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RESEARCH ARTICLE Open Access

Characterization of the heart transcriptome of the
white shark (Carcharodon carcharias)
Vincent P Richards1, Haruo Suzuki1,3, Michael J Stanhope1* and Mahmood S Shivji2*

Abstract

Background: The white shark (Carcharodon carcharias) is a globally distributed, apex predator possessing physical,
physiological, and behavioral traits that have garnered it significant public attention. In addition to interest in the
genetic basis of its form and function, as a representative of the oldest extant jawed vertebrate lineage, white
sharks are also of conservation concern due to their small population size and threat from overfishing. Despite this,
surprisingly little is known about the biology of white sharks, and genomic resources are unavailable. To address
this deficit, we combined Roche-454 and Illumina sequencing technologies to characterize the first transciptome of
any tissue for this species.

Results: From white shark heart cDNA we generated 665,399 Roche 454 reads (median length 387-bp) that were
assembled into 141,626 contigs (mean length 503-bp). We also generated 78,566,588 Illumina reads, which we
aligned to the 454 contigs producing 105,014 454/Illumina consensus sequences. To these, we added 3,432
non-singleton 454 contigs. By comparing these sequences to the UniProtKB/Swiss-Prot database we were able to
annotate 21,019 translated open reading frames (ORFs) of ≥ 20 amino acids. Of these, 19,277 were additionally
assigned Gene Ontology (GO) functional annotations. While acknowledging the limitations of our single tissue
transcriptome, Fisher tests showed the white shark transcriptome to be significantly enriched for numerous
metabolic GO terms compared to the zebra fish and human transcriptomes, with white shark showing more
similarity to human than to zebra fish (i.e. fewer terms were significantly different). We also compared the
transcriptome to other available elasmobranch sequences, for signatures of positive selection and identified several
genes of putative adaptive significance on the white shark lineage. The white shark transcriptome also contained
8,404 microsatellites (dinucleotide, trinucleotide, or tetranucleotide motifs ≥ five perfect repeats). Detailed
characterization of these microsatellites showed that ORFs with trinucleotide repeats, were significantly enriched for
transcription regulatory roles and that trinucleotide frequency within ORFs was lower than for a wide range of
taxonomic groups including other vertebrates.

Conclusion: The white shark heart transcriptome represents a valuable resource for future elasmobranch functional
and comparative genomic studies, as well as for population and other biological studies vital for effective
conservation of this globally vulnerable species.

Keywords: White shark, Carcharodon carcharias, Heart transcriptome, Microsatellites, Positive selection, Enrichment
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Background
Cartilaginous fishes (Class Chondrichthyes: sharks, skates,
rays, chimaeras) provide a notable example of successful
evolutionary perseverance, with a fossil record extending
to at least the Lower Devonian over 400 million years ago
[1]. Given their extraordinary evolutionary history and
basal phylogenetic origin relative to other jawed verte-
brates, chondrichthyians have been proposed as an im-
portant comparative model for understanding vertebrate
genome evolution in general and various specific evolu-
tionary and mechanistic aspects of vertebrate develop-
ment, physiology and immune function [2-5].
One group of chondrichthyians, the modern sharks

(subclass Elasmobranchii), comprise over 500 extant
species displaying an impressive diversity of form and
function, including a broad spectrum of sizes (e.g. 20-
1200 cm as adults), functional morphologies (e.g. fusi-
form heads to the novel, widened heads of hammerhead
sharks), physiology (e.g. ectothermy to regional endo-
thermy), reproduction (e.g. egg laying to live births) and
habitat use (marine to freshwater; shallow waters to
abyssal depths). Sharks have also become a major target
of human exploitation for their fins [6], resulting in
widespread concerns that their rapidly declining popula-
tions coupled with unique life history characteristics will
not permit recovery if ongoing exploitation rates
continue.
Despite representing a major vertebrate lineage of evolu-

tionary uniqueness and ecological and conservation im-
portance, sharks remain the least explored vertebrate group
at the genome level. The handful of genome level studies
conducted on sharks have already revealed some distinctive
features, including the absence of the HoxC cluster of
developmental pattern genes found in all other non-
elasmobranch vertebrate lineages [7], and the presence of a
substantial number of expressed sequence tags for which
no homologues in other organisms could be identified [8].
These apparent distinctions hint that other genomic novel-
ties are possible in this lineage and await discovery.
The white shark, Carcharodon carcharias (Lamnidae),

a large apex predator, is one of the highest-profile mar-
ine species, capturing extraordinary attention from the
public and media. Although it demonstrates a cosmo-
politan distribution, the species is believed to have a low
abundance throughout its range, leading to international
concerns about its conservation (IUCN Red List Cat-
egory: Vulnerable A2cd+3cd) in the face of known mar-
ket utilization for its body parts and widespread shark
overfishing practices [9-11]. Arguably, the white shark
may be a “poster child” for marine, large animal conser-
vation attention. The white shark also possesses some
notable physical and physiological characteristics that
make it an interesting biological study, including an esti-
mated genome size (C-value = 6.45 pg) nearly twice that

