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The p-median problem is an NP-complete combinatorial optimization problem 
often used in the fields of facility location and clustering. Given a graph with n 
nodes and an integer p < n, the p-median problem seeks a set of p medians such 
that the sum of the distances of the n nodes from their nearest median is 
minimized. This dissertation develops a genetic algorithm that generates solutions 
to the p-median problem that improves on previously published genetic 
algorithms by implementing operators that exploit domain specific information. 
More specifically, this GA explores the following: 
(1) The advantages of using “good” solutions generated using extant heuristics 

in the initial generation of chromosomes. 
(2) The effectiveness of a crossover operation that exchanges centers in the 

same neighborhood rather than exchanging arbitrarily chosen subsets of 
centers.  

(3) The efficacy of using a biased mutation operator that favors replacing 
existing medians from less fit chromosomes with non-median nodes from 
the same neighborhood as the median being replaced. 

 
Using published problem sets with known solutions, this dissertation examines 
solutions identified by the new genetic algorithm in order to determine the 
accuracy, efficiency and performance characteristics of the new algorithm. In 
addition, it tests the contribution of each of the algorithm’s operators by 
systematically controlling for all the other factors. 
 
The results of the analysis showed that integrating operators that exploited 
domain specific information did have an overall positive impact on the genetic 
algorithm. In addition, the results showed that using a structured initial population 
had little impact on the algorithm’s ability to find an optimal solution but it did 
create a better initial solution and allowed the algorithm to produce a relatively 
good solution early in the search. Also, the analysis showed that a directed 
approach to crossover operations was effective and produced superior solutions. 
Finally, the analysis showed that a directed approach toward mutation did not 
have a large impact on the overall functionality of the algorithm and may be 
inferior to an arbitrary approach to mutation. 
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Chapter 1 

Introduction 

 

Problem Statement and Goals 

 

 This dissertation presents a new genetic algorithm for the p-median problem. The 

p-median problem is a graph theory problem used extensively in the field of discrete 

location theory for facility location analysis. In the p-median problem, defined on a 

complete directed graph with n nodes,  p facilities have to be located on a graph such that 

the sum of Euclidian distances between the nodes of the graph and the facilities is 

minimized (Hakimi, 1964, 1965). This is often referred to as a “minisum” problem. A 

distinguishing characteristic of the p-median problem is that the facilities (medians) must 

be selected from existing points in the problem set. The p-median problem has been 

shown to be an NP-hard problem (Megiddo & Supowits, 1984) and becomes 

computationally intractable as the problem size increases. There has been a significant 

amount of research on metaheuristic approaches to the p-median problem (Mladenovi, 

Brimberg, Hansen, & Moreno-Pérez., 2007; Reese, 2005) with widely varying degrees of 

success (Alba & Dominguez, 2006). One approach in particular, genetic algorithms, has 

been only lightly studied as applied to the p-median problem, but shows some promise 

(Alp, Erkut, & Drezner, 2003; Bozkaya, Zhang, & Erkut, 2002; Chiou & Lan, 2001; 

Correa, Steiner, Freitas, & Carnieri, 2001; Dibble & Densham, 1993; Estivill-Castro & 



2 
 

 
 

Torres-Velázquez, 1999; Hosage & Goodchild, 1986). This dissertation examines the 

impact of integrating domain knowledge into a genetic algorithm as applied to the p-

median problem.  

 

The P-median Problem 

 

 The p-median problem requires the selection of p objects to serve as centers (or 

medians) for their partition. The goal is to choose medians and assign all objects to their 

nearest median with the objective of minimizing the sums of the distances between the 

centers and objects in their partition. An important aspect of the p-median problem is that 

the median of each partition is an actual object. ReVelle and Swain (1970) provided an 

integer programming formulation for the discrete p-median problem, given in Figure 1. 

 Like many problems of combinatorial data analysis, p-median has been shown to 

be NP-hard (Megiddo & Supowits, 1984) for an arbitrary p.  The number of feasible 

solutions for the p-median problem is N!/(p!(N −p)!). For example, if N = 100 and p = 2, 

there are only 4950 feasible solutions, which could easily be enumerated. However, if N 

= 100 and p = 10, there are more than 17 trillion solutions. This highlights one of the 

characteristics of the p-median problem, which is that as the size of the problem instance 

increases, it rapidly becomes too large for total enumeration. 

 

Heuristic Approaches To the P-median Problem 

 

 Given the size characteristic of realistic p-median problems, researchers have 

developed heuristics that are capable of yielding good quality solutions without proof of 
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their optimality, in a practical time (Mladenovi, et al., 2007). Two heuristics that are 

promising are the Tabu Search heuristic (Rolland, Schilling, & Current, 1996) and the 

Variable Neighborhood Search (VNS) heuristic (Hansen & Mladenovic, 1997). These 

heuristics have several common characteristics that allow them to exploit promising local 

search areas without sacrificing exploration of the global search space. They use a 

structured search space, made up of multiple “neighborhoods”. Though they have 

differing definitions of a neighborhood, they each use a local search within a 

neighborhood to concentrate on promising solutions. They both have methods for moving 

the search outside of a neighborhood to minimize the risk of being trapped at a local 

Minimize  ∑ ∑ ୀଵୀଵݔ݀ݓ .       (1) 

Subject to ∑ ୀଵݔ = 1, ∀݅,       (2) 

  ∑ ݕ = ୀଵ	 ,        (3) 

ݔ  	≤ ,݅∀			,ݕ	 ݆,       (4) 

ݔ  = ,1	ݎ	0 ∀݅, ݆, 
ݕ  = ,1	ݎ	0 ∀݆, 
Where 
 n	=	total	number	of	demand	points,		 p	=	number	of	medians,		 wi	=	demand	at	point	i,		 dij	=	distance	between	points	i	and	j,	
ݔ  = 	 ൜1	if	݅	is	assigned	to	median	݆,0	otherwise,																															 
ݕ  = 	 ቄ1	if	the	vertex	݆	is	a	median,0	otherwise.																												  
 
Condition (2) prevents a demand point i from being free, i.e. not having an assigned 
median. Condition (3) establishes the number of medians. The last condition (4) 
ensures the coherence of the solutions, that is, a demand point i cannot be assigned to 
the median j (yj = 1), which is not established as median (yj = 0). 

 P-median Problem Formulation Figure 1. P-median Problem Formulation 



4 
 

 
 

optimum. This dissertation adapts these characteristics of Tabu Search and VNS to a 

Genetic Algorithm heuristic. Specifically, it uses a structured search space, that is, a 

spatial distribution of individuals, to generate initial populations.  In addition, it 

concentrates the search by developing a cross-over operator that works within a spatially 

defined neighborhood when generating offspring. Lastly, it develops a mutation operator 

that is capable of introducing changes to the offspring that force it to move outside of a 

defined neighborhood in order to adequately explore the global search space. 

 

Applying the Genetic Algorithm Heuristic to the P-median Problem 

 

 The canonical genetic algorithm, as defined by Holland (1975) and applied to the 

p-median problem by Hosage and Goodchild (1986), encoded the search space as a 

binary string. Dibble and Densham changed that and encoded the search space as an 

index of a set of nodes (1993). This change yielded improved results that were 

comparable to the interchange method used by Tietz and Bart (1968). The algorithm in 

this dissertation takes this a step further and encodes the search space in a way that 

preserves the spatial relationship of the nodes.  

 There has been very little research published regarding methods for generating the 

initial generation of chromosomes when using a genetic algorithm on the p-median 

problem. The approach taken by Hosage and Goodchild (1986) was to randomly generate 

the first generation. With the exception of one paper (Chiou & Lan, 2001), all 

subsequently published research in this area has taken the same approach. Similar to 

Chiou and Lan, the algorithm in this dissertation will take an approach that creates a 
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structured initial generation from a spatially distributed search space. This approach will 

use an algorithm to uniformly partition the search space into non-overlapping regions and 

then select a gene from each region to form a chromosome that will be added to the pool 

of chromosomes that compose the initial generation. 

 Hosage and Goodchild (1986)  used a strictly random method for selecting 

individuals from a population for use in generating offspring. Subsequent to that research, 

several techniques have been developed that attempt to mate fitter individuals from the 

population with the expectation that the resulting offspring will also be fit (Bozkaya, et 

al., 2002; Correa, et al., 2001). The approach in this paper adapts a technique used by 

Laszlo and Mukherjee (2006) on the k-means problem where they used roulette wheel 

sampling to select individuals based on their scaled fitness. 

 In a genetic algorithm the crossover operator acts to merge the genes of the 

chromosomes selected for reproduction in a prescribed way to produce offspring. The 

canonical genetic algorithm as applied by Hosage and Goodchild (1986) splits the parents 

into two, creating four partial chromosomes, and then these four pieces are crossed and 

re-combined to create two new chromosomes, one of which is randomly discarded. This 

technique was shown to be inefficient in that it could produce offspring identical to the 

parents and could decrease diversity by reducing the number of distinct solutions in the 

population (Bozkaya, et al., 2002). Subsequent research sought to improve the crossover 

operator with more deterministic techniques as well as adapting it to alternate encoding 

schemes (Alp, et al., 2003; Bozkaya, et al., 2002). The mutation operator seeks to add 

diversity in order to more fully explore the workspace. Typically, it randomly selects a 

small number of genes from a potential offspring and replaces them with randomly 
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selected new genes. This dissertation introduces crossover and mutation operators that 

consider spatial distances as part of their operation. In doing so, the operators can 

maintain the diversity necessary to support adequate exploration of the search space and 

minimize the operational cost associated with exploiting promising solutions. 

 

Research Goals 

 

 The goal of this dissertation is to examine the impact of integrating domain 

knowledge into a genetic algorithm as applied to the p-median problem. The genetic 

algorithm uses a method for encoding that incorporates spatial location; creates a 

structured initial population using domain knowledge; is biased toward fitter 

chromosomes when selecting mating pairs; generates offspring with a spatially sensitive 

crossover operator; and ensures diversity with a mutation operator that is both biased and 

spatially sensitive. Using published problem sets that have established “best known” 

solutions, the study examines solutions identified by the genetic algorithm in order to 

determine the accuracy, efficiency and performance characteristics of the genetic 

algorithm. In addition it tests the contribution of each of the algorithm’s operators by 

systematically controlling for all the other factors.  

 

Significance & Relevance 

 

 Using a genetic algorithm to find solutions to the p-median problem is not new. It 

was first studied in 1986 (Hosage & Goodchild, 1986) and has been the subject of several 
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subsequent studies with the most recent being published in 2006 (Fathali, 2006). In 

reading these studies it can be seen that decisions made by the researchers with regards to 

characteristics of the algorithm such as encoding and genetic operators has a significant 

impact on the efficiency of the algorithm and the accuracy of the results. These decisions 

are able to move the algorithm from being inferior to other metaheuristic techniques to 

being competitive and in some situations superior to other techniques (Mladenovi, et al., 

2007) while maintaining the basic characteristics of genetic algorithms as defined by 

Holland (1975). 

 The studies to date, while significant, by no means exhaust the potential for 

improvement that additional research into the characteristics of genetic algorithms as 

applied to the p-median problem could bring. For example, little research has been 

published on what impact the starting point, or initial generation of chromosomes, has on 

the quality of the results. In addition, exploiting the spatial nature of the p-median 

problem to improve selection, crossover and mutation operators through the use of 

“neighborhoods” has not been considered in any of the published literature. This is a 

concept that could potentially yield significant positive results.   

 This dissertation works within the characteristics of a canonical genetic algorithm. 

It explores the components of a genetic algorithm as applied to the p-median problem 

while maintaining their simplicity and ease of implementation. It also exploits domain 

knowledge where possible with the goal of better understanding how the use of domain 

knowledge can result in an improved algorithm. 
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Chapter 2 

Review of the Literature 

 

 This chapter provides a review of prior published research that is relevant to the 

dissertation topic.  The focus of these papers either highlights the problem being 

addressed or are being used to help formulate the research. The prior published research 

starts with a review of the history and theoretical framework of Genetic Algorithms.  

Next there is a review of research of other heuristic techniques specifically as they are 

applied to the p-median problem. Finishing with a review of published research in which 

the authors have developed what would generally be accepted as a genetic algorithm to 

specifically solve the p-median problem. This chapter will conclude with a summary of 

what is known based on the published literature and how this dissertation extends that 

body of knowledge.  

 

Published Research on Genetic Algorithms 

 

 John Holland first published his concepts about genetic algorithms in his book 

Adaption in Natural and Artificial Systems (1975). Holland’s original goal was not to 

design algorithms to solve specific problems, but rather to formally study the 

phenomenon of adaption as it occurs in nature and to develop methods for mimicking 

natural selection with computer systems. Holland presented the genetic algorithm as an 
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abstraction of biological evolution and gave the theoretical framework for adaptation 

under the genetic algorithm. 

 Holland’s influence was very important, but other researchers with different 

backgrounds were also involved in developing similar ideas. German researcher, Ingo 

Rechenberg (1973) developed the idea of the “Evolution Strategy”. In the United States, 

Bremermann (1962) and others (Fogel, Owens, & Walsh, 1966) published their idea for 

what they called “Evolutionary Programming”. While these ideas all had unique 

characteristics, they all incorporated the Darwinian concepts of mutation and selection to 

incrementally move toward goals. Unlike these earlier evolutionary algorithms, which 

focused on mutation, Holland’s genetic algorithm also introduced the idea of 

recombination, which at that time was unique to genetic algorithms. 

 In 1975 one of Holland’s doctoral students completed a doctoral thesis that 

provided a comprehensive treatment of the genetic algorithm’s capabilities with regard to 

optimization (DeJong, 1975). There was little published research after that until the First 

International Conference on Genetic Algorithms was held in Pittsburgh, Pennsylvania in 

1985. Subsequent to that conference, another graduate student of Holland’s, David 

Goldberg, wrote an influential, and many consider seminal book on the subject, Genetic 

Algorithms in Search, Optimization, and Machine Learning (Goldberg, 1989). 

 A theory of why genetic algorithms work is explained in detail in the research 

published by Whitley (1994) where he examines schema theory and intrinsic parallelism. 

Conceptually, the theory refers to the ability of the algorithm to preserve the common 

sections of the solutions being evaluated that have superior fitness values. This happens 

when, as the algorithm processes, some sub-sets of the solution sets being evaluated 
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converge and together form a particular schema. The algorithm consistently disregards 

schemata that correspond to inferior solutions and evaluates more and more of the 

schemata that correspond to solutions with better fitness values. 

 In Holland’s early research (1975) he emphasized the need for a general purpose 

genetic algorithm rather than domain specific implementations. However, in any actual 

implementation of a genetic algorithm, understanding the domain is necessary in order to 

make key decisions with regard to the design of the algorithm. Adaptively finding 

structures that perform well in a given environment is central to the concept of genetic 

algorithms (Whitley, 1994). If those structures are solutions to a problem and the 

environment is a particular domain, it is necessary to understand the domain in order to 

judge the “goodness” of a solution. In other words, solutions are only valid in the context 

of a given domain. 

 

Published Research on Heuristic Approaches to the P-median Problem 

 

 A thorough survey of the literature on heuristic methods for solving the p-median 

problem was developed by Joshua Reese (2005). While this survey does a good job of 

annotating the existing literature it doesn’t provide quantitative details on the methods or 

information on how the methods compare relative to each other. Fortunately, two recently 

published studies make up for the deficiency by providing a more detailed analysis of the 

heuristic approaches to solving the p-median problem (Alba & Dominguez, 2006; 

Mladenovi, et al., 2007). Mladenovi et al divide the heuristics into two groups labeled 

Classic Heuristics and Metaheuristics. The techniques identified as Classic Heuristics are 
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shown to not be competitive with the techniques identified as Metaheuristics as the 

problem size increases. Mladenovi et al define Metaheuristics as “a general framework to 

build heuristics for combinatorial and global optimization problems.” The techniques 

Mladenovi et al identified as Metaheuristics include: Tabu search, Variable neighborhood 

search, Genetic algorithm, Scatter search, Simulated annealing, Heuristic concentration, 

Ant colony optimization, Neural networks, Decomposition, and Hybrids. Most of these 

techniques were applied to either the OR-Library or TSP-Library or sometimes both. In 

almost every case, the metaheuristic showed results that greatly exceeded the classic 

heuristic approaches. 

 While most of these techniques show the value of a heuristic approach to 

combinatorial problems in general and the p-median problem specifically, they do not 

have a direct influence on this dissertation. Two of the techniques do have a more direct 

influence (Hansen & Mladenovic, 1997; Rolland, et al., 1996). In the Tabu Search 

procedure developed by Rolland et al they introduce the concept of a “neighborhood” to 

help focus the search on promising solutions. The neighborhood is defined as the set of 

solutions that can be reached by either adding a single facility or dropping a single 

facility from the set of open facilities. As these moves are performed, tabu restrictions are 

used to avoid moving back to solutions that have already been considered. Tabu 

restrictions also enforce the neighborhood concept which allows the algorithm to 

incrementally move toward an optimal solution rather than introducing radical and 

potentially disruptive changes. Rolland et al also introduce the concept of diversification 

into their Tabu search algorithm. Diversification is used to escape from local optima and 

is implemented by using a frequency function that creates a bias against performing the 
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same move too often. This technique causes the algorithm to “diversify” its search into 

areas of the problem set that have not been investigated. Both the concept of 

“neighborhood” and “diversification” in search are relevant to this dissertation. In the 

algorithm developed in this dissertation the crossover and mutation operators implement 

a neighborhood concept that is used to support an incremental approach to optimization 

and minimize the risk of disruptive changes that may degrade the best solutions. The 

dissertation algorithm also implements a biased mutation operator. The operator favors 

selecting nodes for insertion into solutions to be evaluated that have had a lower 

frequency of prior use. 

