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Abstract 

 Caffeine is one of the most popular psychostimulant drugs worldwide. Its effects are exerted 

through a variety of complex mechanisms, apparently primarily via interactions with adenosine A1 and 

A2A receptors. This drug has also been proven to elicit neuroprotective responses in a number of 

different brain disorders of the Central Nervous System (CNS), as well as provide enhancement of 

cognitive abilities. Moreover, a biphasic set of functional and structural neurological changes are often 

found in these receptors among diverse vertebrates.  

 I investigated the effects of chronic caffeine exposure on functional recovery of the dorsal light 

reflex (DLR) in hemilabyrinthectomized common goldfish, Carassius auratus. In this lesion model the 

unilateral removal of vestibular organs results in the temporary loss of gravitational regulated postural 

control, which over time corrects itself by a vestibular compensation (VC) mechanism and can be 

quantified via the DLR. We compared the functional recovery over 24 post -surgery days in goldfish 

continuously held in a caffeine solution of 2.5mg/L (n=10), 5.0mg/L (n=10), 10.0mg/L (n=11) or a control 

0.0mg/L (n=9). Compared to a sham surgery group (n=11), statistically significant changes in the DLR of 

all hemilabyrinthectomized goldfish was observed on day 1. The control group recovered over the study 

period by approaching but not entirely reaching sham surgery DLR. The 2.5mg/L and 5.0mg/L groups 

initiated postural recovery similar to the controls, but then regressed to a stronger DLR. Beginning on 

day 10 the caffeine groups deviated from the control and all three experimental caffeine groups were 

statistically different from the control group on days 15-24. Results suggest early caffeine exposure may 

be innocuous; however, chronic exposure inhibits the functional recovery process.  

 

Keywords: Goldfish, Carassius auratus, caffeine, hemilabyrinthectomy, functional recovery, vestibular 

compensation, neuroprotection, brain damage, central nervous system  
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1.0 Introduction 

1.1 Background Information  

 Vestibular Compensation (VC) provides oft studied models for motor learning. It has been an area 

of interest within research over the last 30 years.( Lee, 1893; Wersäll, 1972; Wersäll & Bagger-Sjöbäck, 

1974; Horn & Rayer, 1978; Smith et al., 1986; Burt & Flohr, 1991a, 1991b; Darlington & Smith, 2000; 

Dutheil et al., 2009;). The vestibular system is the sensory system responsible for providing our sense of 

spatial orientation contributing to our movement and sense of balance.  Any processes involving a 

unilateral removal of afferent information from vestibular end organs (unilateral vestibular 

deafferentation (UVD) creates a disruption in the spatial orientation.  This causes the CNS to gather and 

rearrange information from other sensory inputs(Burt & Flohr, 1991a, 1991b; Flohr & Luneburg, 1993).  

 The compilation of decades of research on the cellular and mechanical mechanisms of VC has 

paved the way for significant understandings into the functional plasticity of the CNS.  The CNS 

processes thought to be involved in functional recovery include the vestibular nuclei, brain stem nuclei, 

vestibular commissural system, the inferior olive, the spinal cord, the visual system, and the cerebellum 

(Ott & Platt, 1988a, 1988b; Heskin-Sweezie et al.,  2010; Gurvich et al., 2013).The occurrence of VC has 

been shown to be moderately independent of recovery in the deafferented vestibular nerve (Darlington 

& Smith, 2000). More specifically, once the peripheral vestibular receptors are removed they do not 

regenerate and the neurons in the vestibular nerve ganglion do not experience any type of functional 

recovery leading to the conclusion that VC is attributed to the plasticity of the CNS (Smith & Darlington, 

1991). This attribution in turn provided study models of lesion-induced CNS plasticity. There are still 

many areas in the compensation process that are poorly understood.However, it is known that the 

vestibular system  plays an integral role in sensorimotor control and perception thereby designating  VC 

an applicable model for studying the post-lesion plasticity of sensorimotor functions (Zennou-Azogui et 

al., 1996).  
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 The mechanisms by which resting activity returns to the deafferented vestibular nerve and 

compensates for certain symptoms (i.e. spontaneous nystagmus (SN) and rolling head tilt (RHT)) are 

unclear.  It can be certain neurochemical mechanisms play an essential role in the regeneration of 

neuronal activity and that VC involves transmitter pathways in the CNS (Smith & Darlington, 1991; Gacek 

et al., 1998; Giardino et al., 2002). Research directed at neurochemical mechanisms is vital to further 

understanding VC and how it relates to other forms of CNS plasticity. Furthermore, such research can 

contribute to understanding how pharmacological compounds help facilitate CNS recovery as a result of 

vestibular injury. 

 The importance of research pertaining to CNS recovery can be appreciative of the many injuries and 

diseases affecting the CNS creating detrimental and even fatal circumstances are considered.  These 

injuries include but are not limited to stroke, brain  hemorrhage, traumatic brain injury (TBI), spinal cord 

injury (SCI), cerebral ischemia, and retinal degeneration. In the United States about 3.5 million people 

live with chronic brain damage from stroke and there are about 10,000 traumatic spinal cord injuries per 

year and an estimated 200,000 retinal degenerative cases (Ballios et al.,  2011).  A 2013 report from the 

Brain Trauma Foundation revealed that moderate and severe head injury is associated with a 2.3 and 4.5 

increased risk of developing Alzheimer’s disease. A study conducted by the Centers for Disease Control 

and Prevention examined TBI related deaths in relation to age group and injury mechanism (Figure 1). 

From their results they determined falling to be the primary mechanism of TBI related injury in young 

people age 0-4 and older people 65+. Within the age group 5-14 being struck by/against an object and 

falling accounted for the majority of TBI related injury. Furthermore, for persons in age groups 15-24 

and 25-44 the proportions of TBI related injury due to assault, falls, and motor vehicle accidents were 

about equal within and across both age groups (Centers for Disease Control and Prevention, 2014).  
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Figure 1: Percent Distributions of TBI-related Deaths by Age Group and Injury Mechanism- United States, 

2006-2010. From, Centers for Disease Control and Prevention (CDC; 2014): National Vital Statistics 

System Mortality Data- United States, 2001-2010 (Deaths).  

  The methods and tools needed to study such injuries and diseases of the human brain differ from 

those in animal models. In humans, experiments are studied at the level of neuronal systems in 

comparison to animals that are studied at the level of single cells or molecules (Ward, 2006). Both of 

these models offer different insights and it is prospective that for a complete understanding on how the 

brain responds to injury both of these models will be required for study. However, the challenges with 

drug and treatment testing require suitable test animals be considered before these studies can be 
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carried out on humans. The various models used for research into vestibular compensation appear to 

indicate species-specific recovery mechanisms.  

 The Goldfish is a viable animal for studying functional recovery following unilateral removal of 

vestibular organs using the hemilabyrinthectomy (HL) lesion model (Ott & Platt, 1988a, 1988b; Burt & 

Flohr, 1991a, 1991b; Yanagihara et al., 1993; Weissenstein et al.,  1996; Mattioli et al.,  2000; Piratello & 

Mattioli, 2004, 2007; Takabayashi et al.,  2006). Post HL goldfish exhibit an ataxic behavioral deficit 

recognized as the dorsal righting reflex (DRR).  The potential for functional recovery from this behavioral 

deficit can be measured quantitatively by means of the dorsal light reflex (DLR) (Powers, 1978; Ott & 

Platt, 1988a, 1988b; Orlovsky, 1991).   

 Darlington & Smith (2000) give three reasons why VC is a good study model. (1) How the vestibular 

system changes in response to damage can help show us how it generally operates. (2) The better we 

understand the mechanisms and processes behind VC the better we can develop treatments for people 

who suffer from diseases and injuries leading to UVD; and 3) VC serves as a model for understanding 

CNS plasticity. Applying methods where pharmacological compounds are implemented in the recovery 

process has served as a means to develop models where we can more readily gain insights into how the 

different mechanisms and processes work. Experimenting with applicable compounds on animal 

models, to determine what may inhibit or facilitate the processes, is the task of science that eventually 

allows for us to make momentous advancements in curing diseases and finding therapeutic treatment 

options for humans.  
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1.2 Purpose of this Experiment   

 A large area of research concerning VC has concentrated on the mechanisms behind the process 

(Waele et al., 1995; Vibert et al., 1997; Dieringer & Straka, 1998; Gacek et al., 1998; Darlington & Smith, 

2000; Gliddon et al.,  2005; Lopez & Blanke, 2011). Another area of research has focused on the effects 

selected pharmacological compounds have on functional recovery and their ability to accelerate or delay 

the process.  These pharmaceuticals fall into a number of different categories including: nootropics, 

histaminergic ligands, antipsychotics,  psycho-stimulants, antihistamines, anxiolytics, 

sympathomimetics, and ergoline derivatives (Beinhold et al.,  1981; Ishikawa & Igarashi, 1985; Peppard, 

1986; Petrosini & Dell’Anna, 1993; Hutchinson et al.,  1995; Rampello & Drago, 1999; Mattioli et al., 

2000; Piratello & Mattioli, 2004, 2007; Tighilet et al., 2007; Gurvich et al., 2013). My study focused 

specifically on the psychostimulant caffeine. 

The discovery and first documented knowledge of the properties of caffeine dates back to the 

1800’s, accrediting scientists of 1819 with the first isolation of moderately pure caffeine. In 1821 

Robiquet was one of the first to isolate and describe pure caffeine (Ribeiro & Sebastião, 2010). Near  the 

end of the 19th century the structure of caffeine was recognized by Fischer and showed similarities to 

adenosine (Ribeiro & Sebastião, 2010).  The behavioral stimulant properties of caffeine were first 

recognized when examining the correlations of the stimulant properties and different analogs with the 

blocking of adenosine receptors (ARs). This led to our current understanding that the effects of caffeine 

on the brain are limited to its ability to act as an antagonist on ARs (Daly, 2007; Fisone et al., 2004).  

The first study detailing adenosine to have an effect on neuronal function was put forth some 70 years 

ago (Drury & Szent-Györgyi, 1929).  Following, was a pivotal development in the 1970s when cerebral 

cortex slices were used to demonstrate the pharmacological properties of Methylxathines and their 

capabilities to block adenosine, consequently altering the accumulation of cyclic adenosine 

monophosphate (cAMP). This work further reinforced our understanding of adenosine as an 
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extracellular signaling molecule functioning on selected receptors (Sattin & Rall, 1970; Gomes et al.,  

2011). Looking at the mechanism of caffeine through the retinal explants of chick embryos, findings 

revealed caffeine to potentiate a D-aspartate-induced GABA release; regulated through a deterioration 

of a γ-aminobutyric acid (GABA) transporter (GAT-1) which is dependent on NMDA receptors. 

Furthermore, caffeine enhances this effect by antagonizing  the adenosine receptors A1 (A1Rs), coupled 

to adenylyl cyclase cAMP levels additionally requiring protein kinase A (PKA) which is thought to be 

involved with the caffeine effects on stimulated GABA release (Ferreira et al.,  2014). This study 

suggested caffeine effects the formation, function, and strength of certain synapses, specifically 

synapses associated with adenosine receptors and GABA (the main inhibitory neurotransmitter in the 

CNS), during CNS development.  

 Caffeine is a methylated derivate of xanthine, a Methylxanthine, and the most commonly 

consumed psychostimulant drug worldwide. (Nehlig et al.,  1992; Li et al., 2012; Porciúncula et al., 2013; 

Steger et al., 2014). There is speculation that the known stimulatory effects of caffeine on the CNS dates 

back to days when Ethiopian shepherds noticed their sheep were awake all night after consuming wild 

coffee cherries (Porciúncula et al., 2013). Caffeine works through a variety of sophisticated mechanisms 

to carry out a biphasic set of functional and structural neurological changes in vertebrates(Gracia et al., 

2013). Caffeine holds strong stimulating behavioral tolerance properties that are possibly attributed to 

these biphasic changes (Jacobson et al., 1996). The psycho stimulating properties of this drug are 

recognized by its interaction with neurotransmitters in different regions of the brain specifically reaching 

the basal ganglia, which positively provokes behavioral functions such as vigilance, attention, mood, and 

arousal (Fisone et al., 2004; Ardais et al., 2014).  

The ability of caffeine to affect motor function in addition to cognitive performance, including 

learning as well as both short-term memory (STM) and long-term memory (LTM) tasks, has gained an 

increased amount of controversial interest. The controversy lies in the question: does caffeine have an 
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inhibitory effect or an excitatory effect on these processes? The uncertainty can be attributed in part to 

differentiating factors such as: the time of drug administration, whether it is before, during or after 

learning tasks, acute exposure on ingestion vs. chronic exposure on ingestion, age, and dose 

dependency (Si et al., 2005; Ribeiro & Sebastião, 2010). The chronic administration of caffeine may 

increase plasma concentrations of adenosine, resulting in neuroprotective benefits (Ribeiro & Sebastião, 

2010). Moreover, the chronic AR antagonism of caffeine could influence motor activity and cognitive 

abilities as similarly seen with the acute effects of AR agonists (Jacobson et al., 1996; Ribeiro & 

Sebastião, 2010).  Another reason for the different effects could be due in part to caffeine not having a 

beneficial effect on all kinds of memory, and the results may not be the same in the different stages of 

the memory processes ( Angelucci et al., 1999).   

To highlight some specific studies, Angelucci et al. (2002) used the Morris Maze Model to 

demonstrate learning and memory in rats. Caffeine doses of 0.3, 3, 10, or 30mg/kg were administered 

intraperitoneally in a volume 0.1 ml/ 100g body weight. The doses were administered 30 minutes before 

training, immediately after training, or 30 minutes before the test sessions began. The post-training 

administration improved memory retention only at doses between 0.3-10mg/kg. From their results, 

they concluded caffeine improved memory retention but not memory acquisition.  Mustard et al. ( 

2012) observed the honeybee to test how ingesting low- doses of caffeine before, during, and after 

conditioning influenced performance in an appetite olfactory learning and memory task. Their results 

confirmed caffeine to affect performance during the acquisition but not the process involved in the 

formation of early LTM.  Sallaberry et al. ( 2013) reported chronic caffeine administration prevents the 

age-related decline in rat emotional memory. Similarly, Costa et al. (2008) showed low-dose chronic 

administration of caffeine improved recognition memory in adult mice.  

 To study these confounding factors associated with caffeine it is imperative to have appropriate 

testing models. The HL lesion model in goldfish dates back to the 20th century (Bienhold & Flohr, 1980; 
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Burt & Flohr, 1991a, 1991b; Weissenstein et al., 1996; Piratello & Mattioli, 2004). This model serves as a 

respectable experimental tool for understanding adaptive learning based on neuroplasticity 

mechanisms, and changes in synaptic productivity and substitution processes (Petrosini & Dell’Anna, 

1993). The purpose of my study was to use this model to measure the effects of caffeine on the 

functional recovery of the DLR exemplified in goldfish. While this drug has been used to evaluate 

functional recovery in the guinea pig (Beinhold et al., 1981), it has yet to be studied in the goldfish lesion 

model.  

 It is worth noting that, the goldfish makes an appropriate model for this study because they display 

a VC postural output that does not involve head-neck or neck-body reflexes which occur in other 

vertebrates (Ott & Platt, 1988a). No complications are associated with the need to control different 

body segments separately; the whole body orientation is the only factor being controlled by the 

gravitational orientation system (Orlovsky, 1991). A fish swimming freely in water experiences very 

minimal gravitational cues from tactile inputs or proprioceptors having to respond to weight on the 

limbs, as seen in tetrapod’s (Ott & Platt, 1988a). A common problem in space-related movements, such 

as gravity orientation, is the transformation of sensory information around space into an efferent motor 

design (muscle activity).  In fish the sensory-motor transformation fundamental to the working 

mechanism of the system stabilizing the normal dorsal side up posture is greatly simplified because of 

the relationship in topology of the sensory paired labyrinth and effector paired pectoral fin organs. A roll 

tilt, a symptom seen post- HL, causes compensatory deflections of the pectoral fins considered to be a 

simpler reflex controlled by otolith and semi-circular canal inputs (Orlovsky, 1991).    

After the loss of vestibular input, goldfish will first use their visual system to adjust posture and 

then progressively, the influence of the gravitational component will begin to increase through the 

process of functional recovery. In addition to learning and memory, several other compensatory 

mechanisms are thought to exist through multiple transmitter systems. These include: the cholinergic 
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system, the dopaminergic system, the histaminergic system, the adrenergic system, and the GABAergic 

system (Bienhold & Flohr, 1980; Waele et al., 1995; Vibert et al., 1997; Giardino et al., 2002; Bergquist et 

al., 2006; Piratello & Mattioli, 2007; Ferré, 2008; Gurvich et al., 2013; Dutheil et al., 2013). Examining the 

effects selected pharmaceuticals have on VC can help to gain fundamental insights into these different 

transmitter systems and their relative significance to neuroplasticity mechanisms involving functional 

recovery processes in the CNS. 

1.3 Basis for Experimental Design  

HL is a surgical procedure in which the labyrinth sensory organs of the inner ear are unilaterally 

destroyed causing severe deficits in posture and locomotion resulting from a loss of equilibrium. This 

procedure allows a lesion to the CNS without directly damaging tissue in the brain. The ataxic symptoms 

of these deficits include: rolling or turning continuously about the longitudinal axis during locomotion, 

spontaneous nystagmus (SN), abnormal posture, and an asymmetry in muscle contractions between the 

damaged and undamaged side (Figures 2,3)(Ott & Platt, 1988a, 1988b). More specifically, these 

symptoms can be further classified as static (SN, yaw head tilt (YHT) and rolling head tilt [RHT]), 

occurring in the absence of body movement, or dynamic (direction specific impairment of vestibulo-

ocular reflexes [VOR]), occurring during body motion. YHT is described as a head deviation in the 

transverse plane towards the lesion side, and RHT is described as head spinning about the longitudinal 

axis toward the lesion side (Petrosini & Dell’Anna, 1993).  
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 Under normal conditions, when fish are under-water, the light comes from above ensuring a 

balance between the vestibular and visual systems creating a stable upright position of the fish.  In 

healthy non-lesion fish, if the light source is directed to illuminate on one side, the fish will consequently 

tilt about 10o toward the light source, suggesting vision plays a role in postural maintenance. Vestibular-

lesion fish, however, will tilt 90o toward the light source, often aligning themselves completely with the 

light, signifying a loss from the gravitational component on postural maintenance. This can be measured 

by placing the goldfish in a dark aquarium, placing a light on the lesion side and measuring the angle to 

which the fish tilts toward the light. The degree of the angle to which the fish tilts is quantified as the 

DLR (Figure 4). As the symptoms improve, the degree to which the DLR occurs will decrease. Both 

blinded animals and intact animals placed in a dark environment will use the vestibular system as a tool 

to perfect their orientation (Deliagina, 1997).  

Figure 2. Ventral View of the 

postural impairment seen post-HL 

(Burt & Flohr, 1990).  

Figure 3. Ventral view of the 

locomotor impairment seen post-HL 

(Burt & Flohr, 1990).  
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Over time, these ocular and postural symptoms will disappear in a functional recovery process 

described throughout this paper as VC. The mechanism of this post- HL VC is carried out through two 

recognized processes:  (1) A multisensory replacement process where the centrally incorporated sensory 

cues need to be rearranged in order to build a location for spatial orientation. (2) The rearrangement of 

the combined pairing of the remaining vestibular, visual, and somatosensory systems normally 

functioning for the protection of the oculomotor, postural, and locomotor functions (Zennou-Azogui et 

al., 1996). The VC that occurs is a complex process involving multiple spontaneous neuronal plasticity 

and synaptic mechanisms (Ott & Platt, 1988a, 1988b; Olabi et al., 2009). The static symptoms have been 

seen to disappear within a few days compared to the dynamic symptoms which seem to take a longer 

period of time to disappear and do not compensate completely (Smith & Darlington, 1991; Lacour, 2006; 

Yu et al., 2009). I chose caffeine as the experimental drug to test its effects on this recovery process, not 

only because it has never been tested in this experimental lesion-recovery model, but also because of its 

known stimulatory properties, cognitive enhancement abilities, and neuroprotective benefits.  This drug 

is also relatively inexpensive, dissolves readily, is easy to obtain, and can be ordered in large quantities.  

Figure 4. This figure offers 

representation of the DLR. The 

arrows represent the light source (I). 

