
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2009

A Formal Concept Analysis Approach to
Association Rule Mining: The QuICL Algorithms
David T. Smith
Nova Southeastern University, dtsmith@iup.edu

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
David T. Smith. 2009. A Formal Concept Analysis Approach to Association Rule Mining: The QuICL Algorithms. Doctoral dissertation.
Nova Southeastern University. Retrieved from NSUWorks, Graduate School of Computer and Information Sciences. (309)
https://nsuworks.nova.edu/gscis_etd/309.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

A Formal Concept Analysis Approach to Association Rule Mining:
The QuICL Algorithms

by

David T. Smith

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy
in

Computer Science

Graduate School of Computer and Information Sciences
Nova Southeastern University

2009

.

We hereby certify that this dissertation, submitted by David T. Smith, conforms to
acceptable standards and is fully adequate in scope and quality to fulfill the dissertation
requirements for the degree of Doctor of Philosophy.

______________________________________ ________________
Jumping Sun, Ph.D. Date
Chairperson of Dissertation Committee

______________________________________ ________________
Michael Laszlo, Ph.D. Date
Dissertation Committee Member

______________________________________ ________________
Soundararajan Ezekiel, Ph.D. Date
Dissertation Committee Member

Approved:

______________________________________ ________________
Edward Lieblein, Ph.D. Date
Dean of Graduate School of Computer and Information Sciences

Graduate School of Computer and Information Sciences
Nova Southeastern University

2009

An Abstract of a Dissertation Submitted to Nova Southeastern University

in Partial Fulfillment of the Requirements of a Degree of Doctor of Philosophy

A Formal Concept Analysis Approach to Association Rule Mining:
The QuICL Algorithms

by

David T. Smith

May 2009

Association rule mining (ARM) is the task of identifying meaningful implication rules
exhibited in a data set. Most research has focused on extracting frequent item (FI) sets
and thus fallen short of the overall ARM objective. The FI miners fail to identify the
upper covers that are needed to generate a set of association rules whose size can be
exploited by an end user. An alternative to FI mining can be found in formal concept
analysis (FCA), a branch of applied mathematics. FCA derives a concept lattice whose
concepts identify closed FI sets and connections identify the upper covers. However,
most FCA algorithms construct a complete lattice and therefore include item sets that are
not frequent. An iceberg lattice, on the other hand, is a concept lattice whose concepts
contain only FI sets. Only three algorithms to construct an iceberg lattice were found in
literature. Given that an iceberg concept lattice provides an analysis tool to succinctly
identify association rules, this study investigated additional algorithms to construct an
iceberg concept lattice. This report presents the development and analysis of the Quick
Iceberg Concept Lattice (QuICL) algorithms. These algorithms provide incremental
construction of an iceberg lattice. QuICL uses recursion instead of iteration to navigate
the lattice and establish connections, thereby eliminating costly processing incurred by
past algorithms. The QuICL algorithms were evaluated against leading FI miners and
FCA construction algorithms using benchmarks cited in literature. Results demonstrate
that QuICL provides performance on the order of FI miners yet additionally derive the
upper covers. QuICL, when combined with known algorithms to extract a basis of
association rules from a lattice, offer a “best known” ARM solution. Beyond this, the
QuICL algorithms have proved to be very efficient, providing an order of magnitude
gains over other incremental lattice construction algorithms. For example, on the
Mushroom data set, QuICL completes in less than 3 seconds. Past algorithms exceed 200
seconds. On T10I4D100k, QuICL completes in less than 120 seconds. Past algorithms
approach 10,000 seconds. QuICL is proved to be the “best known” all around
incremental lattice construction algorithm. Runtime complexity is shown to be O(l d i)
where l is the cardinality of the lattice, d is the average degree of the lattice, and i is a
mean function on the frequent item extents.

Acknowledgements

As a Christian, I believe there is a God that is the creator of the universe and that Jesus
Christ is his son. I have learned to trust Christ in times of plenty and in times of lack. I
will forever give Him thanks for bringing me through.

I would like to express my thanks to my wife Diana and children Cassandra and Joel. It’s
been three years of working from early morning to evening, including most weekends.
Their love, patience, and support have enabled me to focus on completing my degree. I
look forward to re-focusing my time towards our home.

I would like to express my thanks to my father, Dr. Edwin Malcolm Ramsey Smith. His
encouragement and support has enabled me to obtain my degree late in life. I am pleased
that he will see his youngest son complete his Ph.D.

Finally, I would like to express my thanks to Dr. Jumping Sun, Dr. Michael Laszlo, and
Dr. Soundararajan Ezekiel for their careful review and thoughtful input. Their comments
are valued and have contributed to the quality of this report. I would like to further
acknowledge Dr. Sun for promoting strong research activities during his classes. It was
during his Knowledge Discovery in Databases course that the topic of this report was first
considered.

v

Table of Contents

Abstract iii
List of Tables viii
List of Figures x

List of Algorithms xii

Chapters

1. Introduction 1
1.1 Problem Statement and Goal 1

1.2 Relevance and Significance 10

1.3 Barriers and Issues 13

1.4 Elements, Hypotheses, Theories, or Research Questions to be Investigated 14

1.5 Limitations and Delimitations of the Study 15

1.6 Definition of Terms 16

1.7 Summary of Background and Problem Statement 20

2. Review of Literature 23

2.1 Introduction 23

2.2 Classical Association Rule Mining – Mining of Frequent Item Sets 24

2.3 CHARM Algorithm – An Example of Frequent Item Set Mining 29

2.4 Post Mining Lattice Construction – Valtchev, Missaoui, and Lebrun Algorithm 35

2.5 Incremental Lattice Construction – Missaoui, Godin, and Alaoui Algorithm 38

2.6 Applying FCA to Association Rule Mining – GALICIA-T Algorithm 45

2.7 Frequent Item Set Mining with Lattice Construction – CHARM-L Algorithm 47

2.8 Adding Iceberg Processing to Lattice Construction – MAGALICE Algorithm 51

2.9 Other Lattice Construction Algorithms 55

2.10 A Generic Approach to Incremental Lattice Construction 58

2.11 Summary of Literature 62

3. Methodology 66

3.1 Introduction 66

3.2 Steps Toward an Efficient Incremental Algorithm 69

3.3 Walk Through of the Algorithm Execution 80

3.4 Proof of Algorithm Correctness 83

3.5 Correcting the Flaw 91

3.6 The Complete QuICL Oid-Full Algorithm 95

3.7 An Implementation Enhancement 97

vi

3.8 Asymptotic Complexity of the QuICL Oid-Full Algorithm 99

3.9 Discussion for an Alternate QuICL 106

3.10 An Incremental Insertion Algorithm Using a Compressed Lattice 109

3.11 A Strategy to Intersect a Concept Lattice 111

3.12 A Push Instead of Pull Intersection 118

3.13 A Hybrid Pull-Down and Bottom-up Intersection 119

3.14 The QuICL Oid-Less Algorithm 128

3.15 Adding Iceberg Processing 134

3.16 Discussion for a Third QuICL Algorithm 142

3.17 Implementing a Trie in the QuICL Algorithm 143

3.18 The QuICL Oid-Trie Algorithm 148

3.19 Converting a Data Set to a Vertical Representation 153

3.20 Summary of Methodology 154

4. Results 158

4.1 Introduction 158

4.2 Data Set and Lattice Characteristics 162

4.3 Algorithm Validity 167

4.4 Effect of Sort Order for the QuICL and GMA Algorithms 169

4.5 Comparison of Algorithm Execution Time 182

4.6 Comparison of Algorithm Memory Usage 195

4.7 Performance Analysis of the QuICL Algorithms 210

4.8 Empirical Evidence to Support Asymptotic Complexity Analysis 222

4.9 Performance Analysis of the GMA Algorithm 226

4.10 Comparison of Intersections 230

4.11 Summary of Results 233

5. Conclusions, Implications, Recommendations, and Summary 241

5.1 Conclusions 241

5.2 Implications 248

5.3 Recommendations 251

5.4 Summary 253

Epilogue 260

Appendixes

A. Implementation of the Modified GMA Algorithm 261

B. Implementation of the QuICL Oid-Full Algorithm 267

C. Implementation of the QuICL Oid-Less Algorithm 273

D. Implementation of the QuICL Oid-Trie Algorithm 287

vii

E. Implementation of Supporting Functions 297

F. Empirical Data in Support of Algorithm Validity 307

G. Effect of Item Sort Order on Lattice Growth 311

H. Size of the QuICL, GMA, and CHARM-L Data Elements 314

I. Calculated Memory Consumption 316

Reference List 321

viii

List of Tables

Tables

Table 3.1: Determination of intersection outcome for Oid-Full enhancement 98

Table 3.2: Sample data set and lattice characteristics 101

Table 3.3: Determination of intersection outcome 113

Table 3.4: Sample calculations of memory savings (excess) of trie implementations 147

Table 3.5: Comparison of QuICL derivations 157

Table 4.1: Data set and lattice characteristics 165

Table 4.2: Cases of invalid average degree 168

Table 4.3: Characteristics of internal data structures 209

Table 4.4: Timings of the main QuICL Oid-Full sections 216

Table 4.5: Additional timings of QuICL Oid-Full sections 217

Table 4.6: Timings of the main QuICL Oid-Trie sections 218

Table 4.7: Additional timings of QuICL Oid-Trie sections 219

Table 4.8: Timings of the main QuICL Oid-Less sections 220

Table 4.9: Additional timings of QuICL Oid-Less sections 221

Table 4.10: Empirical evidence of asymptotic runtime analysis 224

Table 4.11: Timings of GMA algorithm sections using ascending order 228

Table 4.12: Timings of GMA algorithm sections using descending order 229

Table 4.13: Comparison of intersections by algorithm 232

Table F.1: Algorithm validity as assessed by number of concepts 307

Table F.2: Algorithm validity as assessed by average degree 309

Table G.1: Effect of sort order on lattice growth using Chess data set at 60%supp 311

ix

Table G.2: Effect of sort order on lattice growth using Pumsb* data set at 30%supp 312

Table H.1: Memory consumption of QuICL, GMA, and CHARM-L data elements 314

Table H.2: Memory consumption of Java data elements 314

Table I.1: Calculated memory consumption of QuICL Oid-Full lattice 316

Table I.2: Calculated memory consumption of QuICL Oid-Trie lattice 317

Table I.3: Calculated memory consumption of QuICL Oid-Less lattice 318

Table I.4: Calculated memory consumption of GMA lattice 319

Table I.5: Calculated memory consumption of CHARM-L lattice 320

x

List of Figures

Figures

Figure 1.1: Example concept lattice 4

Figure 1.2: Examples of an iceberg concept lattice 7

Figure 1.3: Iceberg lattice using an alternate notation 8

Figure 2.1: Itemset-oidset tree used by the CHARM algorithm 30

Figure 2.2: Progression of incremental object insertion into a concept lattice 39

Figure 2.3: Trie data structure used by the GALICIA-T algorithm 46

Figure 2.4: Object insertions into a concept lattice depicting equivalence classes 59

Figure 3.1: Progression of incremental item insertion into a concept lattice 71

Figure 3.2: Sample walkthrough of Algorithm 3.2 execution 82

Figure 3.3: Duplicate parent-child links 87

Figure 3.4: Invalid edge as a result of related INTERSECT tuples 89

Figure 3.5: Invalid edge resulting from related INTERSECT and SUPERSET tuples 90

Figure 3.6: Invalid edge generated between new concepts 92

Figure 3.7: Progression of incremental insertion into a compressed lattice 107

Figure 3.8: Illustration of lattice intersection 113

Figure 3.9: Lattice illustrating support and dependent concepts 123

Figure 3.10: Iceberg lattice within a full lattice using a 60% threshold 135

Figure 3.11: Iceberg lattice using a compressed structure 136

Figure 3.12: Concept lattice using a trie data structure to store object ids 144

Figure 3.13: QuICL trie representation 146

Figure 4.1: Logarithmic vs. fixed scale axis 161

xi

Figure 4.2: Density profiles of benchmark data sets 166

Figure 4.3: Effect of item sort order on the QuICL Oid-Full runtime execution 174

Figure 4.4: Effect of item sort order on the QuICL Oid-Less runtime execution 175

Figure 4.5: Effect of item sort order on the QuICL Oid-Trie runtime execution 176

Figure 4.6: Effect of item sort order on the GMA runtime execution 177

Figure 4.7: Effect of item sort order on the QuICL Oid-Full memory usage 178

Figure 4.8: Effect of item sort order on the QuICL Oid-Less memory usage 179

Figure 4.9: Effect of item sort order on the QuICL Oid-Trie memory usage 180

Figure 4.10: Effect of item sort order on the GMA memory usage 181

Figure 4.11: Comparison of runtime execution time using the Chess data set 188

Figure 4.12: Comparison of runtime execution time using the Mushroom data set 189

Figure 4.13: Comparison of runtime execution time using the Pumsb data set 190

Figure 4.14: Comparison of runtime execution time using the Pumsb* data set 191

Figure 4.15: Comparison of runtime execution time using the T10I4D100k data set 192

Figure 4.16: Comparison of runtime execution time using the T25I10D10k data set 193

Figure 4.17: Comparison of runtime execution time using the T25I20D100k data set 194

Figure 4.18: Comparison of memory usage using the Chess data set 202

Figure 4.19: Comparison of memory usage using the Mushroom data set 203

Figure 4.20: Comparison of memory usage using the Pumsb data set 204

Figure 4.21: Comparison of memory usage using the Pumsb* data set 205

Figure 4.22: Comparison of memory usage using the T10I4D100k data set 206

Figure 4.23: Comparison of memory usage using the T25I10D10k data set 207

Figure 4.24: Comparison of memory usage using the T25I20D100k data set 208

xii

List of Algorithms

Algorithms

Algorithm 2.1: The CHARM algorithm 33

Algorithm 2.2: The Valtchev, Missaoui, and Lebrun lattice construction algorithm 37

Algorithm 2.3: Godin, Missaoui, and Alaoui lattice construction algorithm 43

Algorithm 2.4: The CHARM-L algorithm 49

Algorithm 2.5: The CHARM-L subsumption check algorithm 50

Algorithm 2.6: The MAGALICE algorithm 53

Algorithm 2.7: Generic incremental lattice insertion algorithm 61

Algorithm 3.1: The GMA algorithm modified to construct an iceberg lattice 67

Algorithm 3.2: A recursive incremental lattice construction algorithm 77

Algorithm 3.3: PURGE-SUBSETS algorithm 94

Algorithm 3.4: The QuICL Oid-Full algorithm 96

Algorithm 3.5: Incremental item insertion algorithm for a compressed lattice 110

Algorithm 3.6: Supporting algorithms to extract an object id set 111

Algorithm 3.7: Incremental item insertion algorithm using lattice intersection 115

Algorithm 3.8: Algorithms of supporting functions for lattice intersection 116

Algorithm 3.9: A push down algorithm for lattice intersection 121

Algorithm 3.10: Hybrid pull-down and bottom-up intersection algorithm 121

Algorithm 3.11: Algorithm modifications to maintain supports and dependents 126

Algorithm 3.12: Algorithms to initialize supports and dependents of a new concept 127

Algorithm 3.13: The QuICL Oid-Less algorithm 131

Algorithm 3.14: Modified INSERT algorithm for iceberg processing 140

xiii

Algorithm 3.15: Algorithms supporting iceberg processing 141

Algorithm 3.16: Modified QuICL Oid-Less algorithm for iceberg processing 141

Algorithm 3.17: The QuICL Oid-Trie algorithm 151

Algorithm 3.18: INSERT function of the QuICL Oid-Trie algorithm 152

1

Chapter 1

Introduction

1.1 Problem Statement and Goal

Association rule mining is the task of identifying meaningful implication rules of

the form X → Y exhibited in a data set (i.e., relation), where X and Y are subsets of the

items (i.e., possible distinct values of columns of a data set) and X ∩ Y is ∅ (Agrawal,

Imieliski, & Swami, 1993). The degree to which a rule is meaningful is defined by:

i) support, the number of times both X and Y are found in the data set, and

ii) confidence, the number of times that X → Y holds true relative to all
occurrences of X.

Mining association rules typically involves two steps:

i) identifying frequent item sets (i.e., X ∪ Y that meets a minimum support
threshold), and

ii) deriving association rules from the item sets that meet a level of confidence.

A well known algorithm to extract the frequent item sets from the data set is

Apriori (Agrawal, & Srikant, 1994). Apriori searches the space of all patterns in an

iterative bottom-up breadth-first manner. Each iteration obtains counts for its current set

of candidate patterns and removes from further consideration any candidate patterns that

are not frequent or cannot be frequent. Apriori has proved to be efficient for mining

frequent patterns of small length. However, for long patterns Apriori can be I/O intensive

since each iteration requires a full scan of the data set. Furthermore, a bottom-up

2

algorithm must obtain counts for each set in the power set of all items composing each

frequent pattern. Thus, Apriori may be an intractable solution for frequent item sets of

even moderate length (Han, & Kamber, 2006). A case in point, considers a data set D

composed of a single tuple {a1, a2, …, an}. All subsets of the items of D will be frequent.

The number of subsets of the items of D will be 2n

i) O = {o ∈ O | ∀ i ∈ I, oRi} and

 − 1. For all but a small n, there is not

sufficient memory or processing cycles for the Apriori algorithm to reach completion.

This leads to the problem: develop an efficient algorithm that can extract from a data set

the frequent patterns of moderate to long length (e.g., greater than 30).

An alternate approach to frequency counting can be found in formal concept

analysis (FCA) (Ganter, & Wille, 1997). FCA is a branch of applied mathematics that

has been applied to a wide variety of applications including linguistics, text retrieval, and

economics (Ganter, Stumme, & Wille, 2005). It originated in the early 1980’s and was

first formalized in 1982 (Wille, 1982). It has since inspired numerous publications (Priss,

2006). According to FCA, a concept is defined as:

Definition 1.1: Given a set of object identifiers (ids) O, a set of items I, and a
relation R such that R ⊆ O × I, a formal concept is a pair of sets O ⊆ O and I ⊆ I
iff:

ii) I = {i ∈ I | ∀ o ∈ O, oRi},

where oRi denotes object o has item i in relation R.

Furthermore, between any two concepts C1 = (O1, I1) and C2 = (O2, I2) an order < exists

between C1 and C2 iff O1 ⊂ O2 (or equivalently I1 ⊃ I2). The set of objects of a concept is

called the extent of the concept and the set of items is called the intent.

3

Let L be the set of all concepts derived from a data set where the attribute-values

define the set of items and the tuple ids define the set of object ids. The concepts of L

can be arranged in a lattice such that a connection (i.e., edge) is made between any two

concepts C1 and C2 for which order < exists and there is no concept C3 for which

C1 < C3 < C2. Given this property, tree terminology from data structures can be applied

to a lattice. An ancestor concept Ca of concept C1 is any concept for which an order

C1 < Ca exists. A descendent concept Cd of concept C1 is any concept for which an order

C1 > Cd exists. A parent concept Cp of concept C1 is ancestor concept for which there is

no concept C3 such that C1 < C3 < Cp. A child concept Cc of concept C1 is descendent

concept for which there is no concept C3 such that C1 > C3 > Cc. An example of a

concept lattice derived for a relation R is depicted in Figure 1.1.

A concept lattice holds a number of interesting properties including:

Property 1.1: Extent of concept C is the ∩ of sets of O defined by each Ii ∈ I of
C; dually the intent of C is the ∩ of the sets of I defined by each Oi ∈ O of C.

Property 1.2: If Ii ∈ I of concept C1 then ∀ C2 | C2 < C1, Ii ∈ I of C2; dually if
Oi ∈ O of concept C1 then ∀ C3 | C3 > C1, Oi ∈ O of C3.

Property 1.3: Extent of concept C is the ∩ of the O of all parent concepts of C, ∩
with the set of O defined by each Ii ∈ I of C that is not ∈ I of a parent concept of
C; dually the intent of a concept C is the ∩ of the I of all child concepts of C, ∩
with the set of I defined by each Oi ∈ O of C that is not ∈ O of any child concept
of C.

 A concept lattice can be incrementally constructed using the Godin, Missaoui,

and Alaoui (1995) (GMA) algorithm. GMA algorithm inserts the data for the next object

into the concept lattice by partitioning all of the concepts in the lattice into three groups:

modified, generator, and old. Modified concepts are those whose intent is a subset of the

next object’s items. Generator concepts are those whose intent intersects the object’s

4

({
O

6O
7}

,{a
2b

2}
)

({
O

3O
4O

5O
6O

7O
9O

10
},{

b 2
})

({
O

7}
,{a

2b
2c

2d
3}

)

({
O

1O
2O

3O
4O

5O
8O

9O
10

},{
a 1

})

({
O

1}
,{a

1b
1c

3d
1}

)
({

O
2O

8}
,{a

1b
1c

1d
2}

)

({
O

1O
2O

8}
,{a

1b
1}

)

({
O

2O
3O

4O
5O

6O
8O

9O
10

},{
c 1

})

({
O

1O
2O

3O
4O

5O
6O

7O
8O

9O
10

},∅
)

({
O

1O
3O

5O
9O

10
},{

a 1
d 1

})
 ({

O
2O

3O
4O

5O
8O

9O
10

},{
a 1

c 1
})

({
O

3O
5O

9O
10

},{
a 1

b 2
c 1

d 1
})

({
O

6}
,{a

2b
2c

1d
2}

)
({

O
4}

,{a
1b

2c
1d

4}
)({
O

3O
4O

5O
6O

9O
10

},{
b 2

c 1
})

({
O

2O
6O

8}
,{c

1d
2}

)

({
O

3O
4O

5O
9O

10
},{

a 1
b 2

c 1
})

(∅
,{a

1a
2b

1b
2c

1c
2c

3d
1d

2d
3d

4}
)

R

 A

 B
 C

 D
O

1
a 1

b 1
c 3

d 1
O

2
a 1

b 1
c 1

d 2
O

3
a 1

b 2
c 1

d 1
O

4
a 1

b 2
c 1

d 4
O

5
a 1

b 2
c 1

d 1
O

6
a 2

b 2
c 1

d 2
O

7
a 2

b 2
c 2

d 3
O

8
a 1

b 1
c 1

d 2
O

9
a 1

b 2
c 1

d 1
O

10
a 1

b 2
c 1

d 1

Figure 1.1: Example concept lattice.

5

items is non-empty and there does not exist an ancestor concept with the same

intersection set. Old concepts are those that are neither modified nor generator. These

concepts remain unchanged. For each modified concept, the object id of the next object

is added to the concept’s extent. For each generator concept, a new concept is

constructed with an extent equal to the generator’s extent union the next object’s id, and

intent equal to the generator’s intent intersect with the next object’s items. When

generating new concepts, connections are updated accordingly.

