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I. Abstract 

The Pourtalès Terrace is a gently curved, narrow triangular platform that 

parallels the Florida Keys for 213 km running from southern Key Largo to between 

Key West and the Marquesas Keys. The main Terrace surface begins in 200 m and 

dips gently to approximately 450 m, where the Pourtalès Escarpment slopes steeply 

to the deep floor of the southern Straits of Florida. The Terrace platform exhibits a 

wide variety of Neogene-age geological features, including high-relief ledges, 

mounds, sinkholes and deep-water biogenic build-ups called bioherms. Previous 

research revealed dense and diverse benthic assemblages dominated by stylasterid 

hydrocorals, octocorals and sponges.  

Many Terrace features also represent popular, long-term fishing targets. Due 

to concerns about resource sustainability, (National Oceanic and Atmospheric 

Administration (NOAA) and the South Atlantic Fishery Management Council 

(SAFMC) included the Terrace in the Comprehensive Ecosystem-Based Amendment 

1 (CE-BA 1, June 2010) that protects deep-water Coral Habitat Areas of Particular 

Concern (CHAPCs) along the southeastern U.S continental margin by prohibiting use 

of a variety of potentially damaging bottom fishing gear. NOAA also established the 

East Hump Marine Protected Area (MPA) as a Type II MPA, permanently closed to 

fishing for and possession of snapper and grouper species.  

To develop a more robust database on Terrace habitats and resources, a 

research cruise (September 2011) used ROV Kraken 2 to survey 14 sites both inside 

and outside the CHAPC and MPA for biological diversity, density, and distribution, 

with a focus on deep-sea coral and sponge assemblages. The surveys resulted in 58 
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h of videotape, 2,866 images, and collected 150 specimens of benthic invertebrates. 

All dive sites were mapped with multibeam sonar.  

 This project used Coral Point Count with Excel extensions (CPCe)©, PRIMER 

6.1.10 beta, JMP© statistical software, and Environmental Systems Research 

Institute (ESRI) ArcMap 10.3 Geographic Information Systems  (GIS) to 

quantitatively analyze transect images and video from the ROV transects. This 

information was used to characterize dive sites in terms of benthic invertebrate 

faunal communities, depth, and topography; and compare results relative to 

protected versus unprotected sites.  

Of the 14 sites surveyed 10 were analyzed and split into 42 transects of 

approximately 30 m2 based on five depth and location bin classes. Each site was 

initially separated into habitat types based on qualitative geomorphologic features 

for statistical analysis (i.e., mound slope, mound wall, mound top, deep mound, 

valley, Lophelia mound, sinkhole), using methods established by Reed et al. (2011; 

2014). In initial analysis, depth and location were found to be superior to 

geomorphology as an indicator of what was driving differences in communities 

among transects. As a result each transect was placed into one of five depth and 

location bin classes based on depth (m) of each image and location relating to 

CHAPC/MPA area borders: West 150-300 m (12 transects), North Central 150-250 

m (14), Central 250-300 m (8), South 450-500m (5) and South 500-550 m (3).  

Distinct differences in communities of each depth and location bin class in 

relation to percent cover and organism density were apparent. Communities vary 

strongly among bins with some similarities: e.g., West 150-300, North-Central 150-
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250, and Central 250-300 all included Stylaster miniatus (Stylasteridae): South 450-

500 and South 500-550 included Paramuricea sp. 3 among their most dominant 

species.  Also similar species were found within similar depth ranges.  Protection 

status (within CHAPC, CHAPC/MPA, or No Protection) did not affect differences in 

communities, suggesting protection regulations have not been implemented long 

enough to show significant differences between protected and unprotected sites. 

Several new geologic features were found e.g., the southernmost Lophelia pertusa 

coral mound in U.S. waters. Some important features were described that lie outside 

of CHAPC/MPA borders, suggesting new borders should be designated. 

Results showed a strong relationship between depth and location in forming 

deep-water communities, and that these factors could be used as proxies for 

creating habitat maps in unmapped areas. These results will also provide managers 

and scientists with a valuable baseline for assessing benthic invertebrate 

communities, their changes over time, and the effectiveness of protected areas on 

the Pourtalès Terrace.  

  

Key Words: Pourtalès Terrace, habitat characterization, Coral Habitat Areas of 
Particular Concern, Marine Protected Areas, Comprehensive Ecosystem-Based 
Amendment 1 
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II. Introduction 

A. History of the Pourtalès Terrace   

 Investigations of the Straits of Florida began in 1850 when Louis Agassiz was 

contracted by the U.S Coast Survey to take the first depth soundings off the Florida 

Keys to improve navigation. Louis Francois de Pourtalès and Henry Mitchell, 

assistants of the U.S Coast Survey, began exploring the Straits in 1867 aboard the 

surveying ships Corwin and Bibb. They reached a maximum depth of 850 fathoms 

(1554 m) between Florida and Cuba (Agassiz, 1888). Their work discovered what is 

now known as the Pourtalès Terrace, as well as the first records of deep-sea fauna 

under the Gulf Stream. This research was followed by more extensive hydrographic 

and biological operations of the U.S Coast and Geodetic Survey ship Blake in 1878 

(Agassiz, 1888).  

 In honor of Pourtalès’ discoveries in the Straits of Florida, Alexander Agassiz 

(1888) named this feature the Pourtalès Plateau. Jordan and Stewart (1961) 

proposed the current name Pourtalès Terrace instead (Jordan et al., 1964).  

 Details of Terrace geology remained unknown until Jordan (1954), using the 

Coast and Geodetic Survey Ship Hydrographer described a series of submarine 

topographic zones 25 miles off the Florida Keys reefs, including a large escarpment 

and large sinkholes, three at a depth of 900 m. Jordan interpreted these sinkholes as 

evidence that the submerged tip of the Florida Peninsula once stood above sea-level.  

However, Land and Paull (2000) claimed the sinkholes were never exposed above 

sea level due to water depths too great for exposure. In examining the continental 

slope off southwest Florida, Jordan and Stewart (1959) determined that the 
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escarpment borders the west Florida Continental terrace along the full length of the 

peninsula. They also described other topographic features including faults, ridges, 

and fracture. Siegler (1959) referred to the Terrace as an “old coral reef” based on 

echosounding in 275 to 500 m.  Recently Reed et al.  (2005) described the biology 

and geology of the deep-water sinkholes on the Terrace from manned submersible 

dives.  

 Following publication of detailed bathymetry of the northern Straits of 

Florida (Jordan & Stewart, 1961; Jordan, 1962), Jordan et al. (1964) and Hurley 

(1964) published detailed bathymetric maps of the southern Straits of Florida and 

Pourtalès Terrace based on combinations of soundings and precision depth 

recorder echograms, plus continuous seismic surveys showing sub-bottom profiles. 

These were followed by a detailed bathymetric map and seismic profile of the entire 

straits by Malloy and Hurley (1970).  

 As a result of these studies, the Pourtalès Terrace can now be characterized 

as a gently curved, narrow triangular platform that parallels the Florida Keys for 

213 km, starting from southern Key Largo and ending between Key West and the 

Marquesas Keys. The main upper boundary begins in 200 m and dips gently to 

approximately 450 m, where the Pourtalès Escarpment slopes steeply to the deep 

floor of the southern Straits of Florida (Jordan et al. 1964; Reed et al. 2005).   

 Also during the 1960s, the University of Miami carried out extensive 

dredging and trawling operations in the Straits aimed at better understanding the 

diversity and distribution of benthic invertebrates and fishes. The collections 

contributed to numerous taxonomic papers on a wide range of organisms (e.g., 
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Holthuis, 1971, 1974 [Crustacea]; Meyer et al., 1978 [Crinoidea]; Quinn, 1979 

[Gastropoda]; Cairns, 1979 [Scleractinia]; Cairns, 1986 [Stylasterdae].  

 The human occupied vehicles (HOVs) Aluminaut, Ben Franklin, and Alvin first 

surveyed the deep Straits in the late 1960s focusing chiefly on geology and 

hydrography. All of them explored the northern Straits (e.g., Neumann and Ball, 

1970; Ballard and Uchupi, 1971); none ventured onto the Pourtalès Terrace. More 

recent research with HOVs and remotely operated vehicles (ROVs) on deep 

ecosystems and geology of the Straits of Florida, in particular deep coral habitats 

and lithoherms, have also been carried out primarily in the northern Straits, 

especially on the Miami Terrace and Bahama Island slopes (e.g., Neumann et al., 

1977; Mullins and Lynts, 1977; Mullins and Neumann, 1977; Mullins, 1983; Messing 

et al., 1990; Anselmetti et al., 2000; Messing, 2004; Grasmueck et al. 2006, 2007; 

Correa et. al. 2012a, 2012b). Submersible surveys by Reed et al. (2005) focused on 

the southern Straits (refer to Previous Biogeographic Work section) whereas Reed 

et al. (2006) and Reed et al. (2013) surveyed and mapped deep-sea coral ecosystem 

habitat (DSCE) off the entire eastern coast of Florida. However, as the study of deep-

water coral environments has increased, so has the realization that conservation is 

critical for preserving these habitats as they represent important biological and 

commercial resources, as well as essential fish habitat for a variety of commercially 

important species, and an enormous reservoir of largely unknown biodiversity.   

 B. Previous Biogeographic Work 

 Recent HOV and ROV dives have revealed dense and diverse benthic 

assemblages dominated by stylasterid hydrocorals, octocorals and sponges on the 
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Pourtalès Terrace (Reed et al., 2005).  Whereas our understanding of deep-water 

reefs first relied upon dredging and trawling surveys, which could impact live 

bottom habitat, recent detailed acoustic mapping and ROV techniques have come 

into widespread use only in the last two decades (Roberts et al., 2005).  Reed et al. 

(2005) used a submersible to characterize benthic and fish resources in eight 

previously unexplored areas of the Terrace, including the Naples, Jordan and 

Marathon deep-water sinkholes, and five bioherms. The Jordan sinkhole had the 

greatest depth and area of any known sinkholes. They identified 42 fish taxa, 

including several of commercial importance, 66 Porifera taxa, and 21 Cnidaria 

species.  

 Additional knowledge is limited and largely restricted to geology.  Ross and 

Nizinski (2007) noted that the most established and extensive deep-sea coral reefs 

in U.S waters occur off the southeastern continental margin, where extensive rough 

topography appears to favor development of coral mounds and coral ecosystems.  

Substantial work is needed in these areas for better resource management. Deep 

reefs support their own fish populations and great but poorly known invertebrate 

diversity.  

