
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2011

A Domain Aware Genetic Algorithm for the p-
Median Problem
Dennis Vickers
Nova Southeastern University, davickers@gmail.com

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Dennis Vickers. 2011. A Domain Aware Genetic Algorithm for the p-Median Problem. Doctoral dissertation. Nova Southeastern
University. Retrieved from NSUWorks, Graduate School of Computer and Information Sciences. (328)
https://nsuworks.nova.edu/gscis_etd/328.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F328&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F328&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F328&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F328&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F328&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F328&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F328&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

A Domain Aware Genetic Algorithm
for the p-Median Problem

by

Dennis Vickers
e-mail: vdennis@nova.edu

voice: (805) 377-0246

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in
Computer Information Systems

Graduate School of Computer and Information Sciences
Nova Southeastern University

September 2011

We hereby certify that this dissertation submitted by Dennis Vickers, conforms to
acceptable standards and is fully adequate in scope and quality to fulfill the
dissertation requirements for the degree of Doctor of Philosophy.

Sumitra Mukherjee, Ph.D. Date
Chairperson of Dissertation Committee

Michael Laszlo, Ph.D. Date
Dissertation Committee Member

Greg Simco, Ph.D. Date
Dissertation Committee Member

Approved:

Amon B Seagull, Ph.D. Date
Dean

Graduate School of Computer and Information Sciences
Nova Southeastern University

2011

An Abstract of a Dissertation Submitted to
Nova Southeastern University

in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

A Domain Aware Genetic Algorithm
for the p-Median Problem

By

Dennis Vickers

September 2011

The p-median problem is an NP-complete combinatorial optimization problem
often used in the fields of facility location and clustering. Given a graph with n
nodes and an integer p < n, the p-median problem seeks a set of p medians such
that the sum of the distances of the n nodes from their nearest median is
minimized. This dissertation develops a genetic algorithm that generates solutions
to the p-median problem that improves on previously published genetic
algorithms by implementing operators that exploit domain specific information.
More specifically, this GA explores the following:
(1) The advantages of using “good” solutions generated using extant heuristics

in the initial generation of chromosomes.
(2) The effectiveness of a crossover operation that exchanges centers in the

same neighborhood rather than exchanging arbitrarily chosen subsets of
centers.

(3) The efficacy of using a biased mutation operator that favors replacing
existing medians from less fit chromosomes with non-median nodes from
the same neighborhood as the median being replaced.

Using published problem sets with known solutions, this dissertation examines
solutions identified by the new genetic algorithm in order to determine the
accuracy, efficiency and performance characteristics of the new algorithm. In
addition, it tests the contribution of each of the algorithm’s operators by
systematically controlling for all the other factors.

The results of the analysis showed that integrating operators that exploited
domain specific information did have an overall positive impact on the genetic
algorithm. In addition, the results showed that using a structured initial population
had little impact on the algorithm’s ability to find an optimal solution but it did
create a better initial solution and allowed the algorithm to produce a relatively
good solution early in the search. Also, the analysis showed that a directed
approach to crossover operations was effective and produced superior solutions.
Finally, the analysis showed that a directed approach toward mutation did not
have a large impact on the overall functionality of the algorithm and may be
inferior to an arbitrary approach to mutation.

Acknowledgements

I would like to express my appreciation of Sumitra Mukherjee for
persevering with me as my advisor all the way through the time it took me to
complete this research and write this dissertation. The inspiration for doing the
research came from the courses he taught and the discussions we had during the
time I spent as a graduate student at Nova Southeastern University. He was
unfailingly generous with his time and encouragement. His patience with my
many delays and willingness to listen to my problems and help me focus on the
solutions was invaluable. I am grateful to him and the administration at Graduate
School of Computer and Information Sciences that was willing to put in the extra
effort that made it possible for me to complete my degree from a geographical
distance of 3,000 miles.

The members of my dissertation committee, Michael Laszlo and Greg
Simco, have generously given their time and expertise to better my work. I thank
them for their contribution and their generous support.

I would also like to single out my son, Scott Vickers, for his invaluable

help and insight in programming the algorithm that formed a basis for this
dissertation. His expertise in object oriented programming and C++ made writing
the software significantly easier than it otherwise would have been.

I would especially like to express my deepest appreciation to my wife,

Wendy Vickers. Not only for her love and support in what must have seemed to
her for such a long time as an endless project, but also for her tireless and expert
editing on a subject that in all honestly held very little interest for her but which
fascinated me.

Finally, I would like to thank my family, friends and colleagues that

continued to encourage me and support me throughout this whole journey.

v

Table of Contents

Abstract iii
List of Tables xi
List of Figures xii

Chapters

1. Introduction 1
Problem Statement and Goals 1
The P-median Problem 2
Applying the Genetic Algorithm Heuristic to the P-median Problem 4
Research Goals 6
Significance & Relevance 6

2. Review of the Literature 8
Published Research on Genetic Algorithms 8
Published Research on Heuristic Approaches to the P-median Problem 10
Published Research on Genetic Algorithms for the P-median Problem 13

3. Methodology 20
Algorithm Design 20
Computational Study 34

4. Results 40

5. Conclusions, Implications, Recommendations, and Summary 71
Conclusions 71
Implications 75
Recommendations 75
Summary 77

6. Appendix A 81

7. Reference List 116

vi

List of Tables

Tables

1. fl1400 Problem Set 35

2. pcb3038 Problem Set 35

3. rl5934 Problem Set. 36

4. Runtime Parameters and Selected Values 42

5. Summary of Results Using fl1400 Problem Set and Crossover Technique 1 43

6. Summary of Results Using pcb3038 Problem Set and Crossover Technique 1 45

7. Summary of Results Using rl5934 Problem Set and Crossover Technique 1 46

8. Summary of Results Using fl1400 Problem Set and Crossover Technique 2 48

9. Summary of Results Using pcb3038 Problem Set and Crossover Technique 2 48

10. Summary of Results Using rl5934 Problem Set and Crossover Technique 2 49

11. Fitness Values Using an Unstructured Initial Generation 63

12. Error Rates Using an Unstructured Initial Generation 63

13. Deviation From DAGA When Using an Unstructured Initial Generation 64

14. Fitness Values Using a Random Crossover Operator 66

15. Error Rates Using Random Crossover Operator 66

16. Deviation From DAGA When Using a Random Crossover Operator 67

17. Fitness Values using a Random Mutation Operator 69

18. Error Rates Using a Random Mutation Operator 69

19. Deviation From DAGA When Using a Random Mutation Operator 70

vii

List of Figures

Figures

1. P-median Problem Formulation 3

2. UML Diagram 22

3. Crossover Technique 1 28

4. Crossover Technique 2 31

5. Mutation Operator 34

6. Run Profile for Problem Set fl1400 with 10 medians 52

7. Run Profile for Problem Set fl1400 with 20 medians 53

8. Run Profile for Problem Set fl1400 with 30 medians 54

9. Run Profile for Problem Set fl1400 with 40 medians 55

10. Run Profile for Problem Set fl1400 with 50 medians 56

11. Run Profile for Problem Set fl1400 with 60 medians 57

12. Run Profile for Problem Set fl1400 with 70 medians 58

13. Run Profile for Problem Set fl1400 with 80 medians 59

14. Run Profile for Problem Set fl1400 with 90 medians 60

15. Run Profile for Problem Set fl1400 with 100 medians 61

16. Run profiles with 10 medians 82

17. Run Profiles with 20 Medians 83

18. Run Profiles with 30 Medians 84

19. Run Profiles with 40 Medians 85

20. Run Profiles with 50 Medians 86

21. Run Profiles with 60 Medians 87

viii

22. Run Profiles with 70 medians 88

23. Run Profiles for 80 Medians 89

24. Run Profile with 90 Medians 90

25. Run Profiles with 100 Medians 91

1

Chapter 1

Introduction

Problem Statement and Goals

 This dissertation presents a new genetic algorithm for the p-median problem. The

p-median problem is a graph theory problem used extensively in the field of discrete

location theory for facility location analysis. In the p-median problem, defined on a

complete directed graph with n nodes, p facilities have to be located on a graph such that

the sum of Euclidian distances between the nodes of the graph and the facilities is

minimized (Hakimi, 1964, 1965). This is often referred to as a “minisum” problem. A

distinguishing characteristic of the p-median problem is that the facilities (medians) must

be selected from existing points in the problem set. The p-median problem has been

shown to be an NP-hard problem (Megiddo & Supowits, 1984) and becomes

computationally intractable as the problem size increases. There has been a significant

amount of research on metaheuristic approaches to the p-median problem (Mladenovi,

Brimberg, Hansen, & Moreno-Pérez., 2007; Reese, 2005) with widely varying degrees of

success (Alba & Dominguez, 2006). One approach in particular, genetic algorithms, has

been only lightly studied as applied to the p-median problem, but shows some promise

(Alp, Erkut, & Drezner, 2003; Bozkaya, Zhang, & Erkut, 2002; Chiou & Lan, 2001;

Correa, Steiner, Freitas, & Carnieri, 2001; Dibble & Densham, 1993; Estivill-Castro &

2

Torres-Velázquez, 1999; Hosage & Goodchild, 1986). This dissertation examines the

impact of integrating domain knowledge into a genetic algorithm as applied to the p-

median problem.

The P-median Problem

 The p-median problem requires the selection of p objects to serve as centers (or

medians) for their partition. The goal is to choose medians and assign all objects to their

nearest median with the objective of minimizing the sums of the distances between the

centers and objects in their partition. An important aspect of the p-median problem is that

the median of each partition is an actual object. ReVelle and Swain (1970) provided an

integer programming formulation for the discrete p-median problem, given in Figure 1.

 Like many problems of combinatorial data analysis, p-median has been shown to

be NP-hard (Megiddo & Supowits, 1984) for an arbitrary p. The number of feasible

solutions for the p-median problem is N!/(p!(N −p)!). For example, if N = 100 and p = 2,

there are only 4950 feasible solutions, which could easily be enumerated. However, if N

= 100 and p = 10, there are more than 17 trillion solutions. This highlights one of the

characteristics of the p-median problem, which is that as the size of the problem instance

increases, it rapidly becomes too large for total enumeration.

Heuristic Approaches To the P-median Problem

 Given the size characteristic of realistic p-median problems, researchers have

developed heuristics that are capable of yielding good quality solutions without proof of

3

their optimality, in a practical time (Mladenovi, et al., 2007). Two heuristics that are

promising are the Tabu Search heuristic (Rolland, Schilling, & Current, 1996) and the

Variable Neighborhood Search (VNS) heuristic (Hansen & Mladenovic, 1997). These

heuristics have several common characteristics that allow them to exploit promising local

search areas without sacrificing exploration of the global search space. They use a

structured search space, made up of multiple “neighborhoods”. Though they have

differing definitions of a neighborhood, they each use a local search within a

neighborhood to concentrate on promising solutions. They both have methods for moving

the search outside of a neighborhood to minimize the risk of being trapped at a local

Minimize ∑ ∑ ୀଵୀଵݔ݀ݓ . (1)

Subject to ∑ ୀଵݔ = 1, ∀݅, (2)

 ∑ ݕ = ୀଵ	 , (3)

ݔ 	≤ ,݅∀			,ݕ	 ݆, (4)

ݔ = ,1	ݎ	0 ∀݅, ݆,
ݕ = ,1	ݎ	0 ∀݆,
Where
 n	=	total	number	of	demand	points,		 p	=	number	of	medians,		 wi	=	demand	at	point	i,		 dij	=	distance	between	points	i	and	j,	
ݔ = 	 ൜1	if	݅	is	assigned	to	median	݆,0	otherwise,																															
ݕ = 	 ቄ1	if	the	vertex	݆	is	a	median,0	otherwise.																												

Condition (2) prevents a demand point i from being free, i.e. not having an assigned
median. Condition (3) establishes the number of medians. The last condition (4)
ensures the coherence of the solutions, that is, a demand point i cannot be assigned to
the median j (yj = 1), which is not established as median (yj = 0).

 P-median Problem Formulation Figure 1. P-median Problem Formulation

4

optimum. This dissertation adapts these characteristics of Tabu Search and VNS to a

Genetic Algorithm heuristic. Specifically, it uses a structured search space, that is, a

spatial distribution of individuals, to generate initial populations. In addition, it

concentrates the search by developing a cross-over operator that works within a spatially

defined neighborhood when generating offspring. Lastly, it develops a mutation operator

that is capable of introducing changes to the offspring that force it to move outside of a

defined neighborhood in order to adequately explore the global search space.

Applying the Genetic Algorithm Heuristic to the P-median Problem

 The canonical genetic algorithm, as defined by Holland (1975) and applied to the

p-median problem by Hosage and Goodchild (1986), encoded the search space as a

binary string. Dibble and Densham changed that and encoded the search space as an

index of a set of nodes (1993). This change yielded improved results that were

comparable to the interchange method used by Tietz and Bart (1968). The algorithm in

this dissertation takes this a step further and encodes the search space in a way that

preserves the spatial relationship of the nodes.

 There has been very little research published regarding methods for generating the

initial generation of chromosomes when using a genetic algorithm on the p-median

problem. The approach taken by Hosage and Goodchild (1986) was to randomly generate

the first generation. With the exception of one paper (Chiou & Lan, 2001), all

subsequently published research in this area has taken the same approach. Similar to

Chiou and Lan, the algorithm in this dissertation will take an approach that creates a

5

structured initial generation from a spatially distributed search space. This approach will

use an algorithm to uniformly partition the search space into non-overlapping regions and

then select a gene from each region to form a chromosome that will be added to the pool

of chromosomes that compose the initial generation.

 Hosage and Goodchild (1986) used a strictly random method for selecting

individuals from a population for use in generating offspring. Subsequent to that research,

several techniques have been developed that attempt to mate fitter individuals from the

population with the expectation that the resulting offspring will also be fit (Bozkaya, et

al., 2002; Correa, et al., 2001). The approach in this paper adapts a technique used by

Laszlo and Mukherjee (2006) on the k-means problem where they used roulette wheel

sampling to select individuals based on their scaled fitness.

 In a genetic algorithm the crossover operator acts to merge the genes of the

chromosomes selected for reproduction in a prescribed way to produce offspring. The

canonical genetic algorithm as applied by Hosage and Goodchild (1986) splits the parents

into two, creating four partial chromosomes, and then these four pieces are crossed and

re-combined to create two new chromosomes, one of which is randomly discarded. This

technique was shown to be inefficient in that it could produce offspring identical to the

parents and could decrease diversity by reducing the number of distinct solutions in the

population (Bozkaya, et al., 2002). Subsequent research sought to improve the crossover

operator with more deterministic techniques as well as adapting it to alternate encoding

schemes (Alp, et al., 2003; Bozkaya, et al., 2002). The mutation operator seeks to add

diversity in order to more fully explore the workspace. Typically, it randomly selects a

small number of genes from a potential offspring and replaces them with randomly

6

selected new genes. This dissertation introduces crossover and mutation operators that

consider spatial distances as part of their operation. In doing so, the operators can

maintain the diversity necessary to support adequate exploration of the search space and

minimize the operational cost associated with exploiting promising solutions.

Research Goals

 The goal of this dissertation is to examine the impact of integrating domain

knowledge into a genetic algorithm as applied to the p-median problem. The genetic

algorithm uses a method for encoding that incorporates spatial location; creates a

structured initial population using domain knowledge; is biased toward fitter

chromosomes when selecting mating pairs; generates offspring with a spatially sensitive

crossover operator; and ensures diversity with a mutation operator that is both biased and

spatially sensitive. Using published problem sets that have established “best known”

solutions, the study examines solutions identified by the genetic algorithm in order to

determine the accuracy, efficiency and performance characteristics of the genetic

algorithm. In addition it tests the contribution of each of the algorithm’s operators by

systematically controlling for all the other factors.

Significance & Relevance

 Using a genetic algorithm to find solutions to the p-median problem is not new. It

was first studied in 1986 (Hosage & Goodchild, 1986) and has been the subject of several

7

subsequent studies with the most recent being published in 2006 (Fathali, 2006). In

reading these studies it can be seen that decisions made by the researchers with regards to

characteristics of the algorithm such as encoding and genetic operators has a significant

impact on the efficiency of the algorithm and the accuracy of the results. These decisions

are able to move the algorithm from being inferior to other metaheuristic techniques to

being competitive and in some situations superior to other techniques (Mladenovi, et al.,

2007) while maintaining the basic characteristics of genetic algorithms as defined by

Holland (1975).

 The studies to date, while significant, by no means exhaust the potential for

improvement that additional research into the characteristics of genetic algorithms as

applied to the p-median problem could bring. For example, little research has been

published on what impact the starting point, or initial generation of chromosomes, has on

the quality of the results. In addition, exploiting the spatial nature of the p-median

problem to improve selection, crossover and mutation operators through the use of

“neighborhoods” has not been considered in any of the published literature. This is a

concept that could potentially yield significant positive results.

 This dissertation works within the characteristics of a canonical genetic algorithm.

It explores the components of a genetic algorithm as applied to the p-median problem

while maintaining their simplicity and ease of implementation. It also exploits domain

knowledge where possible with the goal of better understanding how the use of domain

knowledge can result in an improved algorithm.

8

Chapter 2

Review of the Literature

 This chapter provides a review of prior published research that is relevant to the

dissertation topic. The focus of these papers either highlights the problem being

addressed or are being used to help formulate the research. The prior published research

starts with a review of the history and theoretical framework of Genetic Algorithms.

Next there is a review of research of other heuristic techniques specifically as they are

applied to the p-median problem. Finishing with a review of published research in which

the authors have developed what would generally be accepted as a genetic algorithm to

specifically solve the p-median problem. This chapter will conclude with a summary of

what is known based on the published literature and how this dissertation extends that

body of knowledge.

Published Research on Genetic Algorithms

 John Holland first published his concepts about genetic algorithms in his book

Adaption in Natural and Artificial Systems (1975). Holland’s original goal was not to

design algorithms to solve specific problems, but rather to formally study the

phenomenon of adaption as it occurs in nature and to develop methods for mimicking

natural selection with computer systems. Holland presented the genetic algorithm as an

9

abstraction of biological evolution and gave the theoretical framework for adaptation

under the genetic algorithm.

