzello, 2009). Siderastrea siderea are known for their abundance on 

the nFRT, as well as tolerance to temperature anomalies (Banks et al. 2008; Gilliam et al. 

2013; Walker and Gilliam, 2013; St. Gelais et al. 2016). Most of the Siderastrea spp. 

colonies observed (81%) were less than 5 cm in diameter, indicating relatively new 

growth (Yaughan, 1915; Bak, 1976; Rogers et al. 1984; Yan Moorsel, 1988; Chiappone 

and Sullivan, 1996). The relatively high numbers of Siderastrea spp. observed in areas 

when compared to other species may be due to the ephemeral nature of the near shore 

hardbottom their life history, and typical abundance on the nFRT (Banks et al. 2008).  

Coral richness was also highest in high exposure areas. Montastraea cavernosa, a 

massive reef building species with low recruitment rates (Miller and Barimo, 2001; 

Lirman and Miller, 2003) and Oculina diffusa were only found at high exposure sites, 

further supporting our expectation that areas having less frequent sediment burial have 

more complex communities.  Porites astreoides are known to have an opportunistic life 

strategy in the FRT because they are brooders with high levels of recruitment and their 

relatively small size of sexual maturity (Lirman and Miller, 2003). These were only 

found at medium and high exposure sites. 

Octocorals had the highest densities compared to stony corals, macroalgae and 

sponges observed. This aligns with previous studies that found high octocoral abundance 

on southeast Florida reefs (Goldberg 1973; Moyer et al. 2003). Gilliam, et al. (2013) 

noted that the Outer Reef in Palm Beach County had the highest density of octocorals in 

the nFRT and that rod morphotypes were most abundant. In the Palm Beach near shore 

hardbottom (this study), high exposure sites had significantly higher rod and plume 

density than low or medium exposure sites. Furthermore, fans were only found in areas of 

high exposure and encrusting morphologies were found on sites classified as medium and 

highly exposed. Most octocorals found were less than 25 cm in height, indicating that 

colonies were not well- established or long-lived (Goldberg, 1973).  
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Macroalgae was found in every exposure category in between all sites. Of the 546 

quadrats assessed on hardbottom, 361 (66%) recorded macroalgae. In sites that were 

infrequently exposed, you would expect to find algal species that are more resilient to 

disturbance; usually fast growing with high reproduction rates (FDEP NHB Study; 

Eriksson and Johansson, 2005; CSA International, Inc. 2009).  Dictyota was found most 

frequently (37.4%) and with the highest mean cover (5.4 %) throughout all the sampled 

sites which matches previous studies (Foster et al. 2006). The success of dictyota is 

presumably due to its opportunistic r-strategy, with high net photosynthesis and high 

reproductive rates due to continuous spore release and the ability to disperse via 

fragmentation (Beach and Walters, 2000; CSA International, Inc. 2009). Low exposure 

sites had the highest occurrence of dictyota accounting for 79% of benthic macroalgae, 

which makes sense because dispersion by fragmentation is useful in unstable or changing 

environments, increasing the likelihood of encountering suitable substrate and decreasing 

post-settlement mortality (Eriksson and Johansson, 2005).  

Furthermore, avrainvillea exhibits k-strategy life histories, which indicates that it 

is typically slow growing with low productivity rates and that much of its energy is 

devoted to structural development (CSA International, Inc. 2009).  This alga was only 

found at high exposure sites. 

 

4.1.2 Regional Community Differences 

The near shore hardbottom in Palm Beach represents a unique near shore 

hardbottom community. Although near shore hardbottom exists throughout the northern 

portion of the nFRT, benthic community structure differs with latitude. Walker (2012) 

partitioned the nFRT into six regions that were statistically distinct in the number and 

amount of major benthic habitat types. These regions were supported in Klug (2015), 

which mapped and evaluated how benthic communities differed along the coast. On the 

nFRT, near shore hardbottom turf algae cover is higher with increasing latitude, while 

macroalgae and stony coral cover decreases (Moyer et al. 2003; Walker, 2012; Klug, 

2015). The number of coral species present on the reef tract decreases from 38 in the 
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Florida Keys to 9 in Martin County (Banks et al. 2008; Walker and Gilliam, 2013). Fish 

assemblages on the near shore hardbottom differ with latitude and more than 80% of the 

fish found on these near shore habitats were juveniles (Fisco, 2016). 