of humans, large adult sizes reaching up to ~6 m in
length, a thermal regulatory capability uncommon in
fishes, a slow reproductive cycle with oophagous em-
bryos, extensive migratory capabilities, and an ability to
utilize a wide thermal niche including diving to near
1000 m depths [12-14].
Despite the high public profile of white sharks, their ser-

ious conservation needs, and their noteworthy evolution-
ary and life-history characteristics, this species is still
largely uncharacterized at the molecular level, and no gen-
omics resources for it exist. Given the white shark’s rather
large genome size, a transcriptome characterization using
next-generation sequencing technology provides a tract-
able entry into providing the first genomic view and
genome resource for this remarkable species. However,
obtaining white shark tissue is extremely difficult (see
Methods), and as a consequence our study was restricted
to one tissue type (heart) from one individual. This pre-
cluded examination of expression differences among tissue
types, and we acknowledge the obvious limitation of a sin-
gle transcriptome that may not be typical of the species.
Typically, de-novo transcriptomes for non-model or-

ganisms where no reference genome exists have been
obtained using Roche 454 pyrosequencing technology
because of the generation of longer sequencing reads
e.g. [15-22]. However, recent advances in de-novo assem-
bly for shorter Illumina reads are now making this ap-
proach a more viable alternative [23]. In addition, some
workers have combined both approaches e.g. [15,24],
and here we adopt this latter approach for deriving the
first transcriptome dataset for the white shark. Speci-
fically, Illumina reads were aligned to 454 contigs to
produce a 454/Illumina consensus sequence. By utilizing
the strengths of both sequencing technologies, this ap-
proach yielded a considerable increase (~20%) in transcrip-
tome annotation when compared to 454 alone. We utilize
this sequence dataset to provide a general characterization
of the heart transcriptome with regards to gene discovery
and annotation, identification and characterization of mul-
tiple microsatellite markers, and detection of genes under
positive selection.

Results and discussion
Assembly
Roche 454 sequencing of the white shark heart cDNA
produced 665,399 reads ranging in size from 100-931 bp
(median = 387 bp) for a total of 240,894,914 bp. The de-
novo assembly produced 141,626 contigs (unigenes) ran-
ging in size from 101–12,997 bp, with a mean of 503 bp.
The distribution of the number of reads per contig was
as follows: 87,500 contigs (62%) = 1 read (singletons),
37,915 contigs (27%) = 2–5 reads, 6,595 contigs (5%) =
6–10 reads, and 9,616 contigs (7%) >10 reads (max =
568). The Illumina HiSeq run produced 78,566,588 100
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bp reads. Aligning these data to the 454 contigs produced
105,014 454/Illumina consensus sequences (36,612 454
contigs lacked a consensus sequence). A total of 86,785
(82.6%) of the consensus sequences contained an ORF of
20 amino acids or longer. Of the 454 contigs lacking a
454/Illumina consensus sequence, 3,432 (9.4%) were non-
singletons and 2,750 contained an ORF of 20 amino acids
or longer. These ORFs were combined with the 86,785
ORFs obtained from the consensus sequences resulting in
a total of 89,535 ORFs that were subsequently annotated.
For purposes of quantitative evaluation of our combined
454/Illumina approach (e.g. number and length of contigs
and number of annotated ORFs), we also processed the
454 data exclusively. Non-singleton 454 contigs (54,126)
contained 52,841 ORFs of 20 amino acids or longer
(97.6%). The 454 and Illumina derived short read files were
deposited in the Sequence Read Archive at NCBI under
the study accession number SRP016555. The 454 contigs,
454/Illumina consensus sequences, and 454/Illumina con-
sensus ORFs (89,535) are included as Additional files 1, 2,
and 3 respectively.
For a 454 contig, if there were nucleotide sites lacking

consensus with Illumina data (possibly due to lack of
coverage), the consensus sequence would contain Ns at the
relevant positions. This in turn would lead to Xs (unspeci-
fied or unknown amino acids) in the subsequent translated
ORF. The 86,785 ORFs generated from the 105,014 con-
sensus sequences contained 7,674,130 amino acids (AA)
including 783,158 Xs (10.2%). To place this apparent loss
of AA data in perspective, the 52,841 ORFs generated from
the 454 data alone, contained 5,579,487AA. Therefore, des-
pite the ~10% loss of AA data in the consensus approach,
we were still able to generate 1,311,485 more AA data, an
increase of approximately one third, using the combined
platform approach.