 Holland’s influence was very important, but other researchers with different

backgrounds were also involved in developing similar ideas. German researcher, Ingo

Rechenberg (1973) developed the idea of the “Evolution Strategy”. In the United States,

Bremermann (1962) and others (Fogel, Owens, & Walsh, 1966) published their idea for

what they called “Evolutionary Programming”. While these ideas all had unique

characteristics, they all incorporated the Darwinian concepts of mutation and selection to

incrementally move toward goals. Unlike these earlier evolutionary algorithms, which

focused on mutation, Holland’s genetic algorithm also introduced the idea of

recombination, which at that time was unique to genetic algorithms.

 In 1975 one of Holland’s doctoral students completed a doctoral thesis that

provided a comprehensive treatment of the genetic algorithm’s capabilities with regard to

optimization (DeJong, 1975). There was little published research after that until the First

International Conference on Genetic Algorithms was held in Pittsburgh, Pennsylvania in

1985. Subsequent to that conference, another graduate student of Holland’s, David

Goldberg, wrote an influential, and many consider seminal book on the subject, Genetic

Algorithms in Search, Optimization, and Machine Learning (Goldberg, 1989).

 A theory of why genetic algorithms work is explained in detail in the research

published by Whitley (1994) where he examines schema theory and intrinsic parallelism.

Conceptually, the theory refers to the ability of the algorithm to preserve the common

sections of the solutions being evaluated that have superior fitness values. This happens

when, as the algorithm processes, some sub-sets of the solution sets being evaluated

10

converge and together form a particular schema. The algorithm consistently disregards

schemata that correspond to inferior solutions and evaluates more and more of the

schemata that correspond to solutions with better fitness values.

 In Holland’s early research (1975) he emphasized the need for a general purpose

genetic algorithm rather than domain specific implementations. However, in any actual

implementation of a genetic algorithm, understanding the domain is necessary in order to

make key decisions with regard to the design of the algorithm. Adaptively finding

structures that perform well in a given environment is central to the concept of genetic

algorithms (Whitley, 1994). If those structures are solutions to a problem and the

environment is a particular domain, it is necessary to understand the domain in order to

judge the “goodness” of a solution. In other words, solutions are only valid in the context

of a given domain.

Published Research on Heuristic Approaches to the P-median Problem

 A thorough survey of the literature on heuristic methods for solving the p-median

problem was developed by Joshua Reese (2005). While this survey does a good job of

annotating the existing literature it doesn’t provide quantitative details on the methods or

information on how the methods compare relative to each other. Fortunately, two recently

published studies make up for the deficiency by providing a more detailed analysis of the

heuristic approaches to solving the p-median problem (Alba & Dominguez, 2006;

Mladenovi, et al., 2007). Mladenovi et al divide the heuristics into two groups labeled

Classic Heuristics and Metaheuristics. The techniques identified as Classic Heuristics are

11

shown to not be competitive with the techniques identified as Metaheuristics as the

problem size increases. Mladenovi et al define Metaheuristics as “a general framework to

build heuristics for combinatorial and global optimization problems.” The techniques

Mladenovi et al identified as Metaheuristics include: Tabu search, Variable neighborhood

search, Genetic algorithm, Scatter search, Simulated annealing, Heuristic concentration,

Ant colony optimization, Neural networks, Decomposition, and Hybrids. Most of these

techniques were applied to either the OR-Library or TSP-Library or sometimes both. In

almost every case, the metaheuristic showed results that greatly exceeded the classic

heuristic approaches.

 While most of these techniques show the value of a heuristic approach to

combinatorial problems in general and the p-median problem specifically, they do not

have a direct influence on this dissertation. Two of the techniques do have a more direct

influence (Hansen & Mladenovic, 1997; Rolland, et al., 1996). In the Tabu Search

procedure developed by Rolland et al they introduce the concept of a “neighborhood” to

help focus the search on promising solutions. The neighborhood is defined as the set of

solutions that can be reached by either adding a single facility or dropping a single

facility from the set of open facilities. As these moves are performed, tabu restrictions are

used to avoid moving back to solutions that have already been considered. Tabu

restrictions also enforce the neighborhood concept which allows the algorithm to

incrementally move toward an optimal solution rather than introducing radical and

potentially disruptive changes. Rolland et al also introduce the concept of diversification

into their Tabu search algorithm. Diversification is used to escape from local optima and

is implemented by using a frequency function that creates a bias against performing the

12

same move too often. This technique causes the algorithm to “diversify” its search into

areas of the problem set that have not been investigated. Both the concept of

“neighborhood” and “diversification” in search are relevant to this dissertation. In the

algorithm developed in this dissertation the crossover and mutation operators implement

a neighborhood concept that is used to support an incremental approach to optimization

and minimize the risk of disruptive changes that may degrade the best solutions. The

dissertation algorithm also implements a biased mutation operator. The operator favors

selecting nodes for insertion into solutions to be evaluated that have had a lower

frequency of prior use.

 A Variable Neighborhood Search for the p-Median problem was presented by

Hansen and Mladenovic (1997). In their research they also use the concept of a

“neighborhood” to intensify the search on promising areas of the problem set.

Neighborhoods consist of overlapping sub-sets of the problem set centered on a local

optimum and increasing in size as they expand further from that local optimum.

Exploration of these neighborhoods is done in two ways. The neighborhoods closest to

the current solution are explored systematically with a local search until an improved

solution is found. The larger neighborhoods, i.e. those far from the current solution, are

explored partially by randomly selecting a solution from the neighborhood and starting a

local search from there. The algorithm remains at the same solution until a better one is

found and then jumps to that solution. Neighborhoods are ranked so that solutions are

explored increasingly far from the current one. This ranking allows the search to intensify

around and diversify from the current solution through an intrinsic “shaking” process.

The level of shaking is set through an execution parameter. Hansen and Mladenovic’s

13

research is relevant to this dissertation because they hypothesize that the reason that

Variable Neighborhood Search algorithms work is because “all good p-median solutions

are ‘relatively’ close to each other with respect to distance”. Their published research

supports that hypothesis. Their research is important because the algorithm developed in

this dissertation implements genetic operators designed to take advantage of this

localization of good solutions.

Published Research on Genetic Algorithms for the P-median Problem

 In the research by Hosage and Goodchild (1986), they develop the first genetic

algorithm published in the literature that provides a solution to the p-median problem.

Their algorithm conformed closely to the canonical genetic algorithm developed by

Holland (1975). In their algorithm, Hosage and Goodchild encode a solution as a string of

m binary digits which they referred to as genes. The allele of each binary digit is set to 1

if it represents a facility and 0 if it represents a demand node. In addition to the crossover

and mutation operators, Hosage and Goodchild incorporate an inversion operator. The

inversion operator flips the alleles of selected chromosomes in an attempt to introduce

additional genetic diversity. However, as the percentage of chromosomes selected for

inversion increases, the tendency of the algorithm to perform similarly to random search

also increases. Subsequent research by Goldberg (1989) cast doubt on the value of an

inversion operator given its significant computational cost. Hosage and Goodchild used a

pre-determined number of generations as a stopping criterion, rather than a solution

convergence because of their concern about the possibility of converging on a local

14

optimum rather than a global one. While premature convergence is a concern addressed

in subsequent research, the use of pre-defined stopping points resulted in consistent

results. Hosage and Goodchild’s algorithm showed poor computational results. In their

conclusion, Hosage and Goodchild acknowledged the poor computational results but

asserted that the value of their approach was its general applicability to a large set of

problems rather than its computation efficiency. Hosage and Goodchild’s primary

contribution was being the first to develop a working genetic algorithm for the p-median

problem.

 In Dibble and Densham (1993), each chromosome has exactly p genes, and each

gene represents a facility index. This appears to be a better encoding technique than the

binary string approach used by Hosage and Goodchild (1986). Dibble and Densham used

conventional genetic operators: selection, cross-over and mutation, but no inversion

operator. Reported results are similar to Interchange local search, but with considerably

longer processing time. Dibble and Densham’s primary contributions were an improved

method of encoding the problem onto the chromosome by using index pointers and a

head-to-head comparison with another heuristic for the p-median problem. The algorithm

developed in this dissertation further refines the encoding technique and represents each

gene within a chromosome as a multi-dimensional vector containing the coordinates of a

candidate median. This technique is very similar to the one used by Laszlo and

Mukherjee (2007) in their work on a genetic algorithm for the k-means problem.
 In Estivill-Castro and Torres-Velazquez (1999), a mutation operator is introduced

that is based on a hill-climber algorithm. Their mutation operator randomly selected

chromosomes for improvement using a hill-climbing technique and then reintroduced the

15

chromosome back to the population. Estivill-Castro and Torres-Velazquez also

experiment with various crossover operators but ultimately conclude that the increased

computational complexity offset any gains achieved by earlier convergence. While no

operational data is presented, the authors claim that the algorithm outperforms tabu

search and simulated annealing algorithms applied to similar data sets. By extending the

functionality of the mutation operator, Estivill-Castro and Torres-Velazquez show that it

can be beneficial to have potential solutions survive from generation to generation. In

their case they did that through the mutation operator. In this dissertation algorithm a

“hero” chromosome is introduced that represents the best solution in the current

generation and is immune to the cross-over and mutation operators and will be passed

intact to the next generation through the replacement operator.

 The primary focus of a study by Chiou and Lan (2001) is clustering. It has

relevance to this dissertation because it develops a method referred to as the Cluster Seed

Points Method (CSPM) for developing the first generation in a genetic algorithm which

in turn is used on the p-median problem. The operators used in the Chiou and Lan genetic

algorithm were very standard but their use of CSPM for generating the initial population

of chromosomes showed improvement over techniques that randomly generated the

initial population and was the first published research that used a directed approach rather

than a random approach. CSPM designs initial populations by manually selecting “seeds”

from the search space for each initial population. This method, using structured initial

populations, showed good results however it severely limits the dynamism of the

algorithm. In addition, the experiment was applied only to a small search space. Chiou

and Lan stated in their conclusion that the CSPM method would probably not scale well

16

to larger search spaces. In other related research, Arthur and Vassilvitsakii (2007) used

seeding in a k-means algorithm. While not directly applicable to the p-median problem, it

does provide mathematical support for efficacy of seeding for combinatorial problems.

This dissertation elaborates on the findings in these papers in support of developing a

seeding technique that provides a good starting point for the genetic algorithm rather than

relying on random selection.

 In a study by Correa et al (2001) a genetic algorithm for the capacitated p-median

problem is presented. This is a slightly different combinatorial problem than the p-

median problem in that servicing facilities have a limited capacity so the algorithm must

consider both distance and availability when calculating cost. In a genetic algorithm, this

primarily affects the fitness function. The chromosome encoding and the operators are

the same for either problem and as such, this research is applicable to the research for this

dissertation. The research by Correa et al is unique in two aspects. First, they use a

ranking based selection operator. Specifically, prior to selection they rank chromosomes

in the population from most fit to least fit. They then apply a selection formula that is

biased toward chromosomes that appear early in the list thus tending toward selecting

more fit chromosomes. This dissertation algorithm uses a conceptually similar technique,

however instead of ranking by fitness; it uses a scaled fitness function and “roulette-

wheel” selection which gives the fitter solutions more likelihood of selection. The second

unique characteristic of the Correa et al algorithm is something they refer to as a hyper-

mutation operator. The hyper-mutation operator randomly selects a small percentage of

chromosomes and tries to improve their fitness by evaluating every feasible median not

currently represented in the chromosome. This is computationally expensive and while

17

Correa et al only test it on relatively small sets of data, it seems likely that its cost would

out-weigh its benefit as the size of the data set grew. It also seems to negate the value of

the mutation operator, which is to encourage exploration over exploitation.

 In a more recent study, Alp et al (2003) developed a fast genetic algorithm with

good results. Though the algorithm they present is not a genetic algorithm in the strictest

sense, it is an evolutionary algorithm and contains many of the elements typically found

in a genetic algorithm. Their crossover operator uses a greedy drop procedure to generate

new chromosomes from chromosomes randomly selected from the current population. In

this procedure, first the chromosomes of parents are merged to produce an infeasible

solution with m genes where m > p. Then the gene whose dropping produces the best

fitness function is dropped. This is repeated until number of genes reaches p. This

research shows the value of directed crossover and replacement operators. The algorithm

generated in this dissertation further explores improved crossover and replacement

operators by experimenting with operators that take advantage of the spatial nature of the

p-median problem. Alp et al do not use a mutation operator in their algorithm. They

claim that when they introduced a basic mutation operator, it did not improve the

solution; however no data was provided to support the claim. One final aspect of the Alp

et al algorithm is its stopping criteria. Rather than simple stopping after a pre-defined

number of generations their algorithm stopped after the best (most fit) solution did not

change after ⌈ ݊	ඥ ⌉ successive children failed to improve it. This appears to be an

improvement over previously published methods that simply stopped after a fixed

number of generations; however, it isn’t clear that it is an improvement over algorithms

that use convergence for a set number of iterations as a stopping criterion.

18

 Alp et al (2003) also perform a fairly detailed comparison of their algorithm with

other heuristics for the p-median problem using the OR Library. A summary of the

comparison is that the Alp et al algorithm performs as well as or better than the other

algorithms which include a simulated annealing heuristic and a gamma heuristic. This

study shows that while a basic genetic algorithm cannot compete with more recent meta-

heuristics in solving the p-median problem, it is subject to improvement with some

modifications that maintain the simplicity and ease of implementation that are

characteristic of genetic algorithms.

 In the most recent publication that examines the application of what would be

strictly defined as a genetic algorithm to the p-median problem, Bozkaya et al (2002)

present a new algorithm. Their algorithm retains all the typical characteristics of a genetic

algorithm and outperforms previously published genetic algorithms, and the Tietz and

Bart (1968) interchange algorithm, in terms of accuracy and processing times. The

components of the algorithm developed by Bozkaya et al are not necessarily unique to

their work. What is unique is their combination of previously examined components into

a new algorithm that draws on promising techniques to form what can be considered a

“best-of-breed” genetic algorithm. Their contribution to the body of knowledge is

showing that while the basic genetic algorithm for the p-median problem developed by

Hosage and Goodchild (1986) is not competitive with other techniques, a well designed

algorithm can be, while still maintaining all the characteristics of the canonical genetic

algorithm. There is, however, one aspect of their work that is unique and directly

applicable to this dissertation. They use a formula for setting the number of solutions or

chromosomes that will make up the population P of a generation. The formula they

19

introduce is given as ܲ = 	 ቜቀଵቁ ቆ ୪୬బ୪୬షభ ቇቝ and where P0 represents the probability of not

including a node in the initial population. This technique shows significant improvement

over other methods and is adopted in the algorithm developed for this dissertation.

20

Chapter 3

Methodology

 This dissertation examines the impact of integrating domain knowledge into a

genetic algorithm as applied to the p-median problem. To do that, a new domain aware

genetic algorithm (DAGA) has been developed. In addition, a set of tests are carried out

that examine both the overall efficacy of this algorithm as well contributions of

individual components of this algorithm. Both the algorithm and tests are described in

more detail in the following sub-sections.

Algorithm Design

 The DAGA uses the same general structure and genetic operators as the canonical

genetic algorithm defined by Holland (1975). This dissertation uses Holland’s theoretical

framework and presents a domain aware genetic algorithm by developing the following: a

scheme for encoding the problem set into genes, alleles, and chromosomes; a technique

for generating the first generation of chromosomes; a technique for selecting

chromosomes from the current generation for use in generating chromosomes for the next

generation; a technique for combining chromosome pairs to create offspring

chromosomes; and a technique for mutating new chromosomes. A description of the

approach to each of these components is provided in the following paragraphs.

21

Encoding

 The DAGA uses an object-oriented approach to encoding the problem set. A

Node class is generated and an instance of this class is generated for each vector in the

problem set. In the p-median problem, each vector represents the point coordinates of a

specific location. The set of all locations is represented in the problem formulation as n

and ni represents a specific location within the problem set. The Node class acts as a

generalization of the Gene class. An instance of the Gene class is generated for each

vector within n that is part of a feasible solution set. In the p-median problem, each vector

within a solution set represents a median. The set of all medians within a feasible solution

is represented by p and pi represents a specific median within a feasible solution set. A

Chromosome class has been developed and an instance of this class is generated for each

feasible solution set within the set of feasible solutions that represents a generation during

the algorithm’s execution. The Chromosome class has a composite association with the

Gene class whereby an instance of the Chromosome class is made up of p instances of the

Gene class. A Generation class has been developed and an instance of this class is

generated for each set of chromosomes that constitute a generation. The Generation class

has a composite association with the Chromosome class whereby an instance of the

Generation class is made up of P instances of the Chromosome class. A UML diagram of

these classes and their relationships is given in Figure 2. UML Diagram.

 The Node class attributes include an attribute containing the location vector, an

attribute containing a count of the number of times an instance of the location is being

used in the current generation of chromosomes, and an attribute containing a count of the

total number of times the location has been used in any chromosome. In addition to the

22

attributes inherited from the Node class, the Gene class attributes include a unique

identifier, a Boolean value indicating whether this instance has been selected for

crossover operations, and a Boolean value indicating whether it has been selected for

mutation operations. The attributes of the Chromosome class include a unique identifier

and a value indicating the calculated fitness of the solution set. Though not shown, each

class will also have the operators necessary to implement the classes as part of the

algorithm.

Figure 2. UML Diagram

This object-oriented approach to encoding the problem is primarily an

implementation issue. From a research perspective, it is not significantly different than

the technique used by Dibble & Densham (1993). Their encoding technique is based on p

length chromosomes where the alleles of the genes correspond to the indices of selected

medians. Dibble and Densham showed that their encoding technique was significantly

superior to the binary string representation technique first used by Hosage and Goodchild

(1986). It is expected that this objected-oriented technique will be equally as effective.

23

Run-time parameters

 Some of the characteristics of the DAGA can be controlled at the time of

execution by setting parameter values. Specifically, there are six parameters that must be

set at run-time that impact the operation of the algorithm and have an impact on the

results. Those parameters are Population Size parameter, the Stopping Criteria parameter,

the Selection Threshold parameter, the Crossover Threshold parameter, the Chromosome

Mutation Rate parameter, and the Gene Mutation Rate parameter.

 A formula for determining the population size P was presented by Bozkaya et al

(2002) and sought to include as many distinct nodes in the initial population as possible.

The DAGA adopts this formula for setting the initial population size. The formula was

given as ܲ = 	 ቜቀଵቁ ቆ ୪୬బ୪୬షభ ቇቝ where P represents the number of chromosomes in the initial

population and P0 is the Population Size parameter and represents the probability of not

including a node in the initial population. Because it is likely that the probability of a

node being introduced into the population by mutation is small, the probability of a node

missing from the initial population should be correspondingly small.

