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ABSTRACT 

 

Electronic pop-up satellite archival tag (PSAT) technology has been successfully 

used to monitor the at-large behavior of a suite of pelagic animals, especially regarding 

habitat utilization.  Additionally, algorithms using ambient light-level data have allowed 

the derivation of geolocation estimates along the duration of the deployment.  However, 

the diel behavior of swordfish moving below the photic zone during daylight hours 

precludes this methodology because of the lack of ambient light-level data.  To produce 

deployment tracks for swordfish, a mathematical model was created to analyze 

hydrographic temperature and pressure data recorded by PSATs.  This hydrographic-

based model applies Principal Component Analysis (PCA) to vertical temperature 

profiles in order to estimate the movement between the initial location of release and the 

location of the first tag transmission.  PSAT data from swordfish (n=4), blue marlin 

(n=13), white marlin (n=2), and black marlin (n=1) were used to generate daily 

coordinate estimates.  The marlin data provided sufficient light information to derive 

geolocation estimates using two light-based state space models, while the hydrographic 

PCA model was used to derive comparison estimates.  Comparisons of the two models 

show an average root mean square error of 174.3 km with a standard deviation of 119 

km.  These results demonstrate the ability of this PCA model to extract the movement of 

tagged fish with consistent reasonable accuracy, within 1-2 degrees of light-based 

estimations.  This study shows the feasibility of using temperature and depth data instead 

of light levels to allow effective tracking of swordfish and any species that demonstrate 

crepuscular diving behavior. 
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INTRODUCTION 

 

Swordfish Biology and Ecology 

 Swordfish Xiphias gladius Linnaeus, 1758 is a monogeneric species that diverged 

from the Istiophorids (billfishes) approximately 3 million years ago (Dewar et al 2011, 

Fierstein and Stringer 2007).  Swordfish can be phenotypically differentiated by their bill 

- flat in cross-section - and lack of denticles.  The life history of swordfish has been 

completely described by Govoni (2003).  Young swordfish exhibit rapid growth reaching 

about 130 cm measuring lower jaw-fork length (LJFL) by Age two (NMFS 2008).  

Swordfish are characterized by dimorphic growth.   Females reach maturity by Age five 

at an average length of 180 cm LJFL, while males reach maturity at one to two years of 

age at about 129 cm LJFL (Taylor and Murphy 1992, Arocha 2003, NMFS 2006).  

Swordfish are multiple spawners and capable of spawning throughout the year.  The 

spawning dates and abundance of larvae for North Atlantic swordfish strongly suggest 

that the southeastern Caribbean Sea, Gulf of Mexico, and waters inshore of the Gulf 

Stream in the Florida Straits all serve as nurseries (Arocha 2003, Govoni 2003). 

Swordfish are distributed worldwide among tropical, semi-tropical and temperate 

waters between 45° N and 45° S (Palko et al. 1981, Sedberry and Loefer 2001, Loefer et 

al. 2007).  They are an oceanic species, but can be found in coastal waters above the 

thermocline.  Large-scale movements are commonly associated with oceanographically 

distinct regions.  Previous tagging studies have revealed seasonal movements over 2,000 

km in length (Sedberry and Loefer 2001, NMFS 2008).  These extensive migrations are 

likely driven by spawning and feeding behaviors (Young et al. 2006).   

The swordfish is a pelagic apex predator found to inhabit regions of high food 

availability (Palko et al 1981, Abascal et al. 2015).  Fine-scale movement studies 

(Sepulveda et al. 2010, Dewar et al 2011) support a typical foraging strategy strongly 

associated with movement of the deep sound scattering layer (DSL).  The DSL is 

associated with the vertical distribution of crustaceans and gelatinous zooplankton.  Also 

referred to as the “false bottom,” this dense accumulation of organisms is primarily 

driven by predator avoidance (Frank and Widder 2002).  Studies on the feeding ecology 
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of swordfish support a diet consistent with mesopelagic fishes, such as bigeye tuna 

Thunnas obesus,that exhibit vertical migrations.  Stomach content have included mostly 

cephalopods and a variety of nektonic and micronektonic fishes (Carey and Robinson 

1981, Heemsoth 2010).  There is evidence of an ontogenic diet shift resulting in the 

consumption of larger cephalopod prey as swordfish grow (Young et al. 2006).   

Variability in catch rates support undetermined factors that influence swordfish 

movement and aggregations.  This includes locations of oxygen minimum zones (OMZ), 

thermal boundaries, and ocean mixed layer (OML) depths, seabed topography, and 

chlorophyll concentrations (Sepulveda et al. 2010, Luckhurst 2007, Young et al. 2006, 

Carey and Robinson 1981).  Reports of behavioral changes in relation to the lunar cycle 

are also evident; a positive correlation exists between the maximum depth reached by the 

swordfish and lunar illumination (Dewar et al. 2011, Lerner et al. 2013, Abascal et al. 

2015).  Following isolume depths would allow swordfish maximum visual acuity for 

hunting success (Carey and Robinson 1981, Loefer et al. 2007).  This is consistent with 

known foraging behavior, as the depth of the deep scattering layer (DSL) is also deeper 

when light penetrates farther down (Dewar et al. 2011). 

 

Swordfish Migrations 

 The migration of swordfish is one of the most complex among pelagic fishes 

(Palko et al. 1981).  Previous swordfish tagging studies in the Atlantic, Pacific, and 

Mediterranean Sea have revealed movement and distribution patterns that vary 

considerably with season, gender, and ocean basin (Sedberry and Loefer 2001, Neilson 

and Smith 2010, Sepulveda et al. 2010, Dewar et al. 2011).  Acoustic tracking studies, 

fisheries data, and pop-off satellite archival transmitters have determined two generalized 

movements exhibited by swordfish in the North Atlantic (Fenton 2012).  Swordfish 

exhibit strong latitudinal movement, migrating northeast in the early summer and 

southwest during the autumn (Palko et al. 1981, NMFS 2006).  Neilson et al (2009) 

showed that swordfish tagged in Canadian waters exhibited a consistent, long distance 

migration pattern (Abascal et al. 2015, Neilson et al. 2009).  Specifically, swordfish were 

seen occupying temperate waters north of 40° N latitude early June through October, then 

by early January swordfish were in the warm waters of the Caribbean where they reside 
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until April before resuming their northward migration (Neilson et al. 2009).  Another 

movement trend common to swordfish in the North Atlantic is a migration west toward 

the continental shelf during the summer and east into deeper waters during the autumn 

(Palko et al 1981).  

 A generalized vertical movement pattern has been well defined by archival 

tagging studies (Loefer et al. 2006, Neilson et al. 2009, Sepulveda et al. 2010, Dewar et 

al. 2011, Fenton 2012, Lerner et al. 2013).  Swordfish demonstrate strong diurnal trends 

where daylight hours are spent at depths of 300-1000 m and night hours are spent at near-

surface waters, with night depths also varying slightly by moon phase (Carey and 

Robinson 1981, Sepulveda et al. 2010, Lerner et al. 2013).  The “U”-shaped diving 

pattern driven by resource availability is consistent with swordfish in all ocean basins 

(Loefer et al. 2006, Sepulveda et al. 2010, Dewar et al. 2011, Lerner et al. 2013).  This 

diel vertical movement has been well documented for swordfish and other large predators 

associated with foraging in the DSL (Dewar et al. 2011).  The only deviation from this 

trend is known as a basking event, in which a swordfish rests at the surface during the 

daytime (Sepulveda et al. 2010), anecdotally believed to increase digestion rate in 

warmer surface waters.  Previous tagging studies have characterized this basking 

behavior by a rapid ascent during the day, prolonged surface interval, followed by a rapid 

return to depth (Dewar et al. 2011).  Although basking events have been observed in both 

warm tropical and cool temperate waters, they are more prevalent in cooler regions 

(Dewar et a1. 2011).  A correlation between the size of the swordfish and periodicity of 

these events likely supports this behavior as a way to increase metabolic rates after 

foraging in cooler waters (Sepulveda et al. 2010).  The variability of horizontal 

movements and vertical behavior highlights the need for additional information on 

swordfish habitat utilization and fine-scale movements.  