Lengths of ORFs generated using 454/Illumina consen-
sus sequences and 454 data exclusively, showed in general,
similar distributions (Figure 1). A noticeable difference,
however, was an increase in the number of shorter ORFs
(20AA – 169AA) for the consensus data. The number of
shorter reads for the consensus data could be even higher
as some consensus sequence ORFs contained X homopol-
ymers at their 3′ end that might have masked a stop
codon, which may in turn have erroneously increased
the ORF length. Therefore, the length comparison was
also performed excluding Xs in the consensus sequence
ORFs (Figure 1). Mean ORF lengths were as follows: 454
only = 105.6AA, consensus = 88.4AA, consensus (Xs re-
moved) = 79.4AA. The higher mean for the 454 ORFs
most likely reflects the exclusion of singletons, which
ranged in size from 101 bp to 931 bp (mean = 313 bp).

Annotation and comparative gene ontology
The ORF annotation was performed by searching the
Swiss-Prot database using BLAST2GO [25], and a total of
21,019 consensus ORFs (23.5%) had blast hits with the
database, with 19,277 (21.5%) of these receiving anno-
tation with Gene Ontology (GO) terms (see Additional
file 4). In comparison, 16,996 454-derived ORFs (32.2%)
had blast hits with the Swiss-Prot database, with 15,597
(29.5%) annotated with GO terms (see Additional file 5).
Consequently, although the mean ORF length for the con-
sensus data was lower, there was a considerable increase
in the number of annotated ORFs obtained (approximately
one fifth), highlighting the improvement gained when 454
and Illumina data are combined.
The ORFs were also annotated with GO-Slim terms

using the generic GO Slim (http://www.geneontology.org/
GO_slims/goslim_generic.obo). GO Slim is a reduced ver-
sion of the full GO that contains a sub-set of more general

Figure 1 Length distribution of ORFs generated using 454/Illumina consensus sequences (green bars) and 454 data exclusively (blue bars).
Red bars show distribution for consensus ORFs with unspecified or unknown amino acids (X) removed (see text).

Richards et al. BMC Genomics 2013, 14:697 Page 3 of 14
http://www.biomedcentral.com/1471-2164/14/697

http://www.geneontology.org/GO_slims/goslim_generic.obo
http://www.geneontology.org/GO_slims/goslim_generic.obo


GO terms and excludes the more fine-grained specific
terms. This approach provides a broad overview of the
ontology and gene product functions for genomic data.
The genome sequence of the zebrafish (Danio rerio)
is perhaps the most extensively studied of all fishes;
consequently, its corresponding transcriptome sequence
data should be the most complete for a fish and thus pro-
vide an appropriate evolutionary model for comparative
characterization of the white shark transcriptome. How-
ever, the white shark also possesses certain endothermic
capabilities more characteristic of mammals [26,27];
therefore, we compared the proportion of the white
shark 19,277 consensus ORFs assigned to each GO Slim
term to the proportion of zebrafish and human transcripts
assigned to each GO Slim term (Figure 2, 3, 4). Distribu-
tions showed generally similar proportions of GO term as-
signments for each species, suggesting that we obtained a
good representation of the heart transcriptome for the
white shark. Closer inspection of the GO term proportions
in the Biological Process domain (Figure 2) showed that
the white shark heart transcriptome had the highest pro-
portion of genes for most of the 18 metabolic process
terms, with the zebrafish having the lowest. Fisher tests
showed virtually all of these higher white shark propor-
tions to be statistically significant (i.e. 14 of the 18 meta-
bolic terms when compared to the zebrafish and 12 of
these terms when compared to human; significance deter-
mined using a FDR correction of 0.05). Although this
comparison is tempered by the fact that the shark tran-
scriptome was derived exclusively from heart tissue and
may already be enriched for metabolism relative to the
complete transcriptome, it opens the possibility that some
aspects of white shark metabolism, at least at the level of
gene expression, might be more similar to that of a mam-
mal than to that of an ectothermic teleost. The comparison
is tempered because for each term, the Fisher test compares
the relative proportion of genes assigned and not assigned
the term between a particular species pair (i.e. white shark
vs. human and white shark vs. zebrafish). Consequently, the
relative proportion of genes assigned a term for the white
shark might have been inflated because transcripts derived
from other tissue types were absent. Although somewhat
speculative, without a complete white shark transcriptome,
this apparent higher gene proportion in metabolic process
terms compared to zebrafish might be explained partly
by the fact that the white shark is not a true poikilotherm.
The white shark is among a very small group of fishes
that have the ability to physiologically regulate their
body temperature and maintain a substantially higher
temperature than ambient seawater [26,27], which in turn
is associated with elevated metabolic rates and aerobic and
anaerobic capacities [28].
For the Molecular Function domain (Figure 3), compari-