 National Oceanic and Atmospheric Administration (NOAA) and the Regional 

Fishery Management Council publish a report to Congress biennially about the 

Deep-Sea Coral Research and Technology Program, established in 2006, under 

Section 408 of the Magnuson-Stevens Fishery Conservation and Management Act 

(MSA). The goal of the program is to report research activities and results, including 

identifying, monitoring, and protecting cold and deep-water reefs. In 2011 the 
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NOAA Deep Sea Coral Research and Technology program funded Harbor Branch 

Oceanographic Institute’s Cooperative Institute for Ocean Exploration, Research, 

and Technology (CIOERT) to conduct a research cruise (Reed et al. 2012) to the 

Pourtalès Terrace aboard NOAA ship Nancy Foster on 23-30 September 2011 in 

which the data for this thesis was collected. The cruise mapped ten sites on the 

Terrace with high-resolution multibeam sonar for the first time. Previously, only 

low-resolution NOAA regional bathymetric charts were available. The new maps 

exposed features in far greater detail than previously known, and revealed new 

topographic features, deep-water sinkholes, and the southernmost known deep-

water Lophelia coral mound in U.S waters (Reed et al. 2012).  

 The 2014 Deep Sea Coral Research and Technology Program report to 

Congress covered 2012 and 2013 NOAA research activities.  The program explored 

many U.S regions and found deep-sea corals off every coast below the photic zone.  

Huge steps have been made in identifying deep- sea coral locations and 

characterizing those sites. 

 Based on data from the September 2011 research cruise Reed et al. (2014) 

used density counts and percent cover to analyze and characterize benthic habitat 

and fish communities for geomorphology, substrate, depth and slope. They found 

that depth, followed by geomorphology and substrate were the factors contributing 

to variations in fish communities. Protection status did not affect fish community 

diversity. Several new geologic features were described that lie outside of Coral 

Habitat Areas of Particular Concern (CHAPC) and Marine Protected Area (MPA) 

borders, suggesting new borders be designated (Reed et al. 2014).  
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C. Conservation 

 Deep-sea coral ecosystems (DSCEs) have proven to be important habitat for 

numerous fish species, invertebrates, and other organisms, and essential fish habitat 

for some commercially important species. Not only do DSCEs provide habitat but 

they are of significant importance for chemical and biological research; e.g., research 

on bamboo corals (Isididae) has shown they may be used for bone grafts (Lumsden 

et al. 2007), and the polyketide leiodermatolide discovered from a deep-water 

sponge found on the Pourtalès Terrace shows potent antitumor activity in a model 

of pancreatic cancer (Paterson et al. 2011). In addition, Aphrocallistin (Wright et al. 

2009) is derived from the deep-water sponge Aphrocallistes beatrix which was 

discovered on deep-water Lophelia reefs in the Straits of Florida, and has selective 

activity against cancer cells with defined mutations and may have utility in treating 

melanoma and triple negative breast cancers.  The microsclerodermins (Guzmán et 

al. 2015) are also found in deep-water sponges and shown substantial activity 

against pancreatic cancer cells through inhibiting the transcription factor nuclear 

factor kappa B and are under investigation as potential cancer therapeutic agents. 

Nortopsentin a (Alvarado et al. 2013) from the deep-water sponge Spongosorites has 

potent activity against the malaria parasite, Plasmodium falciparum.  

  Human impact on DSCE habitat around the world has been extensive. Deep-

water reefs [also called cold-water reefs, as they may occur in relatively shallow 

water at high latitudes (Rogers, 1999)] were only first discovered in the 1950s 

(Teichert, 1958), but human impacts have been accumulating for a long time due to 

lack of knowledge about these reefs or their locations (Rogers, 1999; Stetson et al. 
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1962). Human impacts include fishing and energy production, although commercial 

bottom fishing appears to be the main source of disturbance, via overfishing and 

destruction of reef framework by fishing gear such as bottom trawls. Also, 

communication cables may destroy habitat. Deep-sea oil exploration in the Gulf of 

Mexico and northern Great Britain could affect coral habitats and organisms by 

generating problems that are not yet well understood (Rogers, 1999).  In 2010 

President Barack Obama proposed permitting offshore drilling in Florida as close as 

50 miles to the shore, but the idea perished in the Senate (Leary, 2010).  

As an example of the longer-term effects bottom trawling had on deep reef 

habitats, Reed et al. (2007) compared submersible image surveys of deep-water 

Oculina varicosa coral reefs off eastern Florida between 1975-1977 and again in 

2001. The extensive populations of grouper and snapper found in the earlier 

surveys had been decimated by 2001 (Koenig et al. 2005), when coral destruction 

due to bottom trawling for rock shrimp was also documented. From 1975 to 2001, 

six reef sites had nearly complete destruction of live coral but the two sites within 

the original 325-km2 Oculina Habitat of Particular Concern (OHAPC) established in 

1984 were not impacted by fishing (Brooke et al. 2006; Reed et al. 2007).  

The deep-water scleractinian coral Lophelia pertusa, several species 

stylasterid hydrozoan corals, and numerous octocorals and sponge species occur on 

the Terrace and create extensive complex habitats for many species (Reed et al. 

2005). Many of the prominent geological features on the Terrace represent popular, 

long-term fishing targets due to their being natural spawning, feeding, and nursery 

grounds for a variety of species. The Oculina reefs off the central eastern Florida 
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coast provide a useful case history background for managing resources on the 

Pourtalès Terrace. Though the OHAPC was established in 1984, there were 

indications that illegal fishing continued and, in 2003, the South Atlantic Fishery 

Management Council (SAFMC) passed an amendment requiring commercial vessels 

such as rock shrimp boats to carry a vessel monitoring system (VMS), as well as the 

proper permits. Though enforcement of such rules is difficult the Florida Fish and 

Wildlife Conservation Commission (FWC) does patrol the reef areas for illegal 

fishing practices (Brooke et al. 2006).  

In June 2010, due to concerns about the sustainability of both its pelagic and 

benthic resources, NOAA and the SAFMC included the Pourtalès Terrace when they 

implemented the Comprehensive Ecosystem-Based Amendment 1 (CE-BA 1) to 

protect deep-water Coral Habitat Areas of Particular Concern (CHAPCs) along the 

southeastern U.S continental margin. This amendment prohibits fishing vessels from 

using a variety of damaging bottom fishing gear including: bottom longline, trawl, 

dredge, pot or trap, and anchor (SAFMC, 2009a).  Currently only three fisheries are 

allowed to function in this area: wreckfish (Polyprion americanus), golden crab 

(Chaceon fenneri), and royal red shrimp (Pleoticus robustus). This amendment 

allows these fisheries to operate within certain areas of the CHAPCs (NOAA, 2009).  

In addition, NOAA established the East Hump Marine Protected Area (MPA) as a 

Type II MPA.  This area is currently closed to fishing for and possession of snapper 

and grouper species, but trolling for pelagic fish species is allowed (SAFMC, 2009b).  

Surveillance of these areas for illegal practices is difficult because they cover large 

areas and are easily accessible to fishers from the coast (Reed, 2002). 
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In 2012 the SAFMC proposed Comprehensive Ecosystem-Based Amendment 

3 (CE-BA 3), of the Magnuson-Stevens Fishery Conservation and Management Act 

(MSA), aiming to improve quantifying by catch/mortality rates and discard data 

methods. Improving data collection on fishing mortality increases ability to track 

annual limits to then reduce the occurrence of overages. Fisheries affected by CE-BA 

3 include wahoo (Acanthocybium solandri), snapper (Lutjanidae), grouper, golden 

crab and migratory species. As of this thesis, approval of CE-BA 3 by the Council is 

still under discussion (SAFMC, 2014).  

In 2013 the SAFMC proposed Comprehensive Ecosystem-Based Amendment 

8 (CE-BA 8) of the MSA. This amendment was prompted by two major deep-water 

coral site discoveries outside current CHAPC boundaries. This amendment has been 

approved by the SAFMC, NOAA fisheries and the Secerteray of Commerce and will 

be published soon (NOAA, 2014). It will double the size of the OHAPC off eastern 

Florida and add to the CHAPCs off northern Florida and North Carolina, protecting 

an additional 843 square miles protecting from bottom contact fishing gear.  

D. Hypotheses 

 In addition to the descriptive component of the project, i.e., benthic 

invertebrate and assemblage distribution, and mapping, the project will address two 

primary hypotheses: 

Hypothesis 10:  No significant difference exists in benthic invertebrate communities 

among the ten sites relative to depth, topography, habitat, and available 

hydrographic data.  
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Hypothesis 1a: Significant differences exist in benthic invertebrate communities 

among the ten sites relative to depth, topography, habitat, and available 

hydrographic data.  

 

Hypothesis 2o: No significant difference exists in benthic invertebrate communities 

based on protected sites: defined as being between the two sites within both the 

East Hump MPA and CHAPC, and the six sites that are solely within the CHAPC; 

versus the two non-protected sites.  

Hypothesis 2a: Significant differences exist in benthic invertebrate communities 

based on protected sites: defined as being between the two sites within both the 

East Hump MPA and CHAPC, and the six sites that are solely within the CHAPC; 

versus the two non-protected sites.  

Hypothesis two will be used to compare and contrast these sites: protected 

sites within CHAPC only, and within both CHAPC and MPA; verses unprotected sites 

outside MPA and CHAPC. Whereas MPA sites are closed to all bottom fishing (hook 

and line as well as trawling and traps), the only restriction in the CHAPC is the 

prohibition of bottom trawling and traps. Although it is probably too soon to see 

significant differences between the sites based on closure, these data can be used to 

provide baseline data for each of these sites. Therefore H2 will provide data on 

whether the 3 types of sites (MPA/CHAPC, CHAPC, non-protected) are intrinsically 

different in habitat, depth, or community, or not.  
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II. Methods 

A. Data Collection 
 
 NOAA and CIOERT of Harbor Branch Oceanographic Institute at Florida 

Atlantic University conducted a research cruise to the Pourtalès Terrace aboard 

NOAA ship Nancy Foster on 23-30 September 2011. Using the University of 

Connecticut’s ROV Kraken 2, 14 sites were surveyed, which covered an area of 16 

km2, at depths ranging from 154 to 838 m.  The ROV recorded 58 hours of dive 

videotape with audio annotations made every one to five minutes coded with date, 

time, coordinates, and depth. Audio commentary included geology, habitat and 

biota. Digital still Images taken by the ROV totaled 2,866, including 118 images of 

collected specimens, 358 general habitat images, and 2,253 quantitative transect 

images.  The in situ images were taken with the ROV still camera oriented 

perpendicular to the substrate with parallel scaling lasers 10 cm apart, enabling 

calculation of image areas. In addition, video transects were used for studies of the 

fish populations but are not part of this thesis.  