 

Swordfish Management 

Swordfish is defined as a highly migratory species (HMS) by the Magnuson-

Stevens Conservation and Management Act (MSFCMA).  Commercial fisheries target 

swordfish extensively throughout its latitudinal range using pelagic longline gear (PLL), 

drift gillnets (DGN), and to a lesser extent harpoon fishing gear (Sepulveda et al. 2010, 
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Luckhurst 2007).  The commercially valuable flesh has helped make swordfish a global 

commodity (Loefer et al. 2007).  The rapid development of swordfish fisheries has led to 

a steady increase in global swordfish landings since the 1980s (Sepulveda et al. 2010).  

Unfortunately, much uncertainty remains regarding the status of swordfish stocks.  A 

main limitation to current stock assessments is the lack of knowledge in stock structure 

and population boundaries (Abascal et al. 2014).   

Internationally, Atlantic swordfish fall under the authority of the International 

Commission for the Conservation of Atlantic Tunas (ICCAT) based in Madrid, Spain.  

ICCAT recognizes two stocks in the Atlantic, dividing the population into north and 

south stocks at 5N latitude (there is also a small population in the Mediterranean Sea 

that is managed separately).  Under the authority of the Atlantic Tuna Convention Act 

(ATCA) of 1975, the United States is required to abide by national standards set by 

ICCAT based on annual Standing Committee on Research and Statistics (SCRS) stock 

reports.  According to the Magnuson Act of 1990, U.S. domestic fisheries management 

falls under the responsibility of the Secretary of Commerce via the various Regional 

Fisheries Management Councils.  The amended Magnuson Act (Magnuson-Stevens Act) 

of 1999, however, elevated the authority of all HMS governance from the Councils 

directly to the Secretary of Commerce, which manages HMS species through the 

National Marine Fisheries Service (NMFS 1999).   

During the 1980s and 1990s, the North Atlantic swordfish stock experienced 

reduced catch rates and smaller average fish size (SCRS 2009).  Concern for the 

sustainability of the fishery at present exploitation rates led ICCAT to establish a ten-year 

rebuilding plan in 1999.  This plan reduced the annual total allowable catch (TAC) to 

14,000 metric tons, and included country-specific allocations, increasing the U.S. quota 

to 30.49 percent of the TAC (SCRS 2009).  In an attempt to protect juveniles before they 

have had a chance to spawn, NMFS instituted a series of time-area closures for PLL 

vessels in the Gulf of Mexico and along the southeast Atlantic coast.  A cooperative 

effort led by sustainable fishing gear and public support, such as the “Give Swordfish a 

Break” campaign, has helped rebuild the North Atlantic stock and consequently re-

establish the U.S. recreational swordfish fishery.   
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More recently, concern has been raised over the interaction of swordfish fisheries 

with non-target species.  In attempts to reduce the incidental takes of protected species, 

additional management restrictions have been implemented.  These bycatch reduction 

strategies include bycatch quotas and encouraging the use of alternative gear types, such 

as swordfish buoy gear (Sepulveda et al. 2010, NMFS 2006).  Buoy gear was authorized 

for the U.S. Atlantic waters in 2006 as a permissible gear type for commercial swordfish 

fisheries (NMFS 2006).  Catch reports show the use of buoy gear increases selectivity 

(CPUE) and reduces bycatch interaction (SRCS 2009).   

The North Atlantic swordfish stock has experienced growth in recent years, due to 

ongoing U.S. domestic and international measures aimed at reducing mortality, 

protecting juveniles, reducing bycatch, monitoring international trade, and improving 

data collection (NMFS 2010).  According to stock reports by ICCAT, the swordfish 

population was rebuilt merely seven years following the rebuilding plan implementation 

(NMFS 2010).  By the end of the ten-year deadline in 2009, there was greater than 50 

percent probability that the stock was at or above the biomass needed to achieve 

maximum sustainable yield (MSY), and thus the population was then considered 

successfully rebuilt (SCRS 2009).  The most recent stock assessments have shown the 

North Atlantic stock to be five percent above the target level (SCRS 2009, NMFS 2010).  

Despite apparent management success, much uncertainty remains in the Atlantic-wide 

swordfish stock assessments.  This can be attributed to the continuing need for additional 

knowledge regarding the migration routes, movement, and distribution patterns of 

swordfish within and between the managed stocks. 

 

Tagging 

Traditional tagging, using conventional (non-electronic) tags that are dependent 

on recapture, has proven useful in determining long-term movement and growth 

(Sedberry and Loefer 2001).  The high commercial importance of swordfish has helped 

fuel a large conventional tagging effort since the 1950s, mainly through the NOAA 

Cooperative Tagging Center based in Miami, FL.  These tags have provided much 

needed information on swordfish growth as well as large-scale movement trends 
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(Luckhurst 2007).  However, low recapture rates and tag recovery (approximately 3.6% 

for swordfish, per ICCAT 2009) have limited these fishery-dependent efforts. 

Electronic tracking devices are made up of two tagging systems - telemetry and 

archival devices.  Developed in the 1950s, acoustic telemetry tags are the first electronic 

tags to be widely used in ocean studies.  Acoustic telemetry tags work with hydrophone 

array or active sonar.  These systems detect an ultrasonic, high frequency “ping” 

delivered from the tag when in appropriate range.  Hydrophones are typically mounted to 

vessels, or deployed on automatic recorders moored in a specific region.  Acoustic 

telemetry tags have been successfully used to determine movement on a small spatial 

scale, and have helped determine locations of fish aggregation, and spawning (Sibert and 

Nielsen 2001). 

Satellite telemetry tags work with Argos satellite system to determine global 

positions.  Tags integrated with an Argos-certified transmitter, or ‘platform,’ can send 

signals to the Argos satellite when within range.  Signals are received on average, every 

10 minutes where they are stored and retransmitted to a ground database every time the 

satellite passes over a receiving station.   The Argos network requires three or more 

transmissions from the tag in order to obtain positioning (Argos 2014).  Radio waves 

received by satellites cannot pass through water, so transmissions are not received if the 

tag is submerged.  Therefore satellite telemetry only works well with terrestrial animals 

or marine organisms that surface for prolonged periods of time (e.g. cetaceans).   

Standard Global Positioning System (GPS) technology is similarly unsuitable for pelagic 

fish as it requires up to a few minutes of tag exposure in order to determine locations 

(Evans et al. 2011). 

 Electronic archival tags, first deployed in the 1990s, are clock-integrated data 

storage devices equipped with multiple sensors (Sibert and Nielsen 2001).  Archival tags 

allow data to be electronically stored until fish recapture and tag recovery (Arnold and 

Dewar 2001).  The tags can be surgically implanted or attached to the exterior of the fish 

via an anchoring device (Musyl et al. 2003).  These electronic devices record ambient 

variables at specified sampling frequencies.  Equipped with sensors, including 

temperature, pressure, and light, archival tags have provided high quality data over long 

periods of time.  The sampling of fish environment has contributed immensely to our 
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understanding of migrations, habitat utility, and behavior (Fenton 2012).  Archival 

tagging studies in the North Atlantic (Carey and Robinson 1981, Sedberry and Loefer 

2001, Lerner et al. 2013), West Pacific, and Eastern North Pacific (Carey and Robison, 

1981) have worked to categorize the strong diurnal behaviors typically exhibited by 

swordfish.  