 The southern portion of the nFRT typically sees lower wave energy due to 

shadowing from the Bahamas banks. It is subtropical in climate, and hosts a higher 

density and diversity of tropical biota. The northernmost portion of the nFRT transitions 

to a temperate climate zone (Banks et al. 2008; Walker, 2012; Klug, 2015).  It is host to 

successional communities and experiences higher wave energy. It also crosses the 

Bahamas Fracture Zone, which is the terminus of historical outer reef growth. There the 

shelf broadens and the Florida Current moves away from the coast, allowing for current 

meandering that produces strong upwelling in summer months where benthic water 

temperatures can fluctuate greatly for long periods of time. These temperature 

fluctuations have been theorized to be the cause of the benthic community differences 

observed along the nFRT (Banks et al. 2008; Walker, 2012; Walker and Gilliam, 2013; 

Klug, 2015).  

The near shore communities in the Biscayne region (southernmost defined coral 

reef ecosystem region in southeast FL) are defined by its lack of stony coral cover, high 

density of plume octocorals and most notably by the presence of sea grass, which is 

dominated by Thalassia testudinum and Syringodium filiforme (Klug, 2015). This is the 

only occurrence of seagrass in the nFRT. The Biscayne region is also host to the widest 

section of near shore hardbottom. Moving northward, the hardbottom in the Broward-

Miami region is characterized by the presence of the reef building coral Acropora 

cervicornis and the high density of Porites astreoides and rod octocoral densities (Klug, 

2015). Broward-Miami had the largest area of near shore hardbottom (49.31km²) and the 

highest density of corals.  

 Our study area crossed the north and south Palm Beach regions derived in 

Walker (2012). The South Palm Beach region had the second lowest occurrence of near 

shore hardbottom which was the closest to shore in comparison to hardbottom of all other 

regions, making it more vulnerable to anthropogenic activity and wave action. This 

section of Palm Beach hardbottom is isolated due to the vast expanses of unconsolidated 
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sediments. The North Palm Beach region is the shallowest and narrowest occurrence of 

near shore hardbottom in the nFRT (Walker, 2012; Klug, 2015). It is also noted that the 

North Palm Beach region’s hardbottom is made up of accretionary ridges of coquina 

mollusks and tube-building polychaete worms, unlike the hardbottom further south 

(Banks et al. 2008).  

4.1.3 New hardbottom designations 

Many factors affect benthic communities like wave energy, depth, light levels, 

temperature, relief and turbidity. Several of these often co-vary with depth. For example, 

wave energy, light levels, and temperature usually decrease with increasing depth, 

whereas distance from shore increases with increasing depth (Figure 19). Other local 

studies have found relationships between reef communities and depth (Walker, Riegl and 

Dodge, 2008; Walker, Jordan and Spieler, 2009; Walker, 2012; Walker and Gilliam, 

2013). Although we do not know the true causative factor(s) controlling the communities, 

depth can be used as a surrogate to investigate differences.  

The previously derived hardbottom designations (near shore, intermediate, and 

offshore) did not coincide with the community data (Section 3.4.1). Multivariate analyses 

showed low similarity in benthic community data with previous designations; therefore, 

the current hardbottom designations are a poor stratification of the benthic communities. 

The community data had a stronger relationship resulting in a stratification in benthic 

communities when looking at high exposure categories at the <3m depth contour (Figure 

32; Table 14). Therefore, a new Hardbottom Designation classification is proposed that 

stratifies the hardbottom habitats shallower and deeper than 3 m that have at least 60 % 

exposure or not. This modification changes the designation to four classes: Shallow High 

Exposure, Shallow Low Exposure, Deep High Exposure, and Deep Low Exposure. I 

recommend that this stratification is used in all subsequent study planning, site selections, 

and data analyses. 

 

 

 



69 

 

 4.2 Detecting reef burial/exposure through remote sensing  

Near shore hardbottom communities are a large part of the southeast Florida coral 

benthic ecosystem (Chiappone and Sullivan, 1994). They play an essential role acting as 

habitat, settlement sites, nesting and spawning sites, nursery areas for juvenile fish, 

feeding grounds and shelter for many species including the listed green turtle (CSA, 

2009). In Palm Beach County, the near shore hardbottom is a comparatively small area 

with low relief. It is found in shallow depths, close to the beach, and surrounded by vast 

amounts of motile sediments. The surrounding sediments are continually shifting driven 

by waves and currents causing these low relief hardbottom habitats to be buried and 

exposed through natural processes of sediment transport (Street et al. 2005; Díaz-Ortega 

and Hernández-Delgado, 2014). Periodic hardbottom burial can impede the growth and 

development of hardbottom communities. The impacts from cross-shore and longshore 

sediment transport are heightened in areas like Palm Beach that have fixed inlets or at 

fabricated structures, which sit perpendicular to shore and impede natural littoral 

processes (Dean et al. 2013).   