Concept lattices are of benefit to association rule mining. A concept’s intent

corresponds to an item set and the cardinality of extent corresponds to the item set

support. Furthermore, the definition of a concept embodies the mathematical notion of

closure. Thus, nodes of the concept lattice represent only closed item sets (i.e. an item set

whose closure yields the same set), whose number can be orders of magnitude lower than

the number of all item sets (Burdick, Calimlim, & Gehrke, 2001, Stumme, 2002). The

concept lattice still contains the necessary and sufficient information to extract

association rules and to compute both confidence and support. For example, from the

concept ({O1O2O8}, {a1b1}) of Figure 1.1 the association rule a1 → b1 can be mined. The

support for a1 → b1 can be extracted from the lattice by traversing any path from the

bottom of the lattice through concepts where {a1b1} is a subset of a concept’s intent.

Support is the size of the extent of the highest concept where {a1b1} is a subset of a

concept’s intent. In this case, support for a1 → b1 is 3, or 30%. Likewise support for a1,

the antecedent of a1 → b1, can be extracted. The support for a1 is 8, or 80%. Confidence

is computed as support(rule) / support(antecedent(rule)). Thus, the confidence of a1 → b1

is 37.5%. On the other hand, the confidence for b1 → a1 is 100%, since the antecedent,

6

now b1, has a support of 30%. In the same manner the association rules a1 → b2 50%supp

62.5%conf, b2 → a1 50%supp 71.4%conf, and a1b2 → c1 50%supp 100%conf can be mined from

the concept ({O3O4O5O9O10}, {a1b2c1}). While a concept lattice contains the necessary

and sufficient information to compute confidence and support, it includes concepts that

do not meet the minimum support. Thus, the GMA algorithm may incur overhead, since

these concepts are essentially unnecessary artifacts relative to association rule mining.

An iceberg concept lattice is a concept lattice that contains only the concepts

whose support meets a given threshold. For example, Figure 1.2 depicts the concept

lattice of Figure 1.1 as an iceberg lattice for both a minimum support threshold of 60%

and for 40%. As the threshold is lowered, more detail of the underlying concept lattice is

revealed. Iceberg concept lattices provide a model from which association rules can be

efficiently mined (Stumme, 2002). Consider the alternate notation of an iceberg lattice

depicted in Figure 1.3 that corresponds to the bottom iceberg lattice of Figure 1.2. Each

concept node is labeled with a percentage representing the support together with any

items, if any, for which there does not exist a greater concept containing the item. The

edges are labeled with a percentage indicating the effective drop in confidence between

the two concepts. This notation enables association rules to be directly read from the

iceberg lattices. An association rule α1 → α2 will hold with 100% confidence for any

concepts C1 and C2 where C1 is labeled with α1, C2 is labeled with α2, and C1 < C2. The

support for the association rule is the support of C1. For example, the association rule

d1 → a1 50%supp 100%conf can be read from lattice. Furthermore, an association rule

α1α2 → α3 will hold with 100% confidence for any concepts C1, C2, and C3 where C1 is

labeled with α1, C2 is labeled with α2, C3 is labeled with α3, and C3 > meet (i.e., greatest

7

({O3O4O5O6O7O9O10},{b2})({O1O2O3O4O5O8O9O10},{a1}) ({O2O3 O4O5O6O8O9O10},{c1})

({O1O2O3O4O5O6O7O8O9O10},∅)

({O2O3O4O5O8O9O10},{a1c1}) ({O3O4O5O6O9O10},{b2c1})

(∅,{a1a2b1b2c1c2c3d1d2d3d4})

({O3O4 O5O6O7O9O10},{b2})({O1O2O3O4O5O8O9O10},{a1}) ({O2O3O4O5O6O8O9O10},{c1})

({O1O2O3O4O5O6O7O8O9O10},∅)

({O1O3O5O9O10},{a1d1}) ({O2O3O4O5O8O9O10},{a1c1})

({O3O5O9O10},{a1b2c1d1})

({O3O4O5O6O9O10},{b2c1})

({O3O4O5O9O10},{a1b2c1})

(∅,{a1a2b1b2c1c2c3d1d2d3d4})

Figure 1.2: Examples of an iceberg concept lattice. Top – iceberg concept lattice at 60%
support. Bottom – iceberg concept lattice at 40%. These iceberg lattices were derived
from the lattice of Figure 1.1 by discarding concepts not meeting the minimum support
threshold.

8

a1
c1 b2

d1

80% 80% 70%

70% 60%

40%

62.5%

50%

50%

87.5%
87.5%

75 %

80%

83.4%71.4%

80%

85.7%

Figure 1.3: Iceberg lattice using an alternate notation. Each concept node is labeled with
a percentage representing the support together with any items, if any, for which there
does not exist a greater concept containing the item. Edges are labeled with a percentage
indicating the effective drop in confidence between the two concepts.

9

common sub-concept) of C2 and C1. The support of the association rule is the support of

the meet concept. For example, the association rule a1b2 → c1 50%supp 100%conf can be

read. An association rule α1 → α2 with less than 100% confidence can be read from any

concepts C1 and C2 where C1 is labeled with α1, C2 is labeled with α2, and C1< C2. The

support will be the support of C2. The confidence will be the product of the confidences

noted on the edges along the path from C1 to node C2. For example, the association rule

a1 → d1 50%supp 62.5%conf can be read from the lattice of Figure 1.3. By a combination of

the previous steps further association rules can be read. For example, the association rule

a1b2 → d1 40%supp 80%conf can be read from the lattice (the meet of a1b2 → the node

labeled 40% support with 80%conf, and d1 is an ancestor of that node). Similarly,

c1b2 → d1 40%supp 66.7%conf (the meet of c1b2 → the node label 60% support with

100%conf, the node label 60% → the node label 50% with 83.4% conf, the node label

50% → the node label 40% with 80% conf, therefore c1b2 → the node label 40% with a

66.7%conf drop in overall confidence1

Extracting association rules from a list of frequent item sets (i.e., intents of a set

of concepts) may yield an excessive number, even when applying strict thresholds to both

support and confidence. The rules may contain highly redundant information, for

example α1 → α2, α2 → α3, α1 → α3, α1 → α4, α1 → α2α4. The excessive size and

redundancy impedes the usefulness of the extracted rules. What is desired is a

meaningful subset that can be exploited by an end user. A basis is a minimal subset of

association rules that can be combined to form all association rules without any loss of

information. A basis can be extracted from an iceberg concept lattice using a systematic

, d1 is an ancestor of the node label 40%).

1 The overall drop in confidence is the product of the confidences noted on the edges along the path. In this
case 83.4% × 80.0%, or 66.7%.

10

traversal of the lattice. The Duquenne-Guigues (1986) basis provides extraction of a

minimal set of association rules with 100% confidence and the Luxenburger (1991) basis

provides extraction of a minimal set of association rules with less than 100% confidence.

Stumme, Taouil, Bastide, Pasquier, and Lakhal (2001b) offer algorithms to traverse and

extract the Duquenne-Guigues basis and the Luxemburger basis from an iceberg concept

lattice.

Given that an iceberg concept lattice provides an analysis tool to succinctly

identify a basis of association rules, additional algorithms to construct an iceberg lattice

are needed. This study presents the development of efficient algorithms to construct an

iceberg lattice. Its objective; to develop algorithms whose overall performance in

constructing a lattice is near to the leading algorithms used for association rule mining.

Since a lattice contains more information, marginally slower performance was considered

acceptable. In addition to the development of the algorithms, this study:

i) presents theory of formal concept analysis as applied to association rule
mining,

ii) includes a detailed analysis of performance characteristics of the developed
algorithms through both theory and practice using benchmark databases (e.g.,
Mushroom, Chess, and T25I10D10k2

iii) enumerates comprehensive benchmarks comparing the performance of the
developed algorithms to other leading algorithms.

), and

1.2 Relevance and Significance

Association rule mining is recognized as an important area within data mining

(Pasquier, Bastide, Taouil, & Lakhal, 1999a, Burdick et al., 2001, Zaki & Hsiao, 2002,

and Han & Kamber, 2006). It has been applied to a wide range of domains including

2 Mushroom, Chess, and T25I10D10k are public data sets often used in literature. See Section 4.2.

11

basket analysis (Agrawal et al., 1993, Brin, Motwani, & Silverstein, 1997a), intrusion

detection (Lee, & Stolfo, 1998), database analysis (Huhtala, Karkkainen, Porkka, &

Toivonen, 1999, Lopes, Petit, & Lakhal, 2000), geo-spatial decision support (Harms, Li,

Deogun, & Tadesse, 2002), medical data analysis (Ordonez, Santana, & Braal, 2000), and

organization of web pages on the World Wide Web (Cooley, Mobasher, & Srivastava,

1997). Association rule theory has extended beyond its original domain to include

correlations (Brin et al., 1997a), dependency rules (Brin, Motwani, & Silverstein, 1998),

episodes (Mannila, Toivonen, & Verkamo, 1997), sequential patterns (Srikant &

Agrawal, 1996), and multi-dimensional patterns (Kamber, Han, & Chiang, 1997).

Since the seminal paper by Agrawal et al. (1993), techniques to derive association

rules from database have be an active area of research (Agrawal, & Srikant, 1994, Park,

Chen, & Yu, 1995, Brin et al., 1997a, Bayardo, 1998, Pasquier, Bastide, Taouil, &

Lakhal, 1999b, Dunkel, & Soparkar, 1999, Shenoy, Haritsa, Sudarshan, Bhalotia, Bawa,

& Shah, 2000, Pei, Han, & Mao, 2000, Burdick et al., 2001, Stumme, Taouil, Bastide,

Pasquier, & Lakhal, 2002, Zaki, & Hsiao, 2002, Wang, Han, & Pei, 2003, Lucchese,

Orlando, & Perego, 2004, Uno, Kiyomi, & Arimura, 2004, and Lucchese, Orlando, &

Perego, 2006). However, this research has primarily focused on efficient and innovative

theory and techniques for the extraction of frequent item sets. As such, they have fallen

short of the overall task of mining association rules (Yahia, Hamrouni, & Nguifo, 2006).

Key information not generated by these works is the derivation of upper covers of each

frequent item set. An upper cover of a frequent item set I is a set of frequent item sets U

such that ∀ Iu ∈ U, Iu ⊂ I and there does not exist a frequent item set I2 where Iu ⊂ I2 ⊂ I.

Upper covers are needed in the production of association rules to efficiently generate

12

rules from the frequent item sets that are constrained to a number that can be readily

exploited by an end user (Zaki, & Hsiao, 2005, Yahia et al., 2006).

Upper covers are provided in FCA. Thus, FCA has been presented as a method to

mine association rules (Pasquier, 2000, Stumme, 2002, Valtchev, Missaoui, Godin, &

Meridji, 2002a, and Maddouri, 2005). However, most methods involve a complete lattice

and therefore are infeasible for mining association rules against large databases. Of the

mentioned works, Stumme et al. provides a number of in depth papers on FCA theory

that includes iceberg concept lattices (Stumme, Bastide, Pasquier, & Lakhal, 2000,

Stumme, Taouil, Bastide, & Lakhal, 2001a, Stumme , Taouil, Bastide, Pasquier, &

Lakhal, 2001b, Stumme, 2002 , Stumme et al., 2002, Ganter et al., 2005, and Lakha &

Stumme, 2005). Stumme et al. provide a compelling argument for using iceberg concept

lattices as a model from which a basis of association rules can be efficiently generated.

Zaki (2000) provides similar arguments. Algorithms to generate the rules from an

iceberg lattice are provided in Stumme et al. (2001b). However the offered algorithm to

construct an iceberg lattice, TITANIC, fails to produce the upper covers.

After a diligent search of literature, only three algorithms to construct an iceberg

lattice were found; MAGALICE (Rouane, Nehm, Valtchev, & Godin, 2004), CHARM-L

(Zaki, & Hsiao, 2005), and SPROUT (Choi, 2006). MAGALICE builds upon the theory

of the GMA algorithm as formalized by Valtchev, Rouane, and Missaoui (2003b).

CHARM-L is an extension to the CHARM3

3 CHARM is a leading algorithm to mine frequent item sets. This algorithm is discussed further in
Chapter 2.

 algorithm (Zaki, & Hsiao, 2002) that

constructs a lattice as an adjunct data structure to its core. SPROUT is similar to

CHARM-L, except it uses a breadth first search.

13

This study presents an investigation into additional algorithms to construct an

iceberg concept lattice. The formulation of new algorithms to efficiently construct

iceberg concept lattices enables lattice traversal algorithms, such as Stumme et al.

(2001b), to efficiently generate a basis of association rules that can be exploited by an

end user. Therefore, the formulation of new algorithms to construct an iceberg concept

lattice will contribute to the task of association rule mining. Beyond this, new efficient

algorithms to construct concept lattices may provide a contribution to the wide set of

areas where formal concept analysis is applied.

1.3 Barriers and Issues

The GMA algorithm (Godin et al., 1995) as introduced is not suitable for

association rule mining. It is a top-down, level-wise lattice construction algorithm that

cannot construct an iceberg lattice, since the supports are not fully determined until the

completion of the entire lattice. Thus, concepts that do not meet the minimum support

threshold are retained during lattice construction. Such concepts consume memory

resources. Furthermore, the representation of concepts contains massive duplication.

The same object ids and items are present in multiple concepts. This is evident in the

simple concept lattice shown in Figure 1.1. Constructing a concept lattice for a moderate

or even small data set could quickly exhaust available memory. Lastly, the GMA

algorithm is highly dependent on subset checking and intersection operations. This raises

strong concerns on runtime performance.

Chapter 3 will present algorithms to directly construct an iceberg concept lattice.

The developed algorithms do not construct concepts that do not meet the minimum

support threshold. Furthermore, one algorithm adopts a compressed representation to

14

eliminate duplicate entries of object ids and items. The algorithms, however, introduce

further dependency on set operations including set difference, union, and intersection.

Thus, a major challenge was developing techniques to perform fast set operations and

caching of interim results. In addition, heuristics that have the potential to reduce the

number of times set operations were investigated and applied. For example, insertions of

items in ascending support order resulted in reducing the number of intersections

performed.

1.4 Elements, Hypotheses, Theories, or Research Questions to be Investigated

The concept lattice is an elegant and well behaved data structure. It is elegant in

the sense it provides concise organization of the relationships between a set of objects

and a set of items. It is well behaved in that the identical data structure will be

constructed regardless of the order in which the data is processed. B-trees, itemset-tidset

trees of the CHARM algorithm4, and frequent pattern trees of the CLOSET algorithm5

4 CHARM is a leading algorithm to mine frequent item sets. This algorithm is discussed further in
Chapter 2.
5 CLOSET is another leading algorithm to mine frequent item sets.

 on

the other hand are not well-behaved. Variations of order in which data is processed may

result in the construction of different structures, although the properties of the given data

structure are preserved. Given the elegance and well behavior of a concept lattice, it was

hypothesized that an iceberg concept lattice based algorithm will provide gains in

association rule mining and will be effective in mining frequent items sets. It was

expected that such algorithm will readily construct a concept lattice for a wide range of

data sets and will prove to be a viable approach. It was expected that the algorithm will

exhibit the same or slightly better performance with respect to memory utilization of the

15

other leading algorithms. Furthermore, it would be resilient against variations of data

characteristics and input order.

It was expected that a lattice based algorithm will exhibit runtime performance on

the order of leading algorithms to mine frequent item sets, but will probably be slower

due to greater dependencies on intersection, union, and set difference operations.

However, the output of the proposed algorithm contains more information. A lattice

provides the upper covers needed to derive a basis of association rules. Given this, it was

hypothesized that the proposed algorithm will have significant gains relative to the

overall task of association rule mining.

1.5 Limitations and Delimitations of the Study

An in depth analysis of the statistical properties of the various data sets used as

benchmarks measures of performance were not produced, since this is not the focus of

this study. Such information can be found in other works (Valtchev, Grosser, Roume, &

Hacene, 2002a, Wang et al., 2003, Palmerini, Orlando, & Perego, 2004, and Zaki, &

Hsiao, 2005).

 In a survey comparing the performance of lattice construction algorithms,

Kuznetsov and Obiedkov (2002) note a number of difficulties when attempting to

perform empirical benchmarks. Problems include:

i) difficulties understanding crucial details,

ii) description of underlying data structures are often omitted,

iii) algorithms exhibit different behavior on different data sets, and

iv) different choices in programming languages impede meaningful comparisons.

16

To avoid these problems, this study only performed benchmarks against other algorithms

that were well understood and readily implemented, or had an implementation available

from the authors that is either written in Java or readily translated to Java. This enabled a

common environment for performing benchmarks and thereby minimized the chances for

introducing error. CHARM and CHARM-L are written in C++ and available from the

authors. CHARM and CHARM-L was readily translated into Java. The MAGALICE

algorithm is part of the Galicia framework (Valtchev et al., 2003a). Galicia is written in

Java and is available as open source from the authors.

1.6 Definition of Terms

Ancestor Concept – an ancestor of a concept C1 is any concept Ca such that C1 < Ca.
(C1 > Ca in an inverted lattice)

Anti-chain – a set of concepts that are mutually incomparable. That is an order > does
not exists between any two concepts in the set. With a concept lattice, an anti-chain
is formed by any horizontal cut through the lattice such that all remaining concepts
are either < or > any concept in the anti-chain.

Association Rule – a meaningful implication rule of the form X → Y exhibited in a data
set (i.e., relation), where X and Y are subsets of the items and X ∩ Y is ∅.

Association Rule Mining – the task of identifying association rules exhibited in a data set.

Basis – a minimal set of association rules that conveys all derivable association rules
without loss of information.

Chain – a set of concepts that are mutually comparable. There exists an order > between
any two concepts in the set.

Child Concept – a child for a concept C1 is any concept Cc such that Cc < C1 and there
does not exist a concept C2 such that Cc < C2 < C1 (Cc > C1 and Cc > C2 > C1 in an
inverted lattice). Operator  in C1  Cc indicates that Cc is a child of C1. Also known
as a lower cover concept, or an immediate successor.

Closed Item Set – an item set whose closure yields the same set. For an item set I the
closure operation is defined as f ° g (I) where g is a function that identifies the set of
objects that have a given set of items and f is a function that identifies the set of items
that have a given set of objects.

17

Closed Set – a set derived upon performing a closure operation on some set. A set is said
to be closed if the closure operation derives no further elements. That is, the closure
operation derives the original set of elements.

Closure – the set derived upon performing a closure operation on some set. See Closed
Set.

Closure Operation (or Function) – a set operation (or function) that derives additional
elements resulting in a closed set. A closure operation, denoted as ″, must be:

i) monotonic (i.e., X ⊆ Y → X″ ⊆ Y″),

ii) extensive (i.e., X ⊆ X″), and

iii) idempotent (i.e., (X″)″ = X″).

With respect to FCA, the closure operation for an item set I is defined as f ° g (I)
where g is a function that identifies set of objects that have a given set of items and f
is a function that identifies set of items that have a given set of objects. Dually, the
closure operation for an object set O is defined as g ° f (O).

Complete Lattice – a lattice is said to be complete iff there exists a meet and join
concepts for any two concepts within the lattice.

Concept Lattice – a complete set of formal concepts derived from a formal context
together with connections (i.e., edges) between any two concepts C1 and C2 for which
an order < exists and there does not exist a concept C3 for which C1 < C3 < C2. Also
known as a Galois lattice (Barbut, & Monjardet, 1970).

Confidence – a measure of the degree to which an association rule is meaningful. For an
association rule X → Y, confidence is derived by the number of times both X and Y
occurs in a data set relative to the number of times X occurs.

Data Set – an organized set of information on a set of entities of the same type. With
respect to data mining, a data set is a set of objects where each object has a set of
attributes. Also known as a relation in relational database theory.

Degree of a Lattice – the maximal number of concepts in any upper cover or lower cover
within the lattice. The degree of a lattice, expressed as deg(L), is the maximum of
({|Covl(c)| | c ∈ L} ∪ ({|Covu(c)| | c ∈ L}).

Dense Data Set – a data set with a large number of items per object and a limited number
of distinct items.

Density – a measure of the completeness of a relation. For a formal context K{I, O, R},
the density of R = |R| / (|I| × |O|) where |R| is the total number of items for all
objects.

18

Descendent Concept – an ancestor of a concept C1 is any concept Cd such that Cd < C1.
(C1 < Cd in an inverted lattice)

Extent – the set of objects having a given set of items. With respect to FCA, the extent of
a concept is the set of objects.

Formal Concept – given a formal context K{I, O, R}, a formal concept is a pair of sets
O ⊆ O and I ⊆ I iff:

i) O = {o ∈ O | ∀ i ∈ I, oRi} and

ii) I = {i ∈ I | ∀ o ∈ O, oRi},

where oRi denotes object o has item i in relation R.

Formal Concept Analysis – a branch of applied mathematics that derives theory from the
definition of formal concepts.

Formal Context – a tuple K{I, O, R} where I is a set of items, O is a set of objects, and
R is a relation such that R ⊂ I × O. The relation R identifies the items contained in
each object.

Frequent Item Set – an item set whose support meets a specified threshold.

Horizontal Representation – data within a data set is organized as a list of the objects
with each object listing its items.

Iceberg Concept Lattice – the set of concepts of a concept lattice, together with their
edges, whose cardinality of extent meet a specified minimum support threshold.

Infimum (inf) – the greatest lower bounds of a set. In terms of a concept lattice L the
infimum is the concept Cinf = C ∈ L | C < C′ ∀ C′ ∈ L ∧ C ≠ C′. It is the top concept
in a concept lattice (bottom concept in an inverted lattice).

Intent – the set of common items between a set of objects. With respect to FCA, the
intent of a concept is the set of items.

Item Set – a set of items.

Join – the least common ancestor of two or more concepts. For any set of concepts
{(O1, I1), (O2, I2), …, (On, In)}, the lattice will contain concept (∩n

i=1 Oi,
closure(∪n

Line Diagram – a diagram depicting a concept lattice. Also known as a Hasse diagram
(Pemmaraju, & Skiena, 1990).

i=1 Ii)). Such concept is the join of (O1, I1), (O2, I2), …, (On, In).

Join Semi-lattice – a lattice for which only the join between any set of concepts is
preserved within the lattice.

19

Lower Cover – a lower cover of an item set I is a set of item sets U such that ∀ Il ∈ U, Il
⊃ I and there does not exist an item set I2 where Il ⊃ I2 ⊃ I. With respect to FCA, a
lower cover is the set of child concepts. Function Covl(c) is said to map concept c to
its lower cover. Also known as the set of immediate successors.