 The NOAA survey crew mapped ten sites on the Terrace with high-resolution 

multibeam sonar for the first time. Previously, only low-resolution NOAA regional 

bathymetric charts were available. The multibeam maps revealed features in far 

greater detail than previously known, and revealed new topographic features, such 

as deep-water sinkholes, and the southernmost deep-water Lophelia coral mound in 

U.S waters.  
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B. Data Preparation 

All video and still photographic image data were initially reviewed, 

incorporating audio annotations. A library of benthic macroinvertebrate images was 

compiled in advance from both video and digital still images to ensure that taxon 

identification remained consistent throughout analyses. Final sets of images were 

assembled for CPCe quantitative analyses after elimination of blurred, dark, distant 

or otherwise unusable images (e.g., turbidity).  Partially shadowed images were 

cropped. Image contrast and clarity were enhanced in the lab when necessary using 

Photoshop© or similar software. For CPCe analysis, overlapping images were also 

removed.  

The area of each image used to determine transect surveying area for CPCe 

analysis was calculated by converting image length and width from pixels to 

centimeters using the distance between the ROV’s parallel scaling lasers as 

calibration. However, sites were unequally surveyed, as more pictures were taken in 

some areas than others. Although the height off the bottom for the image transect 

was ~1.3 m, it was not exact over the rough topography. As a result, the areas of the 

various images varied somewhat thus the surveyed areas were independent of the 

number of images. Once equivalent areas surveyed were determined, a common 

surveyed area of approximately 30 m2 was chosen that maximized the number of 

usable sites versus a large sample area. This allowed analysis of 42 transects. A 

random subset of between six and 48 images per transect was chosen to equal the 

30 m2 standard area, and 829 images were analyzed. Sites with too few images or 

insufficient area were discarded due to significant outliers in the analyses.  
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Habitat characterizations of each transect included ROV dive track data 

(Table 1), which includes depth, longitude, latitude, total distance, and bottom time.  

Table 1. Dive track data: site number, dive number, bottom time, total distance, 
latitude, longitude, and depth. 

 

 

 

 

 

 

  

 

 

Of the 14 sites surveyed 10 were analyzed (Figure 1) and initially separated 

into habitat types based qualitatively on geomorphologic features for statistical 

analysis (i.e., mound slope, mound wall, mound top, deep mound, valley, Lophelia 

mound, sinkhole), using methods established by Reed et al. (2011; 2014).  
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Figure 1. GIS map of the Pourtalès Terrace showing CHAPC border in red, MPA 
border in yellow with dive sites distinguished by green stars. Dives used in this 
thesis 13, 16-19, and 22-26.  
 

In initial analysis, depth and location were found to be superior to 

geomorphology as an indicator of what was the dominant factor for the differences 

in communities among transects. As a result transects were placed into one of five 

depth and location bin classes based on depth (m2) of each image and location 

(inside versus outside of CHAPC/MPA area borders; i.e., protected sites vs. non-

protected sites). Figure 2 shows the five depth and location bin classes on a GIS map.  

The number of transects within each bin class depended on depth and location: 

West 150-300 m (12 transects), North Central 150-250 m (14), Central 250-300 m 

(8), South 450-500 m (5) and South 500-550 m (3). Appendix 1, Table 1 includes 

transect name, transect by geomorphology, transect by depth and location bin class, 

image range, number of images, area per m2 of each transect, mean depth (mean 

depth of all images per transect), and protection status.  
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Figure 2. GIS map of the Pourtalès Terrace showing CHAPC border in red, MPA 
border in yellow, with five depth and location bin classes represented by colored 
circles.  
 

C. Data Analysis 

Using Coral Point Count with Excel extensions (CPCE)© (Kohler and Gill, 

2006) 829 images were analyzed for percent cover following protocols established 

by Reed et al. (2011; 2014) for the NOAA/CIOERT Cruise Report (Reed et al. 2012), 

as well as by Messing et al. (2011) and Vinick et al. (2012) for similar surveys 

carried out on the nearby Miami Terrace. Fifty random points per image were 

characterized for percent substrate cover using 16 major benthos and substrate 

categories; non-living substrates included hard bottom, sediment-veneered hard 

bottom, and sediment. Living benthos in images were identified to lowest general 

taxonomic levels possible, primarily within the Phyla Cnidaria, Porifera, and 

Echinodermata and Appendix 2 shows major categories used for percent cover 

analysis and CPCe results. 



 23 

To determine organism density, images were analyzed by counting all visible 

organisms larger than approximately 3 cm across, identifying them to the lowest 

taxonomic level possible, and calculating their density from the image area that was 

determined by CPCe ARA analysis. A library of benthic macroinvertebrate images 

was compiled in advance from both video and digital still images to ensure that 

taxon identification remained consistent throughout analyses; some taxa could only 

be identified to higher taxonomic categories due to difficulty in identification 

without a specimen. Appendix 2 lists organism density results and the taxonomic 

list used in analysis. 

After images were analyzed, multivariate statistics (PRIMER 6.1.10 Bray-

Curtis similarity indices) were used to evaluate similarities and differences among 

sites, in particular, to identify community differences based on geomorphology, 

depth/location, and protection status (as defined above under Hypotheses). To 

understand the relationships among transects, Analysis of Similarities (ANOSIM), 

Species Accumulation and Species Analysis (SIMPER), Cluster analysis with 

Dendrogram, and non-metric multi-dimensional scaling (MDS) were used. A 

univariate ANOVA analysis was conducted using JMP© statistical software to 

determine whether significant differences existed between sites by depth and 

location to determine if depth was driving the differences in communities.  

The purpose of an MDS plot is to represent the population of samples as 

points in two dimensions, with the distance between the points relating to the 

similarity or dissimilarity of the fauna within each site. Therefore points that are 

close together are more similar in community, and points that are far apart are more 
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dissimilar (Clark and Gorley 2006). Percent cover and density data with 

geomorphology, protection status and location/depth as factors were square-root 

transformed, averaged and plotted using Bray-Curtis Similarity indices. Cluster 

analysis of percent cover data produced a dendrogram for each factor, in which 

sample size decreased as similarity increased (Clark and Gorley 2006). Cluster 

dendrograms with transects 1-42 on the x-axis and similarity on the y-axis 

illustrated similarities based on geomorphology, protection status and depth and 

location bin classes. Using the dendrogram plots, levels of similarity were observed 

for each factor and clusters were overlain on MDS plots.  

A one-way ANOSIM is based on a resemblance matrix and tests for the null 

hypothesis, resulting in R statistics and pairwise comparisons.  An R statistic is used 

which ranges from zero to one. Negative R-values are not uncommon and may be 

due to an outlier or deemed irrelevant due to dissimilarity greater within samples 

than among (Chapman & Underwood 1999). R-values closer to zero represent no 

dissimilarities (more similar) those closer to one represent complete dissimilarity. P 

values are significant when closer to zero (Clarke & Gorley 2006). 

Species Accumulation and Species Analysis (SIMPER) was used to analyze 

organism density count data to determine which species based on location and 

depth as the factor contributed most to the Bray–Curtis dissimilarity. Groups with 

higher values had similar communities.  

Hillshaded bathymetric maps created by Stephanie Farrington (Harbor 

Branch Oceanographic Institute at Florida Atlantic University (HBOI)) using 

Geographic Information Systems (ArcGIS 10.3) software were used for visually 
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interpreting the seafloor slope in the bathymetric data. Cruise field notes describing 

habitats were plotted in GIS as points overlaying the bathymetry. Geomorphologic 

features that coincided with the different habitats in the ROV field notes were 

outlined as separate polygons in GIS using a predetermined minimum mapping unit. 

Regional geomorphology was evaluated to determine any large-scale cross-shelf 

trends that might indicate habitat differences. The surveyed sites were plotted in 

GIS and statistical analyses were performed to test, community similarities among 

the visually interpreted habitats. 

Using ArcGIS software and maps created by Reed et al., 2012 maps were 

modified to display each transect location based on depth and location bin classes.  

Each transect track is linked with the images used in analysis; each track consists of 

round circles representing a photo per circle, with each transect distinguished by 

color. Appendix 3 shows GIS maps with a smaller map of the Pourtalès Terrace.  

IV. Results 
 

 The following sections discuss percent cover and density results and 

multivariate statistical analysis of the similarities and differences among the benthic 

communities based on geomorphology, depth/location, and protected status of the 

various transects.  

A. Community Analysis by Geomorphology  

Percent cover and organism density count data with geomorphology as the 

factor were square root transformed, averaged and plotted using Bray-Curtis 

Similarity indices. A cluster analysis produced a dendrogram of percent cover with 

transects 1-42 on the X-axis and similarity on the Y-axis illustrating similarities 
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based on geomorphology with main groups clustering at 75% similarity (Figure 3; 

red lines indicate statistically similar groups).  Figure 4 shows corresponding MDS 

plot with five clusters at 75% similarity. Transects 30 and 31, Lophelia Mound 

clustered away from others. The remaining geomorphic factors (Mound-Slope, 

Deep-Mound, Sinkhole, Valley, Mound-Top, and Mound Wall) were scattered among 

the remaining clusters.  

Cluster dendrogram of density count with transects 1-42 on the X-axis and 

similarity on the Y-axis illustrating similarities based on geomorphology with main 

groups clustering at 28% similarity, exhibiting weak similarity (Figure 5).  Figure 6 

shows corresponding MDS plot with similarity level of 28%.  All sinkhole transects 

clustered together with the Lophelia mound cluster overlapping. Mound-slope 

transects generally clustered near each other or together. Mound-top transects 

clustered with Mound-slope and Mound-Wall. Deep-mound transects clustered 

together with Valley, Mound-top, and Mound-slope transects.  

Percent cover and organism density analyses data were analyzed using a 

one-way Analysis of Similarities (ANOSIM) with geomorphology as the factor. 

ANOSIM of percent cover (Table 2) found significance between groups clustered by 

geomorphology (p=0.001) but with a low R value (R=0.329) indicating that the 

community data were weakly related to the qualitative geomorphology categories. 

Deep Mound/Lophelia Mound had the R statistic closet to 1 (R=0.956, p=0.008) 

followed by Sinkhole/Lophelia Mound (R=0.918, p=0.018), and Mound 

Slope/Lophelia Mound (R=0.864, p=0.001). Valley/Mound Top were closest to 0 

(R=0.119, p=0.198) followed by Valley/Mound-Slope (R=0.135,p=0.014), and 
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Mound-Wall/Deep-Mound (R=0.135, p=0.013). Valley/Mound-Wall, Mound-

Slope/Mound-Wall, and Mound-Slope/Deep-Mound had negative R statistic values 

possibly indicating an outlier in the data. 

Table 2. ANOSIM percent cover results, using pair-wise testing to analyze 
geomorphology. Bold groups indicate significance (<0.05).  