son to the zebrafish showed 20 (32%) GO terms to be

significantly enriched (i.e. had a significantly higher propor-
tion of ORFs assigned) in the white shark, whereas com-
parison to human showed 18 (29%) terms to be enriched.
There were 11 terms enriched in the zebrafish comparison
that were not enriched in the human comparison. In gen-
eral, these enriched terms described ion/nucleic acid/RNA
binding, and enzyme/peptidase/nuclease/hydrolase/electron
carrier activity. In turn, there were nine terms enriched
in the human comparison that were not enriched in
the comparison to zebrafish. In general, these terms
described pyrophosphatase/phosphotransferase/hydrolase/
nucleoside/transferase/kinase activity. While many of these
enzymatic terms are likely involved in metabolic processes,
two terms for the zebrafish comparison are perhaps par-
ticularly noteworthy: electron carrier and peptidase activity.
Enrichment in these may again reflect the endothermic na-
ture of the white shark. For example, electron carrier term
enrichment suggests elevated oxidative metabolism, which
is consistent with the increased energetic needs of an endo-
thermic physiology, a continuous swimming lifestyle (re-
quired to obtain sufficient ventilation and hydrostatic lift)
and the very long distance migratory capability of white
sharks [29,30]. Enrichment for the peptidase activity term
suggests increased digestive rates in white sharks, consist-
ent with previous hypotheses of this capability based on the
elevated temperatures observed in the stomach and other
viscera of white sharks [27].
The Cellular Component domain (Figure 4) describes

where a gene product is active; and a notably large number
of GO terms in this domain were enriched for the white
shark: 56% were enriched compared to human and 77%
were enriched compared to zebrafish. This unexpectedly
large difference in GO term enrichment in the white shark
- zebrafish comparison compared to the white shark -
human comparison also hints at the possibility that a
component of the white shark transcriptome may be more
similar to human than zebrafish. Similarities between an-
other chondrichthyian and humans were also apparent in
the genome sequence comparisons of Venkatesh et al.
[4,31], in which the elephant shark (a chimaera; subclass
Euchondrocephali) surprisingly shared a higher degree of
gene synteny and more conserved non-coding elements
(CNEs) with humans than with either the zebrafish or
puffer fish (Fugu rubripes).

Microsatellites
Roche 454 sequencing has become an effective alternative
to established protocols for the isolation of microsatellite
markers [32-34], and this approach is increasingly being
used to develop such markers for teleost fishes of economic
and conservation interest [35,36]. The use of this technol-
ogy is in its infancy for sharks, with three reports thus far
[37-39], all of which were based on 454 genome shotgun
sequencing. Here, we provide the results of the first
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Figure 2 Proportion of open reading frames assigned to each gene ontology (GO) slim Biological Process term for white shark heart,
zebrafish, and human transcriptomes. The + symbol shows GO terms significantly enriched for the white shark when compared to the zebrafish. The #
symbol shows GO terms significantly enriched for the white shark when compared to human.
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transcriptome based discovery of microsatellite markers
and their distributional characteristics in an elasmobranch.
Of the 141,626 contigs derived from the 454 white shark
data, 6,555 (4.6%) contained one or more dinucleotide, tri-
nucleotide, or tetranucleotide microsatellites of five perfect

repeats or more. In total, we detected 8,404 microsatellites
with the following motifs: di = 7,467 (88.9%), tri = 864
(10.3%), tetra = 73 (0.9%). The maximum number of re-
peats for each motif was: di = 63 (average = 13), tri = 31
(average = 6), tetra = 21 (average = 7). See Additional file 6

Figure 3 Proportion of open reading frames assigned to each gene ontology (GO) slim Molecular Function term for white shark heart,
zebrafish, and human transcriptomes. The + symbol shows GO terms significantly enriched for the white shark when compared to the
zebrafish. The # symbol shows GO terms significantly enriched for the white shark when compared to human.
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Figure 4 Proportion of open reading frames assigned to each gene ontology (GO) slim Cellular Component term for white shark heart,
zebrafish, and human transcriptomes. The + symbol shows GO terms significantly enriched for the white shark when compared to the zebrafish. The #
symbol shows GO terms significantly enriched for the white shark when compared to human.
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for a description of the microsatellites. Of the 6,555 contigs
containing a microsatellite, 854 were singletons with no
consensus sequence. Of the remaining 5,701 contigs, 762
(13.4%) lacked an open reading frame and were therefore
possibly non-coding transcripts or transcript fragments.
The remaining 4,939 contigs (86.6%) contained one or
more microstatellites within the ORF, 5′ untranslated re-
gion, and 3′ untranslated region. The proportion of micros-
tatellites within the ORFs and untranslated regions (UTRs)
was approximately equal (ORF = 31%, 5′UTR = 31%, 3′
UTR = 34%) (Figure 5). A small proportion of micros-
tatellites (4%) straddled the ORF and UTRs.
The proportion of di, tri, and tetranucleotide repeat mo-

