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ABSTRACT 
 Lionfish (Pterois volitans and Pterois miles) are the first recorded invasive 
piscivore in the Caribbean and have become a threat to native species. As generalist 
consumers, lionfish have a broad diet and reduce prey and competitor abundance and 
juvenile recruitment. To confront this problem, this paper serves to review all of the 
current and alternative future controls available to manage lionfish populations in the 
Western Atlantic and determine where focus is lacking. Derby and cull efforts are the 
only management efforts in place and are not effective in their current state as these local 
events have short-term benefits, but lionfish populations recover quickly. Alternative 
strategies to culls include the use of biological controls and genetic engineering. Both 
strategies have their associated risks and ethical concerns, but may provide significant 
levels of control. Biological control agents include the introduction of parasites or disease 
from their native range that specifically target lionfish or the recovery and conditioning 
of natural Western Atlantic predators to consume lionfish. Genetic modification is 
gaining public acceptance for use against pest species and therefore, if made as safe as 
possible, could provide some of the best results for controlling lionfish. Quantitative 
analysis of derby and cull data revealed that focus is lacking in key locations throughout 
the Western Atlantic such as Cuba and the Meso-American Barrier Reef. The vast 
majority of derbies were located along the U.S. Eastern and Gulf coast. However, lionfish 
controls must implement in regions of the greatest larval connectivity to reduce the 
amount of larval recruitment and subsequent recovery of adult populations after local 
removals. Monthly, basin-wide removals of 20% lionfish biomass were determined to be 
the most effective strategy, reducing lionfish biomass to near-zero levels in only 36 
months. Therefore, to effectively reduce lionfish biomass in the Western Atlantic, an 
international strategy is needed to produce management efforts in all regions 
simultaneously. 
 
Keywords: lionfish, invasive species, derbies, culling, biological control, genetic 
modification, larval connectivity 
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INTRODUCTION 
Invasive species are a major threat to both indigenous species and global 

economics. The United States Department of the Interior spends $100 million annually 
on invasive species prevention, but invasives still cost the US an estimated $120 billion 
each year (US Fish and Wildlife Service, Pimentel et al. 2005). Zebra mussels cost US 
hydroelectric facilities alone $250-300 million and invasive insects cause $13 billion in 
damages to U.S. crops each year (Pimental et al. 2005). Invasive species annual costs are 
estimated at £1.8 billion ($2.3 billion) for the UK (Kelly et al. 2013) and in Canada the 
cost of a single invasive in the Great Lakes, the sea lamprey, costs roughly $22 million 
Canadian dollars (Colautti et al. 2006). Of the 50,000 non-native species that exist in the 
United States today, many have been introduced intentionally including invasive plants 
for their food and resources or ornamental purposes (Pimentel et al. 2005). Non-
indigenous fish are typically introduced to create stocks for commercial fisheries 
(Semmens et al. 2004). However, Williams and Meffe (1998) state that of all non-natives 
introduced roughly 60% of terrestrial vertebrates, 40% of fishes and 40-50% of mollusks 
cause harm to other organisms.  

 
Methods of Introduction and Range of Lionfish 

Despite the multiple paths of invasion attributed to international trade and 
transport, marine fish invasions are rare or not often reported (Semmens et al. 2004). The 
first documented invasive marine fish in the Caribbean region is the lionfish, specifically 
the Indo-Pacific red lionfish (Pterois volitans) and devil firefish (Pterois miles (Meister 
2005, Ruiz-Carus et al. 2006, Schofield 2009, 2010), but the method and timing of 
introduction is not clear. Theories of introduction include transport via ballast water and 
aquarium escape (Whitfield et al. 2002, Semmens et al. 2004,  Kulbicki et al. 2012, 
NOAA). Ballast water has been identified as a primary vector for marine and aquatic 
invasions and has been identified as the cause of the zebra mussel invasion in the Great 
Lakes (Wonham et al. 2000, US Fish and Wildlife Service). Pterois volitans was one of 
the top 10 most valued marine fish imports to the US in 2003 (Cristina Balboa 2003, 
Ruiz-Carus et al. 2006). This high ornamental value in the hobbyist and aquarium trade 
suggests that aquarium release is likely the cause. Introduction can occur by several 



means, including dumping of unwanted organisms, drainage of water containing 
organisms and escape from tanks or fish farms during storms (Padilla and Williams 
2004). 

Since their introduction in the 1980s, lionfish have rapidly expanded throughout 
the Western Atlantic. Mitochondrial DNA screening of lionfish throughout the Caribbean 
suggests that their genetic diversity is relatively low compared to their native counterparts 
(Betancur et al. 2011). Only one haplotype was observed for P. miles in the Western 
Atlantic, while 38 haplotypes were previously detected in the native range (Kochzius & 
Blohm 2005). Similarly, nine invasive haplotypes were found for P. volitans while there 
are 36 native haplotypes (Hamner et al. 2007, Freshwater et al. 2009). This low genetic 

variability in the Western Atlantic suggests a strong founder effect. A minimum of 12 
lionfish (10 Pterois volitans and 2 Pterois miles) can explain the current haplotypes seen 
in the Western Atlantic today which suggests multiple releases of lionfish and/or eggs off 
the coast of Florida.  

The first lionfish reported was in 1985 by a lobster fisherman off the coast of 
Dania, Florida (Schofield 2009). No further reports were made until 1992.  Due to lack of 
reports and information it may be impossible to know exactly where and when the 
primary invasion event occurred for lionfish in the Western Atlantic. Due to their success 
as an invader, lionfish quickly established themselves throughout the Western Atlantic 
(Fig. 1). Lionfish were considered established along the Atlantic coast of the US in 2002, 

Fig. 1: USGS Lionfish Invasion Status from 1986 and 2014. Red circles indicate lionfish reports. Reprinted from Invasive Lionfish Web Portal. 



the Bahamas and Bermuda in 2005, Cuba in 2007, the Turks and Caicos and Jamaica in 
2008, and Mexico, Honduras and Costa Rica in 2009. Other sighting locations include the 
Greater and Lesser Antilles, the British Virgin Islands, Leeward Islands, Nicaragua, 
Panama, and Venezuela (Schofield 2010). Lionfish have also been observed as far north 
as Massachusetts, but their range is believed to be limited by cold water temperatures and 
therefore are not considered established because they are unable survive through the 
winter (Kimball et al. 2004, Schofield 2010). Although Brazil temperatures are adequate 
for lionfish establishment to the south, they have yet to be reported likely due to strong 
northern currents and the Amazon-Orinoco Plume (Luiz et al. 2013). The plume is 
considered a dispersal barrier for many organisms, but can be crossed via shallow inland 
mangrove habitat or deep sponge beds below the current. Lionfish in the invaded range 
are known to inhabit shallow mangroves (Barbour et al. 2010) and have been recorded at 
depths of 300 m by a ROV (O’Neill 2010). Therefore, lionfish may be able to penetrate 
the plume barrier by travelling along the inland mangroves or swimming beneath the 
strong currents at depth which may lead to their establishment along the South American 
coast. 

 
Impacts of Lionfish in the Western Atlantic 

Piscivorous fish introductions have a large impact on native assemblages 
primarily due to predator and prey naïveté (Moyle and Light 1996). The lionfish invasion 
has been devastating to Western Atlantic fish populations (Albins and Hixon 2008, Arias-
Gonzalez et al. 2011, Munoz et al. 2011, Green et al. 2012, Albins 2013). Lionfish are 

Fig. 2: Lionfish biomass by year off coast of New Providence, Bahamas (left). Change in prey abundance with arrival of lionfish from 2004 to 2010 (right). Reprinted from Green et al. 2012. 



opportunistic feeders that, as adults, consume primarily fish (99%) and do not exhibit a 
prey preference (Munoz et al. 2011). Green et al. (2012) reported an estimated abundance 
of 42 fish species in the presence of lionfish in the Bahamas.  Nine locations along a 
continuous reef off New Providence were surveyed from 2008 to 2010 for fish abundance 
and size. Lionfish prey species were identified from the stomach contents of 567 
collected lionfish over the duration of the study. At the conclusion of the study in 2010, 
lionfish were estimated to comprise 40% of all predator biomass in the Bahamas (Fig. 2). 
The collected data illustrated that lionfish reduced abundance of small-bodied prey by 
65% and the ecologically-similar snappers and groupers (Lutjanidae and Serranidae) by 
44% while small-bodied non-prey and large-bodied non-competitors from families 
Acanthuridae, Echineidae, Haemulidae, Holocentridae, Labridae and Scaridae were 
unaffected (Fig. 2). Through comparison of the abundance results with analysis of 
stomach contents, lionfish were determined to reduce prey species abundance in the area 
by 65% (Green 2012). Prey families found in stomach contents included Apogonidae, 
Chaenopsidae, Gobiidae, Labridae, Pomacentridae and Serranidae. Though the impact 
lionfish have on native species may be different by region, it can be assumed that similar 
results would be found on reefs throughout the Western Atlantic. These results show that 
lionfish may impact the native biodiversity of the Western Atlantic through reduction of 

native species such as snappers and 
groupers.  