When the two eyes are illuminated 

with light asymmetrically, the fish tilts 

the dorsal side away from the vertical 

position (g) and towards the area of 

highest light, (I).  (Burt & Flohr, 1988).  
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The protocol for this experiment followed the functional recovery post HL studies performed by 

Mattioli et al. (2000) and Piratello& Mattioli (2007). The procedure maintained the same parameters 

with the following adaptations: instead of recording the DLR behavior for 5 minutes and taking a still 

picture every 30 seconds, the behavior was recorded for 3 minutes taking a still photo every 10 seconds. 

This gave an average of 18 pictures per fish that was sufficient in assessing the results as only ten photos 

were needed per fish for the final results. The 10 best photos were chosen for each fish each day based 

on clarity, consistency, and facing the correct direction. To keep things simple, the present study opted 

to follow the method of Li et al. (2011) injecting the caffeine concentration directly into the aquaria in 

lieu of intraperitoneally into the fish. This method has previously been carried out in other 

pharmacology experiments as a means to test different materials(Burgess, 1982; Richendrfer et al., 

2012; Aguirre-Martínez et al., 2013; Collier et al., 2014).  In addition, after placing the fish into the 

observation aquaria the entire room was not subjected to complete darkness. Instead, the top of the 

aquaria was covered to block out the light from the room so only the light from the side source would 

shine through. It is described in more detail in a succeeding section, however, to mention briefly, the 

sides of the observation aquaria were painted black to help keep surround light out.  

The selected dosage concentrations of caffeine were based on the methods presented by Li et al. 

(2011).  In their study, concentrations were tested to examine effects of sub-lethal concentrations on 

different biomarkers in the goldfish. It was imperative to the present study to assess appropriate 

concentrations to avoid running into general health issues with the goldfish or unnecessary mortality. Li 

et al. (2011) exposed the goldfish to the specific concentrations of 0.0032, 0.016, 0.08, 0.4, 2 and 10 

mg/L. The fish were exposed to the drug for a period of 7 days in similar water temperature conditions 

(16-18oC) in addition to a similar photoperiod schedule (11 h light; 13 h dark). No mortality occurred 

throughout their study.  Therefore, the highest tested concentration from that study, 10mg/L, was used 

as the highest tested concentration in the present study. The effects of caffeine on selected biomarkers 
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in the Li et al. (2011) study only started to be noted at 2mg/L, thus the lowest test concentration in the 

present study was 2.5mg/L, which also allowed for an even middle testing concentration in doubling the 

dose to 5mg/L.  The concentration of 0mg/L contained only tap water and was used as the control. The 

general idea of the appropriate experimental apparatus was still based on Mattioli et al. (2000) and 

Piratello and Mattioli (2007).  

1.4 Value of goldfish as a model animal 

 As previously mentioned, equilibrium in non-lesion fish is thought to be under the control of both 

the visual and vestibular systems. In lesioned fish, this equilibrium is interrupted, making fish a suitable 

model to investigate the degree to which these systems contribute to the functional recovery following 

HL. Because head and body movements in fish are not independent of each other, the extent of the 

‘somatosensory-vestibular convergence’ (Burt & Flohr, 1988) is probably reduced in comparison to other 

animals. In addition, muscle spindles are lacking in the majority of teleosts (goldfish included) resulting 

in an underdeveloped proprioceptive system (Burt & Flohr, 1988).  

In fishes the vestibular system is widely conserved and is the major contributor of the sensory input 

for postural control (Lathers et al., 2001). The vestibular sensory organs use the forces associated with 

head acceleration and gravity to convert that energy into a biological signal that the brain uses to 

develop a spatial awareness, ultimately producing motor reflexes for balance and vision (Walker, 2014). 

Orientation and motion sensors are of vital importance to the functioning of many organisms. The 

statocyst is the most primal gravity detecting organ, thought to have appeared more than 600 million 

years ago and developing independently in crustaceans, mollusks, jellyfish, and cephalopods (Walker, 

2014). This organ contains a fluid-filled sac with a single calcareous particle, the statolith, or multiple 

particles, the statoconia. Specialized sensory cells detect the position of these particles within the 

statocyst as they are moved by gravity when the animals’ orientation shifts (Walker, 2014).  
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With time, the development of these organs evolved, becoming more intricate as the vestibular 

labyrinth reached its peak, first seen in the modern fish (Walker, 2014). The features of this labyrinthine 

structure are seen in all fish, excluding the hagfish (one semicircular canal) and lamprey (two 

semicircular canals), as well as higher vertebrates. They include three semicircular canals, a utriculus, 

and the saccule. The utriculus is the most important sensory organ for postural control and vestibular 

afferents guided by the utricular sensory cells which are similar to those seen in higher vertebrates. The 

utriculus and saccule contain tiny hair cells and otoliths that send signals to the brain referencing the 

orientation of the head. Stimulating individual hair cells indicates a fixed position of the animal in the 

gravity field (Orlovsky, 1991). In fishes vestibular afferents are driven by the utricular sensory hair cells, 

functionally firing when the animal is in its normal orientation (dorsal side up), and changing their 

activity with a corresponding change in orientation (Orlovsky, 1991). The utriculus and saccule are 

organs of the otolith located in the inner ear, operating with the balancing component (membranous 

labyrinth) located inside the vestibule of the bony labyrinth. These otolith organs further supply gravity 

related sensory information (Orlovsky, 1991).   

The vestibular labyrinth has two types of sensory monitors: the semicircular canals sense head 

rotations and the utriculus senses linear head accelerations and tilts in the transverse plane. These 

organs produce motion signals pushing two sets of reflexes:  the VORs, creating compensatory eye 

movements to stabilize vision and the vestibulospinal reflexes aiding posture and balance. Goldfish are 

among the best-studied early vertebrates representing a majority of all fish species in regards to 

development of the vestibular system. The goldfish and zebrafish have been used as study models in the 

most comprehensive development and topographical mapping of overall vestibular organization (Straka 

& Baker, 2013). The results of these mappings revealed the vestibular nuclei to be shown as five 

important subdivisions of second order neurons associated with balance, postural control, and motion.   

These subdivisions are categorized into specific functional groups involved with the control of eye and 
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body movements based on different factors involving the restricted termination of first order afferent 

fibers from vestibular end organs, anatomical area outlining from different efferent projection areas, 

and electrophysiological associations of second order neurons during different behavioral models 

(Straka & Baker, 2013).  Furthermore, research exploring these animals has revealed the octavolateral 

nuclei to functionally serve different sensory modalities: the lateral line for mechanoreceptive or 

electroreceptive detection, the auditory for sound pressure, and most pertitent to this research, the 

vestibular modality for body movement (Straka & Baker, 2013).  

 Fishes typically swim freely in water. This substantially decreases the influence of gravitational 

input from physical factors or proprioceptors. Subsequently, this aquatic environment makes fishes 

highly vulnerable to gravitational changes. Due to the underdeveloped proprioceptive system fish do not 

have a body-weight associated with proprioception like that found in terrestrial vertebrates. Thus, they 

are prone to the reduced effects of gravity on muscles, the vascular tonus system, and relevant 

supporting tissues (Lathers et al., 2001). The sensory afferent input to the fish brain comes from vision, 

gravity, and sensorimotor sources. The CNS is the processing unit for the receptor signals from the 

gravity-independent and gravity-dependent responses.  In addition, it is at the level of the CNS where 

the visual inputs from the eye and vestibular inputs from the ear are combined (Lathers et al., 2001). 

Thus, the goldfish can serve as a model to examine disruptions in the neurological gravitational 

component resulting in behavior deficits, as seen from the HL, to evaluate pharmacological compounds 

relative to recovery.  

 It has been noted fish exhibit highly developed spatial abilities in comparison to mammals and birds 

(Durán & Ocaña, 2014). These spatial abilities can be looked at as a type of intelligence with memory 

skills being associated with this ability. Select studies have recognized the presence of the optic tectum 

in fish to be an extremely important structure to sensorimotor function and “the generation of 

egocentrically referenced actions in space (Durán & Ocaña, 2014)” (Broglio et al.,  2010; Durán & Ocaña, 
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2014). Other studies have examined the role cerebellum plays in classical conditioning, inhibitory 

avoidance, and functional recovery mechanisms in fishes (Gómez et al.,  2010; Lee et al., 2010; Durán & 

Ocaña, 2014). This structure has been demonstrated in mammals to be involved in motor control as well 

as learned behaviors (Gómez et al., 2010). In all vertebrates this structure is similar not only in terms of 

the cellular structure and arrangement of cells at the tissue level but also in the pathways involved 

(Durán & Ocaña, 2014). These similarities indicate the likelihood that in fish this structure is involved in 

cognitive functions that have been demonstrated in mammals, possibly learning and memory tasks 

(Durán & Ocaña, 2014). Therefore, the fish HL model serves to plausibly evaluate the effects of drugs on 

these functioning systems for comparison purposes associated with humans and their relevant benefits.  

The goldfish was specifically chosen for this experiment as a model animal for several different 

reasons, which will be described in more detail in the next section. In general goldfish are an inexpensive 

fish and are very easy to obtain. They are also the appropriate size for this type of experiment in 

comparison to other teleosts used for research purposes such as the zebrafish (Danio rerio).  

Additionally, the goldfish, like some other fishes, has ARs in their brains which are of confirmed 

importance to the working mechanism of caffeine.(Lucchi et al.,  1992; Rosati et al., 1995; Poli et al.,  

1999; Beraudi et al.,  2003; Maximino et al., 2011). A multitude of studies have shown this teleost 

exhibits the essential behavioral deficits that are associated with the VC functional recovery mechanisms 

(Lee, 1893; Powers, 1978; Ott & Platt, 1988a, 1988b; Burt & Flohr, 1991a, 1991b; Yanagihara et al., 

1993; Mattioli et al., 2000; Piratello & Mattioli, 2004, 2007).  
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1.5 Comparing mechanisms of vestibular compensation among animal models  

 The ataxic symptoms occurring post-HL in aquatic animals are recognized as more severe than the 

symptoms that occur in terrestrial animals. A species’ ability to adjust postural deficits in regards to 

gravity orientation differs, where some species can stabilize a limited number of separate orientations 

and others gradually change the orientation (Orlovsky, 1991). Aquatic animals are subject to losing total 

motor stability resulting in constant spinning during swimming. Terrestrial animals, on the other hand 

are prone to disturbances in eye position, bending of the trunk and neck, turning of the head, and 

disproportionateness in the muscle limb tone (Deliagina, 1997). Despite the greater severity in aquatic 

animals, the symptoms seen post- HL in all vertebrates are very much alike; it is the rate of recovery that 

seems to differ between species. Notwithstanding, it remains uniform that static symptoms will 

eventually be compensated while dynamic symptoms remain less compensated.   

 The frog (Rana) has also served as a functioning model to demonstrate VC post-HL. Upon removal 

of the labyrinthine organs the obvious symptoms include: a severe head-body tilt toward the lesion side 

in addition to a flexing and extending of the ipsilateral and contralateral forelimbs and hind limbs 

(Dieringer & Straka, 1998). These deficits are significantly increased if the frog is in the water. Flohr and 

Luneburg (1993) compared the recovery period between the grass frog (Rana temporaria) and the 

goldfish examining head deviation deficits. In the frog half compensation was reached in 11 days. In 

contrast the goldfish’s rolling and circular movements are compensated for at a rate not seen in other 

vertebrates ranging from as little to 10 minutues to a few days.  (Peppard, 1986).  

 In addition, the lamprey (Lampetra fluviatilis) has served as a model demonstrating similar ataxic 

symptoms as to HL as the goldfish (Deliagina, 1997). Under normal conditions, the lamprey swims with 

their dorsal side up. However, a unilateral labyrinthectomy procedure causes a disruption in this 

behavior triggering the animal to swim continuously rotating about its longitudinal axis. There is then a 

motor response that works to compensate for this behavioral deficit to return the animal to its normal 
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orientation. In birds the intention to fly or run is greatly reduced with the opening of the semi-circular 

canals, and there is a complete loss of these abilities along with complete loss of movement with the 

destruction of the membranous portion of these canals (Peppard, 1986). After 24 hours the bird is able 

to engage in balancing movements, such as sitting on a branch. There is a permanent loss of flying and 

the head remains tilted toward the lesion side, however (Peppard, 1986).  

Rabbits, cats, guinea pigs, rats and other rodents all exhibit similarity among symptoms. These 

include: SN toward the non-lesion side; head, body, tail deviations toward the lesion side (YHT, RHT); 

body rolling about the sagittal or longitudinal axis. Hamann et al. (1998) observed that the horizontal 

standing tilt in darkness with rats resulted in vertical eye deficits continuing six months post unilateral 

vestibular neurectomy (UVN). The SN and RHT deficits disappeared to about 5o within one week when 

examined under light. Furthermore, two years after surgery when the rat was lifted from the ground by 

the tail the YHT deficit still persisted. The guinea pig, compensated for the SN and RHT within two to 

three days. The YHT was compensated for within a week; however, when proprioceptive changes were 

stimulated compensation did not occur (Darlington & Smith, 2000). In contrast, rabbits suffer SN deficits 

that persist for up to a year and the optic reflexes do not play a role in the compensation process as the 

eyes being opened or closed does not have an effect on head tilt recovery (Peppard, 1986). Moreover, 

the SN is not compensated for as the YHT and the RHT are reduced (Park et al., 1995; Hamann et al., 

1998).  

Cats on the other hand, experience quick recovery of SN and are able to sit upright within hours 

post-lesion, showing little head tilt deficits after a few days (Peppard, 1986; Svenningsson et al., 1997). 

Putkonen et al. (1977) demonstrated the recovery in post- HL cats under conditions of normal light, total 

darkness or stroboscopic light. In normal light and stroboscopic light, the conditions were similar with 

the head tilt peaking at 45o on the second-day post-surgery reaching 0o by the 10th day. In total 

darkness, the cat’s heads remained tilted with re-exposure to light significantly decreasing the tilt. 
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Interestingly, at a later time when cats already compensated were put back into a darkened room they 

lost their symmetrical head position and redeveloped a strong head tilt.  

1.6 Previous research: A look at supplementary vestibular compensation studies 

 Previous studies investigated the effects various pharmacological compounds have on the 

functional recovery process after HL in animals including the goldfish, frog, rat, guinea pig, and cat. 

Piratello & Mattioloi (2004) investigated the effects of chlorpheniramine (CPA), an H1 histamine 

antagonist, and L-histidine, a histaminergic precursor, on the functional recovery in the goldfish. They 

subjected the fish to injections for 12 consecutive days. Their results showed a significant reduction in 

the post HL body tilt on the 7th day of treatment in the CPA injected fish, compared to the saline 

(control) injected fish, which showed a significant improvement on the 13th day. Overall, the CPA 

decreased body tilt faster than the other chemicals. This reveals that when the histaminergic system is 

inhibited there appears to be an accelerating effect on the functional recovery process. Piratello & 

Mattioli (2007) further tested the effects of the histamine antagonist, thioperamide, an H3 receptor 

antagonist, on the functional recovery process. The injections were given for 15 consecutive days. Their 

results demonstrated that on the 7th day the fish injected with saline showed a decrease in head tilt 

compared to the thioperamide group which exhibited this decrease on the 13th day. From these results 

they concluded that an increase in cerebral histamine levels, occurring from the thioperamide, inhibits 

VC in the goldfish.  

 Likewise, Tighilet et al. (2007) investigated the effects of two drugs serving as histamine H3 

receptor antagonists, betahistine, and thioperamide, on the functional recovery process post-UVN in the 

cat. The cats received the drugs orally on a daily regime until the post-operative SN disappeared under 

the light. In comparison to the saline control groups their results showed that the groups treated with 

drugs corrected the SN in the light in four to five days as opposed to eight, and corrected posture and 
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locomotor functions within three weeks as opposed to six. Their results suggest these drugs improve the 

functional recovery process in UVN cats by interacting with the histaminergic system.  

 Mattioli et al. (2000) studied the effects of three neuroactive substances, substance P, the 

adrenocorticotropic hormone, ACTH4-10, and the non-competitive N-methyl-D-asparate (NMDA) 

receptor antagonist dizolcipine (MK-801), on the goldfish HL model. The fish were injected five days a 

week for a total of three weeks. The results from the DLR revealed a significant recovery in body tilt by 

the 3rd day in the ACTH4-10 injected group, by the 8th day in the substance P injected group, and by the 

10th day in the MK-801 injected group. It was concluded that all three drugs facilitated functional 

recovery.    

In demonstrating the effects of ergoline derivatives Rampello & Drago (1999) considered the 

effects of two known drugs acting on the dopaminergic neurotransmission system, nicergoline (NIC) and 

dihydroergocristine (DHE), and their effects on functional recovery in rats following a labyrinth unilateral 

lesion (LBX). The drugs were injected three days before the surgery, continuing for seven days after the 

surgery. Their results revealed NIC to facilitate VC while DHE did not show significant effects. DHE is 

thought to be geared more toward motor performance while NIC may work to facilitate brain circuits 

regulating the equilibrium in the LBX rats by affecting central neurotransmission.  

 Peppered et al. (1986) demonstrated the effects of five different drugs on VC post- UL in the cat. 

Each of these drugs came from a different functional class and was administered over different time 

periods: 

 1. Amphetamine (a sympathomimetic drug) - 24 weeks 
2. Diazepam (an anxiolytic)-16 weeks; 
3. Dimenhydrinate (an anti-histamine) - long term 16 weeks, short term 2 weeks 
4. Scopolamine (a parasympatholytic drug) - 2 weeks 
5. Trimethobenzamide (an antiemetic drug) - 2 weeks  
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Their results showed amphetamine and trimethobenzamide were the only two drugs improving the 

recovery process, with trimethobenzamide having the strongest effect. Furthermore, Diazepam showed 

no effect, dimenhydrinate inhibited recovery over the long term while having no effect over the short 

term and scopolamine showed little to no inhibitory effects.  

 The guinea pig was used as the animal model of study in an HL experiment to test the effects of 

pharmacological compounds identified to interact with the dopaminergic system (Petrosini & Dell’Anna, 

1993). These drugs included: bromocriptine (a D2 agonist), sulpride (a selective D2 antagonist), and 

lisuride (known facilitating effects on D2 receptors). The drugs were injected intraperitoneally for 21 

days beginning the day of the surgical lesion. Their results revealed bromocriptine accelerated 

functional recovery in postural and ocular deficits, having a more profound effect on the postural 

recovery. Animals subjected to sulpride presented delayed compensation in both postural and ocular 

deficits. The animals injected with lisuride showed such a significant delay in the compensation process 

to the point where the ocular and postural deficits were stuck in these positions. Few improvements 

were seen at the very end of the treatment days. All of this suggests dopamine is a contributor in motor 

activity and learning processes involved in recovery from vestibular injuries. 

 Lastly, Beinhold et al. (1981) summarized experiments of pharmacological compounds tested to 

inhibit or facilitate the functional recovery in the frog and the guinea pig. They reported phenobarbital 

injected into guinea pigs after labyrinthectomy and during the compensation process inhibited recovery. 

Similarly, phenobarbital injected into the frog immediately after HL, then subsequently every second 

day, also inhibited the compensation process, specifically head deviations. In guinea pigs the drugs 

chlorpromazine, chlorprothixen, and perazine were injected, and all demonstrated strong inhibitory 

effects in the compensation process. In contrast, chlorpromazine administered to the frog did not have 

an inhibitory effect on functional recovery. On the other hand, drugs they found to facilitate the 

recovery process when tested with the guinea pig model included: strychnine, methamphetamine, 
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pentetrazol, and caffeine (no data on dosage or results were provided for caffeine other than that it 

facilitated recovery). All of these drugs had a stronger effect on head deviations versus SN. Furthermore, 

in the frog, the administration of E 600, a cholinesterase inhibitor, facilitated recovery, especially in 

regards to head deviations.  

1.7 Objectives and hypothesis of the study 

Objectives:  The vestibular organ and semi-circular canals were to be precisely located and 

removed without damaging or removing any other organs. The post- operative ataxic symptoms were to 

be assessed as to whether they are representative of the DRR behavior deficit. Upon successful 

surgeries, the goldfish were to be exposed to three different concentrations of caffeine vs. a no caffeine 

control group. The effects of the drug were then to be evaluated by measuring the DLR over a 24 day 

testing period (with testing occurring on 8 scheduled days) to quantify differences in recovery among 

the treatment groups. These results were used to assess the effects of caffeine on VC and relevant 

neural recovery.   

 Hypothesis:  The adult goldfish, through the HL lesion model, will demonstrate a change in 

recovery, measured by the DLR, as a result of chronic exposure to differing caffeine treatment regimens. 