 The two approaches commonly used to decide when to terminate a genetic

algorithm are setting a defined number of iterations or generations, and setting a number

of iterations in which the best solution does not change. The DAGA takes the later

approach and assigns a value to the Stopping Criteria parameter which is used to

determine when to terminate the algorithm. If the number of successive generations in

which the fittest chromosome in the population has not changed equals the Stopping

Criteria parameter, the algorithm assumes it has found an optimal or near optimal

solution and terminates.

24

 The Selection Threshold parameter represents the percentage of chromosomes in

a parent generation that will be selected to act as parent chromosomes in the crossover

operation. The Crossover Threshold parameter represents the percentage of genes in a

parent chromosome that will be swapped with the genes from the paired parent

chromosome to produce offspring. Both of these parameters would typically be set at

around 50% however they are experimented with to determine how differing thresholds

affect the algorithms operation.

 The Chromosome Mutation Rate parameter represents the percentage of

chromosomes in a child generation that are selected for mutation prior to being used as

the next generation. The Gene Mutation Rate parameter represents the percentage of

genes in a chromosome selected for mutation that will be subjected to mutation. These

numbers must work in concert and be set low enough to avoid disrupting promising

solutions and high enough to ensure that all nodes are considered and to encourage

moving beyond local optima.

Initial populations

 A random approach to creating the initial population of chromosomes has been

used by most published research on using a genetic algorithm to solve the p-median

problem to date. However, several studies on other problems show that the initial

population can have a significant impact on the effectiveness of an algorithm (Arthur &

Vassilvitskii, 2007; Chiou & Lan, 2001; Laszlo & Mukherjee, 2006). The algorithm

developed in this study uses a technique that uniformly partitions the search space into

non-overlapping regions and then generates the initial population by randomly selecting a

single gene from each region for each chromosome in the first generation.

25

 A PR KD-Tree approach is used to partition the nodes within the search space.

Given a K dimensional search space containing N nodes, p non-overlapping regions will

be generated (R1-p) where p represents the number of medians defined in the given p-

median problem. To create the regions, the region containing the greatest number of

nodes is selected and divided to create two new regions. This process continues until p

regions have been created with at least one node in each region. To divide a selected

region, a dimension, K, is cyclically selected and a dividing point MK is selected along

the axis represented by K. The dividing point is selected by identifying the point on the K

axis that is the median of the node values in the region in the Kth dimension. All nodes

with a value in the Kth dimension less than MK are added to one node and all nodes with a

value in the Kth dimension greater than or equal to MK are added into the other. These

two new regions will replace the original region. When complete, this technique results in

the search space being divided up into p non-overlapping regions roughly representing

the density of the nodes within the search space.

 To generate the initial generation of chromosomes, individual chromosomes are

created by selecting one node from each region to act as a gene in the chromosome being

built. This process continues until the percentage of nodes represented as a gene in one or

more chromosomes exceeds a given threshold parameter. When the given threshold has

been exceeded, the chromosomes that have been created will be the initial generation.

Selection

 To create the next generation of chromosomes, a genetic algorithm must select

pairs of chromosomes from the current population to be used to create chromosomes to

be used in the next generation. The DAGA uses a two-step method for selection. In the

26

first step, the fittest chromosome, based on the fitness function, is isolated and protected

from change by the crossover or mutation operators. When the next generation is formed,

this chromosome will be added unchanged to the next generation. Of the remaining

chromosomes, a fitness proportionate, or roulette wheel, technique is used to select

mating pairs. In this technique, a random number is generated between 0 and the sum of

the reciprocal of the fitness value of all chromosomes in the population excluding the

“hero” chromosome. The equation for this is given as ݎ = ܴ݉݀݊ܽ ቀ0,∑ ଵ()ୀଵ ቁ

whereas P is the number of chromosomes in the population and f() is the fitness function.

Using r as a threshold value, incrementally sum the reciprocal of the fitness function

value for each chromosome until the total equals or exceeds r. The chromosome that

causes the total to equal or exceed r is selected. Using this selection technique, two

chromosomes are selected from the current generation to act as a mating pair. If the pair

has not previously been selected, it is added into a mating pair pool. This process repeats

until enough mating pairs have been selected to create P offspring to be used for the next

generation.

 Theoretically, more fit parents will result in more fit children. This selection

technique is biased toward fitter chromosomes but does not preclude the possibility of

selection of less fit individuals to help ensure adequate genetic diversity.

Crossover

 The crossover operator’s primary function is to allow the algorithm to explore or

“walk” the search space. It does that by creating new chromosomes made up of genes

inherited from parent chromosomes. There are a wide variety of techniques, or operators,

for selecting genes for crossover described in the literature. This dissertation experiments

27

with two different operators, both of which will take advantage of the spatial nature of the

p-median problem and incorporate gene location into the process.

 The canonical approach to the crossover operator is to simply split the parent

chromosomes in half and then reform the halves into one or two child chromosomes. The

simplicity of this technique can result in significant operational efficiencies. It does

however leave much room for improvement in the efficiency of the search. The first

technique to be explored in this dissertation seeks to improve search efficiency by

working with individual genes and making use of a “nearest neighbor search” as defined

by Samet (2006). The technique is shown in Figure 3. Crossover Technique 1 and

described in the following Steps:

Step 1. Randomly select one of the chromosomes from the mating pair and consider it

the Primary Parent Chromosome C1. Consider the other chromosome in the pair

as the Secondary Parent Chromosome C2.

Step 2. Make a copy of the Primary Parent Chromosome and consider it the Primary

Offspring Chromosome C’1. Make a copy of the Secondary Parent Chromosome

and consider it the Secondary Offspring Chromosome C’2.

Step 3. Randomly select a gene p1 from C1. Find the Location L in C2 that corresponds to

the location coordinates of p1.

Step 4. Using a “nearest neighbor search” find the gene p2 in C2 that is closest to L.

Step 5. In the Primary Offspring Chromosome C’1 replace gene p1 with gene p2 from the

Secondary Parent Chromosome C2. In the Secondary Offspring Chromosome C’2

replace gene p2 with gene p1 from the Primary Parent Chromosome C1.

28

Step 6. If the number of genes replaced in the Offspring Chromosomes is less than the

value of the Crossover Threshold parameter given at run‐time, return to Step 3

and process through the remaining steps again.

Step 7. Add C’1 and C’2 to candidate pool for the next generation chromosomes.

Figure 3. Crossover Technique 1

29

 This technique tests the concept that the additional computational expense

required by the crossover operator is overcome by producing a more efficient walk

through the search space.

 The second technique seeks the middle ground between the computational

efficiency of the canonical crossover operator and the search efficiency of the first

crossover operator described above. In this technique, the operator splits the

chromosomes based on the location of the genes on a selected axis and recombines them

to form child chromosomes with the same number of genes as their parents. The

technique is illustrated in Figure 4. Crossover Technique 2 and described in the

following Steps:

Step 1. Randomly select one of the dimensions that make up the search space d. Then

identify a cutoff value (dc) that equals p multiplied by the Crossover Threshold

parameter given as a run‐time parameter.

Step 2. Randomly select one of the chromosomes from the mating pair and consider it

the Primary Parent Chromosome C1. Consider the other chromosome in the pair

as the Secondary Parent Chromosome C2.

Step 3. In the Primary Parent Chromosome C1, find the unselected gene with the highest

value on the d axis (pmax) and copy that gene to Primary Offspring Chromosome

C’1. Continue this process until the count of genes copied from C1 to C’1 equals or

exceeds the cutoff value dc.

Step 4. Copy all remaining unselected genes in the Primary Parent Chromosome C1 to the

Secondary Offspring Chromosome C’2.

30

Step 5. In the Secondary Parent Chromosome C2, find the unselected gene with the

highest value on the d axis (pmax) and copy that gene to Secondary Offspring

Chromosome C’2. Continue this process until the count of genes copied from C2 to

C’2 equals or exceeds the cutoff value dc.

Step 6. Copy all remaining unselected genes in the Secondary Parent Chromosome C2 to

the Primary Offspring Chromosome C’1.

Step 7. Add C’1 and C’2 to candidate pool for the next generation chromosomes.

31

Figure 4. Crossover Technique 2

 This technique seeks to determine whether a method that is domain aware but less

computationally intensive than the first technique tested can yield overall improved

results.

32

 Whichever technique proves superior, the concept is that any additional

computational expense required will be overcome by producing a more efficient walk

through the search space. This is accomplished by allowing the search to exploit

crossover operations that have a higher likelihood of increasing the fitness of the child

chromosome.

Mutation

 The purpose of the mutation operator in a genetic algorithm is to introduce

diversity into the search in order to encourage a thorough evaluation of the search space.

The most common technique described in the literature is to simply randomly select

genes from the potential offspring and replace those genes with others. The DAGA uses a

more deterministic technique. It is biased towards selecting nodes for insertion into

offspring chromosome candidates that have been used fewer times as genes or medians.

For example, a node that has been used once as a median in any chromosome in all prior

generations will be twice as likely to be selected as one that has been used twice. This is

done by using a proportionate or “roulette wheel” selection technique. In this technique, a

random number is generated between 0 and the sum of the reciprocal of the usage count

of all nodes in the problem set. The equation for this is given as ݎ = ܴ݉݀݊ܽ ቀ0,∑ ଵ௨()ାଵୀଵ ቁ whereas n is the number of nodes in the problem set and

u() is the prior use function. Using r as a threshold value, incrementally sum the

reciprocal of the prior use function plus one for each node in the problem set until the

total equals or exceeds r. The node that causes the total to equal or exceed r is selected.

33

 In addition to a selection bias, the DAGA mutation operator considers gene

location during the substitution process. Specifically, the gene being inserted will replace

the gene that is located closest to it.

 The purpose of using a biased selection technique is to increase the probability

that a node within the problem set will be evaluated as a median. The purpose of

replacing genes with new genes located nearby is to facilitate the continual improvement

of the solution by reducing the risk of large disruptive changes to the chromosome.

 The DAGA mutation operator is illustrated in Figure 5. Mutation Operator and

is described in more detail in the following steps:

Step 1. Select a node pm from the set of all nodes n in the problem set using a “Roulette

Wheel” selection technique that is biased towards nodes with lower prior use

counts.

Step 2. Randomly select a chromosome C’m from the offspring candidate pool C’.

Step 3. Insert the selected node pm into the select chromosome C’m.

Step 4. Using a “nearest neighbor” search technique, locate the gene pr located nearest

to the inserted gene pm.

Step 5. Remove pr from the selected chromosome C’m.

Step 6. If the total number of chromosome selected for mutation is less than the value

derived from the Mutation Rate parameter (Mutation Rate multiplied by

population size), return to Step 1 and process through the all the steps again.

34

 Figure 5. Mutation Operator

Computational Study

 This dissertation conducts experiments to determine whether DAGA can find

solutions that are as good or nearly as good at the solutions found by other genetic

algorithms published in the literature. It does that by running DAGA using selected

datasets from the TSP Library (Reinelt, 1991). The TSP Library was originally developed

as a set of problem sets for the Travelling Sales Person problem however it has been used

extensively in literature as a problem set for the p-median problem (Alba & Dominguez,

2006; Avella, Sassano, & Vasil’ev, 2007; Beltran, Tadonki, & Vial, 2006; García-López,

Melián-Batista, Moreno-Pérez, & Moreno-Vega, 2002; Hansen & Mladenovic, 1997,

35

2007; Hansen, Mladenović, & Perez-Britos, 2001; Resende & Werneck, 2004). The

problem sets are made up of sets of two dimensional Cartesian coordinates with sets

ranging in size from 29 to 13509 points. The three problem sets from the TSP Library

that have been most widely used in the literature for the p-median problem are fl1400,

pcb3038, and rl5934. A complete list of the problems sets used, their best known

solutions, and the source of those solutions are shown in Table 1. fl1400 Problem Set,

Table 2. pcb3038 Problem Set, and Table 3. rl5934 Problem Set.

Table 1. fl1400 Problem Set

Table 2. pcb3038 Problem Set

36

Table 3. rl5934 Problem Set.

A summary of the results with descriptive analysis are presented in Chapter 4 of

this dissertation. The complete results from all of the runs are shown in Appendix B.

Experiments with run-time parameters

 The algorithm allows for some parameters to be set that impact various aspects of

the operation of the algorithm. Those parameters include: a value that the probability of

not including a node in the initial population. This value indirectly impacts the number of

chromosomes that make up a generation. A value that determines what percentage of

chromosomes from the parent generation are selected to be used in the crossover

operation to generate offspring for the next generation. A value that determines what

percentage of genes from a chromosome undergoing crossover should be selected from

each parent chromosome. A value that determines what percentage of chromosomes in a

child generation are selected for mutation. A value that determines what percentage of

genes in a chromosome undergoing mutation will be replaced. Finally, a stopping

criterion is set. The stopping criterion determines how many generations must pass

without the best fitness value improving in order for the algorithm to terminate.

37

 These values were tested in various combinations and a single overall best

configuration is determined. This configuration is then used during all instances of the

testing for both the accuracy and efficiency of the algorithm.

Experiments on the effectiveness of the Domain Aware Genetic Algorithm

 A test plan was used to study the effectiveness of the DAGA. The test plan

applies variations of the algorithm to the selected problem sets and median counts. The

first variation used the Crossover Technique 1 and the next variation used Crossover

Technique 2. The algorithm was run ten times for ten medians in each of the selected

problem sets. From the ten runs, the run with the lowest fitness value was identified as

the lower bound. The run with the highest fitness value was identified as the upper

bound, and an average of all ten runs was also calculated. For the lower bound result,

upper bound result and average result, an error rate was calculated by subtracting the

result from the best known solution found in the published literature and then dividing the

result by that best known solution. This error rate was used determine the normalized

deviation from the best known solution. Finally, the gap between the lower bound error

rate and the upper bound error rate is calculated to determine the consistency of the

algorithm.

Experiments on the efficiency of the algorithm

 In addition to testing the effectiveness of DAGA the efficiency of the algorithm

was also tested. The efficiency was measured by tracking the fitness values for each

generation as it evolved toward an optimal solution. The quicker, in terms of the number

of generations, it improved from its initial position to a good and then optimal or near

optimal solution, the more efficient the algorithm can be considered.

38

The results produced from the runs against the fl1400 problem set described

above were further analyzed and the line graphs were created to illustrate the analysis.

For each value of p in the test set a line graph was created that tracked two test runs

representing the run that produced the lower bound value and the run that produce the

upper bound value. In each graph the x-axis represents generations and the y-axis

represents the deviation of the fitness value for the given generation, expressed as an

error rate, from the best known solution. Each graph was constrained to the first 2500

generations to provide a common basis of comparison between the lower and upper band

values as well as the different values of p. By converting raw fitness scores into error

rates, a consistent basis for comparison is provided across all test instances. This allows

some determination to be made about how variations in the algorithm impact its ability to

efficiently move to an optimal or near-optimal solution.

Experiments on specific operators of the algorithm

In addition to testing the effectiveness and efficiency of DAGA, experiments were

conducted to determine what impact, if any, individual operators used by DAGA had on

the overall performance of the algorithm. Specifically the impact of a structured Initial

Generation, a location aware Crossover Operator, and a location aware Mutation

Operator, were analyzed. In each case the operator being tested was replaced with an

operator that acted randomly. Specifically, when the structured initial generation operator

was tested, it was replaced with an operator that randomly selected nodes to create the

chromosomes for the initial generation. When the crossover operator was being tested it

was replaced with an operator that randomly selected nodes from the parent

chromosomes for crossover. When the mutation operator was being tested it was replaced

39

with an operator that randomly selected chromosomes in the candidate generation for

mutation and randomly selected genes within the selected chromosomes for mutation.

These modified algorithms were each run ten times for p values 10 through 100 in the

fl1400 problem set. The lower and upper bound results were compared with the lower

and upper bound results from DAGA and the Best Known results from literature. In

addition, the results were graphed to compare the efficiency of the modified algorithms as

compared to DAGA.

40

Chapter 4

Results

The results of DAGA runs are agregated and presented in a series of tables and

figures in this chapter. Detailed run results are listed in Appendix B. For analysis

purposes, the algorithm was run 900 times in total to test each problem set and median

count combination 10 times each. The execution time of the algorithm was not

considered to be applicable to the goal of the dissertation so that statistic was not

collected. Prior to the analysis runs, the algorithm was run approximately 100 times with

varing problem sets in order to calibrate the runtime parameters. Based on those

calibration runs, the runtime parameters determined to give the best overall results were

selected and are presented in the following section. Two location-aware crossover

operators were analyzed to determine which provided a consistently better solution. As a

result of that analysis, crossover operator 1 described in Figure 3. Crossover Technique

1, was selected for further analysis. It was used to analyze the efficiency of the algorithm

and in the analysis of the selected components of the algorithm.

Runtime parameters

Five runtime paramaters were used in the algorithm. They are shown, along with

their selected values, in Table 4. Runtime Parameters and Selected Values. The first

runtime parameter is labeled Pnot. It was used to determine the initial population size.

41

The formula for determining the initial population size is ܲ = 	 ቜቀଵቁ ቆ ୪୬బ୪୬షభ ቇቝ where P

represents the number of chromosomes in the initial population and P0, labeled Pnot, is

the Population Size parameter that represents the probability of not including a node in

the initial population. For the purposes of analysis, the probability of a node not being

selected for the initial population was set at 5%. Thus, for a given problem set the initial

population size is set so that 95% of the nodes are included in the initial population.

Given that the only way for a node to be introduced into the population other than as part

of the initial population is through the mutation operator, and the mutation rate is

typically set low, a population size that was inclusive of a large subset of the available

nodes was desirable.

The next runtime parameter used was the Stopping Criteria parameter labeled as

Stopping_Criteria. This parameter was used to determine when to stop the algorithm. If

the number of successive generations in which the fittest chromosome in the population

does not change equals the Stopping Criteria parameter, the algorithm assumes it has

found an optimal or near optimal solution and terminates. For the purposes of analysis the

value of this parameter was set at 2500.