My study showed that periodic mapping from aerial photographs and manual 

delineation can identify hardbottom burials and exposures that fluctuate between years 

and relate to benthic community differences. Periodic mapping using remotely sensed 

imagery has been shown useful in identifying significant changes in area of coral reefs at 

regional scales (Shapiro and Rohmann 2005; Moufaddal 2005; Hedley et al. 2016). These 

techniques prove effective in change detection on near shore coral reef habitats. For 

example, imagery from 1984 and 2000 were used to assess impacts from shoreline 

restoration and re-nourishment. Burial from infill resulted in a total loss coral reefs in the 

inshore reef zone. Change detection coupled with field observations we able to accurately 

display the impact to the inshore reef zone (Moufaddal, 2005). The use of remote sensing 

coupled with manual delineation allows the study of extensive expanse of coral reef 

habitat and assess temporal patterns in a region (Hedley et al. 2016).  Using remotely 

sensed imagery, the distribution and total area of near shore hardbottom habitats can be 

determined along with the change in exposed hardbottom through time, and the impact of 

disturbance to the hardbottom ecosystems when coupled with in situ measurements. 



70 

 

However, it is difficult to know the actual exposure frequency through time given the 

dynamic nature of the near shore environment and the infrequency of mapping. The 

mapping frequency affects the relationship between the remotely measured exposure and 

the benthic community data. Better relationships between exposure and community 

structure require seasonal mapping because the south Florida coast has intermediate 

beaches that are geomorphologically affected seasonally. Sediment moves toward the 

beach during lower energy summer months, and is washed out during the higher energy 

winter months. (Benedet et al. 2004; Absalonsen and Dean, 2011). Thus, dates and timing 

of imagery acquisition are crucial to assessing change detection (Choppin, 1996). 

Although relationships between exposure and benthic communities were evident, the 

sporadic dates of image acquisition did not allow for the assessment of seasonal 

hardbottom exposure and thus did not capture this seasonal variability of sand movement. 

Images collected in July 2014, November 2014 and May 2015 were used to evaluate such 

fluctuations.  There was little change in the overall calculated area of exposed hardbottom 

between July 2014 and November 2014, but a steep decline from November to May. May 

2015 also showed the third lowest area of exposed hardbottom since 2000, with just 

188.62 acres, with the lowest recorded hardbottom exposed July 2003 at 171.56 acres.  

Large differences in exposure in relatively short time frames were observed. For 

example, an area of hardbottom east of R-136 exposed in July 2014 was completely 

buried in November (Figure 37). The variability in exposure was missed when 

hardbottom exposure was mapped annually. Because the benthic communities advance in 

the succession depending on the time of exposure and seasonal changes are significant, 

annual mapping does not capture or quantify the hardbottom exposure very well and is 

likely the reason stronger relationships between the benthic community and exposure 

weren’t found. Conducting a winter and summer survey would greatly improve the 

understanding of these relationships.  
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Figure 37. Near shore hardbottom east of R-136 that was exposed in July 2014 and 

completely buried in November 2014. Here the delineation of the exposed hardbottom in 

July 2014 is shown over the November 2014 imagery, where no hardbottom is exposed. 

 

When monitoring near shore hardbottom ecosystems, it is often difficult to 

differentiate natural disturbance and anthropogenic impacts (Chiappone and Sullivan, 

1994).  Sediment movement may coincide with either thus, the frequency of mapping 

should also consider anthropogenic activities and major storm events. Several variables 

including seasonality could account for the decrease between November 2014 and May 

2015, but it is important to note the Palm Beach Midtown Dredge and nourishment 

Project deposited approximately 800,000 cy. in Reaches 3 and 4 encompassing 2.4 miles 

of shoreline from January through April in 2015 (Palm Beach County Shoreline 
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protection plan Environmental Enhancement & Restoration Division, 2014).  Reach 2 

decreased 3.63 acres from July 2014 to November 2014 and then another 10.75 acres 

from November to May. Reach 3 initially increased 3.96 acres from July to November, 

but then lost 5.29 acres from November to May. Reaches 4, 5 and 6 showed no 

significant changes throughout the year (Table 19). A dune restoration encompassing 2.1 

miles of shoreline also took place during this period three miles south of the Mid-Town 

Dredge project throughout Reaches 7 and 8. From November 2014 to May 2015 exposed 

hardbottom in the reaches south of the Mid-Town Dredge project decreased by 6.42 acres 

in Reach 8, and 3.71 acres in Reach 9. Hardbottom exposure in Reach 7 increased 3.98 

acres, although total exposure was still 0.68 acres less then what was recorded in July 

2014.  