If the results of the study support the hypothesis, there may be far-reaching effects for the DRR goldfish 

model to provide initial, inexpensive evaluation of pharmacologic compounds directed at CNS recovery. 
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2.1 Materials  

2.1.1 Animals 

 Goldfish purchased from Ozark Fisheries, USA, were kept in the laboratory for a four-week 

acclimation period prior to the experiment. Experimentally naïve, sexually unidentified, goldfish 

weighing between 7-14g and measuring 5-8cm total length were used.  Previous studies have similarly 

used goldfish of mixed sex and comparable size (Ott & Platt, 1988a, 1988b; Flohr & Luneburg, 1993; 

Spieler et al., 1999; Piratello & Mattioli, 2007). Post-surgery fish were divided into five groups: Sham 

group (n= 12) underwent sham surgery and were kept in tanks with water with no caffeine, control 

group (n=12) were kept in no caffeine, low dose group (n=12) were kept in 2.5mg/L of caffeine, middle 

dose group (n=12) were kept in 5.0mg/L of caffeine, and a high dose group kept in 10.0 mg/L of caffeine. 

2.1.2 Water  

 The water used in all aquaria contained fresh tap water. Aquaria were treated with four drops of 

API Tap Water Conditioner (Mars Fish Care North America, Inc., Chalfont, PA, 18914), per 9.5L of water, 

dispensed from a 1mL plastic pipette.   The water in the black observation aquaria and the post- surgery 

observation tank (see below) was untreated. 

2.1.3 Food  

 The fish were fed TetraFin Goldfish Flakes (United Pet Group Inc., Blacksburg, VA, 24060) (Beraudi 

et al., 2003; Cofiel & Mattioli, 2006; Piratello & Mattioli, 2007). Goldfish are known to excrete much 

waste which can lead to a build-up of ammonia and nitrites in the aquaria. These factors are known to 

be harmful, even fatal to all vertebrates (Randall & Tsui, 2002). In order to reduce the amount of fecal 

waste and ammonia, the fish were fed 0.25g of flakes every other day. Ott & Platt (1988a, 1988b) 

subjected the fish in their studies to feedings three times per week. 
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2.1.4 Aquaria 

 The aquaria for this experiment consisted of eight, 47L glass tanks with no gravel or other 

substrates. Six fish from the four experimental testing groups were housed in each tank. The tanks were 

divided into four groups (1, 2, 3, 4) then subdivided into tanks: 1A, 1B, 2A, 2B, 3A, 3B, 4A, 4B ultimately 

assigning 12 fish per group. The filters used were not the same in each tank. They included:  4 Marine 

Land Bio-Wheel Power Filter Penguin 100 (Marine Land Aquarium Products, Cincinnati, OH, 45255), 1 

Marine Land bio wheel 150 (Marine Land Aquarium Products, Cincinnati, OH, 45255), 2 Aqueon Quiet 

Flow 30 (Central Aquatic, Franklin, WI, 53132), 1 Aqueon quiet flow 20 (Central Aquatic, Franklin, WI, 

53132). Different filters were used due to maintenance issues.  The carbon filter packs were removed 

making aeration and circulation the sole purpose of the filters. The top plastic coverings of the filters 

were also removed.  Li et al. (2012) used the filters for aeration purposes only as well. All tanks were 

lined up in a row exposed to equal amounts of lighting. Each tank was equipped with a drain constructed 

of white PVC piping and a plastic mesh top, allowing for overflow drainage. All tanks were connected to 

a central drain system.  

2.1.5 DLR observation aquaria 

 One observation tank, with dimensions 46cm x 11cm x 16 cm x 1.5 cm thickness, similar to those 

used in other studies, was used to record the DLR response of the goldfish (Mattioli et al., 2000; Piratello 

& Mattioli, 2004, 2007). The tank was spray painted black with one clear opening on the right (11.5cm x 

2.7cm), for light to shine in, and one clear opening in the front (4.2cm x 3.5cm), to record the fish’s 

behavior.  The light used was from an Olympus model SZ2-LGDI fiber optic illumination system (Tokyo, 

Japan) with a 12 watt, 2.0 A bulb. A transparent polycarbonate tube, measuring 16.3cm long with a 

diameter of 3.5cm was used to keep the fish in place for photography, allowing the animal to tilt but not 

readily turn away from the front of the observation aquaria. The tube was stabilized with a clear thin 
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plastic tray with two cuts, which kept the tube pressed tightly to the clear viewing area in the front. A 

piece of white polyethylene (material of a cutting board) with dimensions 45cm x 35cm was placed on 

top of the aquarium. On top of that a charcoal metal pan with dimensions 34.5cm x 28.3cm was placed. 

This was used to block out light from the surrounding room, keeping the inside of the aquarium dark.  

 
Figure 5: Side view of observation aquaria.  
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Figure 6: Front view of observation aquaria.  
 

2.1.6. Hemilabyrinthectomy surgery apparatus  

 A v- shaped surgical stand was constructed using sterile plastic, pipe cleaners, and polymer.  It was 

permanently secured to the bottom of a white plastic container (30 x 28.5 cm). A clear plastic container 

(13 x 13cm) was used to hold the initial anesthesia treatment, where the fish was placed pre-surgery. A 

tall, cylindrical container was used to hold the anesthesia solution that was continuously perfused across 

the fish’s gills during surgery. A clear, plastic rectangular container (36 x 18 x 18) was used to hold fresh 

H2O that was perfused across the fish gills post-surgery. Two clear, thin, flexible plastic tubes were used 

to deliver these solutions to the fish by siphoning action. One plastic tube was used to perfuse the 

anesthesia solution, from the cylindrical container, across the fish’s gills during surgery. The second 

plastic tube served to perfuse untreated H2O, from one of the rectangular containers (36 x 18 x 18), 

across the fish’s gills post- surgery to facilitate recovery.  A second plastic container (36 x 18 x 18) was 
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used for the recovery holding tank to assess the fish’s ataxic behavior post- surgery. A digital scale 

(Ohaus Corporation, China) was used to weigh the fish post-surgery while still under anesthesia.   

 
Figure 7: Hemilabyrinthectomy surgical apparatus set- up.  
 

 
Figure 8:  Set -up for recovery post- surgery, weighing station, and observation aquaria.  
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2.1.7. Caffeine concentrations  

 A caffeine powder (1, 3, 7- Trimethylxanthine) (Sigma- Aldrich, St. Louis, MO, 63101), soluble in H2O 

15mg/mL, was purchased. A caffeine concentrate was produced for each group by mixing 2.0L of water 

with the correct amount of caffeine to achieve  final concentrations in the tanks of 2.5mg/L, 5.0mg/L, 

and 10.0mg/L. A concentration of 0mg/L served as the control. The calculations for each concentration 

can be seen below. 

0mg/L- No caffeine concentration added to the tank: CONTROL  

2.5mg/L- 15.67g of caffeine to 2.0L H20 

 2.5mg/L ∙47L = 117.5mg 

 117.5mg ÷ 15mL= 7.83mg/mL=7.83g/L 

 7.83g/L ∙ 2.0L= 15.67g of caffeine to 2.0L H20 

5.0mg/L-31.3g of caffeine to 2.0L H20 

 5.0mg/L ∙47L = 235mg 

 235mg ÷ 15mL= 15.67mg/mL=15.67g/L 

 15.67g/L ∙ 2.0L= 31.3g of caffeine to 2.0L H20 

10.0mg/L-62.67g of caffeine to 2.0L H20 

 10.0mg/L ∙47L = 470mg 

 470mg ÷ 15mL= 31.3mg/mL=31.3g/L 

 31.3g/L ∙ 2.0L= 62.67g of caffeine to 2.0L H20 

 

 Another set of concentrations were created so that the 15.0mL of concentrate could be added to 

the 19L daily water changes and maintain a consistent concentration in the tank. The solutions were 

kept in 1000mL glass jars with plastic screw on lids. These jars were left sitting out at room temperature 
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and labeled 1, 2, 3, and 4 as to correlate with the tank groups.  15mL of each concentration was 

dispensed with a separate 30mL plastic syringe. 500mL of water was added to each 1000mL glass jar and 

the final concentrations, necessary post water change to keep the testing concentrations at the desired 

experimental doses, were mixed according to the calculations below.  

 0mg/L – 500mL of H20 with no caffeine addition: CONTROL  

 2.5mg/L - 1.575g of caffeine to 500mL H2O 

  2.5mg/L ∙18.9L = 47.3mg 

  47.3mg ÷ 15mL = 3.15mg/mL = 3.15g/L  

  3.15g/L ∙ 0.500L = 1.575g of caffeine to 500mL H2O  

 5mg/L - 3.15g of caffeine to 500mL H2O 

  5.0mg/L ∙ 18.9 L = 94.5mg  

  94.5mg ÷ 15mL = 6.3mg/mL = 6.3g/L  

  6.3g/L ∙ 0.500L = 3.15g of caffeine to 500mL H2O  

 10mg/L - 6.3g of caffeine to 500mL H2O 

  10.0mg/L ∙ 18.9L = 189mg 

  189mg ÷ 15mL = 12.6mg/mL = 12.6g/L 

  12.6g/L ∙ 0.500L = 6.3g of caffeine to 500mL H2O 

Li et al. (2012) determined similar concentrations, within the 2-10mg/L range, to not be lethal to the 

health of goldfish.  

2.1.8. Fish maintenance during holding  

 The fish were kept at room temperature 19oC ±1oC throughout the course of the experiment. A 

40% (approximately 19L) water change was performed daily.  Everyday detritus (i.e., feces, uneaten 

food) was removed by siphoning water removal for the water changes.  The water changes were 
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continued on a schedule so that they were done (±1 hour) at the same time every day. The fish were fed 

every other day following the water change. The room was kept on a L/D cycle of 14 hours light/ 10 

hours dark. This same light cycle was successfully used by Mattioli et al. (2000). The same room 

temperature conditions (±1o), as well as light cycle, were used in a study done by Flohr & Luneburg, 

(1993).   

2.2 Experimental Design 

2.2.1 Caffeine dosing   

 The caffeine doses were injected daily directly into the top of the open filter following the water 

changes but before the feedings on the days this occurred, following the methods of Li et al. (2012). One 

30mL syringe was assigned to each jar and corresponding tank groups (1, 2, 3, 4); the syringe was filled 

to the 30mL mark and 15mL of the concentrate was injected at a time into each of the two tanks per 

dosage group (see below). The concentrations assigned to each tank were randomly chosen by a 

colleague, so I was not aware of what concentration went into what tank. The water changes were 

continued on a schedule so that they were done (±1hour) the same time every day.  

2.2.2 Hemilabyrinthectomy surgical procedure  

The surgical procedure was approved for ethical standards by the NOVA Southeastern University, 

Institutional Animal Care and Use Committee (IACUC). Prior to surgery fish were randomly assigned to 

one of eight tanks. The surgeries were completed on all fish in each tank before beginning the procedure 

on fish in the succeeding tank. Separately, for each aquarium, the fish were netted and held in the tank 

pre-surgery to minimize netting stress and hypoxia. The fish were individually anesthetized by placing 

them in a plastic container with a solution of 0.5g TMS in 500mL H2O. Once gill movement ceased the 

fish was immediately moved to the V-shaped surgical stand with the head pointing towards the right.  A 
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small, clear, flexible tube was inserted into the fish’s mouth, continuously perfusing an aerated solution 

of 0.9g TMS in 3.0L H2O across the gills. This served to artifically ventilate and keep the fish exposed to 

the effects of the drug. Under a microscope, the slime coat and skin were removed from the right side of 

the head. A scalpel with a no. 11 blade (X-Acto, USA) was used to make a small triangular opening above 

and behind the right eye. The vestibular organ and semi-circular canals were localized and removed with 

a pair of tweezers. The skull hole was immediately covered with a piece of gauze to absorb any minimal 

amount of bleeding, and then sealed with dental acrylic polymer (Monster Makers, USA). Afterward, the 

fish were quickly weighed and placed on a flat surface where a different tube was placed into the fish’s 

mouth continuously perfusing untreated H2O across the gills.  With the first sign of gill movement, the 

fish was put into an observation tank. If the fish exhibited symptoms of ataxia the surgery was counted 

as a success. The fish undergoing the sham surgery received the same treatment only after the skull was 

opened no part of the fish was removed, and the hole was immediately sealed. The sham group was 

unconscious for the same amount of time as fish that underwent the HL procedure. Figure 9 below 

illustrates the inner ear of a fish and provides imagery to demonstrate the parts of the ear removed.  

 

Figure 9: Inner ear of fish. U= Utriculus, 
SC= Semicircular canals, S=Saccule, 

UO= Utricular otolith, SO= Saccular otolith. 
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2.2.3 DLR testing procedure  

 Twenty-four hours post-HL the first DLR test was performed. On the subsequent days 3, 8, 10, 15, 

17, 22, and 24 the test was repeated. The order of the testing occurred from right to left starting with 

tank 4B and ended with tank 1A. All fish in each tank underwent testing before beginning tests on fish in 

in succeeding tanks. The fish were netted and held in the tank pre-testing. The black observation 

aquarium was filled with approximately 5.5L of water; between each group the aquaria was rinsed and 

refilled.  A Go-Pro Silver Edition (San Mateo, California, 94019) was set up facing the clear opening at the 

front of the aquaria (~10cm distance in between the Go-Pro and aquaria). The fish was carefully slid into 

the polycarbonate tube with the head facing the clear (not blacked out), front opening. The tube was 

placed into the black aquaria in a manner to allow all air bubbles within the tube to escape, and then 

positioned into the plastic stabilization tray to keep it pressed against the front of the aquaria.  The 

white board and metal pan were then placed on top of the tank. The light was positioned and turned on 

directly in front of the clear opening on the right. The behavior of each fish was recorded for 3 minutes 

with the Go-Pro programmed to take a still photo every 10 seconds. The tilt angle of each fish was 

assessed from the best ten photos using the On- Screen Protractor java application (Sourceforge.net) 

with vertical being 0o and totally to the fish’s right being 90o. Therefore, a fish with the strongest 

possible DLR could lean as much as 90o, or completely to its right, and a fish with the weakest possible 

DLR would lean 0o or completely upright.  As the angle approaches 0o, it is assumed functional recovery 

is occurring (Ott & Platt, 1988a). The ten measured angles per fish were entered into an Excel 

spreadsheet.  
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2.2.4 Statistical analysis 

 Microsoft Excel (Microsoft, USA) was used to assess summary results. The mean, mode, minimum 

(min), maximum (max), and range values were calculated. In addition, the averages of those values were 

calculated for each group along with the standard error of the mean (SEM) and the standard deviation 

(SD).  The software used for further analysis was IBM SPSS Statistics version 22 (IBM Corp. Released 

2013. IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.). A one-way analysis of 

variance (ANOVA) was performed for each treatment group followed by a post-hoc Tukey HSD test to 

determine if there was any variance between the angle of lean on one day and any subsequent days. A 

two-way ANOVA was run for comparison of means as well as a pairwise comparison for each treatment 

group with the other treatment groups of each day. On the graphed results, statistical significance is 

represented as p<.05*, p<.01**, and p<.001***.  
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3.0 Results  

The results of each experiment are presented as graphs and tables below. In each experiment, the 

results from each treatment group (0mg/L, 2.5mg/L, 5.0mg/L, 10.0mg/L) were averaged for the entire 

24 day testing period (with 8 measurement days) for statistical consistency for further assessment with 

the one- way ANOVA. The number of fish per group decreased to: control (N= 9), low dose (N=10), 

middle dose (N=10), high dose (N= 11) due to natural mortality and mechanical error. Any fish that died 

was excluded from the data set. One fish also never showed initial symptoms of a successful HL and was 

also excluded from the data set. The vertical bars on each graph represent the SEM.  

 The Following data are also presented for comparison: 

 Mean min DLR angle measurement 

 Mean max DLR angle measurement  

 Mean SD 

 Mean SEM 

 

 Hemilabyrinthectomized goldfish maintained in a non-lethal caffeine solution demonstrated a 

functional recovery pattern of the DLR first improving slightly, and then returning to higher levels of 

dysfunction. These results are consistent with other literature suggesting multiple responses to caffeine 

can occur, especially in the case of TBI. Statistically, there was no significant change within the first week 

of treatment. Additionally, there were only statistical significances noted in the control, low dose, and 

middle dose caffeine groups.  
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3.1 Control: 0mg/L   

 
Figure 10: Results of the control group. The mean DLR plotted by measurement day. Days marked with 
asterisk* indicate a statistically significant variance from day 1 values *p<0.05, **p<0.01, ***p<0.001   
 
 
 
 
 

Figure 11: Table of experimental data. N= 9 
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 Day 1 Day 3 Day 8 Day 10 Day 15 Day 17 Day 22 Day 24 Total 

Mean 45.84 41.48 27.24 18.64 17.40 17.40 20.57 20.67 26.16 

Min  17.81 16.20 6.40 3.70 3.60 3.60 8.30 2.00 7.61 

Max 84.00 80.60 51.20 28.40 44.00 44.00 40.90 36.40 51.19 

SD 22.29 23.29 14.40 8.73 12.24 12.24 11.24 10.17 14.33 

SEM 6.68 7.76 4.80 5.59 5.52 4.99 5.35 4.76 5.68 
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 The control group showed initial signs of recovery on day 8*(p=.048) and increased recovery on 

days 10-24 (day 10 p= .001***; day 15 p= .001***; day 17 p=.001***; day 22 p=.003**; day 24 

p=.003**) in comparison to day 1 value (Figure 10). This is indicating that over time, without the 

influence of caffeine, functional recovery of the DLR did occur.   

 

3.2 Low dose: 2.5 mg/L  

 
Figure 12: Results of the low-dose treatment group. The mean DLR plotted by measurement day. Days 

marked with asterisk* indicate a statistically significant variance from day 1 values *p<0.05, **p<0.01, 

***p<0.001.  
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 Figure 13: Table of experimental data. N= 10 

 In comparison to the day 1 value statistical significance on the functional recovery of the DLR was 

observed only on day 8* (p=.017) (Figure 12). These results are similar to the control group where 

recovery of the DLR showed initial signs of recovery at day 8*; however, statistically significant recovery 

only occurred on this day within the low treatment group comparable to the control in which recovery 

occurred throughout the duration of the experiment. It is plausible some functional recovery at the early 

stages of recovery, at this caffeine dose can occur, and may even be beneficial. It is with the chronic 

exposure of the drug at this dose where detrimental effects take over and functional recovery of the 

DLR is inhibited.  

 

 

 

 

 

 

 

 

 

 Day 1 Day 3 Day 8 Day 10 Day 15 Day 17 Day 22 Day 24 Total 

Mean 62.07 47.13 30.70 39.46 39.77 37.61 47.78 53.58 44.76 

Min 35.30 10.90 15.00 9.90 14.20 15.60 24.4 31.20 19.56 

Max 90.00 90.00 73.30 81.4 88.80 58.40 62.1 78.20 77.78 

SD 21.01 29.76 17.63 20.54 21.44 16.11 13.54 15.62 19.46 

SEM 6.34 7.40 4.56 5.30 4.90 4.73 5.08 4.51 5.35 
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3.3 Middle dose: 5.0 mg/L  

 
Figure 14: Results of the middle dose treatment group. The mean DLR plotted by measurement day. 

Days marked with asterisk* indicate a statistically significant variance from day 1 values *p<0.05, 

**p<0.01, ***p<0.001.  

   
 
 

Figure 15: Table of experimental data. N= 10 
 
 
 At the middle dose, statistical significance was noted only on day 3* (p=.025) in comparison to the 

day 1 value (Figure 14). This result suggests with the middle caffeine dose, at the very early stages of 

recovery, some functional recovery of the DLR is possible. It is with the chronic exposure at the middle 
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 Day 1 Day 3 Day 8 Day 10 Day 15 Day 17 Day 22 Day 24 Total 

Mean 60.28 33.85 36.59 39.46 46.44 42.15 55.27 52.03 45.76 

Min  33.40 3.10 18.80 9.90 21.40 18.80 27.1 25.70 19.78 

Max 90.00 66.44 48.60 81.4 77.10 64.90 80.5 72.80 72.72 

SD 21.84 17.18 11.15 20.54 15.80 17.25 17.00 14.78 16.94 

SEM 6.34 7.34 4.56 5.30 4.90 4.74 5.08 4.51 5.35 
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dose group however that functional recovery is inhibited and the effects of caffeine appear to be 

detrimental rather than beneficial.  