 A Variable Neighborhood Search for the p-Median problem was presented by 

Hansen and Mladenovic (1997). In their research they also use the concept of a 

“neighborhood” to intensify the search on promising areas of the problem set. 

Neighborhoods consist of overlapping sub-sets of the problem set centered on a local 

optimum and increasing in size as they expand further from that local optimum. 

Exploration of these neighborhoods is done in two ways. The neighborhoods closest to 

the current solution are explored systematically with a local search until an improved 

solution is found. The larger neighborhoods, i.e. those far from the current solution, are 

explored partially by randomly selecting a solution from the neighborhood and starting a 

local search from there. The algorithm remains at the same solution until a better one is 

found and then jumps to that solution. Neighborhoods are ranked so that solutions are 

explored increasingly far from the current one. This ranking allows the search to intensify 

around and diversify from the current solution through an intrinsic “shaking” process. 

The level of shaking is set through an execution parameter. Hansen and Mladenovic’s 
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research is relevant to this dissertation because they hypothesize that the reason that 

Variable Neighborhood Search algorithms work is because “all good p-median solutions 

are ‘relatively’ close to each other with respect to distance”. Their published research 

supports that hypothesis. Their research is important because the algorithm developed in 

this dissertation implements genetic operators designed to take advantage of this 

localization of good solutions. 

 

Published Research on Genetic Algorithms for the P-median Problem 

 

 In the research by Hosage and Goodchild (1986), they develop the first genetic 

algorithm published in the literature that provides a solution to the p-median problem. 

Their algorithm conformed closely to the canonical genetic algorithm developed by 

Holland (1975). In their algorithm, Hosage and Goodchild encode a solution as a string of 

m binary digits which they referred to as genes. The allele of each binary digit is set to 1 

if it represents a facility and 0 if it represents a demand node. In addition to the crossover 

and mutation operators, Hosage and Goodchild incorporate an inversion operator. The 

inversion operator flips the alleles of selected chromosomes in an attempt to introduce 

additional genetic diversity. However, as the percentage of chromosomes selected for 

inversion increases, the tendency of the algorithm to perform similarly to random search 

also increases. Subsequent research by Goldberg (1989) cast doubt on the value of an 

inversion operator given its significant computational cost.  Hosage and Goodchild used a 

pre-determined number of generations as a stopping criterion, rather than a solution 

convergence because of their concern about the possibility of converging on a local 
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optimum rather than a global one. While premature convergence is a concern addressed 

in subsequent research, the use of pre-defined stopping points resulted in consistent 

results. Hosage and Goodchild’s algorithm showed poor computational results. In their 

conclusion, Hosage and Goodchild acknowledged the poor computational results but 

asserted that the value of their approach was its general applicability to a large set of 

problems rather than its computation efficiency. Hosage and Goodchild’s primary 

contribution was being the first to develop a working genetic algorithm for the p-median 

problem. 

 In Dibble and Densham (1993), each chromosome has exactly p genes, and each 

gene represents a facility index. This appears to be a better encoding technique than the 

binary string approach used by Hosage and Goodchild (1986). Dibble and Densham used 

conventional genetic operators: selection, cross-over and mutation, but no inversion 

operator. Reported results are similar to Interchange local search, but with considerably 

longer processing time. Dibble and Densham’s primary contributions were an improved 

method of encoding the problem onto the chromosome by using index pointers and a 

head-to-head comparison with another heuristic for the p-median problem. The algorithm 

developed in this dissertation further refines the encoding technique and represents each 

gene within a chromosome as a multi-dimensional vector containing the coordinates of a 

candidate median. This technique is very similar to the one used by Laszlo and 

Mukherjee (2007) in their work on a genetic algorithm for the k-means problem. 
 In Estivill-Castro and Torres-Velazquez (1999), a mutation operator is introduced 

that is based on a hill-climber algorithm. Their mutation operator randomly selected 

chromosomes for improvement using a hill-climbing technique and then reintroduced the 
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chromosome back to the population. Estivill-Castro and Torres-Velazquez also 

experiment with various crossover operators but ultimately conclude that the increased 

computational complexity offset any gains achieved by earlier convergence. While no 

operational data is presented, the authors claim that the algorithm outperforms tabu 

search and simulated annealing algorithms applied to similar data sets. By extending the 

functionality of the mutation operator, Estivill-Castro and Torres-Velazquez show that it 

can be beneficial to have potential solutions survive from generation to generation. In 

their case they did that through the mutation operator. In this dissertation algorithm a 

“hero” chromosome is introduced that represents the best solution in the current 

generation and is immune to the cross-over and mutation operators and will be passed 

intact to the next generation through the replacement operator. 

 The primary focus of a study by Chiou and Lan (2001) is clustering. It has 

relevance to this dissertation because it develops a method referred to as the Cluster Seed 

Points Method (CSPM) for developing the first generation in a genetic algorithm which 

in turn is used on the p-median problem. The operators used in the Chiou and Lan genetic 

algorithm were very standard but their use of CSPM for generating the initial population 

of chromosomes showed improvement over techniques that randomly generated the 

initial population and was the first published research that used a directed approach rather 

than a random approach. CSPM designs initial populations by manually selecting “seeds” 

from the search space for each initial population. This method, using structured initial 

populations, showed good results however it severely limits the dynamism of the 

algorithm. In addition, the experiment was applied only to a small search space. Chiou 

and Lan stated in their conclusion that the CSPM method would probably not scale well 
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to larger search spaces.  In other related research, Arthur and Vassilvitsakii (2007) used 

seeding in a k-means algorithm. While not directly applicable to the p-median problem, it 

does provide mathematical support for efficacy of seeding for combinatorial problems. 

This dissertation elaborates on the findings in these papers in support of developing a 

seeding technique that provides a good starting point for the genetic algorithm rather than 

relying on random selection. 

 In a study by Correa et al (2001) a genetic algorithm for the capacitated p-median 

problem is presented. This is a slightly different combinatorial problem than the p-

median problem in that servicing facilities have a limited capacity so the algorithm must 

consider both distance and availability when calculating cost. In a genetic algorithm, this 

primarily affects the fitness function. The chromosome encoding and the operators are 

the same for either problem and as such, this research is applicable to the research for this 

dissertation. The research by Correa et al is unique in two aspects. First, they use a 

ranking based selection operator. Specifically, prior to selection they rank chromosomes 

in the population from most fit to least fit. They then apply a selection formula that is 

biased toward chromosomes that appear early in the list thus tending toward selecting 

more fit chromosomes. This dissertation algorithm uses a conceptually similar technique, 

however instead of ranking by fitness; it uses a scaled fitness function and “roulette-

wheel” selection which gives the fitter solutions more likelihood of selection. The second 

unique characteristic of the Correa et al algorithm is something they refer to as a hyper-

mutation operator. The hyper-mutation operator randomly selects a small percentage of 

chromosomes and tries to improve their fitness by evaluating every feasible median not 

currently represented in the chromosome. This is computationally expensive and while 
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Correa et al only test it on relatively small sets of data, it seems likely that its cost would 

out-weigh its benefit as the size of the data set grew. It also seems to negate the value of 

the mutation operator, which is to encourage exploration over exploitation.  

 In a more recent study, Alp et al (2003) developed a fast genetic algorithm with 

good results. Though the algorithm they present is not a genetic algorithm in the strictest 

sense, it is an evolutionary algorithm and contains many of the elements typically found 

in a genetic algorithm. Their crossover operator uses a greedy drop procedure to generate 

new chromosomes from chromosomes randomly selected from the current population. In 

this procedure, first the chromosomes of parents are merged to produce an infeasible 

solution with m genes where m > p. Then the gene whose dropping produces the best 

fitness function is dropped. This is repeated until number of genes reaches p. This 

research shows the value of directed crossover and replacement operators. The algorithm 

generated in this dissertation further explores improved crossover and replacement 

operators by experimenting with operators that take advantage of the spatial nature of the 

p-median problem. Alp et al do not use a mutation operator in their algorithm. They 

claim that when they introduced a basic mutation operator, it did not improve the 

solution; however no data was provided to support the claim. One final aspect of the Alp 

et al algorithm is its stopping criteria. Rather than simple stopping after a pre-defined 

number of generations their algorithm stopped after the best (most fit) solution did not 

change after ⌈ ݊	ඥ ⌉ successive children failed to improve it. This appears to be an 

improvement over previously published methods that simply stopped after a fixed 

number of generations; however, it isn’t clear that it is an improvement over algorithms 

that use convergence for a set number of iterations as a stopping criterion. 
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 Alp et al (2003) also perform a fairly detailed comparison of their algorithm with 

other heuristics for the p-median problem using the OR Library. A summary of the 

comparison is that the Alp et al algorithm performs as well as or better than the other 

algorithms which include a simulated annealing heuristic and a gamma heuristic. This 

study shows that while a basic genetic algorithm cannot compete with more recent meta-

heuristics in solving the p-median problem, it is subject to improvement with some 

modifications that maintain the simplicity and ease of implementation that are 

characteristic of genetic algorithms. 

 In the most recent publication that examines the application of what would be 

strictly defined as a genetic algorithm to the p-median problem, Bozkaya et al (2002) 

present a new algorithm. Their algorithm retains all the typical characteristics of a genetic 

algorithm and outperforms previously published genetic algorithms, and the Tietz and 

Bart (1968) interchange algorithm, in terms of accuracy and processing times. The 

components of the algorithm developed by Bozkaya et al are not necessarily unique to 

their work. What is unique is their combination of previously examined components into 

a new algorithm that draws on promising techniques to form what can be considered a 

“best-of-breed” genetic algorithm. Their contribution to the body of knowledge is 

showing that while the basic genetic algorithm for the p-median problem developed by 

Hosage and Goodchild (1986) is not competitive with other techniques, a well designed 

algorithm can be, while still maintaining all the characteristics of the canonical genetic 

algorithm. There is, however, one aspect of their work that is unique and directly 

applicable to this dissertation. They use a formula for setting the number of solutions or 

chromosomes that will make up the population P of a generation. The formula they 
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introduce is given as ܲ = 	 ቜቀଵቁ ቆ ୪୬బ୪୬షభ ቇቝ and where P0 represents the probability of not 

including a node in the initial population. This technique shows significant improvement 

over other methods and is adopted in the algorithm developed for this dissertation. 
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Chapter 3 

Methodology 

 

 This dissertation examines the impact of integrating domain knowledge into a 

genetic algorithm as applied to the p-median problem. To do that, a new domain aware 

genetic algorithm (DAGA) has been developed. In addition, a set of tests are carried out 

that examine both the overall efficacy of this algorithm as well contributions of 

individual components of this algorithm. Both the algorithm and tests are described in 

more detail in the following sub-sections. 

 

Algorithm Design 

 The DAGA uses the same general structure and genetic operators as the canonical 

genetic algorithm defined by Holland (1975). This dissertation uses Holland’s theoretical 

framework and presents a domain aware genetic algorithm by developing the following: a 

scheme for encoding the problem set into genes, alleles, and chromosomes; a technique 

for generating the first generation of chromosomes; a technique for selecting 

chromosomes from the current generation for use in generating chromosomes for the next 

generation; a technique for combining chromosome pairs to create offspring 

chromosomes; and a technique for mutating new chromosomes. A description of the 

approach to each of these components is provided in the following paragraphs. 
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Encoding 

 The DAGA uses an object-oriented approach to encoding the problem set. A 

Node class is generated and an instance of this class is generated for each vector in the 

problem set. In the p-median problem, each vector represents the point coordinates of a 

specific location. The set of all locations is represented in the problem formulation as n 

and ni represents a specific location within the problem set. The Node class acts as a 

generalization of the Gene class. An instance of the Gene class is generated for each 

vector within n that is part of a feasible solution set. In the p-median problem, each vector 

within a solution set represents a median. The set of all medians within a feasible solution 

is represented by p and pi represents a specific median within a feasible solution set. A 

Chromosome class has been developed and an instance of this class is generated for each 

feasible solution set within the set of feasible solutions that represents a generation during 

the algorithm’s execution. The Chromosome class has a composite association with the 

Gene class whereby an instance of the Chromosome class is made up of p instances of the 

Gene class. A Generation class has been developed and an instance of this class is 

generated for each set of chromosomes that constitute a generation. The Generation class 

has a composite association with the Chromosome class whereby an instance of the 

Generation class is made up of P instances of the Chromosome class. A UML diagram of 

these classes and their relationships is given in Figure 2. UML Diagram. 

 The Node class attributes include an attribute containing the location vector, an 

attribute containing a count of the number of times an instance of the location is being 

used in the current generation of chromosomes, and an attribute containing a count of the 

total number of times the location has been used in any chromosome. In addition to the 



22 
 

 
 

attributes inherited from the Node class, the Gene class attributes include a unique 

identifier, a Boolean value indicating whether this instance has been selected for 

crossover operations, and a Boolean value indicating whether it has been selected for 

mutation operations. The attributes of the Chromosome class include a unique identifier 

and a value indicating the calculated fitness of the solution set. Though not shown, each 

class will also have the operators necessary to implement the classes as part of the 

algorithm. 

 

 

Figure 2. UML Diagram 

  

This object-oriented approach to encoding the problem is primarily an 

implementation issue. From a research perspective, it is not significantly different than 

the technique used by Dibble & Densham (1993). Their encoding technique is based on p 

length chromosomes where the alleles of the genes correspond to the indices of selected 

medians. Dibble and Densham showed that their encoding technique was significantly 

superior to the binary string representation technique first used by Hosage and Goodchild 

(1986). It is expected that this objected-oriented technique will be equally as effective. 
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Run-time parameters 

 Some of the characteristics of the DAGA can be controlled at the time of 

execution by setting parameter values. Specifically, there are six parameters that must be 

set at run-time that impact the operation of the algorithm and have an impact on the 

results. Those parameters are Population Size parameter, the Stopping Criteria parameter, 

the Selection Threshold parameter, the Crossover Threshold parameter, the Chromosome 

Mutation Rate parameter, and the Gene Mutation Rate parameter. 

 A formula for determining the population size P was presented by Bozkaya et al 

(2002) and sought to include as many distinct nodes in the initial population as possible. 

The DAGA adopts this formula for setting the initial population size. The formula was 

given as ܲ = 	 ቜቀଵቁ ቆ ୪୬బ୪୬షభ ቇቝ where P represents the number of chromosomes in the initial 

population and P0 is the Population Size parameter and represents the probability of not 

including a node in the initial population. Because it is likely that the probability of a 

node being introduced into the population by mutation is small, the probability of a node 

missing from the initial population should be correspondingly small. 

 The two approaches commonly used to decide when to terminate a genetic 

algorithm are setting a defined number of iterations or generations, and setting a number 

of iterations in which the best solution does not change. The DAGA takes the later 

approach and assigns a value to the Stopping Criteria parameter which is used to 

determine when to terminate the algorithm. If the number of successive generations in 

which the fittest chromosome in the population has not changed equals the Stopping 

Criteria parameter, the algorithm assumes it has found an optimal or near optimal 

solution and terminates. 
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 The Selection Threshold parameter represents the percentage of chromosomes in 

a parent generation that will be selected to act as parent chromosomes in the crossover 

operation. The Crossover Threshold parameter represents the percentage of genes in a 

parent chromosome that will be swapped with the genes from the paired parent 

chromosome to produce offspring. Both of these parameters would typically be set at 

around 50% however they are experimented with to determine how differing thresholds 

affect the algorithms operation. 

 The Chromosome Mutation Rate parameter represents the percentage of 

chromosomes in a child generation that are selected for mutation prior to being used as 

the next generation. The Gene Mutation Rate parameter represents the percentage of 

genes in a chromosome selected for mutation that will be subjected to mutation. These 

numbers must work in concert and be set low enough to avoid disrupting promising 

solutions and high enough to ensure that all nodes are considered and to encourage 

moving beyond local optima.  

Initial populations 

 A random approach to creating the initial population of chromosomes has been 

used by most published research on using a genetic algorithm to solve the p-median 

problem to date. However, several studies on other problems show that the initial 

population can have a significant impact on the effectiveness of an algorithm (Arthur & 

Vassilvitskii, 2007; Chiou & Lan, 2001; Laszlo & Mukherjee, 2006). The algorithm 

developed in this study uses a technique that uniformly partitions the search space into 

non-overlapping regions and then generates the initial population by randomly selecting a 

single gene from each region for each chromosome in the first generation. 
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 A PR KD-Tree approach is used to partition the nodes within the search space. 

Given a K dimensional search space containing N nodes, p non-overlapping regions will 

be generated (R1-p) where p represents the number of medians defined in the given p-

median problem. To create the regions, the region containing the greatest number of 

nodes is selected and divided to create two new regions. This process continues until p 

regions have been created with at least one node in each region. To divide a selected 

region, a dimension, K, is cyclically selected and a dividing point MK is selected along 

the axis represented by K. The dividing point is selected by identifying the point on the K 

axis that is the median of the node values in the region in the Kth dimension. All nodes 

with a value in the Kth dimension less than MK are added to one node and all nodes with a 

value in the Kth dimension greater than or equal to MK are added into the other. These 

two new regions will replace the original region. When complete, this technique results in 

the search space being divided up into p non-overlapping regions roughly representing 

the density of the nodes within the search space. 