The Selection Threshold parameter, labeled Selection_Threshold, represents the

percentage of chromosomes in a parent generation that will be selected to act as parent

chromosomes in the crossover operation. The unselected chromosomes are passed

unaltered to the candidate generation. The Crossover Threshold parameter, labeled

Crossover_Threshold, is used in conjunction with the Selection Threshold parameter and

represents the percentage of genes in a selected parent chromosome that are swapped

with the genes from the paired parent chromosome to be passed to the candidate

42

generation. For the purposes of analysis the Crossover Threshold parameter was set at

50% and the Selection Threshold parameter was set at 75%.

The final two runtime parameters used are the Chromosome Mutation Rate,

labeled ChromMutationRate, and the Gene Mutation Rate, labeled GeneMutation_Rate.

The Chromosome Mutation Rate parameter represents the percentage of chromosomes in

a candidate generation, after the selection and crossover operators have been applied, that

are selected for mutation prior to being used as the next generation. The Gene Mutation

Rate parameter represents the percentage of genes in a chromosome selected for mutation

that will be subjected to mutation. These numbers must work in concert and be set low

enough to avoid disrupting promising solutions and high enough to ensure that all nodes

are considered and to encourage moving beyond local optima. For the purpose of

analysis, these values were both set at 10%.

Table 4. Runtime Parameters and Selected Values

Summary of Results Using Crossover Technique 1

Using Crossover Technique 1, illustrated in Figure 3, and problem set fl1400

(Reinelt, 1991) consisting of 1400 nodes expressed as two dimensional cartisian

coordinates, the algorithm was run 10 times each for median values 10, 20, 30, 40, 50,

60, 70, 80, and 100. For each median value the run that produced the best (lowest) fitness

43

value was selected and identified as the lower bound. The result that produced the worst

fitness function (highest) was selected and identified as the Upper Bound. The average of

all runs for each median value was also calculated and identified as the average for the

respective median value. Next, a Gap value was calculated that represented the

percentage deviation between the lower bound value and the upper bound value. Finally,

an Error Rate was calculated for both the lower bound and upper bound values that

represented the deviation of the value from the best known solution. Table 5. Summary

of Results Using fl1400 Problem Set and Crossover Technique 1 shows an

aggregation of the runs and the calculated values.

Table 5. Summary of Results Using fl1400 Problem Set and Crossover Technique 1

The results show that for 10 medians the lower bound solution was as good as the

best known solution and the upper bound solution within 1% of the best known solution.

The average of all runs for 10 medians was also within 1% of the best known solution

and the gap between the upper and lower bounds was no more than 1%. However, as the

number of medians increases from 10 to 100 the deviation from the best known solution

n p Best Known LBOUND ERR UBOUND ERR Gap Average ERR
1400 10 101,248.13 101,248.57 0.00 102,711.90 0.01 0.01 102,148.43 0.01
1400 20 57,856.32 58,859.55 0.02 60,449.35 0.04 0.03 59,600.23 0.03
1400 30 44,013.02 45,404.13 0.03 47,729.94 0.08 0.05 46,477.33 0.06
1400 40 35,002.02 36,514.57 0.04 37,741.65 0.08 0.04 37,094.65 0.06
1400 50 29,089.71 30,240.72 0.04 31,262.88 0.07 0.04 30,883.37 0.06
1400 60 25,160.40 26,620.11 0.06 27,682.85 0.10 0.04 27,204.38 0.08
1400 70 22,125.46 23,412.64 0.06 24,869.24 0.12 0.07 24,034.39 0.09
1400 80 19,870.28 20,958.67 0.05 22,280.45 0.12 0.07 21,664.30 0.09
1400 90 17,987.91 19,085.52 0.06 20,025.31 0.11 0.05 19,528.79 0.09
1400 100 16,551.20 17,580.43 0.06 18,423.08 0.11 0.05 18,129.04 0.10

44

for the upper and lower bounds increased. In addition, the gap between the lower and

upper bound values also increased. The results show that for 100 medians the lower

bound had increased to 6% of the best known solution and the upper bound value had

increased to 11% of the best known solution, with the gap between the upper and lower

bounds increasing to 5%.

Crossover Technique 1 was again used on problem set pcb3038 (Reinelt, 1991),

consisting of 3,038 nodes expressed as two dimensional cartisian coordinates. The

algorithm was run 10 times each for median values 10, 20, 30, 40, 50, 60, 70, 80, and

100. As with problem set fl1400, for each median value a lower bound value was

identified representing the best fitness value and an upper bound value was identified

representing the worst fitness value for the given median value. Again, an average fitness

value was calculated for each median value and a gap value was calculated that

represented the percentage deviation between the lower bound value and the upper bound

value. Finally an Error Rate was calculated for both the lower bound and upper bound

values that represented the deviation of the value from the best known solution. Table 6.

Summary of Results Using pcb3038 Problem Set and Crossover Technique 1 shows

an aggregation of the runs and the calculated values.

45

Table 6. Summary of Results Using pcb3038 Problem Set and Crossover Technique 1

The results show that for 10 medians the lower bound solution was within 2% of

the best known solution and the upper bound solution within 4% of the best known

solution. The average of all runs for 10 medians was also within 3% of the best known

solution and the gap between the upper and lower bounds was no more than 2%. As with

problem set fl1400, as the number of medians increases from 10 to 100 the deviation

from the best known solution for the upper and lower bounds increased. In addition, the

gap between the lower and upper bound values also increased. The results show that for

100 medians the lower bound had increased to 8% of the best known solution and the

upper bound value had increased to 10% of the best known solution. As opposed to the

results from problem set fl1400, the gap between the lower and upper bounds remained

consistent at 2 or 3 percent as the number of medians increased.

In order to compare the algorithm against a larger problem set with best known

values published in the literature, Crossover Technique 1 was used on problem set rl5934

(Reinelt, 1991) consisting of 5,934 nodes expressed as two dimensional cartisian

coordinates. This problem set has not been extensively used in prior studies, however

n p Best Known LBOUND ERR UBOUND ERR Gap Average ERR
3038 10 1,213,082.03 1,235,657.95 0.02 1,260,371.11 0.04 0.02 1,247,556.71 0.03
3038 20 840,844.53 866,207.93 0.03 881,377.98 0.05 0.02 881,377.98 0.05
3038 30 677,436.66 701,283.38 0.04 719,511.81 0.06 0.03 707,884.82 0.04
3038 40 571,887.75 595,626.06 0.04 607,961.80 0.06 0.02 602,060.00 0.05
3038 50 507,655.19 529,623.54 0.04 539,099.21 0.06 0.02 535,450.39 0.05
3038 60 460,797.55 484,576.92 0.05 494,878.73 0.07 0.02 490,156.53 0.06
3038 70 426,153.31 448,061.43 0.05 457,397.02 0.07 0.02 452,880.97 0.06
3038 80 397,585.89 419,612.42 0.06 430,868.60 0.08 0.03 424,599.45 0.07
3038 90 373,488.82 396,657.80 0.06 406,429.04 0.09 0.03 401,313.33 0.07
3038 100 352,755.13 380,153.39 0.08 387,810.62 0.10 0.02 384,189.62 0.09

46

Hansen, P., & Mladenovic (2001) did use it for the p-median problem and published the

results of their study. The algorithm was run 10 times each for the same set of median

values as were used for fl1400 and pcb3038. As with the other problem sets, for each

median value a lower bound value was identified representing the best fitness value and

an upper bound value was identified representing the worst fitness value for the given

median value. Again, an average fitness value was calculated for each median value and a

gap value was calculated that represented the percentage deviation between the lower

bound value and the upper bound value. An Error Rate was calculated for both the lower

bound and upper bound values that represented the deviation of the value from the best

known solution. Table 7. Summary of Results Using rl5934 Problem Set and

Crossover Technique 1 shows an aggregation of the runs and the calculated values.

Table 7. Summary of Results Using rl5934 Problem Set and Crossover Technique 1

The results from problem set rl5934 were very similar to the results of rl3038. For

10 medians the lower bound solution was within 2% of the best known solution and the

upper bound solution within 4%. The average of all runs for 10 medians was also within

n p Best Known LBOUND ERR UBOUND ERR Gap Average ERR
5934 10 9,794,951.00 9,948,378.50 0.02 10,147,346.07 0.04 0.02 10,071,242.64 0.03
5934 20 6,729,282.50 6,931,397.86 0.03 7,056,057.80 0.05 0.02 7,001,087.57 0.04
5934 30 5,405,661.50 5,621,758.91 0.04 5,749,487.43 0.06 0.02 5,686,562.44 0.05
5934 40 4,574,374.00 4,788,835.20 0.05 4,861,491.78 0.06 0.02 4,828,020.98 0.06
5934 50 4,053,917.75 4,227,396.73 0.04 4,308,526.23 0.06 0.02 4,269,273.97 0.05
5934 60 3,655,898.75 3,843,454.42 0.05 3,924,787.17 0.07 0.02 3,875,696.53 0.06
5934 70 3,353,885.00 3,538,947.96 0.06 3,612,279.31 0.08 0.02 3,574,529.44 0.07
5934 80 3,104,877.75 3,282,953.12 0.06 3,367,070.46 0.08 0.03 3,336,407.94 0.07
5934 90 2,903,895.25 3,090,483.72 0.06 3,153,436.64 0.09 0.02 3,124,103.23 0.08
5934 100 2,733,817.25 2,925,863.34 0.07 3,000,827.73 0.10 0.03 2,952,281.54 0.08

47

3% of the best known solution and the gap between the upper and lower bounds was no

more than 2%. As with the other problem sets, the lower and upper bound error rates

increased as the number of medians increased. The gap between the lower and upper

bounds remained consistent at between 2 and 3 percent. The average error rate tended

slightly toward the upper bound rather than the lower bound. For 100 medians the

algorithm performed slightly better for problem set rl5934 than it did for problem set

pcb3038.

Summary of Results Using Crossover Technique 2

A second techinque for the crossover operator was also tested. This operator was

similar to crossover technique 1 in that it too used location information to swap genes

within a local proximity to each other, however, it used a rougher approximation and was

less computationally intensive. Crossover techinque 2 is illustrated in Figure 4.

Crossover Technique 2. The same test plan and problem sets were used for crossover

technique 2 as were used for crossover techique 1. For each median value, the run that

produced the best fitness value was identified as the lower bound. The result that

produced the worst fitness function was selected and identified as the Upper Bound. The

average of all runs for each median value was also calculated and identified as the

average for the repective median value. A Gap value was calculated representing the

percentage deviation between the lower bound and the upper bound values. An Error

Rate was calculated for both the lower bound and upper bound values that represents the

deviation of the value from the best known solution. For each problem set the results

were aggreated and are shown in Table 8. Summary of Results Using fl1400 Problem

48

Set and Crossover Technique 2, Table 9. Summary of Results Using pcb3038

Problem Set and Crossover Technique 2, and Table 10. Summary of Results Using

rl5934 Problem Set and Crossover Technique 2.

Table 8. Summary of Results Using fl1400 Problem Set and Crossover Technique 2

Table 9. Summary of Results Using pcb3038 Problem Set and Crossover Technique 2

n p Best Known LBOUND ERR UBOUND ERR Gap Average ERR
1400 10 101,248.13 103,260.86 0.02 106,808.55 0.05 0.04 105,271.08 0.04
1400 20 57,856.32 59,620.89 0.03 62,147.94 0.07 0.04 60,873.34 0.05
1400 30 44,013.02 46,408.24 0.05 49,152.84 0.12 0.06 47,825.60 0.09
1400 40 35,002.02 37,382.30 0.07 38,803.48 0.11 0.04 38,017.36 0.09
1400 50 29,089.71 31,233.34 0.07 32,246.68 0.11 0.03 31,728.49 0.09
1400 60 25,160.40 26,923.56 0.07 28,724.73 0.14 0.07 27,927.86 0.11
1400 70 22,125.46 23,877.50 0.08 25,255.08 0.14 0.06 24,522.56 0.11
1400 80 19,870.28 21,345.60 0.07 22,544.75 0.13 0.06 22,041.43 0.11
1400 90 17,987.91 19,378.26 0.08 20,575.70 0.14 0.07 20,025.61 0.11
1400 100 16,551.20 18,000.88 0.09 19,086.31 0.15 0.07 18,595.79 0.12

n p Best Known LBOUND ERR UBOUND ERR Gap Average ERR
3038 10 1,213,082.03 1,260,629.99 0.04 1,297,922.89 0.07 0.03 1,280,633.14 0.06
3038 20 840,844.53 890,561.86 0.06 916,036.39 0.09 0.03 898,466.94 0.07
3038 30 677,436.66 718,664.68 0.06 739,512.88 0.09 0.03 728,323.61 0.08
3038 40 571,887.75 610,078.42 0.07 627,555.51 0.10 0.03 620,651.24 0.09
3038 50 507,655.19 543,697.60 0.07 559,375.54 0.10 0.03 552,289.50 0.09
3038 60 460,797.55 495,332.18 0.07 511,506.81 0.11 0.04 503,546.17 0.09
3038 70 426,153.31 462,914.87 0.09 471,806.97 0.11 0.02 466,569.02 0.09
3038 80 397,585.89 432,562.96 0.09 445,129.31 0.12 0.03 437,213.79 0.10
3038 90 373,488.82 407,519.87 0.09 420,172.50 0.12 0.03 414,208.96 0.11
3038 100 352,755.13 388,203.24 0.10 402,003.86 0.14 0.04 395,856.02 0.12

49

Table 10. Summary of Results Using rl5934 Problem Set and Crossover Technique 2

Crossover technique 2 did not perform as well as crossover techinque 1. In

general, the results from technique 2 were two to three percent worse than techinque 1.

Interestingly, the pattern of the results from both techniques were very similar. For

problem set fl1400 using 10 medians the lower bound error rate was two percent above

the best known solution and the upper bound error rate was five percent above the best

known solution. The error rates increased as the number of medians increased with 100

medians generating a nine percent error rate for the lower bound and a fifteen percent

error rate for the upper bound. As with crossover technique 1, the gap in error rates

increased steadily as the medians increased from four percent for 10 medians to seven

percent for 100 medians. For problem sets pcb3038 and rl5934 the results for crossover

technique 2 were inferior to crossover technique 1, however the pattern of the results

were very similar. For both problem sets the lower bound results for 10 medians was

seven percent off the best known solution and the upper bound results were seven percent

off the best known solution. As the medians increased the algorithm performed slightly

better for problem set rl5934 than pcb3038. Using 100 medians problem set rl5934 had a

n p Best Known LBOUND ERR UBOUND ERR Gap Average ERR
5934 10 9,794,951.00 10,209,378.78 0.04 10,466,550.99 0.07 0.03 10,348,727.14 0.06
5934 20 6,729,282.50 7,078,046.08 0.05 7,336,289.91 0.09 0.04 7,215,296.71 0.07
5934 30 5,405,661.50 5,810,175.13 0.07 5,921,169.79 0.10 0.02 5,873,645.67 0.09
5934 40 4,574,374.00 4,939,578.00 0.08 5,022,422.26 0.10 0.02 4,976,067.95 0.09
5934 50 4,053,917.75 4,341,185.98 0.07 4,473,520.48 0.10 0.03 4,397,660.06 0.08
5934 60 3,655,898.75 3,937,454.67 0.08 4,055,578.38 0.11 0.03 3,988,343.12 0.09
5934 70 3,353,885.00 3,637,122.42 0.08 3,733,648.25 0.11 0.03 3,681,146.20 0.10
5934 80 3,104,877.75 3,366,446.91 0.08 3,469,206.70 0.12 0.03 3,433,097.16 0.11
5934 90 2,903,895.25 3,167,696.17 0.09 3,267,340.80 0.13 0.03 3,218,160.52 0.11
5934 100 2,733,817.25 2,987,061.70 0.09 3,083,976.22 0.13 0.04 3,038,786.89 0.11

50

nine percent lower bound error rate and pcb3038 had a ten percent lower bound error

rate. The upper bound error rate for rl5934 was thirteen percent and the upper bound error

rate for pcb3038 was fourteen percent. Similar to crossover technique 1 the gap in error

rates remained consistent as the medians increased for both problem sets ranging from

two to four percent. The average error rate for all three problem sets were also very

similar with none of them deviating more than twelve percent from the best known

solutions. This was still inferior to crossover technique 1 which had average error rates

that deviated at most ten percent from the best known solution.

Analysis of Run Profiles Using Crossover Technique 1

The profiles of the DAGA runs were examined in order to gain a better

understanding of how efficiently the algorithm evolved from its initial state to an optimal

solution. Because the algorithm uses an elitist strategy where the fittest chromosome in

each generation is passed on to the succeeding generation, the solution was not expected

to degrade at any point in the run. Hypothetically, if the algorithm moved toward the

optimal at a constant rate it would exhibit a linear descent. In practice, the solution

improves in an uneven stepped fashion. Accelerated improvement results in steeper steps

and decelerated improvement results in elongated steps. On the run profile a steeper

curve indicates a quicker, in terms of the number of generations, improvement from its

initial solution toward an optimal solution. The rate of improvement can be considered an

indicator as to the efficiency of the algorithm in searching the problem space and

identifying good solutions.

51

The results produced from the runs against the fl1400 problem set described

above were further analyzed and the line graphs were created to illustrate the analysis.

For each value of p in the test set a line graph was created that tracked two test runs

representing the run that produced the lower bound value and the run that produced the

upper bound value. In each graph the x-axis represents generations and the y-axis

represents the deviation of the fitness value for the given generation, expressed as an

error rate, from the best known solution. Each graph was constrained to the first 2500

generations to provide a common basis of comparison between the lower and upper band

values as well as the different values of p. By converting raw fitness scores into error

rates, a consistent basis for comparison is provided across all test instances. This allows

some determination to be made about how variations in the algorithm impact its ability to

efficiently move to an optimal or near-optimal solution. As part of the graph a table was

added that shows the generation count and fitness value each time the fitness value

changes. These are essentially the step points in the graph and provide a more complete

profile of the run. These values are not constrained to the first 2500 generations but

instead are listed until the best value for the run is found.

The run profile for 10 medians is shown in Figure 6. Run Profile for Problem

Set fl1400 with 10 medians. In this profile the lower bound run starts with an error rate

of 11% and the upper bound run starts at 17.8%. Within 100 generations the lower bound

run had improved to an error rate of 3.5% and the upper bound run had improved to an

error rate of 7.8%. After that point the evolution of the solution slowed significantly, only

improving to 2.1% and 5.4% respectively after 2,500 generations.