 
3.4 High dose: 10.0 mg/L  
 

 
Figure 16: Results of the high-dose treatment group. The mean DLR plotted by measurement day. Days 
marked with asterisk* indicate a statistically significant variance from day 1 values *p<0.05, **p<0.01, 
***p<0.001. 
 
 

Figure 17: Table of experimental data. N= 11 
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 Day 1 Day 3 Day 8 Day 10 Day 15 Day 17 Day 22 Day 24 Total 

Mean 53.31 38.88 39.80 37.01 44.88 39.97 39.06 42.11 41.88 

Min  38.00 11.20 21.50 14.00 29.10 21.10 14.00 8.70 19.70 

Max 90.00 82.20 62.10 63.70 58.80 69.40 77.50 64.60 71.04 

SD 14.89 21.74 13.77 13.82 10.23 13.68 20.04 15.32 15.43 

SEM 6.04 7.05 4.34 5.05 4.67 4.52 4.84 4.30 5.10 
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 Within the high caffeine treatment dose, no statistical significance on the functional recovery of the 

DLR was noted (Figure 18). Thus, the response was dose dependent. This indicates that with the chronic 

exposure of caffeine at the high dose of 10mg/L no functional recovery is possible. 

 
3.5 Statistical analysis  
 

 
 
 

 
Figure 18: The mean DLR of each fish treatment group plotted by day.   
 
 
 

 

Although no statistical significance is indicated * on the graph above 

significances between the sham group were noted. Additionally, 

significances between the control group and treatment groups were 

noted on days 10-24, indicated by a grey circle. A pairwise comparison 

chart representing the p values can be found in figure 20 in the 

appendix. 
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All four treatment groups were significantly different from the sham group at p=.000(***) on day 1 

indicating a successful surgery (Figure 18). During the course of the study, the high caffeine group did 

not show any statistical recovery from its initial DLR. The low and middle caffeine groups both showed 

some functional recovery in comparison to their day 1 value but later returned to showing no recovery 

in days 15-24. Perhaps a certain level of caffeine at the low and middle doses was helpful. However, in 

the long run this recovery was still less than that of the control group. Looking at the graph it appears 

the DLR measurements at day 1 for all treatment groups were significantly close to each other in value. 

Nonetheless, there was no statistical significance between any treatment groups on any of the DLR 

measurement days. Additionally, it appears there is a similar trend in data between the control group 

and low dose group between days 1 and 8. However, no statistical significance was noted (Figure 18). 

Moreover, there appears to be a similar trend in data across the entire study between the low and 

middle dose groups. This suggests these doses to effect recovery of the DLR in a similar manner, seen by 

the facilitating effects in the early stages, but that it is the amount of time the fish are exposed to the 

drug at these doses that exerts the inhibiting effect.   

Considering the between group results, there is a nonconformity at day 10 when all three of the 

caffeine treatment groups become significantly different from the control group but not each other 

(Figure 18). This difference increased and remained high through the remainder of the study. A chart of 

pairwise comparisons taken directly from SPSS can be seen in the appendix with the described 

significances highlighted in red (Appendix).  

These results are in line with other studies indicating that there is a dose related psychological 

response to caffeine in goldfish ( Li et al., 2012). Little is known about the uptake of caffeine in goldfish 

but it is clear that with chronic exposure all three treatment doses exerted an inhibitory effect on the 

DLR. Based on the curves and slight recovery in the low and middle dose groups (days 8, 3) it is plausible 

dosage is a key factor in the action of caffeine. A high dose of caffeine allows no functional recovery to 
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take place at any stage in the recovery process. Furthermore, caffeine may even be helpful or benign at 

specific levels in the early stages of recovery, seen through the statistical significant values at the low 

and middle dose groups on day 8 and 3 respectively.  

4.0 Discussion  
 

The objectives of the study were accomplished and the hypothesis supported the present results 

demonstrating caffeine to have an effect associated with dose dependency on the functional recovery 

process seen post HL in the goldfish model (see section 1.7). At the middle and low treatment doses 

some functional recovery was seen in comparison to the high dose in which no significant functional 

recovery was observed. Perhaps there is a beneficial effect over a short term period which can be 

helpful compared to the chronic exposure which is detrimental. All in all, the overall picture of the 

results shows the chronic exposure of caffeine within all three treatment groups to exert an inhibitory 

effect on the DLR.  Due to the fact a slight recovery was observed with the low and middle dose groups, 

the exposure was deemed chronic after day 8, where a return to higher DLR values occurred. To explain 

the observable results, it is hypothesized that the continuous effects of caffeine on the adenosine-

dopamine-glutamine system interferers at a crucial juncture thus affecting processes of learning, 

locomotion, and synaptic wiring.  

  Dopamine and adenosine are neurotransmitters that work by attaching themselves to guanine 

nucleoside binding protein (G protein) coupled receptor neurons located on two pathways in the basal 

ganglia within the direct and indirect neuronal circuits of the brain. The indirect and direct neuronal 

circuits work together to control locomotion by determining the intensity of thalamic stimulation to the 

motor cortex (Xie et al.,  2007). The binding of dopamine and adenosine G proteins located on the 

neurons of these two circuits is the mechanism that works to control neurotransmission. 

 Past literature has proposed the understanding that goldfish lack the adenosine receptor A2A (A2AR) 

which is a major target for the working mechanism of caffeine. Only the presence of the adenosine 
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receptor A1 (A1R) has been evaluated and recognized (Lucchi et al., 1992; Lucchi et al., 1994; Rosati et 

al., 1995; Poli et al., 1999; Beraudi et al., 2003). However, these studies looked only at selective brain 

areas using certain antagonists to determine the presence of these ARs. Therefore, the question remains 

if A2ARs are in fact present or absent from the goldfish brain. Being that both of these ARs are imperative 

to the working function of caffeine, exerting inhibitory or facilitaing effects differently, I have included 

the functioning role of A2ARs and their plausable absence within the goldfish brain into my discussion.  

 
4.1 Caffeine and adenosine: a general mechanism of action   

Adenosine, formed as a by-product of purine nucleoside metabolism, is an endogenous 

neuromodulator of brain function working through multiple mechanisms to integrate excitatory and 

inhibitory neurotransmission in the CNS. Moreover, this nucleoside is important for energy transfer as 

adenosine triphosphate (ATP), adenosine diphosphate (ADP), and signal transduction as cAMP.  In the 

CNS, the actions of adenosine are facilitated by four subtypes of G protein-coupled receptors: A1, A2A, 

A2B, and A3 (Sahin et al., 2006).  A1Rs and A3 receptors (A3Rs) are coupled to adenylate cyclase in an 

inhibitory manner, in comparison to A2ARs and A2B receptors (A2BRs) coupled to adenylyl cyclase in a 

stimulatory manner. It is through the antagonism of the extracellular A1Rs and A2ARs, which have a high 

binding affinity for caffeine (a non-selective adenosine receptor antagonist), that adenosine exerts the 

greatest impact on brain function (Gomes et al., 2011). Both of these receptors work to control 

neurotransmitter systems, neuronal excitability, and synaptic plasticity in areas of the brain associated 

with learning and memory (Wei et al., 2011). It is only these receptors that are important for striatal 

regulation of behavior and at pre-synaptic sites they are located together on glutamatergic nerve 

terminals, regulating glutamate release (Xie et al., 2007). Moreover, these receptors are subject to 

antagonism by xanthine compounds including caffeine, theophylline, and for referencing purposes 8-

phenylxanthines (Latini et al., 1996). Under normal physiological conditions, caffeine is unable to act by 
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way of blocking the A2BRs and A3Rs because the affinity for adenosine with these receptors is so low that 

their basal level of activation is insignificant (Fisone et al., 2004).  

Taken as a well-established concept the only known mechanism significantly affected by relevant 

caffeine doses is attributed to the antagonism of endogenous adenosine. Adenosine must be present in 

sufficient concentrations in order to tonically activate the ARs that are already under basal conditions 

(Sattin & Rall, 1970; Dunwiddie & Diao, 1994; Fredholm et al., 1999; Ferré, 2008; Ribeiro & Sebastião, 

2010). The estimated range of this normal basal conditions is relatively wide, 25-250nM (Dunwiddie & 

Masino, 2001; Xie et al., 2007; Wei et al., 2011). When normal cell function becomes compromised the 

extracellular adenosine level has the ability to reach a drastically higher concentration above the 

normal, consequently activating the lower- affinity ARs, in turn changing cell function (Latini & Pedata, 

2008; Wei et al., 2011). In order to further understand this mechanism, it is necessary to understand 

how adenosine controls dopaminergic transmission in the brain. Evidence exists outlining the 

antagonistic interaction between A2ARs/ dopamine D2 receptors (D2Rs) and A1Rs/dopamine D1 receptors 

(D1Rs) and their responsibility for caffeine associated motor stimulating AR antagonist effects and motor 

depressing AR agonist effects (Ongini & Fredholm, 1996; Fuxe et al., 1998).  When adenosine acts on 

A1Rs and A2ARs different modality roles on striatal extracellular levels of dopamine and glutamate 

occurs. The activation of A1Rs inhibits dopamine and glutamate release whereas activating A2ARs 

stimulates dopamine and glutamate release. A study involving rats demonstrated that acute doses of 

caffeine producing motor activating effects involves the blocking of both A1Rs and A2ARs, however the 

effect relies mainly on blocking of the A2ARs after chronic administration (Karcz-Kubicha & Antoniou, 

2003). Furthermore, they suggested minor but significant motor activating effects brought on by the 

chronic caffeine exposure at acute high doses is primarily associated with blocking of A2ARs. In the 

present study, if goldfish do lack A2ARs then this could be a possibility to explain the inhibiting effect on 

the DLR after chronic exposure. If the A2AR needs to be present in order for motor activating effects to 
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take place, brought on by an antagonism of caffeine, then we would not expect to see motor activating 

or stimulating effects on the recovery of the DLR. 

Initially it was thought A1Rs were primarily responsible for mediating the motor activating effects of 

caffeine (Snyder & Katims, 1981). Different studies involving rodents have started to reveal A2ARs as the 

major target for caffeine, responsible for mediating the motor activating effects of caffeine (Ferré, 

2008).  In a study involving mice where the A2AR was disrupted by heterozygous breeding to generate 

knockout mice lacking the A2AR, the motor stimulating effects of caffeine were ineffective (Ledent et al., 

1997; Yacoubi & Ledent, 2000). Furthermore, the chronic effects on motor activation and the 

development for a tolerance to caffeine’s dopamine and glutamate release is thought to primarily occur 

through A1Rs, while the residual motor activating effects in the tolerant test animals is because of A2AR 

blocking (Karcz-Kubicha & Antoniou, 2003; Quarta et al., 2004b). The residual motor effects were based 

on any movements causing a disruption in horizontal photo beams placed in the rat’s cages to detect 

motor stimulation. 

 Similarly, in the present study, again suggesting goldfish lack A2ARs would support the finding in 

which knock mice lacking A2ARs could not benefit from the stimulating effects of caffeine. On the other 

hand, it is possible goldfish developed a tolerance to caffeine through the A1Rs after the chronic 

exposure which inhibited recovery of the DLR. Based on the present study, the tolerance occurs at doses 

between 2.5-5mg/L, where some recovery was possible in the very early stages, however, as time went 

on caffeine inhibited any further recovery from occurring. The high dose group exerted a complete 

inhibition on the DLR showing this dose to be too high to the DLR recovery in the goldfish HL model only 

offering detrimental effects. It is plausible that at this dose the goldfish develops an immediate 

tolerance to the effects of caffeine through the A1Rs that no recovery has a chance to take place.  

In terms of the behavioral effects of caffeine, similar biphasic effects as a dose-dependent 

mechanism are revealed in the activating effects at low doses and the inhibiting effects at high doses, 
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which can also have effects based on the specific AR involvement  (Yacoubi & Ledent, 2000; Halldner et 

al., 2004; Xie et al., 2007; Gracia et al., 2013). The results of the present study support the behavioral 

biphasic effects of caffeine as a dose dependent mechanisms. This is regonized within the high 

treatment dose in which inhibiting results on the functional recovery of the DLR occurred throughout 

the entire study. Yacoubi & Ledent, 2000, suggested through their study that the stimulant effects of 

low caffeine doses is mediated by the blocking of A2ARs and the depressant effect recognized at higher 

doses is mediated by the blocking of A1Rs. It has been proposed that the mechanism of caffeine and 

A1Rs takes place after acute administration but then changes to an A2AR receptor antagonism with the 

chronic caffeine administration. Furthermore, the chronic exposure of caffeine has been shown to offer 

neuroprotective benefits associated with an interaction of A1Rs and A2ARs; however research has 

focused more on the effects associated with A2AR involvement. (Kalda et al., 2006; Bata-García et al., 

2010; Dai & Zhou, 2011; Vila-Luna et al., 2012; Sallaberry et al., 2013; Rivera-Oliver & Díaz-Ríos, 2014; 

Wang et al., 2014).   

 

4.2 Effects of adenosine on brain function:  An in depth look at the role of A1Rs and A2ARs  

The location and distribution between A1Rs and A2ARs within the brain has substantial differences. 

between these two receptor subtypes.  A1Rs are the most highly conserved and abundant in the brain. 

These receptors operate by activation of K+ channels and inhibition of Ca2+ channels. They are coupled to 

inhibitory Gi or G0 G-proteins, and have an associated interaction with D1Rs (Fuxe et al., 1998; 

Dunwiddie & Masino, 2001; Boison, 2008). A1Rs are found at pre, post, and non-synaptic locations 

where stimulation suppresses neuronal activity at both pre and post locations by mechanisms 

combining the inhibition of Gi and the adenylyl cyclase- cAMP- PKA signaling pathway (Wei et al., 2011). 

However, at the sub-cellular level these receptors are most dominantly expressed at pre-synaptic 

terminals where the inhibition of excitatory but not inhibitory synaptic transmission occurs (Gomes et 
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al., 2011; Wei et al., 2011).Furthermore, this receptor is associated with the inhibition of 

neurotransmitters such as glutamate, GABA, acetylcholine, norepinephrine, serotonin, and dopamine, 

with the most prevalent inhibition seen on the excitatory glutamatergic system (Dunwiddie & Masino, 

2001; Boison, 2008; Wei et al., 2011). The inhibition of synaptic transmission is dependent on the 

combination of A1Rs and the inhibition of N-type calcium channels which decreases the stimulus-

induced release of glutamate in central synapses (Gomes et al., 2011). In this situation, the ability for 

synaptic transmission to be completely stopped by adenosine is an often seen occurrence whereas the 

inhibition of GABA systems (an inhibitory system) is a less frequent occurrence thus the primarily effect 

of adenosine activation of this receptor in all brain regions is to reduce excitability (Dunwiddie & 

Masino, 2001).  

 Through the use of in vitro autoradiography, A1Rs have been localized to different brain sites in 

various experimental animals as well as in the human brain (Fastbom et al., 1987a, 1987b; Lucchi et al., 

1992; Rosati et al., 1995). Autoradiography used with rat, cat, guinea pig, and mouse brains 

demonstrated an overall similar distribution of this receptor, with few differences between species. The 

highest heterogeneous distribution was seen throughout the hippocampus, cerebral cortex, some 

thalamic nuclei, cerebellar cortex, and the basal ganglia. The lowest densities were observed within the 

hypothalamus and brain stem. Within the structures of the thalamus and hippocampus significant 

differences were observed noted in density and localization. In all species, excluding the cat, the highest 

densities were observed within the hippocampus. Paralleled with other studies, this signifies A1Rs in all 

mammals to show similar distribution in the hippocampus with the stratum radiatum and stratum oriens 

possessing the highest levels of binding and the stratum pyramidal, granulosum, and lucidum possessing 

the lowest levels of binding.  In the thalamus, the cerebral cortex showed the highest densities in the cat 

with receptors localized to layers I-III; compared to the other species where the receptors were localized 

to levels I, IV, and VI (Fastbom et al., 1987a). Implementing the same method, Fastbom et al. (1987b) 
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mapped the location and distribution of A1Rs in the human brain. Their findings revealed similarities in 

binding sites between the rat brain and the human brain. The highest densities were found in the 

stratum oriens, pyramidale, and radiatum of the hippocampus. High levels were also found in the 

cerebral cortex, the striatum, and some thalamic nuclei. Low receptor densities were found in the 

hypothalamus, with the lowest densities found in the brain stem and spinal cord. The most significant 

difference between the rat and human was in the cerebral cortex. In the rat, this was the most 

categorized structure with the majority of the receptors localized to the molecular layer. In contrast to 

the human brain in which the densities were very low in the molecular and granular layers; higher levels 

were noticed in the Purkinje cells.  

The presence of A1Rs was evaluated in the goldfish model to determine if the neuromodulatory 

action exerted by adenosine was similar to the functioning of that in mammals (Lucchi et al., 1992; 

Rosati et al., 1995). In addition to considering the neuromodulatory function of adenosine in the non-

mammalian nervous system. Using goldfish whole brain parts (telencephalon, optic tectum, cerebellum, 

hypothalamus, spinal cord) in conjuncture with the adenosine receptor agonist 3H-

chlorocyclopentyladenosine, the presence of A1Rs but not A2ARs was revealed (Lucchi et al., 1992; Rosati 

et al., 1995). Additionally, these receptors were negatively coupled to adenylyl cyclase (Lucchi et al., 

1994). In order to rule out a plausible explanation that these receptors are only located in certain areas, 

further analysis was performed examining the goldfish retina, because all vertebrate retina are 

organized in a very, similar almost identical, pattern and the presence of A1Rs, A2ARs, and A2BRs have 

been shown in the mammalian retina (Rosati et al., 1995). Results supported the previous findings of 

A2ARs not present in the goldfish. The specific binding for 3H-CGS 21680 (A2AR agonist) was not detected 

at a concentration high enough, to indicate binding to A2ARs (Rosati et al., 1995). The A1Rs were found to 

be localized at similar densities in the cerebellum, telencephalon, and optic tectum (Rosati et al., 1995; 
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Beraudi et al., 2003). The hypothalamus had the highest densities, and the spinal cord had the lowest 

densities.  

 Immunohistochemical and Western Blot analysis revealed both neurons and glial cells in the 

goldfish brain to express A1Rs, adenosine deaminase, and the adenosine deaminase binding protein 

CD26 protein further indicating homologies with the mammalian brain (Beraudi et al., 2003). Thus, 

despite the fact that the majority of the brain areas between mammals and goldfish differ, there are 

pharmacological and functional similarities between the A1Rs in the mammalian and goldfish brain. As 

demonstrated in mammals, the presence of GABAergic, cholinergic, and glutamatergic/ aspartatergic 

neurons have been confirmed in different regions of the goldfish brain, with different levels of activity, 

(Contestabile et al., 1986; Poli et al., 1993; Lucchi et al., 1994) therefore with what is known about the 

inhibition of reputed transmitter release via presynaptic A1Rs and the modulatory role of adenosine on 

glutamatergic/aspartatergic systems in the mammalian CNS, the proposal for the same action to take 

place in the goldfish nervous system is feasible (Lucchi et al., 1992, 1994). Bissoli et al. 1985 showed in 

the goldfish brain there is a high affinity uptake in the telencephalon for D-[3H] aspartate and GABAergic 

markers, suggesting excitatory amino acids and GABA are likely to have a common neurotransmitter role 

in telencephalon areas. Moreover, the path from the olfactory bulb to the telencephalon regions is 

regulated by aspartate and/or glutamate. The presence of A1Rs in glutamatergic saturated regions 

suggests adenosine to take part functionally in the neuromodulation of the glutamatergic system in 

goldfish cerebellum. Furthermore, in goldfish cerebellar slices an A1 agonist (cyclohexyl adenosine) 

triggered the inhibition of K+ induced glutamate release that is counteracted by the A1 antagonist (8-

cyclopentyltheophylline) (Lucchi et al., 1994). An explanation is likely to depend on the A1Rs prompting a 

decrease in Ca influx,which is shown to occur in synaptosomes from both goldfish and mammalian 

brains, therefore concluding that the A1Rs in the goldfish cerebellum are in fact involved in the 

regulation of glutamate transmitter release (Lucchi et al., 1994). These findings are evidenced further in 
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the brown trout where the presences of A1Rs was also confirmed to function in inhibiting the 

presynaptic release of glutamate (Poli et al., 1999). Moreover, the A1Rs adversely regulated K+ induced 

glutamate release and the K+ depolarization or glutamate stimulated adenosine release, showing again 

an interaction exists between adenosine and glutamate systems as demonstrated in the mammalian 

brain  (Poli et al., 1999).   