 To generate the initial generation of chromosomes, individual chromosomes are 

created by selecting one node from each region to act as a gene in the chromosome being 

built. This process continues until the percentage of nodes represented as a gene in one or 

more chromosomes exceeds a given threshold parameter. When the given threshold has 

been exceeded, the chromosomes that have been created will be the initial generation. 

Selection 

 To create the next generation of chromosomes, a genetic algorithm must select 

pairs of chromosomes from the current population to be used to create chromosomes to 

be used in the next generation. The DAGA uses a two-step method for selection. In the 
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first step, the fittest chromosome, based on the fitness function, is isolated and protected 

from change by the crossover or mutation operators. When the next generation is formed, 

this chromosome will be added unchanged to the next generation. Of the remaining 

chromosomes, a fitness proportionate, or roulette wheel, technique is used to select 

mating pairs. In this technique, a random number is generated between 0 and the sum of 

the reciprocal of the fitness value of all chromosomes in the population excluding the 

“hero” chromosome. The equation for this is given as ݎ = ܴ݉݀݊ܽ ቀ0,∑ ଵ()ୀଵ ቁ 

whereas P is the number of chromosomes in the population and f() is the fitness function. 

Using r as a threshold value, incrementally sum the reciprocal of the fitness function 

value for each chromosome until the total equals or exceeds r. The chromosome that 

causes the total to equal or exceed r is selected. Using this selection technique, two 

chromosomes are selected from the current generation to act as a mating pair. If the pair 

has not previously been selected, it is added into a mating pair pool. This process repeats 

until enough mating pairs have been selected to create P offspring to be used for the next 

generation.  

 Theoretically, more fit parents will result in more fit children. This selection 

technique is biased toward fitter chromosomes but does not preclude the possibility of 

selection of less fit individuals to help ensure adequate genetic diversity. 

Crossover 

 The crossover operator’s primary function is to allow the algorithm to explore or 

“walk” the search space. It does that by creating new chromosomes made up of genes 

inherited from parent chromosomes. There are a wide variety of techniques, or operators, 

for selecting genes for crossover described in the literature. This dissertation experiments 
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with two different operators, both of which will take advantage of the spatial nature of the 

p-median problem and incorporate gene location into the process. 

 The canonical approach to the crossover operator is to simply split the parent 

chromosomes in half and then reform the halves into one or two child chromosomes. The 

simplicity of this technique can result in significant operational efficiencies. It does 

however leave much room for improvement in the efficiency of the search. The first 

technique to be explored in this dissertation seeks to improve search efficiency by 

working with individual genes and making use of a “nearest neighbor search” as defined 

by Samet (2006). The technique is shown in Figure 3. Crossover Technique 1 and 

described in the following Steps: 

Step 1. Randomly select one of the chromosomes from the mating pair and consider it 

the Primary Parent Chromosome C1. Consider the other chromosome in the pair 

as the Secondary Parent Chromosome C2. 

Step 2. Make a copy of the Primary Parent Chromosome and consider it the Primary 

Offspring Chromosome C’1.  Make a copy of the Secondary Parent Chromosome 

and consider it the Secondary Offspring Chromosome C’2. 

Step 3. Randomly select a gene p1 from C1. Find the Location L in C2 that corresponds to 

the location coordinates of p1. 

Step 4. Using a “nearest neighbor search” find the gene p2 in C2 that is closest to L. 

Step 5. In the Primary Offspring Chromosome C’1 replace gene p1 with gene p2 from the 

Secondary Parent Chromosome C2. In the Secondary Offspring Chromosome C’2 

replace gene p2 with gene p1 from the Primary Parent Chromosome C1. 
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Step 6. If the number of genes replaced in the Offspring Chromosomes is less than the 

value of the Crossover Threshold parameter given at run‐time, return to Step 3 

and process through the remaining steps again. 

Step 7. Add C’1 and C’2 to candidate pool for the next generation chromosomes. 

 

 

Figure 3. Crossover Technique 1 

 



29 
 

 
 

 

 This technique tests the concept that the additional computational expense 

required by the crossover operator is overcome by producing a more efficient walk 

through the search space. 

 The second technique seeks the middle ground between the computational 

efficiency of the canonical crossover operator and the search efficiency of the first 

crossover operator described above.  In this technique, the operator splits the 

chromosomes based on the location of the genes on a selected axis and recombines them 

to form child chromosomes with the same number of genes as their parents. The 

technique is illustrated in Figure 4. Crossover Technique 2 and described in the 

following Steps: 

Step 1. Randomly select one of the dimensions that make up the search space d. Then 

identify a cutoff value (dc) that equals p multiplied by the Crossover Threshold 

parameter given as a run‐time parameter. 

Step 2. Randomly select one of the chromosomes from the mating pair and consider it 

the Primary Parent Chromosome C1. Consider the other chromosome in the pair 

as the Secondary Parent Chromosome C2. 

Step 3. In the Primary Parent Chromosome C1, find the unselected gene with the highest 

value on the d axis (pmax) and copy that gene to Primary Offspring Chromosome 

C’1. Continue this process until the count of genes copied from C1 to C’1 equals or 

exceeds the cutoff value dc. 

Step 4. Copy all remaining unselected genes in the Primary Parent Chromosome C1 to the 

Secondary Offspring Chromosome C’2.  
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Step 5. In the Secondary Parent Chromosome C2, find the unselected gene with the 

highest value on the d axis (pmax) and copy that gene to Secondary Offspring 

Chromosome C’2. Continue this process until the count of genes copied from C2 to 

C’2 equals or exceeds the cutoff value dc. 

Step 6. Copy all remaining unselected genes in the Secondary Parent Chromosome C2 to 

the Primary Offspring Chromosome C’1. 

Step 7. Add C’1 and C’2 to candidate pool for the next generation chromosomes. 
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Figure 4. Crossover Technique 2 

 

 This technique seeks to determine whether a method that is domain aware but less 

computationally intensive than the first technique tested can yield overall improved 

results. 
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 Whichever technique proves superior, the concept is that any additional 

computational expense required will be overcome by producing a more efficient walk 

through the search space. This is accomplished by allowing the search to exploit 

crossover operations that have a higher likelihood of increasing the fitness of the child 

chromosome. 

Mutation 

 The purpose of the mutation operator in a genetic algorithm is to introduce 

diversity into the search in order to encourage a thorough evaluation of the search space. 

The most common technique described in the literature is to simply randomly select 

genes from the potential offspring and replace those genes with others. The DAGA uses a 

more deterministic technique. It is biased towards selecting nodes for insertion into 

offspring chromosome candidates that have been used fewer times as genes or medians. 

For example, a node that has been used once as a median in any chromosome in all prior 

generations will be twice as likely to be selected as one that has been used twice. This is 

done by using a proportionate or “roulette wheel” selection technique. In this technique, a 

random number is generated between 0 and the sum of the reciprocal of the usage count 

of all nodes in the problem set. The equation for this is given as ݎ = ܴ݉݀݊ܽ ቀ0,∑ ଵ௨()ାଵୀଵ ቁ whereas n is the number of nodes in the problem set and 

u() is the prior use function. Using r as a threshold value, incrementally sum the 

reciprocal of the prior use function plus one for each node in the problem set until the 

total equals or exceeds r. The node that causes the total to equal or exceed r is selected. 
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 In addition to a selection bias, the DAGA mutation operator considers gene 

location during the substitution process. Specifically, the gene being inserted will replace 

the gene that is located closest to it. 

 The purpose of using a biased selection technique is to increase the probability 

that a node within the problem set will be evaluated as a median. The purpose of 

replacing genes with new genes located nearby is to facilitate the continual improvement 

of the solution by reducing the risk of large disruptive changes to the chromosome.

 The DAGA mutation operator is illustrated in Figure 5. Mutation Operator and 

is described in more detail in the following steps:  

Step 1. Select a node pm from the set of all nodes n in the problem set using a “Roulette 

Wheel” selection technique that is biased towards nodes with lower prior use 

counts. 

Step 2. Randomly select a chromosome C’m from the offspring candidate pool C’. 

Step 3. Insert the selected node pm into the select chromosome C’m.  

Step 4. Using a “nearest neighbor” search technique, locate the gene pr located nearest 

to the inserted gene pm. 

Step 5. Remove pr from the selected chromosome C’m. 

Step 6. If the total number of chromosome selected for mutation is less than the value 

derived from the Mutation Rate parameter (Mutation Rate multiplied by 

population size), return to Step 1 and process through the all the steps again. 
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 Figure 5. Mutation Operator 

 

 

Computational Study 

 This dissertation conducts experiments to determine whether DAGA can find 

solutions that are as good or nearly as good at the solutions found by other genetic 

algorithms published in the literature. It does that by running DAGA using selected 

datasets from the TSP Library (Reinelt, 1991). The TSP Library was originally developed 

as a set of problem sets for the Travelling Sales Person problem however it has been used 

extensively in literature as a problem set for the p-median problem (Alba & Dominguez, 

2006; Avella, Sassano, & Vasil’ev, 2007; Beltran, Tadonki, & Vial, 2006; García-López, 

Melián-Batista, Moreno-Pérez, & Moreno-Vega, 2002; Hansen & Mladenovic, 1997, 
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2007; Hansen, Mladenović, & Perez-Britos, 2001; Resende & Werneck, 2004). The 

problem sets are made up of sets of two dimensional Cartesian coordinates with sets 

ranging in size from 29 to 13509 points. The three problem sets from the TSP Library 

that have been most widely used in the literature for the p-median problem are fl1400, 

pcb3038, and rl5934. A complete list of the problems sets used, their best known 

solutions, and the source of those solutions are shown in Table 1. fl1400 Problem Set,  

Table 2. pcb3038 Problem Set, and Table 3. rl5934 Problem Set. 

  

Table 1. fl1400 Problem Set 

 

 

Table 2. pcb3038 Problem Set 
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Table 3. rl5934 Problem Set. 

 

A summary of the results with descriptive analysis are presented in Chapter 4 of 

this dissertation. The complete results from all of the runs are shown in Appendix B. 

Experiments with run-time parameters 

 The algorithm allows for some parameters to be set that impact various aspects of 

the operation of the algorithm. Those parameters include: a value that the probability of 

not including a node in the initial population. This value indirectly impacts the number of 

chromosomes that make up a generation. A value that determines what percentage of 

chromosomes from the parent generation are selected to be used in the crossover 

operation to generate offspring for the next generation. A value that determines what 

percentage of genes from a chromosome undergoing crossover should be selected from 

each parent chromosome. A value that determines what percentage of chromosomes in a 

child generation are selected for mutation. A value that determines what percentage of 

genes in a chromosome undergoing mutation will be replaced. Finally, a stopping 

criterion is set. The stopping criterion determines how many generations must pass 

without the best fitness value improving in order for the algorithm to terminate. 
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 These values were tested in various combinations and a single overall best 

configuration is determined. This configuration is then used during all instances of the 

testing for both the accuracy and efficiency of the algorithm. 

Experiments on the effectiveness of the Domain Aware Genetic Algorithm 

 A test plan was used to study the effectiveness of the DAGA. The test plan 

applies variations of the algorithm to the selected problem sets and median counts. The 

first variation used the Crossover Technique 1 and the next variation used Crossover 

Technique 2. The algorithm was run ten times for ten medians in each of the selected 

problem sets. From the ten runs, the run with the lowest fitness value was identified as 

the lower bound. The run with the highest fitness value was identified as the upper 

bound, and an average of all ten runs was also calculated. For the lower bound result, 

upper bound result and average result, an error rate was calculated by subtracting the 

result from the best known solution found in the published literature and then dividing the 

result by that best known solution. This error rate was used determine the normalized 

deviation from the best known solution. Finally, the gap between the lower bound error 

rate and the upper bound error rate is calculated to determine the consistency of the 

algorithm.  

Experiments on the efficiency of the algorithm 

 In addition to testing the effectiveness of DAGA the efficiency of the algorithm 

was also tested. The efficiency was measured by tracking the fitness values for each 

generation as it evolved toward an optimal solution. The quicker, in terms of the number 

of generations, it improved from its initial position to a good and then optimal or near 

optimal solution, the more efficient the algorithm can be considered. 
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The results produced from the runs against the fl1400 problem set described 

above were further analyzed and the line graphs were created to illustrate the analysis. 

For each value of p in the test set a line graph was created that tracked two test runs 

representing the run that produced the lower bound value and the run that produce the 

upper bound value. In each graph the x-axis represents generations and the y-axis 

represents the deviation of the fitness value for the given generation, expressed as an 

error rate, from the best known solution. Each graph was constrained to the first 2500 

generations to provide a common basis of comparison between the lower and upper band 

values as well as the different values of p. By converting raw fitness scores into error 

rates, a consistent basis for comparison is provided across all test instances. This allows 

some determination to be made about how variations in the algorithm impact its ability to 

efficiently move to an optimal or near-optimal solution. 

Experiments on specific operators of the algorithm 

In addition to testing the effectiveness and efficiency of DAGA, experiments were 

conducted to determine what impact, if any, individual operators used by DAGA had on 

the overall performance of the algorithm. Specifically the impact of a structured Initial 

Generation, a location aware Crossover Operator, and a location aware Mutation 

Operator, were analyzed. In each case the operator being tested was replaced with an 

operator that acted randomly. Specifically, when the structured initial generation operator 

was tested, it was replaced with an operator that randomly selected nodes to create the 

chromosomes for the initial generation. When the crossover operator was being tested it 

was replaced with an operator that randomly selected nodes from the parent 

chromosomes for crossover. When the mutation operator was being tested it was replaced 
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with an operator that randomly selected chromosomes in the candidate generation for 

mutation and randomly selected genes within the selected chromosomes for mutation. 

These modified algorithms were each run ten times for p values 10 through 100 in the 

fl1400 problem set. The lower and upper bound results were compared with the lower 

and upper bound results from DAGA and the Best Known results from literature. In 

addition, the results were graphed to compare the efficiency of the modified algorithms as 

compared to DAGA. 
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Chapter 4 

Results 

 

The results of DAGA runs are agregated and presented in a series of tables and 

figures in this chapter. Detailed run results are listed in Appendix B. For analysis 

purposes, the algorithm was run 900 times in total to test each problem set and median 

count combination 10 times each. The execution time of the algorithm was not 

considered to be applicable to the goal of the dissertation so that statistic was not 

collected. Prior to the analysis runs, the algorithm was run approximately 100 times with 

varing problem sets in order to calibrate the runtime parameters. Based on those 

calibration runs, the runtime parameters determined to give the best overall results were 

selected and are presented in the following section. Two location-aware crossover 

operators were analyzed to determine which provided a consistently better solution. As a 

result of that analysis, crossover operator 1 described in Figure 3. Crossover Technique 

1, was selected for further analysis. It was used to analyze the efficiency of the algorithm 

and in the analysis of the selected components of the algorithm. 

 

Runtime parameters 

Five runtime paramaters were used in the algorithm. They are shown, along with 

their selected values, in Table 4. Runtime Parameters and Selected Values. The first 

runtime parameter is labeled Pnot. It was used to determine the initial population size. 
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The formula for determining the initial population size is ܲ = 	 ቜቀଵቁ ቆ ୪୬బ୪୬షభ ቇቝ where P 

represents the number of chromosomes in the initial population and P0, labeled Pnot, is 

the Population Size parameter that represents the probability of not including a node in 

the initial population. For the purposes of analysis, the probability of a node not being 

selected for the initial population was set at 5%. Thus, for a given problem set the initial 

population size is set so that 95% of the nodes are included in the initial population. 

Given that the only way for a node to be introduced into the population other than as part 

of the initial population is through the mutation operator, and the mutation rate is 

typically set low, a population size that was inclusive of a large subset of the available 

nodes was desirable. 

The next runtime parameter used was the Stopping Criteria parameter labeled as 

Stopping_Criteria. This parameter was used to determine when to stop the algorithm. If 

the number of successive generations in which the fittest chromosome in the population 

does not change equals the Stopping Criteria parameter, the algorithm assumes it has 

found an optimal or near optimal solution and terminates. For the purposes of analysis the 

value of this parameter was set at 2500. 

The Selection Threshold parameter, labeled Selection_Threshold, represents the 

percentage of chromosomes in a parent generation that will be selected to act as parent 

chromosomes in the crossover operation. The unselected chromosomes are passed 

unaltered to the candidate generation. The Crossover Threshold parameter, labeled 

Crossover_Threshold, is used in conjunction with the Selection Threshold parameter and 

represents the percentage of genes in a selected parent chromosome that are swapped 

with the genes from the paired parent chromosome to be passed to the candidate 
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generation. For the purposes of analysis the Crossover Threshold parameter was set at 

50% and the Selection Threshold parameter was set at 75%. 

The final two runtime parameters used are the Chromosome Mutation Rate, 

labeled ChromMutationRate, and the Gene Mutation Rate, labeled GeneMutation_Rate. 