Pop-up satellite archival tags (PSAT) are integrated with the combined 

technology of satellite telemetry and archival data storage tags.  The development of 

PSAT technology has allowed researchers to obtain data stored without tag retrieval, and 

in doing so, drastically improved the rate of data recovery. “Pop-up” tags were 

introduced in the late 1990s to track large pelagic fishes (Arnold and Dewar 2001, Fenton 

2012).  PSATs are equipped with three sensors that record ambient variables including 

temperature, pressure (converted to depth), and light intensity at specified sampling 

frequencies.  These electronic devices are programmed to release from the animal at a 

preset date.  Once the tag reaches the sea surface following release from the animal, the 

stored data is automatically transmitted to an Argos satellite.  To prevent destruction of 

the tag and loss of data, PSATs are programmed with mechanical and electronic 

(programmed) ‘fail-safe’ releases (Nielsen et al. 2006).  These premature releases allow 

for early data transmission in case of tag attachment failure.  A pressure release 

mechanism is triggered when the tag nears a depth at which it will be crushed.  Premature 

release programming activates when the tag experience little pressure change for a 

prolonged amount of time (Musyl et al. 2003, Sibert and Nielsen 2001, Nielsen et al. 

2006, Fenton 2012).    

Since their introduction in 1997, PSATs have revealed large-scale movements of 

large pelagic fish, as well as behavioral patterns and fine-scale, diel movements.  The use 

of PSATs allow researchers to overcome many of the limitations provided by acoustic 

and conventional tagging (Fenton 2012), and they are considered “fishery independent,” 

as they do not need to be returned by a fishery recapture to attain the data they collect 

(Musyl et al. 2003).  The data retrieved has been critical to understanding the physical 

and physiological variables that relate fish behavior to its surrounding environment 

(Arnold and Dewar 2001).  These data typically include habitat preferences, seasonal 

movements, and potential mixing of stocks.  A three-year research program using PSATs 
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by Neilson and Smith (2010) supported North and South movement between Grand 

Banks and the Caribbean, but little movement from the NW Atlantic to the NE Atlantic.  

This suggests the potential for two separate swordfish populations in the North Atlantic.  

The same study also demonstrated a possible homing behavior as the swordfish were 

seen returning to Georges Bank consistently each year to feed (Neilson and Smith 2010).  

Trends in spawning and feeding behavior as well as residence sites, and oceanic 

migrations are all needed to manage this resource (Ortiz 2003).  In contrast with vertical 

movements and behavior patterns, there has been limited information collected on 

swordfish horizontal movement or how individuals are influenced by local environment 

conditions.   

During the early years of development, electronic devices experienced various 

failures that complicated their usage.  Their limited use stemmed from the relatively high 

costs, low tag retention, high fish mortality, transmitter recovery, variable reporting rates, 

and amount of transmitted data (Nielson et al. 2006).  Such limitations have been 

addressed in recent years, and have led to the smaller, high capacity tags equipped with 

multiple ‘fail safe’ mechanisms used today 

 

Light-level Geolocation  

As the archival tag technology improves, their use has become an indispensable 

tool for fishery biologists.  Since satellite telemetry via Argos or GPS is unavailable 

underwater, alternative methods must be used to locate tags deployed on marine 

organisms.  These geolocation methods are complex and not always as effective as 

needed.  The systematic and random errors associated with geolocation have limited the 

use of tagging technology (Nielsen and Sibert 2007, Musyl et al. 2003).  Despite frequent 

improvements, researchers continue to demand higher levels of accuracy in geolocation 

estimates by light records (Sibert and Nielsen 2001). 

The use of light data to geographically position the tag has been the primary 

method for locating satellite tags (Lam et al. 2010).  Light-based geolocation uses 

recorded light levels and time of day to estimate the position of the sun and consequently 

determine the global position.  Longitude is calculated via a determination of local noon, 

when the angle between the sun and vertical (zenith angle) is zero (Hill and Braun 2001).  
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Latitude is computed from the length of time between sunrise and sunset, or when the 

zenith angle is 90 (Hill and Braun 2001, Nielsen and Sibert 2007).   

For marine animals that demonstrate near- or at-surface behaviors, these methods 

are generally reliable (Nielsen and Sibert 2007).  However, the diving behaviors typical 

of deep-diving marine animals significantly degrade the accuracy of these light-based 

geolocation methods through increased light attenuation at depth (reviewed by Teo et al. 

2004).  The accuracy of light-based geolocation estimates can also be affected by water 

turbidity, weather, and even the sensitivity of the PSAT light sensors used by the tag 

manufacturer (Hill and Braun 2001).  Furthermore, due to differences between the 

hemispheres, latitude is subject to large error depending on the time of year.  Specifically, 

global position estimates based on day length become increasingly inaccurate 

approaching the equinox, when the day length becomes the same at all latitudes for a 

given hemisphere (Hill and Braun 2001, Neilson and Smith 2010). 

Previous studies demonstrating light-based geolocation estimates within 0.5–1 

degree, used data from tags deployed on mooring buoys, ships, or fish restricted to 

shallow waters (Gunn et al. 1994).  Thus, diving activity was not accounted for (Teo et al. 

2004).  Highly migratory species (HMS) that demonstrate crepuscular diving behavior 

exhibit diel movements that closely correlate with the DSL.  These fishes, including 

swordfish and bigeye tuna, spend the majority of the day at depths where light does not 

penetrate or near the threshold of the tag’s sensitivity to light.  Furthermore, light levels 

are hardest to measure during these periods around sunrise and sunset when diving occurs 

(Neilson and Smith 2010).   

Due to these collective factors, the raw unfiltered and uncorrected geolocation 

estimates derived from light records are typically very noisy, placing the tagged fish 

hundreds of kilometers from their actual position (Nielson et al. 2006).  To overcome 

these inaccuracies, various mathematical methods have been coupled with the limited 

light-level data available to produce a relatively more accurate track. 

Hill and Braun (2001) developed astronomical equations to calculate estimated 

times of sunrise and sunset using the limited light data.  Their study introduced what is 

known as a threshold model in which the brightest light is referenced to establish two 

threshold values.  A maximum threshold is set to represent when the sun is directly 
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overhead (noon), while a minimum threshold represents when the sun passes below the 

horizon (sunset). The time of sunset and sunrise can then be determined by when the light 

passes these thresholds each day.  Latitude estimations are particularly vulnerable to this 

method.  If thresholds set incorrectly (e.g., from cloudy conditions), the error in latitude 

is amplified (Lam et al. 2010, Hill and Braun 2001).  Their results showed the expected 

variability in latitude would never be less than 0.7 degrees, equivalent to 48 nautical 

miles (88.9 km), no matter how effective the geolocation analysis (Hill and Braun 2001). 

An alternative method for geolocation known as the template-fit model was 

developed by Ekstrom (2002).  This method derives times of solar events based on light 

records and error measurements.  A template based on Ekstrom’s simplified geophysical 

model (fully described in Ekstrom 2002) takes into account how light reaches Earth’s 

surface through the atmosphere.  This template is fit to the light data, effectively 

matching the slopes of light curves, as sunrise or sunset approaches.  The template is then 

adjusted according to error estimates, which include the effects of weather, latitude, and 

season (Ekstrom 2006). 

State-space models have been used to analyze location observations over time, 

including complex movement patterns (Jonsen et al. 2003).  A state-space model is a 

coupled model, consisting of a measurement and transition analysis.  The measurement 

model describes the state of a system and observations at that time, including the light-

based location and error estimations given by the threshold or template-fit models.  The 

transition model describes the process that cannot be directly observed, or the movement 

from one location to the next (Sibert 2003).  A state-space model creates a resulting track 

with error estimations that are used to create a confidence region around the track.  This 

approach of complex modeling has allowed researchers to gather information on animal 

interactions with their environment. 

The most recent models have incorporated a mathematical technique known as 

the Kalman filter (Harvey, 1990).  This algorithm uses a series of noisy measurements 

observed over time, a dynamical model, and prior information on the error characteristics 

of both the data and the model to produce an estimate of unknown variables that tend to 

be more precise than those based on a single measurement (Hill and Braun 2001).  