Albins and Hixon (2008) 
reported on the effect of lionfish on 
juvenile recruitment at Lee 
Stocking Island (LSI) in the 
Bahamas, spanning the mid-1990s 
to the first lionfish appearance in 
2005. The lionfish population 
increased significantly by 2007 
with over 100 lionfish spotted at 
LSI. In the summer of 2007, 24 
new lionfish recruits were observed 

Fig. 3: Recruitment of juvenile fish to experimental patch reefs. Lionfish were transplanted on 10 reefs while another 10 reefs served as lionfish-free controls. Reprinted from Albins and Hixon, 2008. 



at LSI over a 70 day period. This is the equivalent of 24 lionfish ha-1 per day, but this rate 
is based on the patch reefs at LSI and therefore may be different for continuous reefs. 
Juvenile recruitment of other species was reduced by an average of 79% after 5 weeks 
(Fig. 3). Recruitment was measured as fish less than 5 cm in length after 5 weeks 
compared to initial observations. Twenty-three of 38 species that recruit to these reefs 
were negatively affected by the presence of lionfish. These include, but are not limited to 
S. tigrinus, H. melanurum, H. maculipinna, S. aurofrenatum, C. glaucofraenum and G. 
thompsoni. For example, H. melanarum and C. glaucofraenum recruitment rates were 
reduced from 4.3 to 0.3 and 11.9 to 4.4 (fish reef-1), respectively, in the presence of 
lionfish. Further research at Bahamian patch reefs showed that lionfish also reduce prey 
populations by up to 97% with the largest declines in C. glaucofraenum, S. leucostictus 
and G. thompsoni (Albins 2013). By comparison, a native predator, the Coney grouper, 
reduce these same prey populations by 36%. Lionfish growth rates are over 6 times that 
of the coney grouper and their negative effect on species richness was nearly two-fold 
greater than the effect of native grouper. This suggests that lionfish exhibit more rapid 
growth, a broader diet and a greater ability to outcompete native predators which led to 
their successful invasion of the Western Atlantic.  
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Fig. 4: Proportion (%) of major food groups in lionfish diet in 4 locations in the Western Atlantic. Fish and crustaceans were the only two food groups in all regions except the Bahamian archipelago, where molluscs represented 0.3% of lionfish diet. 



Lionfish prey varies slightly based on region, but may be explained by their 
generalist hunting behavior. When comparing lionfish prey from several regions within 
the Western Atlantic, it is clear that lionfish generally prey more heavily upon fish than 
crustaceans at many locations (Fig. 4). The Loxahatchee River in Florida is an exception 
with a higher reliability on crustaceans, but this is likely due to the smaller average size 
of lionfish. The three most important prey groups in the estuary were determined to be 
the Panaeidae shrimps, Palaemonidae shrimps, and unidentified teleosts with 88% of the 
stomachs containing shrimp (Jud et al. 2011). Within the estuary, lionfish size ranged 
from 23 to 185 mm with an average size 
of 92.1 mm, suggesting that the 
majority of lionfish are small and/or 
juveniles. In a study by Morris and 
Akins (2009) in the Bahamian 
archipelago, it was determined that 
lionfish only consume prey between 
0.02% and 48% of their total body 
length. A greater proportion of 
crustaceans, primarily shrimps, were 
also found in the Bahamas when 
evaluating only the stomach contents of 
smaller lionfish. The study by Jud et al. 
(2011) in the Loxahatchee took place in 
2010 and 2011 and lionfish were first 
observed in the Loxahatchee in 2010. 
Therefore the lionfish population may 
consist of smaller juveniles and recruits 
and therefore the higher proportion of 
crustaceans found in the Loxahatchee 
estuary may be attributed to the smaller 
size lionfish in this region.  

Table 1: Proportion of prey fish from several sites in the Western Atlantic. The Florida Loxahatchee River is excluded because specific data on stomach contents was not given. 



The differences in lionfish prey between regions may be explained by regional 
prey abundance. For example, in Onslow Bay, North Carolina, Haemulidae was found in 
lionfish stomachs at the greatest proportion of 41.78% of all prey fish consumed (Munoz 
et al. 2011), while Labridae was found at 29% of all fish prey consumed at Abaco Island 
in the Bahamas (Table 1, Layman and Allgeier 2012). Being generalists, the difference 
between prey choices for lionfish between regions therefore suggests a higher abundance 
of different families at the study sites. Some similarities do exist due to the extensive 
range of these families throughout the Western Atlantic, but may also be a result of some 
minor prey preference. Labridae was the primary prey fish in both the Mexican 
Caribbean (26.4% of all prey fish consumed) and Abaco Island (29.0%) (Valdez-Moreno 
et al. 2012). They appeared in relatively large proportions of lionfish diet in four of the 
five locations, suggesting abundance throughout the Western Atlantic. Scarids were also 
a large part of lionfish diet in North Carolina (13.4%), the Mexican Caribbean (10.4%), 
San Salvador (4.2%), and Abaco Island (14.0%) (Layman and Allgeier 2012, Pimiento et 
al. 2013). In contrast, goatfish (family Mullidae) were unique to San Salvador across all 
study sites. 

Due to their rapid growth and broad diet, lionfish may be altering food webs in 
the Western Atlantic and are considered a major threat to coral reef systems (Gonzalez et 
al. 2011, Green et al. 2012). Through the use of models it is possible to estimate the 
trophic impact that lionfish may have on Caribbean reef systems. A model designed by 
Gonzalez et al. (2011) uses the Ecopath with Ecoism approach. This modeling technique 
is used primarily to investigate the impact of policy decisions, but can also be used to 
analyze food web structure related to the impact of nutrients, functional groups such as 
parasites and apex predators, and invasive species. Data was used from the Alacranes 
Reef, an isolated atoll in Campeche Bank north of the Yucatan Peninsula where 
fishermen have reported 260 lionfish caught between July 2010 and February 2011. The 
model begins at near-zero lionfish biomass (0.01 metric tons km-2) with abundance and 
proliferation eventually increasing to post-invasion levels of 10.5 metric tons km-2. Pre-
invasion fish community data at Alacranes Reef was used as the starting point for reef 
community structure while the post-invasion values were estimated through comparison 
of biomasses observed in Bahamian reefs by Côté et al. in 2009 and 2010. In the early 



stages of the model with near-
zero lionfish biomass, small 
omnivorous reef fish are the 
dominant fish group and jacks, 
sharks and rays are apex 
predators. As lionfish biomass 
rapidly increased, small and 
intermediate carnivorous and 
omnivorous coral reef fish 
biomass decreased by 40-69% 
while sharks, rays, scombrids, 
jacks, and small scarids and 
gobiids biomass decreased by 28-
35%. Some groups exhibited a 
14-47% increase in biomass with 
the proliferation of lionfish 
including blenniids, groupers, 
scarids, and engraulids. Together, 
these results suggest that the 
presence of lionfish causes 
changes in reef community and 
food web structure by releasing 
some groups from predation and 
competition pressures and 
hindering others through direct 

predation and competition for prey.  
Similarly, lionfish predation on juvenile parrotfish and other herbivores may 

produce a trophic cascade that can shift coral-dominated communities to algal-dominated 
communities (Albins and Hixon 2013). Removal of herbivores has been documented to 
cause algae to outcompete and reduce recruitment of corals (Mumby et al. 2006). This is 
a worse-case scenario described by Albins and Hixon (2013) in which the combined 

Fig. 5: Percent algal and coral cover in 2003, 2005 and 2009. Algal and coral cover varied significantly at 46 and 61 m depth. Reprinted from Lesser and Slattery 2011. 



effect of fishing pressure on large species and lionfish predation on smaller juveniles of 
the same species causes a significant change in trophic structure from coral-dominated to 
algal-dominated reefs. This scenario is becoming apparent in local regions where they 
have extended their range below 61 m depth, such as Bock Wall in the Bahamas. At Bock 
Wall, lionfish have begun to induce a phase shift from coral-dominated to algal-
dominated communities (Lesser and Slattery 2011). Surveys were completed on Bock 
Wall at depths of 30, 46, 61, 76, and 92 m in 2003, 2005 and 2009 (Fig. 5). There were 
significant changes in algal and coral cover at both 46 and 61 m. Percent algal cover at 61 
m depth was 6% in 2003, 8% in 2005, and 92% in 2009 while coral cover was 6% in 
2003, 8% in 2005, and less than 2% in 2009. No lionfish were observed at Bock Wall 
until 2009 and therefore their arrival seems to be the cause of this rapid change in 
community structure. SIMPER analysis by Lesser and Slattery (2011) indicated that 
lionfish alone have a significant effect on species composition at this site including a 
decline in herbivorous fish. Eleven of the 16 herbivorous fishes found at Bock Wall in 
2003 were no longer present in 2009. Native predators also disappeared; an average of 11 
Nassau and 6 Hind grouper were found on transects between 2003 and 2006. However, 
with the arrival of lionfish in 2009, grouper were completely absent from this site. 
Through changes in community structure, lionfish may cause the already threatened coral 
reefs to eventually shift to an algae-dominated food web. 