52

Figure 6. Run Profile for Problem Set fl1400 with 10 medians

The run profile for 20 medians is shown in Figure 7. Run Profile for Problem

Set fl1400 with 20 medians. This profile is similar to the runs with 10 medians. The

lower bound run starts with an error rate of 9% and the upper bound run starts at 18.3%.

Within 100 generations the lower bound run had improved to an error rate of 5.4% and

the upper bound run had improved to an error rate of 8.7%. After 2,500 generations the

53

runs had only improved to error rates of 2.8% and 4.4% respectively. Interestingly, the

upper bound run took a big step at 125 generations and was producing a better solution

than the lower bound run for a while but then failed to improve any more.

Figure 7. Run Profile for Problem Set fl1400 with 20 medians

For 30 medians the run profiles show a pattern very similar to the prior two run

profiles with most of the improvement coming in the first 100 generations. Figure 8. Run

Profile for Problem Set fl1400 with 30 medians illustrates the run profiles. The lower

bound run starts with an error rate of 21.2% and the upper bound run starts at 25.4%.

54

Within 100 generations the lower bound run had improved to an error rate of 7.3% and

the upper bound run had improved to an error rate of 13.8%. After 2,500 generations the

runs had further improved to error rates of 3.1% and 8.4% respectively.

Figure 8. Run Profile for Problem Set fl1400 with 30 medians

The run profiles for 40 medians is shown in Figure 9. Run Profile for Problem

Set fl1400 with 40 medians. The error rates start at 20.8% and 13.6% for the lower and

55

upper bound runs. Within 100 generations the error rates had improved to 12.6% and

10.4%. Interestingly, the upper bound run produced a better value until generation 1,436

when the lower bound run passed it. At 2,500 generations the lower bound run showed a

slightly better result at 7.7% versus 7.8%. In this profile the upper bound run did not

show comparable efficiency.

Figure 9. Run Profile for Problem Set fl1400 with 40 medians

56

The run profile for 50 medians is shown in Figure 10. Run Profile for Problem

Set fl1400 with 50 medians. Again, most of the improvements came early in the run. For

the lower bound, 49.7% of the gains came in the first 100 generations and 72% came in

the first 500. For the upper bound, 65.8% of the gains came in the first 100 generations

and 95.5% came in the first 500.

Figure 10. Run Profile for Problem Set fl1400 with 50 medians

57

The 60 median run is shown in Figure 11. Run Profile for Problem Set fl1400

with 60 medians. As with the eariler runs the algorithm shows good efficiency early and

than slows rapidly. For the lower bound, 62.8% of the gains came in the first 100

generations and 84.9% came in the first 500. For the upper bound, 95.2% of the gains

came in the first 100 generations and further gains did not occurr until generation 1039.

Figure 11. Run Profile for Problem Set fl1400 with 60 medians

58

The 70 median run is shown in Figure 12. Run Profile for Problem Set fl1400

with 70 medians. It shows good efficiency early and then again slows rapidly after 200

or 300 generations. For the lower bound, 62.8% of the gains came in the first 100

generations and 84.9% came in the first 500. For the upper bound, 95.2% of the gains

came in the first 100 generations and further gains did not occurr until generation 1039.

Figure 12. Run Profile for Problem Set fl1400 with 70 medians

59

The run profile for 80 medians is shown in Figure 13. Run Profile for Problem

Set fl1400 with 80 medians and shows a similar pattern as the other runs.

Figure 13. Run Profile for Problem Set fl1400 with 80 medians

60

The run profiles for 90 and 100 medians against the fl1400 problem set are shown

in Figure 14. Run Profile for Problem Set fl1400 with 90 medians and Figure 15. Run

Profile for Problem Set fl1400 with 100 medians, respectively. Even more than the

other runs, these two runs show great efficiency early with over 70% of the improvement

coming in the first 100 generations. After that, the progress slows markedly especially

for the upper bound runs.

Figure 14. Run Profile for Problem Set fl1400 with 90 medians

61

Figure 15. Run Profile for Problem Set fl1400 with 100 medians

All of the runs showed roughly the same pattern. Most of the progress, at least

50% in every case, is made in the first 100 generations. After that the progress started to

slow and after 500 generations at least 70% of the progress had been made for every run.

After 500 generations progress was very slow, if at all, with many generations necessary

62

to find the next step. This pattern of early efficiency and then rapid decline seems to be

an indicator that the algorithm is consistently getting trapped in a local optimum.

Summary of Results Using an Unstructured Initial Generation

An additional test was created to determine the impact of the technique used by

DAGA to create the initial generation on the overall efficacy of the algorithm. The initial

generation creation technique used by DAGA partitioned the problem set into spatially-

oriented regions and selected nodes from each region evenly to create the chromosomes

that populated the initial generation. Refer to the Algorithm Design section in the

Methodology Chapter of this paper for a more detailed description of the technique used

by DAGA. This technique created a structured initial generation. In order to test the

efficacy of this technique, a new algorithm was created that creates the initial generation

by randomly selecting nodes from the problem set and building chromosomes until the

initial generation was fully populated. This is the technique used in the canonical and

most other genetic algorithms used for the p-median problem. With the exception of the

technique used for the initial generation, all other aspects of the algorithm were identical

to DAGA using Crossover Operator Technique 1. This new algorithm was identified as

DAGA-IG. The modified algorithm was run ten times each for p values 10 through 100

in the fl1400 problem set. The lower and upper bound results were compared with the

lower and upper bound results from DAGA using crossover technique 1 and the Best

Known results from literature. In addition, the results were graphed to compare the

efficiency of the modified algorithms as compared to DAGA. Table 11. Fitness Values

Using an Unstructured Initial Generation and Table 12. Error Rates Using an

63

Unstructured Initial Generation compare and summarize the results generated by

DAGA-IG with the results produced by DAGA and the best known results. Table 13.

Deviation From DAGA When Using an Unstructured Initial Generation compares

the results produced by DAGA-IG directly with the results produced by DAGA.

Table 11. Fitness Values Using an Unstructured Initial Generation

Table 12. Error Rates Using an Unstructured Initial Generation

64

Table 13. Deviation From DAGA When Using an Unstructured
Initial Generation

The results produced by DAGA-IG were usually inferior to those produced by

DAGA but only slightly inferior. This result was consistent with expectations. A

structured initial generation would be expected to provide a better starting solution but

not necessarily a better final solution. The structured approach’s value to the algorithm is

to make the algorithm more efficent by providing a superior starting point. To illustrate

this, the run profiles from DAGA-IG are compared with the run profiles from DAGA. In

this comparison the lower bound results from both algorithms are tracked on a single

graph and the stepped solutions are accumulated into an associated table. All of the run

profiles are shown in Appendix A. The results of the comparison show that for almost

every median count the starting position of DAGA is significantly superior to DAGA-IG.

It also shows that the while the structured approach provides better efficiency early in the

run, that by 2,500 generations that advantage is largely gone and the end-state does not

consistently vary in a significant way.

65

Summary of Results Using a Random Crossover Operator

A test was created to determine the impact of the crossover operator used by

DAGA to create candidate chromosomes for the next generation on the generated

solutions. DAGA tested two similar but distinct crossover operators. The test showed that

the first technique consistently produced better results. This crossover operator selected a

gene from each of the parent chromosomes that were spatially close to each other in the

search space to swap in the candidate chromosomes. Refer to the Algorithm Design

section in the Methodology Chapter of this paper for a more detailed description of

crossover operator 1 used by DAGA. The operator is illustrated in Figure 3. Crossover

Technique 1. In order to test the impact of this crossover operator on DAGA a new

algorithm was created that used a crossover operator that randomly selected genes for

crossover with no bias for their location. This algorithm was designated as DAGA-CO.

The DAGA-CO crossover operator is functionally similar to the technique used by most

other genetic algorithms in the literature used for the p-median problem. With the

exception of the crossover operator, all other aspects of the algorithm were identical to

DAGA using Crossover Operator Technique 1. The modified algorithm was run ten times

each for p values 10 through 100 in the fl1400 problem set. The lower and upper bound

results were compared with the lower and upper bound results from DAGA using

crossover technique 1 and the Best Known results from literature. Table 14. Fitness

Values Using a Random Crossover Operator and Table 15. Error Rates Using

Random Crossover Operator compares and summarizes the results generated by

DAGA-CO with the results produced by DAGA and the best known results. Table 16.

66

Deviation From DAGA When Using a Random Crossover Operator compares the

results produced by DAGA-CO directly with the results produced by DAGA.

Table 14. Fitness Values Using a Random Crossover Operator

Table 15. Error Rates Using Random Crossover Operator

p Best Known Lower Bound Upper Bound Average Lower Bound Upper Bound Average
10 101,248.13 101,248.57 102,711.90 102,148.43 103,112.17 107,799.61 105,946.88
20 57,856.32 58,859.55 60,449.35 59,600.23 61,465.61 64,172.08 62,847.82
30 44,013.02 45,404.13 47,729.94 46,477.33 48,497.59 50,646.75 49,701.74
40 35,002.02 36,514.57 37,741.65 37,094.65 38,474.95 40,794.54 39,839.03
50 29,089.71 30,240.72 31,262.88 30,883.38 33,357.79 35,084.50 33,965.63
60 25,160.40 26,620.11 27,682.85 27,204.38 28,377.56 30,206.09 29,722.55
70 22,125.46 23,412.64 24,869.24 24,034.39 25,587.96 26,923.99 26,264.89
80 19,870.28 20,958.67 22,280.45 21,664.30 23,009.31 25,135.21 24,290.48
90 17,987.91 19,085.52 20,025.31 19,528.80 21,271.45 22,535.11 21,904.18
100 16,551.20 17,580.43 18,423.08 18,129.04 19,383.77 20,751.34 20,162.75

DAGA Random Crossover

p
Lower
Bound

Upper
Bound Avg

Lower
Bound

Upper
Bound Avg

10 0.0000 0.0145 0.0089 0.0184 0.0647 0.0464
20 0.0173 0.0448 0.0301 0.0624 0.1092 0.0863
30 0.0316 0.0845 0.0560 0.1019 0.1507 0.1293
40 0.0432 0.0783 0.0598 0.0992 0.1655 0.1382
50 0.0396 0.0747 0.0617 0.1467 0.2061 0.1676
60 0.0580 0.1003 0.0812 0.1279 0.2005 0.1813
70 0.0582 0.1240 0.0863 0.1565 0.2169 0.1871
80 0.0548 0.1213 0.0903 0.1580 0.2650 0.2225
90 0.0610 0.1133 0.0857 0.1825 0.2528 0.2177
100 0.0622 0.1131 0.0953 0.1711 0.2538 0.2182

DAGA Random Crossover

67

Table 16. Deviation From DAGA When Using a Random
Crossover Operator

The results produced by DAGA-CO were significantly inferior to those produced

by DAGA for all of the values of p tested. The results support the thesis of this study

which was that using characteristics of the problem set, in this case location, could have a

positive impact on a genetic algorithm. The results of the comparison show that for every

median count tested the results produced by DAGA were at least 75% better than DAGA-

CO. Given that the crossover operator was the only difference between DAGA and

DAGA-CO it is reasonable to conclude that the crossover operator implemented in

DAGA was a significant factor in the results it produced.

Summary of Results Using a Random Mutation Operator

A final test was created to determine the impact of the mutation operator used by

DAGA on the overall effectiveness of the algorithm. The mutation operator is used in

DAGA to introduce new genes into a subset of candidate chromosomes that were not part

p
Lower
Bound

Upper
Bound Avg

10 0.0184 0.0495 0.0372
20 0.0443 0.0616 0.0545
30 0.0681 0.0611 0.0694
40 0.0537 0.0809 0.0740
50 0.1031 0.1222 0.0998
60 0.0660 0.0911 0.0926
70 0.0929 0.0826 0.0928
80 0.0978 0.1281 0.1212
90 0.1145 0.1253 0.1216
100 0.1026 0.1264 0.1122

Random Crossover

68

of the related parent chromosomes. The primary purposes of the mutation operator is to

encourage a more complete search of the problem set and to discourage the algorithm

from becoming focused exclusively on a locally but not globally optimal solution. Refer

to the Algorithm Design section in the Methodology Chapter of this paper for a more

detailed description of the technique used by DAGA. The mutation operator used by

DAGA is illustrated in Figure 5. Mutation Operator. To test the impact of this mutation

operator on DAGA a new algorithm was created that used a mutation operator that

randomly selected candidate chromosomes and genes within those chromosomes for

mutation with no bias for prior use or their location. This algorithm was designated as

DAGA-MU. The mutation operator used in DAGA-MU is functionally similar to the

technique used by most other genetic algorithms in the literature used for the p-median

problem. With the exception of the mutation operator, all other aspects of the algorithm

were identical to DAGA using Crossover Operator Technique 1. The modified algorithm

was run ten times each for p values 10 through 100 in the fl1400 problem set. The lower

and upper bound results were compared with the lower and upper bound results from

DAGA using crossover technique 1 and the Best Known results from literature. Table 17.

Fitness Values using a Random Mutation Operator and

Table 18. Error Rates Using a Random Mutation Operator compares and

summarizes the results generated by DAGA-MU with the results produced by DAGA and

the best known results. Table 19. Deviation From DAGA When Using a Random

Mutation Operator compares the results produced by DAGA-MU directly with the

results produced by DAGA.

69

Table 17. Fitness Values using a Random Mutation Operator

Table 18. Error Rates Using a Random Mutation Operator

70

Table 19. Deviation From DAGA When Using a Random Mutation Operator

The results produced by DAGA-MU did not vary significantly from the results

produced by DAGA using crossover operator 1 when run against the fl1400 problem set.

Though the differences were not large, DAGA-MU using a random techinque for the

mutation operator produced slightly better results than those produced by DAGA for all

of the values of p tested. Given these results it is reasonable to conclude that a mutation

operator that uses domain knowledge, specifically the spatial attributes of the problem

set, does not significantly improve the genetic algorithm. In fact, the results seem to

support the theory that a completely random mutation operator produces better results

than a directed mutation operator. This is not completely unexpected given that the

purpose of the mutation operator is to introduce diversity into the algorithm. An

algorithm like DAGA aggressively focuses on locally optimal solutions through it’s

crossover operator and a mutation operator that reinforces that local search would not

tend to introduce as much diversity as a random operator.

71

Chapter 5

Conclusions, Implications, Recommendations, and Summary

Conclusions

The research goal of this study was to examine the impact of integrating domain

knowledge into a genetic algorithm as applied to the p-median problem. The genetic

algorithm that was created, DAGA, uses a method for encoding that incorporates spatial

location; creates a structured initial population using domain knowledge; is biased toward

fitter chromosomes when selecting mating pairs; generates offspring with a spatially

sensitive crossover operator; and ensures diversity with a mutation operator that is both

biased and spatially sensitive. Using problem sets that have published “best known”

solutions, the study examined solutions produced by DAGA in terms of accuracy,

performance characteristics, and the contribution of each of the new operators.

DAGA was able to produce good solutions for a variety of problem sets and

medians. In somes cases, specifically for smaller problem sets and smaller median counts

and using Crossover Technique 1, the solutions produced were optimal or very near

optimal, assuming the best known results in the literature are optimal. In all cases tested

the solutions produced were good, with the worst solution produced from any test run not

deviating from the optimal solution by more than 15%. DAGA’s tendency to produce

good solutions is further supported by the fact that for all 300 test runs using Crossover

Technique 1, the solutions produced for 93% of them were within 10% of the best known

72

solution. Stated another way, DAGA has a 93% probability of producing a solution for

any p-median that is within 10% of the optimal solution.

The first crossover technique, which swaps genes in parent chromosomes based

on their proximity to each other in the search space, consistently produced better

solutions than the second crossover technique, which swaps genes in parent

chromosomes on opposite ends of one axis in the search space. It’s reasonable to

conclude that the first crossover technique places a higher emphasis on domain

knowledge and, as a result, it produces better solutions. This conclusion tends to support

the hypothesis that using domain knowledge does improve the algorithm.

The smallest problem set, fl1400, and the smallest median count, 10, produced the

best solutions. As the median count increased, the solutions deviation from the best

known solution also increased. The deviation from the best known also increased as the

problem set got larger. Problem set fl1400 produced better solutions than pcb3038, and

pcb3038 produced better solutions than rl5934, but only slightly better. These results are

probably caused by an exponential increase in the search space as p and n increases.

Given that the stopping criteria used by DAGA is not a function of n or p, it is likely that

a smaller portion of the search space is evaluated as the search space grows.

DAGA was consistently able to produce solutions within 10% of the best known

solution in less than 500 generations. After that, the improvement rate slowed

significantly. Some of this can be explained by DAGA’s use of a structured initial

population that partitions the search space spatially and selects chromosomes for the

initial population that are distributed across those partitions. This explains why DAGA

starts with a relatively good solution but it doesn’t explain why it improves rapidily in the

73

early generations and then slows its improvement in later generations. This is better

explained by its technique for selecting parent chromosomes which is biased toward

chromosomes with better fitness values. This is not a technique unique to DAGA. Other

genetic algorithms that have incorporated hueristics have used a similar approach for

parent selection (Correa, et al., 2001). This bias, however, would tend to focus the search

on better solutions and result in an accelerated move toward optimal solutions. Similarly,

DAGA’s use of an “elitist” technique which passes the fittest chromosome from a parent

generation to the next generation would tend to slow improvement as the solution moves

closer to an optimal. Again, this elitist technique is not unique to DAGA and has been

incorporated into other genetic algorithms that have used hueristics (Estivill-Castro &

Torres-Velázquez, 1999).

This study introduced three unique techniques to the genetic algorithm; a domain

aware structured initial population, a domain aware crossover operator, and a domain

aware mutation operator. As part of the study, each of these technques were isolated and

tested to determine their impact on the algorithm. The structured initial population

improved the initial efficiency of DAGA but had a minimal impact on the resulting

solution. In addition, the results produced by starting with a random initial population

were equivilant to the results produced by the structured initial population in relatively

few generations. Typically less then 500 generations. If the objective of the algorithm is

to produce an optimal or near optimal solution, the structured initial population doesn’t

provide a significant value. On the other hand, if the objective is to produce a good

solution in as few generations as possible, the structured technique does add some value.

74

By isolating the crossover operator, the study shows that a domain aware

crossover operator can provide improved results. The results generated by DAGA were

better than the results produced by the algorithm that substitued a random crossover

operator for the domain area crossover operator. Based on these results, it’s reasonable to

conclude that a domain aware crossover operator has significant value when building a

genetic algorithm to solve the p-median problem.