Groups R Statistic P value  

Valley, Mound-Slope 0.135 0.014 

Valley, Mound-Top 0.119 0.198 

Valley, Mound-Wall -0.167 0.743 

Valley, Deep-Mound 0.201 0.115 

Valley, Sinkhole 0.606 0.008 

Valley, Lophelia Mound 0.796 0.029 

Mound-Slope, Mound-Top 0.399 0.008 

Mound-Slope, Mound-Wall -0.007 0.407 

Mound-Slope, Deep-Mound -0.072 0.806 

Mound-Slope, Sinkhole 0.549 0.001 

Mound-Slope, Lophelia Mound 0.864 0.001 

Mound-Top, Mound-Wall 0.046 0.411 

Mound-Top, Deep-Mound 0.419 0.02 

Mound-Top, Sinkhole 0.32 0.008 

Mound-Top, Lophelia Mound 0.497 0.054 

Mound-Wall, Deep-Mound 0.135 0.013 

Mound-Wall, Sinkhole 0.733 0.018 

Mound-Wall, Lophelia Mound 0.667 0.10 

Deep-Mound, Sinkhole 0.812 0.003 

Deep-Mound, Lophelia Mound 0.956 0.008 

Sinkhole, Lophelia Mound 0.918 0.018 

 
ANOSIM analysis of density count (Table 3) found significance between 

groups clustered by geomorphology (p=0.002) but with a low R value (R=0.271) 

indicating again the community was weakly related to the qualitative 

geomorphology categories. Valley/Sinkhole (p=0.008), Valley/Lophelia Mound 

(p=0.029), Mound-Top/Lophelia Mound (p=0.018), and Mound-Wall/Lophelia 

Mound (p=0.1) all equaled R=1, suggesting that community structure relative to 

geomorphology was entirely dissimilar (different). Lophelia Mound found in all 

groups entirely dissimilar (R=1) signifying its difference from the other geomorphic 
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groups. Mound-Slope/Deep-Mound were closest to 0 (R=0.181, p=0.031) followed 

by Mound-Slope/ Sinkhole (R=0.205, p=0.054), and Valley/Deep-Mound 

(R=0.262,p=0.07). Valley/Mound-Slope, Mound-Slope/ Mound-Top, and Mound-

Slope/Mound-Wall groups had negative values and perhaps indicate an outlier in 

the data.   

Table 3. ANOSIM density count results, using pair-wise testing to analyze by 
geomorphology. Bold groups indicate significance (<0.05). 

Groups R Statistic P value  

Valley, Mound-Slope -0.044 0.564 

Valley, Mound-Top 0.281 0.103 

Valley, Mound-Wall 0.296 0.114 

Valley, Deep-Mound 0.262 0.07 

Valley, Sinkhole 1 0.008 

Valley, Lophelia Mound 1 0.029 

Mound-Slope, Mound-Top -0.011 0.492 

Mound-Slope, Mound-Wall -0.063 0.604 

Mound-Slope, Deep-Mound 0.181 0.031 

Mound-Slope, Sinkhole 0.205 0.054 

Mound-Slope, Lophelia Mound 0.563 0.002 

Mound-Top, Mound-Wall 0.067 0.304 

Mound-Top, Deep-Mound 0.478 0.011 

Mound-Top, Sinkhole 0.964 0.008 

Mound-Top, Lophelia Mound 1 0.018 

Mound-Wall, Deep-Mound 0.433 0.042 

Mound-Wall, Sinkhole 0.979 0.018 

Mound-Wall, Lophelia Mound 1 0.1 

Deep-Mound, Sinkhole 0.906 0.001 

Deep-Mound, Lophelia Mound 0.956 0.008 

Sinkhole, Lophelia Mound 0.928 0.018 
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Figure 3. Cluster analysis dendrogram of averaged percent cover by 
geomorphology with transects 1 through 42 on the X-axis and similarity on the Y-
axis; dashed line representing 75% similarity. 

Figure 4. MDS plot from cluster analysis of percent cover by geomorphology with 

similarity of 75%. Labeled by transect number.   
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Figure 5. Cluster analysis dendrogram of averaged organism density count by 
geomorphology with transects 1 through 42 on the X-axis and similarity on the Y-
axis; dashed line representing 28% similarity. 

Figure 6. MDS plot from cluster analysis of organism density by geomorphology with 

similarity of 28%. Labeled by transect number. 
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B. Community Analysis by Depth and Location  

 In initial analysis, depth and location were found to be superior to 

geomorphology as an indicator of what was the dominant factor for the differences 

in communities among transects. To determine if depth and location were driving 

significant differences in benthic invertebrate communities transects were placed into 1 

of 5 bin classes, and analyzed. Figure 7 shows mean depth of each image within the 

five depth and location bin classes with North Central 150-250 shallowest (211.45 

m) followed by West 150-300 (238.27 m), Central 250-300 (290.37m), South 450-

500 (484.76m), and South 500-550 (510.04 m).  

 
 

Figure 7. Mean depth of five depth and location bin classes with standard deviation error 

bars (C=Central 250-300; W=West 150-300; NC=North Central 150-250; S=South 450-

500; S=500-550). 

 

A one-way ANOVA (JMP© statistical software) using depth data of each bin class 

found that all 5 differed significantly from each other by depth and location 

(p<0.0001*) (Figure 8).  
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Figure 8. ANOVA one-way analysis results of five habitat bin classes.  
 

Percent cover and organism density data with depth and location as the 

factor were square root transformed, averaged and plotted using Bray-Curtis 

Similarity indices. A cluster dendrogram of percent cover with transects 1-42 on the 

X-axis and similarity on the Y-axis illustrating similarities based on depth and 

location with main groups clustering at 75% similarity (Figure 9).  Figure 10 shows 

corresponding MDS plot with five clusters at 75% similarity. Again transects 30 and 

31 (Lophelia Mound) in the South 500-550 habitat bin class plotted away from other 

clusters indicating dissimilarity. West 150-300, North Central 150-250 and Central 

250-300 transects plotted near each other.  All South 450-500 transects plotted 

together with some North-Central 150-250 and West 150-300 transects.  

A cluster dendrogram of density count with transects 1-42 on the X-axis and 

similarity on the Y-axis illustrates similarities based on depth and location with 

main groups clustering at 28% similarity, exhibiting weak similarity (Figure 11).  

Figure 12 shows corresponding MDS plot with similarity level of 28%. This 

percentage at which the main groups separated reflects their relatively low level of 
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similarity.  All North Central 150-250 transects clustered together overlapping 

clusters with West 150-300 and South 450-500. All South 450-500 transects 

clustered together, and all South 500-550 clustered together, overlapping the South 

450-500 cluster. Central 250-300 transects clustered together or near each other. 

West 150-300 transects clustered together with overlapping with North Central 

150-250 cluster. Transects of the same depth and location bin class clustered 

together indicating similar benthic invertebrate communities were based on depth 

and location.  

Percent cover and organism density analyses results were analyzed using a 

one-way Analysis of Similarities (ANOSIM) with depth and location as the factor. 

ANOSIM of percent cover (Table 4) found significance between groups clustered by 

depth and location (p=0.001) but the low R-value (R=0.306) indicated that depth 

and location was correlated highly with the community. Central250-300/South500-

550 had the closest R statistic to 1 at (R=0.97, p= 0.006) followed by South450-

500/South500-550 (R=0.918, p=0.018), and West150-300/South500-550 (R=0.874, 

p=0.002), which reflects significant dissimilarities. West150-300/North Central150-

250 were closest to 0 (R=0.052 and p=0.128) followed by North Central150-

250/Central250-300 (R=0.073, p=0.15), and North Central150-250/South450-500 

(R=0.188, p=0.069). Pairwise groups that showed significant similarity or 

dissimilarity had similar depth ranges. 

Table 4. ANOSIM percent cover results, using pair-wise testing to analyze by depth 
and location.  Bold groups indicate significance (<0.05). 
 

Groups R Statistic P value  

West150-300, North Central150-250 0.052 0.128 
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West150-300, Central250-300 0.247 0.033 

West150-300, South450-500 0.345 0.013 

West150-300, South500-550 0.874 0.002 

North Central150-250, Central250-300 0.073 0.15 

North Central150-250, South450-500 0.188 0.069 

North Central150-250, South500-550 0.608 0.001 

Central250-300, South450-500 0.829 0.002 

Central250-300, South500-550 0.97 0.006 

South450-500, South500-550 0.918 0.018 

ANOSIM analysis of density (Table 5) found significance between bins 

clustered by depth and location (p=0.001) and the high R value (R=0.753) indicating 

that depth and location was correlated highly with the community. All groups had p 

values that shown significance (<0.05). West 150-300/ South 500-550 showed 

significance (p=0.002) with a high R-value (R=1) indicating complete dissimilarity 

followed by West150-300/South450-500 (R=0.995, p=0.001) and North 

Central150-250/South500-550 (R=0.961, p=0.001). Central 250-300/South 450-

500 had the closest R statistic to 0 (R=0.433, p=0.008) followed by Central250-

300/South500-550 (R=0.563, p=0.006), and West150-300/North Central150-250 

(R=0.712, p=0.001). All R statistic values showed significant dissimilarity among 

groups indicating location and depth maybe driving differences in communities. 

Table 5. ANOSIM density count results, using pair-wise testing to analyze by depth 
and location. Bold groups indicate significance (<0.05). 

Groups R Statistic p value  

West150-300, North Central150-250 0.712 0.001 

West150-300, Central250-300 0.732 0.001 

West150-300, South450-500 0.995 0.001 

West150-300, South500-550 1 0.002 

North Central150-250, Central250-300 0.609 0.001 

North Central150-250, South450-500 0.812 0.001 

North Central150-250, South500-550 0.961 0.001 

Central250-300, South450-500 0.433 0.008 

Central250-300, South500-550 0.563 0.006 

South450-500, South500-550 0.928 0.018 
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Figure 10. MDS plot from cluster analysis of percent cover by depth and location with 

similarity of 75%. Labeled by transect number. 

 

 

Figure 9. Cluster analysis dendrogram of averaged percent cover by depth and 
location with transects 1 through 42 on the X-axis and similarity on the Y-axis; 
dashed line representing 75% similarity. 
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Figure 11. Cluster analysis dendrogram of averaged organism density count by 
depth and location with transects 1 through 42 on the X-axis and similarity on the Y-
axis; dashed line representing 28% similarity. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. MDS plot from cluster analysis of organism density by depth and location 

with similarity of 28%. Labeled by transect number.  
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C. Community Analysis by Protection Status  

 Percent cover and organism density count data with protection status as the 

factor were square root transformed, averaged and plotted using Bray-Curtis 

Similarity indices. A cluster dendrogram of percent cover with transects 1-42 on the 

x-axis and similarity on the y-axis illustrates similarities based on protection status 

with clustering at 75% similarity (Figure 13).  Figure 14 shows corresponding MDS 

plot showing 5 clusters with 75 % similarity. Transects 30 and 31 (Lophelia Mound) 

under CHAPC protection plotted away from others. CHAPC transects overlapped 

another cluster composed mostly of No Protection.  Clusters plotted near each other 

regardless of protection status, indicating that it had a small impact on driving 

community differences.  