Lionfish present a rapidly growing threat to the ecology of the Western Atlantic 
and therefore all management strategies must be considered. Basin-wide eradication of 
Pterois miles and Pterois volitans is no longer possible as they are widespread and well 
established. Therefore, effective management strategies must be designed to reduce 
lionfish populations to a minimum and preserve native biomass at a regional level. 
Focusing management efforts on regions of greatest lionfish connectivity, namely source 
and sink populations, can greatly amplify results (Johnston and Purkis 2015). Johnston 
and Purkis (2015) forecasted that with international collaboration, lionfish biomass would 
reach near-zero with 20% monthly culls throughout the Western Atlantic. This capstone 
will provide a review of contemporary and theoretical lionfish management strategies in 
an attempt to enhance management strategies currently in place. It will also provide a 



regional, quantitative analysis of control/removal studies in order to determine where 
focus is lacking.  
 

METHODS 
 To identify all possible lionfish controls, scientific literature was reviewed 
primarily from online databases using Google Scholar advanced searches and other 
databases through Nova Southeastern Library access. Any reliable lionfish information 
was considered which included publications as well as information from general websites 
linked to lionfish, such as the REEF, U.S. Fish and Wildlife Service (FWS) and Lionfish 
Hunting. However, websites were primarily used to support published information. 
Searches were be focused on both the native and invasive range to compare lionfish 
status in both regions.  
 A comparison of lionfish prey by location in the Western Atlantic was completed 
to determine similarities and differences between prey choices. Data was taken from six 
studies at different locations. To account for different methods of measurement in each 
study, proportions of prey were used as a percentage of lionfish total diet by number. The 
top five prey fish families where then determined for five of the six studies because one 
did not provide specific information. The information was provided in chart and table 
form for comparison between regions.  
 The regional, quantitative analysis of control/removal studies was completed 
following the larval connectivity work by Johnston and Purkis (2015), which was used as 
a guide to the connectivity linkages between sub-regions in the invaded range of lionfish. 
The study identifies locations where controls should be focused in order to reduce 
lionfish abundance. Furthermore, quantifying the extent of lionfish control/removal 
studies revealed high risk areas that are lacking focus. Data was collected from published 
research studies and lionfish derby-like events. Events and study sites were grouped into 
the regions and sub-regions described by Johnston and Purkis (2015). The range and 
magnitude of removal events was considered if available. The regions with highest 
control activity were then compared to the regions of highest priority to reduce lionfish 
numbers in order to determine where focus is lacking. These areas are suggested as 
priorities for further research and culling events to optimize management efforts. 



 
REVIEW 

Native and Invaded Range 
 Prior to their establishment in the Western Atlantic, little was known about 
lionfish other than their value in ornamental trade. In order to create the most effective 
management strategies, a comprehensive understanding of lionfish is required. Research 
on invasive species tends to be focused in the invaded range, but information regarding 
their ecology and distribution in the native range is pertinent to their management (Hierro 
et al. 2004). For lionfish, information about predatory behavior and habitat in the native 
range of the Indo-Pacific can be used to create more focused control strategies in the 

invaded range (Kimball et al. 2004, Cure et al. 2012, Kulbicki et al. 2012), but further 
research is still needed to explore the native characteristics of this species.  

Based on research completed by Cure et al. (2012), predatory behavior of lionfish 
was compared between native reefs in Guam and the Philippines and invaded reefs in 
Cayman Islands and Bahamas. It was discovered that hunting patterns did not differ 
dramatically between oceans, but rather between regions within each ocean. Lionfish 
were observed to be more active in the Philippines and Cayman Islands than Guam and 
the Bahamas. This suggests that there is no interoceanic difference between native and 

Fig. 6: Lionfish activity between Pacific and Atlantic Oceans. Lionfish exhibit similar patterns at different magnitudes between oceans. Reprinted from Cure et al. 2012. 



invasive lionfish activity patterns. However, lionfish generally spent more time inactive 
and less time hunting between oceans (Fig. 6) and prey choices were significantly 
different between native and invasive lionfish. Mean prey size of invasive lionfish was 
double that of native lionfish. Lionfish exhibited a much broader diet with an average 1.6 
taxa killed per 1000 min in the Atlantic and 0.9 in the Pacific. Only two fish families 
were targeted in their native range (Pomacentridae and Trichonotidae), while six fish 
families were targeted in the Atlantic (Apogonidae, Blenniidae, Gobiidae, Labridae, 
Pomacentridae and Scaridae). Their broader diet includes the ecologically important 
juvenile parrotfish in the Atlantic, which are not preyed upon in the Pacific. 
Aquaculturists note that determining reef mates for lionfish is difficult because they will 
consume almost anything that fits in their mouths including ornamental shrimp, crabs and 
fish (“Lionfish Careguide” n.d., Marini 2002). Fishelson (1997) and Maljkovic (2010) 
also researched predation rate between oceans and found Pacific and Atlantic lionfish 
consume an average of 8.5 g and 13 g of fish per day, respectively. This difference may 
be attributable to predator and prey naiveté in the Atlantic (Côté 2013, Diller et al. 2014). 
While they do have a broad diet, lionfish also exhibit a high resilience to starvation, 
losing only 5-16% of their body weight after 3 months of starvation (Fishelson 1997). 
These attributes make lionfish an effective invader because they are able to consume a 
broad diet and survive in conditions where prey are scarce. 

In the Indo-Pacific, lionfish have had time to reach a relative equilibrium 
compared to their recent expansion in the invaded Atlantic. Therefore it may be possible 
to estimate their future distribution in the Atlantic and focus management efforts by 
comparison with native lionfish. A study completed by Kulbicki et al. (2012) looked at 
population density and distribution patterns of lionfish in their native range (Fig 7). P. 
volitans and P. miles distributions were estimated based on a series of observations in the 
Pacific and, while they were relatively rare throughout the Indian and Pacific oceans (3.6 
fish ha- and 0.17 fish ha- , respectively), density was highly variable by region and 
increased with distance from the Indo-Pacific biodiversity center. For example, the 
highest regional density in the Pacific was found at Rapa in French Polynesia at 7.2 fish 
ha-1 with much of the Pacific having no lionfish. In the Indian Ocean, highest densities 
were found near the Red Sea at greater than 20 fish ha-1. These differences may be 



attributable to any number of factors such as competition and/or predation of lionfish, 
suitable habitat, depth, temperature, or reproductive requirements, which could reveal any 
number of possible alternatives for lionfish control in the Atlantic. More research in their 
native range is needed to understand this distribution. 

Kulbicki (2012) also studied lionfish habitat and depth preference in the Indo-
Pacific and found that they preferred reefs, soft substrates, seagrass and algae beds, 
mangroves and estuaries. Regarding depth, highest densities from trawl catches were in 
the 10-20 m depth range (mean 0.68 fish ha -) with deepest recorded catch at 75 m. In the 
southeastern U.S., Meister et al. (2005) observed lionfish via submersible dives at depths 
of up to 99 m. The difference in depth between oceans may be attributed to 
environmental conditions in the southeastern U.S. and lionfish share a common 
establishment pattern with Atlantic reef fishes. Reef fishes that are observed in shallow 
waters are established on reefs up to 100 m depth off the coast of the southeastern U.S. It 
is also important to note that in the Indo-Pacific, P. volitans and P. miles share a 
relatively small area in western Indonesia, but are otherwise separated; P. miles are 
observed in the Indian Ocean and P. volitans are observed in the Pacific (Kulbicki et al. 
2012). However, the reasons behind this separation are not well known. It is perhaps due 
to environmental differences and physical limitations of each species. In the Western 

Fig. 7: Density of lionfish in the Indian and Pacific oceans. Area of circles is proportional to observed density. Stars represent lionfish present, but density was not recorded. Reprinted from Kulbicki et al. 2012. 



Atlantic, P. miles are restricted to northern regions such as Bermuda and the U.S. while 
P. volitans can be found throughout the Caribbean, Bermuda and East Coast U.S. 
(Betancur et al. 2011). In order to fully understand the physical limits of these species 
and better estimate their future expansion in the Atlantic, more research is required. 

Thermal tolerance is one characteristic that can be used to estimate geographic 
expansion in the Atlantic. In the Pacific, lionfish have broad ranges spanning from 35°S 
to South Korea at 35°N with sea-surface temperature averages at both locations being 
roughly 19°C with a minimum winter temperature of 14°C (Kulbicki et al. 2012). 
Kimball et al. (2004) conducted a study in the southeastern US to determine thermal 
tolerance of Pterois volitans and Pterois 
miles and estimate their potential northern, 
southern and offshore limits in North 
America. Kimball et al. (2004) discovered 
the lethal minimum temperature for 
lionfish to be 10°C with feeding cessation 
beginning at 16.1°C. Comparing these to 
average sea-surface temperatures in the 
Atlantic, the geographic range for lionfish 
is from just north of Cape Hatteras, 
throughout the Gulf and Caribbean and 
south along the coast of Brazil, while 
offshore range in North America is limited 
by the 200 m isotherm continental shelf 
break at an average 12°C temperature.  
 
Current Controls 

Local fishing derbies and culls are the only active management strategies used to 
control lionfish populations at present (Harrell n.d.). Derbies are typically held by 
organizations and can help spread awareness of the lionfish problem while removing 
lionfish on a local scale. REEF and the Florida Fish and Wildlife Conservation 
Commission (FWC) sponsor summer lionfish derbies several times a year at several 

Fig. 8: Range of thermal tolerance for Lionfish in the Western Atlantic based on average annual sea surface temperatures (SST) 



different locations to assist in the management of lionfish off the coast of Florida and 
train divers on how to properly collect and handle the invasive fish. Teams are formed 
and register to compete in derbies of which winners will receive cash prizes based on the 
number and/or size of lionfish caught. In REEF events alone, 16,134 lionfish were 
reported removed since 2009 with the largest removal of 3,542 occurring in 2011. The 
lionfish caught during derbies are either donated for research or sold to restaurants. REEF 
and the FWC sponsor many other organizations or tournaments throughout Florida, 
which generally run from March through September each year (“2016 Lionfish derbies” 
n.d.).  