Previous years showed similar patterns with other nourishment projects (Figure 

38). October 2010 – October 2011 incurred a loss of 39.45 acres following the partial re-

nourishment and dune restoration at Mid-Town Palm Beach, the Phipps Ocean Park 

restoration (Reach 7), and Reach 8 Dune restoration and partial nourishment project 

where a total of 189,000 cubic yards of sediment was added. Exposed hardbottom area 

loss succeeded all beach nourishment projects with the exception of May 2011, which 

saw an initial gain, followed by a loss in October. The Mid-Town Beach Expansion 

Project (Reaches 3 & 4) has had one full-scale re-nourishment in 2003, a hurricane 

restoration project in 2006, and a dune restoration in 2015. The Phipps Ocean Park 

project (Reach 7 and 8) first took place in 2006 and again in 2011 (Palm Beach County 

Shoreline protection plan Environmental Enhancement & Restoration Division, 2014). 

Even though beach nourishment is correlated with negative impacts to the near 

shore hardbottom environment (Banks et al. 2008; CSA, 2009; Gilliam et al. 2013), it is a 

necessary practice to maintain our beaches, keep the southeastern Florida tourism 

economy strong and protect real estate (Absalonsen and Dean, 2011). However, it is 

imperative that managers balance the financial need to maintain a strong economy as well 

as a healthy marine environment (Smith et al. 2007). The severity of dredging impacts on 

near shore coral communities depends on the intensity, frequency, and duration of 

sedimentation (Erftemeijer et al. 2012). 
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Major storms which can greatly affect shorelines and sediment loads on near 

shore environments in over short time periods (Miller and Kosmynin 2008; CSA, 2009; 

Absalonsen and Dean, 2011) coincided with massive sediment movement in the imagery.  

Since 2000, Palm Beach was directly affected by hurricanes Frances (Category 2) and 

Jeanne (Category 3) in 2004 and Hurricane Wilma (Category 3) in 2005 (Palm Beach 

County Department of Environmental Resources Management Environmental 

Enhancement & Restoration Division, 2014). An increase in exposed near shore 

hardbottom area coincided with the mapped hardbottom after each storm, with the 

exception of hurricane Wilma that was followed by a drop in 2 acres of exposed 

hardbottom. In 2008, hardbottom exposure increased dramatically following Tropical 

Story Fey.  Fey impacted Palm Beach August 19 2008, between two imagery capture 

dates July 2008 and October 2008. The exposed hardbottom increased from 190.61 acres 

to 244.43 acres from July to October. Between these dates, reaches in the northern most 

region (2-6) gained the greatest area of exposed hardbottom. In October 2008, Reach 3 

documented its highest exposure; 81.21 acres, which is significantly higher than the 

average, exposed hardbottom in Reach 3 of 52.56 acres (Table 1 & 2). To accurately 

capture the affects natural and anthropogenic events have on the burial and exposure of 

hardbottom in Palm Beach, FL, mapping frequency should be modified to include 

assessments after major storms and planned construction. 

 

5. Conclusions 

 

Palm Beach Florida is host to a unique shallow near shore hardbottom ecosystem. 

This study confirmed that periodic mapping with manual delineation did identify 

hardbottom burials and exposures that fluctuate between years and relate to benthic 

community differences. These techniques prove effective in change detection on 

hardbottom habitats. Large differences in exposure were seen in relatively short periods, 

and most of the aerial imagery did not effectively capture the seasonal variability of 

sediment movement throughout each year. Change in exposed hardbottom can be seen 
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through time, and the impact of disturbance when coupled with in situ measurements can 

be determined however, it is difficult to know the actual exposure frequency through time 

given the dynamic nature of the near shore environment and the infrequency of mapping. 

The more frequently the mapping is conducted, the better our understanding of 

hardbottom exposure will be, allowing for more predictable relationships between 

exposure and the benthic communities.  