A cluster dendrogram of density count with transects 1-42 on the x-axis and 

similarity on the y-axis illustrates similarities based on protection status with main 

groups clustering at 28% similarity, exhibiting weak similarity (Figure 15).  Figure 

16 shows corresponding MDS plot with 28% similarity. Transects with no 

protection clustered together overlapping a cluster with CHAPC, and MPA/CHAPC. 

Transects with CHAPC protection clustered together or near each other, with one 

CHAPC cluster including all MPA/CHAPC transects.  

Percent cover and organism density analyses results were analyzed using a 

one-way Analysis of Similarities (ANOSIM) with protection status as the factor. 

ANOSIM of percent cover (Table 6) found that groups clustered by protection status 

weren’t correlated significantly with the community (p=0.471, R=-0.002). The large 

p value reflects a lack of significance and combined with the negative R-value (R=-
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0.002) indicates an outlier in the data. The No Protection, MPA/CHAPC pairwise 

group had the closest R statistic to 1 (R=0.329, p=0.009). MPA/CHAPC, CHAPC had 

the closest R statistic to 0 (R=0.008, p=0.393) and No Protection/CHAPC returned a 

negative R statistic (R=-0.051. p=0.775), perhaps indicating an outlier in the data.  

Table 6. ANOSIM percent cover results, using pair-wise testing to analyze by 
protection status.  Bold groups indicate significance (<0.05). 

Groups R Statistic p value  

No Protection, MPA/CHAPC 0.329 0.009 

No Protection, CHAPC -0.051 0.775 

MPA/CHAPC, CHAPC 0.008 0.393 

 

ANOSIM of density (Table 7) found significance between groups clustered by 

protection status (p=0.002), but the low R-value (R=0.21) indicating the factor only 

had small effect on organism density count data based on protection status. Not 

protected, MPA/CHAPC pairwise group had the R statistic closest to 1 (R=0.945, 

p=0.001) showing significant dissimilarity among communities. Not 

Protected/CHAPC had the closest R statistic closest to 0 (R=0.224, p=0.009) 

showing communities to be significantly similar. MPA/CHAPC, CHAPC had a 

negative R statistic (R=-0.024) and high p value (p=0.558) indicating a possible 

outlier in the data.  

Table 7. ANOSIM density count results, using pair-wise testing to analyze by 
protection status. Bold groups indicate significance (<0.05). 

Groups R Statistic p value  

Not Protected, MPA/CHAPC 0.945 0.001 

Not Protected, CHAPC 0.224 0.009 

MPA/CHAPC, CHAPC -0.024 0.558 
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Figure 13. Cluster analysis dendrogram of averaged percent cover by protection 
status with transects 1 through 42 on the X-axis and similarity on the Y-axis; dashed 
line representing 75% similarity. 
 
 
 

 

 

 

 

 

 

 

 
Figure 14. MDS plot from cluster analysis of percent cover by protection status with 

similarity of 75%. Labeled by transect number.  
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Figure 15. Cluster analysis dendrogram of averaged organism density count by 
protection status with transects 1 through 42 on the X-axis and similarity on the Y-
axis; dashed line representing 28% similarity. 
 

 

 

 

 

 

 

 

 

 

 

Figure 16. MDS plot from cluster analysis of organism density by protection status with 

similarity of 28%. Labeled by transect number.  
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D. Depth and Location Bin Class Characterization 

 Transects were classified into one of five depth and location bin classes 

based on depth measured in meters squared for each image and location in relation 

to CHAPC/MPA area borders (Figure 3). The number of transects within each bin 

class depended on depth and location. The following sections briefly characterize 

transects within each depth and location bin class (see Appendix 3).   

West 150-300 (12 transects, 217 images analyzed) 

This depth and location bin class region is under no protection and is located 

west of the CHAPC and MPA area borders at depths between 150-300 m.  Transects 

1 and 2 were run during dive 13 of the cruise, transects 33-42 were run during dive 

26 (Table 1, Figure 1). Figure 1 (Appendix 3) displays transects 1 and 2 with the 

closest isobath contour at 250 m. Figure 2 (Appendix 3) shows transects 33-42 with 

the closest isobath contour at 200 m.  

North Central 150-250 (14 transects, 614 images analyzed) 

Transects 3, 4, 5, 7 and 8 are under MPA and CHAPC protection and transects 

9-17 are under CHAPC protection. These transects are located centrally and north 

inside the MPA and CHAPC borders and have at depths between 150-250 m. 

Transects 3, 4, and 5 were run during dive 16; 7-8 during dive 17; 9-12 during dive 

18; 13-16 during dive 19; and 17 during dive 22 (Table 1, Figure 1).  

  Figure 3 (Appendix 3) shows transect 3, 4, and 5 with the closest isobath 

contour at 200 m. Figure 3. (Appendix 3) shows transects 6, 7, and 8; however 

transect 6 is located under depth and location bin class Central 250-300 and will be 

discussed under it.  The isobath contour closest to transects 7 and 8 is 250 m. Figure 
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5 (Appendix 3) includes transects 9- 12; the map shows no contour lines. Figure 6 

(Appendix 3) shows transects 14-16 with the closest isobath at 200 m. Figure 7 

(Appendix 3) shows transect 17 with an isobath at 250 m. 

Central 250-300 (8 transects, 126 images analyzed) 

  Transect 6 is located under MPA and CHAPC protection, and transects 18-24 

under CHAPC protection. Central bin class transects are located centrally under the 

MPA and CHAPC borders with a depth range between 250-300 m. Transect 6 was 

run during dive 17, and 18-24 under dive 23 (Table 1, Figure 1). Figure 4 (Appendix 

3) shows transect 6 with the closest isobath contour at 250 m. Figure 8 (Appendix 

3) shows 18-24, the closest isobath at 300 m.  

South 450-500 (5 transects, 102 images analyzed) 

 Transects 25-29 are located under CHAPC protection south of the CHAPC and 

MPA borders at a depth range of 450-500 m. Transects 25- 29 were run during dive 

24 (Table 1, Figure 1). Figure 9 (Appendix 3) shows transects 25-29 with the closest 

isobath at 450 m. 

South 500-550 (3 transects, 51 images analyzed) 

Transects 30-32 are located under CHAPC protection and located south 

under the CHAPC and MPA borders at a depth range between 500-550 m. Transects 

30-32 were run during dive 25 (Table 1, Figure 1). Figure 10 (Appendix 3) shows 

transects 30-32 with the closest isobath at 500 m.  

 E. Percent Cover Analysis  

Appendix 2, Table 1 lists the 16 major categories used for percent cover 

analysis as well as CPCe analysis results in percentages.  
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West 150-300   

Hard bottom substrate dominated (61.83% of cover) followed by sediment 

veneered hard bottom (SVHB) (31.95%), soft bottom substrate (3.25%), Cnidaria, 

Non Scleractinia (anemones, soft corals, hydroids, Zoanthids, Ceranthids) (2.10%) 

and Coral (0.59%) (Figure 17).  

 

Figure 17.  West 150-300. CPCe analysis results showing percent cover of the five 
most important 16 major substrate and benthos categories. Sediment Ven 
HB=Sedimentveneered hardbottom.  
 
North Central 150-250 

Hard bottom substrate dominated (47.23% of cover) followed by SVHB 

(35.20%), soft bottom substrate (5.71%), Coral (5.63%), and Porifera (3.15%) 

(Figure 18).  
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Figure 18.  North Central 150-250. CPCe analysis results showing percent cover of 
the five most important 16 major substrate and benthos categories. Sediment Ven 
HB=Sediment-veneered hardbottom.   
 
Central 250-300 

SVHB dominated (62.51% of cover) followed by hard bottom substrate 

(29.61%), soft bottom substrate (5.60%), Cnidaria Non Scleractinia (0.94%), and 

Porifera (0.62%) (Figure 19).  

 
Figure 19. Central 250-300. CPCe analysis results showing percent cover of the five 
most important 16 major substrate and benthos categories. Sediment Ven 
HB=Sediment veneered hardbottom.   
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South 450-500 

 Hard bottom substrate dominated (93.27% of cover) followed by, Cnidaria 

Non Scleractinia (2.85%), Porifera (1.72%), Coral (1.56%), and Echinodermata 

(0.58%) (Figure 20).  

 
Figure 20. South 450-500. CPCe analysis results showing percent cover of the five 
most important 16 major substrate and benthos categories.  
 
South 500-550 

Coral dominated (76.19% of cover) followed by, Hard bottom substrate 

(22.46%), Cnidaria Non Scleractinia (0.52%), Porifera (0.49%), and Chordata 

(0.27%) (Figure 21). 
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Figure 21. South 500-550. CPCe analysis results showing percent cover of the five 
most important 16 major substrate and benthos categories. 
 
F. Organism Density Count Analysis  

 Appendix 2, table 2 shows organism density count results, the taxonomic list 

used in analysis and results of each transect. For every species on the taxonomic list 

all transects within each depth and location bin class were totaled and the 5 densest 

taxa determined for that bin class. 

West 150-300  

 The five taxa with greatest densities were Sagartiidae (Actiniaria) (24.81 m-2) 

followed by four Stylasteridae (Hydrozoa) taxa: Stylaster miniatus (18.31 m-2), 

Stylasteridae unid. sp. 1 (5.00 m-2), Pliobothrus echinatus (2.93 m2), and Unidentified 

Stylasteridae (2.14 m-2) (Figure 22).  

 
Figure 22. West 150-300. Five most dense benthic taxa m-2.  
 
North Central 150-250 

The five taxa with greatest densities were Stylaster miniatus (31.29 m-2) 

followed by Plumarella unid. sp. 1 (Octocorallia) (25.25 m-2), Chondrosia sp. 
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(Demospongiae) (11.97 m-2), Stylaster filogranus (Stylasteridae) (11.68 m-2), and 

Petrosiidae unid. sp. (Demospongiae) (4.81 m-2) (Figure 23).  

 
Figure 23. North Central 150-250. Five most dense benthic taxa m-2. 
 
Central 250-300 

The six taxa with greatest densities were Hydroida unid. sp. (Hydrozoa) (5.51 

m-2) followed by Isididae unid. sp. 2 (Octocorallia) (2.12 m-2), Stylaster miniatus 

(1.74 m-2), Octocorallia unid. sp. 3 (Octocorallia)(1.4 m-2), Astrophorina unid. sp. 4 

(Demospongiae) (0.84 m-2), and Hexactinellida unid. sp. 1 (Hexactinellida) (0.84 m-

2) (Figure 24). 
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Figure 24. Central 250-300. Six most dense benthic taxa m-2.  
 
South 450-500 

  The five taxa with greatest densities were Paramuricea unid. sp.  3 

(Octocorallia) (7.06m-2) followed by Octocorallia unid. sp. 7 (Octocorallia) (4.95m-2), 

Comatonia cristata (Crinodea) (1.64m-2), Plumarella unid. sp. 1 (1.54m-2), and 

Astrophorina unid. sp. 4 (1.5m-2) (Figure 25). 