Targeted removals have proven to significantly reduce lionfish densities to 
minimal levels and reduce the average size of remaining lionfish at the local to regional 
level (Frazer et al. 2012). Removals conducted by Frazer et al. (2012) off Little Cayman 
Island resulted in 229 lionfish caught at Blacktip Boulevard. This reduced lionfish 
density from 175 fish ha-1 to 13 fish ha- in 7 removals over 209 days. This type of local 
removal relieves predatory stress on larger prey species such as juvenile Nassau grouper 
and parrotfish and increases native biomass by 50-70% (Green et al. 2014). However, this 
is only a temporary solution. The long-term effects of such removals can be estimated 
through the use of models. Modeling overfishing of stock density estimates (Côté 2009, 
Morris and Whitfield 2009) showed that annual overexploitation rates of 35-65% or 157-
293 lionfish ha-1 were required to significantly reduce spawning stock, while cessation of 
overexploitation led to recovery in only six years (Barbour et al. 2011). Another 
simulation by Johnston and Purkis (2015) showed that monthly removals of 20% of 
lionfish biomass are necessary to significantly reduce lionfish abundance, which will be 
discussed later in this paper.  

In the Lesser Antilles, monthly culls were performed in Martinique over the 
course of one year, each time removing an average of 74% of the observed population 
(Tregarot and Marechal 2014). The culls were performed on large, continuous reefs and 
small, isolated reefs. Density on the isolated reefs was reduced over time as culling 
continued throughout the year, but densities remained relatively stable on continuous 
reefs despite the large numbers of lionfish removed each month, suggesting year-round 



recruitment (Fig. 9). Immigration is possible, but is contradicted by the observations of 
Jud and Layman (2012) and others that lionfish exhibit high site fidelity. Fifty-five 
lionfish of varying size categories were tagged along about 2 km of the south shoreline of 
the Loxahatchee estuary and recaptured or sighted over the course of 10 months. Over 73 
total recapture/sighting events, the majority of lionfish hardly moved between captures. 
Roughly 56% were found within 0.5 m of their previous location and an additional 18% 
had moved less than 10 m. The greatest distance covered by a single lionfish was 420 m 
after 67 days suggesting that very few lionfish migrate to other locations and the stable 
density observed by Tregarot and Marechal (2014) is more likely due to larval 
recruitment than immigration. Therefore focus on specific regions with high larval 
connectivity should be prioritized to optimize culling efforts (Johnston and Purkis 2015). 

Fig. 9: Surveys of lionfish before and after targeted removals at several sites on the west coast of Martinique. Fond Boucher 1 and 2 are the continuous reefs which exhibited relatively stable lionfish densities despite large removals each month. All others are isolated reefs which show a negative trend in removals as density decreased. Reprinted from Tragarot and Marechal 2014. 



Other cost-effective alternatives, such as the lionfish challenge award programs 
offered by the FWC, encourage recreational divers and fishermen to harvest invasive 
lionfish. These are important to consider, but still only tend to cover specific locales. The 
2015 lionfish challenge allowed individuals to catch one extra spiny lobster each day of 
harvest season that they also take ten lionfish although this may lead to declines in lobster 
populations (FWC). In 2016, the FWC began the Statewide Lionfish Challenge that runs 
from May through September and provides one entry into a raffle for every 50 lionfish 
caught (FWC Lionfish Challenge). Prizes include fishing licenses, fuel cards and dive 
tank refills. Dive shops may also volunteer to provide an effective alternative. The Red 
Lionfish Hunt hosted by the Ocean Frontiers Dive Shop in the Cayman Islands dedicates 
one dive boat to lionfish culling every Monday afternoon (Ocean Frontiers). This has 
been ongoing since 2010 and provides interested divers with the education and resources 
to obtain a Lionfish Culling Certification.  

Another organization known as Robots in Service of the Environment (RISE) is 
currently in development of submersible lionfish hunting robots that aim to 
autonomously control lionfish populations in the Western Atlantic (RISE). Seeking to 
eventually operate like the Roomba vacuum, the robots are controlled remotely. 
However, the developers aim to make the submersibles easy to operate so minimal 
training is required. The robots originally used traditional spears for culling, but newer 
models use a shocking probe. Though still in development, this may provide an 
interesting alternative to widespread culling.  

Culling may provide significant lionfish control at a local and/or regional scale, 
but it can also affect lionfish behavior over time (Côté et al. 2014). As a response to 
heightened predation pressure, prey species tend to change their behavior to compensate 
and ensure highest survival rates. After intense culling by humans, therefore, lionfish 
exhibit greater avoidance behavior in the presence of divers and also hide during daylight 
hours when divers are typically present. Côté et al. (2014) imposed varying levels of 
culling pressure at 8 patches off Eleuthera in the Bahamas in order to study these 
behavior changes. Lionfish exhibited significantly more hiding behavior and less activity 
during daylight hours and tended to be more active and less hidden during dawn hours 
(6:40 am to 7:30 am) on culled reefs compared to unculled patches. Lionfish also 



exhibited greater avoidance behavior on culled patches with mean alert distance twice 
that of lionfish on unculled patches. This difference is only 25 (unculled) vs 50 (culled) 
cm, but could affect close range spearing and netting success. This analysis suggests that 
lionfish may change their behavior in response to human predation and repeated cullings 
may become more difficult over time. There is also concern that lionfish in frequently 
culled regions may move to deeper water. Considering the size of the affected area and 
short length of recovery, culling events are unreasonable and expensive tasks that can 
only be applied at small scales to protect biodiversity at the local level. Therefore, 
alternative methods should be explored for long-term solutions.  
 
Fisheries and Human Consumption 

Lionfish harvest by divers could provide significant impact on lionfish 
populations (Morris and Whitfield 2009). The idea of lionfish consumption has started to 
make headway and wholesale dealers are purchasing lionfish for sale in restaurants (FWC 
n.d.). This may be the most cost-effective method of lionfish control in areas with large 
lionfish populations and of high ecological importance as restaurants may see lionfish as 
profitable and therefore the demand will increase (Morris and Whitfield 2009). Many 
wholesale dealers have low or no minimum and high maximum delivery requirements 
and accept lionfish daily to accommodate all interested parties. Lionfish hunting may 
come in the form of trap, net or spear fishing, with spear fishing and hand-held netting 
currently being the most effective as they do not produce bycatch. If at some point a 
larger lionfish fishery was to develop, it could provide significant regional management 
of the invasive species.  

Morris and Whitfield (2009) explain that lionfish meat is perfect for many dishes 
and is served as a delicacy in Mediterranean cuisine. If a demand for lionfish is created, 
harvests may become widespread and provide management. Publicizing this information, 
however, is quite difficult. For recreational fishermen or restaurant chefs who are 
interested in catching and/or cooking lionfish, the Reef Environmental Education 
Foundation (REEF) provides instructional guides and videos on catching, handling and 
filleting procedures as well as some cooking recipes. REEF also provides lionfish drop-
off locations for divers that wish to donate their catch for research. Paul Greenberg, an 



author for Food&Wine magazine, wrote about the lionfish problem in an attempt to 
inform the public of this potential exotic food and convince divers to become lionfish 
hunters (Paul Greenberg). Publicizing the problem to diving enthusiasts will not eradicate 
lionfish, but lionfish removals even in small, infrequent numbers may have some 
demographic impact.  
 
Exploring Alternative Biological Controls 

Through the careful evaluation of an invasive species’ native range, it is possible 
to find biological control agents suitable for control in the invaded range. For example, 
the United States Department of Agriculture (USDA) currently deploys terrestrial 
invasive controls based on species relationships in native ranges (USDA APHIS 2009). 
The Emerald Ash Borer (Agrilus planipennis), or EAB, is a beetle that was projected to 
cause $10 billion in economic damage to North American forests (USDA APHIS 2009). 
Three parasites from the beetle’s native range in China were deemed compatible with the 
insect’s invaded range in North America and released starting late 2007. The introduced 
parasites successfully slowed the spread of EAB, but did not cause declines in their 
abundance (Jennings et al. 2015). Models suggest that parasitism will need to be 
increased roughly 30-65% through further releases of the parasites to reduce EAB 
biomass (Jennings et al. 2015). By investigating what native controls lionfish have in 
their native range, it may be possible to find biological controls that can be implemented 
in the Western Atlantic.  

However, the use of alien species as biological control agents requires extreme 
caution. In the early stages of EAB invasion in North America in 2002, the USDA 
conducted eradication efforts including quarantines and removal of ash trees (USDA 
APHIS 2015). This strategy was changed to management efforts once EAB populations 
were widespread. EAB is native to southeastern Asia so the USDA looked for parasitoids 
in China that specifically target EAB eggs and larvae as biological control agents. Only 
after 5 years of quarantined research in China and Michigan were test releases completed 
for the parasitoids in Michigan. Small, controlled releases were conducted and monitored 
for 60 days after which the parasitoids were not considered a great threat to other native 
species. They were soon after released in larger numbers to combat EAB. This procedure 



outlines the extreme caution and time that is required when dealing with release of more 
invasive species in order to support management of another.  