 Turning attention to A2ARs, within the CNS these receptors are highly expressed in dopamine-rich 

areas of the brain within the dorsal and ventral striatum, nucleus accumbens, and olfactory tubercle 

with the lowest abundance found in the hippocampus, cortex, and glial cells (Fredholm, 2003; Yaar et 

al., 2005; Dai & Zhou, 2011; Wei et al., 2011). They are primarily expressed at post-synaptic sites in the 

striatum, where they form asymmetrical synapses, confined to the postsynaptic striatopallidal, 

enkephalinergic medium spiny neurons (MSNs) of the indirect pathway (Fredholm & Chen, 2005; Wei et 

al., 2011). The asymmetrical synapses formed  are excitatory and receive input from glutamatergic 

terminals (Fredholm & Chen, 2005). For comparison purposes, A1Rs in the striatum are confined to 

postsynaptic striatonigral, dynorphinergic  MSNs of the direct pathway (Wei et al., 2011). The MSNs are 

the main neurons of the striatum; they are GABAergic and are considered inhibitory. Additionally, they 

receive two main afferents including  glutamatergic afferents from cortical, thalamic, and limbic regions 

and dopaminergic afferents from the mesencephalon (Ferré, 2008). 

  Within the striatum (a structure known for its role in planning and movement pathways in addition 

to working memory functions), where the highest expression of A2ARs occurs, the dominant G protein 

that is found in which this receptor mediates its effects is the Golf and their association occurs in the 

MSNs of the striatum (Fredholm, 2003; Yaar et al., 2005). Coupling of the Golf protein and A2ARs results in 

A2AR activation of the adenylyl cyclase-cAMP PKA dependent pathway.  Additional signaling pathways 

recognize the involvement of a protein kinase C activation, rather than kinase A dependent pathway in 

the hippocampus (Cunha & Ribeiro, 2000; Wei et al., 2011). It has also been demonstrated for A2AR 
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activation to activate other signaling pathways via interactions with supplementary signaling molecules 

and receptors including: functional interactions with A1Rs, A2AR heterodimers, D2Rs, group 1 

metabotropic glutamate 5 receptors (mGlu5Rs), N-methyl-D-aspartate receptors (NMDARs), and 

cannabinoid CB1 receptors (CB1Rs) (Quarta et al., 2004a; Wei et al., 2011). Further in vitro analysis have 

demonstrated A2ARs to affect signaling in the hippocampus through the brain-derived neurotrophic 

factor (BDNF) as well as in the striatum through the fibroblast growth factor (FGF) and glial cell line-

derived neurotrophic factor all modulating synaptic wiring (Wei et al., 2011). This is of importance when 

analyzing the results of the present study and the previous literature recognizing the absence of A2ARs in 

the goldfish. If in fact A2ARs are absent it could affect the mechanisms between these growth factors and 

synaptic wiring differently from what has been observed in other test models.  

  The BDNF signaling is thought to be critical in the processes of neuronal survival and 

differentiation, specifically important for synaptic plasticity, learning activity, memory processing in the 

adult brain, and persistent inhibitory avoidance long-term memory in rats (Sallaberry et al., 2013). The 

chronic exposure to caffeine has been shown to protect against the age-related increase in BDNF 

preventing the decline in the rat emotional memory, attributing to neuroprotective properties of 

caffeine (Costa et al., 2008; Sallaberry et al., 2013).  

 Ardais et al. (2014) examined the behavioral properties of caffeine on adolescent rats at a low, 

moderate, and moderate/high dose. Their results demonstrated the moderate dose to have anxiogenic 

and recognition memory enhancing effects where the higher doses revealed a negative impact on non-

associative learning. They suggested the enhanced memory recognition is due to an increased density of 

BDNF in the cortical areas. The higher caffeine dose and the association with decreased non-associative 

learning are most likely attributed to a decreased density of cortical A1Rs and hippocampal BDNF levels. 

It is plausible, that in the present study, the acute recovery in the DLR at low and middle caffeine doses 

was attributed to a memory enhancing effect from increased BDNF levels; however, with the chronic 
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exposure an inhibitory effect on learning took over at all doses. This concept would disagree with 

previous studies demonstrating chronic caffeine exposure to neuro protect against the age-related 

increase in BDNF in rats. So, therefore, it is hard to draw conclusions esepcially within the scope of this 

study and esepcially since little is known about BDNF and its role in the goldfish brain.  

 Under normal conditions, adenosine is produced by extracellular and intracellular mechanisms 

where the latter is mediated by an intracellular 5’-nucleotidase which dephosphorylates adenosine 

monophosphate (AMP) or by hydrolysis of S-adenosylhomocysteine (Fuxe et al., 1998). In terms of brain 

function, within the CNS adenosine is an intracellular mediator having specific importance to different 

brain mechanisms (Latini & Pedata, 2008). This intracellular adenosine can be moved into the 

extracellular space by specific bi-directional transporters working to keep the intra and extracellular 

adenosine levels uniform (Fuxe et al., 1998). These transporters are classified as equilibrative nucleoside 

transporters and concentrative nucleoside transporters, where equilibrative transporters take primary 

control within the CNS (Latini & Pedata, 2008). Respectively, they function to carry purine and 

pyrimidine nucleosides across cell membranes or mediate the influx of nucleosides joined from the 

energy of the transmembrane sodium gradient (Latini & Pedata, 2008). Furthermore, there is only 

adenosine deaminase not adenosine kinase found in the extracellular space revealed through 

examination of rat hippocampal slices (Lloyd & Fredholm, 1995). Adenosine deaminase is important in 

lowering the increased adenosine levels brought on by excited neurons while adenosine kinase is 

important in regulating the intracellular basal adenosine levels (Xie et al., 2007).  

 Despite its classification as a neurotransmitter, Adenosine does not function like a standard 

neurotransmitter; it is not stored and released from vesicles; it is not released by exocytosis, it does not 

transfer information only from pre-synaptic to post-synaptic components; and it does not act exclusively 

in synapses (Fredholm & Chen, 2005; Wei et al., 2011). The release of adenosine is in response to certain  

stimuli such as elevated K+, electrical stimulation, glutamate receptor agonists, hypoxia, hypoglycemia, 
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and ischemia (Latini & Pedata, 2008). Interestingly, in addition to bi-directional transporters adenosine 

has bi-directional functions where it not only plays a role as a neuromodulator but also takes part in 

energy homeostasis (Gomes et al., 2011; Wei et al., 2011). In lieu of being stored in vesicles, adenosine 

is produced via the highly regulated intracellular metabolism of  AMP then transported out of the cell 

through the bi-directional transporters (Wei et al., 2011). As a neuromodulator adenosine can affect 

synaptic plasticity and the release of excitable neurons of neurotransmitters such as glutamate, GABA, 

acetylcholine, and dopamine. Adenosine regulates these synapses through one of two ways: by 

activating its receptors controlling the release of neurotransmitters such as Ca2+ or by interfering with 

receptors for other neuromodulators (Ribeiro & Sebastião, 2010).  

The homeostasis of transmembrane adenosine transporters is passively maintained through the 

transporting of adenosine in or out of the cell, through intra or extracellular regions. Adenosine is 

transported inward from the extracellular space under normal conditions and adenosine kinase is 

working to lower intracellular adenosine concentrations. However, during times of hypoxia or ischemia 

an increased ATP hydrolysis will occur in the cell causing intracellular adenosine concentrations to rise in 

turn transporting adenosine out of the cell (Xie et al., 2007).  

 The chronic vs. acute ingestion of caffeine has substantially dissimilar effects regarding therapeutic 

or adverse effects. There must be a homeostatic balance of adenosine in the hippocampus or cerebral 

cortex in order for normal working memory to occur and any deviation away from this such as an under 

activation of A2ARs under reduced adenosine levels or enhanced A1R facilitated inhibition under high 

adenosine levels results in an impaired performance (Singer et al., 2012). The chronic intake of caffeine 

results in the chronic AR antagonism causing an up-regulation of A1Rs; however the A2AR levels are 

apparently unchanged (Jacobson et al., 1996; Ribeiro & Sebastião, 2010). Wang et al. (2014) studied the 

mechanism of caffeine- mediated neuroprotection agaisnt experimental autoimmune encephalomyelitis 

in mice by determining the effective time therapeutic window of caffeine and the involvement of A1Rs 
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and A2ARs. Their results showed a deletion of the A2AR worsened a myelin oligodendrocyte glycoprotein-

induced brain damage and caffeine administered to  A2AR knockout mice reversed the experimental 

autoimmune encephalomyelitis by way of acting at non-target A2ARs. They concluded the 

neuroprotective benefits associated with chronic caffeine treatment are because of an up regulation of 

A1Rs. Furthermore, the chronic caffeine intake results in a change in the levels of receptors for 

neurotransmitters. Specifically, a decrease in β- adrenergic receptors, an increase in 5-

hydroxytryptamine receptors (5-HT), and an increase in GABAA receptors (Ribeiro & Sebastião, 2010). 

The increased expression of A1Rs as a result of chronic antagonism of ARs from caffeine, comparable to 

A2ARs is liable to cause a disruption in the necessary homeostatic balance between these two ARs. A 

disruption in the functioning A1R-A2AR heterodimer could be an explanation for the strong tolerance 

effects to the psychomotor effects with chronic caffeine exposure (Ribeiro & Sebastião, 2010).  

 This heterodimer works by regulating glutamate release via adenosine through protein machinery 

involved with cell exocytosis. If a low concentration of adenosine exists, calcium will be blocked from 

entering the N- and P/Q- type voltage-dependent calcium channels resulting in the stimulation of A1Rs 

ultimately decreasing the likelihood of glutamate release. On the other hand, a high concentration of 

adenosine will promote the binding of A2ARs by way of intramembranous interactions; consequently 

reducing the A1R signaling resulting in the stimulation of glutamate release through the cAMP-PKA 

dependent pathway, occurring through the phosphorylation of synaptic vesicle proteins (Ferré, 2008). 

 In the goldfish HL lesion model used here, the chronic caffeine exposure quite possibly facilitated 

an up-regulation of A1Rs in the goldfish brain resulting in the inhibitory effects seen in the DLR brought 

on by a facilitation of the inhibition of adenylyl cyclase, thereby creating inhibiting effects on learning 

and memory. However, based on previous studies if goldfish lack A2ARs then there would be no 

necessity for homeostatic balance between A1Rs and A2ARs. This also goes against previous findings 

where an up-regulation of A1Rs was somehow involved in the neuroprotective benefits with chronic 
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caffeine administration. Therefore, simplistically, it can be proposed that the chronic caffeine exposure 

for all treatment doses had an antagonistic effect on the A1Rs and associated Gi; resulting in inhibition of 

the striatal glutamate and dopamine release thus inhibiting the recovery of the DLR, ultimately reducing 

neuronal excitability. Furthermore, it is likely the cascade of adenosine modulated neural protective 

functions was inhibited.  This may have resulted in stopping the learning process that produces 

functional recovery from occurring or could have also involved increasing secondary apoptosis due to a 

brain trauma event.  

In line with other studies Han et al. (2007) studied the exposure in rats to the effects of low caffeine 

doses over an acute period as well as a chronic period. Using a dose of 0.3g/L over a chronic 4-week 

period their results showed slowed hippocampus-dependent learning and impaired the long term 

memory. Furthermore, there was also a substantially reduced hippocampus neurogenesis. Although 

they did not attribute the results to adenosine receptor interaction with caffeine, they suggested the 

research be done to examine the mechanism involved inhibiting neurogenesis by caffeine. It is likely 

however, that since striatal A1Rs and A2ARs are involved in the motor activating, neuroprotective and 

reinforcing effects of caffeine, displaying different roles under acute or chronic exposure, that the 

inhibiting results are attributed to an interaction with the ARs, specifically A1Rs and caffeine as seen in 

the same inhibiting results in the present study.  

A study with mice involving the knockout of A1Rs and A2ARs revealed biphasic effects of caffeine on 

locomotion and the involvement of respective ARs. The results showed that the blocking of A2ARs is 

necessary for the stimulatory effect of low caffeine doses, but not for the depressant effects recognized 

at higher doses (Halldner et al., 2004). A knockout of the A1R gene did not induce any extreme changes 

in the basal or caffeine induced locomotion. This demonstrates A1R is not of critical importance in 

controlling the effects of caffeine on locomotion; however, this receptor can regulate locomotor 

responses. According to these findings, caffeine cannot bring about any type of locomotor response in 
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mice that do not have A2ARs, supporting previous concepts that these receptors are of the utmost 

importance for the stimulating locomotor effects of caffeine (Yacoubi & Ledent, 2000; Halldner et al., 

2004). If the functional recovery process post HL in goldfish, exposed to caffeine treatments, requires 

stimulating locomotive effects in order to occur, then the findings of the outlined study mentioned 

above are in line with the present study in regards to the absences of A2ARs in goldfish and the observed 

inhibiting results on the DLR. However, the results demonstrated in this study are most likely attributed 

to the biphasic behavioral effects of caffeine where inhibitory effects take place over a chronic period 

and the associated possible tolerance directed at A1Rs.  

 

4.3 Caffeine, adenosine, and the central dopaminergic system  

 Adenosine and dopamine are two key regulators of glutamatergic neurotransmission in the 

striatum (structure that receives input from the cerebral cortex and is the primary input to the basal 

ganglia) (Fisone et al., 2004; Borycz et al., 2007). It is in the striatal spine module (SSM) where adenosine 

acts pre and post-synaptically through heterodimers previously and further described. Within various 

elements of the SSM, caffeine works by way of releasing the pre and post-synaptic brakes that 

adenosine exerts on dopaminergic neurotransmission via action of different ARs (Ferré, 2008).  

Dopamine is a monoamine neurotransmitter and within the basal ganglia of mammals there are two 

crucial dopamine-adenosine receptor interactions both of which are antagonistic and include the A1R-

D1R and the A2AR-D2R.  Furthermore, the direct pathway (A1R-D1R) regulates motor stimulation where 

the indirect pathway (A2AR-D2R) regulates motor inhibition (Fuxe et al., 2007). 

The involvement of the dopaminergic system in caffeine regulated reward and motor effects is 

primarily dependent on the distribution of adenosine and dopamine receptors, in addition to their 

interaction at the receptor and second messenger level in the striatum (Cauli & Morelli, 2005). Post-

synaptically the A1R-D1R interaction occurs in the striatonigral and striatoentopeduncular of the GABA 
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pathway, the basal ganglia, and prefrontal cortex. The stimulation of A1Rs at the intramembranous and 

second messenger level allows the stimulation of A1Rs to counteract the effects of dopamine D1R 

stimulation that acts as signaling mechanisms through the cAMP-PKA pathway. The A2AR-D2R interaction 

occurs in the dorsal and ventral indirect pathway of the striatopallidal GABA pathway (Fuxe et al., 2007). 

In the intramembranous interaction, the activation of A2ARs reduces the binding of dopamine to the 

D2Rs that looks to control neuronal excitability, neuronal firing, and GABA release (Ferré, 2008). 

Furthermore, an interaction is seen in the stimulation of D2Rs at the second messenger level which 

counteracts the stimulation of adenylyl cyclase brought on by stimulation of A2ARs resulting in the 

activation of cAMP-PKA pathways (Ferré, 2008).  

 Opposite functioning roles of A1Rs and A2ARs on extracellular levels of glutamate and dopamine are 

seen in the striatum of mammals where the activation of A1Rs inhibits, and the activation of A2ARs 

stimulates glutamate and dopamine release (Quarta et al., 2004a). It has been recognized that chronic 

caffeine exposure counteracts motor activation and dopamine release in an area of the brain called the 

nucleus accumbens brought on by caffeine or other A1R antagonists, but not an A2AR antagonist (Karcz-

Kubicha & Antoniou, 2003; Quarta et al., 2004a; Ferré, 2008).The ability for A1Rs to inhibit glutamate 

and dopamine release most likely depends on a βγ-inhibition of N-and P/Q- type voltage-dependent 

calcium channels, a mechanism most commonly reported for the inhibition of neurotransmitter release 

by Gi-coupled receptors. The ability for A2ARs to stimulate glutamate and dopamine release is most likely 

dependent on the receptors ability to activate cAMP-PKA signaling (Ferré, 2008).  

 The dopamine release in the medial striatal compartments is involved in mechanisms such as 

incentive learning and reward-seeking effects. As for the involvement of psychostimulants, the 

dopamine release in the same medial striatal compartments appears to be involved in motor-activating 

and reinforcing effects (Ikemoto, 2007; Ferré, 2008). The two pre and post-dopaminergic mechanisms, 

striatal dopamine release, and the adenosine-dopamine-receptor-receptor interactions, which take 
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place in the medial striatal compartments, are the most likely explanation for motor and reinforcing 

effects of caffeine (Cauli & Morelli, 2005; Ferré, 2008). It has also been recently accepted that the 

general administration of caffeine produces a substantial increase in the extracellular concentrations of 

dopamine and glutamate in the nucleus accumbens, located within the ventral striatum (Quarta et al., 

2004b; Ferré, 2008). Dissimilarily, a study revealed that with the chronic administration of caffeine at 

doses 1 and 2.5mg/kg the rats became tolerant to the locomotor stimulant effects but it did not affect 

dopamine release in the ventral striatum thus the tolerance developed to the dopamine stimulant but 

not the acetylcholine stimulant effect of caffeine (Acquas et al., 2002).  A caffine induced dopamine 

release in the nucleus accumbens was demonstrated to rely on glutamate release and the stimulation of 

NMDA receptors thought to be located in dopaminergic terminals (Quarta et al., 2004a). Quarta et al. 

(2004b) further showed that the chronic ingestion of caffeine in the drinking water of rats entirely 

counteracted the effects of caffeine or other A1R antagonist on dopamine and glutamate, while the A2AR 

antagonist was not changed. These findings are in line with other studies suggesting  pre-synaptic 

mechanisms to play a role in psychostimulant effects of caffeine and how this biochemical change 

affects motor activity (Karcz-Kubicha & Antoniou, 2003).  

 The locomotor stimulant effects of caffeine have initially been directed at the blocking of A1Rs. 

These receptors inhibit dopamine release, whereas caffeine has been shown to increase extracellular 

dopamine in the striatum. This effect should result in an increased locomotor response; however, at 

high caffeine doses this response is elicited, and no motor stimulation occurs. Studies have revealed low 

doses of caffeine, not high doses increase glutamate and dopamine release in the ventral striatum which 

solidifies the biphasic motor effects elicited by caffeine (Fisone et al., 2004). These findings are relevant 

to the present study, concluding the results to be explained by a biphasic caffeine effect seen through 

the inhibition of the DLR at the high dose, supplemented by the chronic exposure exerting an inhibitory 

effect at every dose.  Ultimately, it is suggested, caffeine working as an antagonist agianst A1Rs caused 
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the inhibiton of dopamine and glutamate release resulting in negative learning and locomotor effects.  

These results can further be established by acknowledgeing the fact that some areas of goldfish 

telecehpalon are the same in comparison to striatial areas of the mammalian brain and the A1R density 

is moderate in both of thes regions (Rosati et al., 1995). 

 

4.4 Caffeine- it’s associated neuroprotective benefits, and the role of adenosine in brain disorders: 

Previous Research  

 All of this information is relevant to the question of how can pharmaceuticals, such as caffeine, 

assist in neurological and neuroprotective benefits associated with VC deficits. Adenosine has been 

demonstrated within the CNS to be a crucial factor in modulating neurotransmission and acting as a 

neuroprotective proxy in different pathological conditions (Fisone et al., 2004; Gomes et al., 2011; 

Rivera-Oliver & Díaz-Ríos, 2014).  The ability of A1Rs and A2ARs to mediate excitatory transmission allows 

for the possibility to consider these receptors as a neuro modulation system as therapeutic targets to 

manage/treat brain disorders. During times of neuronal activity the extracellular levels of adenosine 

increase; however, upon the occurrence of brain damage these levels increase to substantially higher 

levels (Latini & Pedata, 2008; Gomes et al., 2011). Caffeine’s ability to block A1Rs and A2ARs has been 

shown to reduce physical, cellular, and molecular damages caused by SCI, stroke, Parkinson’s disease, 

and Alzheimer’s disease (Rivera-Oliver & Díaz-Ríos, 2014). There are also situations where caffeine has 

been shown to act as a neuroprotectant against anxiety disorders.  If the zebrafish is exposed to stress 

during its early life stages this can lead to anxiety behavior; however, pre-treating the fish with caffeine 

acted as a protectant against stress-related anxiety (Khor et al., 2013).  