Maximal Concept – the greatest concept in terms of order > that contains a given item Ii.
Function ν(Ii) is said to map item Ii to its maximal concept. Also known as the item
concept of item Ii.

Maximal Frequent Item Set – a frequent item set for which there does not exist another
item set whose items are a superset.

Minimal Concept – the smallest concept in terms of order > that contains a given object
Oi. Function µ(Oi) is said to map object Oi to its minimal concept. Also known as
the object concept of object Oi.

Meet – the greatest common descendent of two or more concepts. For a set of concepts
{(O1, I1), (O2, I2), …, (On, In)}, the lattice will contain concept (closure(∪n

i=1 Oi),
∩n

Support – a measure of the degree to which an association rule is meaningful. For an
association rule X → Y, support is derived by the number of times X ∪ Y occurs in a
data set. Support can be expressed as an absolute count or as a percentage of the total
number of tuples in the data set. Function γ(c) is said to map concept c to its support.

i=1 Ii). Such concept is the meet of (O1, I1), (O2, I2), …, (On, In).

Meet Semi-lattice – a lattice for which only the meet between any set of concepts is
preserved within the lattice.

Order > – An order > is said to exist between any two concepts C1 = (O1, I1) and
C2 = (O2, I2) such that O1 ⊃ O2 (or I1 ⊂ I2).

Parent Concept – a parent for a concept C1 is any concept Cp such that C1 < Cp and there
does not exist a concept C2 such that C1 < C2 < Cp (C1 > Cp and C1 > C2 > Cp in an
inverted lattice). Operator  in C1  Cp indicates that Cp is a parent of C1. Also
known as an upper cover concept, or immediate predecessor.

Sparse Data Set – a data set with few items per object and a large number of items.

Sub-lattice – a lattice extracted from another lattice. A sub-lattice is formed by selecting
a concept together with all of its ancestors (or decedents). If the lattice from which a
sub-lattice is extracted is a complete lattice, the sub-lattice will be a complete lattice.

Subsume – between two sets Xi and Xj, if Xi ⊂ Xj and closure of Xi = closure of Xj then
Xj is said to subsume Xi.

Subsumption Check – given a set of sets X and a new element Xi, a subsumption check
ensures that Xi is not subsumed by any Xj ∈ X.

20

Supremum (sup) – the least upper bound of a set. In terms of a concept lattice L the
supremum is the concept Csup = C ∈ L | C > C′ ∀ C′ ∈ L ∧ C ≠ C′. It is the bottom
concept in the concept lattice (top concept in an inverted lattice).

Trivial Join – a join concept whose extent is ∅ and intent is the set of all items. The
trivial join, if present, is the topmost concept in a concept lattice.

Trivial Meet – a join concept whose extent is the set of all objects and intent is ∅. The
trivial meet, if present, is the bottom most concept in a concept lattice.

Upper Cover – an upper cover of an item set I is a set of item sets U such that ∀ Iu ∈ U,
Iu ⊂ I and there does not exists an item set I2 where Iu ⊂ I2 ⊂ I. With respect to FCA,
an upper cover is the set of parent concepts. Function Covu

1.7 Summary of Background and Problem Statement

(c) is said to map a
concept c to its upper cover. Also known as the set of immediate predecessors.

Vertical Representation – data within a data set is organized as a list of the items with
each item listing its objects.

Width of a Lattice – the size of the maximal anti-chain present in the lattice. The width
of a lattice, expressed as w(L), = max ({|a| | a ∈ {anti-chains in L}}).

Association rule mining is the task of identifying meaningful implication rules of

the form X → Y exhibited in a data set. It has been applied to a wide range of domains

including basket analysis, intrusion detection, database analysis, geo-spatial decision

support, medical data analysis, and organization of pages on the World Wide Web.

Furthermore, association rule theory has extended beyond its original domain to include

correlations, dependency rules, episodes, sequential patterns, and multi-dimensional

patterns. Association rule mining is an important area of knowledge discovery in

databases and has been an active area of research.

A majority of research on association rule mining has focused on efficient

techniques and innovative theory to extract frequent item sets. This is of itself an

exponential problem. As such, techniques like candidate generation and frequency

21

counting may be intractable for even a moderate sized data set. Thus, research has been

directed towards the development of efficient algorithms to prune the search space

through application of theory and specialized compact data structures. While this

research has made significant progress over the last fifteen years, it has focus on only part

of the association rule mining problem: mining frequent item sets. In addition to

identifying the set of frequent item sets, the upper covers of each frequent item set are

needed to generate a set of association rules whose size is constrained to a number that

can be exploited by an end user. The identification of upper covers is generally

considered to be a worst case quadratic problem in terms of the number of frequent item

sets.

An alternative to frequent item set mining algorithms can be found in formal

concept analysis, a branch of applied mathematics. Given a formal context K composed

of a set of objects O, a set of items I, and a relation R ⊂ O × I, formal concept analysis

derives a set of concepts where each concept is a pair of sets O ⊆ O and I ⊆ I such that

O = {o ∈ O | ∀ i ∈ I, oRi} and I = {i ∈ I | ∀ o ∈ O, oRi}. Furthermore, between any

two concepts C1 = (O1, I1) and C2 = (O2, I2) an order < is said to exists between C1 and C2

iff O1 ⊂ O2. Thus, the concepts derived from K can be arranged into a lattice structure

by defining a connection between any two concepts C1 and C2 for which order < exists

and there is no concept C3 for which C1 < C3 < C2. The result is a concept lattice. A

concept lattice does, however, include concepts whose cardinality of O does not meet a

minimum support threshold and as such may involve an excessive number of concepts.

An iceberg lattice is a concept lattice whose set of concepts are restricted to those whose

cardinality of O meets a minimum support threshold.

22

 Iceberg concept lattices are of benefit to mining association rules. A concept’s

intent (i.e., set of I) corresponds to an item set and cardinality of extent (i.e., set of O)

corresponds to its support. Furthermore, the definition of a concept embodies the

mathematical notion of closure. Thus, nodes of the concept lattice represent only closed

item sets, whose cardinality can be orders of magnitude lower than the cardinality of all

item sets. The iceberg concept lattice still contains the necessary and sufficient

information to extract association rules and to compute both confidence and support, and

the connections identifying the upper covers. Furthermore, the alternate notation of an

iceberg lattice depicted in Figure 1.3 enables association rules to be directly read from an

iceberg lattice. This form of iceberg concept lattice can be readily traversed using the

Duquenne-Guigues basis and Luxenburger basis to generate a set of association rules that

can be exploited by an end user.

After a diligent search of literature, only three algorithms to construct an iceberg

lattice were found; MAGALICE, CHARM-L, and SPROUT. Given that an iceberg

concept lattice provides an analysis tool to succinctly identify a basis of association rules,

this study investigates additional algorithms to construct an iceberg concept lattice.

Formulation of new algorithms to construct iceberg concept lattices will therefore make a

contribution to the task of association rule mining. Beyond this, new efficient algorithms

to construct concept lattices may provide a contribution to the wide-set of areas where

formal concept analysis is applied.

23

Chapter 2

Review of Literature

2.1 Introduction

Presented in this chapter is an overview of algorithms for association rule mining

as well as concept lattice construction. Details of the CHARM (Zaki, & Hsiao, 2002),

Valtchev, Missaoui, and Lebrun (2000) post-mining lattice construction , GMA (Godin et

al., 1995), GALICIA-T (Valtchev et al., 2002), CHARM-L (Zaki, & Hsiao, 2005),

MAGALICE (Rouane et al., 2004), and Valtchev et al. (2003) generic lattice construction

algorithms are provided since these have high relevance to the objectives of this study.

CHARM, with its latter CHARM-L, is the only known example of a frequent item set

miner that has been extended to produce a concept lattice as an integral part of its

processing. Post-mining lattice construction is an approach to generate the lattice as a

subsequent step to frequent closed item set mining. It, combined with a frequent closed

item set mining algorithm, will construct an iceberg lattice. GMA is an often cited

incremental lattice construction algorithm that is noted for good performance.

GALICIA-T is an adaption of a lattice construction algorithm specifically for association

rule mining. MAGALICE is an extended GMA algorithm that constructs only an iceberg

lattice. Lastly, the generic construction algorithm provides a concise statement of the

tasks to be performed by an incremental lattice construction algorithm.

24

2.2 Classical Association Rule Mining – Mining of Frequent Item Sets

Since the Apriori algorithm was introduced in 1993, mining of association rules is

an active area of research. There have been many proposed improvements to the Approri

algorithm including (Agrawal & Srikant, 1994, Park et al., 1995, Brin, Motwani,

Ullman, & Tsur, 1997b, Dunkel, & Soparkar, 1999, and Shenoy et al., 2000). These

algorithms are effective for mining short frequent patterns, but are not viable for mining

data sets involving long sets (i.e., above 10 to 15 items) (Burdick et al., 2001, Han, &

Kamber, 2006).

There have been a number of algorithms developed to address the mining of long

frequent item sets. Most notable are Max-Miner (Bayardo, 1998), MAFIA (Burdick et

al., 2001), CLOSET (Pei et al., 2000), CHARM (Zaki, & Hsiao, 2002), and CLOSET+

(Wang et al., 2003). Max-Minor extracts maximal frequent item sets (i.e., item sets for

which no frequent superset is present) using a combined top-down bottom-up search. It

exploits the property that all subsets of a frequent item set are also frequent to rapidly

prune the search space. While it has proved to be efficient, the set of maximal frequent

item sets do not contain sufficient information to compute confidence. Like Max-Miner,

MAFIA is also a maximal frequent item set algorithm. It employs an alternate data

structure based on a vertical data representation (i.e., list of object ids per item) and offers

a compressed bitmap vector format to address memory concerns. CHARM constructs an

itemset-tidset (IT) tree whose nodes are similar to the nodes of a concept lattice. It is a

top-down, depth-first search that exploits a notion of equivalence classes to skip levels in

order to quickly identify closed items sets. It uses intersection and pruning to

incrementally add data to the IT tree. Intersection is noted as an expensive operation that

25

impedes the performance of the CHARM algorithm (Wang et al., 2003). Like MAFIA,

CHARM involves a vertical data representation. CHARM addresses memory concerns

using a difference based representation to enumerate the sets of object ids below the first

level of its tree. Alternatively, CLOSET uses a frequent pattern (FP) tree to provide a

compact representation of the data in memory. The FP tree is a horizontal representation

that maintains counts, each relative to a context of an ordered list of frequent items. Such

context corresponds to a branch in the FP tree. Branches are added to the FP tree upon

processing an object whose items omit one or more items in the path of an existing

branch. Following construction of the FP tree, a divide and conquer algorithm that

performs physical bottom-up projections on the FP tree together with item set merging

and sub-item set pruning to identify the set of closed frequent items. Experiments using

CLOSET proved it effective for dense data sets (i.e., many items per transaction with few

distinct items), but CLOSET’s performance degrades rapidly on sparse data sets (i.e., few

items per transaction with many distinct items) as the minimum support threshold is

lowered. CLOSET+ offers several enhancements to CLOSET. A top-down pseudo

projection algorithm was added to address sparse data sets, item skipping was introduced

to further prune the search space, and strategies from other algorithms, such as CHARM,

were incorporated. CLOSET+ is considered to be a winning algorithm for mining closed

frequent item sets (Wang et al., 2003).

All three algorithms, CHARM, CLOSET, and CLOSET+ begin by performing an

initial scan over the data set to obtain frequency counts for each item. This initial

processing is used to discard any items that are not frequent. The counts are also used to

define a sort order for the context used to construct the respective tree structures,

26

although a different order is used by each algorithm. Sorting the items for the context is a

heuristic to minimize the branches generated during execution of the algorithm and

thereby improve efficiency (e.g., CHARM sorts by support, see end of Section 2.3 for

rationale).

Max-Miner, CHARM, CLOSET, and CLOSET+ algorithms have been

extensively validated using experiments against real and synthetic data sets. The data

sets include a wide variety of characteristics including:

i) number of tuples ranging from a few thousand to near a million,

ii) number of items ranging from low hundreds to tens of thousands,

iii) contain maximal patterns on the order of ten to a hundred and fifty, and

iv) represent both sparse and dense data.

Both CHARM and CLOSET+ demonstrate orders of magnitude performance gains over

Apriori.

The Max-Miner, MAFIA, CHARM, and CLOSET+ algorithms focus on just

identifying the frequent item sets through various search and pruning strategies with

minimal theory drawn directly from FCA. TITANIC (Stumme et al., 2002), on the other

hand, is an algorithm for identifying the intents of concepts of an iceberg concept lattice

using propositions derived directly from FCA. It is still a level-wise bottom-up search

and prune algorithm similar to Apriori. However, its propositions enable:

i) calculation of counts for some portion of the candidates patterns to be derived
from the counts obtained at a previous level,

ii) computation of the closure sets for each candidate patterns at the previous
level, and

iii) early pruning of candidate patterns that cannot be key patterns (i.e., a minimal
set of items used to generate a closure).

27

By leveraging these propositions, the TITANIC algorithm aggressively reduces the

search space and reduces the number of database scans. On completion, the algorithm

reports the set of closure patterns together with their key item sets. The set of closure

patterns represent the set of concept intents and therefore the set of closed item sets.

TITANIC has two variants; one to compute all closure patterns and a second to compute

the only frequent closure patterns (i.e., intents of concepts from an iceberg concept

lattice). The TITANIC algorithm does not construct the lattice. Relationships between

the concepts are not identified and therefore not retained.

Using two public data sets, the performance of the TITANIC algorithm is

experimentally evaluated by the authors against the Next-Closure algorithm (Ganter,

1984), an early algorithm for computing closed sets. Limited results are reported. No

comparisons against the leading algorithms for computing closed frequent items sets are

offered.

A recent survey provides an analysis of algorithms for closed frequent item sets

from both a theoretical and analytical viewpoint (Yahia et al., 2006). Algorithms

evaluated include CLOSE (Pasquier et al., 1999a), A-CLOSE (Pasquier et al., 1999b),

TITANIC, CLOSET, CLOSET+, CHARM, Linear time Closed item set Miner (LCM)

(Uno et al., 2004), and DCI-Closed (Lucchese et al., 2006). The CLOSE and A-CLOSE

algorithms are predecessors to TITANIC. DCI-Closed and LCM are enhancements to

CHARM to avoid subsumption checking; a step involving a potential exponential

asymptotic complexity. The survey first formulates the problem of association rule

mining from a frequent closed item (FCI) set perspective as two steps, namely:

i) discover the FCI sets together with their keys and upper covers, then

ii) from the FCIs, keys, and upper covers derive a basis of association rules.

28

The algorithms evaluated are classified into one of four categories:

i) “test-and-generate” those using an iterative bottom-up test and generation of
candidate sets,

ii) “divide-and-conquer” those that gathers information in a compact
representation and then recursively analyze sub-contexts to search for FCIs,

iii) “hybrid” those that use a combination of the previous two, and

iv) “hybrid-without-duplication” those that extend the hybrid algorithms with
techniques to avoid subsumption checks6

CLOSE , CLOSE-A, and TITANIC are classified as test-and-generate, CLOSET and

CLOSET+ are examples of divide-and-conquer, CHARM is a hybrid, and DCI-Closed

and LCM are hybrid-without-duplication. For each category, various characteristics

including potential for parallelism, storage format (e.g., vertical or horizontal), and

generated output (e.g., FCIs, keys) are evaluated.

In addition to the theoretical analysis, the survey presents results from empirical

evaluation of the algorithms executed against real and synthetic data sets including three

dense data sets, three sparse data sets, and a manufactured “worst case” data set.

Experiments are performed over a full spectrum of minimum support thresholds. Results

indicate that the divide-and-conquer, hybrid, and hybrid-without duplication exhibit the

similar runtime performance and memory profiles that are generally within an order of

magnitude differential. Divergence in excess of an order of magnitude appeared at lower

minimum supports. The test-and-set algorithms, on the other hand, were overall several

orders of magnitude slower.

.

The Yahia et al. (2006) survey draws several conclusions. There has been

“frenzied activity” in developing algorithms that efficiently identify the FCI sets. These

6 A subsumption check ensures that the closure of a candidate item set does not equal a previously
identified closed item set.

29

algorithms have made significant progress by leveraging theory in combination with

carefully designed compact data structures. However, this activity has lost sight of the

overall goal of producing a set of association rules that is “of exploitable size by end

users”. All algorithms fail to produce the upper covers and therefore unable to generate a

reasonable basis of association rules. Without the upper covers, the derivation of

association rules from the FCI set of even a modest context will generate an excessive

number of rules that cannot be reasonably comprehended by end users. Other studies

derive the same conclusion (Zaki, 2000, Valtchev, Missaoui, & Godin, 2004, Zaki, &

Hsiao, 2005, and Lakha & Stumme, 2005).

2.3 CHARM Algorithm – An Example of Frequent Item Set Mining

CHARM (Zaki, & Hsiao, 2002) is an efficient algorithm for mining frequent item

sets within a data set. It accomplishes this task by identifying only the set of closed

frequent item sets. CHARM dynamically constructs and searches an itemset-oidset7

The itemset-oidset search tree is comprised of nodes similar to concepts in that

each node contains a set of items and a set of object identifiers (ids). Initially, the sets in

the tree may not be closed. For example, the set AD in node {AD45} in Figure 2.1 is not

closed since there exists nodes {ADC45}, {ADW45}, and {ADCW45} with the same set

of object ids. Only node {ADCW45} represents a closed set. The CHARM algorithm

thus prunes the itemset-oidset search tree such that only nodes containing closed item sets

 tree

shown in Figure 2.1. By exploiting closed set theory, CHARM prunes branches and

skips levels within the tree forming a hybrid search that searches both the item set and

object set search space.

7 The CHARM authors use the terminology itemset-tidset (IT) tree. Itemset-oidset is being used in this
discussion to maintain consistency with other presentations.

30

{∅
12

34
56

}

{A
13

45
}

{C
12

34
56

}
{D

24
56

}
{T

13
56

}
{W

12
34

5}

{A
C

13
45

}

{A
C

D
45

}

{A
C

D
T5

}
{A

C
D

W
45

}

{A
C

D
TW

5}{A
C

T1
35

}

{A
C

TW
13

5}

{A
C

W
13

45
}

{A
D

45
}

{A
D

W
45

}
{A

D
T5

}

{A
D

TW
5}

{A
T1

35
}{

AW
13

45
}

{A
TW

13
5}

{C
D

24
56

}
{C

T1
35

6}
{C

W
12

34
5}

{D
T5

6}
{D

W
24

5}
{T

W
13

5}

{C
D

T5
6}

{C
D

TW
5}

{C
D

W
24

5}
{C

TW
13

56
}

{D
TW

5}

R

 I
te

m
s

1
AC

TW
2

C
D

W
3

AC
TW

4
AC

D
W

5
AC

D
TW

6
C

D
T

C
ha

rm
 E

xa
m

pl
e

D
at

as
et

Figure 2.1: Itemset-oidset tree used by the CHARM algorithm. Example taken from
(Zaki, & Hsiao, 2002).

31

remain. Pruning is performed dynamically during the construction process. Each

remaining node identifies a potential closed set.

The itemset-oidset tree is constructed in a recursive process. The first level below

the root node is constructed using a pass of the data set. The result is a set of nodes, each

containing a single item and its set of object ids. Thereafter, each node is then expanded

into a set of child nodes by performing a union of item sets together with an intersection

on object sets for each sibling to the right of the node. For example, in Figure 2.1 the

children of node {D2456} are constructed by performing a union of item sets together

with an intersection on object sets against {T1356} and {W12345}. This results in

children {DT56} and {DW245}. Note that the children will share a common item set

prefix. Each child effectively appends another item to the prefix. Thus, the children are

said to be in an equivalence class defined by the parent. If a generated node has an object

set whose size is less than a specified minimum support threshold, then that node is

discarded. Further pruning is achieved by exploiting the following theorem:

Theorem 2.3.1. Let Ii × o(Ii) and Ij × o(Ij) be any two members of an equivalence
class [P], then the following properties hold true:

Property 2.3.1: o(Ii) = o(Ij) → Ii″ = Ij″ = (Ii ∪ Ij)″

Property 2.3.2: o(Ii) ⊂ o(Ij) → Ii″ ≠ Ij″, but Ii″ = (Ii ∪ Ij)″

Property 2.3.3: o(Ii) ⊃ o(Ij) → Ii″ ≠ Ij″, but Ij″ = (Ii ∪ Ij)″

Property 2.3.4: o(Ii) ≠ o(Ij) → Ii″ ≠ Ij″ ≠ (Ii ∪ Ij)″

Property 2.3.1 implies that if two children have the same set of objects then every

occurrence of the first item set can be replaced with the union of the two item sets.

Furthermore, the second child can be pruned since it derives the same closure. Property

2.3.2 implies that if the first child has an object set that is a subset of the other then every

32

occurrence of the first child’s item set can be replaced with the union of the two item sets.

The second child, however, cannot be pruned since it generates a different closure.

Property 2.3.3 is similar in implication to property 2.3.2, however, the item set union is

expressed by adding a child to the first child. That grandchild will generate a different

closure. Since the grandchild expresses the union of item sets, the second child can be

pruned. Property 2.3.4 implies that if two children have object sets that are neither equal

nor a subset of the other, then each child leads to different closures. Furthermore, a child

representing the union of the item sets is added to the first child since it leads to its own

closure. Further explanation of these properties together with examples are given in

(Zaki, & Hsiao, 2002).

The complete CHARM algorithm is given in Algorithm 2.1. Lines 1 through 3

initialize the top level equivalence class consisting of the top node and immediate

children. A child is created for each item whose set of object ids meets the minimal

threshold. After initializing the set of closed item sets to null (line 4), the function

CHARM-EXTEND is called to extract the closed item sets (line 5).

CHARM-EXTEND is a recursive function that dynamically builds and prunes the

itemset-oidset tree. It is passed a node representing the top of an equivalence class and

the set of found closed item sets. CHARM-EXTEND is composed of two nested loops to

compare and process each pair of child nodes (lines 7 and 8). Each pair whose

intersection does not meet the minimum support threshold is ignored (lines 10 and 11).

Each remaining pair is compared and processed according the properties 2.3.1 through

2.3.4 (lines 12 through 21). For properties 2.3.3 and 2.3.4, a grandchild node is created

and added as a child of the first in the pair (lines 19 and 21 respectively). If after

33

Let Node be a tuple {I, O, Children} where I is a set of Items, O is a set of objects, and

Children is a list of other nodes. A Node forms an equivalence class.