The domain aware mutation operator was shown to produce slightly inferior

results than a random mutation operator. When the domain aware mutation operator was

replaced with a random mutation operator the resulting solutions were somewhat

improved in a majority of the test cases. The purpose of the mutation operator is to

introduce diversity into the search and reduce the probability of the algorithm getting

stuck on a local optimum. The domain aware crossover operator aggressively focuses on

local search. It appears that when the mutation operator reinforces that local search its

value is reduced.

The test results suggest the following conclusions about DAGA. First, DAGA is

capable of producing solutions for the p-median problem with a high degree of accuracy.

Next, DAGA is capable of efficiently exploring the search space and finding a good

solution to the p-median problem in a relatively few generations. Finally, of the three

unique characteristics of DAGA, the domain aware crossover operator has the greatest

impact on the outcome of the algorithm.

75

Implications

This dissertation has shown that incorporating inherent properties of the problem

into the design of a genetic algorithm can add value to the algorithm while maintaining

its core structure. Genetic algrorithms have been shown to be useful in solving NP-hard

problems (Goldberg, 1989) including the p-median problem. Prior studies have shown

that decisions made by the researchers with regards to features of the algorithm such as

encoding and operators have a significant impact on the efficacy of the algorithm (Alp, et

al., 2003). This study takes that research a step further and shows that incorporating

innate properties of the problem into design can also have a positive impact on the

efficacy of the algorithm. The findings in this dissertation may prove useful for further

studies on the use of genetic algorithms for solving the p-median problem. It may also

prove useful in the further study of applying genetic algorithms on NP-hard problems

other than the p-median problem that have inherent characteristics that can be

incorporated into the design of the algorithm.

Recommendations

Although this study has shown that integrating domain knowledge about the p-

median problem into the design of a genetic algorithm can be effective, it is likely that

there is more to discover. The study was limited to three problem sets containing two-

dimensional cartesian coordinates. Further research is necessary to determine if DAGA

would perform similiarly on a wide range of problem sets including small sets, very large

sets, and n-dimensional sets.

76

It may also be useful to compare DAGA directly with other metahueristic

approaches to the p-median problem. Good surveys have been completed (Mladenovi, et

al., 2007; Reese, 2005), however, a study that incorporates the same problem sets,

programming methods, and run-time infrastructure could provide useful information

about the relative strengths and weaknesses of the respective approaches.

Another area for further research is DAGA’s applicability to other NP-hard

problems. The p-median problem lended itself well to the domain aware approach

because of its inherent spatial characteristics. Other NP-hard problems have those same

characteristics, such as the Traveling Salesmen Problem, or the K-means problem.

Beyond these spatially oriented problems there may be other NP-hard problems with

inherent characteristics that can be incorporated into an algorithm design.

There are also areas of further research within the DAGA algorithm. Two

crossover techniques were tested, but there are certainly other crossover techniques that

take advantage of the domain knowledge that could also be researched. The domain

aware mutation operator used in DAGA was not effective in improving the solutions

generated. Perhaps further research on mutation operators in genetic algorithms would

yield an operator that used domain knowledge to encourage diversity in the search.

The recommended research in this chapter is undoubtably an incomplete list.

Optimization problems and genetic algorithms are interesting problems that lend

themselves to extensive research. This study represents just one variation of this research.

It is the hope of this researcher that it can be used to inspire even more variations.

77

Summary

The objective of this dissertation was to examine the impact of integrating domain

knowledge into a genetic algorithm as applied to the p-median problem. To do this, a new

genetic algorithm was developed and referred to as DAGA. DAGA differed from the

canonical genetic algorithm in a few key ways. Those differentiators are:

1. A technique for encoding the problem set that incorporated the spatial

characteristics of the problem members.

2. A structured initial population created by spatially partitioning the search space

and creating the initial candidate solutions from that partitioned space.

3. A selection operator that is biased toward fitter solutions when selecting solutions

for crossover processing.

4. A crossover operator that considers the location of the problem members when

deciding which members to swap in the crossover operation.

5. A mutation operator that is biased toward problem members that are

underrepresented in candidate solutions and that considers the location of the

members when deciding which to subject to mutation.

Of these five distinguishing characteristics of DAGA, three incorporated domain

knowledge about the p-median problem that can be said to be unique to this dissertation

at the time of its publication. Those unique characteristics are: A structured initial

population based on a spatially partitioned search space; A crossover operator that

incorporated location into its decision making process; A mutation operator that

incorporated location into its decision making process.

78

A test plan to examine the impact of these unique elements was developed and

DAGA was applied over 900 times. Using published problem sets that have established

“best known” solutions for the p-median problem, DAGA was applied to several

instances of these problem sets using median counts ranging from 10 to 100. The results

of the testing showed that DAGA was able to consistently produce accurate solutions.

Smaller problem instances with low median counts produced the best results but even

worst case results were within 15% of the best known solution and over 90% of the

solutions produced were within 10% of the best known solution. DAGA was also able to

produce good if not optimal solutions efficiently. In the majority of the test runs, DAGA

was able to produce a solution within 10% of optimal in less than 500 generations. After

500 generations the evolution of the optimal solution did slow considerably, with some

test runs taking over 10,000 generations before they satisfied the stopping criterion.

Two different crossover operators were tested. The first, identified as Crossover

Technique 1, swapped individual members in solutions selected for crossover based on

their proximity to each other in the search space. The second, identified as Crossover

Technique 2, swapped sets of problem members based on where they were located along

a single axis of the search space. Crossover Technique 1 was much more computationally

intense and consistently produced more accurate solutions. Crossover Technique 2 did

not require as many computational resources as Crossover Technique 1 but it consistently

produced inferior results. As a result of these test, further testing of the algorithm was

limited to using Crossover Technique 1.

The three key components of DAGA were tested individually to gauge their

impact on the overall algorithm. Three new algorithms were created using DAGA as a

79

basis. The first algorithm substituted a random technique for creating the initial

population. The next algorithm replaced the crossover operator with one that randomly

selected members from candidate solutions for crossover. The last algorithm randomly

selected solutions and members for mutation. These algorithms were each run against the

fl1400 problem set using median counts from 10 to 100. The results of these runs were

then compared with the results generated by DAGA in earlier tests. The solutions

generated by the algorithm using a random approach for the initial population were

similar to the solutions produced by DAGA. However, the run profiles showed that

DAGA started with a superior solution and performed better in the early generations.

This advantage was typically minimized within 500 generations and from there the

algorithms performed similarly. The solutions generated by the algorithm using a random

technique for crossover were significantly inferior to the solutions produced by DAGA.

The solutions generated by the algorithm that used a random technique for mutation

sometimes produced solutions that were better than the solutions produced by DAGA.

The differences were not generally large and were not consistent but they were enough to

suggest that a random approach to mutation is superior to the domain aware technique

used by DAGA.

In summary it was concluded that using a structured initial population had no

significant impact on DAGA’s ability to find an optimal solution but that it did create a

better initial solution and allowed the algorithm to perform better early in the search and

produce a relatively good solution early in the search. The domain aware crossover

operator produced superior solutions and had a significant impact on the overall

functionality of DAGA. The domain aware mutation operator did not have a large impact

80

on the overall functionality of DAGA and may be inferior to a random approach to

mutation.

Lastly it can be concluded that a genetic algorithm that incorporates domain

knowledge into its design can have a positive impact on its ability to find optimal

solutions for the p-median problem. This conclusion adds to the body of knowledge about

genetic algorithms and the p-median problem and could serve as a basis for further

research on the topic.

81

Appendix A

Run Profiles Comparing DAGA and Random Initial Generation

82

Figure 16. Run profiles with 10 medians

83

Figure 17. Run Profiles with 20 Medians

84

Figure 18. Run Profiles with 30 Medians

85

Figure 19. Run Profiles with 40 Medians

86

Figure 20. Run Profiles with 50 Medians

87

Figure 21. Run Profiles with 60 Medians

88

Figure 22. Run Profiles with 70 medians

89

Figure 23. Run Profiles for 80 Medians

90

Figure 24. Run Profile with 90 Medians

91

Figure 25. Run Profiles with 100 Medians

92

Appendix B

Detailed Results

93

Problem Set fl1400; Crossover Technique 1

Run Result Gens Run Result Gens
1 102,416.28 7,753 1 59,908.74 4,747
2 101,248.57 8,446 2 59,049.09 3,144
3 101,748.98 3,131 3 58,953.50 6,471
4 101,714.52 5,579 4 58,859.55 6,185
5 102,598.73 5,568 5 60,410.66 2,527
6 102,115.40 7,588 6 59,310.37 6,655
7 102,691.40 3,458 7 59,574.13 2,567
8 102,113.00 3,650 8 59,653.22 2,672
9 102,125.48 3,752 9 60,449.35 2,626
10 102,711.90 3,988 10 59,833.71 8,979
Avg 102,148.43 5,291 Avg 59,600.23 2,527
Min 101,248.57 3,131 Min 58,859.55 8,979
Max 102,711.90 8,446 Max 60,449.35 4,657

Median Count = 10 Median Count = 20

Run Result Gens Run Result Gens
1 46,294.18 3,471 1 36,514.57 5,367
2 47,011.97 3,220 2 37,252.23 6,556
3 46,452.08 3,516 3 36,915.19 4,589
4 45,459.94 4,395 4 37,741.65 2,722
5 47,729.94 3,782 5 36,541.71 4,799
6 46,915.72 5,010 6 37,178.68 3,099
7 46,857.27 2,587 7 37,217.61 6,728
8 46,538.94 8,542 8 36,932.81 5,222
9 45,404.13 3,231 9 37,713.41 7,297
10 46,109.16 6,703 10 36,938.67 4,825
Avg 46,477.33 4,446 Avg 37,094.65 5,120
Min 45,404.13 2,587 Min 36,514.57 2,722
Max 47,729.94 8,542 Max 37,741.65 7,297

Median Count = 40Median Count = 30

94

Run Result Gens Run Result Gens
1 31,262.88 3,917 1 27,124.27 4,183
2 30,598.26 6,854 2 27,445.95 2,600
3 31,185.95 3,800 3 27,313.02 7,163
4 31,156.81 5,371 4 27,167.93 6,437
5 30,240.72 10,326 5 27,413.05 6,080
6 30,883.15 4,972 6 26,620.11 3,420
7 31,168.04 2,674 7 27,270.67 3,776
8 31,059.10 2,523 8 26,892.97 3,908
9 30,442.90 4,501 9 27,682.85 5,060
10 30,835.94 3,179 10 27,113.02 4,104
Avg 30,883.38 4,812 Avg 27,204.38 4,673
Min 30,240.72 2,523 Min 26,620.11 2,600
Max 31,262.88 10,326 Max 27,682.85 7,163

Median Count = 60Median Count = 50

Run Result Gens Run Result Gens
1 23,897.25 7,060 1 22,043.04 4,889
2 23,809.97 3,861 2 22,280.45 6,953
3 24,225.52 4,342 3 21,262.07 2,582
4 23,412.64 3,885 4 22,071.81 4,266
5 24,249.13 4,914 5 21,821.51 5,757
6 23,813.76 5,879 6 22,107.23 2,696
7 23,750.74 3,205 7 21,092.20 4,616
8 24,307.24 6,456 8 20,958.67 3,277
9 24,008.39 4,620 9 21,111.85 5,453
10 24,869.24 3,423 10 21,894.17 2,546
Avg 24,034.39 4,765 Avg 21,664.30 4,304
Min 23,412.64 3,205 Min 20,958.67 2,546
Max 24,869.24 7,060 Max 22,280.45 6,953

Median Count = 80Median Count = 70

95

Problem Set fl1400; Crossover Technique 2

Run Result Gens Run Result Gens
1 19,858.59 2,593 1 18,228.66 3,974
2 20,025.31 2,746 2 18,143.40 3,626
3 19,384.50 6,052 3 18,391.17 4,568
4 19,298.61 7,599 4 18,262.19 2,549
5 19,539.11 2,843 5 17,854.83 3,956
6 19,232.87 3,031 6 18,423.08 2,545
7 19,085.52 3,683 7 17,580.43 4,705
8 19,740.22 3,090 8 18,258.07 2,895
9 19,285.53 5,949 9 18,295.52 4,440
10 19,837.69 2,522 10 17,853.07 3,128
Avg 19,528.80 4,011 Avg 18,129.04 3,639
Min 19,085.52 2,522 Min 17,580.43 2,545
Max 20,025.31 7,599 Max 18,423.08 4,705

Median Count = 100Median Count = 90

Run Result Gens Run Result Gens
1 106,376.88 4,300 1 61,561.51 4,747
2 104,608.10 3,877 2 60,211.52 3,144
3 104,397.46 4,169 3 59,620.89 6,471
4 103,260.86 3,311 4 60,579.14 6,185
5 105,173.47 3,084 5 61,913.57 2,527
6 105,804.78 5,132 6 60,627.72 6,655
7 105,327.98 2,585 7 60,417.14 2,567
8 105,178.68 5,418 8 60,905.44 2,672
9 105,774.07 3,548 9 62,147.94 2,626
10 106,808.55 4,272 10 60,748.53 8,979
Avg 105,271.08 3,970 Avg 60,873.34 2,527
Min 103,260.86 2,585 Min 59,620.89 8,979
Max 106,808.55 5,418 Max 62,147.94 4,657

Median Count = 10 Median Count = 20

96

Run Result Gens Run Result Gens
1 47,327.61 3,471 1 37,382.30 5,367
2 48,718.19 3,220 2 38,246.89 6,556
3 47,662.64 3,516 3 37,679.88 4,589
4 46,938.20 4,395 4 38,711.76 2,722
5 49,152.84 3,782 5 37,624.28 4,799
6 48,312.90 5,010 6 38,150.00 3,099
7 48,440.89 2,587 7 38,139.85 6,728
8 48,092.35 8,542 8 37,677.86 5,222
9 46,408.24 3,231 9 38,803.48 7,297
10 47,202.12 6,703 10 37,757.32 4,825
Avg 47,825.60 4,446 Avg 38,017.36 5,120
Min 46,408.24 2,587 Min 37,382.30 2,722
Max 49,152.84 8,542 Max 38,803.48 7,297

Median Count = 30 Median Count = 40

Run Result Gens Run Result Gens
1 31,910.26 3,917 1 27,818.13 4,183
2 31,590.55 6,854 2 28,309.14 2,600
3 32,105.09 3,800 3 28,316.73 7,163
4 32,093.11 5,371 4 28,101.99 6,437
5 31,233.34 10,326 5 28,185.60 6,080
6 31,539.23 4,972 6 26,923.56 3,420
7 32,246.68 2,674 7 28,081.20 3,776
8 31,719.94 2,523 8 27,420.30 3,908
9 31,390.06 4,501 9 28,724.73 5,060
10 31,456.63 3,179 10 27,397.21 4,104
Avg 31,728.49 4,812 Avg 27,927.86 4,673
Min 31,233.34 2,523 Min 26,923.56 2,600
Max 32,246.68 10,326 Max 28,724.73 7,163

Median Count = 50 Median Count = 60

97

Run Result Gens Run Result Gens
1 24,446.64 7,060 1 22,316.96 4,889
2 24,499.57 3,861 2 22,544.75 6,953
3 24,599.44 4,342 3 21,575.56 2,582
4 23,877.50 3,885 4 22,348.67 4,266
5 24,548.08 4,914 5 22,310.17 5,757
6 24,428.74 5,879 6 22,365.82 2,696
7 24,114.64 3,205 7 21,696.41 4,616
8 24,997.08 6,456 8 21,345.60 3,277
9 24,458.80 4,620 9 21,425.85 5,453
10 25,255.08 3,423 10 22,484.49 2,546
Avg 24,522.56 4,765 Avg 22,041.43 4,304
Min 23,877.50 3,205 Min 21,345.60 2,546
Max 25,255.08 7,060 Max 22,544.75 6,953

Median Count = 70 Median Count = 80

Run Result Gens Run Result Gens
1 20,222.28 2,593 1 18,634.50 3,974
2 20,575.70 2,746 2 18,815.66 3,626
3 19,948.97 6,052 3 19,086.31 4,568
4 19,939.66 7,599 4 18,622.26 2,549
5 20,134.52 2,843 5 18,085.81 3,956
6 19,731.79 3,031 6 18,695.60 2,545
7 19,378.26 3,683 7 18,000.88 4,705
8 20,253.29 3,090 8 18,778.39 2,895
9 19,850.93 5,949 9 18,686.85 4,440
10 20,220.71 2,522 10 18,551.61 3,128
Avg 20,025.61 4,011 Avg 18,595.79 3,639
Min 19,378.26 2,522 Min 18,000.88 2,545
Max 20,575.70 7,599 Max 19,086.31 4,705

Median Count = 90 Median Count = 100

98

Problem Set pcb3038; Crossover Technique 1

Run Result Gens Run Result Gens
1 1,235,943.75 7,349 1 881,001.32 3,763
2 1,236,644.69 4,844 2 872,276.07 2,887
3 1,235,657.95 4,271 3 872,897.78 8,523
4 1,239,459.45 3,620 4 869,815.06 8,039
5 1,256,273.85 6,992 5 880,212.09 4,428
6 1,260,371.11 3,311 6 878,056.15 8,287
7 1,251,368.79 3,242 7 873,545.67 4,400
8 1,250,643.29 8,388 8 881,377.98 8,331
9 1,251,029.89 8,971 9 872,133.96 3,109
10 1,258,174.29 4,246 10 866,207.93 8,338
Avg 1,247,556.71 5,523 Avg 874,752.40 6,011
Min 1,235,657.95 3,242 Min 866,207.93 2,887
Max 1,260,371.11 8,971 Max 881,377.98 8,523

Median Count = 10 Median Count = 20

Run Result Gens Run Result Gens
1 708,131.39 4,569 1 605,612.20 5,076
2 703,159.20 4,996 2 607,961.80 5,910
3 713,591.45 8,199 3 595,626.06 4,810
4 701,283.38 6,368 4 604,377.57 5,764
5 702,484.12 4,591 5 602,560.20 5,755
6 704,195.25 3,005 6 598,796.24 7,223
7 705,402.82 4,076 7 607,097.69 5,014
8 716,307.87 3,879 8 596,916.46 3,637
9 704,780.89 8,065 9 605,945.50 6,141
10 719,511.81 8,639 10 595,706.25 6,167
Avg 707,884.82 5,639 Avg 602,060.00 5,550
Min 701,283.38 3,005 Min 595,626.06 3,637
Max 719,511.81 8,639 Max 607,961.80 7,223