Kalman filter state-space models are the most accurate mathematical estimators to date 
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for fish tracking.  This model computes the position of the fish as a weighted average of 

two position estimates: the geolocation estimate and the one computed from the transition 

equation (Sibert et al. 2003, Lam et al. 2008).  Sibert and Fournier (2001) developed a 

state-space model based on the Kalman filter, which was initially used to determine 

optimal estimates of satellite tagged bigeye tuna.  Data were analyzed from tags deployed 

on bigeye tuna and compared to those attached to stationary moorings; the comparison 

analyses showed improved geolocation estimates.  Standard deviation estimates ranged 

from 0.5 to 4.4 degrees latitude and 0.2 to 1.6 degrees longitude while demonstrating 

realistic in situ geolocation errors and movement parameters (Sibert and Fournier 2001, 

Sibert et al. 2003). 

State-space models have expanded to include supplementary data, such as 

coastline, bathymetry, and sea surface temperatures to constrain the model (Musyl et al. 

2003, Teo et al. 2004, Wilson et al. 2004, Nielsen and Sibert 2007, Lam et al. 2010).  In 

particular, the incorporation of satellite-derived sea surface temperature (SST) data has 

further refined light-based geolocation estimations.  By integrating SST into their Kalman 

filter state space model, Lam et al. (2010) found the added data improved the overall 

accuracy of geolocation estimates while reducing confidence regions.  This has been 

further supported by multiple other studies incorporating SST, which similarly show a 

reduction in the error of light-based latitude estimates (Teo et al. 2004, Lam et al. 2010).  

However, these models are only significantly improved when the sampled SST is from 

areas of a strong thermal gradient (Nielson et al. 2006, Fenton 2012). 

The state-space model TrackIt, developed by Nielsen and Sibert (2007), is the 

first model to produce geolocation estimates based directly on light measurements 

recorded by the tag.  Unlike the two-step approaches that utilize threshold algorithms, 

this model uses raw light measurements as input for the Kalman filter.  Threshold models 

process each light measurement independently, leading to inaccuracies prior to being 

used for geolocation in the state-space model.  TrackIt uses a one-step method that allows 

the relation between all variables, including light measurements and solar altitudes, to be 

estimated within the model in order to produce a most probable track (Nielsen and Sibert 

2007).   
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PCA Model Overview  

The present tracking methods discussed in the previous section are unable to 

incorporate all of the temperature data collected by the PSAT.  A new tracking method is 

proposed that is based on a principal component analysis of the observed average daily 

temperature profiles.  Principal component analysis (PCA) is a statistical method that 

allows for datasets to be represented efficiently by describing only the most important 

patterns (modes) of variability.  PCA reduces the number of variables in a dataset to a 

smaller number of “components” that account for most of the data variance.  As a 

statistical tool, PCA (and its various extensions) is particularly useful for analyses of 

large data sets, such as archival tag records, as it greatly reduces data volume and noise in 

the process.  There are multiple variations and extensions of PCA depending on the type 

of data input.  An eigenanalysis of the covariance matrix calculated from daily smoothed 

temperature profiles is performed here.  The eigenvectors also known as the empirical 

orthogonal function are the dominant modes of vertical temperature variability.  The 

principal components for each daily temperature profile are calculated and used to 

generate daily estimates of the fish position by a simple algorithm discussed below.   

Temperature versus depth profiles vary over geographical area and time due to 

ocean dynamics and variations in ocean forcing.   As the tagged fish make their diel 

migrations, they sample the vertical distribution of temperature over the water column  

(Figure 1).  As the tagged fish samples different water masses, for example, by going 

across a front, the temperature profiles will significantly change.  Thus variations in daily 

temperature profiles can be used to track the movement of a fish if some information 

about the distribution of temperature profiles with latitude and longitude is known.  

PCA orders the dominant statistical modes, the EOFs by the amount of variance 

described by each mode, so that the first mode will describe the most variance in the 

variation of temperature with depth. The second EOF will describe the second largest 

amount of variability, and so on. The corresponding principal components (PCs) 

modulate each EOF by an amplitude and polarity for each of the daily temperature 

profiles.   Polarity is set such that positive PCs imply warmer profiles and negative PCs 

imply cooler profiles. The PCs summarize the vertical temperature profile variability. 



 13 

PCs combined with information or a model on how temperature profiles vary with 

longitude and latitude is used here to calculate fish tracks. 

An algorithm was written to derive position via a bilinear analysis of the 

calculated PCs and known coordinates of the tag deployment and pop-up locations.  The 

algorithm assumes and calculates a linear spatial function between the PCS for both the 

longitude and latitude of the deployment and pop-up positions for each fish tag 

deployment. All of the daily PCs and the linear function for longitude and latitude are 

used to generate a set of daily coordinates of the fish positions. The set of daily 

coordinates from the algorithm are used to generate the horizontal fish track for the 

deployment period.  The objective of this study is to introduce a statistical model using 

hydrographic data to derive geolocation estimates of satellite tagged fish comparable to 

current light-based models. 
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MATERIALS & METHODS 

 

Satellite Tagging 

Four Microwave Telemetry high rate (HR) PTT-100 tags were deployed on 

swordfish caught and released at night during the annual Cayman Swordfish Challenge 

fishing tournament held during the spring of 2012, 2013, and 2014.  Tagging was 

performed using methods described in Fenton (2012).  Data from PSATs deployed on 

marlin in 2008, 2009, 2011, 2012 and 2013 were reanalyzed in the comparison portion of 

this study.  Microwave Telemetry (MWT) PTT-100 HR tags were rigged and deployed 

on blue marlin in the Caribbean as described in Graves and Horodysky (2005).   

Platform Transmitter Terminals (PTTs) send signals to satellites once the 

antennae breaks the surface at pop off.  The data is relayed to ground stations where it is 

electronically transferred to processing centers to be made available to researchers.  

These PTTs are 166mm by 41 mm anchored with a 171mm antenna, and weighing 65 to 

68 grams.  This small size and weight prevents major drag and potential alteration in 

swimming behavior when attached to large teleosts.  (Graves and Horodysky 2010, 

Fenton 2012).  The tags were programmed to record measurements every 90-120 

seconds.  The temperature sensor ranges from -4 to 40 C with a resolution of 0.16 to 

0.23C.  Rated to 3000 psi, depth is recorded 0 to 1296 m with a resolution of 5.4 m.   

Unfortunately, the high sampling rate programming, including the increased depth 

resolution, results in decreased resolution in light level data due to on-board data storage 

limitations.  The light sensitivity of these tags is therefore less than 4 x 10
-5

 lux (1 lumen) 

at 555 nm and does not allow for raw geolocation estimates to be generated by the tag 

itself.  To generate estimates, the light data received was run through a light-based model.  

These tags can be programmed to release for up to thirty days following activation.  PTT-

100 HR tag deployments for this study ranged from 9 to 29 days.   

Mk10 and Mini-PAT popup archival tags (PATs) manufactured by Wildlife 

Computers (Redmond, Washington, USA) were deployed on blue marlin Makaira 

nigricans, black marlin Istiompax indica, and white marlin Kajikia albida (formerly 

Tetrapturus albidus) as part of the International Game and Fishing Association (IGFA) 
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International Great Marlin Race (IGMR).  Both tags models are pressure rated to 2000 m, 

and are equipped with sensors to record and store temperature, depth, and light data.  The 

Mk10 has a memory capacity of 1 gigabyte, while the MiniPAT restricted by its smaller 

size, stores up to 16 megabytes of memory.  The temperature sensors have a resolution of 

0.05C with a range of -40 to 60C and -5 to 45C for the Mk10 and MiniPAT 

respectively.  The depth sensor of both tag models is rated to 1700 m with 0.5 m 

resolution.  Light sensitivity ranges from 5x10
-12

 W cm
-2

 to 5x10
-2

W cm
-2

.  The MiniPAT 

also includes two light sensors to reduce noise, each measuring at an optimum 440 nm 

wavelength.   