Biological controls can become failures if the agent competes with or attacks 
other native species and/or does not reduce targeted invasive species density (Myers 
2000). A well-known example of a biological control failure is the 1935 introduction of 
cane toads, Rhinella marina, in Queensland, Australia to control scarab beetles, a 
sugarcane pest (Australian Government 2010). Their introduction as a control led to their 
establishment and rapid spread across northern Australia. The toads have since become a 
threat to other native species, where they compete with native predators for prey and 
shelter and are also toxic to naïve predators (TSSC 2005).  

Another example is the Asian lady beetle, Harmonia axyridis, which is a 
polymorphic species native to central and eastern Asia that is exceptional at thriving in 
different environments (Soares et al. 2008). It has been released in multiple countries 
including the US to combat pest insects (Roy et al. 2007). However, the beetle is 
considered invasive in many cases, preying on and having greater foraging efficiency 
than native species, leading to changes in community composition (Soares et al. 2008). 
The EAB parasitoids can currently be considered a failure, although as the parasitoids 
populations increase through reproduction or further releases they may become more 
effective. Therefore, extensive, controlled experiments must be done in advance to 
determine if a non-native biological control agent is both viable and effective enough for 
safe release. 

Species-specific agents such as natural predators, parasites or disease may provide 
the best option as biological control agents for lionfish management. However, due to the 
limited information available on species interactions with lionfish in the native range, few 
options are available. These include the natural predators to lionfish in the Indo-Pacific, 
including coronetfish (Bernadsky and Goulet 1991), sharks, grouper, large eels, frogfish 
and other scorpionfish (Lionfish Hunting), but these species are all moderate to large 
piscivores and are therefore too dangerous for release because they may to lead to 
biological control failures. Further research to identify potential Pterois-specific agents 
may be beneficial in producing effective management strategies in the Western Atlantic. 
 



Western Atlantic: Native Predators 
 Other possibilities for control rely on native species in the Caribbean such as the 
implementation of no-take zones or conditioning native predators like Nassau grouper 
and nurse sharks to consume lionfish (Maljkovic et al. 2008, Mumby et al. 2011, Mumby 
et al. 2013, Diller et al. 201,). Native grouper have been documented with lionfish in their 
stomachs and fishermen believe that native grouper are preying on lionfish (Malkjovic et 
al. 2008). However, the ability of native predators to control lionfish populations is a 
controversial topic and more research is required (Valdivia et al. 2014). Evidence exists 
to support both arguments and therefore this possibility for lionfish management needs to 
be explored. 
 Strict reduction in fishing of native predators (i.e., groupers and snappers, for 
example) and implementation of no-take zones (Sadovy 1997, Chiappone et al. 2000, 
Sala et al. 2001) may provide benefits to lionfish control. Grouper populations have been 
under severe pressure since before the 1970s when commercial grouper fisheries were 
established (Sadovy 1997, Chiappone et al. 2000, Sala et al. 2011). This also means that 
grouper populations were in steep decline during the onset of the lionfish invasion which 
may in part explain their rapid expansion in the Western Atlantic. Landing data from the 
1970s shows Nassau grouper as the primary target of grouper fisheries, which comprised 

roughly 70% of total 
grouper landings (Sadovy 
1997). Annual landings 
decreased rapidly from 
several thousands to less 
than 100 by 1990 at 
aggregation sites in the 
Bahamas. Grouper 
spawning aggregations in 
Belize declined from 
15,000 to 3,000 in 25 years 
with high fishing quotas 
still in effect in 2011 (Fig. 

Fig. 10: Models of the Nassau grouper fishery on Glover’s Reef in Belize. The two models are for two different quotas, 300 groupers or 30% of aggregation size. The bars are equal to grouper aggregation when quota is 30%. The dotted line indicates profitability of grouper fishery for a single vessel. Reprinted from Sala et al. 2011. 



10, Sala et al. 2011). In Bermuda, the decline was much quicker with Nassau grouper 
landings reduced from 29,100 kg to 1,800 kg in 6 years (Sadovy 1997). Cuba 
experienced a decline from 2,768,000 kg in 1960 to 766,000 in 1981, and Florida 
fishermen reported approximately 0.18 Nassau grouper per trip in the early 1980s 
compared to 0.01-0.03 fish per trip by the mid-1980s. Since their decline, grouper have 
struggled to recover in part due to the lionfish invasion, but also because they are still 
caught by fishermen. The implementation of no-take zones, however, has been successful 
in grouper recovery (Chiappone et al. 2000, Mumby et al. 2011).  

No-take zones or protected 
areas completely prohibit fishing 
or have fishing regulations 
associated with them. One such 
location is the Florida Keys 
National Marine Sanctuary. The 
sanctuary is broken up into 
several zones to reduce conflict 
between recreational users such as 
divers and anglers. Hook-and-line 
and spearfishing is allowed in the 
sanctuary, but it is heavily 
regulated by the FWC to reduce 
impacts (Florida Keys National 
Marine Sanctuary). These 
regulations have helped grouper 
biomass increase within the 
sanctuary, but it still remains low 
due to the difficulty and lack of 
enforcement (Chiappone et al. 
2000). Enforcement of catch 
regulations are difficult because 
they are expensive and time-

Fig. 11: Top: Average grouper biomass based on AGGRA assessments throughout the Caribbean. Arrows indicate minimum and mean grouper biomass in the ECLSP. Bottom: negative relationship found by Mumby et al (2011) between grouper and lionfish biomass. Reprinted from Mumby et al. 2011 



consuming, which can lead to illegal catches and reduce the effectiveness of the protected 
area. 

One of the most restrictive areas is the Exuma Cays Land and Sea Park (ECLSP), 
where grouper have managed to recover due to a 20-year fishing ban (Chiappone et al. 
2000, Mumby et al. 2011). Entrance to the park is only allowed with a scientific 
collecting permit. Mumby et al. (2011) calculated native grouper and invasive lionfish 
biomass along 30 km of reef of the Exuma Cays in the Bahamas. Sites were chosen 
within the ECLSP and to the north of the park where restrictions do not exist. These sites 
were chosen based on similar habitat (Montastraea reef) and depth of 7 - 15 m and had 
previously been surveyed for biomass as part of the Atlantic Gulf Rapid Reef Assessment 
Program (AGRRA). Average grouper biomass in this area was estimated at 2000 g per 
100 m2, far exceeding the average for the rest of the Caribbean. According to AGGRA 
assessments, the majority of Caribbean reefs had grouper biomass closer to 250 g per 100 
m2 (Fig. 11). Through their analyses of protected and non-protected sites, Mumby et al. 
(2011) determined that lionfish biomass had a significant, non-linear negative 
relationship with grouper biomass (Fig. 11).  Lionfish biomass was reduced 50% with 
grouper biomass of 800 g per 100 m2 and lionfish density was reduced to only 30% of its 
highest value when grouper biomass reached 1,516 g per 100 m2. This implies that high 
numbers of native grouper may effectively reduce lionfish biomass either through 
predation or competition. Therefore, it is important to consider the beneficial effects of 
no-take zones and/or protected areas when designing lionfish management strategies.  

Native predators and prey are naïve towards lionfish (Côté 2013, Diller et al. 
2014), but conditioning native Nassau grouper and nurse sharks to consume lionfish may 
be possible (Diller et al. 2014). Caribbean predators may not recognize the antipredator 
behavior of lionfish resulting in fewer predatory events. Greater abundance of grouper 
has been tied to reduced lionfish abundance in specific regions (Chiappone et al. 2000, 
Mumby et al. 2011). If native predators can be conditioned to consume lionfish then they 
may therefore be able to help control lionfish in the Western Atlantic. Diller et al. (2014) 
studied the effects of conditioning on native predators. 132 lionfish were caught, sedated, 
secured by monofilament lines to lead weights and left overnight over multiple trials. The 
process was not determined fatal or stressful to lionfish because they survived longer than 



24 hours in tanks and individuals were observed swimming slowly or resting during the 
experiment. Through video surveillance, many predatory events were observed. Lionfish 
consumed were roughly 50 - 200mm in length, with more lionfish consumed on reefs 
than seagrass beds (Fig. 12). This is likely due to native predator size and accessibility in 
the shallower locations. It is also possible that lionfish with total lengths greater than 
200m are not chosen by native 
predators and therefore are safe from 
predation in the Western Atlantic. 
Adult-sized lionfish can grow up to 
450 mm in length, so the majority of 
adults may be avoided (NOAA). 
However, conditioning may be a 
viable option to enhance current 
culling efforts and extend their length 
of effectiveness. Culling events tend 
to focus on larger individuals, 
reducing mean total length of lionfish 
in an area and exposing more targets for native predators. In the study, predation rate was 
greatly enhanced on intensely culled reefs (Fig. 12, Diller et al. 2014). This may be 
attributable to the reduced size of lionfish in the culled area and/or prior conditioning of 
local natives by consumption of injured or killed lionfish. 