CHARM(K{I, O, R}, MinSupp)
1. NTop ← new Node(∅, ∅) // top level equivalence class
2. for each Ii ∈ I ∧ |o(Ii)| ≥ MinSupp: // initialize its children
3. Add new Node ({Ii}, o(Ii)) to NTop.Children
4. C ← ∅ // set of closed item sets
5. CHARM-EXTEND(NTop, C)
6. return C // all closed sets

CHARM-EXTEND(NParent, C)
7. for each NChild ∈ NParent.Children:
8. for each NSibiling ∈ NParent.Children ∧ NSibling is a later sibling of NChild
9. I ← NChild.I ∪ NSibling.I

10. O ← NChild.O ∩ NSibling.O
11. if |O| ≥ MinSupp: // threshold check
12. if NChild.O = NSibling.O: // property 2.3.1
13. Remove NSibling from NParent.Children
14. Replace NChild.I with I in all Nodes E where NChild.I ⊂ E.I
15. else if NChild.O ⊂ NSibling.O: // property 2.3.2
16. Replace NChild.I with I in all Nodes E where NChild.I ⊂ E.I
17. else if NChild.O ⊃ NSibling.O: // property 2.3.3
18. Remove NSibling from NParent.Children
19. Add new Node (I, O) to NChild.Children in order f
20. else if NChild.O ≠ NSibling.O: // property 2.3.4
21. Add new Node (I, O) to NChild.Children in order f
22. if NChild.Children ≠ ∅:
23. CHARM-EXTEND (NChild, C)
24. if NChild not subsumed in C:
25. Add NChild to C

Algorithm 2.1: The CHARM algorithm8

8 The authors use a different notation. Notation has been modified to be consistent with notation of this
report. Furthermore, authors express lines 12-21 in a separate function CHARM-PROPERTY. This
function has been placed in-line for brevity.

. (Zaki, & Hsiao, 2002)

34

comparing a node with each of its later siblings the node has children, then

CHARM_EXTEND is called recursively to process the node (lines 22 and 23).

Furthermore, the node may represent a closed item set, provided its closure is not an item

set that has been identified in the traversal of a previous branch. If the item set’s closure

is equal to an identified closed item set, the then item set is said to be subsumed. If not

subsumed, the item set is added to the list of closed item sets (lines 24 and 25).

When adding children to a node, the CHARM algorithm will maintain the

children in order of their supports (order f in lines 19 and 21). The rationale is to

encounter properties 2.3.1 and 2.3.2 sooner than later. For both of these properties, a

child is not generated for the first node. As a result, fewer levels are processed thereby

improving performance.

As a further enhancement, CHARM uses a difference based representation to

enumerate the sets of object ids below the first level of the itemset-oidset tree. These sets

are termed diff sets. For example, in Figure 2.1 the object id set of {CD2456} which is a

child of {C123456} will be represented as diff set {1, 3}. This results in a compact

representation and improves performance. Fast determination of superset, subset,

equality, and inequality is performed using differences operations on diff sets in place of

intersections on object id sets.

As the CHARM algorithm proceeds, a closed item set identified in one branch of

the itemset-oidset tree may be subsumed by a closed item set identified in a previous

branch. Therefore, before adding an item set to the set of closed item sets a subsumption

check against all found closed items sets must be performed. To avoid comparing each

item set with each found item set, introducing an O(n2) overall complexity, the found

35

item sets are placed into a hash table using the summation of the oids as the hash

function. This hash function will leverage the fact that an item set will subsume item sets

that has the same set of oids. Thus, the subsumption check can be performed in O(1),

resulting in an O(n) overall complexity.

2.4 Post Mining Lattice Construction – Valtchev, Missaoui, and Lebrun Algorithm

An approach to completing the association rule mining problem is to use a closed

frequent item set mining algorithm, such as CHARM, as the first part of a two step

process. Then, subsequently use a lattice construction algorithm to generate the upper

covers of each closed item set to form the lattice. Valtchev, Missaoui, and Lebrun (2000)

(VML) offer an efficient algorithm for such purpose.

Concepts in the VML algorithm are tuples consisting of intent, parent list, and

child list. The parent and child lists identify the upper and lower covers respectively.

Initially, the parent and child lists of all concepts are empty. The objective of the VML

algorithm is to organize a set of concepts into a lattice by populating the parent and child

lists of each concept. VML algorithm asserts that the list of concepts can be first sorted

into {C1, C2, …, Cn} such that the incremental insertion of concept Ci will only update

the parent-child links between Cprior and Ci where prior < i (i.e., Cprior has already been

linked into the lattice). Of the concepts linked into the lattice, there exists a subset that

does not have any children. This subset forms an anti-chain (i.e., all concepts are

mutually incomparable) that is the lower border of the lattice. This set, denoted as

Border, is used to identify the parents for the next concept Ci. If for a concept CBorder ∈

Border, CBorder.Intent ∩ Ci.Intent = CBorder.Intent then CBorder is a parent of Ci. However,

this may not identify all of the parent concepts. The missing parent concepts may be

36

“shadowed” by concepts in the Border. If a concept CBorder ∈ Border shadows a parent

Cparent then Cparent.Intent ⊂ CBorder.Intent. Thus, Cparent.Intent ∩ CBorder.Intent ∩ Ci.Intent ≠

∅. In such case, Cparent is the ancestor of CBorder where Ci.Intent ∩ CBorder.Intent =

Cparent.Intent. Thus, a set Candidates = {CBorder | CBorder ∈ Border ∧ CBorder.Intent ∩

Ci.Intent} can be used to identify the parents of Ci. However, the candidate set could

contain concepts that identify the same parent concept, or identify parent concepts that

are actually ancestors of the true parent concepts. These cases are the result of join

concepts existing between the candidates. The processing of each candidate individually

can lead to violating the lattice connection property (i.e., a connection is made between

any two concepts C1 and C2 for which order < exists and there is no concept C3 for which

C1 < C3 < C2). This problem can be remedied by removing from the candidates those

concepts that do not have a maximal intent with respect to the other candidates. After

purging the non-maximal concepts, the candidate set will itself form an anti-chain.

Algorithm 2.2 provides the complete VML algorithm. Following the sort of

concepts (line 1), both the lattice and Border set are initialized with the first concept

(lines 3 and 4). The remaining concepts are then incrementally inserted (lines 5 through

13). Lines 6 through 8 identify the concepts in the Border that have an intersection with

then next concept’s intent. Such concepts together with their intersection sets are added

as tuples to the Candidates set. The set of Candidate tuples are then purged of any non

maximal intersection sets (line 9). Each remaining tuple in Candidates is used to identify

a parent to be linked to the new concept (lines 10 through 13). After adding a link

between each identified parent and the new concept, the Border set is updated by

37

Let Concept be a tuple {Intent, Parents, Children} where Intent is the intent of a

concept, Parents is a list of parent concepts, and Children is a list of child concepts.

HASSE(C) // C is a set concepts

1. Sort(C) // sort by |Intent| is sufficient
2. CFirst ← First C ∈ C // first concept in C
3. L ←CFirst // the lattice
4. Border ← {CFirst} // anti-chain of minimal concepts
5. for each Ci ∈ C past CFirst:
6. Candidates ← ∅ // set of tuples {Ci, Intersect}
7. for each CBorder ∈ Border ∧ CBorder.Intent ∩ Ci.Intent ≠ ∅:
8. Add {CBorder, CBorder.Intent ∩ Ci. Intent} to Candidates
9. Candidates ← MAXIMA(Candidates) // purges non maximal candidates

10. for each Yi ∈ Candidates: // find and link parents
11. CParent ← FIND-CONCEPT(Yi.Ci, Yi.Intent)
12. Add parent-child link between CParent and Ci
13. Border ← (Border – Ci.Parents) ∪ {Ci}
14. return L

MAXIMA(Candidates) // Candidates is a set of tuples {Ci, Intersect}
15. Sort(Candidates) // sort by |Intersect| is sufficient
16. MaxIntersects ← ∅
17. for each Yi ∈ Candidates:
18. if ¬∃ YMax ∈ MaxIntersects | Yi.Intersect ⊂ YMax.Intersect:
19. Add Yi to MaxIntersects
20. return MaxIntersects

FIND-CONCEPT(Ci, Intent)
21. while Ci.Intent ≠ Intent:
22. for each CParent ∈ Ci.Parents:
23. if Intent ⊆ CParent.Intent:
24. Ci ← CParent
25. break out of for each
26. return Ci

Algorithm 2.2: The Valtchev, Missaoui, and Lebrun lattice construction algorithm.
(Valtchev et al., 2000)

38

replacing all the parents of the new concept with the new concept. After all concepts

have been inserted, the lattice is returned (line 14).

It is sufficient to sort the concepts (line 1) in the order of increasing size of intent,

since a child concept must have a larger intent. Concepts with the same size intent are

mutually incomparable. Given this, the sort can be accomplished in linear time. The sort

simply arranges the concepts into an array of bucket lists using the intent size as an index,

and then concatenates the buckets. The overall asymptotic complexity of the VML

algorithm is O(l w(L)2 m), where l = |L|, w(L) = width of lattice L, and m = |I|. An

improved version achieves O(l w(L) deg(L) m), where deg(L) = degree of lattice L.

2.5 Incremental Lattice Construction – Missaoui, Godin, and Alaoui Algorithm

Missaoui, Godin, and Alaoui (1995) algorithm (GMA) is a concept lattice

construction algorithm that is often cited in literature. It is an incremental algorithm.

That is, given a concept lattice L and a new object Oi with its set of items I, the GMA

algorithm will insert the new object into the lattice and produce a new concept lattice L+.

Figure 2.2 depicts the incremental insertion of the first six objects relation R of Figure

1.1. The bold text and lines identify the changes to the lattice as a result of inserting the

next object. The dashed line indicates a link that is removed. As can be seen in Figure

2.2, the insertion of an object can result in modifying the extent of several existing

concepts, generation of several new concepts, addition of links, and occasional removal

of links. The insertion of a single object may result in numerous modified concepts and

the addition of many new concepts.

The general strategy for the GMA algorithm is to partition the current concepts in

the lattice into three groups: modified, generator, and old. Modified are concepts into

39

R

 A
 B

 C
 D

O
1

a 1
b 1

c 3
d 1

O
2

a 1
b 1

c 1
d 2

O
3

a 1
b 2

c 1
d 1

O
4

a 1
b 2

c 1
d 4

O
5

a 1
b 2

c 1
d 1

O
6

a 2
b 2

c 1
d 2

In
se

rti
ng

 O
1

({
O

1}
,{a

1b
1c

3d
1}

)

In
se

rti
ng

 O
2

(∅
,{a

1b
1c

1c
3d

1d
2}

)G

({
O

1}
,{a

1b
1c

3d
1}

)G
({

O
2}

,{a
1b

1c
1d

2}
)

({
O

1O
2}

,{a
1b

1}
)

In
se

rti
ng

 O
3

(∅
,{a

1b
1b

2c
1c

3d
1d

2}
)G

({
O

1}
,{a

1b
1c

3d
1}

)G
({

O
2}

,{a
1b

1c
1d

2}
)G

({
O

1O
2}

,{a
1b

1}
)G

({
O

3}
,{a

1b
2c

1d
1}

)

({
O

1O
2O

3}
,{a

1}
)

({
O

1O
3}

,{a
1d

1}
)

({
O

2O
3}

,{a
1c

1}
)

In
se

rti
ng

 O
4

(∅
,{a

1b
1b

2c
1c

3d
1d

2d
4}

)G

({
O

1}
,{a

1b
1c

3d
1}

)
({

O
2}

,{a
1b

1c
1d

2}
)

({
O

1O
2}

,{a
1b

1}
)

({
O

3}
,{a

1b
2c

1d
1}

)G

({
O

1O
2O

3O
4}

,{a
1}

)m

({
O

1O
3}

,{a
1d

1}
)

({
O

2O
3O

4}
,{a

1c
1}

)m ({
O

4}
,{a

1b
2c

1d
4}

)

({
O

3O
4}

,{a
1b

2c
1}

)

Figure 2.2: Progression of incremental object insertion into a concept lattice. Bold text
indicates new concepts, inserted items or inserted objects, G a generator concept, m a
modified concepts, and dashed lines are removed links.

40

In
se

rti
ng

 O
5

(∅
,{a

1b
1b

2c
1c

3d
1d

2d
4}

)

({
O

1}
,{a

1b
1c

3d
1}

)
({

O
2}

,{a
1b

1c
1d

2}
)

({
O

1O
2}

,{a
1b

1}
)

({
O

3O
5}

,{a
1b

2c
1d

1}
)m

({
O

1O
2O

3O
4O

5}
,{a

1}
)m

({
O

1O
3O

5}
,{a

1d
1}

)m
({

O
2O

3O
4O

5}
,{a

1c
1}

)m

({
O

4}
,{a

1b
2c

1d
4}

)

({
O

3O
4O

5}
,{a

1b
2c

1}
)m

In
se

rti
ng

 O
6

(∅
,{a

1a
2b

1b
2c

1c
3d

1d
2d

4}
)G

({
O

1}
,{a

1b
1c

3d
1}

)
({

O
2}

,{a
1b

1c
1d

2}
)G

({
O

1O
2}

,{a
1b

1}
)

({
O

3O
5}

,{a
1b

2c
1d

1}
)

({
O

1O
2O

3O
4O

5}
,{a

1}
)

({
O

1O
3O

5}
,{a

1d
1}

)(
{O

2O
3O

4O
5}

,{a
1c

1}
)G ({
O

4}
,{a

1b
2c

1d
4}

)

({
O

3O
4O

5}
,{a

1b
2c

1}
)G

({
O

6}
,{a

2b
2c

1d
2}

)

({
O

2O
3O

4O
5O

6}
,{c

1}
)

({
O

3O
4O

5O
6}

,{b
2c

1}
)

({
O

2O
6}

,{c
1d

2}
)

Figure 2.2 continued: Progression of incremental object insertion into a concept lattice.
Bold text indicates new concepts, inserted items or inserted objects, G a generator
concept, and m a modified concepts.

41

which the object id of the next object is added. In Figure 2.2, these are denoted with an

m superscript. Generators are concepts are used to generate new concepts. These are

denoted with a G superscript. All other concepts are considered old. Old concepts play

no role in the insertion process. They are not changed, are not used to generate concepts,

and cannot become a parent or a child of a new concept. Modified concepts are readily

identified. The concepts with an intent that is a subset of the next object’s items will

become modified. The identification of generator concepts, on the other hand, is more

involved. Any concept whose intent intersects with, but not a subset of, the object’s

items is potentially a generator. However, not all such concepts are generators. A

concept is not a generator if there exists an ancestor concept whose intent when

intersected with the next object’s items produces the same intersection set. For example,

when inserting O6 in Figure 2.2 the concepts ({O3O4O5}, {a1b2c1}), ({O3O5}, {a1b2c1d1}),

and ({O4}, {a1b2c1d4}) all have an intersection set of {a1c1}, but only

({O3O4O5}, {a1b2c1}) is a generator. It is an ancestor of the other two. This

identification of a generator concept is expressed in Proposition 2.5.1. Each generator

concept thus creates a new concept having the extent of the generator union the object id

as its extent and the intersection set as its intent.

Proposition 2.5.1: if (Ox, Ix) = inf {(Oy, Iy) ∈ G | Ix = Iy ∩ I)} for some set I and
there does not exist a concept (Oz, Iz) | Iz = I, then (Oy, Iy) is a generator for a
concept (Ox, Ix) | Ox = Oy ∪ {O} and Oy = Iy ∩ I.

In addition to creating a concept, the new concept must be linked into the lattice.

Each generator concept will be a child of the concept it generated. The new concept must

be further linked into the lattice by searching for its parents. A potential parent is any

concept, existing or generated, whose intent is a subset of the new concept’s intent. In

42

order to preserve the lattice property that a connection exists between two concepts C1

and C2 provided C1 < C2 and there is no concept C3 for which C1 < C3 < C2, the potential

parent is a parent only if it does not have a child whose intent is a subset of the new

concept. The search for potential parents can be constrained to only consider concepts

that are modified or generated. Occasionally a link between a parent and a child must be

removed. This occurs when a parent for a concept is found and that parent is currently

the parent of the generator concept that created the new concept. An example is the

insertion of object O4 shown in Figure 2.2. In these cases the new object is being inserted

between the parent and the generator. The removal of the link is required to preserve the

lattice connection property.

The complete GMA algorithm is given in Algorithm 2.3. Lines 1 and 2 bootstrap

the concept lattice and are only executed upon the insertion of the first object. For the

first object, the lattice is initialized with a concept whose extent is the object id and intent

is the object’s items. Lines 4 through 10 are pre-steps to the insertion process to ensure

that the bottom concept in the lattice accounts for all the items of the object. If the next

object introduces items that are not presently in the lattice, those items must first be

inserted to the intent of the bottom concept. A special case exists when the bottom

concept has a non-empty extent. The new items cannot be inserted into that concept. To

do so would change the set of items for each object recorded in the extent of the bottom

concept. To handle this case, a new bottom concept is generated.

Line 12 defines a Processed list. This list will contain references to the modified

and generated concepts of the current incremental insertion. The Processed list provides

a means to validate that a concept is indeed a generator and to limit the search for parents.

43

Let Concept be a tuple {O, I, Children} where O is a set of object ids, I is a set of items,
and Children is a list of child concepts.

Let CBottom be the supremum of a concept lattice G, G contains a reference to all concepts

ADD(Oi, I) // Add object Oi together with its set of items I
1. if CBottom = Ø: // special case of empty lattice
2. CBottom ← new Concept ({Oi}, I)
3. else:
4. if I ⊄ CBottom.I: // check for items not in the lattice
5. if CBottom.O = Ø: // a generated bottom
6. CBottom.I ← CBottom.I ∪ I
7. else: // generate the new bottom
8. CNew ← new Concept (Ø, I)
9. Add CNew to CBottom.Children

10. CBottom ← CNew
11.
12. Processed ← Ø // a vector of sets of concepts indexed by the cardinality
13. // of each intersection set
14. for each Ci ∈ G in ascending |I| order:
15. if Ci.I ⊆ I: // modified concept
16. Add Oi to Ci.O
17. Add Ci to Processed[|Ci.I|] // possible parent
18. if Ci.I = I: // no more processing needed?
19. return
20. else: // existing concept
21. Intersect ← Ci.I ∩ I
22. // intentionally left blank
23. if ¬∃ Cj ∈ Processed[|Intersect|] | Cj.I = Intersect: // Cj a generator?
24. CNew ← new Concept (Ci.O ∪ {Oi}, Intersect)
25. Add CNew to Processed[|Intersect|]
26. Add Ci to CNew.Children // modify edges
27. for each Ck ∈ Processed ∧ |Ck.I| < |Intersect|:
28. if Ck.I ⊂ Intersect: // is Ck a potential parent of CNew?
29. Parent ← TRUE
30. for each CChild ∈ Ck.Children ∧ Parent = TRUE:
31. if CChild.I ⊂ Intersect:
32. Parent ←FALSE
33. if Parent = TRUE:
34. if Ci ∈ Ck.Children:
35. Remove Ci from Ck.Children
36. Add CNew to Ck.Children
37. if |Intersect| = |I|: // last valid generator ?
38. return // no more work to do

Algorithm 2.3: Godin, Missaoui, and Alaoui lattice construction algorithm. (Godin et al.,
1995)

44

The Processed list is organized as a vector of concepts sets. The size of intent is used to

index a given set. Thus, each set in the Processed list contains concepts whose

cardinality of intent are the same. To validate a potential generator, only the set whose

size of intent is the same as the size of an intersection set will be searched to ensure the

real generator has not already been found and processed.

Lines 14 through 38 provide the main loop to insert the next object. All concepts

currently in the lattice are processed in the order of the size of their intents. This order

will ensure that valid generator concepts are processed first and that all potential parents

for a new concept will exist in the Processed list at the time of inquiry. Line 15 tests if a

concept of the lattice is a modified concept. If so, the next object’s id is added to the

modified concept’s extent and the modified concept is added to the list of Processed

concepts (lines 16 and 17). If a concept’s intent is equal to the next object’s items, then

there are no further generator concepts or modified concepts to be found. Thus the

algorithm exits (lines 18 and 19). If a concept in the lattice is not a modified concept,

then it is an existing concept that is either a generator or old. Lines 21 and 23 provide the

predicate to identify generator concepts. Old concepts are ignored. For each generator

concept, a new concept is generated (line 24). The new concept is added to the Processed

list and as a parent to the generator concept (lines 25 and 26). Lines 27 through 36 then

search the Processed list for potential parents. A potential parent is a concept whose

intent is a subset of the new concept’s intent (line 28). A potential parent is a parent

provided it does not have a child concept whose intent is a subset of the new concept

(lines 29 through 32). If the potential parent is indeed a parent, then the parent is linked

to the new concept (line 36). If the parent has the generator concept as a child then the

45

link between the parent and the generator concept is removed (lines 34 and 35). Lastly,

lines 37 and 38 provide exit from the function on processing the generator that generates

the concept with intent equal to the next object’s items. There will be no valid generators

beyond this concept. Therefore, there is no more work to do.

2.6 Applying FCA to Association Rule Mining – GALICIA-T Algorithm

GALICIA-T (Valtchev et al., 2002) is an enhanced GMA algorithm adapted

specifically for generating frequent items sets. It uses a trie data structure (Knuth, 1998)

to represent the set of concept intents. A trie is a tree based data structure that provides a

compact representation by sharing common prefixes along branches and enables efficient

search, insertion, and set operations. Each edge denotes the addition of an item in the

item set. Figure 2.3 provides an example of the GALICIA-T trie data structure after

inserting the first three objects in relation R (middle left), and after inserting the fourth

object (middle right). The lattices depicted at the top and bottom of Figure 2.3

correspond to left and right tries respectively. The lattices, as shown, are provided for

illustrative purposes and are not part of the GALICIA-T data structure. Each filled-in

circle in the trie corresponds to a concept in the lattice. Theses nodes are augmented by a

support count (shown at the northwest position on the circle), and list of lower covers

(not shown, but can be determined from examination of the corresponding lattice).

Object ids are not stored in the GALICIA-T data structure.