Median Count = 30 Median Count = 40

99

Run Result Gens Run Result Gens
1 537,317.86 3,324 1 493,149.64 5,068
2 538,062.02 6,068 2 491,572.44 2,946
3 536,445.73 3,714 3 489,638.62 5,231
4 529,623.54 6,830 4 489,833.93 8,133
5 531,807.30 7,167 5 494,878.73 4,764
6 539,099.21 7,037 6 485,164.14 2,717
7 532,779.82 8,244 7 487,738.42 3,353
8 532,142.90 3,449 8 491,927.27 5,533
9 538,278.41 8,626 9 493,085.21 8,124
10 538,947.10 4,351 10 484,576.92 7,748
Avg 535,450.39 5,881 Avg 490,156.53 5,362
Min 529,623.54 3,324 Min 484,576.92 2,717
Max 539,099.21 8,626 Max 494,878.73 8,133

Median Count = 50 Median Count = 60

Run Result Gens Run Result Gens
1 452,394.29 4,285 1 420,806.57 6,462
2 454,023.38 2,950 2 429,052.31 7,696
3 452,333.41 8,310 3 422,099.61 4,143
4 453,860.52 5,335 4 423,004.84 4,235
5 454,227.90 4,258 5 430,868.60 3,973
6 448,855.74 8,114 6 421,384.67 6,622
7 453,952.48 7,506 7 423,790.31 6,203
8 448,061.43 7,584 8 427,586.78 6,277
9 457,397.02 7,910 9 419,612.42 3,317
10 453,703.51 2,813 10 427,788.43 4,168
Avg 452,880.97 5,907 Avg 424,599.45 5,310
Min 448,061.43 2,813 Min 419,612.42 3,317
Max 457,397.02 8,310 Max 430,868.60 7,696

Median Count = 70 Median Count = 80

100

Problem Set pcb3038; Crossover Technique 2

Run Result Gens Run Result Gens
1 404,771.33 6,456 1 386,672.87 5,007
2 406,429.04 3,712 2 386,551.44 3,882
3 396,657.80 8,584 3 384,048.27 8,022
4 404,067.64 8,657 4 384,959.78 8,654
5 402,788.73 4,443 5 381,249.90 5,136
6 397,256.70 4,461 6 387,810.62 8,526
7 403,402.94 8,505 7 384,920.82 7,731
8 396,916.65 7,264 8 380,153.39 6,295
9 398,881.09 8,705 9 382,691.54 8,685
10 401,961.41 6,144 10 382,837.59 5,285
Avg 401,313.33 6,693 Avg 384,189.62 6,722
Min 396,657.80 3,712 Min 380,153.39 3,882
Max 406,429.04 8,705 Max 387,810.62 8,685

Median Count = 90 Median Count = 100

Run Result Gens Run Result Gens
1 1,283,539.71 3,733 1 916,036.39 4,937
2 1,263,195.04 3,600 2 897,582.64 3,175
3 1,260,629.99 8,889 3 890,561.86 7,118
4 1,265,596.75 4,864 4 893,303.74 6,309
5 1,297,922.89 2,701 5 900,240.03 4,181
6 1,289,843.80 3,584 6 896,844.67 6,855
7 1,282,179.46 2,801 7 893,561.25 3,888
8 1,289,450.86 2,677 8 906,947.31 3,953
9 1,286,664.36 3,959 9 893,548.85 3,807
10 1,287,308.57 4,399 10 896,042.66 8,530
Avg 1,280,633.14 4,121 Avg 898,466.94 3,175
Min 1,260,629.99 2,677 Min 890,561.86 8,530
Max 1,297,922.89 8,889 Max 916,036.39 5,275

Median Count = 10 Median Count = 20

101

Run Result Gens Run Result Gens
1 731,883.91 3,714 1 621,275.00 4,991
2 718,664.68 3,478 2 627,555.51 7,212
3 728,478.36 3,832 3 610,078.42 4,635
4 726,166.95 4,483 4 625,904.62 4,020
5 720,736.27 3,631 5 623,727.17 5,279
6 722,471.16 4,860 6 620,228.75 2,882
7 733,257.81 3,551 7 619,430.35 6,593
8 735,138.19 8,713 8 620,541.81 5,013
9 726,925.92 2,973 9 627,428.17 7,662
10 739,512.88 7,038 10 610,342.55 5,211
Avg 728,323.61 4,627 Avg 620,651.24 5,350
Min 718,664.68 2,973 Min 610,078.42 2,882
Max 739,512.88 8,713 Max 627,555.51 7,662

Median Count = 30 Median Count = 40

Run Result Gens Run Result Gens
1 558,103.42 3,525 1 505,020.48 4,308
2 556,422.80 6,648 2 504,432.55 3,340
3 548,105.61 3,572 3 503,289.98 7,736
4 543,697.60 5,532 4 501,153.87 6,115
5 550,891.11 9,913 5 511,506.81 6,506
6 559,375.54 5,022 6 495,332.18 3,146
7 547,476.04 2,701 7 500,512.84 3,398
8 548,630.55 3,840 8 508,656.00 4,064
9 558,077.78 4,186 9 504,664.14 4,908
10 552,114.57 3,274 10 500,892.87 4,145
Avg 552,289.50 4,821 Avg 503,546.17 4,767
Min 543,697.60 2,701 Min 495,332.18 3,146
Max 559,375.54 9,913 Max 511,506.81 7,736

Median Count = 50 Median Count = 60

102

Run Result Gens Run Result Gens
1 467,006.90 7,554 1 435,805.89 5,329
2 466,353.44 4,247 2 438,982.68 6,466
3 469,918.63 3,951 3 432,562.96 3,505
4 466,662.43 4,079 4 435,397.00 4,437
5 471,806.97 4,619 5 445,129.31 5,987
6 462,914.87 5,820 6 435,657.76 2,723
7 463,664.50 3,333 7 435,287.34 4,708
8 463,570.73 6,004 8 442,865.73 3,048
9 466,798.50 4,851 9 433,389.69 5,889
10 466,993.23 3,526 10 437,059.49 2,699
Avg 466,569.02 4,798 Avg 437,213.79 4,479
Min 462,914.87 3,333 Min 432,562.96 2,699
Max 471,806.97 7,554 Max 445,129.31 6,466

Median Count = 70 Median Count = 80

Run Result Gens Run Result Gens
1 417,415.13 3,737 1 397,824.02 4,252
2 420,172.50 4,008 2 402,003.86 3,263
3 408,568.76 6,173 3 393,160.99 4,796
4 418,261.21 8,359 4 396,686.19 3,443
5 417,855.74 3,070 5 396,233.41 4,312
6 407,760.93 3,122 6 397,901.41 3,474
7 419,528.28 3,978 7 395,370.87 4,799
8 410,330.32 3,245 8 388,203.24 3,973
9 407,519.87 5,414 9 396,372.87 4,662
10 414,676.87 3,874 10 394,803.34 3,097
Avg 414,208.96 4,498 Avg 395,856.02 4,007
Min 407,519.87 3,070 Min 388,203.24 3,097
Max 420,172.50 8,359 Max 402,003.86 4,799

Median Count = 90 Median Count = 100

103

Problem Set rl5934; Crossover Technique 1

Run Result Gens Run Result Gens
1 10,135,743.17 7,725 1 7,022,427.34 6,638
2 10,147,346.07 3,773 2 6,935,624.99 2,813
3 10,017,228.62 4,745 3 7,056,057.80 3,838
4 10,023,073.42 8,454 4 7,031,889.77 8,386
5 10,038,707.84 8,784 5 6,931,397.86 4,716
6 10,141,451.24 5,151 6 7,040,245.50 4,237
7 9,948,378.50 3,412 7 7,018,171.81 5,799
8 10,093,124.13 5,373 8 7,037,020.90 4,379
9 10,052,208.96 7,483 9 6,937,278.47 4,521
10 10,115,164.45 7,121 10 7,000,761.28 3,271
Avg 10,071,242.64 6,202 Avg 7,001,087.57 4,860
Min 9,948,378.50 3,412 Min 6,931,397.86 2,813
Max 10,147,346.07 8,784 Max 7,056,057.80 8,386

Median Count = 10 Median Count = 20

Run Result Gens Run Result Gens
1 5,675,255.81 4,904 1 4,822,296.41 5,204
2 5,694,607.61 2,582 2 4,826,529.01 2,972
3 5,749,487.43 3,927 3 4,788,835.20 7,468
4 5,676,644.20 8,325 4 4,808,584.53 4,625
5 5,746,864.17 8,109 5 4,823,494.14 4,494
6 5,682,416.33 8,032 6 4,810,927.11 5,160
7 5,621,758.91 4,412 7 4,841,823.88 5,469
8 5,674,074.70 3,301 8 4,840,666.42 7,456
9 5,624,744.13 8,386 9 4,855,561.35 3,129
10 5,719,771.07 7,030 10 4,861,491.78 2,973
Avg 5,686,562.44 5,901 Avg 4,828,020.98 4,895
Min 5,621,758.91 2,582 Min 4,788,835.20 2,972
Max 5,749,487.43 8,386 Max 4,861,491.78 7,468

Median Count = 30 Median Count = 40

104

Run Result Gens Run Result Gens
1 4,254,430.87 3,001 1 3,887,213.20 3,624
2 4,291,536.54 2,581 2 3,853,871.60 3,458
3 4,291,109.94 4,424 3 3,924,787.17 5,259
4 4,250,951.44 7,992 4 3,859,898.17 5,437
5 4,308,526.23 7,376 5 3,853,663.06 5,178
6 4,252,180.13 6,307 6 3,851,771.38 7,439
7 4,267,464.59 7,473 7 3,850,777.76 6,764
8 4,278,443.40 3,669 8 3,917,798.22 7,466
9 4,227,396.73 7,415 9 3,843,454.42 6,372
10 4,270,699.78 7,783 10 3,913,730.34 3,565
Avg 4,269,273.97 5,802 Avg 3,875,696.53 5,456
Min 4,227,396.73 2,581 Min 3,843,454.42 3,458
Max 4,308,526.23 7,992 Max 3,924,787.17 7,466

Median Count = 50 Median Count = 60

Run Result Gens Run Result Gens
1 3,611,144.13 6,912 1 3,282,953.12 8,682
2 3,538,947.96 4,522 2 3,297,227.19 4,185
3 3,594,246.00 4,215 3 3,347,632.73 8,679
4 3,612,279.31 5,458 4 3,359,261.88 5,347
5 3,541,848.48 8,267 5 3,314,409.10 7,343
6 3,585,199.34 5,985 6 3,342,338.94 6,547
7 3,565,983.42 8,420 7 3,348,636.63 7,735
8 3,555,995.74 3,685 8 3,354,348.45 3,582
9 3,599,829.82 5,714 9 3,367,070.46 5,907
10 3,539,820.17 3,284 10 3,350,200.91 6,364
Avg 3,574,529.44 5,646 Avg 3,336,407.94 6,437
Min 3,538,947.96 3,284 Min 3,282,953.12 3,582
Max 3,612,279.31 8,420 Max 3,367,070.46 8,682

Median Count = 70 Median Count = 80

105

Problem Set rl5934; Crossover Technique 2

Run Result Gens Run Result Gens
1 3,111,789.73 2,991 1 2,928,355.00 3,130
2 3,100,935.25 7,648 2 2,932,922.03 3,134
3 3,153,436.64 8,798 3 2,939,391.58 8,391
4 3,127,580.82 7,059 4 2,949,947.43 7,806
5 3,146,745.81 6,098 5 2,968,394.00 5,245
6 3,101,913.85 5,765 6 2,965,612.96 3,793
7 3,149,511.12 6,433 7 2,959,730.98 8,768
8 3,125,306.40 7,707 8 2,951,770.37 6,493
9 3,133,328.93 9,070 9 3,000,827.73 8,300
10 3,090,483.72 3,295 10 2,925,863.34 7,853
Avg 3,124,103.23 6,486 Avg 2,952,281.54 6,291
Min 3,090,483.72 2,991 Min 2,925,863.34 3,130
Max 3,153,436.64 9,070 Max 3,000,827.73 8,768

Median Count = 90 Median Count = 100

Run Result Gens Run Result Gens
1 10,466,550.99 3,658 1 7,234,528.17 4,367
2 10,421,759.16 3,708 2 7,139,749.64 3,396
3 10,386,481.03 9,156 3 7,336,289.91 6,406
4 10,332,059.39 5,107 4 7,234,854.79 5,876
5 10,337,783.55 3,812 5 7,078,046.08 3,386
6 10,421,964.25 3,799 6 7,302,374.19 6,722
7 10,209,378.78 3,081 7 7,205,545.50 3,246
8 10,311,634.57 3,934 8 7,267,286.95 3,856
9 10,281,512.97 4,157 9 7,199,834.99 3,699
10 10,318,146.70 4,707 10 7,154,456.84 9,518
Avg 10,348,727.14 4,512 Avg 7,215,296.71 5,047
Min 10,209,378.78 3,081 Min 7,078,046.08 3,246
Max 10,466,550.99 9,156 Max 7,336,289.91 9,518

Median Count = 10 Median Count = 20

106

Run Result Gens Run Result Gens
1 5,891,483.43 3,575 1 4,979,944.78 5,904
2 5,825,801.81 3,445 2 4,946,422.14 6,097
3 5,902,529.18 3,797 3 4,939,578.00 4,956
4 5,898,856.20 4,307 4 4,994,837.31 3,834
5 5,909,611.84 3,895 5 4,976,755.21 4,751
6 5,891,882.88 5,060 6 4,972,839.65 3,192
7 5,810,175.13 3,730 7 4,946,024.56 7,132
8 5,841,283.92 8,371 8 5,022,422.26 5,483
9 5,843,662.52 2,940 9 5,013,119.96 6,786
10 5,921,169.79 6,837 10 4,968,735.63 4,487
Avg 5,873,645.67 4,596 Avg 4,976,067.95 5,262
Min 5,810,175.13 2,940 Min 4,939,578.00 3,192
Max 5,921,169.79 8,371 Max 5,022,422.26 7,132

Median Count = 30 Median Count = 40

Run Result Gens Run Result Gens
1 4,341,185.98 4,152 1 4,001,669.17 3,848
2 4,456,145.69 6,923 2 3,937,454.67 3,312
3 4,441,930.91 3,496 3 4,055,578.38 6,518
4 4,361,439.12 5,747 4 3,962,107.77 6,694
5 4,473,520.48 10,016 5 3,962,551.93 5,837
6 4,379,258.38 5,320 6 4,000,276.13 3,488
7 4,375,700.50 3,747 7 3,953,971.51 3,965
8 4,385,075.25 3,734 8 4,029,930.79 4,299
9 4,367,997.03 4,456 9 3,959,376.59 4,706
10 4,394,347.28 3,306 10 4,020,514.28 4,227
Avg 4,397,660.06 5,090 Avg 3,988,343.12 4,689
Min 4,341,185.98 3,306 Min 3,937,454.67 3,312
Max 4,473,520.48 10,016 Max 4,055,578.38 6,694

Median Count = 50 Median Count = 60

107

Run Result Gens Run Result Gens
1 3,716,257.06 6,566 1 3,366,446.91 5,036
2 3,661,380.40 3,977 2 3,393,279.55 7,579
3 3,683,879.03 4,689 3 3,439,988.68 3,367
4 3,733,648.25 4,040 4 3,438,301.16 3,839
5 3,637,122.42 5,258 5 3,392,930.30 5,930
6 3,663,326.01 5,997 6 3,461,086.64 3,955
7 3,706,696.22 3,333 7 3,446,258.13 5,078
8 3,667,675.64 6,585 8 3,469,206.70 3,375
9 3,689,773.51 4,158 9 3,465,324.30 5,671
10 3,651,703.45 3,389 10 3,458,149.25 3,191
Avg 3,681,146.20 4,799 Avg 3,433,097.16 4,702
Min 3,637,122.42 3,333 Min 3,366,446.91 3,191
Max 3,733,648.25 6,585 Max 3,469,206.70 7,579

Median Count = 70 Median Count = 80

Run Result Gens Run Result Gens
1 3,201,316.10 3,916 1 2,987,061.70 3,577
2 3,193,375.47 4,008 2 3,001,108.82 3,916
3 3,267,340.80 6,415 3 3,016,933.71 4,842
4 3,232,969.52 8,283 4 3,052,934.56 3,797
5 3,220,047.57 3,958 5 3,059,442.43 3,679
6 3,167,696.17 3,092 6 3,065,514.48 3,261
7 3,252,522.10 3,904 7 3,047,075.48 4,940
8 3,243,432.67 3,337 8 3,036,614.76 4,246
9 3,223,447.42 6,544 9 3,083,976.22 4,129
10 3,179,457.37 3,557 10 3,037,206.76 3,222
Avg 3,218,160.52 4,701 Avg 3,038,786.89 3,961
Min 3,167,696.17 3,092 Min 2,987,061.70 3,222
Max 3,267,340.80 8,283 Max 3,083,976.22 4,940

Median Count = 90 Median Count = 100

108

Algorithm DAGA-IG; Problem Set fl1400; Crossover Technique 1

Run Result Gens Run Result Gens
1 103,737.70 3,871 1 59,981.35 2,763
2 101,804.66 6,898 2 60,049.83 3,988
3 102,795.78 9,429 3 59,726.99 3,543
4 102,507.43 3,835 4 60,070.57 3,681
5 102,967.02 3,603 5 58,543.26 3,376
6 103,265.44 5,916 6 60,473.34 2,617
7 103,092.83 4,405 7 59,493.87 3,514
8 103,022.71 5,034 8 60,491.51 3,486
9 102,179.76 4,837 9 59,826.52 5,885
10 103,745.91 5,746 10 60,076.28 3,410
Avg 102,911.92 5,357 Avg 59,873.35 2,617
Min 101,804.66 3,603 Min 58,543.26 5,885
Max 103,745.91 9,429 Max 60,491.51 3,626