The Chromosome Mutation Rate parameter represents the percentage of chromosomes in 

a candidate generation, after the selection and crossover operators have been applied, that 

are selected for mutation prior to being used as the next generation. The Gene Mutation 

Rate parameter represents the percentage of genes in a chromosome selected for mutation 

that will be subjected to mutation. These numbers must work in concert and be set low 

enough to avoid disrupting promising solutions and high enough to ensure that all nodes 

are considered and to encourage moving beyond local optima. For the purpose of 

analysis, these values were both set at 10%. 

 

Table 4. Runtime Parameters and Selected Values 

 

 

Summary of Results Using Crossover Technique 1 

Using Crossover Technique 1, illustrated in Figure 3, and problem set fl1400 

(Reinelt, 1991) consisting of 1400 nodes expressed as two dimensional cartisian 

coordinates, the algorithm was run 10 times each for median values 10, 20, 30, 40, 50, 

60, 70, 80, and 100. For each median value the run that produced the best (lowest) fitness 
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value was selected and identified as the lower bound. The result that produced the worst 

fitness function (highest) was selected and identified as the Upper Bound. The average of 

all runs for each median value was also calculated and identified as the average for the 

respective median value. Next, a Gap value was calculated that represented the 

percentage deviation between the lower bound value and the upper bound value. Finally, 

an Error Rate was calculated for both the lower bound and upper bound values that 

represented the deviation of the value from the best known solution. Table 5. Summary 

of Results Using fl1400 Problem Set and Crossover Technique 1 shows an 

aggregation of the runs and the calculated values.  

 

Table 5. Summary of Results Using fl1400 Problem Set and Crossover Technique 1 

 

 

The results show that for 10 medians the lower bound solution was as good as the 

best known solution and the upper bound solution within 1% of the best known solution. 

The average of all runs for 10 medians was also within 1% of the best known solution 

and the gap between the upper and lower bounds was no more than 1%. However, as the 

number of medians increases from 10 to 100 the deviation from the best known solution 

n p Best Known LBOUND ERR UBOUND ERR Gap Average ERR
1400 10 101,248.13 101,248.57 0.00 102,711.90 0.01 0.01 102,148.43 0.01
1400 20 57,856.32 58,859.55 0.02 60,449.35 0.04 0.03 59,600.23 0.03
1400 30 44,013.02 45,404.13 0.03 47,729.94 0.08 0.05 46,477.33 0.06
1400 40 35,002.02 36,514.57 0.04 37,741.65 0.08 0.04 37,094.65 0.06
1400 50 29,089.71 30,240.72 0.04 31,262.88 0.07 0.04 30,883.37 0.06
1400 60 25,160.40 26,620.11 0.06 27,682.85 0.10 0.04 27,204.38 0.08
1400 70 22,125.46 23,412.64 0.06 24,869.24 0.12 0.07 24,034.39 0.09
1400 80 19,870.28 20,958.67 0.05 22,280.45 0.12 0.07 21,664.30 0.09
1400 90 17,987.91 19,085.52 0.06 20,025.31 0.11 0.05 19,528.79 0.09
1400 100 16,551.20 17,580.43 0.06 18,423.08 0.11 0.05 18,129.04 0.10
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for the upper and lower bounds increased. In addition, the gap between the lower and 

upper bound values also increased. The results show that for 100 medians the lower 

bound had increased to 6% of the best known solution and the upper bound value had 

increased to 11% of the best known solution, with the gap between the upper and lower 

bounds increasing to 5%.  

Crossover Technique 1 was again used on problem set pcb3038 (Reinelt, 1991), 

consisting of 3,038 nodes expressed as two dimensional cartisian coordinates. The 

algorithm was run 10 times each for median values 10, 20, 30, 40, 50, 60, 70, 80, and 

100. As with problem set fl1400, for each median value a lower bound value was 

identified representing the best fitness value and an upper bound value was identified 

representing the worst fitness value for the given median value. Again, an average fitness 

value was calculated for each median value and a gap value was calculated that 

represented the percentage deviation between the lower bound value and the upper bound 

value. Finally an Error Rate was calculated for both the lower bound and upper bound 

values that represented the deviation of the value from the best known solution. Table 6. 

Summary of Results Using pcb3038 Problem Set and Crossover Technique 1 shows 

an aggregation of the runs and the calculated values. 
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Table 6. Summary of Results Using pcb3038 Problem Set and Crossover Technique 1 

 

 

The results show that for 10 medians the lower bound solution was within 2% of 

the best known solution and the upper bound solution within 4% of the best known 

solution. The average of all runs for 10 medians was also within 3% of the best known 

solution and the gap between the upper and lower bounds was no more than 2%. As with 

problem set fl1400, as the number of medians increases from 10 to 100 the deviation 

from the best known solution for the upper and lower bounds increased. In addition, the 

gap between the lower and upper bound values also increased. The results show that for 

100 medians the lower bound had increased to 8% of the best known solution and the 

upper bound value had increased to 10% of the best known solution. As opposed to the 

results from problem set fl1400, the gap between the lower and upper bounds remained 

consistent at 2 or 3 percent as the number of medians increased. 

In order to compare the algorithm against a larger problem set with best known 

values published in the literature, Crossover Technique 1 was used on problem set rl5934 

(Reinelt, 1991) consisting of 5,934 nodes expressed as two dimensional cartisian 

coordinates. This problem set has not been extensively used in prior studies, however 

n p Best Known LBOUND ERR UBOUND ERR Gap Average ERR
3038 10 1,213,082.03 1,235,657.95 0.02 1,260,371.11 0.04 0.02 1,247,556.71 0.03
3038 20 840,844.53 866,207.93 0.03 881,377.98 0.05 0.02 881,377.98 0.05
3038 30 677,436.66 701,283.38 0.04 719,511.81 0.06 0.03 707,884.82 0.04
3038 40 571,887.75 595,626.06 0.04 607,961.80 0.06 0.02 602,060.00 0.05
3038 50 507,655.19 529,623.54 0.04 539,099.21 0.06 0.02 535,450.39 0.05
3038 60 460,797.55 484,576.92 0.05 494,878.73 0.07 0.02 490,156.53 0.06
3038 70 426,153.31 448,061.43 0.05 457,397.02 0.07 0.02 452,880.97 0.06
3038 80 397,585.89 419,612.42 0.06 430,868.60 0.08 0.03 424,599.45 0.07
3038 90 373,488.82 396,657.80 0.06 406,429.04 0.09 0.03 401,313.33 0.07
3038 100 352,755.13 380,153.39 0.08 387,810.62 0.10 0.02 384,189.62 0.09
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Hansen, P., & Mladenovic (2001) did use it for the p-median problem and published the 

results of their study.  The algorithm was run 10 times each for the same set of median 

values as were used for fl1400 and pcb3038. As with the other problem sets, for each 

median value a lower bound value was identified representing the best fitness value and 

an upper bound value was identified representing the worst fitness value for the given 

median value. Again, an average fitness value was calculated for each median value and a 

gap value was calculated that represented the percentage deviation between the lower 

bound value and the upper bound value. An Error Rate was calculated for both the lower 

bound and upper bound values that represented the deviation of the value from the best 

known solution. Table 7. Summary of Results Using rl5934 Problem Set and 

Crossover Technique 1 shows an aggregation of the runs and the calculated values. 

 

Table 7. Summary of Results Using rl5934 Problem Set and Crossover Technique 1 

 

 

The results from problem set rl5934 were very similar to the results of rl3038. For 

10 medians the lower bound solution was within 2% of the best known solution and the 

upper bound solution within 4%. The average of all runs for 10 medians was also within 

n p Best Known LBOUND ERR UBOUND ERR Gap Average ERR
5934 10 9,794,951.00 9,948,378.50 0.02 10,147,346.07 0.04 0.02 10,071,242.64 0.03
5934 20 6,729,282.50 6,931,397.86 0.03 7,056,057.80 0.05 0.02 7,001,087.57 0.04
5934 30 5,405,661.50 5,621,758.91 0.04 5,749,487.43 0.06 0.02 5,686,562.44 0.05
5934 40 4,574,374.00 4,788,835.20 0.05 4,861,491.78 0.06 0.02 4,828,020.98 0.06
5934 50 4,053,917.75 4,227,396.73 0.04 4,308,526.23 0.06 0.02 4,269,273.97 0.05
5934 60 3,655,898.75 3,843,454.42 0.05 3,924,787.17 0.07 0.02 3,875,696.53 0.06
5934 70 3,353,885.00 3,538,947.96 0.06 3,612,279.31 0.08 0.02 3,574,529.44 0.07
5934 80 3,104,877.75 3,282,953.12 0.06 3,367,070.46 0.08 0.03 3,336,407.94 0.07
5934 90 2,903,895.25 3,090,483.72 0.06 3,153,436.64 0.09 0.02 3,124,103.23 0.08
5934 100 2,733,817.25 2,925,863.34 0.07 3,000,827.73 0.10 0.03 2,952,281.54 0.08
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3% of the best known solution and the gap between the upper and lower bounds was no 

more than 2%. As with the other problem sets, the lower and upper bound error rates 

increased as the number of medians increased. The gap between the lower and upper 

bounds remained consistent at between 2 and 3 percent. The average error rate tended 

slightly toward the upper bound rather than the lower bound. For 100 medians the 

algorithm performed slightly better for problem set rl5934 than it did for problem set 

pcb3038. 

 

Summary of Results Using Crossover Technique 2 

A second techinque for the crossover operator was also tested. This operator was 

similar to crossover technique 1 in that it too used location information to swap genes 

within a local proximity to each other, however, it used a rougher approximation and was 

less computationally intensive. Crossover techinque 2 is illustrated in Figure 4. 

Crossover Technique 2. The same test plan and problem sets were used for crossover 

technique 2 as were used for crossover techique 1. For each median value, the run that 

produced the best  fitness value was identified as the lower bound. The result that 

produced the worst fitness function was selected and identified as the Upper Bound. The 

average of all runs for each median value was also calculated and identified as the 

average for the repective median value. A Gap value was calculated representing the 

percentage deviation between the lower bound and the upper bound values. An Error 

Rate was calculated for both the lower bound and upper bound values that represents the 

deviation of the value from the best known solution. For each problem set the results 

were aggreated and are shown in Table 8. Summary of Results Using fl1400 Problem 
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Set and Crossover Technique 2, Table 9. Summary of Results Using pcb3038 

Problem Set and Crossover Technique 2, and Table 10. Summary of Results Using 

rl5934 Problem Set and Crossover Technique 2. 

 

Table 8. Summary of Results Using fl1400 Problem Set and Crossover Technique 2 

 

 

Table 9. Summary of Results Using pcb3038 Problem Set and Crossover Technique 2 

 

 

 

n p Best Known LBOUND ERR UBOUND ERR Gap Average ERR
1400 10 101,248.13 103,260.86 0.02 106,808.55 0.05 0.04 105,271.08 0.04
1400 20 57,856.32 59,620.89 0.03 62,147.94 0.07 0.04 60,873.34 0.05
1400 30 44,013.02 46,408.24 0.05 49,152.84 0.12 0.06 47,825.60 0.09
1400 40 35,002.02 37,382.30 0.07 38,803.48 0.11 0.04 38,017.36 0.09
1400 50 29,089.71 31,233.34 0.07 32,246.68 0.11 0.03 31,728.49 0.09
1400 60 25,160.40 26,923.56 0.07 28,724.73 0.14 0.07 27,927.86 0.11
1400 70 22,125.46 23,877.50 0.08 25,255.08 0.14 0.06 24,522.56 0.11
1400 80 19,870.28 21,345.60 0.07 22,544.75 0.13 0.06 22,041.43 0.11
1400 90 17,987.91 19,378.26 0.08 20,575.70 0.14 0.07 20,025.61 0.11
1400 100 16,551.20 18,000.88 0.09 19,086.31 0.15 0.07 18,595.79 0.12

n p Best Known LBOUND ERR UBOUND ERR Gap Average ERR
3038 10 1,213,082.03 1,260,629.99 0.04 1,297,922.89 0.07 0.03 1,280,633.14 0.06
3038 20 840,844.53 890,561.86 0.06 916,036.39 0.09 0.03 898,466.94 0.07
3038 30 677,436.66 718,664.68 0.06 739,512.88 0.09 0.03 728,323.61 0.08
3038 40 571,887.75 610,078.42 0.07 627,555.51 0.10 0.03 620,651.24 0.09
3038 50 507,655.19 543,697.60 0.07 559,375.54 0.10 0.03 552,289.50 0.09
3038 60 460,797.55 495,332.18 0.07 511,506.81 0.11 0.04 503,546.17 0.09
3038 70 426,153.31 462,914.87 0.09 471,806.97 0.11 0.02 466,569.02 0.09
3038 80 397,585.89 432,562.96 0.09 445,129.31 0.12 0.03 437,213.79 0.10
3038 90 373,488.82 407,519.87 0.09 420,172.50 0.12 0.03 414,208.96 0.11
3038 100 352,755.13 388,203.24 0.10 402,003.86 0.14 0.04 395,856.02 0.12
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Table 10. Summary of Results Using rl5934 Problem Set and Crossover Technique 2 

 

 

Crossover technique 2 did not perform as well as crossover techinque 1. In 

general, the results from technique 2 were two to three percent worse than techinque 1. 

Interestingly, the pattern of the results from both techniques were very similar. For 

problem set fl1400 using 10 medians the lower bound error rate was two percent above 

the best known solution and the upper bound error rate was five percent above the best 

known solution. The error rates increased as the number of medians increased with 100 

medians generating a nine percent error rate for the lower bound and a fifteen percent 

error rate for the upper bound. As with crossover technique 1, the gap in error rates 

increased steadily as the medians increased from four percent for 10 medians to  seven 

percent for 100 medians. For problem sets pcb3038 and rl5934 the results for crossover 

technique 2 were inferior to crossover technique 1, however the pattern of the results 

were very similar. For both problem sets the lower bound results for 10 medians was 

seven percent off the best known solution and the upper bound results were seven percent 

off the best known solution. As the medians increased the algorithm performed slightly 

better for problem set rl5934 than pcb3038. Using 100 medians problem set rl5934 had a 

n p Best Known LBOUND ERR UBOUND ERR Gap Average ERR
5934 10 9,794,951.00 10,209,378.78 0.04 10,466,550.99 0.07 0.03 10,348,727.14 0.06
5934 20 6,729,282.50 7,078,046.08 0.05 7,336,289.91 0.09 0.04 7,215,296.71 0.07
5934 30 5,405,661.50 5,810,175.13 0.07 5,921,169.79 0.10 0.02 5,873,645.67 0.09
5934 40 4,574,374.00 4,939,578.00 0.08 5,022,422.26 0.10 0.02 4,976,067.95 0.09
5934 50 4,053,917.75 4,341,185.98 0.07 4,473,520.48 0.10 0.03 4,397,660.06 0.08
5934 60 3,655,898.75 3,937,454.67 0.08 4,055,578.38 0.11 0.03 3,988,343.12 0.09
5934 70 3,353,885.00 3,637,122.42 0.08 3,733,648.25 0.11 0.03 3,681,146.20 0.10
5934 80 3,104,877.75 3,366,446.91 0.08 3,469,206.70 0.12 0.03 3,433,097.16 0.11
5934 90 2,903,895.25 3,167,696.17 0.09 3,267,340.80 0.13 0.03 3,218,160.52 0.11
5934 100 2,733,817.25 2,987,061.70 0.09 3,083,976.22 0.13 0.04 3,038,786.89 0.11
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nine percent lower bound error rate and pcb3038 had a ten percent lower bound error 

rate. The upper bound error rate for rl5934 was thirteen percent and the upper bound error 

rate for pcb3038 was fourteen percent. Similar to crossover technique 1 the gap in error 

rates remained consistent as the medians increased for both problem sets ranging from 

two to four percent. The average error rate for all three problem sets were also very 

similar with none of them deviating more than twelve percent from the best known 

solutions. This was still inferior to crossover technique 1 which had average error rates 

that deviated at most ten percent from the best known solution. 

 

Analysis of Run Profiles Using Crossover Technique 1 

The profiles of the DAGA runs were examined in order to gain a better 

understanding of how efficiently the algorithm evolved from its initial state to an optimal 

solution. Because the algorithm uses an elitist strategy where the fittest chromosome in 

each generation is passed on to the succeeding generation, the solution was not expected 

to degrade at any point in the run. Hypothetically, if the algorithm moved toward the 

optimal at a constant rate it would exhibit a linear descent. In practice, the solution 

improves in an uneven stepped fashion. Accelerated improvement results in steeper steps 

and decelerated improvement results in elongated steps. On the run profile a steeper 

curve indicates a quicker, in terms of the number of generations, improvement from its 

initial solution toward an optimal solution. The rate of improvement can be considered an 

indicator as to the efficiency of the algorithm in searching the problem space and 

identifying good solutions. 
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The results produced from the runs against the fl1400 problem set described 

above were further analyzed and the line graphs were created to illustrate the analysis. 

For each value of p in the test set a line graph was created that tracked two test runs 

representing the run that produced the lower bound value and the run that produced the 

upper bound value. In each graph the x-axis represents generations and the y-axis 

represents the deviation of the fitness value for the given generation, expressed as an 

error rate, from the best known solution. Each graph was constrained to the first 2500 

generations to provide a common basis of comparison between the lower and upper band 

values as well as the different values of p. By converting raw fitness scores into error 

rates, a consistent basis for comparison is provided across all test instances. This allows 

some determination to be made about how variations in the algorithm impact its ability to 

efficiently move to an optimal or near-optimal solution. As part of the graph a table was 

added that shows the generation count and fitness value each time the fitness value 

changes. These are essentially the step points in the graph and provide a more complete 

profile of the run. These values are not constrained to the first 2500 generations but 

instead are listed until the best value for the run is found. 