Although the results of this present study did not support chronic caffeine exposure to facilitate the 

DLR,  providing evidence for beneficial effects of caffeine as a neuroprotector or cognitive enhancer by 

way of facilitating functional recovery, there are many other studies where the opposite has been 
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demonstrated. It is also important to bear in mind the crucial importance of taking into account the 

caffeine dose as a quantitative amount and the period of time over which the dose was administered, as 

these factors have a significant outcome on varying results (Angelucci & Cesario, 2002; Li et al., 2008; 

Mustard et al., 2012; Wang et al., 2014). Moreover, the present results further solidify the notion of 

species-specific recovery mechanisms displayed by the adverse effects recognized in other animal 

models.   

Recent studies have been focusing on caffeine and the A2AR as a protectant against Parkinson’s 

disease (Kalda et al., 2006). The therapeutic target for this mechanism is directed primarily at A2ARs 

because there is a significant amount of these receptors present in the striatopallidal neurons.  A2ARs 

and D2Rs form reciprocal antagonistic interactions, and in addition to the blocking of A2ARs in the 

striatopallidal, the post-synaptic effects of dopamine deficiency becomes less, consequently wiping out 

the motor deficits of Parkinson’s disease (Boison, 2008).   

 Bata-García et al. (2010) used hemiparkinsonian rats to demonstrate the postural improvement 

with chronic caffeine administration. After undergoing a lesion to the dopamine nigrostriatal pathway, 

the rats received a chronic low caffeine dose (1mg/kg/day) which improved the contralateral postural 

adjustment, resultant from the induced lesion. These results were said to be due to the blocking of both 

A1Rs and A2ARs. Furthermore, the protective effects of caffeine on the pathophysiological responses of 

the dopaminergic nigrostriatal neurons was demonstrated in the mouse model of Parkinson’s disease 

(Chen et al.,  2001). This study also described A2AR antagonists, such as caffeine, to be critical 

components in treating Parkinson’s disease. Moreover, the blood-brain barrier was studied in its 

relation to Parkinson’s disease, revealing that caffeine may protect against this disease along with 

similar symptoms by stabilizing the blood-brain barrier (Chen et al.,  2008). Specifically, caffeine 

protected against the MPTP neurotoxin (causes permanent symptoms of Parkinson’s disease by 
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destroying dopaminergic neurons), induced loss of dopaminergic neurons, activation of astrocytes and 

microglia, and disruption of the blood-brain barrier.   

 Alzheimer’s disease is among the most common neurodegenerative diseases and studies have 

shown an association between caffeine and this disease (Fredholm & Chen, 2005; Boison, 2008). The 

results of this disease include a progressive decline in cognition and elevated brain levels of β-amyloid 

(Aβ) protein. A study performed on Swedish mutation (APPsw) transgenic mice looked to evaluate the 

outcome of certain cognitive tasks of spatial learning/reference memory, recognition/identification, and 

working memory after chronically being administered 1.5mg of caffeine per day (Arendash et al., 2006). 

Their results revealed lower levels of hippocampal Aβ, and the mice receiving the caffeine performed 

the cognitive tasks better than the control mice. The brain adenosine levels in the transgenic mice 

receiving caffeine treatment were restored back to normal suggesting moderate daily caffeine intake 

could delay or reduce the risk for Alzheimer’s disease.  

 Prediger et al.  (2005) showed that the acute treatment of caffeine can reverse age-related 

olfactory deficits in rats. Their results suggested the involvement of ARs in the control of olfactory 

functions while confirming caffeine potentially to be a treatment method for age related cognitive 

decline. A further study demonstrated the administration of crude caffeine and pure caffeine to have 

positive effects in the mouse model of Alzheimer’s disease. After the chronic administration over a two 

month period caffeine protected primary neurons from Aβ cell death and stopped Aβ induced caspase -

3 activity (Chu et al., 2012).  

The primary cause of disability which inflicts many physical and mechanical challenges is attributed, 

to SCI and TBI. ARs have been shown to regulate the inflammation that occurs in the process of SCI, and 

the administration of caffeine has been shown to neuro protect against effects such as pain, by way of 

blocking A1Rs. A study examining experimental autoimmune encephalomyelitis (EAE) in rats induced by 

guinea pig spinal cord homogenates showed the chronic caffeine administration exerted a 
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neuroprotective effect against EAE most likely through an A1R shift from Th1 to TH2 cell function. 

Moreover, an up-regulation of A1Rs and TGF- β MRNAs occurred and suppression of the interferon γ-

MRNA occurred (Chen et al., 2010). The daily caffeine intake in mice was shown to stop antinociception 

by regulating the A1R using the A1R antagonist DCPDX, which imitated the effects of caffeine (Salvemini 

et al.,  2013). 

TBI results primarily through neurological deficits of primary and secondary cell death events.  

While the primary death that occurs is irreversible, secondary events occur from a process that could 

potentially be reversible. During TBI, adenosine levels rise quickly, and this increased extracellular 

adenosine acts on ARs, primarily A1Rs, offering neuroprotective benefits.  Li et al. (2008) examined the 

acute vs. chronic effects of caffeine in a cortical impact TBI model of mice. Their results concluded that 

the chronic but not acute administration of caffeine reduced brain injury, possibly due to an A1R 

mediated suppression of glutamate release and the inhibition of excessive inflammatory cytokine 

production. However, there are also studies indicating A2AR to be a critical neuromodulator in 

inflammation and brain injuries also having bi-directional properties. Without discussing too many 

studies, 3 valid points were proposed summarizing and addressing acute injuries and the importance of 

A2ARs: 1) A2AR agonist and antagonists have been shown to protect against TBI, SCI, and ischemia events. 

The activation and inactivation are both necessary which explains the bi-directional properties. 2) The 

regulation of both glutamate release and neuroinflammation are necessary for this activation or 

inactivation to occur. 3) The A2AR activation can either be beneficial or harmful after TBI depending on 

the location of  where the A2AR is activated (Dai & Zhou, 2011). 

Aside from the involvement of ARs, the rapid acute administration of caffeine following a TBI can 

limit apnea duration and prevents mortality without creating other adverse outcomes on motor function 

or histology. Furthermore, after four weeks the development of epilepsy electroencephalography bursts 
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that occurred post-injury were significantly reduced with the treatment of caffeine (Lusardi et al.,  

2012). 

Lastly, despite the many more disorders of the brain, it is necessary to look at one more, the 

relationship between caffeine and stroke neuroprotection. A brain stroke is liable to lead to fast 

neurological damage from ischemia or blood-related neurotoxicity. A study showed that frequent coffee 

drinking increased the risk of an ischemic stroke onset in humans (Mostofsky et al., 2010). Additionally, 

caffeine users who consumed at low, moderate, and high doses were used to evaluate caffeine effects 

on cerebral blood flow in humans. Two different states were evaluated and were given a placebo or 

250mg of caffeine. In caffeine abstained test subjects (subjects underwent a 30 day period with no 

caffeine prior to testing) who received a placebo, moderate and high users had greater cerebral blood 

flow than the low users. In native state test subjects (subjects who consumed their normal daily caffeine 

intake up to 15 minutes prior to testing), who received the placebo, the high-dose subjects had less 

cerebral blood flow in comparison to the low and moderate subjects. When given the caffeine dosage 

the cerebral blood flow was reduced in both states by 27%. They concluded that the cerebrovascular 

adenosine system has limited capacity when compensating for high daily caffeine intake (Addicott et al., 

2009).Moreover, another study demonstrated that the moderate long-term consumption of caffeine, in 

the form of coffee, can provide protective effects in healthy individuals against stroke and coronary 

heart disease; however at high intake doses these effects become damaging (Bøhn et al., 2012).   

  

4.5 Future implications  

 There are still many underlying factors posing questions regarding the mechanisms and benefits of 

caffeine. However, one thing we now know, based on the present study, is that chronic caffeine 

exposure, at the selected doses, does not facilitate the functional recovery post HL in goldfish. A 

supplementary study to examine the mechanism in which caffeine exerts its effects on the goldfish brain 
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would be beneficial. Even though there are pharmacological and functional similarities between the 

brains of mammals and goldfish, it is hard to make definite assumptions when looking at the effects 

caffeine has on the mammalian brain and comparing that to what could be occurring in the goldfish 

brain. Follow up studies to the previous examinations of goldfish, where A2ARs were said to be absent, 

could provide more insight into the present results. It would also be interesting to consider if 

administering the caffeine doses intraperitoneally would affect the results. Coinciding with this 

suggestion, it would be research worthy to test a different method when injecting the caffeine doses 

into the tanks after the water changes. After the water changes, the caffeine concentrations in the tanks 

were diluted for a few minutes until the appropriate doses were injected into the tanks to bring the 

concentrations back up to the desired testing levels. It could be beneficial to implement a method 

where the caffeine concentrations were injected into the fresh new water before being transferred to 

the tank, as the dilution then caffeine injection could have shocked the fish. Testing the DLR against 

different caffeine concentrations, less than 2.5mg/L or greater than 10mg/L would be of value, 

especially since the effects of caffeine appear to be quite sensitive to dose dependency. Further, in light 

of the results presented, it appears to be advantageous to continue to investigate the functioning 

mechanisms between caffeine and adenosine.  

 This study supports utilizing the hemilabyrinthectomized goldfish model in studies of neuronal 

recovery; it also opens the door for supplementary research opportunities to answer the questions that 

could not be answered here due to the experimental design. Such as: why there was a facilitating effect, 

but then a divergence to inhibiting functional recovery. One way to answer this question would be to do 

supplementary research with the low and middle dose groups. Since facilitating effects were noted in 

the early stages of recovery it could be interesting to take the fish out of these caffeine solutions after 

day 8 and place them in only fresh water to see if there is a continued recovery of the DLR. It would be 

beneficial to study the tonic exposure to caffeine verses the chronic exposure before the inhibiting 
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results are recognized. Perhaps, testing other AR antagonists in this goldfish DLR model would help 

better understand the interactions between adenosine-dopamine-glutamate mechanisms and the role 

they play in the learning and locomotor processes associated with functional recovery, or if that specific 

interaction exists solely with caffeine exposure. As A1R and A2ARs have been recognized to be involved 

with neuroprotective benefits, it could be beneficial to see if neuroprotective benefits can take place 

post-HL in the goldfish through the use of different AR antagonists and agonists. Although, caffeine did 

not produce positive results in this study, this drug still has the potential to facilitate neurogenesis, 

neuroprotection and cognitive abilities that should not be overlooked but should continue to be studied. 

Additionally, the goldfish HL model should still be considered for research directed at CNS mechanisms 

in relation to neurological protective and trauma- reducing benefits.  
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5.0 Conclusion 

 In conclusion, this study hypothesized a change in recovery measured by the DLR in the HL lesion 

model would be recognized as a result of chronic caffeine exposure at different caffeine treatment 

doses. The hypothesis was supported. There was a change in the DLR seen through an inhibiting effect 

with chronic caffeine exposure at the low, middle, and high doses. It is suggested this inhibition is 

attributed to interference between chronic caffeine exposure and synaptic junctions of the adenosine-

dopamine-glutamine system consequently inhibiting learning, locomotion, and synaptic wiring. Caffeine 

has been widely used in studies as a therapeutic drug in preventing and treating disorders of the brain 

and CNS. Conversely, in other studies caffeine has caused adverse, harmful effects. Certain parameters 

such as dosage, time-of-dosage, specific pathophysiological condition, and the animal model tested all 

seem to play a role in the outcome of its inhibiting or facilitating effects. Albeit caffeine did not prove 

beneficial in this experiment, the goldfish HL lesion model has proven to be successful in demonstrating 

different types of drugs to have facilitating effects with functional recovery. Therefore, since individually 

this drug and this model have proven to be successful they should still be implemented using different 

research methods to study disorders and diseases of the CNS. There is still so much to learn and 

understand with this topic that even results such as the present study demonstrating inhibiting effects 

can be useful for future studies.  
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6.0 Appendix  
 
Figure 19: Details of measurement data results for each group from each DLR measurement day.  
 
 
Measurement Data: 6-4-2014 
 
       
Group 1 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
 
Fish 1A    52 68 51 31 40 40 34 47 26 23 41.2  40  23  68  45 
Fish 2A    88 88 86 90 90 90 90 72 88 73 85.5  90  72  90  18 
Fish 3A    59 33 69 50 71 58 69 49 47 52 55.7  69  33  71  38 
Fish 4A 90 90 90 90 90 90 90 90 90 90 90.0  90  90  90  0 
Fish 5A 54 43 46 50 56 59 58 61 72 64 56.3  N/A  43  72  29 
Fish 6B 32 34 24 67 63 40 23 23 22 90 41.8  23  22  90  68 
Fish 7B 59 85 66 78 55 53 90 67 46 88 68.7  N/A  46  90  44 
Fish 8B 90 90 90 90 90 90 90 89 88 88 89.5  90  88  90  2 
Fish 9B 38 30 37 39 55 41 40 43 49 35 40.7  N/A  30  55  25 
Fish 10B 90 31 12 8 53 4 40 10 37 49 33.4  N/A  4  90  86 
   
Mean   59.0 
SEM   6.9 
St. Dev   21.8 
 
 
 
   
    
 
Group 2 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
 
Fish 1A     32 55 53 19 34 77 84 48 79 63 54.4  N/A  19  84  65 
Fish 2A 43 47 37 48 42 36 41 41 37 38 41.0  37  36  48  12 
Fish 3A 43 28 36 44 36 38 29 30 36 33 35.3  36  28  44  16 
Fish 4A 88 89 88 88 90 90 90 90 32 65 81.0  90  32  90  58 
Fish 5A 89 89 90 90 90 90 90 41 90 90 84.9  90  41  90  49 
Fish 6A 89 90 87 90 88 90 80 89 52 90 84.5  90  52  90  38 
Fish 7B 78 29 28 11 45 73 44 63 25 17 41.3  N/A  11  78  67 
Fish 8B 45 87 22 87 47 14 88 35 72 86 58.3  87  14  88  74 
Fish 9B  90 90 90 90 90 90 90 90 90 90 90.0  90  90  90  0 
Fish 10B  40 41 35 88 46 90 46 62 41 11 50.0  41  11  90  79  
   
Mean   62.1    
SEM   6.6    
St. Dev   21.0    
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Group 3 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
 
Fish 1A     42 43 44 52 53 41 42 43 44 42 44.6  42  41  53  12 
Fish 2A 35 24 69 27 25 39 17 15 17 5 27.3  17  5  69  64 
Fish 3A 55 38 67 38 37 26 18 15 22 25 34.1  38  15  67  52 
Fish 4B 86 86 90 90 86 84 85 85 90 58 84.0  86  58  90  32 
Fish 5B 41 39 90 90 90 90 90 90 90 38 74.8  90  38  90  52 
Fish 6B 45 36 34 19 6 31 16 45 31 44 30.7  45  6  45  39 
Fish 7B 69 56 28 6 2 21 7 90 70 60 40.9  N/A  2  90  88 
Fish 8B 49 86 76 77 59 38 78 10 48 63 58.4  N/A  10  86  76 
Fish 9B 40 24 36 25 26 32 90 77 90 37 47.7  90  24  90  66  
   
Mean   48.6      
SEM   5.9       
St. Dev   19.7       
 
 
 
 
 
   
   
Group 4 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
 
Fish 1A     78 49 15 34 38 34 41 18 48 88 44.3  34  15  88  73 
Fish 2A 58 67 65 83 57 69 57 52 59 52 61.9  57  52  83  31 
Fish 3A 29 27 28 10 27 73 34 81 35 36 38.0  27  10  81  71 
Fish 4A 43 53 54 51 47 90 69 65 34 5 51.1  N/A  5  90  85 
Fish 5A 51 90 55 60 46 8 18 51 44 52 47.5  51  8  90  82 
Fish 6B 90 90 90 90 90 90 90 90 90 90 90.0  90  90  90  0 
Fish 7B 39 31 18 54 18 44 88 87 41 85 50.5  18  18  88  70 
Fish 8B 56 48 42 62 31 32 34 36 31 38 41.0  31  31  62  31 
Fish 9B 46 38 55 34 42 86 90 30 29 90 54.0  90  29  90  61 
Fish 10B 35 58 68 87 59 83 71 84 77 37 65.9  N/A  35  87  52 
Fish 11B 11 39 56 57 56 46 47 23 46 41 42.2  56  11  57  46  
   
Mean   53.3     
SEM   4.5       
St. Dev   14.9       
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Measurement Data: 6-6-2014 
 
   
Group 1 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
 
Fish 1A     87 87 45 23 16 32 21 40 19 47 41.7  87  16  87  71 
Fish 2A 40 4 12 79 36 6 45 3 46 6 27.7  6  3  79  76 
Fish 3A 26 8 2 3 38 39 63 72 65 52 36.8  N/A  2  72  70 
Fish 4A 57 37 27 45 18 22 16 33 41 36 33.2  N/A  16  57  41 
Fish 5A 34 32 32 34 33 25 21 28 31 31 30.1  34  21  34  13 
Fish 6B 42 90 35 61 7 52 49 51 63 53 50.3  N/A  7  90  83 
Fish 7B 90 90 77 90 44 51 0 78 78 N/A 66.4  90  0  90  90 
Fish 8B 47 53 2 3 70 51 40 3 41 1 31.1  3  1  70  69 
Fish 9B 1 0 4 2 0 0 2 77 14 81 18.1  0  0  81  81 
Fish 10B 0 6 0 2 6 8 2 5 2 0 3.1  0  0  8  8 
   
Mean   33.5     
SEM   5.4       
St. Dev   17.2       
 
 
 
 
   
Group 2 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
 
Fish 1A 37 41 40 39 35 42 17 18 64 27 36.0  N/A  17  64  47 
Fish 2A 36 44 30 40 60 44 45 8 34 2 34.3  44  2  60  58 
Fish 3A 48 55 52 36 85 11 48 78 86 78 57.7  48  11  86  75 
Fish 4A 87 86 90 90 90 88 82 90 90 90 88.3  90  82  90  8 
Fish 5A 21 28 21 40 26 37 23 21 44 16 27.7  21  16  44  28 
Fish 6A 41 40 5 9 9 12 2 10 3 34 16.5  9  2  41  39 
Fish 7B 90 90 90 90 90 90 90 90 90 90 90.0  90  90  90  0 
Fish 8B 6 38 14 39 48 77 0 7 42 25 29.6  N/A  0  77  77 
Fish 9B 63 70 79 90 78 75 90 81 90 87 80.3  90  63  90  27 
Fish 10B 31 4 4 2 18 43 5 2 0 0 10.9  4  0  43  43 
   
Mean   47.1     
SEM   9.4       
St. Dev   29.8      
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Group 3 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
 
Fish 1A 5 8 40 31 53 38 17 23 37 36 28.8  N/A  5  53  48 
Fish 2A 20 48 28 42 42 50 28 39 72 16 38.5  28  16  72  56 
Fish 3A 21 15 42 17 22 31 29 24 18 21 24.0  21  15  42  27 
Fish 4A 23 1 0 51 6 19 39 0 14 9 16.2  0  0  51  51 
Fish 5B 82 69 73 90 87 72 27 57 52 6 61.5  N/A  6  90  84 
Fish 6B 58 86 90 88 74 90 72 90 84 74 80.6  90  58  90  32 
Fish 7B 64 59 90 90 68 84 68 69 57 56 70.5  90  56  90  34 
Fish 8B 71 16 39 44 7 40 6 36 17 9 28.5  N/A  6  71  65 
Fish 9B 51 53 18 17 11 7 42 6 28 14 24.7  N/A  6  53  47 
   
Mean   41.5     
SEM   7.8       
St. Dev   23.3      
 
 
 
 
 
   
Group 4 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
 
Fish 1A 50 41 49 52 23 28 11 54 0 5 31.3  N/A  0  54  54 
Fish 2A 16 40 13 8 13 7 51 55 48 17 26.8  13  7  55  48 
Fish 3A 78 32 42 37 37 76 54 53 42 44 49.5  42  32  78  46 
Fish 4A 7 0 28 33 0 35 6 0 50 90 24.9  0  0  90  90 
Fish 5A 12 2 0 0 31 14 0 0 52 2 11.3  0  0  52  52 
Fish 6A 83 90 28 48 56 66 0 48 51 85 55.5  48  0  90  90 
Fish 7B 0 7 0 4 0 39 30 4 16 12 11.2  0  0  39  39 
Fish 8B 55 51 78 56 55 48 27 53 44 54 52.1  55  27  78  51 
Fish 9B 72 45 45 44 65 76 41 35 47 76 54.6  45  35  76  41 
Fish 10B 59 39 4 0 33 23 25 28 38 34 28.3  N/A  0  59  59 
Fish 11B 73 90 72 78 75 90 86 81 90 87 82.2  90  72  90  18 
   