Given a concept lattice whose item sets, supports, and lower covers are expressed

in a trie as described, the GALICIA-T algorithm inserts the next object into the lattice

through a guided traversal that produces an independent trie data structure. The

generated trie represents a set of new concepts. An example is depicted in the center of

46

R A B C D
O1 a1 b1 c3 d1
O2 a1 b1 c1 d2
O3 a1 b2 c1 d1
O4 a1 b2 c1 d4

1

Lattice after
inserting O3

(∅,{a1b1b2c1c3d1d2d4})

({O1},{a1b1c3d1}) ({O2},{a1b1c1d2})

({O1O2},{a1b1})

({O3},{a1b2c1d1})

({O1O2O3},{a1})

({O1O3},{a1d1}) ({O2O3},{a1c1})

a1

b1 b2

c1

d2

c3

d1

c1

c1

d1

d1

3

2

1 1 1

22

a1

b2

c1

d11

2

Trie after
inserting O3 a1

b1 b2

c1

d2

c3

d1

c1

c1

d1

d1

d4

4

2

1

2

1 1

3 2

Merged trie after
inserting O4

New trie from
inserting O4

Lattice after
inserting O4

(∅,{a1b1b2c1c3d1d2d4})

({O1},{a1b1c3d1}) ({O2},{a1b1c1d2})

({O1O2},{a1b1})

({O3},{a1b2c1d1})

({O1O2O3O4},{a1})

({O1O3},{a1d1}) ({O2O3O4},{a1c1})

({O4},{a1b2c1d4})

({O3O4},{a1b2c1})

Figure 2.3: Trie data structure used by the GALICIA-T algorithm. The trie data structure
before and after inserting object O4 is depicted in the center. Edges identify an item.
Filled circles correspond to concepts. Open circles are just nodes on the path identifying
an item set. Each node corresponding to a concept is augmented by its support count
(shown at the northwest position on the circle), and list of lower covers (not shown).
Lattices at the top and bottom correspond to the trie structure and are provided of
illustrative purposes only. Object ids are not stored in the trie structure.

47

Figure 2.3. The object’s intent is used to guide the traversal and both the trie child links

and lower cover links are utilized accordingly. If a terminal node is encountered during

the traversal, its support is incremented. The resulting trie data structure is then merged

into the source trie to produce a new trie representing the incremented lattice.

GALICIA-T was evaluated by the authors against the CLOSET algorithm.

CLOSET outperforms GALICIA-T by a near two orders of magnitude. However, the

authors argue that GALICIA-T enables incremental insertion and thus offers a

performance gain. The cost of adding an incremental set of objects using GALICIA-T is

lower than the cost of processing an entire data set by CLOSET. Valtchev et al. note a

shortcoming with GALICIA-T: the approach requires generation the entire set of

concepts including those infrequent with respect to cardinality of extent.

2.7 Frequent Item Set Mining with Lattice Construction – CHARM-L Algorithm

The CHARM algorithm presented earlier extracts the set of close frequent item

sets from a data set without deriving the upper and lower covers. Zaki and Hsiao (2005)

acknowledge that upper or lower covers are essential to efficient mining of association

rules. Furthermore, they cite that a post-mining lattice construction algorithm can result

in an O(|L|2) asymptotic complexity, from (Nourine, & Raynaud, 1999). Zaki and Hsiao

thus offer an enhanced algorithm, CHARM-L, to dynamically construct the lattice as the

closed item sets are discovered.

The lattice of the CHARM-L algorithm is maintained as a separate data structure

from the CHARM itemset-oidset tree. When the core CHARM processing identifies a

new frequent closed item set, CHARM-L will insert the item set into the lattice as a child

of the concept corresponding to the parent node in the itemset-oidset tree. What remains

48

is to identify concepts already in the lattice that are to become children of the new

concept. These children were added to the lattice as a result of processing previous

branches in the tree. To quickly identify these children, the nodes in the tree are

augmented with a list of concept ids representing the concepts whose intersection of item

sets equals the node’s item set. A concept id is uniquely assigned to each concept as it is

created. Thus, when a grandchild node is created from a child and sibling nodes, the set

of concept ids for the grandchild is created by intersecting the concept ids of the child and

sibling nodes.

Algorithm 2.4 provides the CHARM-L algorithm. It is essentially the same as

Algorithm 2.1 except that a reference to a concept in the lattice is used in place of a set of

closed item sets (lines 4, 5, 6 and 25). The nodes in the itemset-oidset tree also maintain

a list of concept ids (lines 3, 11, 20, 22, and 27). Lastly, a call to function

SUBSUMPTION-CHECK-LATTIC-GEN is made in place of the previous hash based

subsumption check (line 23). This function will perform the subsumption check and if

not subsumed, insert a new concept into the lattice. The call is moved ahead of the

recursive call to CHARM-EXTEND, since the concept returned from SUBSUMPTION-

CHECK-LATTIC-GEN is passed to CHARM-EXTEND.

The algorithm for SUBSUMPTION-CHECK-LATTIC-GEN is given in

Algorithm 2.5. SUBSUMPTION-CHECK-LATTIC-GEN is passed a concept in the

lattice representing a parent and an itemset-oidset node representing a candidate closed

item set. The node’s list of concept ids is used to lookup the corresponding set of

potential child concepts (line 1). If the support of any potential child concepts = |O| of

the node, then the node is subsumed (line 2). In such case, the parent concept is returned.

49

Let Node be a tuple {I, O, CIDS, Children} where I is a set of Items, O is a set of
objects, CIDS is a set of concept ids, and Children is a list of child nodes. A
Node forms an equivalence class.

Let Concept be a tuple {I, Supp, Parents, Children, CID} where I is a set of Items, Supp

is the support of the concept, Parents is a list of parent concepts, Children is a list
of child concepts, and CID a concept id (uniquely assigned on creation).

CHARM(K{I, O, R}, MinSupp)
1. NTop ← new Node(∅, ∅, ∅) // top level equivalence class
2. for each Ii ∈ I ∧ |o(Ii)| ≥ MinSupp: // initialize its children
3. Add new Node ({Ii}, o(Ii), ∅) to NTop.Children
4. CTop ← new Concept(∅,∅) // the lattice
5. CHARM-EXTEND(NTop, CTop)
6. Return CTop // lattice w/all closed sets

CHARM-EXTEND(NParent, CParent)
7. for each NChild ∈ NParent.Children:
8. for each NSibiling ∈ NParent.Children ∧ NSibling is a later sibling of NChild:
9. I ← NChild.I ∪ NSibling.I

10. O ← NChild.O ∩ NSibling.O
11. CIDS ← NChild.CIDS ∩ NSibling.CIDS
12. if |O| ≥ MinSupp: // threshold check
13. if NChild.O = NSibling.O: // property 2.1
14. Remove NSibling from NParent.Children
15. Replace NChild.I with I in all Nodes E where NChild.I ⊂ E.I
16. else if NChild.O ⊂ NSibling.O: // property 2.2
17. Replace NChild.I with I in all Nodes E where NChild.I ⊂ E.I
18. else if NChild.O ⊃ NSibling.O: // property 2.3
19. Remove NSibling from NParent.Children
20. Add new Node (I, O, CIDS) to NChild.Children in order f
21. else if NChild.O ≠ NSibling.O: // property 2.4
22. Add new Node (I, O, CIDS) to NChild.Children in order f
23. CNew ← SUBSUMPTION-CHECK-LATTIC-GEN(CParent, NChild)
24. if NChild.Children ≠ ∅:
25. CHARM-EXTEND (NChild, CNew)
26. if CNew ≠ CParent:
27. Add CNew.CID to CIDS of appropriate nodes

Algorithm 2.4: The CHARM-L algorithm9

9 The authors use a different notation. Notation has been modified to be consistent with notation of this
report. Furthermore, authors express lines 12-22 in a separate function CHARM-PROPERTY. This
function has been placed in-line for brevity. Lines 26 and 27 are expressed in the original algorithm at the
top of the outer loop as a call to a function UPDATE-C. Algorithm for UPDATE-C is not provided by the
authors and its details are unclear.

. (Zaki, & Hsiao, 2005)

50

SUBSUMPTION-CHECK-LATTIC-GEN(CParent, NChild)
1. C ← {Ci | Ci ∈ AllConcepts ∧ Ci.CID ∈ NChild.CIDS} // lookup concepts by CID
2. if ∃ Ci ∈ C | Ci.Supp = |NChild.O|:
3. return CParent // NChild is subsumed
4. CNew ← new Concept (NChild.I, |NChild.O|) // not subsumed, create the concept
5. Add link between CParent and CNew // add new as a child
6. for each CChild ∈ C ∧ CChild is Minimal: // adjust parent-child links
7. Add parent-child link between CNew and CChild
8. for each CChildParent ∈ CChild.Parents ∧ CChildParent.I ⊂ CNew.I:
9. Remove link between CChildParent and CChild

10. return CNew

Algorithm 2.5: The CHARM-L subsumption check algorithm10

The performance CHARM-L algorithm is evaluated using empirical tests against

six of the commonly used benchmark data sets. CHARM-L is compared against

CHARM and a post-FCI mining lattice construction algorithm. CHARM-L exhibits a

small degradation in performance when compared to CHARM. The amount of

degradation increases as the support is lowered. When compared to post-lattice

construction, CHARM-L demonstrates significant gains in excess of two orders of

.

If not subsumed, a new concept is created and added as a child of the parent concept (line

4 and 5). Of the potential child concepts, only the minimal concepts represent true

children. These are added as children to the new concept (lines 6 and 7). This may result

in existing edges now violating the lattice connection property. Thus, for each parent

concept CChildParent of a concept CChild added as a child of the new concept, the parent-

child link is removed when the intent of CChildParent ⊂ the new concept’s intent (lines 8 and

9). Finally, the new concept is returned. It will be used in the recursive call to CHARM-

EXTEND.

10 The authors use a different notation. Notation has been modified to be consistent with notation of this
report.

51

magnitude. The separation in performance increases dramatically as the support is

lowered.

2.8 Adding Iceberg Processing to Lattice Construction – MAGALICE Algorithm

MAGALICE (Rouane et al., 2004) is an extension of an GMA based algorithm to

enable incremental construction of an iceberg concept lattice. That is, given an iceberg

lattice L α 11

The MAGALICE algorithm relies on a strong cardinality property that the extent

of a jumper meets the minimum support threshold, yet its extent less object Oi does not.

Thus, the cardinality of extent of all jumpers will equal the minimum support threshold.

Furthermore, the parents of a jumper will already exist in the lattice prior to insertion and

upon insertion of Oi will be modified to include Oi. Thus, the MAGALICE algorithm

will limit its search for concepts that generate jumpers to those where Oi has been added.

These concepts are called visible. A visible concept may generate a jumper for each item

Ii ∈ of the new object’s items, when the extent of the visible concept intersects the full

extent of item Ii derived from the data set yields a new extent that meets the minimum

support threshold. The new extent will be the extent for a jumper. The jumper’s intent

will contain the visible concept’s intent union {Ii}. However, the intent may be

 and a new object O, MAGALICE will insert the new object into the lattice

producing L α+. After inserting an object using a GMA based algorithm, concepts that do

not meet the minimum support threshold are discarded. Thus, the challenge is to

regenerate concepts for extent intent pairs that were previously discarded that now meet

the minimum support threshold as a result of adding object Oi. Such concepts are called

jumpers.

11 An underline with α superscript denotes an iceberg lattice with a minimum support threshold of α.

52

incomplete since additional items, yet to be processed in the new object’s items, may

generate the same extent. Thus, the extent intent pair is held in a temporary set until

processing of all items of the new object is complete.

When iterating over the items of the new object, some of the items do not need to

be tested. Clearly, any item Ii ∈ the visible concept’s intent will not generate a new

extent. Furthermore, a Ci ∈ child of the visible concept will not generate a new extent

that meets the minimum support threshold. Omitting these items from the iteration will

eliminate unneeded intersections and thereby improve performance12

12 The authors provide additional tests to eliminate additional items.

.

The MAGALICE algorithm is provided in Algorithm 2.6. The ADD-OBJECT

function provides the incremental insertion of a new object into an iceberg concept

lattice. It first calls the ADD-OBJECT function of the underlying insertion algorithm to

insert the object without regard to the minimum support (line 1). Post insertion

processing then removes any concepts whose support does not meet the threshold from

the lattice (lines 2 through 4). Lastly, a function FIND-FREQUENT-LOWER-COVERS

is called to generate and add the jumpers (line 5).

The FIND-FREQUENT-LOWER-COVERS function begins by defining a set,

denoted as Jumpers, to keep track of generated jumpers and then extract the set of visible

concepts from the lattice (lines 6 and 7). The visible concepts are sorted by descending

support to enable search and generation of jumpers from the bottom-up (line 8). The

visible concepts are then processed. For each visible concept set of extent intent pairs,

denoted as Candidates, is defined (line 10). Furthermore, a set of items, denoted as Pool,

is initialized to the new object’s items less the intent of the visible concept or any of its

53

Let Concept be a tuple {O, I, Children} where O is a set of object ids, I is a set of items,

and Children is a list of child concepts.

ADD-OBJECT(G, Oi, I) // Add object Oi together with its set of items I to lattice G

1. MGA-ADD-OBJECT(G, Oi, I) // add Oi using MGA based algorithm
2. for each Ci ∈ G:
3. if |Ci.O| < MinSupp:
4. Remove Ci from G
5. FIND-FREQUENT-LOWER-COVERS(G, Oi, I)

FIND-FREQUENT-LOWER-COVERS(G, Oi, I)

6. Jumpers ← Ø // set of jumper concepts
7. V ← {C ∈ G | Oi ∈ C.O} // get the visible concepts
8. Sort(V) by descending |I|
9. for each Ci ∈ V:

10. Candidates ← Ø // set of tuples {O, I}
11. Th ← Ci.I // set of items accounted for
12. for each CChild ∈ Ci.Children:
13. Th ← Th ∪ CChild.I
14. Pool ← I – Th // set of items to be processed
15. for each Ii ∈ Pool:
16. Extent ← Ci.O ∩ o(Ii) // o(Ii) is the set O derived from relation R
17. if |Extent| = MinSupp: // now meets the minimum support?
18. CJumper ← Ci ∈ Jumpers ∧ Ci.O = Extent
19. if CJumper ≠ ∅: // jumper was previously created
20. Add CJumper to Ci.Children
21. Pool ← Pool − CJumper.I
22. else:
23. Candidate ←P ∈ Candidates ∧ P.O = Extent
24. if Candidate ≠ ∅: // candidate was previously created
25. Add Ii to Candidate.I
26. else:
27. Add {Extent, Ci.I ∪ {Ii}} to Candidates
28. for each Candidatei ∈ Candidates:
29. CNew ← new Concept(Candidatei.O, Candidatei.I)
30. Add CNew to Ci.Children
31. Add CNew to Jumpers

Algorithm 2.6: The MAGALICE algorithm13

13 At line 13, the authors include additional sets of items that do not need to be tested. Statements to derive
these sets have been omitted for brevity. At line 17 the authors use a relative minimal support test instead
of an absolute support test.

. (Rouane et al., 2004)

54

children (lines 11 through 14). Each item in the Pool may potentially generate a jumper.

For each item in Pool, a candidate extent is generated (line 16). The candidate extent is

tested to see if it meets the minimum support (line 17). If so, the candidate extent will

generate a jumper provided it has not previously been encountered. Thus, the set of

Jumpers is first examined. If there exists a jumper with the same extent, then that jumper

will become a child of the visible concept (line 20). The items in the jumper’s intent can

be removed from the Pool since processing those items will identify the same jumper

(line 21). If a jumper is not found, the set Candidates is examined. If there exists a

candidate having an extent equal to the generated extent, then the test item is added to the

candidate’s intent; otherwise a new candidate pair is generated (lines 23 through 27).

After processing all items in the Pool, any candidate pairs are turned into jumpers (lines

28 through 31).

The MAGALICE algorithm is evaluated against the Bordat14

14 An early lattice construction algorithm.

 algorithm (Bordat,

1992) for two of the commonly used benchmark data sets. For one data set, MAGALICE

demonstrated a fixed sized improvement which increased marginally as the supports were

lowered. For the other data set, MAGALICE demonstrated increasing gains as the

support were lowered. At low supports a gain by a factor of five is observed.

Asymptotic complexity for a single insertion is determined to be O(|∆L| k2 + m (m+k) l),

where l = |L|, m = |I|, and k = |O|.

55

2.9 Other Lattice Construction Algorithms

Lindig and Datensystene (2000) propose a simple batch algorithm to construct a

concept lattice. A batch algorithm constructs a concept lattice from a complete formal

context. That is, the algorithm is not constrained to object by object (or item by item)

insertion and is free to query any point in the formal context as needed. The proposed

algorithm begins by constructing a known concept, such as the top (or bottom concept),

and then proceeds to generate its children (or parents). The process repeats for each

found concept until the lattice is complete. The asymptotic complexity of the algorithm

is O(l m k2), where l = |L|, m = |I|, and k = |O|. Empirical evaluation involving several

synthetic generate data sets against the NextConcept15

Nourine and Raynaud (2002) offer an incremental lattice construction algorithm

based on a lexicographic tree. The algorithm is an incremental version of earlier work

(Nourine, & Raynaud, 1999). The lexicographic is a trie data structure similar to the one

used by GALICIA-T, except the roles of intent and extent are reversed. That is, each

edge in the trie denotes an object and nodes corresponding to concepts are augmented

 algorithm (Ganter, 1984) is

provided.

Valtchev, Missaoui, and Lebrun (2002b) provide a divide and conquer approach

to lattice construction. The input data set is first partitioned into two sets, either based on

items or objects. A concept lattice is constructed for each set and the resulting lattices are

merged. The asymptotic complexity is evaluated to be O(m (m+k) l log l), where l = |L|,

m = |I|, and k = |O|. However, this may only be realized for contexts that exhibit linear

growth in size of lattice with respect to the number of objects.

15 NextConcept is an early batch based algorithm.

56

with an item list. The common prefixes in object id lists thus share the same branch. The

incremental insertion is performed on an item by item basis by using a union operation on

object ids against each of the pre-existing nodes in the trie, and determining if the result

is present in the trie. If the result is present and augmented with an item list, the item is

added to the node; otherwise it will be a new concept. Branches and nodes will be added

to the trie as needed. The node representing the new concept will be augmented with an

item set consisting of the item. The insertion process also identifies a parent concept for

each new concept. The remaining task is to identify the children of each new concept

and link it into the lattice. Identification of children is performed by test union and count

procedure for each item in I that is ∉ new concept’s intent. When linking new concept

into the lattice, a test is made to remove transitive edges. The Nourine and Raynaud

algorithm is evaluated to have an O(m (m+k) l) complexity, where l = |L|, m = |I|, and k =

|O|. No empirical suppo rt is provided.

Kuznetsov and Obiedkov (2002) provide a comparative survey of several lattice

construction algorithms. Algorithms include: GMA (Godin et al., 1995), Lindig and

Datensystene (2000), Nourine and Raynaud (2002), TITANIC (Stumme et al., 2002),

Valtchev et al. (2002) divide and conquer, Bordat (1992), Close by One (Kuznetsov,

1993), Chein (1969), and Norris (1978). Bordat, Close by One, and Chein are batch

based algorithms. Norris is an incremental algorithm based on essentially the same

theoretical principles of the Close by One algorithm. An overview of the theory and

implementation of each algorithm is provided including asymptotic complexity. A

diverse set of randomly generated data sets each conforming to specified properties (e.g.,

number objects, number attributes, and density) are used to benchmark each algorithm in

57

addition to one real-world data set. Findings indicate that there is no “best” algorithm

and the each algorithm exhibit different performance depending on the data set. The

GMA algorithm is a good choice for sparse data sets, and batch algorithms are good for

dense data sets. The Nourine and Raynaud algorithm was not the winning algorithm for

any data set even though it has the best asymptotic complexity16. Valtchev et al. (2002)

arrive at the same conclusions. Furthermore, Valtchev et al. state that comparison of

lattice construction algorithms based on asymptotic complexity is a “delicate task”. Their

study reports that the GMA algorithm has good performance for data set with density17

16 Authors note that their implementation may of impeded performance.
17 Density is a measure of the completeness of a data set. For formal context K{I, O, R}, the density of R
= |R| / (|I| × |O|) where |R| is the total number of items for all objects.

less than 0.10, but lags with densities greater than 0.50.

SPROUT (Choi, 2006) is a recent batch-based lattice construction algorithm that

provides an option to build an iceberg lattice. It is similar in theory to other batch-based

algorithms, such as Lindig and Datensystene (2000). It begins by creating the top

concept and then generates children for a concept by appending each object not in the

concept’s extent and inquiring the formal context for the item sets. Generated concepts

are tested for closure and pre-existence. If not closed, the concept is discarded. If pre-

existent, a parent-child link is added. The process repeats for each new concept. The

author claims the algorithm is faster that any known algorithm including CHARM-L but

provides no empirical evidence. Only a single test case for a small lattice (|L| = 530) is

cited.

58

2.10 A Generic Approach to Incremental Lattice Construction

Valtchev, Rouane, and Missaoui (2003b) developed a generic approach for the

development of an incremental lattice construction algorithm. Valtchev et al. theorizes

that all past incremental lattice construction algorithms involve:

i) identification concepts whose extent will be modified to include the new
object,

ii) identification of generator concepts that are used to generate a new concepts,

iii) inclusion of the new object into those concepts identified to be modified,

iv) generation of the new concepts,

v) linkage of each new concept to its generator and upper covers, and

vi) the removal of resulting transitive links;

albeit the sequencing and techniques used for each task may differ between the

algorithms. The identification of modified and generator concepts can be accomplished

by partitioning the existing concepts of the lattice into equivalence classes. Each

equivalence class is composed of concepts whose intent intersect the next object’s items

has the same value. For example, Figure 2.4 depicts the equivalence classes for the last

three lattice insertions given in Figure 2.2. Each set of concepts composing an

equivalence class is enclosed by a dotted line. Underlined items within each concept

indicate items that are in the intersection. The maximum concept in each equivalence

class is either a modifier or generator depending if its intent is a subset of the next

object’s items. When generating new concepts, the intent will be the equivalence class

intersection set and the extent will be the generator’s extent union the next object. After

generating a new concept, it will be a parent of its generator and its parents can be

derived from the generator’s ancestors. Finally, transitive links that violate the lattice

59

R A B C D
O1 a1 b1 c3 d1
O2 a1 b1 c1 d2
O3 a1 b2 c1 d1
O4 a1 b2 c1 d4
O5 a1 b2 c1 d1
O6 a2 b2 c1 d2

Inserting O6

(∅,{a1a2b1b2c1c3d1d2d4})G

({O1},{a1b1c3d1}) ({O2},{a1b1c1d2})G

({O1O2},{a1b1})

({O3O5},{a1b2c1d1})

({O1O2O3O4O5},{a1})

({O1O3O5},{a1d1}) ({O2O3O4O5},{a1c1})G

({O4},{a1b2c1d4})

({O3O4O5},{a1b2c1})G

({O6},{a2b2c1d2})

({O2O3O4O5O6},{c1})

({O3O4O5O6},{b2c1})({O2O6},{c1d2})

Inserting O5

(∅,{a1b1b2c1c3d1d2d4})

({O1},{a1b1c3d1}) ({O2},{a1b1c1d2})

({O1O2},{a1b1})

({O3O5},{a1b2c1d1})m

({O1O2O3O4O5},{a1})m

({O1O3O5},{a1d1})m ({O2O3O4O5},{a1c1})m

({O4},{a1b2c1d4})

({O3O4O5},{a1b2c1})m

equivalence class {a1c1}

equivalence class {a1}

equivalence class {a1d1}

equivalence class {a1b2c1d1}

Inserting O4

(∅,{a1b1b2c1c3d1d2d4})G

({O1},{a1b1c3d1}) ({O2},{a1b1c1d2})

({O1O2},{a1b1})

({O3},{a1b2c1d1})G

({O1O2O3O4},{a1})m

({O1O3},{a1d1}) ({O2O3O4},{a1c1})m

({O4},{a1b2c1d4})

({O3O4},{a1b2c1})

equivalence class {a1}

equivalence class {a1c1}

Figure 2.4: Object insertions into a concept lattice depicting equivalence classes. The
lattices correspond to the progression shown in Figure 2.2 for the last three object
insertions. Bold italic text within an existing concept indicates the intersection set
forming the equivalence class. Bold text and lines indicates new elements, G a generator
concept, m a modified concept, enclosed dotted line an equivalence class, and dashed line
is a removed link.