The run profile for 10 medians is shown in Figure 6. Run Profile for Problem 

Set fl1400 with 10 medians. In this profile the lower bound run starts with an error rate 

of 11% and the upper bound run starts at 17.8%. Within 100 generations the lower bound 

run had improved to an error rate of 3.5% and the upper bound run had improved to an 

error rate of 7.8%. After that point the evolution of the solution slowed significantly, only 

improving to 2.1% and 5.4% respectively after 2,500 generations. 
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Figure 6. Run Profile for Problem Set fl1400 with 10 medians 

 

The run profile for 20 medians is shown in Figure 7. Run Profile for Problem 

Set fl1400 with 20 medians. This profile is similar to the runs with 10 medians. The 

lower bound run starts with an error rate of 9% and the upper bound run starts at 18.3%. 

Within 100 generations the lower bound run had improved to an error rate of 5.4% and 

the upper bound run had improved to an error rate of 8.7%. After 2,500 generations the 
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runs had only improved to error rates of 2.8% and 4.4% respectively. Interestingly, the 

upper bound run took a big step at 125 generations and was producing a better solution 

than the lower bound run for a while but then failed to improve any more. 

 

 

Figure 7. Run Profile for Problem Set fl1400 with 20 medians 

 

For 30 medians the run profiles show a pattern very similar to the prior two run 

profiles with most of the improvement coming in the first 100 generations. Figure 8. Run 

Profile for Problem Set fl1400 with 30 medians illustrates the run profiles. The lower 

bound run starts with an error rate of 21.2% and the upper bound run starts at 25.4%. 
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Within 100 generations the lower bound run had improved to an error rate of 7.3% and 

the upper bound run had improved to an error rate of 13.8%. After 2,500 generations the 

runs had further improved to error rates of 3.1% and 8.4% respectively. 

 

 

Figure 8. Run Profile for Problem Set fl1400 with 30 medians 

 

The run profiles for 40 medians is shown in Figure 9. Run Profile for Problem 

Set fl1400 with 40 medians. The error rates start at 20.8% and 13.6% for the lower and 
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upper bound runs. Within 100 generations the error rates had improved to 12.6% and 

10.4%. Interestingly, the upper bound run produced a better value until generation 1,436 

when the lower bound run passed it. At 2,500 generations the lower bound run showed a 

slightly better result at 7.7% versus 7.8%. In this profile the upper bound run did not 

show comparable efficiency. 

 

 

Figure 9. Run Profile for Problem Set fl1400 with 40 medians 
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The run profile for 50 medians is shown in Figure 10. Run Profile for Problem 

Set fl1400 with 50 medians. Again, most of the improvements came early in the run. For 

the lower bound, 49.7% of the gains came in the first 100 generations and 72% came in 

the first 500. For the upper bound, 65.8% of the gains came in the first 100 generations 

and 95.5% came in the first 500. 

 

 

Figure 10. Run Profile for Problem Set fl1400 with 50 medians 
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The 60 median run is shown in Figure 11. Run Profile for Problem Set fl1400 

with 60 medians. As with the eariler runs the algorithm shows good efficiency early and 

than slows rapidly. For the lower bound, 62.8% of the gains came in the first 100 

generations and 84.9% came in the first 500. For the upper bound, 95.2% of the gains 

came in the first 100 generations and further gains did not occurr until generation 1039. 

 

 

Figure 11. Run Profile for Problem Set fl1400 with 60 medians 
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The 70 median run is shown in Figure 12. Run Profile for Problem Set fl1400 

with 70 medians. It shows good efficiency early and then again slows rapidly after 200 

or 300 generations. For the lower bound, 62.8% of the gains came in the first 100 

generations and 84.9% came in the first 500. For the upper bound, 95.2% of the gains 

came in the first 100 generations and further gains did not occurr until generation 1039. 

 

Figure 12. Run Profile for Problem Set fl1400 with 70 medians 
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The run profile for 80 medians is shown in Figure 13. Run Profile for Problem 

Set fl1400 with 80 medians and shows a similar pattern as the other runs. 

 

Figure 13. Run Profile for Problem Set fl1400 with 80 medians 
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The run profiles for 90 and 100 medians against the fl1400 problem set are shown 

in Figure 14. Run Profile for Problem Set fl1400 with 90 medians and Figure 15. Run 

Profile for Problem Set fl1400 with 100 medians, respectively. Even more than the 

other runs, these two runs show great efficiency early with over 70% of the improvement 

coming in the first 100 generations.  After that, the progress slows markedly especially 

for the upper bound runs. 

 

 

Figure 14. Run Profile for Problem Set fl1400 with 90 medians 
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Figure 15. Run Profile for Problem Set fl1400 with 100 medians 

 

All of the runs showed roughly the same pattern. Most of the progress, at least 

50% in every case, is made in the first 100 generations. After that the progress started to 

slow and after 500 generations at least 70% of the progress had been made for every run. 

After 500 generations progress was very slow, if at all, with many generations necessary 
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to find the next step. This pattern of early efficiency and then rapid decline seems to be 

an indicator that the algorithm is consistently getting trapped in a local optimum. 

 

Summary of Results Using an Unstructured Initial Generation 

An additional test was created to determine the impact of the technique used by 

DAGA to create the initial generation on the overall efficacy of the algorithm. The initial 

generation creation technique used by DAGA partitioned the problem set into spatially-

oriented regions and selected nodes from each region evenly to create the chromosomes 

that populated the initial generation. Refer to the Algorithm Design section in the 

Methodology Chapter of this paper for a more detailed description of the technique used 

by DAGA. This technique created a structured initial generation. In order to test the 

efficacy of this technique, a new algorithm was created that creates the initial generation 

by randomly selecting nodes from the problem set and building chromosomes until the 

initial generation was fully populated. This is the technique used in the canonical and 

most other genetic algorithms used for the p-median problem. With the exception of the 

technique used for the initial generation, all other aspects of the algorithm were identical 

to DAGA using Crossover Operator Technique 1. This new algorithm was identified as 

DAGA-IG. The modified algorithm was run ten times each for p values 10 through 100 

in the fl1400 problem set. The lower and upper bound results were compared with the 

lower and upper bound results from DAGA using crossover technique 1 and the Best 

Known results from literature. In addition, the results were graphed to compare the 

efficiency of the modified algorithms as compared to DAGA. Table 11. Fitness Values 

Using an Unstructured Initial Generation and Table 12. Error Rates Using an 
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Unstructured Initial Generation compare and summarize the results generated by 

DAGA-IG with the results produced by DAGA and the best known results. Table 13. 

Deviation From DAGA When Using an Unstructured Initial Generation compares 

the results produced by DAGA-IG directly with the results produced by DAGA. 

 

Table 11. Fitness Values Using an Unstructured Initial Generation 

 

 

Table 12. Error Rates Using an Unstructured Initial Generation 
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Table 13. Deviation From DAGA When Using an Unstructured 
Initial Generation 

 

 

The results produced by DAGA-IG were usually inferior to those produced by 

DAGA but only slightly inferior. This result was consistent with expectations. A 

structured initial generation would be expected to provide a better starting solution but 

not necessarily a better final solution. The structured approach’s value to the algorithm is 

to make the algorithm more efficent by providing a superior starting point. To illustrate 

this, the run profiles from DAGA-IG are compared with the run profiles from DAGA. In 

this comparison the lower bound results from both algorithms are tracked on a single 

graph and the stepped solutions are accumulated into an associated table. All of the run 

profiles are shown in Appendix A. The results of the comparison show that for almost 

every median count the starting position of DAGA is significantly superior to DAGA-IG. 

It also shows that the while the structured approach provides better efficiency early in the 

run, that by 2,500 generations that advantage is largely gone and the end-state does not 

consistently vary in a significant way. 
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Summary of Results Using a Random Crossover Operator 

A test was created to determine the impact of the crossover operator used by 

DAGA to create candidate chromosomes for the next generation on the generated 

solutions. DAGA tested two similar but distinct crossover operators. The test showed that 

the first technique consistently produced better results. This crossover operator selected a 

gene from each of the parent chromosomes that were spatially close to each other in the 

search space to swap in the candidate chromosomes. Refer to the Algorithm Design 

section in the Methodology Chapter of this paper for a more detailed description of 

crossover operator 1 used by DAGA. The operator is illustrated in Figure 3. Crossover 

Technique 1. In order to test the impact of this crossover operator on DAGA a new 

algorithm was created that used a crossover operator that randomly selected genes for 

crossover with no bias for their location. This algorithm was designated as DAGA-CO. 

The DAGA-CO crossover operator is functionally similar to the technique used by most 

other genetic algorithms in the literature used for the p-median problem. With the 

exception of the crossover operator, all other aspects of the algorithm were identical to 

DAGA using Crossover Operator Technique 1. The modified algorithm was run ten times 

each for p values 10 through 100 in the fl1400 problem set. The lower and upper bound 

results were compared with the lower and upper bound results from DAGA using 

crossover technique 1 and the Best Known results from literature. Table 14. Fitness 

Values Using a Random Crossover Operator and Table 15. Error Rates Using 

Random Crossover Operator compares and summarizes the results generated by 

DAGA-CO with the results produced by DAGA and the best known results. Table 16. 
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Deviation From DAGA When Using a Random Crossover Operator compares the 

results produced by DAGA-CO directly with the results produced by DAGA. 

 

Table 14. Fitness Values Using a Random Crossover Operator 

 

 

Table 15. Error Rates Using Random Crossover Operator 

 

p Best Known Lower Bound Upper Bound Average Lower Bound Upper Bound Average
10 101,248.13 101,248.57 102,711.90 102,148.43 103,112.17 107,799.61 105,946.88
20 57,856.32 58,859.55 60,449.35 59,600.23 61,465.61 64,172.08 62,847.82
30 44,013.02 45,404.13 47,729.94 46,477.33 48,497.59 50,646.75 49,701.74
40 35,002.02 36,514.57 37,741.65 37,094.65 38,474.95 40,794.54 39,839.03
50 29,089.71 30,240.72 31,262.88 30,883.38 33,357.79 35,084.50 33,965.63
60 25,160.40 26,620.11 27,682.85 27,204.38 28,377.56 30,206.09 29,722.55
70 22,125.46 23,412.64 24,869.24 24,034.39 25,587.96 26,923.99 26,264.89
80 19,870.28 20,958.67 22,280.45 21,664.30 23,009.31 25,135.21 24,290.48
90 17,987.91 19,085.52 20,025.31 19,528.80 21,271.45 22,535.11 21,904.18
100 16,551.20 17,580.43 18,423.08 18,129.04 19,383.77 20,751.34 20,162.75

DAGA Random Crossover

p
Lower
Bound

Upper
Bound Avg

Lower
Bound

Upper
Bound Avg

10 0.0000 0.0145 0.0089 0.0184 0.0647 0.0464
20 0.0173 0.0448 0.0301 0.0624 0.1092 0.0863
30 0.0316 0.0845 0.0560 0.1019 0.1507 0.1293
40 0.0432 0.0783 0.0598 0.0992 0.1655 0.1382
50 0.0396 0.0747 0.0617 0.1467 0.2061 0.1676
60 0.0580 0.1003 0.0812 0.1279 0.2005 0.1813
70 0.0582 0.1240 0.0863 0.1565 0.2169 0.1871
80 0.0548 0.1213 0.0903 0.1580 0.2650 0.2225
90 0.0610 0.1133 0.0857 0.1825 0.2528 0.2177
100 0.0622 0.1131 0.0953 0.1711 0.2538 0.2182

DAGA Random Crossover
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Table 16. Deviation From DAGA When Using a Random 
Crossover Operator 

 

 

The results produced by DAGA-CO were significantly inferior to those produced 

by DAGA for all of the values of p tested. The results support the thesis of this study 

which was that using characteristics of the problem set, in this case location, could have a 

positive impact on a genetic algorithm. The results of the comparison show that for every 

median count tested the results produced by DAGA were at least 75% better than DAGA-

CO. Given that the crossover operator was the only difference between DAGA and 

DAGA-CO it is reasonable to conclude that the crossover operator implemented in 

DAGA was a significant factor in the results it produced. 

 

Summary of Results Using a Random Mutation Operator 

A final test was created to determine the impact of the mutation operator used by 

DAGA on the overall effectiveness of the algorithm. The mutation operator is used in 

DAGA to introduce new genes into a subset of candidate chromosomes that were not part 

p
Lower
Bound

Upper
Bound Avg

10 0.0184 0.0495 0.0372
20 0.0443 0.0616 0.0545
30 0.0681 0.0611 0.0694
40 0.0537 0.0809 0.0740
50 0.1031 0.1222 0.0998
60 0.0660 0.0911 0.0926
70 0.0929 0.0826 0.0928
80 0.0978 0.1281 0.1212
90 0.1145 0.1253 0.1216
100 0.1026 0.1264 0.1122

Random Crossover
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of the related parent chromosomes. The primary purposes of the mutation operator is to 

encourage a more complete search of the problem set and to discourage the algorithm 

from becoming focused exclusively on a locally but not globally optimal solution. Refer 

to the Algorithm Design section in the Methodology Chapter of this paper for a more 

detailed description of the technique used by DAGA. The mutation operator used by 

DAGA is illustrated in Figure 5. Mutation Operator. To test the impact of this mutation 

operator on DAGA a new algorithm was created that used a mutation operator that 

randomly selected candidate chromosomes and genes within those chromosomes for 

mutation with no bias for prior use or their location. This algorithm was designated as 

DAGA-MU. The mutation operator used in DAGA-MU is functionally similar to the 

technique used by most other genetic algorithms in the literature used for the p-median 

problem. With the exception of the mutation operator, all other aspects of the algorithm 

were identical to DAGA using Crossover Operator Technique 1. The modified algorithm 

was run ten times each for p values 10 through 100 in the fl1400 problem set. The lower 

and upper bound results were compared with the lower and upper bound results from 

DAGA using crossover technique 1 and the Best Known results from literature. Table 17. 

Fitness Values using a Random Mutation Operator and 

Table 18. Error Rates Using a Random Mutation Operator compares and 

summarizes the results generated by DAGA-MU with the results produced by DAGA and 

the best known results. Table 19. Deviation From DAGA When Using a Random 

Mutation Operator compares the results produced by DAGA-MU directly with the 

results produced by DAGA. 

 



69 
 

 
 

Table 17. Fitness Values using a Random Mutation Operator 

 

 

Table 18. Error Rates Using a Random Mutation Operator 
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Table 19. Deviation From DAGA When Using a Random Mutation Operator 

 

 

The results produced by DAGA-MU did not vary significantly from the results 

produced by DAGA using crossover operator 1 when run against the fl1400 problem set. 

Though the differences were not large, DAGA-MU using a random techinque for the 

mutation operator produced slightly better results than those produced by DAGA for all 

of the values of p tested. Given these results it is reasonable to conclude that a mutation 

operator that uses domain knowledge, specifically the spatial attributes of the problem 

set, does not significantly improve the genetic algorithm. In fact, the results seem to 

support the theory that a completely random mutation operator produces better results 

than a directed mutation operator. This is not completely unexpected given that the 

purpose of the mutation operator is to introduce diversity into the algorithm. An 

algorithm like DAGA aggressively focuses on locally optimal solutions through it’s 

crossover operator and a mutation operator that reinforces that local search would not 

tend to introduce as much diversity as a random operator. 
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Chapter 5 

Conclusions, Implications, Recommendations, and Summary 

 

Conclusions 

The research goal of this study was to examine the impact of integrating domain 

knowledge into a genetic algorithm as applied to the p-median problem. The genetic 

algorithm that was created, DAGA, uses a method for encoding that incorporates spatial 

location; creates a structured initial population using domain knowledge; is biased toward 

fitter chromosomes when selecting mating pairs; generates offspring with a spatially 

sensitive crossover operator; and ensures diversity with a mutation operator that is both 

biased and spatially sensitive. Using problem sets that have published “best known” 

solutions, the study examined solutions produced by DAGA in terms of accuracy, 

performance characteristics, and the contribution of each of the new operators. 

DAGA was able to produce good solutions for a variety of problem sets and 

medians. In somes cases, specifically for smaller problem sets and smaller median counts 

and using Crossover Technique 1, the solutions produced were optimal or very near 

optimal, assuming the best known results in the literature are optimal. In all cases tested 

the solutions produced were good, with the worst solution produced from any test run not 

deviating from the optimal solution by more than 15%. DAGA’s tendency to produce 

good solutions is further supported by the fact that for all 300 test runs using Crossover 

Technique 1, the solutions produced for 93% of them were within 10% of the best known 
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solution. Stated another way, DAGA has a 93% probability of producing a solution for 

any p-median that is within 10% of the optimal solution. 

The first crossover technique, which swaps genes in parent chromosomes based 

on their proximity to each other in the search space, consistently produced better 

solutions than the second crossover technique, which swaps genes in parent 

chromosomes on opposite ends of one axis in the search space. It’s reasonable to 

conclude that the first crossover technique places a higher emphasis on domain 

knowledge and, as a result, it produces better solutions. This conclusion tends to support 

the hypothesis that using domain knowledge does improve the algorithm. 