Mean   38.9    
SEM   6.6       
St. Dev   21.7      
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Measurement Data: 6-11-2014 
 
   
Group 1 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
 
Fish 1A 55 54 84 73 58 44 5 32 16 44 46.5  44  5  84  79 
Fish 2A 18 11 19 5 8 27 23 7 24 53 19.5  N/A  5  53  48 
Fish 3A 46 45 46 45 45 45 54 59 57 44 48.6  45  44  59  15 
Fish 4A 44 39 31 36 40 26 32 36 46 48 37.8  36  26  48  22 
Fish 5A 45 45 54 44 34 51 44 32 34 34 41.7  34  32  54  22 
Fish 6B 46 37 20 41 24 45 21 29 6 42 31.1  N/A  6  46  40 
Fish 7B 29 17 13 0 8 7 37 14 36 27 18.8  N/A  0  37  37 
Fish 8B 58 90 0 56 31 90 51 31 11 21 43.9  90  0  90  90 
Fish 9B 26 8 26 43 44 82 53 70 33 90 47.5  26  8  90  82 
Fish 10B  57 49 26 14 4 44 3 27 46 35 30.5  N/A  3  57  54 
  
Mean   36.6    
SEM   3.5       
St. Dev   11.1     
 
 
 
 
   
Group 2 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
 
Fish 1A 43 41 37 39 32 35 37 11 11 39 32.5  37  11  43  32 
Fish 2A 28 19 25 22 17 28 5 13 12 38 20.7  28  5  38  33 
Fish 3A 50 49 55 56 63 41 48 44 33 42 48.1  N/A  33  63  30 
Fish 4A 14 61 47 47 39 13 14 22 7 5 26.9  14  5  61  56 
Fish 5A 13 13 10 36 44 34 14 31 10 8 21.3  13  8  44  36 
Fish 6A 15 25 28 43 31 14 41 36 16 22 27.1  N/A  14  43  29 
Fish 7B 6 19 17 9 39 32 25 11 8 6 17.2  6  6  39  33 
Fish 8B 1 16 34 2 30 33 35 3 31 64 24.9  N/A  1  64  63 
Fish 9B 35 8 25 19 24 19 3 0 17 0 15.0  19  0  35  35 
Fish 10B 63 73 82 82 68 63 71 69 79 83 73.3  63  63  83  20 
  
Mean   30.7    
SEM   5.6       
St. Dev   17.6     
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Group 3 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
 
Fish 1A 38 29 33 36 36 29 36 0 11 26 27.4  36  0  38  38 
Fish 2A 7 4 1 2 8 9 11 9 10 3 6.4  9  1  11  10 
Fish 3A 23 1 16 0 0 14 21 0 12 0 8.7  0  0  23  23 
Fish 4A 46 17 29 0 34 4 61 0 38 3 23.2  0  0  61  61 
Fish 5A 28 1 32 18 26 32 0 34 68 59 29.8  32  0  68  68 
Fish 6A 38 28 37 40 27 26 38 16 33 17 30.0  38  16  40  24 
Fish 7B 47 38 36 36 45 23 66 81 56 9 43.7  36  9  81  72 
Fish 8B 68 71 10 82 41 9 49 41 87 54 51.2  41  9  87  78 
Fish 9B 78 2 13 9 0 23 36 12 43 32 24.8  N/A  0  78  78 
  
Mean   24.3    
SEM   4.8       
St. Dev   14.4     
 
 
 
 
   
Group 4 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
 
Fish 1A 42 41 28 18 31 21 39 39 34 52 34.5  39  18  52  34 
Fish 2A 45 66 68 68 72 54 53 72 59 64 62.1  68  45  72  27 
Fish 3A 36 5 8 45 9 0 3 31 85 44 26.6  N/A  0  85  85 
Fish 4A 2 6 38 6 38 18 22 32 22 31 21.5  6  2  38  36 
Fish 5A 75 77 13 0 0 27 70 51 32 13 35.8  13  0  77  77 
Fish6A 75 86 52 51 48 46 33 47 59 57 55.4  N/A  33  86  53 
Fish 7B 33 29 28 25 27 19 27 42 47 22 29.9  27  19  47  28 
Fish 8B 56 27 38 37 30 25 41 33 34 41 36.2  41  25  56  31 
Fish 9B 62 45 9 15 2 34 69 1 51 65 35.3  N/A  1  69  68 
Fish 10B 49 55 43 49 10 3 38 39 49 55 39.0  49  3  55  52 
  
Mean   37.6    
SEM   3.9      
St. Dev           12.4    
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Measurement Data: 6-13-2014 
 
   
Group 1 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
 
Fish 1A 36 33 38 49 7 57 47 41 38 42 38.8  38  7  57  50 
Fish 2A 30 24 8 39 41 4 29 24 37 33 26.9  24  4  41  37 
Fish 3A 43 62 61 68 21 51 25 26 48 53 45.8  N/A  21  68  47 
Fish 4A 29 42 53 56 48 56 41 53 57 63 49.8  53  29  63  34 
Fish 5A 32 83 34 86 52 57 81 33 45 17 52.0  N/A  17  86  69 
Fish 6B 38 10 16 34 41 34 10 0 33 7 22.3  10  0  41  41 
Fish 7B 2 0 2 62 90 82 69 57 59 47 47.0  2  0  90  90 
Fish 8B 9 2 19 57 13 14 7 9 65 12 20.7  9  2  65  63 
Fish 9B 87 82 89 82 79 80 77 75 80 83 81.4  82  75  89  14 
Fish 10B 42 14 11 4 5 3 10 5 4 1 9.9  4  1  42  41 
  
Mean   36.4    
SEM   6.6      
St. Dev           22.0  
 
 
 
   
Group 2 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
 
Fish 1A 33 39 34 29 36 18 18 12 15 16 25.0  18  12  39  27 
Fish 2A 26 54 25 18 11 39 28 26 20 20 26.7  26  11  54  43 
Fish 3A 56 54 54 36 37 33 24 35 36 29 39.4  54  24  56  32 
Fish 4A 29 31 14 79 16 18 21 18 15 46 28.7  18  14  79  65 
Fish 5A 44 41 40 68 14 21 39 22 19 49 35.7  N/A  14  68  54 
Fish 6A 36 38 17 47 16 4 36 10 32 11 24.7  36  4  47  43 
Fish 7B 56 74 57 69 61 59 67 74 65 69 65.1  74  56  74  18 
Fish 8B 48 33 65 47 13 3 0 24 72 36 34.1  N/A  0  72  72 
Fish 9B 32 14 26 36 18 26 23 0 14 58 24.7  14  0  58  58 
Fish 10B 39 27 9 25 3 20 7 39 54 32 25.5  39  3  54  51 
  
Mean   33.0    
SEM   3.9      
St. Dev           12.5  
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Group 3 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
  
Fish 1A 22 10 5 12 5 0 0 10 9 4 7.7  10  0  22  22 
Fish 2A 54 6 13 7 13 21 20 18 12 6 17.0  6  6  54  48 
Fish 3A 0 0 7 10 35 34 3 5 31 24 14.9  0  0  35  35  
Fish 4A 22 34 19 16 28 39 17 55 19 30 27.9  19  16  55  39 
Fish 5A 24 8 34 31 29 21 16 25 26 27 24.1  N/A  8  34  26 
Fish 6A 0 0 0 0 0 6 0 0 25 6 3.7  0  0  25  25 
Fish 7B 24 12 29 43 43 21 24 33 36 19 28.4  24  12  43  31 
Fish 8B 9 12 29 18 20 18 24 12 32 18 19.2  18  9  32  23 
Fish 9B 28 33 18 19 26 23 42 23 18 19 24.9  18  18  42  24 
  
Mean   18.6   
SEM   2.9     
St. Dev           8.7 
 
 
 
 
 
   
Group 4 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
  
Fish 1A 12 47 15 38 12 10 42 9 34 23 24.2  12  9  47  38 
Fish 2A 33 29 46 56 31 65 56 9 53 42 42.0  56  9  65  56 
Fish 3A 33 45 34 33 66 12 82 51 50 72 47.8  33  12  82  70 
Fish 4A 36 19 0 31 24 23 35 28 65 71 33.2  N/A  0  71  71 
Fish 5A 83 46 39 45 37 49 21 79 54 70 52.3  N/A  21  83  62 
Fish 6B 50 35 36 36 0 0 34 51 29 37 30.8  36  0  51  51 
Fish 7B 23 18 42 40 52 31 39 66 16 23 35.0  23  16  66  50 
Fish 8B 40 28 17 24 23 38 33 18 58 8 28.7  N/A  8  58  50 
Fish 9B 42 0 21 14 24 0 0 33 6 0 14.0  0  0  42  42 
Fish 10B 27 24 23 51 41 41 48 24 37 38 35.4  24  23  51  28 
Fish 11B 69 66 79 53 56 61 81 55 64 53 63.7  53  53  81  28 
  
Mean   37.0   
SEM   4.2     
St. Dev           13.8 
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Measurement Data: 6-18-2014 
 
   
Group 1 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
  
Fish 1A 74 50 34 53 72 61 42 28 67 39 52.0  N/A  28  74  46 
Fish2A 61 49 33 71 44 73 82 36 75 51 57.5  N/A  33  82  49 
Fish 3A 74 78 68 76 68 81 83 88 86 69 77.1  68  68  88  20 
Fish 4A 53 48 61 67 81 42 51 26 28 11 46.8  N/A  11  81  70 
Fish 5A 32 31 38 37 46 32 34 37 32 27 34.6  32  27  46  19 
Fish 6B 74 82 8 56 25 23 17 75 64 88 51.2  N/A  8  88  80 
Fish 7B 0 45 11 34 24 19 38 6 16 21 21.4  N/A  0  45  45 
Fish 8B 86 51 7 89 51 5 27 86 90  54.7  86  5  90  85 
Fish 9B 38 40 38 32 29 57 21 22 17 25 31.9  38  17  57  40 
Fish 10B 40 28 51 0 4 28 46 53 73 49 37.2  28  0  73  73 
  
Mean   46.4   
SEM   5.0     
St. Dev           15.8 
 
 
 
   
Group 2 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
  
Fish 1A 48 61 18 12 14 19 14 16 18 23 24.3  18  12  61  49 
Fish 2A 23 39 68 30 56 38 68 76 39 25 46.2  39  23  76  53 
Fish 3A 12 4 21 17 14 57 35 24 58 49 29.1  N/A  4  58  54 
Fish 4A 56 71 67 67 48 61 1 36 49 52 50.8  67  1  71  70 
Fish 5A 50 5 39 43 49 59 57 40 16 37 39.5  N/A  5  59  54 
Fish 6B 29 15 32 0 2 0 6 54 56 22 21.6  0  0  56  56 
Fish 7B 85 87 88 89 90 90 90 90 90 89 88.8  90  85  90  5 
Fish 8B 11 16 33 48 32 51 24 37 32 26 31.0  32  11  51  40 
Fish 9B 9 6 14 25 23 17 6 18 19 5 14.2  6  5  25  20 
Fish 10B 86 51 33 29 40 73 81 88 15 26 52.2  N/A  15  88  73 
  
Mean   39.8  
SEM   6.8     
St. Dev           21.4 
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Group 3 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
  
Fish 1A 32 12 13 2 13 28 34 24 12 19 18.9  12  2  34  32 
Fish 2A 1 0 0 13 0 0 3 8 1 15 4.1  0  0  15  15 
Fish 3A 9 31 28 14 18 12 7 24 0 18 16.1  18  0  31  31 
Fish 4A 24 61 7 34 13 31 0 46 0 35 25.1  0  0  61  61 
Fish 5A 9 2 32 12 9 18 13 35 11 28 16.9  9  2  35  33 
Fish 6A 0 0 0 0 17 0 17 0 11 0 4.5  0  0  17  17 
Fish 7B 0 0 9 15 7 11 53 0 33 38 16.6  0  0  53  53 
Fish 8B 73 41 11 13 32 27 39 2 0 16 25.4  N/A  0  73  73 
Fish 9B 0 17 0 0 12 51 63 28 0 0 17.1  0  0  63  63 
  
Mean   16.1  
SEM   2.5     
St. Dev           7.5 
 
 
 
 
   
Group 4 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
  
Fish 1A 39 4 8 58 42 61 48 47 52 59 41.8  N/A  4  61  57 
Fish 2A 64 72 71 47 51 53 56 61 59 54 58.8  N/A  47  72  25 
Fish 3A 56 33 61 38 2 67 13 7 14 0 29.1  N/A  0  67  67 
Fish 4A 45 0 57 55 0 17 69 58 62 34 39.7  0  0  69  69 
Fish 5A 62 56 84 10 47 10 73 66 53 37 49.8  10  10  84  74 
Fish 6A 37 54 11 49 37 31 52 14 27 37 34.9  37  11  54  43 
Fish 7B 53 57 59 71 68 22 78 72 68 37 58.5  68  22  78  56 
Fish 8B 34 59 34 55 16 42 54 34 74 44 44.6  34  16  74  58 
Fish 9B 74 60 38 51 82 57 9 67 31 77 54.6  N/A  9  82  73 
Fish 10B 29 19 48 37 73 55 59 72 43 56 49.1  N/A  19  73  54 
Fish 11B 24 16 5 22 12 39 13 76 65 56 32.8  N/A  5  76  71 
  
Mean   44.9 
SEM   3.1     
St. Dev           10.2 
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Measurement Data: 6-20-2014 
 
   
Group 1 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
  
Fish 1A 12 43 41 31 33 26 31 22 26 17 28.2  31  12  43  31 
Fish 2A 59 73 52 66 80 68 85 18 55 36 59.2  N/A  18  85  67 
Fish 3A 40 47 50 47 49 43 18 54 53 32 43.3  47  18  54  36 
Fish 4A 37 4 43 33 14 43 37 18 40 34 30.3  37  4  43  39 
Fish 5A 72 58 58 61 37 76 61 65 63 71 62.2  58  37  76  39 
Fish 6B 35 48 12 57 9 55 43 34 22 5 32.0  N/A  5  57  52 
Fish 7B 12 2 23 28 21 21 21 37 12 11 18.8  21  2  37  35 
Fish 8B 0 0 0 0 7 10 54 49 59 79 25.8  0  0  79  79 
Fish 9B 87 84 61 64 53 43 67 90 85 15 64.9  N/A  15  90  75 
Fish 10B 36 73 53 0 68 81 66 59 74 58 56.8  N/A  0  81  81 
  
Mean   42.2 
SEM   5.5     
St. Dev           17.2 
 
 
  
   
Group 2 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
  
Fish 1A 63 64 60 61 52 39 35 17 22 27 44.0  N/A  17  64  47 
Fish 2A 57 41 13 53 0 16 13 18 25 19 25.5  13  0  57  57 
Fish 3A 56 57 62 37 58 57 68 69 0 64 52.8  57  0  69  69 
Fish 4A 70 66 62 50 52 48 51 58 61 65 58.3  N/A  48  70  22 
Fish 5A 47 47 64 60 24 26 58 37 57 48 46.8  47  24  64  40 
Fish 6B 78 4 3 6 9 12 8 33 76 34 26.3  N/A  3  78  75 
Fish 7B 8 14 8 8 43 11 11 38 5 10 15.6  8  5  43  38 
Fish 8B 51 58 58 53 52 58 65 70 65 54 58.4  58  51  70  19 
Fish 9B 0 41 44 45 0 42 8 4 9 48 24.1  0  0  48  48 
Fish 10B 8 64 0 42 23 2 21 32 28 23 24.3  23  0  64  64 
  
Mean   37.6 
SEM   5.1     
St. Dev           16.1 
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Group 3 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
  
Fish 1A 53 12 48 8 9 8 3 0 0 0 14.1  0  0  53  53 
Fish 2A 6 16 11 8 33 14 5 13 6 57 16.9  6  5  57  52 
Fish 3A 42 17 19 17 8 37 5 16 5 37 20.3  17  5  42  37 
Fish 4A 19 0 0 0 8 0 0 0 0 9 3.6  0  0  19  19 
Fish 5A 0 6 0 0 36 0 0 0 2 23 6.7  0  0  36  36 
Fish 6A 82 54 57 51 36 30 26 28 53 23 44.0  N/A  23  82  59 
Fish 7B 53 20 53 11 0 48 2 22 41 12 26.2  53  0  53  53 
Fish 8B 5 21 0 7 22 0 3 0 0 22 8.0  0  0  22  22 
Fish 9B 17 8 41 31 3 1 13 34 8 12 16.8  8  1  41  40 
  
Mean   18.6 
SEM   4.1     
St. Dev           12.2 
 
  
 
 
   
Group 4 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
  
Fish 1A 62 59 54 34 29 37 10 71 7 51 41.4  N/A  7  71  64 
Fish 2A 68 62 61 38 14 27 9 54 13 60 40.6  N/A  9  68  59 
Fish 3A 66 31 0 49 32 7 0 24 2 0 21.1  0  0  66  66 
Fish 4A 23 0 57 56 65 61 61 64 57 56 50.0  57  0  65  65 
Fish 5A 20 0 9 0 0 56 58 53 60 48 30.4  0  0  60  60 
Fish 6A 74 82 72 67 64 69 66 62 75 63 69.4  N/A  62  82  20 
Fish 7B 21 31 3 13 29 37 58 0 41 23 25.6  N/A  0  58  58 
Fish 8B 53 66 0 72 66 0 11 55 62 58 44.3  66  0  72  72 
Fish 9B 0 11 12 0 69 23 79 49 28 65 33.6  0  0  79  79 
Fish 10B 0 13 48 13 37 53 59 24 12 62 32.1  13  0  62  62 
Fish 11B 17 56 57 58 55 41 39 52 81 56 51.2  56  17  81  64 
  
Mean   40.0 
SEM   4.1     
St. Dev           13.7 
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Measurement Data: 6-25-2014 
 
   
Group 1 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
  
Fish 1A 64 58 66 0 65 57 58 57 56 64 54.5  64  0  66  66 
Fish 2A 81 84 66 67 53 74 78 76 56 58 69.3  N/A  53  84  31 
Fish 3A 71 66 39 26 47 46 57 13 62 51 47.8  N/A  13  71  58 
Fish 4A 77 84 80 66 84 64 54 69 78 76 73.2  84  54  84  30 
Fish 5A 57 69 63 41 38 59 37 46 0 0 41.0  0  0  69  69 
Fish 6B 90 90 88 16 90 85 90 90 90 76 80.5  90  16  90  74 
Fish 7B 50 51 39 76 12 12 33 19 8 79 37.9  12  8  79  71 
Fish 8B 51 0 65 53 17 0 11 27 14 33 27.1  0  0  65  65 
Fish 9B 81 67 70 83 79 79 46 52 43 47 64.7  79  43  83  40 
Fish 10B 18 58 54 64 64 68 62 64 59 56 56.7  64  18  68  50 
  
Mean   55.3 
SEM   5.4     
St. Dev           17.0 
 
 
 
   
Group 2 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
  
Fish 1A 71 78 77 32 54 65 38 70 39 74 59.8  N/A  32  78  46 
Fish 2A 72 68 62 56 51 58 70 59 58 67 62.1  58  51  72  21 
Fish 3A 61 63 53 56 36 33 16 60 59 71 50.8  N/A  16  71  55 
Fish 4A 68 53 49 57 40 62 69 73 42 62 57.5  62  40  73  33 
Fish 5A 66 53 56 57 26 58 63 53 49 40 52.1  53  26  66  40 
Fish 6A 78 81 14 39 50 0 0 53 17 5 33.7  0  0  81  81 
Fish 7B 12 37 16 12 27 34 56 8 13 29 24.4  12  8  56  48 
Fish 8B 53 63 66 71 62 72 58 53 58 52 60.8  53  52  72  20 
Fish 9B 39 39 28 28 49 17 46 6 45 21 31.8  39  6  49  43 
Fish 10B 72 76 54 74 52 16 7 18 61 18 44.8  18  7  76  69 
  
Mean   47.8 
SEM   4.3    
St. Dev           13.5 
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Group 3 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
  