60

connection property can be identified by intersecting the set of modified concepts with

the parents of a generator. Such transitive links can be removed.

The complete generic algorithm for incremental insertions is given in Algorithm

2.7. Lines 6 through 13 provide identification of modified concepts and generators.

Following this, the modified concepts are updated with the new object (lines 14 and 15),

new concepts are generated (lines 16 through 18), the new concepts are linked into the

lattice (lines 19 through 21), and any resulting transitive links are removed (lines 22

through 24). The algorithm provides a concise statement of the work to be performed as

an ordered sequence of the major tasks.

Beyond formulation of the generic algorithm, Valtchev et al. provide a discussion

of applying various techniques from past work to the individual tasks and derive a

concrete algorithm. The theoretical asymptotic complexity for the algorithm is

O((m+k) k l), where l = |L|, m = |I|, and k = |O|. This matches the best known theoretical

complexity. At the time of the paper, the concrete algorithm had not been implemented

and thus no empirical data is available.

61

Let Concept be a tuple {O, I, Parents} where O is a set of object ids, I is a set of items,

and Parents is a list of parent concepts.

COMPUTE_LATTICE_INC(G, Oi, I) // add object Oi together with its set
 // of items I to lattice G

1. Q[] ←∅ // vector of equivalence class sets
2. M ←∅ // set of modified concepts
3. G ←∅ // set of generator concepts
4. N ←∅ // set of new concepts
5.
6. for each Ci ∈ G: // put concepts into their equivalence class
7. Add Ci to Q[I ∩ C.I]
8. for each Qi ∈ Q[]:
9. Ci ← Maximal concept in Qi

10. if Ci ⊆ I:
11. Add Ci to M // Ci will be a modified concept
12. else:
13. Add Ci to G // Ci is a generator concept
14. for each CModified ∈ M: // update the modified concepts
15. CModified.O ← CModified.O ∪ {Oi}
16. for each CGenerator ∈ G: // generate new concepts
17. CNew ← new Concept(CGenerator.O ∪ {Oi}, Q(CGenerator))
18. Add CNew to N
19. for each CNew ∈ N: // link the new concepts into the lattice
20. Add CNew to its CGenerator.Parents
21. COMPUTE_UPPER_COVERS(CNew, its CGenerator)
22. for each CGenerator ∈ G: // identify and remove transitive links
23. for each CParent ∈ CGenerator.Parents ∩ M:
24. Remove CParent from CGenerator.Parents

Algorithm 2.7: Generic incremental lattice insertion algorithm. (Valtchev et al., 2003b)

62

2.11 Summary of Literature

Since surfacing in 1993, association rule mining has been a major area of

research. However, a large portion of activity has been directed toward mining of

frequent items sets. Notable algorithms include CHARM, CLOSET, TITANIC, and

CLOSET+. While significant progress has been made, frequent item set mining has

fallen short of the overall objective of mining association rules. The frequent item set

miners fail to identify the upper covers of each closed frequent item set and thus are

incapable of producing a reasonably sized set of association rules.

Formal concept construction algorithms have been another strong area of

research. Noteworthy algorithms include GMA, Nourine and Raynaud, Lindig and

Datensystene, and Valtchev et al. divide and conquer. These algorithms are effective in

constructing a concept lattice. They successfully derive the set of closed items sets

together with their upper covers. However, these algorithms construct a lattice for all

closed item sets and not just those which are frequent. Some algorithms are incremental

while others are batch. Batch-based algorithms are not constrained to object by object (or

item by item) insertion and are free to inquire any point in the formal context as needed.

The best asymptotic complexity is O(m (m+k) l), where l = |L|, m = |I|, and k = |O|.

However, benchmarks have proven that asymptotic complexity may not be a good means

for comparison. There is no known “best” algorithm. The GMA algorithm is considered

to be a good algorithm for data sets with density18

An approach to association rule mining is to use a frequent closed item set mining

algorithm to generate the set of frequent items and then use a post-mining lattice

 less than 0.10.

18 For formal context K{I, O, R}, the density of R = |R| / (|I| × |O|) where |R| is the total number of items
for all objects

63

construction algorithm, such as the VML algorithm, to construct the upper covers. Such

approach will be bounded by the asymptotic complexity of the post-mining lattice

construction algorithm. For the VML algorithm, its complexity is O(l w(L) deg(L) m),

where l = |L|, w(L) = width of L , deg(L) = degree of L , and m = |I|.

Of all algorithms reviewed, only three: CHARM-L, MAGALICE, and SPROUT,

provide construction of an iceberg concept lattice. Of these CHARM-L and MAGALICE

are considered to be the serious contenders for this study. SPROUT is discounted due to

the lack of empirical support and batch classification. CHARM-L constructs a concept

lattice as a separate data structure from its itemset-oidset tree. Construction of the lattice

is, however, an integral part of its processing. MAGALICE uses an underlying

incremental lattice construction algorithm, such as GMA, to insert a new object without

regard to frequency. Afterwards, it prunes the lattice of infrequent concepts and

regenerates concepts that become frequent.

The major works presented in this chapter can be partitioned into three main

camps engaged in research of association rule mining. They are:

i) Agrawal, Han, Hsiao, Pei, Srikant, Wang, and Zaki contributing research on
frequent item set mining (Agrawal et al., 1993, Agrawal, & Srikant, 1994,
Srikant, & Agrawal, 1996, Kamber et al., 1997, Pei et al., 2000, Zaki, 2000,
Zaki, & Hsiao, 2002, Wang et al., 2003, Zaki, & Hsiao, 2005, and Han, &
Kamber, 2006)

ii) Ganter, Lakha, Pasquier Taouil, and Stumme contributing theory on formal
concept analysis and its application to association rule mining (Ganter 1984,
Ganter, & Wille, 1997, Pasquier et al, 1999a, Pasquier et al., 1999b, Pasquier
2000, Stumme et al,, 2000, Stumme et al., 2001a, Stumme et al., 2001b,
Stumme et al., 2002, Ganter et al., 2005, and Lakha, & Stumme, 2005), and

iii) Godin, Missaoui, Nourine, Raynaud, Rouane, Valtchev contributing research
on lattice construction algorithms (Godin et al., 1995, Nourine, & Raynaud,
1999, Valtchev et al., 2000, Nourine, & Raynaud, 2002, Valtchev et al.,
2002a, Valtchev et al., 2002b, Valtchev et al., 2003a, Valtchev et al., 2003b,
Valtchev et al., 2004, and Rouane et al., 2004).

64

Of these, Stumme et al. provide a compelling argument for using iceberg concept lattice

to mine association rules. It is interesting to note that all of Stumme’s papers depict a

concept lattice using a compressed notation similar to Figure 1.3. That is, items are only

listed at their maximal position. This together with other information, such as support

and confidence drops, is sufficient to efficiently extract a basis of association rules. A

majority of papers by other authors depict concepts with their full intent and extent.

While Stumme’s papers provide the theoretical foundation for a compress lattice

structure, there are no known algorithms that directly used the compress structure.

Stumme’s own offering, TITANIC (Stumme et al., 2002), does not construct a lattice, let

alone one using a compressed structure.

Of the incremental lattice construction algorithms presented in this chapter, it is

interesting to note that the GMA (Godin et al., 1995), Valtchev et al. (2002) divide and

conquer, Valtchev et al. (2003b) generic lattice construction algorithm, and MAGALICE

(Rouane et al., 2004) algorithms use the lattice data structure to drive the processing of

the algorithms, where as GALICIA-T (Valtchev et al., 2002), Nourine and Raynaud

(2002), and CHARM-L (Zaki, & Hsiao, 2005) use an alternate data structure to drive the

algorithm and construct the lattice as a subsequent, although integrated, step. The main

data structure for GALICIA-T is a Trie with items on the edges. Nourine and Raynaud

use a lexicographic tree that is similar to the Trie of GALICIA-T, except the roles of

intent and extent are reversed. CHARM-L uses its itemset-tidset tree.

65

Given this review of literature a strategy for developing new iceberg lattice

construction algorithms is to:

i) Adapt the GMA lattice construction algorithm to directly construct an iceberg
lattice. It is an algorithm that directly uses the lattice structure to drive its
process, thereby leveraging lattice theory. Using GMA as the starting point
will avoid the expensive reconstruction of discarded concepts incurred with
the MAGLICE algorithm. The vertical representation of CHARM and
CHARM-L may provide insights to accomplishing this task.

ii) Adopt a compressed lattice structure along the lines of the theory presented by
Stumme. This may address memory concerns by minimizing the space
consumed by the concepts of the lattice. Furthermore, the compressed lattice
structure is of the form that basis extraction algorithms, such as Stumme et al.
(2001b), can be readily used to mine a set of association rules that is
constrained to a size that can be exploited by the end user.

iii) Incorporate features of other algorithms to provide further improvement. For
example CHARM and Closet+ prescribe a sort order as a heuristic to improve
performance. Selection of an appropriate sort order may prove effective in the
new algorithm. Valtchev et al. generic lattice construction algorithm,
CHARM-L, GALICIA-T, and others will be reviewed during development to
aid in identifying additional opportunities for improvement.

66

Chapter 3

Methodology

3.1 Introduction

While GMA (Godin et al., 1995) and like algorithms are not directly suitable to

construct an iceberg lattice, adapting the algorithm to add data incrementally on an item

by item basis and interchanging the roles of the set of object ids (O) and the set of items

(I) results in an algorithm that can directly construct an iceberg concept lattice. The

algorithm still performs a top-down level-wise search and insert process; however, these

changes effectively invert the lattice. The addition of a predicate to ensure that the

minimum support threshold has been met is the only remaining change needed to

construct an iceberg lattice. Algorithm 3.1 provides the GMA algorithm with these two

modifications applied (see Section 2.5 Incremental Lattice Construction – Missaoui,

Godin, and Alaoui Algorithm for a description of the algorihm theory and function).

Line 22 is the predicate to ensure the minimum support threshold has been met. A

complete implementation of Algorithm 3.1, written in Java, is given in Appendix A.

67

Let Concept be a tuple {I, O, Children} where I is a list of items, O is a list of object
ids, and Children a list of child concepts.

Let CBottom be the infimum of a concept lattice G, G contain a reference to all concepts

ADD(Ii, O) // Add item id Ii together with its set of object ids O

1. if CBottom = Ø: // special case, empty lattice
2. CBottom ← new Concept ({Ii}, O)
3. else:
4. if O ⊄ CBottom.O: // check O ids not in lattice
5. if CBottom.I = Ø: // a generated bottom?
6. CBottom.O ← CBottom.O ∪ O
7. else: // generate the new bottom
8. CNew ← new Concept (Ø, O)
9. Add CNew to CBottom.Children

10. CBottom ← CNew
11.
12. Processed ← Ø // a vector of sets of concepts indexed by the cardinality
13. // of an intersection set
14. for each Ci ∈ G in ascending |O| order:
15. if Ci.O ⊆ O: // is Ci a modified concept?
16. Add Ii to Ci.I
17. Add Ci to Processed[|Ci.O|] // possible parent
18. if Ci.O = O: // no more processing?
19. return
20. else: // existing concept
21. Intersect ← Ci.O ∩ O
22. if |Intersect| ≥ MinSupp:
23. if ¬∃ Cj ∈ Processed[|Intersect|] | Cj.O = Intersect: // is Cj a gen?
24. CNew ← new Concept (Ci.I ∪ {Ii}, Intersect)
25. Add CNew to Processed[|Intersect|]
26. Add Ci to CNew.Children // modify edges
27. for each Ck ∈ Processed ∧ |Ck.O| < |Intersect|:
28. if Ck.O ⊂ Intersect: // is Ck potential parent?
29. Parent ← TRUE
30. for each CChild ∈ Ck.Children ∧ Parent = TRUE:
31. if CChild.O ⊂ Intersect:
32. Parent ←FALSE
33. if Parent = TRUE:
34. if Ci ∈ Ck.Children:
35. Remove Ci from Ck.Children
36. Add CNew to Ck.Children
37. if |Intersect| = |O|: // last valid generator ?
38. return // no more work to do

Algorithm 3.1: The GMA algorithm modified to construct an iceberg lattice.

68

Preliminary tests19 proved the modified GMA algorithm functioned correctly.

The Mushroom20 data set was used as the test case. The converted algorithm was tested

with minimum supports of 50%, 30%, 10%, 1%, and 0%. The algorithm reported a

number of concepts of 45, 427, 4,897, 51,672 and 238,709 respectively with execution

times of 0.04 seconds, 0.39 seconds, 7.17 seconds, 160.28 seconds, and 1,198.08

seconds21. The reported number of concepts is the same as found by the CHARM-L

algorithm. While the execution time for high supports was comparable to CHARM-L,

the algorithm significantly degraded by an order of magnitude as support is lowered.

Detailed measurements of the runtime and memory usage are provided in Chapter 4.

While the modified GMA algorithm does function correctly, its efficiency cannot

compete with the leading association rule mining algorithms. This chapter describes the

development of the Quick Iceberg Concept Lattice (QuICL – pronounced kwi-kəl

19 Prelimnary tests are executions of the algorithm during development. These tests are not performed
under controlled conditions. The timings in this chapter are given to illustrate the progression during
algorithm development. They are stated in seconds to provde a standard unit for comparison. See
Chapter 4 Results for controlled measurements and interpretation.
20 An often used data set for association rule mining and FCA. See Section 4.2.
21 Execution times were obtained using an unsorted data. Sort order was later found to have a large effect
on execution time.

)

algorithms. These algorithms provide incremental construction of a concept lattice along

the lines of the GMA algorithm, but approach the insertion process from the bottom of

the lattice as opposed to a top-down, level-wise search for generators. The structure of

the lattice is used to navigate to a point of change. Recursion is used instead of iteration

to facilitate the location of additional points of change and enable linkage between parent

and child concepts. The result is an algorithm that constructs all 238,709 concepts

derived from the Mushroom data set in less than three seconds, a performance

improvement over GMA that is near three orders of magnitude.

69

The QuICL algorithm has three derivations: Oid-Full, Oid-Less, and Oid-Trie. In

the first derivation, all of the concepts in the concept lattice retain a complete list of the

object ids (oids), hence the name “Oid-Full”. For the Oid-Less derivation, the concepts

do not retain the list of oids between the incremental insertions. Some temporary lists of

object ids are created and discarded during the insertion process. The Oid-Trie derivation

is a compromise between Oid-Full and Oid-Less. Instead of eliminating the oid lists, it

utilizes a trie data structure to store the oids thereby reducing memory requirements. In

addition to reducing memory usage, the trie data structure also enables a few performance

enhancements (e.g., intersect operations can terminate early upon encountering a

common branch).

3.2 Steps Toward an Efficient Incremental Algorithm

A step towards an efficient incremental insertion algorithm for an iceberg lattice

is to apply a few minor modifications to the representation of a concept lattice. In

addition to interchanging the roles of the set of object ids (O) and the set of items (I) to

invert the lattice, the I in a given concept can be significantly reduced by exploiting the

lattice property: if Ii ∈ I of concept C1 then ∀ C2 | C2 < C1, Ii ∈ I of C2. Thus, an item

Ii ∈ I of concept C1 does not need to be physically recorded in a concept if there exists a

concept C2 such that C2 > C1 and Ii ∈ I of concept C2. Instead, the item Ii is implied by

the lattice structure. An item Ii need only be recorded in a concept at its maximal

position (i.e., lowest position in the inverted lattice). This representation is also desirable

for direct extraction of association rules (see Chapter 1). Another modification is to omit

a topmost concept whose intent is the set of all items in the concept lattice. As a result,

the concept lattice becomes a semi-lattice. The semi-lattice can be readily converted to a

70

complete lattice by a post-construction step to add a common topmost parent for all

concepts in the lattice that do not have parents. For the purpose of association rule

mining, this post-step is not needed. The final modification is to redefine the bottom

concept simply as an entry point into the lattice. Thus, the bottom concept does not hold

any objects or items. It is created upon initial construction of an empty lattice and its

intent or extent is not updated. It simply holds references to parent concepts.

The previously mentioned changes will simplify the processing in the GMA

algorithm without any loss of necessary information needed to formulate association

rules. The steps of the GMA algorithm that add an item to the intent of concepts whose

extent is a proper subset of the next item’s objects are not needed, since the lattice

structure will imply the item. As a result, concepts whose extent is a proper subset of the

next item’s objects will not need to be visited. Furthermore, the pre-steps to ensure the

extent of the bottom concept includes new object ids can also be eliminated. There is,

however, one small side effect. In the event an item exists common to all objects, the

GMA algorithm would place that item and its object ids into the bottom concept. With

the proposed changes, the item and object ids will be in a new concept that is the sole

parent to the bottom concept.

Given the proposed modifications to the lattice structure, Figure 3.1 depicts the

progression of incremental item insertions of the data in relation R into an inverted

concept lattice. The final lattice of Figure 3.1 is the inverted form of the lattice given in

Figure 1.1. Before presenting an initial algorithm to construct a lattice using the

proposed structure, a few observations in the progression shown are noteworthy:

• Insertion of an item whose extent = the extent of a concept C within the lattice is
accomplished by simply adding the item to C. C can be found by traversing the

71

In
se

rti
ng

 a
1

({
a 1

},{
O

1O
2O

3O
4O

5O
8O

9O
10

})

(∅
, ∅

)

R
V

a 1
O

1
O

2
O

3
O

4
O

5
O

8
O

9
O

10
a 2

O
6

O
7

b 1
O

1
O

2
O

8
b 2

O
3

O
4

O
5

O
6

O
7
O

9
O

10
c 1

O

2
O

3
O

4
O

5
O

6
O

8
O

9
O

10
c 2

O

7
c 3

O

1
d 1

O
1

O
3

O
5

O
9

O
10

d 2
O

2
O

6
O

8
d 3

O
7

d 4
O

4

In
se

rti
ng

 a
2

(∅
, ∅

)({
a 2

},{
O

6O
7}

)
({

a 1
},{

O
1O

2O
3O

4O
5O

8O
9O

10
})

In
se

rti
ng

 b
1

({
b 1

},{
O

1O
2O

8}
) (∅

, ∅
)

({
a 2

},{
O

6O
7}

)
({

a 1
},{

O
1O

2O
3O

4O
5O

8O
9O

10
})

In
se

rti
ng

 b
2

({
b 2

},{
O

3O
4O

5O
6O

7O
9O

10
})

({
b 1

},{
O

1O
2O

8}
)

(∅
, ∅

)

({
a 1

},{
O

1O
2O

3O
4O

5O
8O

9O
10

})

(∅
,{O

3O
4O

5O
9O

10
})

({
a 2

},{
O

6O
7}

)

R
H

A
 B

 C
 D

O
1

a 1
b 1

c 3
d 1

O
2

a 1
b 1

c 1
d 2

O
3

a 1
b 2

c 1
d 1

O
4

a 1
b 2

c 1
d 4

O
5

a 1
b 2

c 1
d 1

O
6

a 2
b 2

c 1
d 2

O
7

a 2
b 2

c 2
d 3

O
8

a 1
b 1

c 1
d 2

O
9

a 1
b 2

c 1
d 1

O
10

a 1
b 2

c 1
d 1

Figure 3.1: Progression of incremental item insertion into a concept lattice. Bold text and
weighted lines identify new elements. Dashed lines indicate removed elements.

72

({
a 1

},{
O

1O
2O

3O
4O

5O
8O

9O
10

})

In
se

rti
ng

 c
1

({
c 1

},{
O

2O
3O

4O
5O

6O
8O

9O
10

})
({

b 2
},{

O
3O

4O
5O

6O
7O

9O
10

})

({
b 1

},{
O

1O
2O

8}
)

(∅
, ∅

)

(∅
,{O

3O
4O

5O
9O

10
})

({
a 2

},{
O

6O
7}

)
(∅

,{O
2O

3O
4O

5O
8O

9O
10

})

(∅
,{O

2O
8}

)

(∅
,{O

3O
4O

5O
6O

9O
10

})

(∅
,{O

6}
)

In
se

rti
ng

 c
2

an
d

c 3

({
c 2

},{
O

7}
)

({
c 1

},{
O

2O
3O

4O
5O

6O
8O

9O
10

})
({

b 2
},{

O
3O

4O
5O

6O
7O

9O
10

})

({
b 1

},{
O

1O
2O

8}
)

(∅
, ∅

)

({
a 1

},{
O

1O
2O

3O
4O

5O
8O

9O
10

})

(∅
,{O

3O
4O

5O
9O

10
})

({
a 2

},{
O

6O
7}

)
(∅

,{O
2O

3O
4O

5O
8O

9O
10

})

(∅
,{O

2O
8}

)

(∅
,{O

3O
4O

5O
6O

9O
10

})

(∅
,{O

6}
)

({
c 3

},{
O

1}
)

Figure 3.1 continued: Progression of incremental item insertion into a concept lattice.
Bold text and lines identify new elements. Dashed lines indicate removed elements.