 
Figure 25. South 450-500. Five most dense benthic taxa m-2.  
 
South 500-550 

The five taxa with greatest densities were Lophelia pertusa (Scleractinia) (3.9 

m-2) followed by Plumarella unid. sp. 2 (Octocorallia) (0.84 m-2), Paramuricea unid. 

sp. 3 (0.64 m-2), Isididae unid. sp. 2 (0.37 m-2), and Ophiuroidea (Ophiuroidea) (0.37 

m-2) (Figure 26).  
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Figure 26. South 500-550. Five most dense benthic taxa m-2.  
 
G. SIMPER Organism Density Analysis by Depth and Location  

Organism density results were analyzed using Species Accumulation and 

Species Analysis (SIMPER) to determine which species based on location and depth 

as the factor contributed most to the Bray–Curtis dissimilarity.  Groups with higher 

values have similar communities.  

Table 8 lists average similarity percentages for the five depth and location 

bin classes. Transects within South 500-550 had the highest similarity (41.77%) and 

those within Central 250-300 had the lowest (12.44%).  

Table 8. SIMPER results, average similarity for five depth and location bin classes.  
Groups Average Similarity  

West 150-300 41.58 

North Central 150-250 27.96 

Central 250-300 12.44 

South 450-500 43.96 

South 500-550 41.77 

West 150-300 
 West 150-300 bin had an average similarity of 41.58% with four taxa 

contributing at least 5% (total 88.34%) to community differences (Table 9).  The 
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most significant taxa were Sagartiidae (50.53%) followed by Stylaster miniatus 

(26.30%), Stylasteridae unid. sp. 1 (6.77%), and Pliobothrus echinatus (4.74%).  

Table 9. West 150-300 SIMPER results, four contributing benthic taxa. 
Species Av. Abund Av. Sim Sim/SD Contrib% Cum.% 

Sagartiidae 2.07 21.01 1 50.53 50.53 

Stylaster miniatus 1.53 10.93 1.02 26.3 76.83 

Stylasteridae unid. sp. 1 0.42 2.82 1.01 6.77 83.6 

Pliobothrus echinatus 0.24 1.97 0.92 4.74 88.34 

 
North Central 150-250 

 North Central 150-250 bin had an average similarity of 27.96% with 10 taxa 

contributing at least 2% (total 90.24%) to community differences (Table 10). The 

most significant taxa were Stylaster miniatus (53.67%) followed by Plumarella unid. 

sp. 1 (8.76%), and Chondrosia sp. (4.93%).  

Table 10. North Central 150-250 SIMPER results, ten contributing benthic taxa.  
Species Av. Abund Av. Sim Sim/SD Contrib% Cum.% 

Stylaster miniatus 2.34 15.01 1.43 53.67 53.67 

Plumarella 1 1.92 2.45 0.27 8.76 62.44 

Chondrosia sp.  0.87 1.38 0.51 4.93 67.36 

Astrophorina unid. sp. 4 0.34 1.28 0.58 4.57 71.94 

Unidentified Demospongiae 0.22 1.21 0.89 4.34 76.27 

Stylaster filogranus 0.84 1.14 0.38 4.09 80.37 

Pliobothrus echinatus 0.14 0.76 0.74 2.7 83.07 

Hexactinellida unid sp. 1 0.24 0.55 0.27 1.97 87.27 

Unidentified Hexactinellida 0.09 0.41 0.34 1.48 88.76 

Iphiteon panicea 0.12 0.41 0.37 1.48 90.24 

 
Central 250-300 

 Central 250-300 bin had an average similarity of 12.44% with 10 taxa 

contributing at least 2% (total 90.40%) to community differences (Table 11). The 

most significant taxa were Calocidaris micans (Echinoidea) (27.54%) followed by 

Hydroida unid. sp. (12.62%) and Isididae unid. sp. 2 (11.55%).  

Table 11. Central 150-250 SIMPER results, ten contributing benthic taxa.  
Species Av. Abund Av. Sim Sim/SD Contrib% Cum.% 

Calocidaris micans 0.70 3.43 0.68 27.54 27.54 

Hydroida unid. sp. 0.69 1.57 0.47 12.62 40.16 
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Isididae unid. sp. 2 0.27 1.44 0.29 11.55 51.71 

Stylaster miniatus 0.22 0.84 0.43 6.79 69.18 

Goniasteridae 0.02 0.75 0.27 6.02 75.2 

Unidentified Demospongiae 0.08 0.57 0.6 4.58 79.78 

Octocorallia unid. sp. 3 0.18 0.41 0.19 3.26 83.04 

Stylasteridae unid. sp. 1 0.04 0.39 0.23 3.1 86.14 

Unidentified Hexactinellida 0.05 0.34 0.23 2.77 88.91 

Desmacellidae (blue morphology) 0.02 0.19 0.46 1.49 90.4 

 
South 450-500 

South 450-500 bin had average similarity of 43.96% with 13 taxa 

contributing at least 2% (total 90.17%) to community differences (Table 12). The 

most significant taxa were Paramuricea sp. 3 (24.76%) followed by Octocorallia 

unid. sp. 7 (16.40%), and Comatonia cristata (8.90%).  

Table 12. South 450-500 SIMPER results, thirteen contributing benthic taxa.  
Species Av. Abund Av. Sim Sim/SD Contrib% Cum.% 

Paramuricea sp. 3 1.41 10.89 1.19 24.76 24.76 

Octocorallia unid. sp. 7 0.99 7.21 2.65 16.4 41.17 

Comatonia cristata 0.33 3.91 1.44 8.9 50.06 

Rochinia crassa 0.24 3.42 2.62 7.77 57.84 

Astrophorina unid. sp. 4 0.3 3.14 1.44 7.15 64.99 

Lophelia pertusa  0.21 2.89 1.7 6.58 71.57 

Plumarella 1 0.31 2.65 1.24 6.03 77.6 

Raspailliidae sp. 2 0.13 1.25 0.7 2.84 80.44 

Stylaster erubescens 0.15 1.1 1.04 2.51 82.95 

Calocidaris micans 0.14 0.91 2.62 2.08 85.02 

Unidentified Demospongiae 0.12 0.86 1.04 1.95 86.97 

Isididae unid. sp. 1 0.23 0.76 0.58 1.73 88.7 

Stylasteridae unid. sp. 1 0.04 0.64 1.02 1.47 90.17 

 
South 500-550 

South 500-550 bin had average similarity of 41.77% with 5 taxa contributing 

at least 3% (total 92.38%) to community differences (Table 13). The most 

significant taxa were Lophelia pertusa (58.85%) followed by Plumarella 2 (19.37%) 

and Paramuricea sp. 3 (6.66%).  

Table 13. South 500-550 SIMPER results, five contributing benthic taxa.  
Species Av. Abund Av. Sim Sim/SD Contrib% Cum.% 

Lophelia pertusa  1.3 24.56 2.37 58.8 58.8 
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Plumarella 2 0.28 8.09 7.9 19.37 78.17 

Ophiuroidea 0.12 2.78 0.99 6.66 84.83 

Astrophorina unid. Sp. 3 0.08 1.98 1.4 4.74 89.57 

Paramuricea sp. 3 0.21 1.17 8.57 2.81 92.38 

 

V. Discussion 

A. Community Analysis  

Multivariate analysis of percent cover and density by depth and location 

revealed that these two factors provide the largest impact on driving differences 

among the benthic communities. The MDS plot for percent cover shows the 500-550 

transects clustered away from the others (with 75% similarity). South 450-500 

transects clustered together, whereas transects in the West 150-300, North Central 

150-250 and Central 250-300 were mixed between clusters. The organism density 

plot for depth and location showed five distinct clusters (with 28% similarity); all 

depth/location bin transects within each bin class were clustered together. Cluster 

analysis of depth and location based on organism densities showed the clearest 

distinction among transects based on this factor. A one-way Analysis of Similarities 

(ANOSIM) on percent cover and organism density using depth and location as the 

factor were significant (p=0.001; p=0.001) but with differing R values. A low R-value 

(R=0.306) suggested that percent cover had a small impact on communities, 

whereas a high value (R=0.753) indicated density by depth and location was a good 

indicator of what drives the differences in benthic communities. To further support 

depth is significantly correlated with differences in communities a one-way ANOVA 

showed significant difference (p-Value was <. 0001*) among the five depth and 

location bin classes.  
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  Multivariate analysis of percent cover and density data by geomorphology 

found that it wasn’t correlated significantly with the community. MDS plots showed 

Transect 30 and 31 (the Lophelia Mound under CHAPC protection) clustered away 

from the others in both plots. The percent cover plot showed that all other clusters 

were a mix of the remaining geomorphologic factors (Mound-Top, Mound-Slope, 

Deep-Mound, Valley, and Sinkhole) at 75% similarity. The organism density plot 

shown transects with the same geomorphology clustered together or near each 

other at 28% similarity. A one-way Analysis of Similarities (ANOSIM) on percent 

cover and organism density using geomorphology as the factor found significant 

differences (p=0.001, p=0.002) but low R-values (R=0.329; R=0.271), indicating that 

geomorphology has a small impact in driving differences in communities.  

Multivariate analysis of percent cover and density count data by protection 

status as the factor found that it had a small impact on driving differences among 

communities. The MDS plot for percent cover with 75% similarity showed 

protection statuses mixed among clusters. The organism density plot with 28% 

similarity shows, unprotected transects clustered together: CHAPC transects 

clustered near each other and within MPA/CHAPC transects and MPA/CHAPC 

transects clustered together. A one-way ANOSIM based on protection status showed 

that percent cover is insignificant (p=0.471) with a negative R value (R=-0.002), 

indicating protection status did not affect communities and may indicate an outlier 

in the data. A significant result (p=0.002) but a low value for organism density 

(R=0.21) suggests that protection status has only a small impact on community 

structure.  
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Based on data from the September 2011 Reed et al. (2014) compared fish 

communities in relation to the benthic factors of geomorphology, substrate, depth, 

slope and protection status. They found that depth was the most important factor 

contributing to variations in fish communities followed by geomorphology and 

substrate. Reed et al. (2014) analyzed 13 dives with 4 factors (geomorphology, 

substrate, depth, slope and protection status), whereas this thesis separated dive 

sites into 42 transects based on finer depth and location intervals giving a higher 

resolution. They compared two depth ranges (150-300 m and 450-850 m) whereas 

this thesis used 5 depth and location bin classes (West 150-300, North Central 150-

250, Central 250-300, South 450-500, and South 500-550).  