Both PAT models are optimized for post-deployment geolocation estimation.  

Wildlife Computers offers software (Wildlife Computers Global Position Estimator 

Version 2) that processes the high-resolution light records to produce global positioning 

estimates (GPEs).  A light-based algorithm uses the light data collected by the tag with 

dawn and dusk light curves to generate the GPEs (Wildlife Computers 2014).  The 

maximum length of deployment for both Wildlife Computers tag models is two years.  

The Mk10 and MiniPAT data used for this study came from deployments ranging from 

28 to 180 days.   

 

Data Analysis 

 Archived data are relayed in hexadecimal code by the floating PSAT through the 

ARGOS satellite system.  Once the PTT-100 HR completed its transmission, data reports 

containing time-series depth, and time-series temperature are decoded, compiled into 

Excel files, and sent to the researcher via email (Microwave Telemetry 2013).  For our 

analyses, the archived depth and temperature data are imported from .csv files into R, 

where the daily temperature profiles are extracted.  Interpolation of these profiles is 

performed by averaging the temperature at each 5 m (marlin) or 20 m depth (swordfish 

data) interval for each day.  Maximum depth was determined by looking over all 

individual tag data records and ranged from 80m to 200m for marlin and 460-600m for 

swordfish. 

Temperature and depth data from WC PAT tags are presented in histograms.  

Unlike the Microwave Telemetry PTTs, raw temperature and depth records are not given 
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in the processed files.  Rather, the archived temperature and depth data are compressed 

into data bins set at pre-determined sampling intervals.  Time-at-temperature (TAT) and 

time-at-depth (TAD) summary histograms are presented in the data files.  The histograms 

include depth and temperature measurements and the time at which they were sampled.  

PAT-style depth-temperature profiles (PDTs) are given that consists of all temperature 

and depth data records for that day divided into eight bins of equal size.  For each bin 

depth, a minimum, maximum, and mean temperature is given (Wildlife Computers 

2014).  In order to create a more specific temperature profile attributed to each day, these 

eight data points were interpolated in our analyses to generate measurements, on average, 

every 5 m depth.   

 

Principal Component Analysis 

Temperature profiles were constructed by fitting cubic splines to each set of daily 

temperature measurements (Fig. 1), and then evaluating the splines at fixed vertical 

depths that depended on the fish species (Figures 2, 3).  An average profile was 

calculated by averaging all of the daily profiles, and it was used to de-trend each daily 

profile for the covariance calculation. The covariance matrix is between residual 

temperature at different depths and is calculated by averaging over all of the profiles.  

The PCs are calculated by regressing the residual temperature profiles onto the EOFs. 

Based on preliminary calculations, the second EOF and its PCs explained an insignificant 

amount of variability so that their distribution did not aid in tracking the fish. For the data 

analyzed here, the first mode explains 85-95% of the variance, while the second mode 

only explains 2-10% of the variance. 

 

Bilinear algorithm 

An algorithm incorporates the PCs and the initial and final positions from the 

coordinates of tag deployment and first transmission.  This equation calculates the 

estimated coordinates for each respective day during the tag deployment.  The vectors of 

known longitude and latitude are given by: 
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Figure 1. 

 

 

 

Figure 1: Temperature and depth data recorded by a PTT-100 HR PSAT (Microwave 

Telemetry, Columbia, MD) attached to swordfish 61665.  The raw data were interpolated 

and averaged at every 20 m depth to a maximum depth of 660 m. 
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Figures 2. 

 

 

 

 

a) Blue marlin #41333 
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b) Blue marlin #24523 
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c) Blue marlin #34233 
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d) Blue marlin #59080 
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e) Blue marlin #84351 
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f) Blue marlin #84363 
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g) Blue marlin #35687 

 

Figures 2:  Daily temperature profiles recreated using Microwave Telemetry, Inc. 

model PTT-100 tags deployed on blue marlin (n=7) interpolated and averaged at 

every 5 m depth. 
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Figures 3. 

 

 

a) Blue marlin #112321 
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b) Black marlin #111218 

 

a) Blue marlin #111213 

 

 

 

 

b) Blue marlin #112322 
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c) Blue marlin #112320 

 

 

 

d) Blue marlin #112323 



 28 

 

 

e) White marlin #126323 

 

 

 

f) White marlin #126288 
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Figures 3.   Temperature profiles recreated for the initial (left) and final (right) day of 

tagging using data from Wildlife Computers, Inc. model Mk10 PATs deployed on 

blue, white, and black marlin (n=9). 
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where X is longitude and Y is latitude and i = day 1, 2... n.  Linearity is assumed in PCA 

due to our reliance on the original data to interpolate between individual data points.  A 

bilinear system is applied to calculate the resulting coordinates as simply as possible.  

Therefore, we assume both longitude and latitude change linearly with PC value, so that: 

 

 

 

 

Each set of coefficients (a, b) and (c, d) are found by using the initial and final location.  

These coefficients represent the change in longitude (a, b) and latitude (c, d) over time as 

determined by the dominant vector pattern (PC1) of days 1 and n. 

 

 

 

 

Error Metric 

In addition to data archived by the Kerstetter Fisheries Laboratory, data used in 

the comparison analyses were donated by John Graves (Virginia Institute of Marine 

Science, College of William & Mary) and Andrij Horodysky (Hampton University), as 

well as the IGFA via partnering with researchers from Stanford University.  Light-based 

geolocation coordinate estimates were generated using two separate state-space models.  

Microwave Telemetry tags were deployed on blue marlin as part of a previous tagging 

study (Graves and Horodysky 2010).  The light records were formatted in a centralized 

tag database computer program, Tagbase, (Lam and Tsontos 2011) before being imported 

into R.  The light data were run through the TrackIt model to generate light-based 

coordinate estimates.    

Wildlife Computers Mk10 and MiniPATs were deployed on blue, black, and 

white marlin as part of the International Game and Fishing Association (IGFA) 

International Great Marlin Race (IGMR).  A “best fit” track was created courtesy of 
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IGFA and Stanford University.  First, an initial track was generated using the Wildlife 

Computers WC-GPE2 software and light data to derive longitude.  SST data were then 

added to derive latitude.  This track was then put through a state-space model that uses a 

sophisticated algorithm to establish the “best fit” estimates (IGFA 2013). 

The root mean square estimation (RMSE) is calculated by finding the difference 

between the daily latitude and longitude estimates.   

For each day j, 

 

 

 

 

 

 

All model statistical computations were performed in R software environment. 

All coordinate estimates given by both light-based models and the PCA model were 

imported and organized in Excel files.  A tag summary table was created compiling all 

information regarding tag deployments and resulting error calculations (Tables 1).  Error 

calculations within 1 degree, roughly 111km, were considered “good,” and those within 2 

degrees (222km) considered “reasonable.”  For each tag deployment, error calculated 

each day was plotted over time to determine any trends (Figures 6a-h).  These RMSE 

values were then averaged over the course of the tagging duration (Table 2), and plotted 

over total days at large to determine any correlation (Figure 7).  

Each track was plotted in R using a map function (package ‘rworldmap’).  Maps 

created from the light-based estimates and PCA model estimates were placed side-by-

side for a visual comparison (Figures 5a-h).  The simple plot function was used for the 

short deployments (e.g. 9-10 days) where the light-based estimates derived by TrackIt 

were overlaid onto the PCA model estimates (Figures 4a-g).  Estimates given for the 

swordfish data plotted in R.  Maps were created in ‘GoogleEarth’ using satellite imagery 

to visualize movement among topographic features (Figures 9a-d).
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Table 1: Species code, tag ID number, tag manufacturer (MT = Microwave Telemetry, WC = Wildlife Computers), tag model, region, 

total days at large (DAL), track duration (where sufficient data was provided for both analyses), initial and final coordinates, net 

displacement (ND). 