73

({
c 2

},{
O

7}
)

({
c 1

},{
O

2O
3O

4O
5O

6O
8O

9O
10

})
({

b 2
},{

O
3O

4O
5O

6O
7O

9O
10

})

({
b 1

},{
O

1O
2O

8}
)

(∅
, ∅

)

({
a 1

},{
O

1O
2O

3O
4O

5O
8O

9O
10

})

(∅
,{O

3O
4O

5O
9O

10
})

({
a 2

},{
O

6O
7}

)
(∅

,{O
2O

3O
4O

5O
8O

9O
10

})

(∅
,{O

2O
8}

)

(∅
,{O

3O
4O

5O
6O

9O
10

})

(∅
,{O

6}
)

({
c 3

},{
O

1}
)

({
d 1

},{
O

1O
3O

5O
9O

10
})

(∅
,{O

3O
5O

9O
10

})

In
se

rti
ng

 d
1

({
c 2

},{
O

7}
)

({
c 1

},{
O

2O
3O

4O
5O

6O
8O

9O
10

})
({

b 2
},{

O
3O

4O
5O

6O
7O

9O
10

})

({
b 1

},{
O

1O
2O

8}
)

(∅
, ∅

)

({
a 1

},{
O

1O
2O

3O
4O

5O
8O

9O
10

})

(∅
,{O

3O
4O

5O
9O

10
})

({
a 2

},{
O

6O
7}

)
(∅

,{O
2O

3O
4O

5O
8O

9O
10

})

(∅
,{O

2O
8}

)

(∅
,{O

3O
4O

5O
6O

9O
10

})

(∅
,{O

6}
)

({
c 3

},{
O

1}
)

({
d 1

},{
O

1O
3O

5O
9O

10
})

(∅
,{O

3O
5O

9O
10

})

In
se

rti
ng

 d
2

({
d 2

},{
O

2O
6O

8)

Figure 3.1 continued: Progression of incremental item insertion into a concept lattice.
Bold text and lines identify new elements.

74

({
c 2

d 3
},{

O
7}

)

({
c 1

},{
O

2O
3O

4O
5O

6O
8O

9O
10

})
({

b 2
},{

O
3O

4O
5O

6O
7O

9O
10

})

({
b 1

},{
O

1O
2O

8}
)

(∅
, ∅

)

({
a 1

},{
O

1O
2O

3O
4O

5O
8O

9O
10

})

(∅
,{O

3O
4O

5O
9O

10
})

({
a 2

},{
O

6O
7}

)
(∅

,{O
2O

3O
4O

5O
8O

9O
10

})

(∅
,{O

2O
8}

)

(∅
,{O

3O
4O

5O
6O

9O
10

})

(∅
,{O

6}
)

({
c 3

},{
O

1}
)

({
d 1

},{
O

1O
3O

5O
9O

10
})

(∅
,{O

3O
5O

9O
10

})

In
se

rti
ng

 d
3

({
d 2

},{
O

2O
6O

8)

({
c 2

d 3
},{

O
7}

)

({
c 1

},{
O

2O
3O

4O
5O

6O
8O

9O
10

})
({

b 2
},{

O
3O

4O
5O

6O
7O

9O
10

})

({
b 1

},{
O

1O
2O

8}
)

(∅
, ∅

)

({
a 1

},{
O

1O
2O

3O
4O

5O
8O

9O
10

})

(∅
,{O

3O
4O

5O
9O

10
})

({
a 2

},{
O

6O
7}

)
(∅

,{O
2O

3O
4O

5O
8O

9O
10

})

(∅
,{O

2O
8}

)

(∅
,{O

3O
4O

5O
6O

9O
10

})

(∅
,{O

6}
)

({
c 3

},{
O

1}
)

({
d 1

},{
O

1O
3O

5O
9O

10
})

(∅
,{O

3O
5O

9O
10

})
In

se
rti

ng
 d

4

({
d 2

},{
O

2O
6O

8)

({
d 4

},{
O

4}
)

Figure 3.1 continued: Progression of incremental item insertion into a concept lattice.
Bold text and lines identify new elements.

75

lattice from the bottom along any path where the item’s extent ⊆ a concept’s
extent. An example is inserting d3 in Figure 3.1.

• Except for the previous case, a new concept CNew will be added to the lattice.
That concept will forever hold the item.

• If an empty lattice is defined as a bottom concept with an empty intent and extent,
then any subsequent insertion of the new concept CNew will always be performed
above another concept. Let the concept above which CNew is to be inserted be
denoted as CBase. CBase can be identified by traversing the lattice along any path
where the item’s extent is ⊂ of a concept’s extent. For example, when inserting d4
with object id set {O4} into the lattice of Figure 3.1 the base concept will be
(∅, {O3O4O5O9O10}) .

• For all parent concepts Cp of CBase such that the extent of Cp is not =, ⊂, or ⊃ of
new item’s extent, the new concept CNew will be a sibling of each Cp. CBase will
be a child of the new concept. If the extent of a Cp ∩ item’s extent is not empty
then another new concept with an extent = extent of a Cp ∩ item’s extent must be
found or inserted above Cp. Such concept can be found, or if needed created, by
recursing using a null item and extent of a Cp ∩ item’s extent as the set of object
ids. The concept returned from the recursive call will also be a parent of CNew.
An example of finding already existing concepts in the recursive call is inserting
d2 in Figure 3.1. An example of creating a new concept in the recursive call is
inserting b2.

• For all parent concepts Cp of CBase such that the extent of Cp is ⊂ of extent of
CNew, CNew will be inserted between CBase and Cp. CBase will no longer be a child
of Cp. Instead the CNew will be a child of Cp and CBase will be a child of the CNew.
An example is inserting c1 with object id set {O2O3O4O5O6O8O9O10} into the
lattice of Figure 3.1. The object ids are a superset of the extent of concept
(∅, {O3O4O5O9O10}). Thus, concept (∅, {O2O3O4O5O8O9O10}) is inserted
between the base concept ({a1}, {O1O2O3O4O5O8O9O10}) and concept
(∅, {O3O4O5O9O10}).

Given these observations, an alternative algorithm to the GMA algorithm can be

formulated. For each insertion, the GMA algorithm processes all concepts in a top-down,

level-wise manner to modify existing concepts and to generate new concepts. The top-

down traversal is used to facilitate correct identification of generators and limit the search

for parent concepts. The above observations, however, suggest alternate approach. The

identification of generator concepts can be performed from the bottom up using the

76

lattice structure to navigate to a generator (i.e., base concept). Furthermore, recursion can

be used to find, or if needed create, the parent concepts.

Algorithm 3.2 presents an incremental insertion algorithm to construct a concept

lattice. For this algorithm, a concept lattice is represented as a set of concepts linked only

by references to parents. The data structure for each concept is a tuple composed of a list

of items, a list of object ids, and a list of parent concepts. A designated empty concept

named CBottom provides an entry point into the lattice. The algorithm begins with the

BUILD-LATTICE function. This function accepts a formal context K{I, O, R}.

BUILD-LATTICE creates an empty concept lattice consisting of the bottom concept

(line 1) and then incrementally adds each item into the lattice using the INSERT function

(lines 2 and 3). After inserting all items, the bottom concept is returned (line 4).

The INSERT function provides the incremental insertion of an item into the

lattice or sub-lattice. INSERT is passed a reference to a concept, referred to as the base

concept CBase, above which an item id Ii together with its extent O is to be inserted. The

item id can and will often be omitted when inserting into a sub-lattice. INSERT involves

three phases;

i) navigate into the lattice and identify a list of concepts to be further processed,

ii) if needed, construct a new concept, and

iii) processes the list of concepts identified by the first phase and links the new
concept into the lattice.

Both the navigation phase and link phase recursively call the INSERT function as

needed.

INSERT begins by defining an empty list of tuples consisting of a type indicator

with values SUPERSET or INTERSECT, an intersection set, and a reference to the

77

Let Concept be a tuple {I, O, Parents} where I a list of Items, O is a list of Object Ids,
and Parents a list of parent concepts.

BUILD-LATTICE(K{I, O, R})

1. CBottom ← new Concept (∅, ∅)
2. for each Ii ∈ I:
3. INSERT(CBottom, Ii, o(Ii)) // o(Ii) is the set O derived from R
4. return CBottom // the lattice

INSERT(CBase, Ii, O)
5. ToProcessList ← ∅ // list of tuples {Type, Concept, O} with
6. // Type ∈ {SUPERSET, INTERSECT}, Concept is a
7. // reference to the intersecting concept, and O
8. // a set of object ids resulting from an intersection
9.

10. for each CParent ∈ of CBase.Parents: // prepare-search phase
11. if O = CParent.O:
12. Add Ii to CParent.I
13. return CParent // processing complete
14. else if O ⊂ CParent.O:
15. return INSERT (CParent, Ii, O) // recurse using CParent as new CBase
16. else if O ⊃ CParent.O:
17. Add {SUPERSET, CParent, CParent.O} to ToProcessList
18. else if O ∩ C.O ≠ ∅:
19. Add {INTERSECT, CParent, O ∩ CParent.O} to ToProcessList
20.
21. // intentionally left blank
22.
23. CNew ← New Concept({Ii}, O) // create the new concept
24.
25. for each Ti ∈ ToProcessList: // link phase to link in CNew
26. if Ti.Type = SUPERSET:
27. Remove Ti.Concept from CBase.Parents
28. Add Ti.Concept to CNew.Parents
29. else if Ti.Type = INTERSECT:
30. CParent ← INSERT (Ti.Concept, ∅, Ti.O)
31. Add CParent to CNew.Parents
32.
33. Add CNew to CBase.Parents
34.
35. return CNew

Algorithm 3.2: A recursive incremental lattice construction algorithm.

78

concept that generated the intersection set (line 5). This list is populated during the

search-prepare phase and is processed during the link phase. The intersection set is the

result of intersecting the object set O passed to the INSERT function with the extent of a

parent concept. A type SUPERSET indicates O is a superset of the extent of the parent

concept. Type INTERSECT indicates that O is neither superset nor subset. INSERT

proceeds to compare O with the extent of each parent of the base concept (lines 10

through 19). If O is equal to a parent concept’s extent then the item Ii, if supplied, is

added to the concepts list of items (lines 11 and 12). The insertion is complete. For

purposes discussed later, INSERT returns a reference to the modified concept (line 13).

If O is a subset the extent of any parent concept then INSERT recurses using the parent

as the new base concept (lines 14 and 15). This effectively navigates into the concept

lattice to locate the position above which the item will be inserted. If O is superset of the

extent of a parent then a tuple composed of SUPERSET, a reference to the parent

concept, and the parent’s extent is added to the ToProcessList for later processing (lines

16 and 17). If O is neither equal to, subset, nor superset of the extent of a parent concept,

and O intersect the extent of a parent is non-empty, then a tuple composed of

INTERSECT, a reference to the parent concept, and O intersect the extent of the parent is

added to the ToProcessList (lines 18 and 19).

If comparison of O with the extents of all parent concepts of the base concept

does not encounter a parent concept where O is equal to or a subset of the parent’s extent,

then a new concept node will be constructed (line 23). The new concept will contain the

item Ii in its intent and O as its extent. The new concept will be a child of all SUPERSET

79

concepts in the ToProcessList, a sibling to the INTERSECT concepts, and a parent to the

base concept. The final phase establishes these parent-child links.

After creating the new concept, the final phase of the algorithm processes the

concepts in the ToProcessList and links the new concept into the lattice. For a parent

concept in the ToProcessList with a SUPERSET indicator, the parent will no longer be a

parent of the base concept (line 26). Instead it will be the parent of the new concept.

Thus, the parent concept is removed from the base concept’s list of parents (line 27) and

added to the new concept’s parents (line 28). Each parent concept for which O is neither

equal to, a subset of, nor superset of the parent’s extent will be a sibling to the new

concept. Furthermore, if O intersect the extent of a sibling is not empty then additional

processing is required to add the information about O intersect the extent of a sibling into

the lattice. Such siblings are the concepts in the ToProcessList that have an INTERSECT

indicator. A concept representing O intersect the extent of a sibling must be found within

the lattice, or if absent created, and added as a parent of the new concept. To do this, the

algorithm recurses using the sibling as the base concept, a null item, and O intersect the

extent of the sibling as the set of object ids (line 30). The concept returned by the

recursive call is added to the new concept’s parents (line 31). Finally, the new concept is

added to the parents of the base concept and the new concept is returned (lines 33 and 35)

80

3.3 Walk Through of the Algorithm Execution

Figure 3.2 provides a sample walkthrough of executing Algorithm 3.2. This

walkthrough corresponds to the insertion of b2 in Figure 3.1. Execution begins with a

call to INSERT with the CBase referencing the bottom concept {∅, ∅}, Ii = b2, and

O = {O3O4O5O6O7O9O10}. The prepare-search phase tests the intersection of O with

each parent of {∅, ∅}. The intersection test of O intersect the extent of

({a1}, {O1O2O3O4O5O8O9O10}) results in adding an INTERSECT tuple to the

ToProcessList. The tuple contains the intersection set of {O3O4O5O9O10} and the

concept ({a1}, {O1O2O3O4O5O8O9O10}). The intersection test of O intersect the extent of

({a2}, {O6O7}) results in adding a SUPERSET tuple to the ToProcessList. Since the

prepare-search phase did not encounter a parent concept where O ⊆ parent’s extent, a

new concept ({b2}, {O3O<O5O6O7O9O10}) is created and the tuples of the ToProcessList

are then processed. Processing the {INTERSECT, ({a1}, {O1O2O3O4O5O8O9O10}),

{O3O4O5O9O10}} tuple involves a recursive call to INSERT with the CBase referencing

the concept ({a1}, {O1O2O3O4O5O8O1O10}), Ii = ∅, and O = {O3O4O5O9O10}. The

prepare-search phase of the recursive call to INSERT produces an empty ToProcessList

since the extent of ({b1}, {O1O2O8}), the sole parent of concept ({a1},

{O1O2O3O4O5O8O9O10}), has an empty intersection with {O3O4O5O9O10}. Thus, the

recursive call completes by creating the concept (∅, {O3O4O5O9O10}) and adding it as a

parent of ({a1}, {O1O2O3O4O5O8O9O10}). The new concept is returned from the

recursive call. The returned concept is added as a parent of ({b2}, {O3O4O5O6O7O9O10})

by the base invocation of INSERT.

81

Processing the {SUPERSET, ({a2}, {O6O7}), {O6O7}} tuple involves removing

({a2}, {O6O7}) from the parents of the CBase, being {∅, ∅}, and adding it as a parent to

the CNew, being ({b2}, {O3O4O5O6O7O9O10}). At this time all tuples in the ToProcessList

have been processed. The first invocation of INSERT completes by adding CNew as a

parent to CBase and returning a reference to CNew.

The walkthrough given in Figure 3.2 demonstrates a majority of the execution

paths through the algorithm. However, the walkthrough did not execute the paths where

the O in the call to INSERT are equal to or a subset of the parent’s extent. Such

execution paths are readily apparent in many of the other insertions of Figure 3.1. For

example, insertion of d3 will call INSERT with CBase referencing the bottom concept

{∅, ∅}, Ii = d3, and O = {O7}. The prepare-search phase will recurse with CBase

referencing the concept ({b2}, {O3O4O5O6O7O9O10}), since the O is a subset of the

extent. The prepare-search phase of the recursive call will further recurse with CBase

referencing the concept ({a2}, {O6O7}). The prepare-search phase of this recursive call

will encounter a parent concept whose extent = O. That concept is ({c2}, {O7}). In this

case Ii, being d3, is inserted into the intent of ({c2}, {O7}) and a reference to this concept

is returned back through all invocations.

82

Inserting b2 with {O3O4O5O6O7O9O10}

({b1},{O1O2O8})

(∅, ∅)

({a2},{O6O7})({a1},{O1O2O3O4O5O8O9O10})

Cbase
I = b2
Os = {O3O4O5O6O7O9O10}
ToProcessList

INTERSECT, {O3O4O5O9O10}
SUPERSET, {O6O7})

Cnew

({b2},{O3O4O5O6O7O9O10})

Cbase
I = ∅
Os = {O3O4O5O9O10 }
ToProcessList

∅
Cnew

({b1},{O1O2O8})

(∅, ∅)

({a2},{O6O7})({a1},{O1O2O3O4O5O8O9O10}) ({b2},{O3O4O5O6O7O9O10})

(∅,{O3O4O5O9O10})

Processing INTERSECT {O3O4O5O9O10}

({b1},{O1O2O8})

(∅, ∅)

({a2},{O6O7})({a1},{O1O2O3O4O5O8O9O10})

Lattice after Inserting a1, a2, b1

Processing SUPERSET, {O6O7})

({b1},{O1O2O8})

(∅, ∅)

({a2},{O6O7})

({a1},{O1O2O3O4O5O8O9O10}) ({b2},{O3O4O5O6O7O9O10})

(∅,{O3O4O5O9O10})

Final ProcessingRemoved Link

RV

a1 O1 O2 O3 O4 O5 O8 O9 O10
a2 O6 O7
b1 O1 O2 O8
b2 O3 O4 O5 O6 O7 O9 O10
c1 O2 O3 O4 O5 O6 O8 O9 O10
c2 O7
c3 O1
d1 O1 O3 O5 O9 O10
d2 O2 O6 O8
d3 O7
d4 O4

Figure 3.2: Sample walkthrough of Algorithm 3.2 execution.

83

3.4 Proof of Algorithm Correctness

Given a lattice L and a new item Ii with its set of object O, an incremental

insertion algorithm is correct if it meets these requirements:

1) if ∃ Ci ∈ L | extent of Ci = O, then insertion is completed by adding Ii to the
intent of Ci, or

2) if ¬∃ Ci ∈ L | extent of Ci = O, then a new concept CNew with intent {Ii} and
extent O must be created and inserted into the lattice such that:

i. if ∃ Cb ∈ L | Cb > CNew ∧ ¬∃ C3∈ L | Cb > C3 > CNew, then CNew will be

a parent of Cb,

ii. if ¬∃ Cb ∈ L | Cb > CNew, then CNew will be a parent of bottom concept,

iii. ∀ Cp ∈ L | CNew > Cp ∧ ¬∃ C3∈ L | CNew > C3 > Cp, Cp will be a parent
of CNew,

iv. ∀ Cs ∈ L | extent of Cs ⊄ O ∧ extent of Cs ∩ O ≠ ∅ ∧ ¬∃ C3∈ L |

C3 > Cs ∧ extent of Cs ∩ O = extent of C3 ∩ O, another new concept
CNew' with empty intent and an extent of Cs ∩ O must be inserted into
the lattice with CNew' as a parent of both CNew and Cs, and

v. the resulting lattice satisfies the lattice connection property: a connection

exists between two concepts C1 and C2 provided C1 < C2 and there is no
concept C3 for which C1 < C3 < C2.

Algorithm 3.2 fulfills requirement 1.

Proof: Let Lb be a sub-lattice with concept Cb as its bottom concept. If ∃ Ci
∈ Lb | extent of Ci = O ∧ Ci ≠ Cb then Ci will be an ancestor of Cb. If a parent
of Cb has an extent = O, then that parent concept is Ci; otherwise Ci can be
found by searching the sub-lattice defined by any parent concept where extent
of the concept ⊃ O. The INSERT function of Algorithm 3.2 examines each
parent concept of a base concept Cb. If a parent of the Cb has an extent = O
then that parent concept is the concept to which Ii is added. If a parent
concept has an extent ⊃ O, then that parent is not the concept to which Ii is
added, but the concept with extent = O will be an ancestor of that parent
concept. The INSERT function recurses using the parent concept as Cb.
Algorithm 3.2 initially calls the INSERT function using the bottom concept
of the concept lattice as Cb.

84

Algorithm 3.2 creates a new concept under the conditions of requirement 2.

Proof: Let Lb be a sub-lattice with concept Cb as its bottom concept. If ¬∃ Ci
∈ Lb | extent of Ci = O ∧ Ci ≠ Cb then traversing any path where extent of a
concept ⊃ O will encounter a concept that does not have any parents whose
extent ⊇ O. The INSERT function of Algorithm 3.2 examines each parent
concept of a base concept Cb. If a parent concept has an extent ⊃ O, then the
INSERT function of Algorithm 3.2 algorithm recurses using the parent
concept as Cb. If none of the parents have an extent ⊇ O, then the INSERT
function creates a new concept with an intent {Ii} and extent O. Algorithm
3.2 initially calls the INSERT function using the bottom concept of the
concept lattice as Cb.

Algorithm 3.2 fulfills requirement 2.i.

Proof: Let if Lb be a sub-lattice with concept Cb as its bottom concept. If ¬∃
Ci ∈ Lb | extent of Ci = O ∧ Ci ≠ Cb, but ∃ Cb' ∈ Lb | Cb' > CNew ∧ ¬∃ C3∈ Lb |
Cb' > C3 > CNew, then traversing any path where extent of a concept ⊃ O will
encounter a concept that does not have any parents whose extent ⊇ O. The
traversal thus identifies concept Cb' for which there does not exists a C3 ∈ L |
Cb' > C3 > CNew. CNew must become a parent of Cb'. The INSERT function of
Algorithm 3.2 examines each parent concept of a base concept Cb. If a parent
concept has an extent ⊃ O, then the INSERT function recurses using the
parent concept as Cb. If none of the parents have an extent ⊇ O, then the
INSERT function creates a new concept CNew and links it as the parent of base
concept Cb. Algorithm 3.2 initially calls the INSERT function using the
bottom concept of the concept lattice as Cb.

Algorithm 3.2 fulfills requirement 2.ii.

Proof: Let if Lb be a sub-lattice with concept Cb as its bottom concept. If ¬∃
Ci ∈ Lb | extent of Ci = O ∧ Ci ≠ Cb, and ¬∃ Cb' ∈ Lb | Cb' > CNew then ∀
parents of Cb extent of the parent ¬⊇ O. Therefore, CNew must become a
parent of Cb. The INSERT function of Algorithm 3.2 examines each parent
concept of a base concept Cb. If none of the parent concepts has an extent ⊇
O, the INSERT function creates a new concept CNew and links it as the parent
of base concept Cb. Algorithm 3.2 initially calls the INSERT function using
the bottom concept of the concept lattice as Cb.

Algorithm 3.2 fulfills requirement 2.iii.

Proof: Let if Lb be a sub-lattice with concept Cb as its bottom concept. If ¬∃
Ci ∈ Lb | extent of Ci = O ∧ Ci ≠ Cb, then traversing any path where extent of a
concept ⊃ O will encounter a concept that does not have any parents whose
extent ⊇ O. Let Cb' be the encountered concept that does not have any parents

85

whose extent ⊇ O. Let Cb' define a sub-lattice Lb'. Since CNew is added as a
parent of Cb', any potential parent Cp ∈ Lb | CNew > Cp must also be ∈ Lb'.
Furthermore, each parent Cp' of Cb' will be a parent of CNew in the case that the
CNew > the Cp', or it will be a descendent of the potential parent in the case that
extent of Cp' ⊃ extent of Cp' ∩ O. In the later case, the potential parent can be
identified by traversing the path where the extent of a concept ⊇ extent of Cp'
∩ O. The INSERT function of Algorithm 3.2 examines each parent concept
of a base concept Cb. If none of the parent concepts has an extent ⊇ O, the
INSERT function creates a new concept CNew. For each parent concept Cp of
base concept Cb whose extent ⊂ O, Cp is removed from the parents of Cb and
is linked as a parent of CNew. For each parent concept Cp of base concept Cb
whose extent ⊄ O but whose extent ∩ O ⊂ O, the INSERT function is
recursively called using Cp as the base concept to locate the parent concept. If
there exists a concept whose extent = extent of Cp ∩ O the INSERT function
will find that concept (by proof of requirement 1). The concept returned by the
recursive call is linked as a parent of CNew. Algorithm 3.2 initially calls the
INSERT function using the bottom concept of the concept lattice as Cb.