tifs within the ORFs, 5′ and 3′ UTRs, and putative non-
coding transcripts are shown in Figure 6. The vast majority
of motifs in all transcript types and regions were dinucleo-
tides (ORF = 84%, 5′ UTR = 90%, 3′ UTR = 91%, and pu-
tative non-coding transcript = 92%). The only published
microsatellites to date from white sharks are also dinucleo-
tides, and were isolated using total genomic DNA and
conventional enrichment protocols [40]. A majority of di-
nucleotide repeat microsatellite motifs were also found in
the three shark species (all ectotherms in the order
Carcharhiniformes) subject to whole genome 454 sequence
analysis [37-39], hinting that a high frequency of dinucleo-
tides may be a general feature of shark genomes. In the
white shark, the frequency of repeat motifs within anno-
tated ORFs showed a similar strong bias for dinucleotides
(di = 68.8%, tri = 29.5%, tetra = 1.7%). Our finding that di-
nucleotides were the most frequent repeat motif in white
shark transcripts irrespective of transcript region is typical
for a wide range of taxonomic groups including other ver-
tebrates [41]. However, when Toth et al. [41] only consid-
ered exons, trinucleotide repeats were found to be the
most frequent. This finding contrasts sharply with that for
the white shark where ORFs were strongly dominated by
dinucleotide repeats. Another fish, the teleost F. rubripes,

is a partial exception to the trend of high frequency of tri-
nucleotides in vertebrate coding regions. For example,
when repeat motifs of one through eight within ORFs were
examined in Fugu rubripes, dinucleotides occurred in al-
most equal proportions to trinucleotides (di = 33.8%, tri =
31.7%) [42]. While the teleost proportions appear to be the
most similar to the white shark (perhaps due to a closer
evolutionary relationship relative to other vertebrates in
this comparison), the white shark remains the most dis-
tinctive due to its high proportion of dinucleotides relative
to trinucleotides within ORFs.
Expansion of trinucleotide repeats within ORFs has

been implicated in human neurodegenerative disorders
and some cancers [43-47]. Notably, elasmobranchs al-
legedly have the lowest incidence of malignant neoplasia
(tumors) of any vertebrate group [48], although this
claim remains controversial due to a lack of sufficient
study [49]. If further studies demonstrate that elasmo-
branchs do indeed have a lower susceptibility to cancer,
the relatively lower proportion of trinucleotide microsat-
ellite repeats within ORFs, as seen here for the white
shark, may provide a genetic mechanism hypothesis for
further exploration.
There were 1,600 ORFs that contained one or more

microsatellite (1,888 microsatellites in total). Of these, 1,331
ORFs contained one or more dinucleotide repeat, 255
ORFs contained one or more trinucleotide repeat, and 14
ORFs contained one or more tetranucleotide repeat. A total
of 413 (~ 26%) of these microsatellite-containing ORFs
were annotated (motif distribution: di = 284, tri = 122, and
tetra = 7). For these ORFs, we investigated whether any of
the GO terms assigned to them, appeared in significantly

Figure 5 The proportion of white shark microstatellites within
open reading frames (ORF) and untranslated regions (UTR). Red
and purple sections show the proportions for a small number of
microsatellites that straddled (i) the 5’ end of the ORF and 5’ UTR
and (ii) the 3’ end of the ORF and 3’ UTR.

Figure 6 The proportion of white shark di, tri, and
tetranucleotide microsatellite repeat motifs within the ORFs, 5’
and 3’ UTRs, and putative non-coding transcripts.
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higher proportions (i.e. were relatively enriched) compared
to the remainder of the transcriptome’s non-microsatellite
containing ORFs. For ORFs containing dinucleotide or
tetranucleotide repeats, a Fisher test showed that no GO
term was significantly enriched (FDR = 0.05). For ORFs
containing trinucleotide repeats, however, terms within the
Molecular Function domain (nucleic acid/DNA binding
and transcription factor/regulator activity) and Cellular
Component domain (nucleoplasm) were significantly
enriched.
The Molecular Function domain enriched terms de-

scribed gene products that (i) interacted selectively and
non-covalently with nucleic acids, and (ii) interacted select-
ively and non-covalently with specific DNA sequences in
order to modulate transcription. These results suggest that
white shark ORFs containing trinucleotide repeats may
have regulatory roles involved in the control of transcrip-
tion (see Additional file 7 for a list of these ORFs).
Previous studies have shown that certain types of trinu-