Median Count = 10 Median Count = 20

Run Result Gens Run Result Gens
1 46,437.75 7,125 1 36,453.38 6,533
2 44,311.24 8,678 2 37,470.39 3,432
3 45,933.04 3,623 3 36,454.95 3,500
4 46,303.00 4,219 4 37,409.56 4,848
5 46,407.57 6,633 5 37,705.89 7,593
6 46,623.74 2,746 6 38,408.52 3,866
7 46,711.93 4,989 7 37,182.45 5,483
8 45,700.69 4,602 8 37,109.98 3,579
9 46,825.71 5,716 9 36,568.75 7,399
10 46,838.95 6,057 10 37,302.28 3,007
Avg 46,209.36 5,439 Avg 37,206.61 4,924
Min 44,311.24 2,746 Min 36,453.38 3,007
Max 46,838.95 8,678 Max 38,408.52 7,593

Median Count = 30 Median Count = 40

109

Run Result Gens Run Result Gens
1 31,080.68 7,062 1 26,733.63 3,830
2 31,685.23 3,816 2 26,744.77 2,890
3 31,375.28 4,404 3 26,806.01 7,324
4 31,442.08 5,348 4 26,989.49 5,671
5 31,578.12 3,562 5 26,588.45 4,724
6 31,656.08 2,774 6 26,885.46 2,590
7 31,804.49 4,600 7 27,606.66 2,902
8 31,664.78 3,624 8 27,102.89 4,489
9 31,513.42 4,966 9 27,450.50 5,362
10 31,893.96 3,778 10 27,111.86 3,497
Avg 31,569.41 4,393 Avg 27,001.97 4,328
Min 31,080.68 2,774 Min 26,588.45 2,590
Max 31,893.96 7,062 Max 27,606.66 7,324

Median Count = 50 Median Count = 60

Run Result Gens Run Result Gens
1 23,858.84 2,658 1 21,571.70 3,627
2 23,657.27 7,045 2 21,695.94 3,224
3 23,829.74 3,862 3 21,726.65 6,113
4 24,164.90 4,820 4 22,523.63 2,697
5 24,016.86 3,611 5 21,981.57 4,148
6 24,462.94 7,022 6 21,985.62 3,230
7 24,465.27 4,390 7 22,045.94 5,742
8 23,932.10 3,678 8 21,840.99 6,817
9 23,578.34 7,752 9 22,013.07 6,016
10 24,294.44 3,768 10 22,184.43 4,713
Avg 24,026.07 4,861 Avg 21,956.95 4,633
Min 23,578.34 2,658 Min 21,571.70 2,697
Max 24,465.27 7,752 Max 22,523.63 6,817

Median Count = 70 Median Count = 80

110

Algorithm DAGA-CO; Problem Set fl1400; Crossover Technique 1

Run Result Gens Run Result Gens
1 19,551.14 4,769 1 17,850.18 2,961
2 19,991.09 4,164 2 18,063.57 4,417
3 20,597.33 3,195 3 18,246.14 2,834
4 19,686.68 4,267 4 17,875.37 3,498
5 19,992.90 4,244 5 17,967.33 4,963
6 19,478.31 5,932 6 18,912.10 2,532
7 18,736.86 4,146 7 18,661.00 4,869
8 19,989.54 4,411 8 17,957.88 5,122
9 19,934.76 3,159 9 18,516.34 3,596
10 19,399.68 5,695 10 18,516.78 3,098
Avg 19,735.83 4,398 Avg 18,256.67 3,789
Min 18,736.86 3,159 Min 17,850.18 2,532
Max 20,597.33 5,932 Max 18,912.10 5,122

Median Count = 90 Median Count = 100

Run Result Gens Run Result Gens
1 106,320.50 5,125 1 62,893.15 6,094
2 106,588.04 5,899 2 61,465.61 5,346
3 107,799.61 4,096 3 62,471.12 5,188
4 103,794.02 4,289 4 62,807.86 3,660
5 104,356.55 9,264 5 64,172.08 5,450
6 105,408.83 3,044 6 63,428.14 2,940
7 107,700.88 5,006 7 62,840.40 3,036
8 106,947.50 5,437 8 63,118.50 6,497
9 103,112.17 3,500 9 62,219.43 2,502
10 107,440.69 2,840 10 63,061.86 3,075
Avg 105,946.88 4,850 Avg 62,847.82 2,502
Min 103,112.17 2,840 Min 61,465.61 6,497
Max 107,799.61 9,264 Max 64,172.08 4,379

Median Count = 10 Median Count = 20

111

Run Result Gens Run Result Gens
1 48,999.46 5,110 1 39,873.32 2,639
2 49,184.37 4,183 2 40,369.35 4,429
3 48,497.59 4,029 3 38,474.95 5,355
4 50,213.97 2,669 4 39,976.31 8,263
5 49,754.66 2,667 5 39,634.08 6,053
6 49,903.80 4,340 6 40,560.67 2,656
7 50,640.15 2,502 7 39,049.03 5,868
8 49,672.71 4,266 8 39,931.96 4,729
9 50,646.75 6,517 9 40,794.54 3,734
10 49,503.97 7,486 10 39,726.05 6,125
Avg 49,701.74 4,377 Avg 39,839.03 4,985
Min 48,497.59 2,502 Min 38,474.95 2,639
Max 50,646.75 7,486 Max 40,794.54 8,263

Median Count = 30 Median Count = 40

Run Result Gens Run Result Gens
1 35,084.50 3,648 1 29,459.56 4,165
2 33,739.31 2,518 2 30,143.47 5,589
3 33,357.79 3,372 3 30,206.09 3,571
4 34,531.40 3,246 4 30,139.36 5,987
5 33,597.17 4,648 5 29,517.45 4,228
6 34,090.07 6,050 6 29,735.12 8,242
7 34,273.05 4,925 7 29,879.32 3,507
8 33,572.55 5,000 8 30,111.13 2,953
9 33,877.51 6,579 9 29,656.40 5,708
10 33,532.99 4,325 10 28,377.56 3,151
Avg 33,965.63 4,431 Avg 29,722.55 4,710
Min 33,357.79 2,518 Min 28,377.56 2,953
Max 35,084.50 6,579 Max 30,206.09 8,242

Median Count = 50 Median Count = 60

112

Run Result Gens Run Result Gens
1 25,587.96 3,074 1 24,095.99 4,938
2 26,801.11 2,903 2 24,034.13 4,108
3 26,923.99 3,254 3 24,541.24 5,258
4 26,396.11 3,562 4 24,453.69 5,419
5 25,876.32 5,782 5 24,720.88 3,824
6 26,297.86 2,688 6 25,135.21 3,522
7 26,017.88 3,354 7 24,076.79 8,617
8 26,257.00 2,503 8 24,367.81 2,966
9 26,280.86 3,812 9 23,009.31 5,595
10 26,209.81 5,168 10 24,469.73 7,360
Avg 26,264.89 3,610 Avg 24,290.48 5,161
Min 25,587.96 2,503 Min 23,009.31 2,966
Max 26,923.99 5,782 Max 25,135.21 8,617

Median Count = 70 Median Count = 80

Run Result Gens Run Result Gens
1 22,477.85 2,640 1 19,838.37 4,410
2 22,092.77 4,303 2 19,383.77 4,093
3 22,010.09 2,523 3 20,329.31 2,949
4 22,535.11 3,462 4 20,674.73 3,173
5 21,510.62 4,910 5 20,751.34 3,004
6 22,024.51 4,563 6 20,210.40 3,040
7 21,889.61 4,099 7 19,966.90 6,392
8 21,369.24 2,725 8 20,150.28 5,823
9 21,271.45 2,939 9 20,122.19 3,896
10 21,860.57 5,451 10 20,200.20 2,598
Avg 21,904.18 3,762 Avg 20,162.75 3,938
Min 21,271.45 2,523 Min 19,383.77 2,598
Max 22,535.11 5,451 Max 20,751.34 6,392

Median Count = 90 Median Count = 100

113

Algorithm DAGA-MU; Problem; Set fl1400; Crossover Technique 1

Run Result Gens Run Result Gens
1 103,324.29 3,579 1 60,450.53 4,556
2 102,425.47 4,273 2 58,461.03 7,200
3 101,841.67 2,991 3 60,356.07 3,334
4 103,525.47 7,936 4 61,085.19 3,880
5 104,657.19 2,908 5 60,321.62 7,530
6 102,752.87 5,320 6 60,028.90 5,715
7 104,210.93 4,567 7 60,326.36 6,239
8 103,191.44 5,222 8 61,747.33 3,549
9 103,554.74 3,575 9 61,203.48 3,008
10 103,888.05 5,741 10 60,182.91 8,501
Avg 103,337.21 4,611 Avg 60,416.34 3,008
Min 101,841.67 2,908 Min 58,461.03 8,501
Max 104,657.19 7,936 Max 61,747.33 5,351

Median Count = 10 Median Count = 20

Run Result Gens Run Result Gens
1 46,945.14 2,638 1 37,563.28 4,855
2 45,682.05 5,917 2 37,541.83 2,602
3 46,412.97 4,199 3 36,388.83 3,943
4 46,695.50 4,483 4 37,118.59 4,145
5 45,919.72 4,512 5 37,870.62 3,062
6 46,189.53 7,118 6 36,669.11 7,072
7 46,979.75 2,770 7 37,357.47 3,169
8 46,569.13 2,725 8 36,253.23 5,520
9 46,027.46 5,290 9 37,049.90 2,746
10 46,562.92 2,644 10 37,086.13 7,520
Avg 46,398.42 4,230 Avg 37,089.90 4,463
Min 45,682.05 2,638 Min 36,253.23 2,602
Max 46,979.75 7,118 Max 37,870.62 7,520

Median Count = 30 Median Count = 40

114

Run Result Gens Run Result Gens
1 31,552.07 3,334 1 26,649.38 7,372
2 31,699.40 2,946 2 26,715.01 3,386
3 31,924.53 3,143 3 26,379.66 2,571
4 31,167.75 3,576 4 26,768.11 4,932
5 31,953.02 3,613 5 26,675.90 4,152
6 31,728.72 2,935 6 26,863.64 4,749
7 30,769.12 4,881 7 26,440.20 3,441
8 31,603.40 4,952 8 27,173.60 3,518
9 30,492.70 5,870 9 26,596.05 3,593
10 31,135.56 5,495 10 26,634.56 6,855
Avg 31,402.63 4,075 Avg 26,689.61 4,457
Min 30,492.70 2,935 Min 26,379.66 2,571
Max 31,953.02 5,870 Max 27,173.60 7,372

Median Count = 50 Median Count = 60

Run Result Gens Run Result Gens
1 23,632.85 2,846 1 21,953.28 5,271
2 23,377.32 6,169 2 21,475.42 6,537
3 23,222.47 6,516 3 21,289.82 3,520
4 23,363.25 6,827 4 21,949.51 2,566
5 23,732.98 5,367 5 21,880.16 8,993
6 23,852.30 2,683 6 21,560.90 3,260
7 23,853.53 3,214 7 21,527.88 3,682
8 23,608.91 3,642 8 21,623.40 6,629
9 23,180.84 4,873 9 21,448.33 4,381
10 24,067.28 3,656 10 21,900.68 3,454
Avg 23,589.17 4,579 Avg 21,660.94 4,829
Min 23,180.84 2,683 Min 21,289.82 2,566
Max 24,067.28 6,827 Max 21,953.28 8,993

Median Count = 70 Median Count = 80

115

Run Result Gens Run Result Gens
1 19,366.66 10,533 1 17,805.57 6,985
2 19,647.26 2,994 2 17,436.57 6,499
3 19,541.80 6,188 3 17,764.73 3,781
4 19,427.60 3,829 4 17,440.81 5,211
5 19,341.48 4,235 5 18,070.48 6,514
6 19,600.76 3,006 6 17,671.57 5,837
7 19,565.46 2,810 7 17,653.62 3,882
8 19,477.26 2,873 8 17,665.16 4,680
9 19,435.33 3,197 9 17,876.84 4,887
10 19,417.17 4,914 10 17,899.39 2,779
Avg 19,482.08 4,458 Avg 17,728.47 5,106
Min 19,341.48 2,810 Min 17,436.57 2,779
Max 19,647.26 10,533 Max 18,070.48 6,985

Median Count = 90 Median Count = 100

116

Reference List

Alba, E., & Dominguez, E. (2006). Comparative analysis of modern optimization tools
for the p-median problem. Statistics and Computing, 16(3), 251-260.

Alp, O., Erkut, E., & Drezner, Z. (2003). An efficient genetic algorithm for the P-Median

problem. Annals of Operations Research, 122(21-42).

Arthur, D., & Vassilvitskii, S. (2007). k-means++: The advantages of careful seeding.

Paper presented at the 18th Annual ACM-SIAM Symposium on Discrete
Algorithms, New Orleans, Louisiana.

Avella, P., Sassano, A., & Vasil’ev, I. (2007). Computational study of large-scale p-

Median problems. Mathematical Programming, 109(1):89{114, January 2007,
109(1), 89-114.

Beltran, C., Tadonki, C., & Vial, J. (2006). Solving the P-Median Problem with a Semi-

Lagrangian Relaxation. Computational Optimization and Applications, 35(2),
239-260. doi: 10.1007/s10589-006-6513-6

Bozkaya, B., Zhang, J., & Erkut, E. (2002). An efficient genetic algorithm for the p-

median problem. In Z. Drezner & H. Hamacher (Eds.), Facility Location -
Applications and Theory (pp. 179-205). Berlin: Springer.

Bremermann, H. J. (1962). Optimization through evolution and recombination. In M. C.

Yovits, G. T. Jacobi & G. D. Goldstein (Eds.), Self-Organizing Systems. New
York: Spartan Books.

Chiou, Y., & Lan, L. W. (2001). Genetic clustering algorithms. European Journal of

Operational Research, 135(2), 413-427.

Correa, E., Steiner, M., Freitas, A., & Carnieri, C. (2001). A genetic algorithm for the P-

median problem. Paper presented at the 2001 Geneticand Evolutionary
Computation Conference, San Francisco, CA.

117

DeJong, K. (1975). An analysis of the behavior of a class of genetic adaptive systems.
PhD Doctoral dissertation, University of Michigan, Ann Arbor, Michigan.

Dibble, C., & Densham, P. J. (1993). Generating intersecting alternatives in GIS and

SDSS using genetic algorithms. Paper presented at the GIS/LIS Symposium,
Lincoln, Nebraska.

Estivill-Castro, V., & Torres-Velázquez, R. (1999). Hybrid Genetic Algorithm for

Solving the p -Median Problem Lecture Notes in Computer Science, Simulated
Evolution and Learning (Vol. 1585, pp. 19-25): Springer Berlin / Heidelberg.

Fathali, J. (2006). A genetic algorithm for the p-median problem with pos/neg weights

Applied Mathmatics and Computation, 183(2), 1071-1083

Fogel, L. J., Owens, A. J., & Walsh, M. J. (1966). Artificial Intelligence through

Simulated Evolution. Hoboken, NJ: Wiley.

García-López, F., Melián-Batista, B., Moreno-Pérez, J. A., & Moreno-Vega, J. M.

(2002). The Parallel Variable Neighborhood Search for the P-Median Problem.
Journal of Heuristics, 8(3), 375-388. doi: 10.1023/a:1015013919497

Goldberg, D. (1989). Genetic Algorithms in Search, Optimizaiton and Machine Learning.

Reading, MA: Addison-Wesley.

Hakimi, S. L. (1964). Optimum locations of switching centers and the absolute centers

and medians of a graph. Operations Research, 12(3), 450-459.

Hakimi, S. L. (1965). Optimum Distribution of Switching Centers in a Communication

Network and Some Related Graph Theoretic Problems. Operations Research,
13(3), 462-475.

Hansen, P., & Mladenovic, N. (1997). Variable neighborhood search for the p-median.

Location Science, 5(4), 207-226.

Hansen, P., & Mladenovic, N. (2001). Variable neighborhood search: Principles and

applications. European Journal of Operational Research, 130(3), 449-467.

Hansen, P., & Mladenovic, N. (2007). Complement to a comparative analysis of

heuristics for the p-median problem. Statistics and Computing, 18(1), 41-46.

Hansen, P., Mladenović, N., & Perez-Britos, D. (2001). Variable Neighborhood

Decomposition Search. Journal of Heuristics, 7(4), 335-350. doi:
10.1023/a:1011336210885

Holland, J. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, MI:

University of Michigan Press.

118

Hosage, C. M., & Goodchild, M. F. (1986). Discrete space location-allocation solutions

from genetic algorithms Annals of Operations Research, 6(2), 35-46.

Laszlo, M., & Mukherjee, S. (2006). A genetic algorithm using hyper-quadtrees for low-

dimensional k-means clustering. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 28(4).

Laszlo, M., & Mukherjee, S. (2007). A genetic algorithm that exchanges neighboring

centers for k-means clustering. Pattern Recognition Letters, 28(16), 2359–2366.

Megiddo, N., & Supowits, K. J. (1984). On the complexity of some common geometric

location problems. SIAM J. Computing, 31(1), 182-195.

Mladenovi, N., Brimberg, J., Hansen, P., & Moreno-Pérez., J. A. (2007). The p-median

problem: A survey of metaheuristic approaches. European Journal of Operational
Research, 179(3), 927.

Rechenberg, I. (1973). Evolutionstrategie: Optimierung Technisher Systeme nach

Prinzipien der Biologischen Evolution. Stuttgart: Frommann-Holzboog.

Reese, J. (2005). Solution methods for the p-median problem: An annotated bibliography.

Networks, 48(3), 125 - 142.

Reinelt, G. (1991). TSPLIB - A traveling salesman problem library. ORSA Journal On

Computing, 3(4), 376-384.

Resende, M., & Werneck, R. (2004). A hybrid heuristic for the p-median problem.

Journal of Heuristics, 10(1), 59-88.

Revelle, C., & Swain, R. (1970). Central facilities location. Geographical Analysis, 2, 30-

42.

Rolland, E., Schilling, D. A., & Current, J. R. (1996). An efficient tabu search procedure

for the p-median problem. European Journal of Operational Research, 96(2),
329-342.

Samet, H. (2006). Foundations of Multidimensional and Metric Data Structures. San

Francisco, CA: Morgan Kaufmann.

Tietz, M. B., & Bart, P. (1968). Heuristic methods for estimating the generalized vertex

median of a weighted graph. Operations Research, 16(5), 955-961.

Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing 5, 65-85.

	Nova Southeastern University
	NSUWorks
	2011

	A Domain Aware Genetic Algorithm for the p-Median Problem
	Dennis Vickers
	Share Feedback About This Item
	NSUWorks Citation

	Microsoft Word - Dissertation Report.docx