Management strategies must be careful to include native predators as biological 
controls because evidence also exists against their effectiveness. Thorough research is 
still needed to determine if native predators can reduce lionfish abundance throughout the 
Western Atlantic. John Bruno (2013) provided a direct critique of Mumby’s research in 
the Exuma Cays. Bruno explains that native predators do not significantly reduce lionfish 
biomass, but instead lionfish biomass in the Exuma Cays area is about 1/10 of the values 
reported throughout the Caribbean due to unknown environmental factors. Valdivia et al. 
(2014) examined the effectiveness of native, large-bodied predators in controlling 
lionfish on Caribbean coral reefs. Seventy-one coral reefs were surveyed in the Bahamas, 
Cuba, and the Mesoamerican Barrier Reef for fish abundance. Data was incorporated into 

Fig. 12: Potential predation on tethered lionfish in seagrass, on frequently culled reefs, and on seldom culled reefs. Predators include Nassau grouper and nurse sharks. Reprinted from Diller et al. 2014. 



a statistical model to estimate the effectiveness of large-bodied predators such as Nassau, 
tiger, black and yellowfin grouper on lionfish abundance. The model estimated that 
greater predator biomass did not affect lionfish abundance even when considering fishing 
pressure and habitat. Instead, the model predicted that site-specific characteristics had a 
significant effect on lionfish abundance, such as wind exposure, habitat type and human 
proximity. Across all 71 sites, lionfish abundance varied significantly with roughly equal 
grouper biomass. In comparison, the reduction in lionfish biomass found by Mumby et al. 
(2011) was less than 1% of the total range of lionfish biomass found across all 71 sites in 
the Caribbean. Due to the large regional differences in lionfish biomass throughout the 
Caribbean, these results suggest that differences in biomass are primarily due to differing 
environmental factors and not native predator control. Mumby et al. (2013) accepted that 
the relatively low lionfish biomass in their limited study area may be due to other factors 
and that it is unlikely that grouper can control lionfish throughout the Caribbean in their 
current state. However, the effects grouper have on lionfish biomass can only be 
measured in small, limited areas such as the Exuma Cays in order to account for as many 
environmental factors as possible. Therefore, although the reduction was less than 1% of 
the total range of lionfish biomass across the 71 sites surveyed by Valdivia et al. (2014), 
the negative effects observed were significant for their limited study area and should be 
considered (Mumby et al. 2013).  

With evidence both in support of and against the effectiveness of native predators, 
their influence on lionfish in the Western Atlantic needs to be revisited. If deemed an 
effective control, the implementation of no-take zones or protected areas that regulate 
landings of large-bodied predators may assist and prolong the effect of current 
management efforts, specifically local and regional culling events. Native predators that 
have been conditioned by culling may, over time, consume more lionfish and therefore 
provide long-term management.  
 
Controls: Genetic Engineering 
 Genetically engineering for control of invasive species is a highly debated topic, 
but provides the possibility for greater management of lionfish. With these techniques, 
local to regional extinction of invasives such as lionfish may be possible, but there are 



risks involved and long-term effects must be considered (Langin 2014). Genetic 
modifications can be made either through breeding or genetic engineering and are 
commonly used in crops to increase yield and resistance to pests (Wolfenbarger and 
Phifer 2000). For example, the genetic engineering of algae has been proposed by 
Radakovits et al. (2010) to produce large quantities of renewable biofuels in the form of 
biohydrogen, alcohols, diesel fuel, and alkanes. Some other examples of genetically 
engineered crops include corn, soybeans, cotton, potatoes, tomatoes, wheat, alfalfa, 
tobacco, rapeseed, and rice (USDA 2014). These types of genetic modifications are 
aimed towards increasing the capabilities of organisms for some benefit. However, when 
targeting invasive species like lionfish, genetic modifications would be made to reduce 
the ability of the invasive species to be successful.  
 Genetically modified organisms (GMOs) have several ethical concerns and are 
considered a possible threat to environmental and human health (Prakash et al. 2011). For 
this reason, GMOs such as crops must follow State guidelines and also be approved at the 
Federal level by the USDA, U.S. Environmental Protection Agency (EPA) and the U.S. 
Food and Drug Administration (FDA) (USDA 2014). Further to this, the USDA’s Animal 
and Plant Health Inspection Service (APHIS) provides careful testing of each GMO 
because the modification of any species is considered a threat to natural order and the 
integrity of species and ecosystems. GMOs are difficult to test thoroughly and therefore 
consequences can be unpredictable. If transgenic organisms were to escape, modified 
genes could spread through wild populations (Muir and Howard 2001). The modified 
individuals may have increased fitness compared to their wild-type counterparts and 
therefore may induce changes in the natural environment. This scenario would be an 
invasion in itself where a GMO outcompetes wild-type species and induces a shift in the 
food web. Intentionally released GMOs may breed with compatible relatives, spreading 
the modified trait to other native species (Prakash et al. 2011). If the trait was engineered 
to reduce viability of lionfish and is transferrable to other species, this trait may have a 
negative effect on native species. There are other species of scorpionfish in the 
Caribbean, but their compatibility with lionfish are not known. Another risk is that once 
the GMOs are released, especially into the open marine environment, it is nearly 
impossible to eliminate them. Any problems associated with the genetic modifications 



would persist through the lionfish population. Horizontal gene transfer is one of the most 
concerning risks associated with release of modified organisms. This involves the transfer 
of the genetically engineered genes to other organisms, which may produce a new trait or 
in that organism. This is of particular concern in pathogens that may acquire an increase 
in fitness and become a threat to human health and the environment. The concerns 
regarding GMOs are generally aimed towards GMO crops and plants, but apply to all 
organisms. However, genetic engineering management strategies may become acceptable 
when considering only marine pest species such as lionfish (Thresher and Kuris 2004). 

Genetic modification of pest marine species may be more publicly acceptable 
than in the past and may have the best chance to protect indigenous species. Thresher and 
Kuris (2004) provided a review of workshops held by the Australian CSIRO Centre for 
Research on Introduced Marine Pests, which included representatives of marine 
stakeholders, conservation groups, fishing industries, international scientists, and local, 
state and national marine managers to discuss alternative controls for marine invaders. 
The workshop was held to discuss alternatives to the publicly acceptable controls used 
for marine invasives that are low-risk and have a low chance of success against 
established invaders. Alternative controls were considered publicly acceptable for 
invaders through five categories: environmentally safe, safe for human health, practical, 
social, and politically attractive. Genetic modification of pests was considered effective, 
environmentally safe, and safe for human health by workshop participants with 
uncertainty for the other categories. As a general conclusion, genetic modification of 
marine pests to reduce their viability was accepted as having the greatest potential to be 
effective against invasives while also becoming publicly acceptable. Therefore, with the 
support of stakeholders and the public, genetic engineering of pest species may become a 
viable control for lionfish in the Western Atlantic.  

There are several options for controlling lionfish through genetic engineering 
(Table 2). These are autocidal techniques meaning that they reduce the ability of a 
population to produce viable offspring. Control of females reduces total possible 
offspring and therefore may reduce population sizes. Sex or stage-specific 
lethality/sterility has been tested on Drosophila melanogaster by Thomas et al. (2000), 
but could potentially be used to control any pest species. This technique is based upon the 



sterile insect technique 
(SIT), which involves 
the periodic release of 
many sterile males that 
mate with wild-type 
females and result in 
no progeny. In theory, 
this will reduce wild 
populations and 
possibly eradicate pest 
species over time. 
However, Thomas et 
al. (2000) discuss a 
more efficient 
transgenic technique, 
RIDL (“release of 
insects carrying a 
dominant lethal”). This 
strategy involves the 
release of individuals 
that are fertile and 
carry a dominant, 

repressible gene that is passed on to progeny. The repressible factor would be something 
not found in nature and only producible in a laboratory setting. For example, tetracycline 
was used as a repressor by Thomas et al. (2000). Stage-specific lethality is accomplished 
in males and females when the repressible factor is not present at specific life-stages. In 
the flies, the cytotoxic gene was expressed under the control of a heat shock protein, 
Hsp26 which is expressed in both male and female flies. When breeding the GMO 
insects, all progeny inherited the modification and did not survive without the 
tetracycline repressor. The experiment also tested the expression of the cytotoxic gene 
with a fat-body enhancer, Yp3 (Thomas et al. 2000). Yp3 is expressed only in females 

Table 2: Autocidal approaches for controlling invasive pests. Reprinted from Thresher 2007. 



during the larva and adult stages. All female progeny perished with the Yp3 modification, 
but males survived because they do not exhibit Yp3 expression. Male progeny are 
therefore carriers of the cytotoxic gene and continued to produce no female progeny. A 
similar technique designed by Schliekelman and Gould (2000) uses the same idea in 
which dominant genes kill or sterilize only female offspring while males become carriers. 
If translated to lionfish, this could become a powerful technique in reducing and/or 
eradicating lionfish populations throughout the Western Atlantic. Male carriers of the 
gene would eradicate all female progeny and reduce population sizes over time.  