The smallest problem set, fl1400, and the smallest median count, 10, produced the 

best solutions. As the median count increased, the solutions deviation from the best 

known solution also increased. The deviation from the best known also increased as the 

problem set got larger. Problem set fl1400 produced better solutions than pcb3038, and 

pcb3038 produced better solutions than rl5934, but only slightly better. These results are 

probably caused by an exponential increase in the search space as p and n increases. 

Given that the stopping criteria used by DAGA is not a function of n or p, it is likely that 

a smaller portion of the search space is evaluated as the search space grows. 

DAGA was consistently able to produce solutions within 10% of the best known 

solution in less than 500 generations. After that, the improvement rate slowed 

significantly. Some of this can be explained by DAGA’s use of a structured initial 

population that partitions the search space spatially and selects chromosomes for the 

initial population that are distributed across those partitions. This explains why DAGA 

starts with a relatively good solution but it doesn’t explain why it improves rapidily in the 
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early generations and then slows its improvement in later generations. This is better 

explained by its technique for selecting parent chromosomes which is biased toward 

chromosomes with better fitness values. This is not a technique unique to DAGA.  Other 

genetic algorithms that have incorporated hueristics have used a similar approach for 

parent selection (Correa, et al., 2001). This bias, however, would tend to focus the search 

on better solutions and result in an accelerated move toward optimal solutions. Similarly, 

DAGA’s use of an “elitist” technique which passes the fittest chromosome from a parent 

generation to the next generation would tend to slow improvement as the solution moves 

closer to an optimal. Again, this elitist technique is not unique to DAGA and has been 

incorporated into other genetic algorithms that have used hueristics (Estivill-Castro & 

Torres-Velázquez, 1999). 

This study introduced three unique techniques to the genetic algorithm; a domain 

aware structured initial population, a domain aware crossover operator, and a domain 

aware mutation operator. As part of the study, each of these technques were isolated and 

tested to determine their impact on the algorithm. The structured initial population 

improved the initial efficiency of DAGA but had a minimal impact on the resulting 

solution. In addition, the results produced by starting with a random initial population 

were equivilant to the results produced by the structured initial population in relatively 

few generations. Typically less then 500 generations. If the objective of the algorithm is 

to produce an optimal or near optimal solution, the structured initial population doesn’t 

provide a significant value. On the other hand, if the objective is to produce a good 

solution in as few generations as possible, the structured technique does add some value. 
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By isolating the  crossover operator, the study shows that a domain aware 

crossover operator can provide improved results. The results generated by DAGA were 

better than the results produced by the algorithm that substitued a random crossover 

operator for the domain area crossover operator. Based on these results, it’s reasonable to 

conclude that a domain aware crossover operator has significant value when building a 

genetic algorithm to solve the p-median problem. 

The domain aware mutation operator was shown to produce slightly inferior 

results than a random mutation operator. When the domain aware mutation operator was 

replaced with a random mutation operator the resulting solutions were somewhat 

improved in a majority of the test cases. The purpose of the mutation operator is to 

introduce diversity into the search and reduce the probability of the algorithm getting 

stuck on a local optimum. The domain aware crossover operator aggressively focuses on 

local search. It appears that when the mutation operator reinforces that local search its 

value is reduced. 

The test results suggest the following conclusions about DAGA. First, DAGA is 

capable of producing solutions for the p-median problem with a high degree of accuracy. 

Next, DAGA is capable of efficiently exploring the search space and finding a good 

solution to the p-median problem in a relatively few generations. Finally, of the three 

unique characteristics of DAGA, the domain aware crossover operator has the greatest 

impact on the outcome of the algorithm. 
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Implications 

This dissertation has shown that incorporating inherent properties of the problem 

into the design of a genetic algorithm can add value to the algorithm while maintaining 

its core structure. Genetic algrorithms have been shown to be useful in solving NP-hard 

problems (Goldberg, 1989) including the p-median problem. Prior studies have shown 

that decisions made by the researchers with regards to features of the algorithm such as 

encoding and operators have a significant impact on the efficacy of the algorithm (Alp, et 

al., 2003). This study takes that research a step further and shows that incorporating 

innate properties of the problem into design can also have a positive impact on the 

efficacy of the algorithm. The findings in this dissertation may prove useful for further 

studies on the use of genetic algorithms for solving the p-median problem. It may also 

prove useful in the further study of applying genetic algorithms on NP-hard problems 

other than the p-median problem that have inherent characteristics that can be 

incorporated into the design of the algorithm. 

 

Recommendations 

Although this study has shown that integrating domain knowledge about the p-

median problem into the design of a genetic algorithm can be effective, it is likely that 

there is more to discover. The study was limited to three problem sets containing two-

dimensional cartesian coordinates. Further research is necessary to determine if DAGA 

would perform similiarly on a wide range of problem sets including small sets, very large 

sets, and n-dimensional sets. 
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It may also be useful to compare DAGA directly with other metahueristic 

approaches to the p-median problem. Good surveys have been completed (Mladenovi, et 

al., 2007; Reese, 2005), however, a study that incorporates the same problem sets, 

programming methods, and run-time infrastructure could provide useful information 

about the relative strengths and weaknesses of the respective approaches. 

Another area for further research is DAGA’s applicability to other NP-hard 

problems. The p-median problem lended itself well to the domain aware approach 

because of its inherent spatial characteristics. Other NP-hard problems have those same 

characteristics, such as the Traveling Salesmen Problem, or the K-means problem. 

Beyond these spatially oriented problems there may be other NP-hard problems with 

inherent characteristics that can be incorporated into an algorithm design. 

There are also areas of further research within the DAGA algorithm. Two 

crossover techniques were tested, but there are certainly other crossover techniques that 

take advantage of the domain knowledge that could also be researched. The domain 

aware mutation operator used in DAGA was not effective in improving the solutions 

generated. Perhaps further research on mutation operators in genetic algorithms would 

yield an operator that used domain knowledge to encourage diversity in the search. 

The recommended research in this chapter is undoubtably an incomplete list. 

Optimization problems and genetic algorithms are interesting problems that lend 

themselves to extensive research. This study represents just one variation of this research. 

It is the hope of this researcher that it can be used to inspire even more variations. 
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Summary 

The objective of this dissertation was to examine the impact of integrating domain 

knowledge into a genetic algorithm as applied to the p-median problem. To do this, a new 

genetic algorithm was developed and referred to as DAGA. DAGA differed from the 

canonical genetic algorithm in a few key ways. Those differentiators are: 

1. A technique for encoding the problem set that incorporated the spatial 

characteristics of the problem members. 

2. A structured initial population created by spatially partitioning the search space 

and creating the initial candidate solutions from that partitioned space. 

3. A selection operator that is biased toward fitter solutions when selecting solutions 

for crossover processing. 

4. A crossover operator that considers the location of the problem members when 

deciding which members to swap in the crossover operation. 

5. A mutation operator that is biased toward problem members that are 

underrepresented in candidate solutions and that considers the location of the 

members when deciding which to subject to mutation. 

Of these five distinguishing characteristics of DAGA, three incorporated domain 

knowledge about the p-median problem that can be said to be unique to this dissertation 

at the time of its publication. Those unique characteristics are: A structured initial 

population based on a spatially partitioned search space; A crossover operator that 

incorporated location into its decision making process; A mutation operator that 

incorporated location into its decision making process. 
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A test plan to examine the impact of these unique elements was developed and 

DAGA was applied over 900 times. Using published problem sets that have established 

“best known” solutions for the p-median problem, DAGA was applied to several 

instances of these problem sets using median counts ranging from 10 to 100. The results 

of the testing showed that DAGA was able to consistently produce accurate solutions. 

Smaller problem instances with low median counts produced the best results but even 

worst case results were within 15% of the best known solution and over 90% of the 

solutions produced were within 10% of the best known solution. DAGA was also able to 

produce good if not optimal solutions efficiently. In the majority of the test runs, DAGA 

was able to produce a solution within 10% of optimal in less than 500 generations. After 

500 generations the evolution of the optimal solution did slow considerably, with some 

test runs taking over 10,000 generations before they satisfied the stopping criterion.  

Two different crossover operators were tested. The first, identified as Crossover 

Technique 1, swapped individual members in solutions selected for crossover based on 

their proximity to each other in the search space. The second, identified as Crossover 

Technique 2, swapped sets of problem members based on where they were located along 

a single axis of the search space. Crossover Technique 1 was much more computationally 

intense and consistently produced more accurate solutions. Crossover Technique 2 did 

not require as many computational resources as Crossover Technique 1 but it consistently 

produced inferior results. As a result of these test, further testing of the algorithm was 

limited to using Crossover Technique 1. 

The three key components of DAGA were tested individually to gauge their 

impact on the overall algorithm. Three new algorithms were created using DAGA as a 
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basis. The first algorithm substituted a random technique for creating the initial 

population. The next algorithm replaced the crossover operator with one that randomly 

selected members from candidate solutions for crossover. The last algorithm randomly 

selected solutions and members for mutation. These algorithms were each run against the 

fl1400 problem set using median counts from 10 to 100. The results of these runs were 

then compared with the results generated by DAGA in earlier tests. The solutions 

generated by the algorithm using a random approach for the initial population were 

similar to the solutions produced by DAGA. However, the run profiles showed that 

DAGA started with a superior solution and performed better in the early generations. 

This advantage was typically minimized within 500 generations and from there the 

algorithms performed similarly. The solutions generated by the algorithm using a random 

technique for crossover were significantly inferior to the solutions produced by DAGA. 

The solutions generated by the algorithm that used a random technique for mutation 

sometimes produced solutions that were better than the solutions produced by DAGA. 

The differences were not generally large and were not consistent but they were enough to 

suggest that a random approach to mutation is superior to the domain aware technique 

used by DAGA. 

In summary it was concluded that using a structured initial population had no 

significant impact on DAGA’s ability to find an optimal solution but that it did create a 

better initial solution and allowed the algorithm to perform better early in the search and 

produce a relatively good solution early in the search. The domain aware crossover 

operator produced superior solutions and had a significant impact on the overall 

functionality of DAGA. The domain aware mutation operator did not have a large impact 
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on the overall functionality of DAGA and may be inferior to a random approach to 

mutation. 

Lastly it can be concluded that a genetic algorithm that incorporates domain 

knowledge into its design can have a positive impact on its ability to find optimal 

solutions for the p-median problem. This conclusion adds to the body of knowledge about 

genetic algorithms and the p-median problem and could serve as a basis for further 

research on the topic. 
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Appendix A 

 

Run Profiles Comparing DAGA and Random Initial Generation 
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Figure 16. Run profiles with 10 medians 
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Figure 17. Run Profiles with 20 Medians 
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Figure 18. Run Profiles with 30 Medians 

  



85 
 

 
 

 

Figure 19. Run Profiles with 40 Medians 
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Figure 20. Run Profiles with 50 Medians 
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Figure 21. Run Profiles with 60 Medians 
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Figure 22. Run Profiles with 70 medians 
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Figure 23. Run Profiles for 80 Medians 
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Figure 24. Run Profile with 90 Medians 
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Figure 25. Run Profiles with 100 Medians 
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Appendix B 

Detailed Results 
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Problem Set fl1400; Crossover Technique 1 

 

 

 

 

Run Result Gens Run Result Gens
1 102,416.28 7,753 1 59,908.74 4,747
2 101,248.57 8,446 2 59,049.09 3,144
3 101,748.98 3,131 3 58,953.50 6,471
4 101,714.52 5,579 4 58,859.55 6,185
5 102,598.73 5,568 5 60,410.66 2,527
6 102,115.40 7,588 6 59,310.37 6,655
7 102,691.40 3,458 7 59,574.13 2,567
8 102,113.00 3,650 8 59,653.22 2,672
9 102,125.48 3,752 9 60,449.35 2,626
10 102,711.90 3,988 10 59,833.71 8,979
Avg 102,148.43 5,291 Avg 59,600.23 2,527
Min 101,248.57 3,131 Min 58,859.55 8,979
Max 102,711.90 8,446 Max 60,449.35 4,657

Median Count = 10 Median Count = 20

Run Result Gens Run Result Gens
1 46,294.18 3,471 1 36,514.57 5,367
2 47,011.97 3,220 2 37,252.23 6,556
3 46,452.08 3,516 3 36,915.19 4,589
4 45,459.94 4,395 4 37,741.65 2,722
5 47,729.94 3,782 5 36,541.71 4,799
6 46,915.72 5,010 6 37,178.68 3,099
7 46,857.27 2,587 7 37,217.61 6,728
8 46,538.94 8,542 8 36,932.81 5,222
9 45,404.13 3,231 9 37,713.41 7,297
10 46,109.16 6,703 10 36,938.67 4,825
Avg 46,477.33 4,446 Avg 37,094.65 5,120
Min 45,404.13 2,587 Min 36,514.57 2,722
Max 47,729.94 8,542 Max 37,741.65 7,297

Median Count = 40Median Count = 30
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Run Result Gens Run Result Gens
1 31,262.88 3,917 1 27,124.27 4,183
2 30,598.26 6,854 2 27,445.95 2,600
3 31,185.95 3,800 3 27,313.02 7,163
4 31,156.81 5,371 4 27,167.93 6,437
5 30,240.72 10,326 5 27,413.05 6,080
6 30,883.15 4,972 6 26,620.11 3,420
7 31,168.04 2,674 7 27,270.67 3,776
8 31,059.10 2,523 8 26,892.97 3,908
9 30,442.90 4,501 9 27,682.85 5,060
10 30,835.94 3,179 10 27,113.02 4,104
Avg 30,883.38 4,812 Avg 27,204.38 4,673
Min 30,240.72 2,523 Min 26,620.11 2,600
Max 31,262.88 10,326 Max 27,682.85 7,163

Median Count = 60Median Count = 50

Run Result Gens Run Result Gens
1 23,897.25 7,060 1 22,043.04 4,889
2 23,809.97 3,861 2 22,280.45 6,953
3 24,225.52 4,342 3 21,262.07 2,582
4 23,412.64 3,885 4 22,071.81 4,266
5 24,249.13 4,914 5 21,821.51 5,757
6 23,813.76 5,879 6 22,107.23 2,696
7 23,750.74 3,205 7 21,092.20 4,616
8 24,307.24 6,456 8 20,958.67 3,277
9 24,008.39 4,620 9 21,111.85 5,453
10 24,869.24 3,423 10 21,894.17 2,546
Avg 24,034.39 4,765 Avg 21,664.30 4,304
Min 23,412.64 3,205 Min 20,958.67 2,546
Max 24,869.24 7,060 Max 22,280.45 6,953

Median Count = 80Median Count = 70
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Problem Set fl1400; Crossover Technique 2 

 

 

 

Run Result Gens Run Result Gens
1 19,858.59 2,593 1 18,228.66 3,974
2 20,025.31 2,746 2 18,143.40 3,626
3 19,384.50 6,052 3 18,391.17 4,568
4 19,298.61 7,599 4 18,262.19 2,549
5 19,539.11 2,843 5 17,854.83 3,956
6 19,232.87 3,031 6 18,423.08 2,545
7 19,085.52 3,683 7 17,580.43 4,705
8 19,740.22 3,090 8 18,258.07 2,895
9 19,285.53 5,949 9 18,295.52 4,440
10 19,837.69 2,522 10 17,853.07 3,128
Avg 19,528.80 4,011 Avg 18,129.04 3,639
Min 19,085.52 2,522 Min 17,580.43 2,545
Max 20,025.31 7,599 Max 18,423.08 4,705

Median Count = 100Median Count = 90

Run Result Gens Run Result Gens
1 106,376.88 4,300 1 61,561.51 4,747
2 104,608.10 3,877 2 60,211.52 3,144
3 104,397.46 4,169 3 59,620.89 6,471
4 103,260.86 3,311 4 60,579.14 6,185
5 105,173.47 3,084 5 61,913.57 2,527
6 105,804.78 5,132 6 60,627.72 6,655
7 105,327.98 2,585 7 60,417.14 2,567
8 105,178.68 5,418 8 60,905.44 2,672
9 105,774.07 3,548 9 62,147.94 2,626
10 106,808.55 4,272 10 60,748.53 8,979
Avg 105,271.08 3,970 Avg 60,873.34 2,527
Min 103,260.86 2,585 Min 59,620.89 8,979
Max 106,808.55 5,418 Max 62,147.94 4,657

Median Count = 10 Median Count = 20



96 
 

 
 

 

 

 

 

Run Result Gens Run Result Gens
1 47,327.61 3,471 1 37,382.30 5,367
2 48,718.19 3,220 2 38,246.89 6,556
3 47,662.64 3,516 3 37,679.88 4,589
4 46,938.20 4,395 4 38,711.76 2,722
5 49,152.84 3,782 5 37,624.28 4,799
6 48,312.90 5,010 6 38,150.00 3,099
7 48,440.89 2,587 7 38,139.85 6,728
8 48,092.35 8,542 8 37,677.86 5,222
9 46,408.24 3,231 9 38,803.48 7,297
10 47,202.12 6,703 10 37,757.32 4,825
Avg 47,825.60 4,446 Avg 38,017.36 5,120
Min 46,408.24 2,587 Min 37,382.30 2,722
Max 49,152.84 8,542 Max 38,803.48 7,297