B. Community Characterization  

SIMPER density analysis and organism density results were consistent 

among bin classes and helped determine which taxa were driving differences in 

depth and location. Four of the five depth and location bin classes (West 150-

300, Central 250-300 and South 450-500) were overwhelmingly dominated by bare 

hard bottom substrates (Hard Bottom plus Sediment-Veneered Hardbottom 

(SVHB)), that accounted for 92.12 to 93.78% of cover and supported a diverse 

assemblage of hard-substrate-dependent biota. Bare hard substrates accounted for 

82.43% in the North-Central bin class. However, dominant organisms varied 

substantially, e.g., sagartiid anemones (SIMPER contributing 50.53%) and at least 

four stylasterids (SIMPER 37.81%) at West 150-300 (SIMPER average similarity 

41.58%); stylasterids (SIMPER 53.67%), the octocoral Plumarella unid. sp. 1 

(SIMPER 8.76%) and demosponges (Chondrosia sp. ((SIMPER 4.93%)) and 
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Petrosiidae) at North-Central 150-250 (SIMPER 27.96%); non-scleractinian 

Cnidaria (e.g., unidentified Hydroida (SIMPER 12.62%), Isididae (SIMPER 11.55%), 

Octocorallia, S. miniatus) and sponges at Central 250-300 (SIMPER 12.44%), and 

some different non-scleractinian Cnidaria (e.g., Paramuricea sp. 3 ((SIMPER 

24.76%)), unidentified Octocorallia ((SIMPER 16.40%)), and Plumarella unid. sp. 1), 

the crinoid Comatonia cristata (SIMPER 8.90%), and Porifera (unidentified 

Astrophorina) at South 450-500 (SIMPER 43.96%). Among these bin classes, 

sediment contributed the most (5.60%) at Central 250-300. By contrast, South 500-

550 (SIMPER 41.77%) were dominated by Coral (chiefly Lophelia pertusa, 76.19%) 

(SIMPER 58.85%) with bare Hard bottom contributing only 22.46%. The most 

abundant other species were chiefly octocorals: Plumarella unid. sp. 2 (SIMPER 

19.37%), Paramuricea unid. sp. 3 (SIMPER 6.66%), and unidentified Isididae. 

The following summarizes the similar results reported in Reed et. al. (2012) 

and this thesis. During dive 26 Reed et al. (2012) found predominantly hard bottom 

dominated by Cnidaria including Stylasteridae and Sagartiidae. This is consistent 

with this thesis in which transects in the West 150-300 depth and location bin (dive 

26) were 93.78% hard bottom with dominant taxa including sagartiid anemones 

and at least four stylasterids. For dives 17-19 and 22, Reed et al. (2012) reported 

predominately hard bottom dominated by Cnidaria and Porifera, again consistent 

with results found in this thesis; transects in the North-Central 150-250 bin class  

(dives 17-19, and 22) were 82.43% hard bottom dominated taxa including 

stylasterids, Plumarella unid. sp. 1 and demosponges (Chondrosia sp. and 

Petrosiidae)). Dives 17 and 23 were predominantly hard bottom dominated by 
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Cnidaria and Porifera (Reed et al. 2012), similar to transects in the Central 250-300 

bin class (one transect under dive 17 and the others dive 23): 92.12% hard bottom 

with dominant taxa including non-scleractinian Cnidaria and sponges. During dive 

24 Reed et al. (2012) found predominately hard bottom substrate (97.16%) 

dominated by Cnidaria and Porifera species with Cnidaria species having the most 

diverse population. Similarly the South 450-500 bin class (dive 24) 93.27% hard 

bottom with dominant taxa including non-scleractinian Cnidaria, the crinoid 

Comatonia cristata, and Porifera. During dive 25 Reed et al. (2012) found 

predominantly hard bottom dominated by Cnidaria (Lophelia pertusa) and Porifera, 

consistent with results found in this thesis, which found South 500-550 bin class 

transects (dive 25) to have 76.19% Coral and 22.46% Hard Bottom with dominant 

taxa including L pertusa and octocorals. 

The results support null hypothesis 1 that significant differences exists in 

communities relative to percent cover and organism densities. Communities 

differed strongly between bins with the following similarities: West 150-300, North-

Central 150-250, Central 250-300 all included Stylaster miniatus among the five 

dominant species also suggesting depth as a driving factor, because all three bins fall 

between 150 and 300 m. South 450-500 and South 500-550 both included 

Paramuricea unid. sp. 3 among the five dominant species, also suggesting depth and 

location as possible driving factors.  

 Observations made during this cruise during dive 25 over a depth range of 

468-547 m revealed the southernmost Lophelia pertusa coral mound in U.S waters 

(Reed et. al. 2012, 2014). This record is well within the known depth range for 
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Lophelia habitat along the east coast of Florida (e.g., Grasmueck et. al. 2006; Reed, 

2002a; Reed et al. 2006; Messing et. al. 2008). However Ross et al. (2015) more 

recently found living L. pertusa colonies off northeastern Florida at depths between 

180 and 250 m that maybe maintained at such shallow depths by upwelling cold 

and nutrition-rich water. This is the shallowest record for L. pertusa reefs in the 

western Atlantic Ocean and is under review for protection as a CHAPC under the 

new Amendment 8 of the MSA (Ross et al., 2015). 

Percent cover analysis of substrate did not give an accurate portrayal of 

benthic communities but did assess non-living substrate. Percent cover results 

showed that depth and location bin classes were dominated by hard-bottom 

substrate.  The West 150-300 depth and location bin class is under no management 

protection and is primarily hard bottom, dominated by non-scleractinian Cnidaria 

and hard coral. Based on results of this thesis and Reed et al. (2012, 2014), the 

CHAPC boundaries should be increased to cover this area.  

C. Conservation and Management  

Hypothesis 2 was deemed inconclusive ANOSIM and Cluster analyses results 

indicated that protection status had a small impact on differences in benthic 

communities. However, differences in communities outside vs. inside management 

zones did not show a clear relationship because protection sites were nested within 

specific location and depths.  Reed et al. (2014) found that protection status did not 

affect fish community diversity either. This problem may have confounded their 

results as well. Deep-water benthic communities are slow-growing; thus immediate 

benefits from protection may not be apparent. Because CHAPC and MPA protected 



 58 

areas were only established in 2010 it is most likely too recent to determine 

whether they have been effective. Nonetheless, the results herein can be used for 

managing the Pourtalès Terrace benthic communities to conserve these fragile 

deep-water coral environments. Several important geologic hardbottom features 

that lie outside of CHAPC/MPA borders were discovered and characterized by this 

project; these may provide essential fish habitat and should be considered for 

addition to the CHAPCs. These data will also provide managers and scientists with a 

valuable baseline for assessing the deep-water habitats within the CHAPC and MPA 

on Pourtalès Terrace, and the effectiveness of the protected areas over time.  In 

addition, the strong relationship between depth and location and community 

structure indicates that these factors could be used as a proxy for creating habitat 

maps of benthic communities in unmapped areas. 

VI. Conclusions 

   Based on results of this thesis and those of Reed et al. (2012, 2014), benthic 

community appears to be determined chiefly by depth followed by geomorphology. 

The strong relationship between depth and location indicates they could be used as 

a proxy for creating habitat maps of benthic communities. Protection status appears 

to have no influence on benthic communities as yet, most likely because protection 

boundaries were implemented too recently to have had any effect. However, the 

detailed nature of these results offers them as baseline data for future community 

assessments and comparisons between protected and unprotected habitats to 

measure the effectiveness of deep-water marine protected areas protections and for 
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developing management strategies and decisions that will ensure conservation of 

the fragile deep-water coral environments on the Pourtalès Terrace.  

 Several new geologic features discovered and characterized also include the 

southernmost Lophelia pertusa coral mound in U.S. waters. Some important 

hardbottom geologic features that lie outside of CHAPC/MPA borders were 

discovered and characterized which suggests new HAPC borders should be 

designated.  
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Appendix 1. Transect Characterization 
 
Table 1.  General transect name, transect by geomorphology, transect by habitat bin class, image range (image number) 
number of images, area per m2 of each transect, mean depth, and protection status. 
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Appendix 2 Percent Cover and Density of Benthic Organisms 
 
Table 1. CPCe© percent cover analysis of 42 transects, using 16 substrate and major benthos categories to characterize 
substrate. Zero values were excluded from the table, values measured in percent. 
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Table 2. Benthic organism density analysis of 42 transects. Zero values were excluded from table. Lophelia (1-6) refers to 
images referenced for taxonomic identification.  
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Anthozoa/Actiniaria 

Actinoscyphia aurelia 0.07

Liponema sp. 0.10

Sagartiidae 0.03 0.06

Unidentified Actiniaria 

Anthozoa/ Antipatharia 

Leiopathes glabberrima 

Antipatharia unid. sp. 1

Antipatharia unid. sp. 2 0.03

Antipatharia unid. sp. 3

Unidentified Antipatharia 0.08

Anthozoa/Alcyonacea 

Plumarella 1 6.55 0.03 0.46 5.81 1.62 12.38

Plumarella 2 

Unidentified Alyconacea 

Anthozoa/ Zoantharia 

Zoantharia unid. sp.

Unidentified Zoantharia 

Hydrozoa 

Hydroida unid. sp. 0.30 0.07 0.13 0.07 0.03

Unidentified Hydrozoa 0.04

Echinodermata

Asteroidea

Goniasteridae 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.07

Crinodea

Comatonia cristata

Echinoidea

Calocidaris micans 0.06 0.03 0.03 0.07 0.17 0.10 0.46 0.16 0.10 0.10 0.03

Coelopleurus floridanus 0.07 0.03

Unidentified Echinoidea 0.07

Ophiuroidea

Gorgonocephalidae 0.03

Ophiuroidea 0.03

Unidentified Ophiuroidea 

Bryozoa

Gymolaenmata

Membranipora sp. 0.63 0.40 0.03 0.03 0.10

Arthropoda

Malacostraca

Chaceon fenneri 

Eumunida picta

Majidae

Mithrax 0.20 0.04

Paguridae 0.03 0.07 0.10 0.03 0.10 0.04 0.07 0.03 0.03

Rochinia crassa 0.03

Unidentified Malcostraca 

Isopoda

Bathynomeus giganteus 

Mollusca

Gastropoda

Perotrochus 0.06 0.03 0.04 0.03 0.20 0.03 0.03

Scaphella sp. 0.06 0.03

Unidentified Gastropoda

Annelida

Echuira

Echiurida unid. Sp. 1 

Fish

Fish 0.07 0.03 0.67 0.20 0.03 0.10 0.08 0.13 0.07 0.10 0.03 0.07 0.10 0.07 0.10 0.03 0.03

Total 3.37 3.32 2.68 24.53 11.59 6.92 7.51 12.54 8.41 8.71 4.83 1.14 10.83 4.52 1.53 15.89 14.41 1.43 1.76 0.46 0.27
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Density Table By 

Phylum/Class(order)/Scientific 
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Porifera 

Demospongiae 

Astrophorina unid . sp. 4 0.03 0.57 0.40 0.27 0.23 0.03

Astrophorina unid. sp.