Another genetic technique involves gender distortion for which a patent was filed 
in 2001 (Thresher et al. 2002). The technique was developed as a strategy to control 
populations of exotic animals through manipulation of sex ratios. It is intended to be used 
in producing safe, male-only stocks in farming operations as well as reducing exotic pest 
populations. The designed genetic construct is inserted into the target organism at the 
proper locus and is activated during the sex-determination stages of development. It 
inhibits the targeted gene for sex differentiation resulting in a greater numbers of males. 
Similar to the previous method, the modification is transferred to progeny so males would 
persist and carry the modification to future generations, eventually resulting in reduced 
populations due to lack of females. Thresher et al. (2002) also explain that this procedure 
is humane, safe, cost-effective, and potentially effective against well-established invasive 
populations. The construct is described as species-specific and therefore is safe to use 
against exotic pests without harm to native species. It is also considered humane and 
cost-effective as it provides long-term control without the suffering of animals and can be 
achieved through low cost release programs while the construct spreads through the wild 
population.  

A third genetic engineering technique that can cause gender distortion or sex-
specific lethality is the insertion of ‘selfish’ genes (Burt 2003). These genes have a high 
chance of reproduction within the genome and therefore a high chance of spread to future 
generations. The simplest of selfish genes are homing endonuclease genes (HEGs) and 
are naturally occurring. They encode enzymes that cleave sequences not containing the 
HEG, into which the HEG is then inserted. This process can be manipulated by having 
the HEG cut a targeted essential gene sequence and insert itself to recreate a knockout 



mutation. The gene would be chosen so that the knockout mutation would have no effect 
when the gene is the dominant trait, but be fatal when recessive. The gene could be 
chosen from several that express the gene at specific stages, such as the larval stage. 
Therefore, when expressed at the specified stage, the gene would induce mortality. 

Instead of using a repressor to repress activation of genes, inducible mortality of 
individuals is possible when they are exposed to an external trigger (Grewe 1997). This 
technique was proposed as an alternative to carp control in Australia. A fatality gene 
linked to a reporter are incorporated into the genome of the target pest. Releases of 
modified pests then spread the genes to offspring in the natural population. The reporter 
gene allows for identification of individuals with the fatality gene in order to estimate 
percent integration in natural populations. Finally, once the desired levels of integration 
have been reached, the trigger can be released locally to induce mortality. This will have 
to be considered carefully as anything released into the system may affect native species. 
However, by allowing the fatality gene time to spread, significant reduction of lionfish 
populations may be accomplished. One complication of this method is that 100% 
introgression of the gene for carp in Australia was estimated to take roughly 28 
generations, suggesting that complete eradication will be a long-term goal. It may be 
longer or shorter in the Western Atlantic depending on several factors including 
reproduction rate, growth rate and number of isolated populations. The transgene might 
also affect individual fitness and mating ability. Other challenges include finding the 
proper transgene and trigger for lionfish, development of a broodstock and periodic 
release throughout the basin. However, Grewe (1997) explains that given the current state 
of technology, this method can be easily used to combat pest species. Incorporating 
multiple constructs at various loci may improve the chance of inheritance and therefore 
reduce the time needed to reach the desired level of integration into the wild population. 
To do so, interbreeding of transgene carriers would produce fish with multiple copies of 
the kill gene at different locations. This is due to the low chance that construct integration 
will occur in the exact same location for all individuals. By using this method, local or 
even regional to basin-wide removal of lionfish may be possible.  

Using genetic modifications can have adverse effects on species and may reduce 
their viability and therefore effectiveness. The trojan gene hypothesis developed by Muir 



and Howard (1999) does the reverse. The genes are developed so that they enhance the 
ability of the pest species to mate but reduce the viability of offspring. The technique was 
tested with Japanese rice fish, Oryzias latipes. The transgenic fish were created by 
inserting the human growth hormone gene with a salmon promoter, sGH. They were then 
compared to wild-type rice fish to determine the differences in four categories: viability, 
development, fecundity and sexual selection. A predictive model was then used to 
estimate the results from the trojan genes being incorporated into the wild population. 
The transgene produced significant differences in male mating success and offspring 
viability, which would allow for local extinction of wild-type populations. Offspring 
viability was reduced regardless of sex. The model predicted that transgenics that reduced 
offspring viability alone would result in the elimination of transgenics from the wild-type 
population and have little effect. However, the combination of increased male mating 
success with reduced offspring viability instead resulted in local extinction of wild-type 
populations. Wild-type populations were reduced by 50% in six generations and were 
estimated to be completely eradicated in 40 generations. Trojan genes provide a unique 
opportunity in which transgenic lionfish may outcompete wild-type lionfish in the 
Atlantic. This strategy is not directly harmful to the species and can therefore be 
considered ethical. Instead, lionfish numbers will slowly decline over time due to the 
decreased viability of offspring.  

The genetic techniques discussed here have the potential to reduce the impact of 
or completely eradicate pest species such as lionfish. For example, by using female-
specific mortality genes, populations may disappear over time through the loss of females 
in the wild population. It is possible, however, that these techniques may not reach all 
lionfish in the Caribbean Basin due to the existence of isolated populations or inability of 
genetic engineered lionfish to breed. However, trojan genes provide a unique opportunity 
that enhances the modified individual's ability to breed while simultaneously reducing the 
viability of its offspring. Further research must be completed in order to produce the most 
effective genetic techniques suited to the lionfish problem. Combinations of the above or 
new methods may be discovered, and the possibility for genetic control in the now 
widespread lionfish invasion must be considered. Traditional controls may significantly 



impact lionfish on local to regional scales, but show little promise of basin-wide 
management or eradication of the non-indigenous species.  
 
Focusing Management 
 Although there are many controls available for use against lionfish, the fish are 
too widespread for complete eradication to be possible. Therefore, management needs to 
be focused in specific regions that may significantly impact lionfish numbers in order to 
provide both the most cost-effective and efficient means of lionfish removal in the 
Western Atlantic. Johnston and Purkis (2015) developed an international strategy that 
outlines specific regions where controls should be focused in order to better manage 
lionfish populations. The research is based on larval dispersal by currents throughout the 
Atlantic and explains why local controls are not particularly effective on lionfish. 
Lionfish females release buoyant egg masses after courtship and fertilization which are 
then carried by surface currents (Morris 2009). It is thought that reproduction occurs 
year-round based on lionfish caught off the coast of North Carolina. The eggs and larvae 
ride these currents for an estimated 25-40 days, though the exact amount of time is 
unknown. This allows lionfish larvae to traverse great distances, such as from Bahamas 
to New England or from the lower Caribbean to the Gulf of Mexico. Their long-distance 
dispersal ability allows for rapid establishment of new areas and recruitment at the local 
to regional level throughout the Western Atlantic, making the vast majority of removals 
ineffective as long term solutions. Therefore, it is pertinent to determine regions of high 
connectivity that, when control efforts are put in place, will have the greatest effect on 
lionfish populations throughout the Western Atlantic. 
 The biophysical model designed by Johnston and Purkis (2015) integrates cull 
events to forecast lionfish dispersal over time. It covers an area from 39° to 11° N latitude 
and 94° to 69° W longitude as a 2-dimensional grid comprised of 10 km x 10 km cells. 
Physical attributes such as sea surface temperature and current velocity were compiled 
for each cell. Ocean current data was collected from the Hybrid Current Ocean Model 
(HYCOM) which is commonly used to determine marine connectivity. The model then 
aimed to simulate distribution of lionfish larvae between regions in order to determine 



regions of highest connectivity 
and therefore the locations at 
which controls should be 
placed. The 10 regions, or 
precincts, were defined as the 
Carolinas, Florida Keys, Mid-
Atlantic, Cuba North, Cuba 
South, Western Bahamas, 

Northern Bahamas, Meso-american Barrier Reef, Yucatan, and Eastern Gulf of Mexico 
(Table 3). Connectivity between these defined precincts was then calculated through the 
model simulation.  
 The modeling approach by Johnston and Purkis (2015) allowed for identification 
of each precinct as being primarily an exporter, importer or self-recruiter. Precincts were 
considered exporters if larvae produced within the precinct settled outside of its 
boundaries and importers if larvae that settled within the precinct came from outside its 
boundaries. Self-recruitment was considered when larvae settled within the precinct they 
were produced. The model was run 10 times with randomly located founder populations 
for each precinct. The founder populations consisted of 10 breeding females for a total of 
100 breeding females from each precinct. Each individual larvae was tracked through the 
grid to determine which regions were considered major exporters or importers. Major 
linkages were considered as importers that received greater than 95% of all recruits from 
an exporter precinct. Since all precincts were determined to have 3 or fewer major 
exporters, exporters were further broken down into primary, secondary or tertiary 
linkages based on number of larvae contributed.  
 The model results showed that the Western Atlantic is highly connected through 
sea surface currents (Fig. 13). However, several precincts show greater larval 
connectivity than others. The Cuba North and Cuba South precincts were shown to export 
larvae to 8 of the other 10 locations with Cuba North being the lead exporter. Cuba North 
was a primary exporter to the Western Bahamas and Cuba South with a secondary link to 
the Northern Bahamas and a tertiary link to the Yucatan, Florida Keys, Mid-Atlantic, and 
the Carolinas. Therefore, Cuba North and Cuba South have a large influence on 

Table 3: Precincts defined by Johnston and Purkis (2015) and the top 3 linkages for each. Reprinted from Johnston and Purkis 2015. 