cleotide repeat, coding for specific amino acid homopoly-
mers, have specific functions. For example, poly-glutamic
acid homopolymers are common in nuclear localization
signal proteins [50] and have been implicated in transcrip-
tion activation/de-activation [41,51-53], whereas proline
homopolymers may provide a domain for DNA binding
and affect protein-protein interactions [51,52]. In general,
the white shark was concordant with these findings, as the
most frequent amino acid homopolymers within ORFs for
the enriched nucleic acid/DNA binding GO term were
poly-glutamic acid (28.3%), poly-aspartic acid (19.6%), and
poly-proline (17.4%) (Figure 7). There was a similar pattern
for the enriched transcription factor/regulator activity GO
term with poly-glutamic acid (21.4%) and poly-proline
(21.4%) being the most frequent (Figure 7). The white
shark was distinctive however, in that there was a large

proportion of poly-aspartic acid homopolymers within
ORFs with regulatory roles (i.e. nucleic acid/DNA binding).
Finally, the large pool of microsatellites discovered

here provides the potential to greatly expand the limited
microsatellite marker resources available for this vulner-
able species. To this end and as part of a separate study,
we are developing microsatellite PCR primers on a glo-
bal set of white shark fin tissue samples. To date, we
have tested 35 loci (mostly dinucleotide and trinucleo-
tide repeats). Of these, 14 are scorable (an individual can
be genotyped), suggesting good prospects for the devel-
opment of additional loci (A. Bernard, VPR, MJS, MSS;
data not shown).

Positive selection
We searched the white shark transcriptome for genes
showing signs of positive selection by comparing it to em-
bryo transcriptomes of two additional elasmobranch spe-
cies: Scyliorhinus canicular (cat shark) and Leucoraja
erinacea (little skate). For each of the three species, we
tested each species’ lineage for positive selection using the
branch-site test as implemented in PAML [54]. Before cor-
rection for multiple testing, there were ten, three, and five
genes on the white shark, cat shark, and skate lineages re-
spectively that had significant results for positive selection
(Additional file 8 shows results for white shark). After cor-
rection (FDR = 0.05), four white shark genes remained
significant: UN031816 (TIP41-like protein), UN034361
(mediator of RNA polymerase II transcription subunit 20),
UN050025 (protein MIS12 homolog), and UN034642
(uncharacterized protein C12orf12 homolog). None of the
cat shark or skate genes remained significant after correc-
tion for multiple testing.
In yeast, TIP41 indirectly regulates cell growth by regulat-

ing SIT4 (serine/threonine-protein phosphatase 2A) activity

Figure 7 Proportion of amino acid homopolymers within ORFs for (i) the enriched nucleic acid/DNA binding GO term, (ii) the enriched
transcription factor/regulator activity GO term.
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[55]. More specifically, when nutrients such as nitrogen or
carbon are abundant, the rapamycin-sensitive TOR signal-
ing pathway promotes binding of the inhibitor protein
TAP42 to SIT4 thereby inhibiting its activity. However,
when nutrients are low, TOR does not promote binding of
TAP42 and the inhibitor disassociates from SIT4 and
TIP41 binds to the inhibitor, which in turn permits SIT4
activity. The regulatory role of protein phosphatases is de-
bated in the literature, and they may function to both up
and down regulate cell growth [56]. Furthermore, given the
important role of these enzymes in cell growth, they have
been actively studied by cancer researchers, with some
studies suggesting that they might possess tumor suppres-
sive capabilities [56]. However, other studies have empha-
sized their requirement for active cell growth and survival
[56]. Nevertheless, the finding here of positive selection for
a white shark gene involved in their regulation warrants
further investigation given (i) an apparent low incidence of
malignant tumors reported for elasmobranchs [48], (ii) the
high levels of nitrogen (urea) in shark tissue, and (iii) the
unique ability of elasmobranchs when compared to higher
vertebrates to regenerate kidney tissue [57,58].
Mediator of RNA polymerase II transcription subunit 20

is a component of the Mediator complex. This large multi
protein complex, which is conserved among eukaryotes,
binds RNA polymerase II and regulates transcription of class
II genes [59-61]. In addition to controlling cell growth, the
TOR signaling pathway has also been implicated in the regu-
lation of transcription. For example, in yeast, TOR limits
transcription when nitrogen levels are low [62]. Perhaps the
elevated level of urea in shark tissue is a factor contributing
to positive selection for the Mediator subunit 20.