Astrophorina unid. Sp. 1 0.03 0.07 0.03 0.07

Astrophorina unid. Sp. 2 0.03 0.07 0.07

Astrophorina unid. Sp. 3 0.07 0.07 0.10 0.10 0.03

Astrophorina unid. sp. 5 (1-6)

Chondros ia sp. ( 1 and 2) 0.03

Corallistidae (1-3) 0.07 0.03 0.10 0.10 0.03

Demospongiae unid sp. 2

Demospongiae unid. sp.  4

Demospongiae unid. sp.  5

Demospongiae unid. sp. 1

Demospongiae unid. sp. 3

Desmacellidae (blue morphology) 0.03 0.03 0.03 0.03 0.13 0.17 0.07

Desmacellidae (yellow morphology) 0.03

Geodia pachydermata? 0.03

Geodia sp. nov. 1

Geodia unid. sp. 1 0.03

Leiodermatium sp. 

Petrosiidae unid. sp. 0.20

Phakellia ventalabrum 0.03 0.03 0.03

Raspailliidae sp. 1 0.20 0.03 0.07 0.03

Raspailliidae sp. 2 0.03 0.07 0.10 0.07 0.17 0.30

Raspailliidae unid. sp. 3

Vazella? 0.03

Unidentified Demospongiae 0.07 0.34 0.10 0.10 0.07 0.07 0.03 0.03

Hexactinellida 

Aphrocallistes beatrix 0.03 0.07 0.07 0.27

Euritidae unid. sp 0.03 0.03 0.03

Farrea 0.03

Hexactinellida unid sp. 1 0.13 0.03 0.03

Hexactinellida unid. sp 3 0.03

Hexactinellida unid. sp. 2 0.03 0.03 0.03 0.03

Iphiteon panicea 0.03 0.03

Nodastrella asconemaoida sp. Nov. 0.03

Nodastrella unid. sp. 1 0.03 0.03

Nodastrella unid. sp. 2

Unidentified Hexactinellida 0.03 0.13 0.07 0.03 0.07

Cnidaria 

Hydrozoa/Stylasteridea

Distichopora foliacea 0.03 0.07

Pliobothrus echinatus 0.13 0.03 0.10 0.24 0.07 0.60 0.56 0.63 0.03 0.03 0.33 0.23

Stylaster erubescens 0.44 0.10 0.13 0.10 0.13

Stylaster filogranus 0.10 0.03 0.10

Stylaster miniatus 0.13 0.13 0.03 0.13 0.46 0.77 0.79 1.82 0.20 1.79 6.64 2.20

Stylasteridae unid. sp. 1 0.03 0.07 0.07 0.03 0.20 0.20 0.26 0.53 0.07 1.59 0.73 0.79

Stylasteridae unid. sp. 2 0.03 0.20 0.10 0.13 0.07

Unidentified Stylasteridae 0.03 0.03 0.13 0.39

Anthozoa/Scleractinia

Lophelia pertusa (1-6) 0.34 0.10 0.10 0.30 0.20 1.00 2.36 0.54

Maybe Madrepora sp. 0.03 0.07

Unidentified Scleractinia 

Anthozoa/Octocorallia (Gorgs)

Callogorgia sp. 

Eunicella unid. sp. 1 0.03 0.03

Isididae unid. sp. 1 0.84 0.17 0.17

Isididae unid. sp. 2 0.03 0.20 0.13 0.37 0.07 0.07 0.03

Octocorallia unid sp. 2 0.07 0.13 0.03

Octocorallia unid. sp. 1 0.13 0.03

Octocorallia unid. sp. 3 0.87 0.54 0.10 0.07 0.13

Octocorallia unid. sp. 4 0.03 0.13 0.03 0.03
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Density Table By 
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Octocorallia unid. sp. 5 0.07 0.03 0.03

Octocorallia unid. sp. 6

Octocorallia unid. sp. 7 2.92 1.10 0.37 0.30 0.27 0.30 0.20 0.03

Paramuricea sp. 0.03 0.13

Paramuricea sp. 2

Paramuricea sp. 3 3.29 1.33 1.81 0.53 0.10 0.03 0.03 0.57

Unidentified Octocorallia 0.03 0.03 0.03 0.03 0.10 0.10

Anthozoa/Actiniaria 

Actinoscyphia aurelia

Liponema sp. 0.03 0.03 0.03 0.07 0.17

Sagartiidae 1.75 0.90 3.48 4.08 2.91 2.75 2.70 0.20 1.40 4.54

Unidentified Actiniaria 

Anthozoa/ Antipatharia 

Leiopathes glabberrima 0.07

Antipatharia unid. sp. 1 0.10 0.10 0.03

Antipatharia unid. sp. 2 0.13 0.07 0.03

Antipatharia unid. sp. 3 0.13

Unidentified Antipatharia 0.10 0.03

Anthozoa/Alcyonacea 

Plumarella 1 0.81 0.27 0.03 0.13 0.30 0.17 0.03 0.13

Plumarella 2 0.03 0.07 0.20 0.30 0.34

Unidentified Alyconacea 

Anthozoa/ Zoantharia 

Zoantharia unid. sp. 0.03

Unidentified Zoantharia 

Hydrozoa 

Hydroida unid. sp. 0.03 0.70 4.68 0.13 0.13 0.07 0.03 0.07 0.13 0.07 1.53 0.07

Unidentified Hydrozoa 0.03

Echinodermata

Asteroidea

Goniasteridae 0.03 0.10 0.17 0.07 0.03 0.03 0.03 0.03 0.07 0.20 0.13

Crinodea

Comatonia cristata 0.60 0.23 0.07 0.47 0.27 0.03 0.33

Echinoidea

Calocidaris micans 0.07 0.13 0.10 0.47 0.07 0.03 0.10 0.03 0.17 0.07 0.03 0.03

Coelopleurus floridanus 0.10 0.10 0.03 0.13 0.03 0.10 0.03 0.03

Unidentified Echinoidea 

Ophiuroidea

Gorgonocephalidae 0.03 0.03

Ophiuroidea 0.03 0.13 0.03 0.17 0.17 0.03 0.03 0.07

Unidentified Ophiuroidea 

Bryozoa

Gymolaenmata

Membranipora sp. 0.03 0.17 0.13 0.03 0.07

Arthropoda

Malacostraca

Chaceon fenneri 0.07

Eumunida picta 0.03

Majidae 0.03

Mithrax

Paguridae 0.10 0.03 0.17 0.10 0.07

Rochinia crassa 0.20 0.50 0.20 0.13 0.17 0.03 0.03 0.03 0.03 0.07 0.03 0.10 0.03

Unidentified Malcostraca 0.03 0.07

Isopoda

Bathynomeus giganteus 

Mollusca

Gastropoda

Perotrochus 0.07 0.10 0.03 0.03 0.03 0.07 0.07

Scaphella sp. 0.10 0.03 0.03 0.20 0.03 0.07 0.10 0.17 0.16

Unidentified Gastropoda

Annelida

Echuira

Echiurida unid. Sp. 1 0.03 0.10

Fish

Fish 0.07 0.03 0.07 0.07 0.03 0.03 0.07 0.10 0.17 0.03 0.10 0.20 0.07 0.50 0.07 0.17 0.60 0.26

Total 0.20 2.43 6.99 12.72 5.42 3.89 3.49 2.15 2.11 3.42 3.05 2.76 1.14 4.64 6.39 5.40 6.95 3.73 5.42 12.43 9.18
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Transect 1

Transect 2

Appendix 3.  GIS Maps of Transects 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. GIS map (background multibeam map provided by NOAA Ship Nancy Foster) displaying transects 1 and 2 (West 150-
300), closest isobath at 250 m. Lower right map of Florida with CHAPC border in red, MPA border in yellow. 
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Transect 33

Transect 34

Transect 35

Transect 36

Transect 37

Transect 38

Transect 39

Transect 40

Transect 41

Transect 42

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. GIS map (background multibeam map provided by NOAA Ship Nancy Foster) displaying transects 33 through 42 
(West 150-300), closest isobath at 200 m. Lower right map of Florida with CHAPC border in red, MPA border in yellow. 
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Transect 3

Transect 4

!( Transect 5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. GIS map (background multibeam map provided by NOAA Ship Nancy Foster) displaying transects 3 through 5 (North 
Central 150-250), closest isobath at 200 m. Lower right map of Florida with CHAPC border in red, MPA border in yellow. 
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Transect 7

Transect 8

!( Transect 6

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. GIS map (background multibeam map provided by NOAA Ship Nancy Foster) displaying transects 6 through 8 (North 
Central 150-250), closest isobath at 250 m. Lower right map of Florida with CHAPC border in red, MPA border in yellow. 
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Transect 9

Transect 10

Transect 11

Transect 12

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. GIS map (background multibeam map provided by NOAA Ship Nancy Foster) displaying transects 9 through 12 
(North Central 150-250).  Lower right map of Florida with CHAPC border in red, MPA border in yellow. 
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Transect 13

Transect 14

Transect 15

Transect 16

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. GIS map (background multibeam map provided by NOAA Ship Nancy Foster) displaying transects 14 through 16 
(North Central 150-250), closest isobath at 200 m. Lower right map of Florida with CHAPC border in red, MPA border in 
yellow. 
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Transect 17

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. GIS map (background multibeam map provided by NOAA Ship Nancy Foster) displaying transect 17(North Central 
150-250, closest isobath at 250 m. Lower right map of Florida with CHAPC border in red, MPA border in yellow. 
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Transect 23

Transect 22

Transect 21

Transect 20

Transect 19

Transect 18

Transect 24

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. GIS map (background multibeam map provided by NOAA Ship Nancy Foster) displaying transects 18 through 24 
(Central 250-300), closest isobath at 300 m. Lower right map of Florida with CHAPC border in red, MPA border in yellow. 
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Transect 25

Transect 26

Transect 27

Transect 28

Transect 29

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. GIS map (background multibeam map provided by NOAA Ship Nancy Foster) displaying transects 25 through 29 
(South 450-500), closest isobath at 450 m. Lower right map of Florida with CHAPC border in red, MPA border in yellow. 
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Transect 32

Transect 31

Transect 30

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. GIS map (background multibeam map provided by NOAA Ship Nancy Foster) displaying transects 30 through 32 
(South 500-550), closest isobath at 500 m. Lower right map of Florida with CHAPC border in red, MPA border in yellow.



 86 

 
 
 
 
 
 
 
 

 

 

 

 

 


	Nova Southeastern University
	NSUWorks
	7-31-2015

	Benthic Invertebrate Communities and Habitat Characterization of the Pourtalès Terrace, Florida with Analysis of the Deepwater Coral Habitat Areas of Particular Concern and the East Hump Marine Protected Area
	Jana K. Ash
	Share Feedback About This Item
	NSUWorks Citation


	tmp.1440442261.pdf.96J2L