Fish 1A 73 23 0 51 2 0 49 23 0 0 22.1  0  0  73  73 
Fish 2A 51 51 28 8 32 33 14 34 41 46 33.8  51  8  51  43 
Fish 3A 35 4 54 4 7 0 9 10 13 0 13.6  4  0  54  54 
Fish 4A 57 0 51 0 0 13 14 12 0 22 16.9  0  0  57  57 
Fish 5A 4 41 13 0 0 0 13 4 11 4 9.0  4  0  41  41 
Fish 6A 0 47 3 0 0 0 0 0 9 24 8.3  0  0  47  47 
Fish 7B 0 13 17 9 51 22 0 42 40 69 26.3  0  0  69  69 
Fish 8B 75 32 56 32 23 41 54 59 21 16 40.9  32  16  75  59 
Fish 9B 8 0 20 0 19 28 0 16 24 27 14.2  0  0  28  28 
  
Mean   47.8 
SEM   4.3    
St. Dev           13.5 
 
 
 
 
   
Group 4 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
  
Fish 1A 17 7 72 30 29 38 28 0 38 53 31.2  38  0  72  72 
Fish 2A 13 0 5 11 16 14 9 10 12 59 14.9  N/A  0  59  59 
Fish 3A 63 71 72 63 76 87 82 89 90 82 77.5  63  63  90  27 
Fish 4A 7 5 66 70 35 14 6 42 23 16 28.4  N/A  5  70  65 
Fish 5A 0 1 52 17 8 0 34 3 17 8 14.0  0  0  52  52 
Fish 6A 64 11 11 0 0 0 60 49 74 9 27.8  0  0  74  74 
Fish 7B 41 0 14 18 53 79 77 83 68 9 44.2  N/A  0  83  83 
Fish 8B 64 62 24 0 57 0 22 64 52 72 41.7  64  0  72  72 
Fish 9B 90 63 41 13 70 69 50 74 57 78 60.5  N/A  13  90  77 
Fish 10B 70 83 42 33 61 65 68 81 24 73 60.0  N/A  24  83  59 
  
Mean   40.0 
SEM   6.6    
St. Dev           20.9 
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Measurement Data: 6-27-2014 
 
 
   
Group 1 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
  
Fish 1A 57 59 63 66 60 53 38 62 29 51 53.8  N/A  29  66  37 
Fish 2A 80 65 56 31 73 66 88 29 51 64 60.3  N/A  29  88  59 
Fish 3A 53 52 33 32 69 22 68 56 66 0 45.1  N/A  0  69  69 
Fish 4A 55 73 59 52 24 0 61 87 34 23 46.8  N/A  0  87  87 
Fish 5A 73 85 84 81 67 74 67 67 51 74 72.3  67  51  85  34 
Fish 6B 71 79 82 69 35 61 73 13 51 67 60.1  N/A  13  82  69 
Fish 7B 13 14 8 10 56 56 58 7 21 14 25.7  14  7  58  51 
Fish 8B 57 55 8 56 54 50 35 34 9 43 40.1  N/A  8  57  49 
Fish 9B 79 90 86 90 90 90 77 22 90 14 72.8  90  14  90  76 
Fish 10B 79 73 68 12 14 6 3 58 68 52 43.3  68  3  79  76 
  
Mean   52.0 
SEM   4.7    
St. Dev           14.8 
 
 
 
 
   
Group 2 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
  
Fish 1A 69 90 90 86 77 69 77 66 77 81 78.2  77  66  90  24 
Fish 2A 66 42 57 38 51 58 56 52 51 58 52.9  51  38  66  28 
Fish 3A 87 54 61 15 14 72 65 59 23 34 48.4  N/A  14  87  73 
Fish 4A 59 83 82 25 78 79 54 76 85 53 67.4  N/A  25  85  60 
Fish 5A 39 35 52 56 26 77 27 38 38 52 44.0  52  26  77  51 
Fish 6B 37 31 34 37 42 14 27 16 50 24 31.2  37  14  50  36 
Fish 7B 73 75 73 78 74 73 73 59 77 84 73.9  73  59  84  25 
Fish 8B 52 81 51 71 25 52 27 82 90 54 58.5  52  25  90  65 
Fish 9B 47 53 59 13 41 67 52 10 12 33 38.7  N/A  10  67  57 
Fish 10B 56 19 39 41 29 59 68 12 56 47 42.6  56  12  68  56 
  
Mean   54.8 
SEM   4.9    
St. Dev           15.6 
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Group 3 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
  
Fish 1A 29 66 9 36 42 14 44 9 57 58 36.4  9  9  66  57 
Fish 2A 69 37 29 0 0 7 53 39 28 21 28.3  0  0  69  69 
Fish 3A 0 46 41 45 48 46 18 0 0 0 24.4  0  0  48  48 
Fish 4A 23 14 42 47 0 0 0 9 0 0 13.5  0  0  47  47 
Fish 5A 21 32 57 19 17 6 32 33 31 35 28.3  32  6  57  51 
Fish 6A 20 0 0 0 0 0 0 0 0 0 2.0  0  0  20  20 
Fish 7B 0 38 3 43 0 12 0 0 47 33 17.6  0  0  47  47 
Fish 8B 47 53 5 38 27 42 0 0 0 0 21.2  0  0  53  53 
Fish 9B 53 15 0 0 12 0 9 0 39 15 14.3  0  0  53  53 
  
Mean   20.7 
SEM   3.4   
St. Dev           10.2 
 
 
 
 
 
   
Group 4 1 2 3 4 5 6 7 8 9 10 MEAN MODE MIN  MAX RANGE 
  
Fish 1A 23 38 45 55 11 80 49 56 58 17 43.2  N/A  11  80  69 
Fish 2A 58 72 49 17 52 79 53 78 37 57 55.2  N/A  17  79  62 
Fish 3A 61 0 27 39 58 57 60 30 34 38 40.4  N/A  0  61  61 
Fish 4A 76 68 66 82 71 57 61 60 73 32 64.6  N/A  32  82  50 
Fish 5A 54 78 52 0 5 64 32 39 51 49 42.4  N/A  0  78  78 
Fish 6B 0 12 0 0 17 17 0 14 14 13 8.7  0  0  17  17 
Fish 7B 71 75 43 40 64 12 44 45 58 60 51.2  N/A  12  75  63 
Fish 8B 66 57 17 67 55 72 37 39 51 19 48.0  N/A  17  72  55 
Fish 9B 20 61 53 29 54 37 55 85 51 57 50.2  N/A  20  85  65 
Fish 10B 0 70 53 54 2 70 62 14 24 0 34.9  0  0  70  70 
Fish 11B 0 11 0 32 32 59 26 14 57 13 24.4  0  0  59  59 
  
Mean   42.1 
SEM   4.6   
St. Dev           15.3 
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Pairwise Comparisons 

Dependent 
Variable:  

DLR 

      

Day 

Mean 
Difference 

(I-J) 
Std. 
Error Sig.

d
 

95% Confidence 
Interval for 
Difference

d
 

Lower 
Bound 

Upper 
Bound 

1 Sham Surgery 0.0 mg/L Control 
Group 

-43.928
***

 7.269 .000 -58.234 -29.623 

2.5 mg/L Caffeine 
Group 

-56.832
***

 7.051 .000 -70.708 -42.955 

5.0 mg/L Caffeine 
Group 

-55.042
***

 7.051 .000 -68.918 -41.165 

10.0 mg/L Caffeine 
Group 

-48.071
***

 6.868 .000 -61.586 -34.556 

0.0 mg/L 
Control Group 

Sham Surgery 43.928
*
 7.269 .000 29.623 58.234 

2.5 mg/L Caffeine 
Group 

-12.903 7.702 .095 -28.061 2.254 

5.0 mg/L Caffeine 
Group 

-11.113 7.702 .150 -26.271 4.044 

10.0 mg/L Caffeine 
Group 

-4.142 7.535 .583 -18.970 10.685 

2.5 mg/L 
Caffeine Group 

Sham Surgery 56.832
*
 7.051 .000 42.955 70.708 

0.0 mg/L Control 
Group 

12.903 7.702 .095 -2.254 28.061 

5.0 mg/L Caffeine 
Group 

1.790 7.497 .811 -12.963 16.543 

10.0 mg/L Caffeine 
Group 

8.761 7.325 .233 -5.653 23.175 

5.0 mg/L 
Caffeine Group 

Sham Surgery 55.042
*
 7.051 .000 41.165 68.918 

0.0 mg/L Control 
Group 

11.113 7.702 .150 -4.044 26.271 

2.5 mg/L Caffeine 
Group 

-1.790 7.497 .811 -16.543 12.963 

10.0 mg/L Caffeine 
Group 

6.971 7.325 .342 -7.443 21.385 

10.0 mg/L 
Caffeine Group 

Sham Surgery 48.071
*
 6.868 .000 34.556 61.586 

0.0 mg/L Control 
Group 

4.142 7.535 .583 -10.685 18.970 

2.5 mg/L Caffeine 
Group 

-8.761 7.325 .233 -23.175 5.653 

5.0 mg/L Caffeine 
Group 

-6.971 7.325 .342 -21.385 7.443 

3 Sham Surgery 0.0 mg/L Control 
Group 

.
b
         

2.5 mg/L Caffeine 
Group 

.
b
         

5.0 mg/L Caffeine 
Group 

.
b
         

10.0 mg/L Caffeine 
Group 

.
b
         

0.0 mg/L 
Control Group 

Sham Surgery .
c
         

2.5 mg/L Caffeine -5.652 7.702 .464 -20.810 9.506 
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Group 

5.0 mg/L Caffeine 
Group 

7.623 7.702 .323 -7.534 22.781 

10.0 mg/L Caffeine 
Group 

2.596 7.535 .731 -12.232 17.424 

2.5 mg/L 
Caffeine Group 

Sham Surgery .
c
         

0.0 mg/L Control 
Group 

5.652 7.702 .464 -9.506 20.810 

5.0 mg/L Caffeine 
Group 

13.276 7.497 .078 -1.478 28.029 

10.0 mg/L Caffeine 
Group 

8.248 7.325 .261 -6.166 22.662 

5.0 mg/L 
Caffeine Group 

Sham Surgery .
c
         

0.0 mg/L Control 
Group 

-7.623 7.702 .323 -22.781 7.534 

2.5 mg/L Caffeine 
Group 

-13.276 7.497 .078 -28.029 1.478 

10.0 mg/L Caffeine 
Group 

-5.027 7.325 .493 -19.442 9.387 

10.0 mg/L 
Caffeine Group 

Sham Surgery .
c
         

0.0 mg/L Control 
Group 

-2.596 7.535 .731 -17.424 12.232 

2.5 mg/L Caffeine 
Group 

-8.248 7.325 .261 -22.662 6.166 

5.0 mg/L Caffeine 
Group 

5.027 7.325 .493 -9.387 19.442 

8 Sham Surgery 0.0 mg/L Control 
Group 

.
b
         

2.5 mg/L Caffeine 
Group 

.
b
         

5.0 mg/L Caffeine 
Group 

.
b
         

10.0 mg/L Caffeine 
Group 

.
b
         

0.0 mg/L 
Control Group 

Sham Surgery .
c
         

2.5 mg/L Caffeine 
Group 

-3.456 7.702 .654 -18.613 11.702 

5.0 mg/L Caffeine 
Group 

-9.346 7.702 .226 -24.503 5.812 

10.0 mg/L Caffeine 
Group 

-12.556 7.535 .097 -27.383 2.272 

2.5 mg/L 
Caffeine Group 

Sham Surgery .
c
         

0.0 mg/L Control 
Group 

3.456 7.702 .654 -11.702 18.613 

5.0 mg/L Caffeine 
Group 

-5.890 7.497 .433 -20.643 8.863 

10.0 mg/L Caffeine 
Group 

-9.100 7.325 .215 -23.514 5.314 

5.0 mg/L 
Caffeine Group 

Sham Surgery .
c
         

0.0 mg/L Control 
Group 

9.346 7.702 .226 -5.812 24.503 

2.5 mg/L Caffeine 
Group 

5.890 7.497 .433 -8.863 20.643 

10.0 mg/L Caffeine 
Group 

-3.210 7.325 .662 -17.624 11.204 

10.0 mg/L Sham Surgery .
c
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Caffeine Group 0.0 mg/L Control 
Group 

12.556 7.535 .097 -2.272 27.383 

2.5 mg/L Caffeine 
Group 

9.100 7.325 .215 -5.314 23.514 

5.0 mg/L Caffeine 
Group 

3.210 7.325 .662 -11.204 17.624 

10 Sham Surgery 0.0 mg/L Control 
Group 

.
b
         

2.5 mg/L Caffeine 
Group 

.
b
         

5.0 mg/L Caffeine 
Group 

.
b
         

10.0 mg/L Caffeine 
Group 

.
b
         

0.0 mg/L 
Control Group 

Sham Surgery .
c
         

2.5 mg/L Caffeine 
Group 

-20.816
**
 7.702 .007 -35.973 -5.658 

5.0 mg/L Caffeine 
Group 

-20.816
**
 7.702 .007 -35.973 -5.658 

10.0 mg/L Caffeine 
Group 

-18.365
**
 7.535 .015 -33.192 -3.537 

2.5 mg/L 
Caffeine Group 

Sham Surgery .
c
         

0.0 mg/L Control 
Group 

20.816
**
 7.702 .007 5.658 35.973 

5.0 mg/L Caffeine 
Group 

1.776E-15 7.497 1.000 -14.753 14.753 

10.0 mg/L Caffeine 
Group 

2.451 7.325 .738 -11.963 16.865 

5.0 mg/L 
Caffeine Group 

Sham Surgery .
c
         

0.0 mg/L Control 
Group 

20.816
**
 7.702 .007 5.658 35.973 

2.5 mg/L Caffeine 
Group 

-1.776E-15 7.497 1.000 -14.753 14.753 

10.0 mg/L Caffeine 
Group 

2.451 7.325 .738 -11.963 16.865 

10.0 mg/L 
Caffeine Group 

Sham Surgery .
c
         

0.0 mg/L Control 
Group 

18.365
**
 7.535 .015 3.537 33.192 

2.5 mg/L Caffeine 
Group 

-2.451 7.325 .738 -16.865 11.963 

5.0 mg/L Caffeine 
Group 

-2.451 7.325 .738 -16.865 11.963 

15 Sham Surgery 0.0 mg/L Control 
Group 

.
b
         

2.5 mg/L Caffeine 
Group 

.
b
         

5.0 mg/L Caffeine 
Group 

.
b
         

10.0 mg/L Caffeine 
Group 

.
b
         

0.0 mg/L 
Control Group 

Sham Surgery .
c
         

2.5 mg/L Caffeine 
Group 

-22.370
***

 7.702 .004 -37.528 -7.212 

5.0 mg/L Caffeine 
Group 

-29.037
***

 7.702 .000 -44.194 -13.879 

10.0 mg/L Caffeine 
Group 

-27.482
***

 7.535 .000 -42.310 -12.654 

2.5 mg/L Sham Surgery .
c
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Caffeine Group 0.0 mg/L Control 
Group 

22.370
***

 7.702 .004 7.212 37.528 

5.0 mg/L Caffeine 
Group 

-6.667 7.497 .375 -21.420 8.087 

10.0 mg/L Caffeine 
Group 

-5.112 7.325 .486 -19.526 9.302 

5.0 mg/L 
Caffeine Group 

Sham Surgery .
c
         

0.0 mg/L Control 
Group 

29.037
***

 7.702 .000 13.879 44.194 

2.5 mg/L Caffeine 
Group 

6.667 7.497 .375 -8.087 21.420 

10.0 mg/L Caffeine 
Group 

1.555 7.325 .832 -12.859 15.969 

10.0 mg/L 
Caffeine Group 

Sham Surgery .
c
         

0.0 mg/L Control 
Group 

27.482
***

 7.535 .000 12.654 42.310 

2.5 mg/L Caffeine 
Group 

5.112 7.325 .486 -9.302 19.526 

5.0 mg/L Caffeine 
Group 

-1.555 7.325 .832 -15.969 12.859 

17 Sham Surgery 0.0 mg/L Control 
Group 

.
b
         

2.5 mg/L Caffeine 
Group 

.
b
         

5.0 mg/L Caffeine 
Group 

.
b
         

10.0 mg/L Caffeine 
Group 

.
b
         

0.0 mg/L 
Control Group 

Sham Surgery .
c
         

2.5 mg/L Caffeine 
Group 

-20.210
***

 7.702 .009 -35.368 -5.052 

5.0 mg/L Caffeine 
Group 

-24.750
***

 7.702 .001 -39.908 -9.592 

10.0 mg/L Caffeine 
Group 

-22.573
***

 7.535 .003 -37.401 -7.745 

2.5 mg/L 
Caffeine Group 

Sham Surgery .
c
         

0.0 mg/L Control 
Group 

20.210
***

 7.702 .009 5.052 35.368 

5.0 mg/L Caffeine 
Group 

-4.540 7.497 .545 -19.293 10.213 

10.0 mg/L Caffeine 
Group 

-2.363 7.325 .747 -16.777 12.052 

5.0 mg/L 
Caffeine Group 

Sham Surgery .
c
         

0.0 mg/L Control 
Group 

24.750
***

 7.702 .001 9.592 39.908 

2.5 mg/L Caffeine 
Group 

4.540 7.497 .545 -10.213 19.293 

10.0 mg/L Caffeine 
Group 

2.177 7.325 .766 -12.237 16.592 

10.0 mg/L 
Caffeine Group 

Sham Surgery .
c
         

0.0 mg/L Control 
Group 

22.573
***

 7.535 .003 7.745 37.401 

2.5 mg/L Caffeine 
Group 

2.363 7.325 .747 -12.052 16.777 

5.0 mg/L Caffeine 
Group 

-2.177 7.325 .766 -16.592 12.237 

22 Sham Surgery 0.0 mg/L Control 
Group 

.
b
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2.5 mg/L Caffeine 
Group 

.
b
         

5.0 mg/L Caffeine 
Group 

.
b
         

10.0 mg/L Caffeine 
Group 

.
b
         

0.0 mg/L 
Control Group 

Sham Surgery .
c
         

2.5 mg/L Caffeine 
Group 

-27.213
***

 7.702 .000 -42.371 -12.056 

5.0 mg/L Caffeine 
Group 

-34.703
***

 7.702 .000 -49.861 -19.546 

10.0 mg/L Caffeine 
Group 

-18.497
***

 7.535 .015 -33.325 -3.669 

2.5 mg/L 
Caffeine Group 

Sham Surgery .
c
         

0.0 mg/L Control 
Group 

27.213
***

 7.702 .000 12.056 42.371 

5.0 mg/L Caffeine 
Group 

-7.490 7.497 .319 -22.243 7.263 

10.0 mg/L Caffeine 
Group 

8.716 7.325 .235 -5.698 23.131 

5.0 mg/L 
Caffeine Group 

Sham Surgery .
c
         

0.0 mg/L Control 
Group 

34.703
***

 7.702 .000 19.546 49.861 

2.5 mg/L Caffeine 
Group 

7.490 7.497 .319 -7.263 22.243 

10.0 mg/L Caffeine 
Group 

16.206
*
 7.325 .028 1.792 30.621 

10.0 mg/L 
Caffeine Group 

Sham Surgery .
c
         

0.0 mg/L Control 
Group 

18.497
***

 7.535 .015 3.669 33.325 

2.5 mg/L Caffeine 
Group 

-8.716 7.325 .235 -23.131 5.698 

5.0 mg/L Caffeine 
Group 

-16.206
*
 7.325 .028 -30.621 -1.792 
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.
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.
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.
b
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c
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-32.913
***

 7.702 .000 -48.071 -17.756 

5.0 mg/L Caffeine 
Group 

-31.363
***

 7.702 .000 -46.521 -16.206 

10.0 mg/L Caffeine 
Group 

-21.442
***

 7.535 .005 -36.270 -6.615 
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c
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5.0 mg/L 
Caffeine Group 

Sham Surgery .
c
         

0.0 mg/L Control 
Group 

31.363
***

 7.702 .000 16.206 46.521 

2.5 mg/L Caffeine 
Group 

-1.550 7.497 .836 -16.303 13.203 

10.0 mg/L Caffeine 
Group 

9.921 7.325 .177 -4.493 24.335 
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Sham Surgery .
c
         

0.0 mg/L Control 
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21.442
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-9.921 7.325 .177 -24.335 4.493 

Figure 20: Pairwise comparisons (Two- Way ANOVA, Tukey HSD) based on estimated marginal means. 
Significant where P<.01**, p<.001*** 
b. The level combination of factors in (I) is not observed. 

c. The level combination of factors in (J) is not observed. 

d. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
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