Using Blast2GO, we were able to assign GO terms to
three of the genes showing signs of positive selection
(UN034361, UN031816, and UN050025) (14 terms in
total) (Additional file 8). Montoya-Burgos [63] compared
GO terms enriched for genes under positive selection
among two teleosts and six eutherian mammals (includ-
ing humans). Comparison of these results to the GO
terms for the white shark genes under positive selection
is shown in Table 1. Similarities were regulation of tran-
scription for the Biological Process domain and protein
binding for the Molecular Function domain. A notable
difference, however, was the complete absence of Bio-
logical Process response terms for the white shark (and
also the cat shark and skate). In contrast, multiple re-
sponse terms were shared between the teleosts and
mammals (e.g. response to stimulus, stress, and
wounding; defense response; and immune response).
Furthermore, numerous studies involving a variety of
additional teleosts have reported detection of positive
selection for genes involved in stress and immune
system response [64-68]. Elasmobranchs are the most
primitive jawed vertebrate to possess an adaptive
immune system based on immunoglobulins, T cell
receptors, and major histocompatibility complex mole-
cules (Ig/TCR/MHC). However, this system is genetically
distinct from the higher vertebrates [69,70] and has a
restricted antibody response when compared to teleosts
and mammals [71,72]. The lack of positive selection for
genes involved in immune and defense response
reported here for three elasmobranch species might
in part reflect this elasmobranch immune system
distinctiveness.

Table 1 Comparison of GO terms for genes under positive selection for the white shark, two teleosts, and six mammals

Biological process Biological process

(white shark) (shared between teleosts and mammals)

Biological regulation Response to stimulus

Regulation of transcription from RNA polymerase II
promoter

Defense response

Cell communication Response to stress* or wounding**

Chromosome segregation Immune system process, Immune response

Kinetochore assembly Signal transduction

Regulation of transcription DNA-dependent

Ion transport

Molecular function Molecular function

(white shark) (shared between teleosts and mammals)

Protein binding DNA binding, or mismatch DNA binding

RNA polymerase II transcription mediator activity Protein binding**, chemokine receptor binding**, interleukin binding**, interleukin-1
receptor binding*

DNA-directed RNA polymerase activity Metal ion binding

GO terms shared between teleosts and mammals are from Montoya-Burgos [63]. A single asterisk shows terms found in teleosts. Two asterisks shows terms found
in mammals.
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Conclusions
Utilizing an approach that combined Roche 454 and
Illumina sequencing technologies, we assembled and
characterized the first white shark transcriptome. This
combined approach yielded a considerable improvement
over Roche 454 technology alone, generating 21,019 an-
notated transcripts. The white shark transcriptome is a
valuable resource that adds to the currently nascent field of
cartilaginous fish genomics and provides a reference
for characterization of genomic datasets from other
elasmobranchs, which we anticipate will emerge with in-
creasing frequency. This resource also provides the first
large-scale view of the gene content of a major marine apex
predator that displays a collection of remarkable physical,
physiological, and behavioral properties. Of particular inter-
est is the observation that the proportion of annotated
transcripts involved in metabolic processes was more simi-
lar between the white shark and humans than between the
white shark and a teleost, a finding consistent with those of
Venkatesh et al. [4,31] who found genomic non-coding
elements and the relative position of genes to be more simi-
lar between another cartilaginous fish (the elephant shark)
and humans than between the elephant shark and a teleost.
We also compared the white shark transcriptome to other
available elasmobranch sequences, for signatures of positive
selection and identified several genes of putative adaptive
significance on the white shark lineage. The transcriptome
resource also provides a large set of new microsatellites
that will be immediately useful as markers in studies of
population structure, dispersal dynamics, genetic diversity,
and mating system biology to further the conservation
and management of this vulnerable species.

Methods
Tissue collection
The white shark is protected by many countries, includ-
ing the US, and is also a CITES Appendix II listed spe-
cies [73]. Consequently, obtaining white shark tissue is
extremely difficult. However, we were able to obtain tis-
sue from a juvenile white shark illegally landed by an in-
dependent fisher off the Delaware, USA coast in 2007.
The shark was confiscated from the fisher by the US Na-
tional Oceanic and Atmospheric Administration Office
for Law Enforcement. The heart was collected during a
subsequent necropsy of the shark conducted by the
National Oceanic and Atmospheric Administration for
scientific data collection, and provided to us by this
agency for further analysis. The heart was kept frozen
at -80°C until sub-sampled for RNA isolation.

cDNA library construction and Roche 454/Illumina
sequencing
Total RNA was isolated by homogenization of heart tissue
in TRIzol (Invitogen, Carlsbad, USA) followed by phenol

chloroform extraction. Full-length cDNA was synthesized
using two sets of oligo dT primers in a two step procedure
and single-stranded cDNA was used for hybridization
instead of double-stranded [74]. After hybridization,
reassociated ds-cDNA was separated from ss-cDNA (nor-
malized cDNA) by hydroxyapatite chromatography. Nor-
malized cDNA was re-amplified using an oligo dT specific
primer (L4N). cDNA was sequenced using a single run on
the Roche 454 GS FLX platform and a single lane of
Illumina HiSeq 2000 (100 bp reads, single end).