Median Count = 30 Median Count = 40

Run Result Gens Run Result Gens
1 31,910.26 3,917 1 27,818.13 4,183
2 31,590.55 6,854 2 28,309.14 2,600
3 32,105.09 3,800 3 28,316.73 7,163
4 32,093.11 5,371 4 28,101.99 6,437
5 31,233.34 10,326 5 28,185.60 6,080
6 31,539.23 4,972 6 26,923.56 3,420
7 32,246.68 2,674 7 28,081.20 3,776
8 31,719.94 2,523 8 27,420.30 3,908
9 31,390.06 4,501 9 28,724.73 5,060
10 31,456.63 3,179 10 27,397.21 4,104
Avg 31,728.49 4,812 Avg 27,927.86 4,673
Min 31,233.34 2,523 Min 26,923.56 2,600
Max 32,246.68 10,326 Max 28,724.73 7,163

Median Count = 50 Median Count = 60
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Run Result Gens Run Result Gens
1 24,446.64 7,060 1 22,316.96 4,889
2 24,499.57 3,861 2 22,544.75 6,953
3 24,599.44 4,342 3 21,575.56 2,582
4 23,877.50 3,885 4 22,348.67 4,266
5 24,548.08 4,914 5 22,310.17 5,757
6 24,428.74 5,879 6 22,365.82 2,696
7 24,114.64 3,205 7 21,696.41 4,616
8 24,997.08 6,456 8 21,345.60 3,277
9 24,458.80 4,620 9 21,425.85 5,453
10 25,255.08 3,423 10 22,484.49 2,546
Avg 24,522.56 4,765 Avg 22,041.43 4,304
Min 23,877.50 3,205 Min 21,345.60 2,546
Max 25,255.08 7,060 Max 22,544.75 6,953

Median Count = 70 Median Count = 80

Run Result Gens Run Result Gens
1 20,222.28 2,593 1 18,634.50 3,974
2 20,575.70 2,746 2 18,815.66 3,626
3 19,948.97 6,052 3 19,086.31 4,568
4 19,939.66 7,599 4 18,622.26 2,549
5 20,134.52 2,843 5 18,085.81 3,956
6 19,731.79 3,031 6 18,695.60 2,545
7 19,378.26 3,683 7 18,000.88 4,705
8 20,253.29 3,090 8 18,778.39 2,895
9 19,850.93 5,949 9 18,686.85 4,440
10 20,220.71 2,522 10 18,551.61 3,128
Avg 20,025.61 4,011 Avg 18,595.79 3,639
Min 19,378.26 2,522 Min 18,000.88 2,545
Max 20,575.70 7,599 Max 19,086.31 4,705

Median Count = 90 Median Count = 100
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Problem Set pcb3038; Crossover Technique 1 

 

 

 

 

 

Run Result Gens Run Result Gens
1 1,235,943.75 7,349 1 881,001.32 3,763
2 1,236,644.69 4,844 2 872,276.07 2,887
3 1,235,657.95 4,271 3 872,897.78 8,523
4 1,239,459.45 3,620 4 869,815.06 8,039
5 1,256,273.85 6,992 5 880,212.09 4,428
6 1,260,371.11 3,311 6 878,056.15 8,287
7 1,251,368.79 3,242 7 873,545.67 4,400
8 1,250,643.29 8,388 8 881,377.98 8,331
9 1,251,029.89 8,971 9 872,133.96 3,109
10 1,258,174.29 4,246 10 866,207.93 8,338
Avg 1,247,556.71 5,523 Avg 874,752.40 6,011
Min 1,235,657.95 3,242 Min 866,207.93 2,887
Max 1,260,371.11 8,971 Max 881,377.98 8,523

Median Count = 10 Median Count = 20

Run Result Gens Run Result Gens
1 708,131.39 4,569 1 605,612.20 5,076
2 703,159.20 4,996 2 607,961.80 5,910
3 713,591.45 8,199 3 595,626.06 4,810
4 701,283.38 6,368 4 604,377.57 5,764
5 702,484.12 4,591 5 602,560.20 5,755
6 704,195.25 3,005 6 598,796.24 7,223
7 705,402.82 4,076 7 607,097.69 5,014
8 716,307.87 3,879 8 596,916.46 3,637
9 704,780.89 8,065 9 605,945.50 6,141
10 719,511.81 8,639 10 595,706.25 6,167
Avg 707,884.82 5,639 Avg 602,060.00 5,550
Min 701,283.38 3,005 Min 595,626.06 3,637
Max 719,511.81 8,639 Max 607,961.80 7,223

Median Count = 30 Median Count = 40
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Run Result Gens Run Result Gens
1 537,317.86 3,324 1 493,149.64 5,068
2 538,062.02 6,068 2 491,572.44 2,946
3 536,445.73 3,714 3 489,638.62 5,231
4 529,623.54 6,830 4 489,833.93 8,133
5 531,807.30 7,167 5 494,878.73 4,764
6 539,099.21 7,037 6 485,164.14 2,717
7 532,779.82 8,244 7 487,738.42 3,353
8 532,142.90 3,449 8 491,927.27 5,533
9 538,278.41 8,626 9 493,085.21 8,124
10 538,947.10 4,351 10 484,576.92 7,748
Avg 535,450.39 5,881 Avg 490,156.53 5,362
Min 529,623.54 3,324 Min 484,576.92 2,717
Max 539,099.21 8,626 Max 494,878.73 8,133

Median Count = 50 Median Count = 60

Run Result Gens Run Result Gens
1 452,394.29 4,285 1 420,806.57 6,462
2 454,023.38 2,950 2 429,052.31 7,696
3 452,333.41 8,310 3 422,099.61 4,143
4 453,860.52 5,335 4 423,004.84 4,235
5 454,227.90 4,258 5 430,868.60 3,973
6 448,855.74 8,114 6 421,384.67 6,622
7 453,952.48 7,506 7 423,790.31 6,203
8 448,061.43 7,584 8 427,586.78 6,277
9 457,397.02 7,910 9 419,612.42 3,317
10 453,703.51 2,813 10 427,788.43 4,168
Avg 452,880.97 5,907 Avg 424,599.45 5,310
Min 448,061.43 2,813 Min 419,612.42 3,317
Max 457,397.02 8,310 Max 430,868.60 7,696

Median Count = 70 Median Count = 80
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Problem Set pcb3038; Crossover Technique 2 

 

 

 

Run Result Gens Run Result Gens
1 404,771.33 6,456 1 386,672.87 5,007
2 406,429.04 3,712 2 386,551.44 3,882
3 396,657.80 8,584 3 384,048.27 8,022
4 404,067.64 8,657 4 384,959.78 8,654
5 402,788.73 4,443 5 381,249.90 5,136
6 397,256.70 4,461 6 387,810.62 8,526
7 403,402.94 8,505 7 384,920.82 7,731
8 396,916.65 7,264 8 380,153.39 6,295
9 398,881.09 8,705 9 382,691.54 8,685
10 401,961.41 6,144 10 382,837.59 5,285
Avg 401,313.33 6,693 Avg 384,189.62 6,722
Min 396,657.80 3,712 Min 380,153.39 3,882
Max 406,429.04 8,705 Max 387,810.62 8,685

Median Count = 90 Median Count = 100

Run Result Gens Run Result Gens
1 1,283,539.71 3,733 1 916,036.39 4,937
2 1,263,195.04 3,600 2 897,582.64 3,175
3 1,260,629.99 8,889 3 890,561.86 7,118
4 1,265,596.75 4,864 4 893,303.74 6,309
5 1,297,922.89 2,701 5 900,240.03 4,181
6 1,289,843.80 3,584 6 896,844.67 6,855
7 1,282,179.46 2,801 7 893,561.25 3,888
8 1,289,450.86 2,677 8 906,947.31 3,953
9 1,286,664.36 3,959 9 893,548.85 3,807
10 1,287,308.57 4,399 10 896,042.66 8,530
Avg 1,280,633.14 4,121 Avg 898,466.94 3,175
Min 1,260,629.99 2,677 Min 890,561.86 8,530
Max 1,297,922.89 8,889 Max 916,036.39 5,275

Median Count = 10 Median Count = 20



101 
 

 
 

 

 

 

 

Run Result Gens Run Result Gens
1 731,883.91 3,714 1 621,275.00 4,991
2 718,664.68 3,478 2 627,555.51 7,212
3 728,478.36 3,832 3 610,078.42 4,635
4 726,166.95 4,483 4 625,904.62 4,020
5 720,736.27 3,631 5 623,727.17 5,279
6 722,471.16 4,860 6 620,228.75 2,882
7 733,257.81 3,551 7 619,430.35 6,593
8 735,138.19 8,713 8 620,541.81 5,013
9 726,925.92 2,973 9 627,428.17 7,662
10 739,512.88 7,038 10 610,342.55 5,211
Avg 728,323.61 4,627 Avg 620,651.24 5,350
Min 718,664.68 2,973 Min 610,078.42 2,882
Max 739,512.88 8,713 Max 627,555.51 7,662

Median Count = 30 Median Count = 40

Run Result Gens Run Result Gens
1 558,103.42 3,525 1 505,020.48 4,308
2 556,422.80 6,648 2 504,432.55 3,340
3 548,105.61 3,572 3 503,289.98 7,736
4 543,697.60 5,532 4 501,153.87 6,115
5 550,891.11 9,913 5 511,506.81 6,506
6 559,375.54 5,022 6 495,332.18 3,146
7 547,476.04 2,701 7 500,512.84 3,398
8 548,630.55 3,840 8 508,656.00 4,064
9 558,077.78 4,186 9 504,664.14 4,908
10 552,114.57 3,274 10 500,892.87 4,145
Avg 552,289.50 4,821 Avg 503,546.17 4,767
Min 543,697.60 2,701 Min 495,332.18 3,146
Max 559,375.54 9,913 Max 511,506.81 7,736

Median Count = 50 Median Count = 60
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Run Result Gens Run Result Gens
1 467,006.90 7,554 1 435,805.89 5,329
2 466,353.44 4,247 2 438,982.68 6,466
3 469,918.63 3,951 3 432,562.96 3,505
4 466,662.43 4,079 4 435,397.00 4,437
5 471,806.97 4,619 5 445,129.31 5,987
6 462,914.87 5,820 6 435,657.76 2,723
7 463,664.50 3,333 7 435,287.34 4,708
8 463,570.73 6,004 8 442,865.73 3,048
9 466,798.50 4,851 9 433,389.69 5,889
10 466,993.23 3,526 10 437,059.49 2,699
Avg 466,569.02 4,798 Avg 437,213.79 4,479
Min 462,914.87 3,333 Min 432,562.96 2,699
Max 471,806.97 7,554 Max 445,129.31 6,466

Median Count = 70 Median Count = 80

Run Result Gens Run Result Gens
1 417,415.13 3,737 1 397,824.02 4,252
2 420,172.50 4,008 2 402,003.86 3,263
3 408,568.76 6,173 3 393,160.99 4,796
4 418,261.21 8,359 4 396,686.19 3,443
5 417,855.74 3,070 5 396,233.41 4,312
6 407,760.93 3,122 6 397,901.41 3,474
7 419,528.28 3,978 7 395,370.87 4,799
8 410,330.32 3,245 8 388,203.24 3,973
9 407,519.87 5,414 9 396,372.87 4,662
10 414,676.87 3,874 10 394,803.34 3,097
Avg 414,208.96 4,498 Avg 395,856.02 4,007
Min 407,519.87 3,070 Min 388,203.24 3,097
Max 420,172.50 8,359 Max 402,003.86 4,799

Median Count = 90 Median Count = 100
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Problem Set rl5934; Crossover Technique 1 

 

 

 

 

 

Run Result Gens Run Result Gens
1 10,135,743.17 7,725 1 7,022,427.34 6,638
2 10,147,346.07 3,773 2 6,935,624.99 2,813
3 10,017,228.62 4,745 3 7,056,057.80 3,838
4 10,023,073.42 8,454 4 7,031,889.77 8,386
5 10,038,707.84 8,784 5 6,931,397.86 4,716
6 10,141,451.24 5,151 6 7,040,245.50 4,237
7 9,948,378.50 3,412 7 7,018,171.81 5,799
8 10,093,124.13 5,373 8 7,037,020.90 4,379
9 10,052,208.96 7,483 9 6,937,278.47 4,521
10 10,115,164.45 7,121 10 7,000,761.28 3,271
Avg 10,071,242.64 6,202 Avg 7,001,087.57 4,860
Min 9,948,378.50 3,412 Min 6,931,397.86 2,813
Max 10,147,346.07 8,784 Max 7,056,057.80 8,386

Median Count = 10 Median Count = 20

Run Result Gens Run Result Gens
1 5,675,255.81 4,904 1 4,822,296.41 5,204
2 5,694,607.61 2,582 2 4,826,529.01 2,972
3 5,749,487.43 3,927 3 4,788,835.20 7,468
4 5,676,644.20 8,325 4 4,808,584.53 4,625
5 5,746,864.17 8,109 5 4,823,494.14 4,494
6 5,682,416.33 8,032 6 4,810,927.11 5,160
7 5,621,758.91 4,412 7 4,841,823.88 5,469
8 5,674,074.70 3,301 8 4,840,666.42 7,456
9 5,624,744.13 8,386 9 4,855,561.35 3,129
10 5,719,771.07 7,030 10 4,861,491.78 2,973
Avg 5,686,562.44 5,901 Avg 4,828,020.98 4,895
Min 5,621,758.91 2,582 Min 4,788,835.20 2,972
Max 5,749,487.43 8,386 Max 4,861,491.78 7,468

Median Count = 30 Median Count = 40
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Run Result Gens Run Result Gens
1 4,254,430.87 3,001 1 3,887,213.20 3,624
2 4,291,536.54 2,581 2 3,853,871.60 3,458
3 4,291,109.94 4,424 3 3,924,787.17 5,259
4 4,250,951.44 7,992 4 3,859,898.17 5,437
5 4,308,526.23 7,376 5 3,853,663.06 5,178
6 4,252,180.13 6,307 6 3,851,771.38 7,439
7 4,267,464.59 7,473 7 3,850,777.76 6,764
8 4,278,443.40 3,669 8 3,917,798.22 7,466
9 4,227,396.73 7,415 9 3,843,454.42 6,372
10 4,270,699.78 7,783 10 3,913,730.34 3,565
Avg 4,269,273.97 5,802 Avg 3,875,696.53 5,456
Min 4,227,396.73 2,581 Min 3,843,454.42 3,458
Max 4,308,526.23 7,992 Max 3,924,787.17 7,466

Median Count = 50 Median Count = 60

Run Result Gens Run Result Gens
1 3,611,144.13 6,912 1 3,282,953.12 8,682
2 3,538,947.96 4,522 2 3,297,227.19 4,185
3 3,594,246.00 4,215 3 3,347,632.73 8,679
4 3,612,279.31 5,458 4 3,359,261.88 5,347
5 3,541,848.48 8,267 5 3,314,409.10 7,343
6 3,585,199.34 5,985 6 3,342,338.94 6,547
7 3,565,983.42 8,420 7 3,348,636.63 7,735
8 3,555,995.74 3,685 8 3,354,348.45 3,582
9 3,599,829.82 5,714 9 3,367,070.46 5,907
10 3,539,820.17 3,284 10 3,350,200.91 6,364
Avg 3,574,529.44 5,646 Avg 3,336,407.94 6,437
Min 3,538,947.96 3,284 Min 3,282,953.12 3,582
Max 3,612,279.31 8,420 Max 3,367,070.46 8,682

Median Count = 70 Median Count = 80
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Problem Set rl5934; Crossover Technique 2 

 

 

 

Run Result Gens Run Result Gens
1 3,111,789.73 2,991 1 2,928,355.00 3,130
2 3,100,935.25 7,648 2 2,932,922.03 3,134
3 3,153,436.64 8,798 3 2,939,391.58 8,391
4 3,127,580.82 7,059 4 2,949,947.43 7,806
5 3,146,745.81 6,098 5 2,968,394.00 5,245
6 3,101,913.85 5,765 6 2,965,612.96 3,793
7 3,149,511.12 6,433 7 2,959,730.98 8,768
8 3,125,306.40 7,707 8 2,951,770.37 6,493
9 3,133,328.93 9,070 9 3,000,827.73 8,300
10 3,090,483.72 3,295 10 2,925,863.34 7,853
Avg 3,124,103.23 6,486 Avg 2,952,281.54 6,291
Min 3,090,483.72 2,991 Min 2,925,863.34 3,130
Max 3,153,436.64 9,070 Max 3,000,827.73 8,768

Median Count = 90 Median Count = 100

Run Result Gens Run Result Gens
1 10,466,550.99 3,658 1 7,234,528.17 4,367
2 10,421,759.16 3,708 2 7,139,749.64 3,396
3 10,386,481.03 9,156 3 7,336,289.91 6,406
4 10,332,059.39 5,107 4 7,234,854.79 5,876
5 10,337,783.55 3,812 5 7,078,046.08 3,386
6 10,421,964.25 3,799 6 7,302,374.19 6,722
7 10,209,378.78 3,081 7 7,205,545.50 3,246
8 10,311,634.57 3,934 8 7,267,286.95 3,856
9 10,281,512.97 4,157 9 7,199,834.99 3,699
10 10,318,146.70 4,707 10 7,154,456.84 9,518
Avg 10,348,727.14 4,512 Avg 7,215,296.71 5,047
Min 10,209,378.78 3,081 Min 7,078,046.08 3,246
Max 10,466,550.99 9,156 Max 7,336,289.91 9,518