 

Species 

Code 

Tag ID Tag 

Man. 

Tag Model Region DAL Track Duration Initial 

Lat. 

Initial 

Lon. 

Final 

Lat. 

Final 

Lon 

ND 

BUM 41333 MWT PTT100 VZ 10 3/17/08 - 3/27/08 10.87N 67.14W 11.7N 68.28W 139 

BUM 24523 MWT PTT100 VZ 10 5/15/08 - 5/25/08 10.97N 66.97W 11.05N 67.03W 10 

BUM 34233 MWT PTT100 VZ 10 5/17/08 - 5/27/08 10.72N 67.17W 11.47N 66.8W 87 

BUM 59080 MWT PTT100 VZ 9 4/18/09 - 4/27/09 11.0N 67.05W 11.73N 66.59W 96 

BUM 84351 MWT PTT100 VI 10 9/11/08 - 9/21/08 18.7N 64.8W 18.2N 62.75W 197 

BUM 84363 MWT PTT100 VI 10 9/30/09 - 10/10/09 18.72N 64.78W 20.57N 66.38W 271 

BUM 35687 MWT PTT100 NC 10 6/22/08 - 7/2/08 35.07N 75.57W 38.05N 65.38W 943 

BUM 111212 WC Mk10 ZA 72 2/25/12 - 4/30/12 30.75S 31.4E 27.31S 34.4E 322 

BUM 112321 WC Mk10 ZA 32 3/30/12 - 4/25/12 29.25S 34.2E 26.12S 35.5E 558 

BUM 111213 WC Mk10 ZA 120 5/6/12 - 8/28/12 27.08S 33.6E 25.47S 34.8E 170 

BLM 111218 WC Mk10 ZA 120 5/3/12 - 8/28/12 28.71S 32.9E 25.99S 33.8E 413 

BUM 112322 WC Mk10 POR 28 8/4/12 - 8/27/12 17.1S 32.76E 15.2S 32.18E 183 

BUM 112320 WC Mk10 POR 90 8/12/12 - 11/4/12 17.4S 30.45E 24.0S 22.62E 2263 

BUM 112323 WC Mk10 POR 81 8/26/13 - 11/7/13 18.2S 32.67E 13.0S 34.68E 676 

WHM 126323 WC MiniPAT MR 32 10/15/13 - 11/5/13 9.1S 37.56E 18.3S 28.62E 1819 

WHM 116288 WC Mk10 MR 47 10/15/13 - 11/11/13 7.0S 34.4E 14.5S 35.31E 889 

SWO 61669 MWT PTT100 FL 10 12/16/11 - 12/26/11 26.77N 79.76W 30.81N 75.21W 58 

SWO 86995 MWT PTT100 CZ 10 4/1/12 - 4/10/12 19.8N 79.24W 20.42N 78.93W 77 

SWO 61665 MWT PTT100 CZ 10 4/21/13 - 4/30/13 19.8N 79.22W 19.83N 79.23W 63 

SWO 88095 MWT PTT100 CZ 30 4/12/14 - 5/13/14 19.80N 79.23W 19.6N 78.63W 68 
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Table 2.  Species code, tag ID number, tag manufacturer (MT = Microwave Telemetry, 

WC = Wildlife Computers), tag model averaged root mean square error (RMSE) 

calculated each day of tag duration (in km), max depth (MD) recorded by tag (in m), 

average depth (AD) as recorded by tag (in m) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Species Code Tag ID Tag Model RMSE Max Depth Avg.  

Depth 

BUM 41333 PTT100 75.88 -356 -15 

BUM 24523 PTT100 3.52 -156 -14 

BUM 34233 PTT100 31.47 -87 -7 

BUM 59080 PTT100 27.69 -237 -22 

BUM 84351 PTT100 50.27 -254 -30 

BUM 84363 PTT100 176.14 -326 -21 

BUM 35687 PTT100 130.02 -323 -28 

BUM 111212 Mk10 370.38 -216 -38 

BUM 112321 Mk10 284.74 -192 -38 

BUM 111213 Mk10 245.36 -208 -39 

BLM 111218 Mk10 213.47 -216 -38 

BUM 112322 Mk10 133.50 -224 -54 

BUM 112320 Mk10 381.01 -336 -62 

BUM 112323 Mk10 251.90 -336 -60 

WHM 126323 MiniPAT 251.72 -208 -55 

WHM 116288 Mk10 161.20 -248 -59 

SWO 61669 PTT100 N/A -506 -218 

SWO 86995 PTT100 N/A -651 -357 

SWO 61665 PTT100 N/A -756 -308 

SWO 88095 PTT100 N/A -597 -295 
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RESULTS 

 

Comparison Analyses 

A total of 16 comparisons were made using data from Microwave Telemetry 

PTT-100 HR PSATs and Wildlife Computers PATs (Mk10, MiniPAT) deployed on blue, 

black, and white marlin (Figures 4 and 5).  Root mean square error (RMSE) values 

calculated each day showed the average error of our model to be 174.3 km with a 

standard deviation of 118.9 km.  RMSE calculated each day were plotted over time for 

each deployment, although these plots did not reveal any significant trends in our results 

(Figures 6a-f). 

Light data from seven PTT-100 HRs deployed on blue marlin was run through 

TrackIt to generate a light-based “best fit” track.  The comparison to the PCA generated 

estimates yielded an average error of 70.7 km with a standard deviation of 61.9 km.  Data 

from a total of nine Mk10s and MiniPATs deployed on blue marlin (n=6), white marlin 

(n=2) and black marlin (n=1) were used in a separate comparison.  The “best fit” track 

created from these tags used a state space model that incorporated satellite SST.  RMSE 

calculations from the TrackIt model and SST model revealed an error of 70.7 km and 

254.8 km respectively (Table 3). 

 

Swordfish Projections 

Four tracks were made from swordfish tagged and released in the Caribbean Sea 

near the Cayman Islands (n=3) and in the Florida Straits (n=1) (Figures 8a-d).  Estimates 

derived from our model demonstrate swimming behavior that is supported by previous 

swordfish tagging studies.  The swordfish released in the Northwest Atlantic show a 

northward movement towards the “Charleston Bump” located on the Blake Plateau, just 

east of the South Carolina and Georgia coastline (Figure 8a).  Trips to the Charleston 

Bump are strongly supported by previous tagging studies that suggest that this productive 

region is a possible semi-resident feeding ground for immature swordfish (Sedberry and 

Loefer 2001).   
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Figures 4. 

 

 
a) BUM 41333; Caracas, VZ, March 17, 2008 – March 27, 2008 

 

 
b) BUM 24523; Caracas, VZ, May 15, 2008 – May 25, 2008 

Release 

 

Pop-off 

 

Release 

 

Pop-off 
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c) BUM 34233; Caracas, VZ, May 17, 2008 – May 27, 2008 

 

 

 
d) BUM 59080; Caracas, VZ, April 18, 2009 – April 27, 2009 

Pop-off 

 

Release 

 

Pop-off 

 

Release 
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e) BUM 84351; Virgin Islands, September 11, 2008 – September 21, 2008 

 

 

 
f) BUM 84363; Virgin Islands, September 30, 2009 – October 10, 2009 

Release 

 

Pop-off 

 

Release 

 

Pop-off 
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g) BUM 35687; Florida Straits, June 22, 2008 – July 2, 2008 

 

 

Figures 4.   Estimates of marlin tagged with Microwave Telemetry, Inc. model 

PTT-100 tags (n=7) as given by the hydrographic PCA model and the light-based 

model, TrackIt.  The locations of fish release and final tag pop off are highlighted. 
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Figures 5. 