The near shore hardbottom coral reef communities of Palm Beach, Florida, did 

indeed align with the observed exposure categories with the highest number of coral 

species and octocoral morphologies found at sites classified as highly exposed, however 

our classifications were not perfect. It was also noted that the current hardbottom 

designations of near shore, intermediate, and offshore did not represent the striations of 

communities, and instead a depth limit of <3m and >3m would be more representative of 

the observed community differences. This study also was successful in creating baseline 

data of the near shore hardbottom community structure and composition in Palm Beach, 

Florida. 

Anthropogenic activities were found to coincide with the decrease of near shore 

hardbottom exposure, while major storms seemed to greatly increase the observed 

exposed hardbottom. Seasonal and targeted imagery collection after known mass 

sediment movement events will help hone the near shore hardbottom areas affected by 

sediment burial and exposure.  
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Appendix 

Appendix I. 

The classification definitions were taken directly from Section 2a of Appendix B 

of the BMA (Cell-Wide Monitoring & Mitigation Plans). The BMA definition for 

categories are as follows: 

Distance/Depth 

Near shore Hardbottom: The near shore hardbottom is typically exposed 

as a 200-400 meter-wide strip from the shoreline, ranging from the supralittoral 

zone to the depth of -4 meters, and is divided into 3 zones: a) slightly above tidal 

line (supralittoral zone); b) intertidal area between high spring tide and low 

spring tide marks (littoral zone); c) from the low spring tide mark to the depths of 

-4 meters (upper sublittoral zone). The longshore and cross-shore currents, waves 

and suspended sediments influence this area. Typical communities are adapted to 

stresses associated with the pounding surf, scour from mobilized sand and 

naturally elevated turbidity levels. Low relief hardbottom in this area is generally 

ephemeral and benthic communities’ exhibit rapid re-colonization by new growth.  

Intermediate Hardbottom: Hardbottom existing from the depth of -4 

meters to the depth of closure (approximately -8 meters). There is generally less 

stress to the community from sand scour. The hardbottom is typically more 

persistent, with a more diverse and stable benthic community, depending on the 

relief.  

Offshore Hardbottom: Hardbottom in water depths deeper than -8 

meters, beyond the depth of closure to -12 meters. Benthic communities are more 

stable here with more developed and older communities. Often larger sized 

species and fish are present here.  

Persistence 
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Persistent Hardbottom: Persistent hardbottom habitats are consistently 

exposed and generally visible in aerial photography and/or verified by in situ 

field survey data. This habitat contains stable biological features such as older 

age classes of benthic species (e.g. corals, algae and sponges) as well as benthic 

communities in sub-climax/climax status. Burial can occur within persistent 

habitats, but the time of exposure is sufficient to allow for occupancy by benthic 

and demersal organisms and associated production functions. Due to the more 

stable environmental conditions of persistent hardbottom, most macroalgae in 

these habitats are perennial species and in some cases may live up to 20 years. 

Larger sponges, scleractinian corals, and octocorals may also be present. Some 

fish species reside for an entire life cycle. Transient larval and juvenile stages of 

many species occur year-round with peaks corresponding to species-specific 

seasons of larval recruitment.  

Ephemeral Hardbottom: Ephemeral habitats are disturbance-mediated 

non-equilibrium systems (FDEP NHB Study; CSA 2009); burial and exposure of 

these habitats occur with a frequency that promotes new growth, inhibits 

colonization and growth of the benthic invertebrate community, and along with 

scouring effect of sediment transport by wave-generated currents, reduces 

macroalgal cover and herbivore abundance. Benthic community structure is 

driven by dynamic physical conditions associated with wave activity and sediment 

scour. Epibiota may persist temporarily under the sand or through the sand. Algal 

species that persist in this habitat typically are forms with high reproduction rates 

due to continuous spore release events, and are very resilient to environmental 

disturbances (FDEP NHB Study; Eriksson and Johansson, 2005;). Communities 

typically present in ephemeral hardbottom habitats include fast-growing 

macroalgae (e.g. Chaetomorpha spp. and Ceramium spp.), filamentous turf, 

Padina, Gracilaria, opportunistic green and brown sheet form algae (e.g. Ulva, 

Dictyota), and other early succession species with a short life cycle. The annual 

algal biomass production in these species is highly variable since they allocate 

much of their resources for speedy reproduction typical for r-strategic species. 
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The diversity of algal species is an indicator of the duration of exposure; low 

diversity is characteristic for ephemeral communities. Benthic forms typical for 

persistent communities can be present in the ephemeral communities, but 

normally only as recruits and juvenile forms.  
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