Median Count = 10 Median Count = 20
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Run Result Gens Run Result Gens
1 5,891,483.43 3,575 1 4,979,944.78 5,904
2 5,825,801.81 3,445 2 4,946,422.14 6,097
3 5,902,529.18 3,797 3 4,939,578.00 4,956
4 5,898,856.20 4,307 4 4,994,837.31 3,834
5 5,909,611.84 3,895 5 4,976,755.21 4,751
6 5,891,882.88 5,060 6 4,972,839.65 3,192
7 5,810,175.13 3,730 7 4,946,024.56 7,132
8 5,841,283.92 8,371 8 5,022,422.26 5,483
9 5,843,662.52 2,940 9 5,013,119.96 6,786
10 5,921,169.79 6,837 10 4,968,735.63 4,487
Avg 5,873,645.67 4,596 Avg 4,976,067.95 5,262
Min 5,810,175.13 2,940 Min 4,939,578.00 3,192
Max 5,921,169.79 8,371 Max 5,022,422.26 7,132

Median Count = 30 Median Count = 40

Run Result Gens Run Result Gens
1 4,341,185.98 4,152 1 4,001,669.17 3,848
2 4,456,145.69 6,923 2 3,937,454.67 3,312
3 4,441,930.91 3,496 3 4,055,578.38 6,518
4 4,361,439.12 5,747 4 3,962,107.77 6,694
5 4,473,520.48 10,016 5 3,962,551.93 5,837
6 4,379,258.38 5,320 6 4,000,276.13 3,488
7 4,375,700.50 3,747 7 3,953,971.51 3,965
8 4,385,075.25 3,734 8 4,029,930.79 4,299
9 4,367,997.03 4,456 9 3,959,376.59 4,706
10 4,394,347.28 3,306 10 4,020,514.28 4,227
Avg 4,397,660.06 5,090 Avg 3,988,343.12 4,689
Min 4,341,185.98 3,306 Min 3,937,454.67 3,312
Max 4,473,520.48 10,016 Max 4,055,578.38 6,694

Median Count = 50 Median Count = 60
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Run Result Gens Run Result Gens
1 3,716,257.06 6,566 1 3,366,446.91 5,036
2 3,661,380.40 3,977 2 3,393,279.55 7,579
3 3,683,879.03 4,689 3 3,439,988.68 3,367
4 3,733,648.25 4,040 4 3,438,301.16 3,839
5 3,637,122.42 5,258 5 3,392,930.30 5,930
6 3,663,326.01 5,997 6 3,461,086.64 3,955
7 3,706,696.22 3,333 7 3,446,258.13 5,078
8 3,667,675.64 6,585 8 3,469,206.70 3,375
9 3,689,773.51 4,158 9 3,465,324.30 5,671
10 3,651,703.45 3,389 10 3,458,149.25 3,191
Avg 3,681,146.20 4,799 Avg 3,433,097.16 4,702
Min 3,637,122.42 3,333 Min 3,366,446.91 3,191
Max 3,733,648.25 6,585 Max 3,469,206.70 7,579

Median Count = 70 Median Count = 80

Run Result Gens Run Result Gens
1 3,201,316.10 3,916 1 2,987,061.70 3,577
2 3,193,375.47 4,008 2 3,001,108.82 3,916
3 3,267,340.80 6,415 3 3,016,933.71 4,842
4 3,232,969.52 8,283 4 3,052,934.56 3,797
5 3,220,047.57 3,958 5 3,059,442.43 3,679
6 3,167,696.17 3,092 6 3,065,514.48 3,261
7 3,252,522.10 3,904 7 3,047,075.48 4,940
8 3,243,432.67 3,337 8 3,036,614.76 4,246
9 3,223,447.42 6,544 9 3,083,976.22 4,129
10 3,179,457.37 3,557 10 3,037,206.76 3,222
Avg 3,218,160.52 4,701 Avg 3,038,786.89 3,961
Min 3,167,696.17 3,092 Min 2,987,061.70 3,222
Max 3,267,340.80 8,283 Max 3,083,976.22 4,940

Median Count = 90 Median Count = 100
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Algorithm DAGA-IG; Problem Set fl1400; Crossover Technique 1 

 

 

 

 

 

Run Result Gens Run Result Gens
1 103,737.70 3,871 1 59,981.35 2,763
2 101,804.66 6,898 2 60,049.83 3,988
3 102,795.78 9,429 3 59,726.99 3,543
4 102,507.43 3,835 4 60,070.57 3,681
5 102,967.02 3,603 5 58,543.26 3,376
6 103,265.44 5,916 6 60,473.34 2,617
7 103,092.83 4,405 7 59,493.87 3,514
8 103,022.71 5,034 8 60,491.51 3,486
9 102,179.76 4,837 9 59,826.52 5,885
10 103,745.91 5,746 10 60,076.28 3,410
Avg 102,911.92 5,357 Avg 59,873.35 2,617
Min 101,804.66 3,603 Min 58,543.26 5,885
Max 103,745.91 9,429 Max 60,491.51 3,626

Median Count = 10 Median Count = 20

Run Result Gens Run Result Gens
1 46,437.75 7,125 1 36,453.38 6,533
2 44,311.24 8,678 2 37,470.39 3,432
3 45,933.04 3,623 3 36,454.95 3,500
4 46,303.00 4,219 4 37,409.56 4,848
5 46,407.57 6,633 5 37,705.89 7,593
6 46,623.74 2,746 6 38,408.52 3,866
7 46,711.93 4,989 7 37,182.45 5,483
8 45,700.69 4,602 8 37,109.98 3,579
9 46,825.71 5,716 9 36,568.75 7,399
10 46,838.95 6,057 10 37,302.28 3,007
Avg 46,209.36 5,439 Avg 37,206.61 4,924
Min 44,311.24 2,746 Min 36,453.38 3,007
Max 46,838.95 8,678 Max 38,408.52 7,593

Median Count = 30 Median Count = 40
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Run Result Gens Run Result Gens
1 31,080.68 7,062 1 26,733.63 3,830
2 31,685.23 3,816 2 26,744.77 2,890
3 31,375.28 4,404 3 26,806.01 7,324
4 31,442.08 5,348 4 26,989.49 5,671
5 31,578.12 3,562 5 26,588.45 4,724
6 31,656.08 2,774 6 26,885.46 2,590
7 31,804.49 4,600 7 27,606.66 2,902
8 31,664.78 3,624 8 27,102.89 4,489
9 31,513.42 4,966 9 27,450.50 5,362
10 31,893.96 3,778 10 27,111.86 3,497
Avg 31,569.41 4,393 Avg 27,001.97 4,328
Min 31,080.68 2,774 Min 26,588.45 2,590
Max 31,893.96 7,062 Max 27,606.66 7,324

Median Count = 50 Median Count = 60

Run Result Gens Run Result Gens
1 23,858.84 2,658 1 21,571.70 3,627
2 23,657.27 7,045 2 21,695.94 3,224
3 23,829.74 3,862 3 21,726.65 6,113
4 24,164.90 4,820 4 22,523.63 2,697
5 24,016.86 3,611 5 21,981.57 4,148
6 24,462.94 7,022 6 21,985.62 3,230
7 24,465.27 4,390 7 22,045.94 5,742
8 23,932.10 3,678 8 21,840.99 6,817
9 23,578.34 7,752 9 22,013.07 6,016
10 24,294.44 3,768 10 22,184.43 4,713
Avg 24,026.07 4,861 Avg 21,956.95 4,633
Min 23,578.34 2,658 Min 21,571.70 2,697
Max 24,465.27 7,752 Max 22,523.63 6,817

Median Count = 70 Median Count = 80
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Algorithm DAGA-CO; Problem Set fl1400; Crossover Technique 1 

 

 

 

Run Result Gens Run Result Gens
1 19,551.14 4,769 1 17,850.18 2,961
2 19,991.09 4,164 2 18,063.57 4,417
3 20,597.33 3,195 3 18,246.14 2,834
4 19,686.68 4,267 4 17,875.37 3,498
5 19,992.90 4,244 5 17,967.33 4,963
6 19,478.31 5,932 6 18,912.10 2,532
7 18,736.86 4,146 7 18,661.00 4,869
8 19,989.54 4,411 8 17,957.88 5,122
9 19,934.76 3,159 9 18,516.34 3,596
10 19,399.68 5,695 10 18,516.78 3,098
Avg 19,735.83 4,398 Avg 18,256.67 3,789
Min 18,736.86 3,159 Min 17,850.18 2,532
Max 20,597.33 5,932 Max 18,912.10 5,122

Median Count = 90 Median Count = 100

Run Result Gens Run Result Gens
1 106,320.50 5,125 1 62,893.15 6,094
2 106,588.04 5,899 2 61,465.61 5,346
3 107,799.61 4,096 3 62,471.12 5,188
4 103,794.02 4,289 4 62,807.86 3,660
5 104,356.55 9,264 5 64,172.08 5,450
6 105,408.83 3,044 6 63,428.14 2,940
7 107,700.88 5,006 7 62,840.40 3,036
8 106,947.50 5,437 8 63,118.50 6,497
9 103,112.17 3,500 9 62,219.43 2,502
10 107,440.69 2,840 10 63,061.86 3,075
Avg 105,946.88 4,850 Avg 62,847.82 2,502
Min 103,112.17 2,840 Min 61,465.61 6,497
Max 107,799.61 9,264 Max 64,172.08 4,379

Median Count = 10 Median Count = 20
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Run Result Gens Run Result Gens
1 48,999.46 5,110 1 39,873.32 2,639
2 49,184.37 4,183 2 40,369.35 4,429
3 48,497.59 4,029 3 38,474.95 5,355
4 50,213.97 2,669 4 39,976.31 8,263
5 49,754.66 2,667 5 39,634.08 6,053
6 49,903.80 4,340 6 40,560.67 2,656
7 50,640.15 2,502 7 39,049.03 5,868
8 49,672.71 4,266 8 39,931.96 4,729
9 50,646.75 6,517 9 40,794.54 3,734
10 49,503.97 7,486 10 39,726.05 6,125
Avg 49,701.74 4,377 Avg 39,839.03 4,985
Min 48,497.59 2,502 Min 38,474.95 2,639
Max 50,646.75 7,486 Max 40,794.54 8,263

Median Count = 30 Median Count = 40

Run Result Gens Run Result Gens
1 35,084.50 3,648 1 29,459.56 4,165
2 33,739.31 2,518 2 30,143.47 5,589
3 33,357.79 3,372 3 30,206.09 3,571
4 34,531.40 3,246 4 30,139.36 5,987
5 33,597.17 4,648 5 29,517.45 4,228
6 34,090.07 6,050 6 29,735.12 8,242
7 34,273.05 4,925 7 29,879.32 3,507
8 33,572.55 5,000 8 30,111.13 2,953
9 33,877.51 6,579 9 29,656.40 5,708
10 33,532.99 4,325 10 28,377.56 3,151
Avg 33,965.63 4,431 Avg 29,722.55 4,710
Min 33,357.79 2,518 Min 28,377.56 2,953
Max 35,084.50 6,579 Max 30,206.09 8,242

Median Count = 50 Median Count = 60
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Run Result Gens Run Result Gens
1 25,587.96 3,074 1 24,095.99 4,938
2 26,801.11 2,903 2 24,034.13 4,108
3 26,923.99 3,254 3 24,541.24 5,258
4 26,396.11 3,562 4 24,453.69 5,419
5 25,876.32 5,782 5 24,720.88 3,824
6 26,297.86 2,688 6 25,135.21 3,522
7 26,017.88 3,354 7 24,076.79 8,617
8 26,257.00 2,503 8 24,367.81 2,966
9 26,280.86 3,812 9 23,009.31 5,595
10 26,209.81 5,168 10 24,469.73 7,360
Avg 26,264.89 3,610 Avg 24,290.48 5,161
Min 25,587.96 2,503 Min 23,009.31 2,966
Max 26,923.99 5,782 Max 25,135.21 8,617

Median Count = 70 Median Count = 80

Run Result Gens Run Result Gens
1 22,477.85 2,640 1 19,838.37 4,410
2 22,092.77 4,303 2 19,383.77 4,093
3 22,010.09 2,523 3 20,329.31 2,949
4 22,535.11 3,462 4 20,674.73 3,173
5 21,510.62 4,910 5 20,751.34 3,004
6 22,024.51 4,563 6 20,210.40 3,040
7 21,889.61 4,099 7 19,966.90 6,392
8 21,369.24 2,725 8 20,150.28 5,823
9 21,271.45 2,939 9 20,122.19 3,896
10 21,860.57 5,451 10 20,200.20 2,598
Avg 21,904.18 3,762 Avg 20,162.75 3,938
Min 21,271.45 2,523 Min 19,383.77 2,598
Max 22,535.11 5,451 Max 20,751.34 6,392

Median Count = 90 Median Count = 100
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Algorithm DAGA-MU; Problem; Set fl1400; Crossover Technique 1 

 

 

 

 

 

Run Result Gens Run Result Gens
1 103,324.29 3,579 1 60,450.53 4,556
2 102,425.47 4,273 2 58,461.03 7,200
3 101,841.67 2,991 3 60,356.07 3,334
4 103,525.47 7,936 4 61,085.19 3,880
5 104,657.19 2,908 5 60,321.62 7,530
6 102,752.87 5,320 6 60,028.90 5,715
7 104,210.93 4,567 7 60,326.36 6,239
8 103,191.44 5,222 8 61,747.33 3,549
9 103,554.74 3,575 9 61,203.48 3,008
10 103,888.05 5,741 10 60,182.91 8,501
Avg 103,337.21 4,611 Avg 60,416.34 3,008
Min 101,841.67 2,908 Min 58,461.03 8,501
Max 104,657.19 7,936 Max 61,747.33 5,351

Median Count = 10 Median Count = 20

Run Result Gens Run Result Gens
1 46,945.14 2,638 1 37,563.28 4,855
2 45,682.05 5,917 2 37,541.83 2,602
3 46,412.97 4,199 3 36,388.83 3,943
4 46,695.50 4,483 4 37,118.59 4,145
5 45,919.72 4,512 5 37,870.62 3,062
6 46,189.53 7,118 6 36,669.11 7,072
7 46,979.75 2,770 7 37,357.47 3,169
8 46,569.13 2,725 8 36,253.23 5,520
9 46,027.46 5,290 9 37,049.90 2,746
10 46,562.92 2,644 10 37,086.13 7,520
Avg 46,398.42 4,230 Avg 37,089.90 4,463
Min 45,682.05 2,638 Min 36,253.23 2,602
Max 46,979.75 7,118 Max 37,870.62 7,520

Median Count = 30 Median Count = 40
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Run Result Gens Run Result Gens
1 31,552.07 3,334 1 26,649.38 7,372
2 31,699.40 2,946 2 26,715.01 3,386
3 31,924.53 3,143 3 26,379.66 2,571
4 31,167.75 3,576 4 26,768.11 4,932
5 31,953.02 3,613 5 26,675.90 4,152
6 31,728.72 2,935 6 26,863.64 4,749
7 30,769.12 4,881 7 26,440.20 3,441
8 31,603.40 4,952 8 27,173.60 3,518
9 30,492.70 5,870 9 26,596.05 3,593
10 31,135.56 5,495 10 26,634.56 6,855
Avg 31,402.63 4,075 Avg 26,689.61 4,457
Min 30,492.70 2,935 Min 26,379.66 2,571
Max 31,953.02 5,870 Max 27,173.60 7,372

Median Count = 50 Median Count = 60

Run Result Gens Run Result Gens
1 23,632.85 2,846 1 21,953.28 5,271
2 23,377.32 6,169 2 21,475.42 6,537
3 23,222.47 6,516 3 21,289.82 3,520
4 23,363.25 6,827 4 21,949.51 2,566
5 23,732.98 5,367 5 21,880.16 8,993
6 23,852.30 2,683 6 21,560.90 3,260
7 23,853.53 3,214 7 21,527.88 3,682
8 23,608.91 3,642 8 21,623.40 6,629
9 23,180.84 4,873 9 21,448.33 4,381
10 24,067.28 3,656 10 21,900.68 3,454
Avg 23,589.17 4,579 Avg 21,660.94 4,829
Min 23,180.84 2,683 Min 21,289.82 2,566
Max 24,067.28 6,827 Max 21,953.28 8,993

Median Count = 70 Median Count = 80
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Run Result Gens Run Result Gens
1 19,366.66 10,533 1 17,805.57 6,985
2 19,647.26 2,994 2 17,436.57 6,499
3 19,541.80 6,188 3 17,764.73 3,781
4 19,427.60 3,829 4 17,440.81 5,211
5 19,341.48 4,235 5 18,070.48 6,514
6 19,600.76 3,006 6 17,671.57 5,837
7 19,565.46 2,810 7 17,653.62 3,882
8 19,477.26 2,873 8 17,665.16 4,680
9 19,435.33 3,197 9 17,876.84 4,887
10 19,417.17 4,914 10 17,899.39 2,779
Avg 19,482.08 4,458 Avg 17,728.47 5,106
Min 19,341.48 2,810 Min 17,436.57 2,779
Max 19,647.26 10,533 Max 18,070.48 6,985

Median Count = 90 Median Count = 100
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