 

 
 

a) Blue marlin #112321; South Africa March 30, 2012 – April 25, 2012 

 

 

 
 

b) Black marlin #111218; Richard’s Bay, South Africa May 3, 2012 – August 28, 

2012 
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c) Blue marlin #111213; Richard’s Bay, South Africa May 6, 2012 – August 28, 

2012 

 

 

 
 

d) Blue marlin #112322; Madeira, POR, August 4, 2012 – August 27, 2012 
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e) Blue marlin #112320; Madeira, POR, August 12, 2013 – November 4, 2012 

 

 

 

 

 
 

f) Blue marlin #112323; Madeira, POR, August 26, 2013 – November 7, 2012 
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g) White marlin #126323; Morocco, October 15, 2013 – November 5, 2013 

 

 

 

 
 

h) White marlin #126288; Morocco, October 15, 2013 – November 11, 2013 
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Figures 5.   Coordinate estimates of marlin tagged with Wildlife Computers, Inc. 

model Mk10 PATs (n=9).  On the left is the track derived from the hydrographic 

PCA model, while on the right are the estimates from a light-based state-space model 

that uses the tag’s raw global positioning estimates and incorporates satellite sea-

surface temperature (SST).
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a) Caracas, Venezuela, 2008. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 46 

 

 

 
 

b) British Virgin Islands, 2008 and 2009. 

 

 

 

 

 

 

 

 
 

c) North Carolina, 2008. 
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d) Mohammedia, Morocco, 2012. 

 

 

 

 

 

 
 

e) Richard’s Bay, South Africa, 2012. 
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f) Madeira, Portugal, 2013. 

 

 

 

Figures 6.  Root mean square error (RMSE) comparisons plotted over time for 

three track derivation models from electronic tag data.  RMSE is calculated by 

comparing each latitude and longitude estimate produced by the introduced 

hydrographic PCA model and two different light based models.  Light data from 

Microwave Telemetry, Inc. model PTT-100s were run through the light-based 

model TrackIt to produce geolocation estimates (Figures a-c).  Wildlife 

Computers, Inc. model PATs generate raw global positioning estimates that were 

put into a state-space model that incorporates satellite sea-surface temperature 

(SST) to derive the most accurate light-based locations (Figures d-f). 
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Figure 7. 

 

 

 

  
 

Figures 7.  Root mean square (RMSE) plotted according to the length of tag 

deployment.   Days-at-large (DAL) ranged from 9 to 120 days.  A correlation can 

be seen in the longer tag deployments yielding larger error calculations 
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a) Swordfish #61665 

 

 

 

b) Swordfish #61699 



 51 

  

c) Swordfish #86995 

 

 

d) Swordfish #88095 
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Figures 8.  Temperature profiles recreated for the initial (left) and final (right) 

coordinates of swordfish tagged with Microwave Telemetry, Inc. PTT-100 tags (n=4).  

The temperature and depth data was interpolated and averaged at every 20 m depth 

each day. 
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a) Swordfish #61699 
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b) Swordfish #61665 
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c) Swordfish #86995 

Pop-off 

 

Release 
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d) Swordfish #88095 

 

Pop-off 
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Figures 9.   Fish tracks of swordfish tagged with Microwave Telemetry, Inc. model 

PTT-100 tags (n=4) created from the hydrographic PCA model.  The locations of fish 

release and final tag pop off are highlighted.  The top image is a latitude and 

longitude plot with each estimate labeled numerically by day.  The bottom image is a 

Google Earth map of the general track and the directions taken by the fish according 

to our analysis. 
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Table 3.  Average error (RMSE values) as given from two tag models (MT = Microwave 

Telemetry, Inc., WC = Wildlife Computers, Inc.).  Average RMSE values and standard 

deviation (SD) are in kilometers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 MT (TrackIt) WC (SST) Overall 

Error 70.7 254.8 174.3 

SD 61.9 83.3 118.9 
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Method Refinement 

The focus of PCA is deriving few principal components from numerous variables.  

Therefore a primary objective is determining the number of PCs to use versus ignore.  To 

support the use of the first as oppose to the first two or three PCs, a supplementary 

analysis was performed using seven PTT-100 datasets incorporating both the first and 

second PC.  The algorithm to derive the spatial functions was adjusted as follows. 

 

PCi,2 

PCi,2 

so that, 

 

 
 

 
 

The results showed the use of both PCs reduced error only 43 percent of the time (Table 

4).  The total variance described by the first PC ranged from 87 to 94 percent with the 

second PC explaining two to twelve percent of total variance (Table 4). This is typical of 

PCA results that often find large variances associated with the first PC and then an abrupt 

drop-off.  The primary goal is to reveal hidden simplified patterns in high dimensional 

data.  The significance of our analysis can be lost if less important PCs are retained and 

used to derive our spatial functions.   

For these trial PTT datasets (n=7), residual estimations or residual variance were 

calculated from the following equation, where Q is the principal component (PC), 

longitude (X), and latitude (Y) for each day i. 

 

 
 

These estimations incorporated unobserved statistical error and transformed our initial 

linear trajectory, allowing nonlinear movements to be presented in our refined fish tracks 
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(Figures 10).  The residual estimations showed a reduced average error (RMSE) in 57% 

of the trial PTT data used.  However, overall average error calculated from the residual  

 

Table 4.  Species code, tag ID number, average error (RMSE values) given by our PCA 

model analysis of PTT-100 (Microwave Telemetry, Inc.) data (n=7) incorporating the 

first computed principal component (PC) only, both the first and second PC, and the first 

PC residual calculations. Average RMSE values are in kilometers.  The variances 

described by the respective PCs are given as a percentage. 

 

 

Species 

Code Tag ID 

1 PC 

RMSE  

2 PC 

RMSE  

1 PC Residual  

RMSE 

PC1  

Var. (%) 

PC2  

Var. (%) 

BUM 24523 15.3 2.6 17.5 91 7.5 

BUM 84351 55.5 95.4 44.3 87 9 

BUM 34233 40.8 34.5 36.6 90 9 

BUM 41333 75.9 83.1 62.5 88 10 

BUM 59080 27.7 42.7 153.1 94 5.2 

BUM 35687 156.5 183.9 178.7 90 6.6 

BUM 84363 192.8 181.3 157 89 10 
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Figures 10.  

 

 

 
a) BUM 24523; Caracas, VZ, May 15, 2008 – May 25, 2008 
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b) BUM 34233; Caracas, VZ, May 17, 2008 – May 27, 2008 

 

 

 

 

 

 

 

Release 

 

Pop-off 
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c) BUM 59080; Caracas, VZ, April 18, 2009 – April 27, 2009 

 

 

 

Figures 10.  Estimates of marlin (n=3) tagged with Microwave Telemetry Inc. PTT-100 

tags (n=3) as given by the PCA model analysis and residual calculations. 
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estimations was the largest at 92.8 km.  This is approximately three kilometers more than 

the error estimated from using of the first two PCs  (89.9 km) and over ten kilometers 

more than the trials using the first PC only (80.6 km).  These results support our original 

use of the 1
st
 PC only as the most efficient method for representing this spatial data in 

order to estimate fish movement.  Nevertheless, preliminary assessments such as this 

should be conducted for future analyses on additional tag data. The reduced error in three 

of the seven trials incorporating both PCs demonstrates the potential for more than one 

PC to capture the most variance among the original data and subsequently provide more 

accurate location estimates. 
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DISCUSSION 

 

 The PCA model described represents a completely new approach to tracking 

methodology using electronic archival tag data.  Since the development of light-based 

methods to generate global positioning of tagged individuals, many studies have aimed at 

improving the precision of these methods, but none deviated from them with a new 

technique.  Furthermore, no study has attempted to use archived temperature and depth 

data alone to estimate the geographical locations of tagged marine organisms.   