Sequence assembly and annotation
Roche 454 adaptor sequences were removed using
LUCY [75] and the script SeqClean (http://compbio.dfci.
harvard.edu/tgi/software). SeqClean was also used to re-
move reads containing low complexity sequence, reads
shorter than 100bp, and to clip low quality read ends
(ends rich in undetermined bases). 454 reads were
assembled into contigs de-novo using iAssembler v1.3
[76]. Contigs were searched for di, tri, and tetra
microsatellites of five repeats or more using Phobos
v3.3.12 as implemented in Geneious v5.5.3 [77]. Illumina
HiSeq reads were aligned to 454 contigs using the pro-
gram Burrows-Wheeler Aligner (BWA) [78] and con-
sensus sequences built using the pileup format as
implemented in SAMtools [79].
Roche 454/Illumina consensus sequences were searched

for open reading frames (ORFs) of 20 amino acids or lon-
ger (including the start codon for methionine, but omit-
ting unspecified or unknown amino acids [coded as X])
using the script longorf.pl (available at http://search.cpan.
org/~cjfields/BioPerl-1.6.901/examples/longorf.pl). Non-
singleton 454 contigs lacking Illumina read coverage were
also searched for ORFs using the longorf.pl procedure.
Annotation for ORFs was obtained using Blast2GO v.2.5.0
[25]. Amino acids were searched against the UniProtKB/
Swiss-Prot database using an E value cut-off = 1e-6
(retaining best 20 hits), with a minimum amino acid align-
ment length cut-off (high-scoring segment pair length) of
33. Blast2GO was also used to assign GO terms.
For purposes of quantitative evaluation of our com-

bined 454/Illumina sequencing platform approach, we
also processed the 454 data without combining it with
Illumina data. After singletons were removed, the con-
tigs were searched for ORFs and annotated using the
same procedure as for the combined data.
Blast2GO was also used to annotate ORFs and assign

GO terms for the zebrafish and human transcriptomes
(same procedure as above) to provide comparison to the
white shark. Transcriptomes for zebrafish and human
were obtained from Ensembl (Danio_rerio.Zv9.66.cdna.
all.fa, Homo_sapiens.GRCh37.67.cdna.all.fa). Note: the
Ensemble cdna.all files contain “the super set of all
transcripts resulting from Ensemble known, novel and
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pseudo gene predictions” (see the associated readme file
for a complete description). Relative enrichment of GO
terms for white shark when compared to zebrafish and
human (separate comparisons) was assessed using a
Fisher exact test. The test was performed using the
Gossip statistical package [80] implemented within
Blast2GO. The false discovery rate (FDR) procedure of
Benjamini and Hochberg [81] was used to correct for
multiple hypothesis testing (FDR = 0.05). We did not
test for underrepresentation (lower proportion of terms)
as the white shark transcriptome was obtained from a
single tissue type and may therefore not represent com-
plete genomic expression.

Branch-site test of positive selection
In order to detect genes under positive selection using the
branch-site test [82], we obtained embryo transcriptome
data for two additional elasmobranch species: Scyliorhinus
canicula (smallspotted cat shark) and Leucoraja erinacea
(little skate). The data were downloaded from the Gene
Expression Omnibus database at NCBI (accession number
GSE26235). Transcripts were searched for open reading
frames of 20 amino acids or longer using the same proced-
ure as for the white shark. For each of the three elas-
mobranch species (C. carcharias, S. canicular and L.
erinacea), and their putative homologous loci (procedure
described below), we tested genes in each species’ lineage
for positive selection using the branch-site test as
implemented in codeml in PAML (Phylogenetic Analysis
by Maximum Likelihood) version 4.4 [54]. The test was
performed on homologous core genes (those genes shared
among all three species). Homologous genes were delin-
eated using the MCL algorithm [83] as implemented in
the MCLBLASTLINE pipeline (available at http://micans.
org/mcl). The pipeline uses Markov clustering (MCL) to
assign genes to homologous clusters based on a BLASTp
search between all species pairs of protein sequences using
an E value cut-off of 1e-5. The MCL algorithm was
implemented using an inflation parameter of 1.2. Only sin-
gle copy core genes were used (i.e. clusters containing
paralogs were excluded). The nucleotide sequences corre-
sponding to each set of homologous core genes were
aligned using Probalign [84]. Alignment columns with a
posterior probability <0.6 were removed, and alignments
with >50% of the sites removed were discarded from the
analysis. Using each of the alignments and the three
elasmobranch species tree topology, positive selection was
assessed for each lineage by performing likelihood ratio
tests. We compared two branch-site models: (i) a null
model that does not allow positive selection (model M1a)
and (ii) an alternative model that allows positive selection
(model A). P values were calculated under the assumption
that the likelihood ratio follows a chi-square distribution
with one degree of freedom [82]. Multiple testing

adjustment was performed using a false discovery rate
approach [85] (significance level = 0.05).

Availability of supporting data
The 454 and Illumina derived short read files are avail-
able at the NCBI Sequence Read Archive (SRA) under
the study accession number SRP016555.
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