restocking lionfish to 
other regions within 
the Western Atlantic 
and should be high 
priority locations for 
greater lionfish 
control. On the other 
hand, the Carolinas 
precinct did not export 
lionfish larvae to any 
of the other precincts, 
but was instead 
considered an 
importer. This that 

controls being used in the Carolinas are ineffective for the Western Atlantic as a whole. 
The Meso-american Barrier Reef was a major exporter just behind Cuba North and Cuba 
South, making it another high priority location for controls. It is also important to 
compare the amount of import, export and self-recruitment for each precinct to determine 
high priority locations. For example, the Florida Keys produced a low quantity of larvae 
in comparison to many of the other precincts, but over 80% of those larvae were exported 
suggesting that the Florida Keys would have a somewhat higher priority for placement of 
lionfish controls. The Mid-Atlantic precinct had the second highest percentage of larval 
export at roughly 45% with an almost equivalent amount of self-recruitment, suggesting 
that this location would also have higher priority for controls as it is self-sustaining. 
 Due to the high level of connectivity between precincts after the proliferation of 
lionfish in the Western Atlantic, placing intense controls in a single or few precincts may 
somewhat curb lionfish populations throughout the Atlantic. The model simulated virtual 
culls within precincts to determine the amount needed to reduce lionfish biomass. Culls 
were simulated for the Carolinas and its three highest exporters, the Florida Keys, Mid-
Atlantic and Cuba North to determine what magnitude of removal would be required to 
effectively reduce lionfish populations in the four precincts. Simulated annual culls of 50 

Fig. 13: Connectivity between precincts as determined Johnston and Purkis’ (2015) model. Indicated are primary, secondary and tertiary links as well as direction of larval flow. The precinct with highest and lowest linkages are shown (CBN and CAR). Reprinted from Johnston and Purkis 2015. 



and 90% in each precinct linked to the Carolinas were ineffective and lionfish 
populations continued to increase. However, intense monthly culls of 60% in precincts 
connected to the Carolinas effectively reduced lionfish populations in all four precincts 
over the 5 year period. The model then simulated the effect of simultaneous culls in all 
precincts including the Carolinas, which showed that even low-intensity culling events in 
all precincts significantly reduced lionfish populations in the Carolinas and its exporters 

(Fig. 14). Culls in all precincts at a 
rate of only 20% monthly vastly 
reduced lionfish biomass to near-
zero levels in only 36 months in the 
Carolinas, Mid-Atlantic, Florida 
Keys and Cuba North. Controls in 
place at few precincts may provide 
some relief such as the intense 60% 
monthly cull scenario, but in order 
to effectively reduce lionfish 
populations throughout the Western 

Atlantic, international collaboration is necessary.  
The results from the model designed by Johnston and Purkis (2015) show that 

local culls such as derby events that reduce lionfish populations at the local level are 
short lived due to the high connectivity in the Western Atlantic. Therefore, in order to 
produce longer-term results, an international agreement must be made on the method and 
timing of control events. This may include culls or any of the other control methods 
discussed in this review. Currently, regional and international focus on lionfish control is 
lacking. Derbies and cull events organized by concerned individuals or research 
organizations tend to be small scale and don’t address larval dispersal and repopulation of 
a reef over a short period of time. Also, the effects of these derbies are not well measured 
because post-derby monitoring does not usually take place (Côté 2013). It is likely these 
events curb local lionfish biomass in the short term, but lionfish populations exhibit rapid 
recovery due to the high larval connectivity throughout the Western Atlantic and are 
therefore ineffective without international support.  

Fig. 14: Five-year plot of lionfish populations after 10% monthly, 20% monthly, and 90% annual culls in the Carolinas as well as precincts highly linked to the Carolinas. Reprinted from Johnston and Purkis 2015. 



Analysis of Lionfish Control Needs 
Focus on lionfish control is lacking throughout the Western Atlantic. Using 

Johnston and Purkis’ (2015) larval dispersal research as a guide, accessible and published 
cull data shows the majority of precincts are lacking support. Derbies provide easily 
accessible catch data. Catch data from a total of 86 derbies was recorded from 2009 to 
2016 resulting in removal of 60,158 lionfish (Table 4). Catch per derby ranged from 23 to 
8,089 and lionfish ranged in size from 24 to 470 mm. 37 derbies took place in the East 
Gulf of Mexico (EGM), 29 in the Mid-Atlantic (MDA), 7 in the North Bahamas (NBA), 
7 in the Florida Keys (FLK), and 6 located outside of all precincts (St. Vincent, St. Croix, 
St. Lucia, Barbados). 26,701 lionfish were caught in the EGM, 20,320 in the MDA, 7,431 
in the NBA, 2,146 in the FLK, and 3,560 in other regions. However, the average number 
of lionfish caught varied with the NBA having the greatest number of lionfish caught on 
average at 826 followed by 721 in the EGM, 700 in the MDA, 593 in other regions, and 
307 in the FLK. Though this may be attributable to participant effort, it may also be a 
result of greater lionfish numbers in the NBA due to lack of culling effort in this region. 
This does not explain, however, the much lower average removals in the Florida Keys. 
Derbies have a high amount of support and success, but are primarily located in Florida. 
It is impossible to know the effects of such derbies due to the lack of pre- and post-derby 
monitoring. With monitoring, it may be possible to learn more about the requirements for 
proper basin-wide management based on local efforts. 
Removal events by research organizations are also lacking. There are only few 
publications that have completed long-term removal studies and report gross numbers 
(Table 5). However, since pre- and post-cull status is recorded, they provide detailed 
information so that large-scale models can estimate the required basin-wide effort for 
lionfish control. 12 culling events resulted in culls from the CBS precinct (10) and other 
regions (2). Gross numbers of lionfish are not available because lionfish are typically 
removed based on percent biomass. Many studies work over multiple test areas and 
remove 0-95% of the estimated lionfish biomass over the course of months to years to 
monitor the results.  



 
 
 

Table 4: Removal data from lionfish derbies held between 2009 and 2016. 



 
 

 
 
 
 

 

Table 5: Removal data from lionfish publications between February 2011 and June 2014. Gross numbers of lionfish are missing from the majority of publications and were unavailable for use. 



CONCLUSIONS 
Johnston and Purkis’ (2015) results show Cuba North, Cuba South, and the Meso-

American Barrier Reef are major exporters of lionfish larvae with high levels of 
connectivity to all other precincts and therefore controls should have greater focus in 
these regions. Only one publication outlined a removal study within the Cuba South 
precinct and 74 of 86 derby events took place throughout Florida in the East Gulf of 
Mexico, Mid-Atlantic, and Florida Keys precincts. From this alone it is obvious that the 
majority of precincts are lacking focus. There were no reported removal events in the 
Cuba North, Meso-American Barrier Reef, Carolina, and Yucatan precincts. However, 
unreported data from volunteer efforts in other countries is likely. For example, fishing 
programs in Bonaire and Curacao started training recreational divers to kill lionfish in 
2009, but lack monitoring (León et al. 2013). The lack of effort in both Cuba regions may 
be skewed due to the recently eased US embargo against Cuba and therefore should be 
monitored over the coming years. In order to effective curb lionfish biomass throughout 
the Atlantic, an international strategy that produces low-effort monthly cullings (20%) 
throughout the Western Atlantic must be considered (Johnston and Purkis’ 2015). 

A few countries are already showing support for the fight against lionfish. Costa 
Rica has showed tremendous support after fishermen started reporting an 87 percent 
reduction in catch (Arias 2014). In 2012, the Southern Caribbean Traditional Fishermen’s 
Association (APACS) of Costa Rica developed to join the cause. Costa Rica then began 
the development of the National Commission for the Management and Control of 
Lionfish in 2014 which was finalized in 2016 to assist with lionfish control efforts (Fenot 
2016). This initiative is part of a coordinated effort with Mexico and the International 
Coral Reef Initiative (ICRI) against lionfish in response to loss of commercially 
important species (ICRI 2014). The ICRI also helped to form the Regional Lionfish 
Committee (RLC), which includes members of the UNEP-Caribbean Environment 
Programme, Centre for Agriculture and Biosciences International (CABI), REEF, 
government of Mexico, USA, and Dominican Republic. The committee produced the 
“Regional Strategy for the Control of Invasive Lionfish in the Wider Caribbean” to target 
all regions within the Caribbean (Gomez Lozano 2013). It seeks to produce a 
collaboration between all effected governments, reef-reliant industries, society, and 



academia in order to encourage research and monitoring, develop an international 
strategy for control, and generate public support. The collaboration will share strategies 
and tools for effective lionfish control. Therefore, an international strategy is possible if 
the proper economic motives are in place. In order for an international strategy to be 
effective, proper monitoring is key. Many Caribbean islands now have volunteer lionfish 
programs that attempt to persuade local fishermen to catch lionfish. However, monitoring 
is absent and therefore pre- and post-removal data does not exist.  
 Lionfish threaten native species throughout the Western Atlantic. In order to 
accurately determine what controls to use and the extent at which they must be placed, 
international collaboration is needed. The creation of a lionfish market may also be key to 
their control in the Atlantic. Consumption of lionfish is becoming more popular 
throughout the Caribbean, especially in Florida and the Bahamas (FWC). Lionfish 
outreach programs such as Friends of the Environment in Abaco, Bahamas, have 
produced educational TV shows on the proper capture, cleaning and cooking methods for 
Lionfish (Friends of the Environment). Recreational capture of lionfish may greatly 
support control efforts (Morris and Whitfield 2009), but further research may reveal more 
efficient and/or cost-effective control methods that may be worth considering.  
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