 The comparison analyses showed on average this methodology works within 

174.3 km of the light-based geolocation estimates.  Multiple studies have demonstrated 

that light-based geolocation can work well within this error margin (Ekstrom 2004, Hill 

and Braun 2001, Lam et al. 2010, Musyl et al. 2003, Nielsen et al. 2006, Nielsen and 

Sibert 2007, Shaffer et al. 2005, Sibert et al. 2003, Teo et al. 2004).  Nielsen and Sibert 

(2007) showed that the most probable tracks are reconstructed within 0.5-1 degree 

longitude and 1-2 degrees latitude of the true value.  However, these studies have all been 

performed using tags deployed on near-surface fish or with simulated data.  Furthermore, 

these studies show light-based estimations up to 4 degrees latitude off the actual position 

when in temporal proximity to the equinox (Schaefer & Fuller 2006, Lam et al. 2010).  

Previous attempts to track swordfish demonstrate how current archival tags, light-

processing algorithms, and resulting geographical positioning are not suitable for fine 

scale movement (Musyl et al. 2001).   

This study utilizes the diel movements of the tagged fish to record and recreate 

hydrographic properties of the water column.  In what can essentially be called 

“hydrographic-based geolocation,” this analysis takes advantage of satellite data that can 

reveal the qualitative patterns of our oceans circulation.  Similar to tracking storms and 

weather patterns, this study demonstrates how PCA of localized oceanographic 

conditions can be used to estimate the movement of marine animals.   

The analysis makes use of distinct differences in the temperature profile structures 

to assess how far the fish has moved horizontally.  Therefore the model will work best 

when tags are exposed to frontal zones where hydrographic properties vary dramatically 

over a relatively short distance.  This allows the temperature profiles to exhibit a stronger 
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signal for the PCA to attribute to distinct locations.  Frontal regions include along shelf 

breaks or within seismic activity where thermal intrusions take place.  Studies show a 

strong relationship between fronts and fish abundance (Podesta et al. 1993).  Our results 

show a correlation between the error calculations and length of tag deployment (Figure 

7).  This is to be expected as the longer days at large (DAL) are subject to changing 

temperature variability of water masses. 

Swordfish provide us with valuable data due to their large diel vertical 

movements.  As the tagged swordfish makes their vertical migration, real time records of 

temperature and pressure describe an extensive temperature profile of that water column. 

Temperature and depth recordings by a tag are functions of local hydrography and 

movement activity.  Our model incorporates environmental values much like those 

commonly used in SST-incorporating models.  The use of these values allows us to take 

advantage of the ability of archival tags to record ambient variables with precision.  

Much like the SST models, we are able to link the geographical positions with the 

physical environment described by the tag data (Shaffer et al.2005).  With our model, 

however we are able to utilize the entire water column rather than the first few meters.   

This information is particularly useful when describing individual behavior, and habitat 

preferences.  Much like SST, these observations are most effective when the temperature 

signal in a region is spatially stratified (Lam et al. 2011).  However, when using data 

from swordfish deployments, our temperature utilization of the entire water column 

moderates this as a restricting factor.  Due to the natural properties of the water column, 

temperature has a stronger signal at depth. 

The data used for the PCA input greatly influence the model outcome.  In 

particular, the profiles created for day 1 and day n, must have detailed and complete 

profiles in order for the model work effectively.  These two temperature profiles 

determine how all other profiles are evaluated in terms of the variance they represent.  

The analysis uses the variation between these two profiles to determine appropriate 

movement based on the variability all other profiles exhibit.  For instance if these profiles 

are incomplete or erratic, the PCA will expect all profiles to be similarly structured.  

Thus, any “normal” reconstructed profile would be assigned a dramatically different PC  
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value.  This would result in inaccurate latitude and longitude calculations that would 

place the fish farther away than most likely positioned 

 The two tag models used for this study provided an opportunity to assess what 

data works best with our model. The tag models and respective light-based geolocation 

estimates yielded a difference of 184 km in average RMSE values (Table 3).  The PTT-

100 HR tags provide the raw temperature and pressure (converted to depth) data at 

frequent intervals necessary to construct a precise vertical temperature profile (Figures 1 

and 7).  However, the low-resolution light data does not allow light-based models to work 

to their best ability.  The PAT light data and IGFA/Stanford light-based model provided 

statistically robust geolocation estimates.  The histogram bin data comprised of eight 

temperature and depth measurements did not allow the PCA to capture the full thermal 

stratification of each day.  Limited memory storage of the tags mean longer deployments 

require prolonged sampling intervals.  Depending on the number of days at-large, this can 

lead to multiple days of missing or insufficient PDT data that doesn’t allow us to create a 

vertical temperature profile.  In those cases where profiles could not be reconstructed due 

to lack of data, coordinate estimates were not made for the respective days.  Thus, tracks 

created for analysis purposes were in some cases with marlin shorter than the actual 

tagged days at-large (Table 1).  

Although, research has provided short-term movements and general behavior 

patterns, little is known regarding their movement in-between the established foraging 

and spawning grounds.   The lack of tagging studies in the past stems from individual tag 

costs, and inefficient use of data retained.  This includes incoherent light-based 

geolocation estimates generated from the minimal light records transmitted.  Our 

hydrographic model will give estimates of swordfish locations each day, allowing us to 

create a general track of day-to-day movement.  This will assist in defining activity 

patterns not yet established for swordfish, and provide stock assessments with much 

needed knowledge regarding swordfish stock structure.   

This study supports the use of this model as an ideal global positioning estimator 

that should be explored further.  Double-tagging studies using both satellite telemetry 

tags and archival tags should be considered for future assessments of this model.  The 

ample data provided by archival tags coupled with the geographical precision of acoustic 
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tags will allow direct comparison between our model estimates and actual locations.  An 

increased effort in sharing tag data preferably from double-tagged animals will provide a 

more objective way of determining the accuracy of this model.  In addition to the 

gathering of more tag data, this model should be expanded to incorporate auxiliary 

environment information.  Similar to the way in which SST has been used to refine light-

based geolocation estimates, satellite temperature and depth data can benefit our model.  

Hydrographic data can be accessed from Expendable Bathythermographs (XBTs) 

deployed throughout most oceanic regions.  A PCA performed on temperature profiles 

from a high-resolution data-assimilative ocean circulation model would give EOF modes 

that better describe the pattern of thermal variability among the water masses sampled.  

The incorporation of this data into the analysis of tag data would generate estimations, in 

theory, closer to actual fish locations.  

In conclusion, a PCA-based model incorporating local hydrographic data is a 

compatible method for generating estimates of satellite tagged fish. Despite the 

limitations of tag data accessible, this study provided encouraging results.  Unlike “best 

fit” tracks created from light-based models, the PCA model assumes linearity, so tracks 

generated by this model will be based on linear vectors (Figures 2a-f).  However, these 

estimates are calculated at frequent enough intervals (e.g., every day) that swordfish 

movement can be recreated more precisely than prior methods.  Furthermore, the PCA 

method utilizes data that are not distorted by weather conditions or time of year, thus are 

more consistently accurate. A model of this caliber will provide useful information on 

fine-scale movement of swordfish. Our new approach to improve tracking methods of 

this species adds to a wide range of geolocation methodologies (Lam et al 2008).  This 

allows researchers to choose the model that will work best for their study.  

Tagging studies and geolocation estimation procedures have significant resource 

management applications.  Taking into consideration the lack of knowledge of the 

Atlantic stock structure and population boundaries, the continued use of electronic tags is 

highly encouraged.  The use of PSATs in combination with global positioning estimation 

models provides valuable information regarding the complex behavior of swordfish 

(Abascal et al 2015).  The information provided helps describe the dynamics of this 

species and reduce those uncertainties prevalent in swordfish stock assessments.  
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