Algorithm 3.2 correctly fulfills requirement 2.iv.

Proof: Let if Lb be a sub-lattice with concept Cb as its bottom concept. If ¬∃
Ci ∈ Lb | extent of Ci = O ∧ Ci ≠ Cb, then traversing any path where extent of a
concept ⊃ O will encounter a concept that does not have any parents whose
extent ⊇ O. Let Cb' be the encountered concept that does not have any parents
whose extent ⊇ O. Since CNew is added as a parent of Cb' then for each
concept Cs ∈ Lb | Cs is a parent of Cb' ∧ extent of Cs ⊄ O ∧ extent of Cs ∩ O ≠
∅ ∧ ¬∃ C3∈ L | C3 > Cs ∧ extent of Cs ∩ O = extent of C3 ∩ O a new concept
CNew' with empty intent and extent Cs ∩ O must be inserted into the lattice.
CNew' must be a parent of both Cs and CNew . The INSERT function of
Algorithm 3.2 examines each parent concept of a base concept Cb. If none of
the parent concepts has an extent ⊇ O, the INSERT function creates a new
concept CNew. For each parent concept Cp of base concept Cb whose extent ⊄
O but whose extent ∩ O ⊂ O, the INSERT function is recursively called using
Cp as the base concept to insert a concept with empty intent and an extent of
Cs ∩ O. If the sub-lattice defined by Cs does not contain a concept with extent
Cs ∩ O, then the INSERT function will create and return a new concept CNew'
for that extent. The recursive call will link CNew' as a parent of Cs and return
CNew'. CNew' will then be linked as a parent of CNew. Algorithm 3.2 initially
calls the INSERT function using the bottom concept of the concept lattice as
Cb.

86

There is currently a defect in Algorithm 3.2 in that it fails to fulfill requirement

2.v. This defect is benign in the sense that the algorithm will produce the correct set of

concepts22

22 See section 4.3 Algorithm Validity.

. However, it may generate more links than required, many of which may

violate the lattice connection property. While the invalid links can be removed by a post-

processing step, the invalid links will compound and generate more invalid links. The

result is a significant degradation in performance and memory usage. Sample insertions

demonstrating the error are presented in Figures 3.6 through 3.9. The errors occur due to

relationships between the concepts referenced in the ToProcessList.

Figure 3.3 presents an error case in which a parent is linked twice to a given child.

On inserting I4 with {O1O4}, the prepare-search phase will add tuples {INTERSECT,

({I1}, {O1O2}), {O1}}, {INTERSECT, ({I2}, {O3O4}), {O4}}, and {INTERSECT,

({I3}, {O1O3}), {O1}} to the ToProcessList and then create a new concept ({I4}, {O1O4}).

Processing {INTERSECT, ({I1}, {O1O2}), {O1}} performs a recursive call to INSERT.

That call will return concept (∅, {O1}), which is then added to the parents of CNew.

INSERT will be recursively called a second time to process the tuple {INTERSECT,

({I2}, {O3O4}), {O4}}. This call will create concept (∅, {O4}), add it as a parent of

({I2}, {O3O4}), and return it. The returned concept (∅, {O4}) is then added as a parent to

CNew. INSERT will be recursively called a third time to process the tuple {INTERSECT,

({I3}, {O1O3}), {O1}}. That call will return a reference to concept (∅, {O1}) which in

turn is added to the parents of CNew. CNew has two parent references to the concept

(∅, {O1}).

87

RV

I1 O1 O2
I2 O3 O4
I3 O1 O3
I4 O1 O4

(∅,{O1}) (∅,{O3})

({I1},{O1O2}) ({I2},{O3O4}) ({I3},{O1O3})

(∅,∅)

After Inserting I1 I2 I3:

RH

O1 I1 I3 I4
O2 I1
O3 I2 I3
O4 I2 I4

({I1},{O1O2}) ({I2},{O3O4}) ({I3},{O1O3})

(∅,{O1}) (∅,{O3})

(∅,∅)

({I4},{O1O4})
CBase
I = I4
Os = {O1O4}
ToProcessList

INTERSECT, {O1 }
INTERSECT, {O4}
INTERSECT, {O1}

CNew

(∅,{O4}) Inserting I4:
invalid

Figure 3.3: Duplicate parent-child links.

88

Figure 3.4 presents an error case in which the lattice connection property is

violated. On inserting I3 with {O1O2O5}, the prepare-search phase will add the tuples

{INTERSECT, ({I1}, {O1O2O3}), {O1O2}} and {INTERSECT, ({I2}, {O2O4}), {O1}} to

the ToProcessList and then create new concept ({I3}, {O1O2O5}). Processing

{INTERSECT, ({I1}, {O1O2 O3}), {O1O2}} involves a recursive call to INSERT. The

prepare-search phase of the recursive call will add a {SUPERESET, (∅, {O2}), {O1O2}}

tuple in its ToProcessList and then create new concept (∅, {O1O2}). Processing

{SUPERESET, (∅, {O2}), {O1O2}} tuple will result in removing (∅, {O2}) from the

parents of ({I1}, {O1O2O3}) and adding it to the parents of (∅, {O1O2}). Concept

(∅, {O1O2}) is returned and then added as a parent of ({I1}, {O1O2O3}) by the base

invocation of INSERT. INSERT will be recursively called a second time to process the

tuple {INTERSECT, ({I2}, {O2O4}), {O1}}. The prepare-search phase of this call will

find the concept (∅, {O2}) and return it. The base invocation of INSERT will then add

(∅, {O2}) to ({I1}, {O1O2O3}) thereby violating the lattice edge property. There now

exists a concept (∅, {O1O2}) which is between concepts ({I1}, {O1O2O3}) and (∅, {O1}).

Figure 3.5 presents another error case in which the lattice edge property is

violated. This case involves an INTERSECT and SUPERSET tuples in the

ToProcessList. On inserting I3 with {O1O3O4}, the prepare-search phase will add the

tuples {INTERSECT, ({I1}, {O1O2}), {O1}} and {SUPERSET, ({I2}, {O1O3}), {O1O3}}

to the ToProcessList and then create new concept ({I3}, {O1O3O4}). Processing

{INTERSECT, ({I1}, {O1O2}), {O1}} performs a recursive call to INSERT. This

recursive call will simply find and return concept (∅, {O1}), which is then added as a

parent of ({I3}, {O1O3O4}) by the base invocation of INSERT. Processing {SUPERSET,

89

RH

O1 I1 I3
O2 I1 I2 I3
O3 I1
O4 I2
O5 I3 ({I1},{O1O2O3}) ({I2},{O2O4})

(∅,{O2})

(∅,∅)

RV

I1 O1 O2 O3
I2 O2 O4
I3 O1 O2 O5

After Inserting I1 I2:

Inserting I3:

({I3},{ O1O2O5})

({I1},{O1O2O3}) ({I2},{O2O4})

(∅,{O2})

(∅,∅)

({I3},{O1O2O5})

(∅,{O1O2})

CBase
I = I3
Os = {O1O2O5}
ToProcessList

INTERSECT, {O1O2}
INTERSECT, {O1}

CNew

({I1},{O1O2O3})

(∅,{O2})

(∅,∅)

({I2},{O2O4})

CBase
I = ∅
Os = {O1O2}
ToProcessList

SUPERSET, {O2}
CNew

Processing INTERSECT, {O1O2} Processing INTERSECT, {O1}

CBase
I = ∅
Os = {O2}

invalid

Figure 3.4: Invalid edge as a result of related INTERSECT tuples.

90

({I1},{O1O2}) ({I2},{O1O3})

(∅,{O1})

(∅,∅)

RV

I1 O1 O2
I2 O1 O3
I3 O1 O3 O4

After Inserting I1 I2:
RH

O1 I1 I2 I3
O2 I1
O3 I2 I3
O4 I3

Inserting I3:

({I3},{ O1O3O4})
CBase
I = I3
Os = {O1O3O4}
ToProcessList

INTERSECT, {O1}
SUPERSET, {O1O3}

CNew

({I1},{O1O2}) ({I2},{O1O3})

(∅,{O1})

(∅,∅)

Processing INTERSECT, {O1} :

({I3},{ O1O3O4})
CBase
I = ∅
Os = {O1}
EQUAL

({I1},{O1O2}) ({I2},{O1O3})

(∅,{O1})

(∅,∅)

({I3},{ O1O3O4}) ({I1},{O1O2})

({I2},{O1O3})

(∅,{O1})

(∅,∅)

Processing SUPERSET, {O1O3} : now invalid

removed

Figure 3.5: Invalid edge resulting from related INTERSECT and SUPERSET tuples.

91

({I2}, {O1O3}), {O1O3}} tuple will result in removing ({I2}, {O1O3}) from the parents of

(∅, ∅) and adding it to the parents of ({I3}, {O1O3O4}). The edge between (∅, {O1})

and ({I3}, {O1O3O4}) now violates the lattice property since concept ({I2}, {O1O3})

exists between concepts (∅, {O1}) and ({I3}, {O1O3O4}).

3.5 Correcting the Flaw

In all error cases the extra links are a result of relationships existing between the

concepts referenced in the ToProcessList. That is, there exists a non-trivial meet in the

lattice between the related concepts. The recursive processing over all of the related

concepts results in adding invalid parent-child links. Often the invalid link will involve

the meet of the related concepts. In such cases, the intersection sets recorded in the tuples

of ToProcessList of the related concepts will be the extent of the meet and therefore the

intersection sets will be the same. Thus, an approach to correcting the flaw is to remove

all but one of the tuples in the ToProcessList of any tuples having the same intersection

set. This approach, however, is not sufficient since there exist cases where the invalid

link does not involve a concept that is currently in the lattice. These cases are still the

result of a relationship between concepts in the ToProcessList. Figure 3.6 is a case where

the invalid link is not the meet. In this case, the related concepts referenced in the

ToProcessList are ({I1}, {O1O2O3O4}) and ({I2}, {O1O2O3O5}), and the meet concept is

(∅, {O1O2O3}). Here, the invalid link is between concepts that are created during the

item insertion. The invalid link will occur regardless of the order in which the tuples of

the ToProcessList are processed. The processing of {INTERSECT, ({I1}, {O1O2O3O4}),

{O1O2}} before {INTERSECT, ({I2}, {O1O2O3O4}), {O1O2O5}}, as shown, will create

the concept (∅, {O1O2}) when processing {INTERSECT, ({I1}, {O1O2O3O4}), {O1O2}},

92

RV

I1 O1 O2 O3 O4
I2 O1 O2 O3 O5
I3 O3
I4 O1 O2 O5 O6

After Inserting I1, I2, and I3 :RH

O1 I1 I2 I3 I4
O2 I1 I2 I4
O3 I1 I2
O4 I1
O5 I2 I4
O6 I4 ({I1},{O1O2O3O4}) ({I2},{O1O2O3O5})

({I3},{O3})

(∅,∅)

(∅,{O1O2O3})

Inserting I4 :

({I4},{O1O2O5O6})
CBase
I = I4
Os = {O1O2O5O6}
ToProcessList

INTERSECT, {O1O2}
INTERSECT, {O1O2O5}

CNew

({I1},{O1O2O3O4}) ({I2},{O1O2O3O5})

({I3},{O3})

(∅,∅)

(∅,{O1O2O3})

(∅,{ O1O2})

Processing INTERSECT, {O1O2} :

({I1},{O1O2O3O4}) ({I2},{O1O2O3O5})

({I3},{O3})

(∅,∅)

(∅,{O1O2O3})

CBase
I =∅
Os = {O1O2}
ToProcessList
∅

CNew

CBase
I =∅
Os = {O1O2}
SUBSET

({I4},{O1O2O5O6})

(∅,{O1O2O5})

(∅,{ O1O2}) Processing INTERSECT, {O1O2O5} :

({I1},{O1O2O3O4}) ({I2},{O1O2O3O5})

({I3},{O3})

(∅,∅)

(∅,{O1O2O3})

CBase
I =∅
Os = {O1O2O5}
ToProcessList

INTERSECT, {O1O2}
CNew

({I4},{O1O2O5O6})

now invalid

Figure 3.6: Invalid edge generated between new concepts.

93

then create concept (∅, {O1O2O5}) when processing {INTERSECT, ({I2}, {O1O2O3O4}),

{O1O2O5}}. On the other hand, if {INTERSECT, ({I2}, {O1O2O3O4}), {O1O2O5}} is

processed first, then both concepts (∅, {O1O2}) and (∅, {O1O2 O5}) will be created upon

processing {INTERSECT, ({I2}, {O1O2O3O4}), {O1O2O5}}. The subsequent processing

of {INTERSECT, ({I1}, {O1O2O3O4}), {O1O2}} will simply add the violating edge.

Thus, the strategy to resolve the problem is to identify and remove the tuples in the

ToProcessList that will add the violating edges. These tuples will have an intersection set

that is a subset of the intersection set of other tuples. Thus to correct the problem, an

algorithm to purge these tuples from the ToProcessList is needed.

A purge subsets algorithm involves comparing the intersection set of each tuple

with the intersection set of every other tuple in the ToProcessList. This will introduce a

potential O(n2 m) asymptotic complexity when n is the number of tuples in the

ToProcessList and m is the size of the intersection sets. While the number of tuples in a

given ToProcessList is bounded by the number of parent concepts of a given base

concept, it is desired that the purge subsets algorithm be highly efficient and avoid any

unneeded processing. There is no need to compare two SUPERSET tuples, since

SUPERSET tuples cannot be a subset of other tuples. Furthermore, two INTERSECT

tuples cannot be both a subset and superset of each other. Therefore, the only tests

needed between any two tuples are:

i) a subset test when the first tuple is an INTERSECT, or

ii) a superset test when the second tuple is an INTERSECT.

The later will only be performed if the first tuple is not an INTERSECT, or if the result of

the subset test is false. Furthermore, to obtain an O(n2 m) complexity but not O(n2 m2)

94

the sets of object ids must be maintained in sorted order. This is necessary for fast

determination of subset and superset operations. These operations can be optimized to

determine an outcome as soon as possible. A subset operation on sorted lists can report

false if at any time an id is found in the first set that does not exist in the second, or the

number of ids yet to be examined in the first set is greater than the number of ids yet to be

examined in the second. Dually, a superset operation can report false if at any time an id

is found in the second set that does not exist in the first, or the number of ids yet to be

examined in the first set is less than the number of ids yet to be examined in the second.

Algorithm 3.3 presents an efficient algorithm to purge tuples in the

ToProcessList. Function PURGE-SUBSETS accepts the ToProcessList tuples. Lines 1

and 2 provide loops to compare each tuple with every other tuple. Lines 3 through 6

perform the comparisons between the tuples and removal of the subset tuples as needed.

PURGE-SUBSETS(ToProcessList)
 // ToProcessList is a list of tuples {Type, Concept, O} with
 // Type ∈ {NONE, SUBSET, SUPERSET, INTERSECT}, Concept a
 // reference to a concept, and O is a set of object ids

1. for each Pi ∈ ToProcessList:
2. for each Pj ∈ ToProcessList ∧ Pj comes after Pi:
3. if Pi.Type = INTERSECT ∧ Pi.O ⊂ Pj.O:
4. Remove Pi from ToProcessList
5. else if Pj.Type = INTERSECT ∧ Pi.O ⊃ PjO:
6. Remove Pj from ToProcessList

Algorithm 3.3: PURGE-SUBSETS algorithm.

95

3.6 The Complete QuICL Oid-Full Algorithm

In addition to calling the PURGE-SUBSETS functions, there are two more minor

enhancements; the first provides an additional performance improvement and the second

enables a specification of a minimum support threshold in order to construct iceberg

lattices. The optimization is to maintain a specific order between the parents of each

concept in order to reduce the number of intersections performed. The prepare-search

phase performs intersection tests between the extents of each parent concept and a given

set of object ids. If during the iteration over the parents, a parent concept whose extent is

equal to or subset of the set of object ids is encountered the algorithm returns without

testing the remaining parents. To increase the probability that such parent concepts are

encountered sooner than later, the parents are maintained in descending order of their

sizes of the extents.

The processing for iceberg lattices begins by discarding any item whose extent

does not meet a minimum support threshold. In addition, the processing must prevent

construction of concepts resulting from intersections with other concepts and for which

the size of the concept’s extent would not meet the threshold. Since the extent for a new

concept resulting from an intersection with another concept is the intersection set that is

stored in the tuples of the ToProcessList, a predicate on the size of the intersection set can

be used to prevent construction of such concept. The predicate can be tested before

adding an INTERSECT tuple to the ToProcessList. The result of applying these changes

is the QuICL Oid-Full algorithm.

The QuICL Oid-Full algorithm is given in algorithm 3.4. The QuICL Oid-Full

algorithm is Algorithm 3.2 with the stated changes. Line 21 provides the call to the

96

Let Concept be a tuple {I, O, Parents} where I a list of items, O a list of object ids,
and Parents a list of parent concepts.

QUICL-OID-FULL(K{I, O, R}, MinSupp)
1. CBottom ← new Concept (∅, ∅)
2. for each Ii ∈ I ∧ |o(Ii)| ≥ MinSupp: // o(Ii) is the set O derived from R
3. INSERT(CBottom, Ii, o(Ii))
4. return CBottom // the lattice

 INSERT(CBase, Ii, O)
5. ToProcessList ← ∅ // list of tuples {Type, Concept, O} with
6. // Type ∈ {SUPERSET, INTERSECT}, Concept is a
7. // reference to the intersecting concept, and O
8. // a set of object ids resulting from an intersection
9.

10. for each CParent ∈ of CBase.Parents: // prepare-search phase
11. if O = CParent.O:
12. Add Ii to CParent.I
13. return CParent // processing complete
14. else if O ⊂ CParent.O:
15. return INSERT (CParent, Ii, O) // recurse using CParent as new CBase
16. else if O ⊃ CParent.O:
17. Add {SUPERSET, CParent, CParent.O} to ToProcessList
18. else if |O ∩ CParent.O| ≥ MinSupp:
19. Add {INTERSECT, CParent, O ∩ CParent.O} to ToProcessList
20.
21. PURGE-SUBSETS(ToProcessList)
22.
23. CNew ← New Concept({Ii}, O) // create the new concept
24.
25. for each Ti ∈ ToProcessList: // link phase to link in CNew
26. if Ti.Type = SUPERSET:
27. Remove Ti.Concept from CBase.Parents
28. Add Ti.Concept to CNew.Parents
29. else if Ti.Type = INTERSECT:
30. CParent ← INSERT (Ti.Concept, ∅, Ti.O)
31. Add CParent to CNew.Parents
32.
33. Sort CNew.Parents in order of decreasing |O|
34.
35. Add CNew to CBase.Parents in order of decreasing |O|
36.
37. return CNew

Algorithm 3.4: The QuICL Oid-Full algorithm.

97

PURGE-SUBSETS function. Lines 33 and 35 specify an order for parents of a concept.

Line 2 is modified to discard items that do not meet the minimum support threshold.

Line 18 tests that the size of the intersection set meets the minimum support threshold. A

complete implementation, written in Java, is provided in Appendix B.

3.7 An Implementation Enhancement

Testing and analysis of the QuICL Oid-Full algorithm revealed that more

intersections are being performed than needed. This is the result of the same parent

concepts being intersected from multiple invocations of the INSERT function. Where the

same parent is encountered, each invocation has a different base concept that shares the

parent. Even though each invocation may be passed a different set of object ids,

intersecting the object ids with a given parent’s extent will produce the same intersection

set during insertion of a given item. This is the case since the intersection set ultimately

is the intersection of the parent’s extent and the extent of the item. Thus, an

implementation enhancement is to cache23

While the intersection set is the same between invocations, the outcome of

comparison (i.e., =, ⊂, ⊃, and ∩) on which the QuICL algorithm is dependent can be

different. The outcome of comparison can be readily determined by performing tests on

the cardinalities of the intersection set, the parent’s extent, and the object id set passed to

 each intersection set with its parent concept

for the duration of an item insertion. Between item insertions all cached intersection sets

are discarded. This enhancement involves augmenting the tuples that represent concepts

to include an intersection set, Intersect. Intersect is set the first time a parent concept is

encountered during an item insertion and cleared between insertions.

23 The cache is a simple reference to an intersection set from within each tuple of a concept. The
intersection sets are discarded between item insertions.

98

Test on Intersect Outcome
|Cparent.Intersect| = 0 No relationship
|Cparent.Intersect| = |O| ∧ |Cparent.Intersect| = |Cparent.O| O = CParent.O
|Cparent.Intersect| = |O| ∧ |Cparent.Intersect| < |Cparent.O| O ⊂ CParent.O
|Cparent.Intersect| < |O| ∧ |Cparent.Intersect| = |Cparent.O| O ⊃ CParent.O
|Cparent.Intersect| < |O| ∧ |Cparent.Intersect| < |Cparent.O| O ∩ CParent.O

Table 3.1: Determination of intersection outcome for Oid-Full enhancement.
Cparent.Intersect is the cached intersection set, O is the object id set passed to INSERT,
and Cparent.O is the extent of the parent concept.

the INSERT function. Table 3.1 provides identification of outcome based on the

cardinality of these sets.

In caching the intersection set in the parent concept, care must be taken to avoid

incurring a penalty24

In a preliminary test, the final QuICL Oid-Full algorithm successfully constructed

the complete lattice for the Mushroom data set in 3.54 seconds. This represents a gain in

excess of two orders of magnitude over the modified GMA algorithm (Algorithm 3.1).

 in memory consumption. A penalty can be avoided by using the

appropriate reference as the intersection set. If the outcome of comparison is equal or a

subset, then Intersect of the parent concept is assigned the object id set passed to

INSERT. If the outcome of comparison is superset, then Intersect is assigned CParent.O.

If |O ∩ CParent.O| < minimum support, Intersect is assigned an empty set. A new

intersection set is created and cached in the parent concept only when the outcome is

intersection and the intersection set meets the minimum support threshold. However,

using a reference to this same set in the INTERSECT tuples of the ToProcess list will

result in no additional memory consumption. This set ultimately becomes the extent of a

new concept that is added to the lattice. Lastly, on creating a new concept, the Intersect

is assigned a reference to the concept’s extent.

24 Failure to use the appropriate object id sets that are either already present in memory or will be
subsequently used in the algorithm, will result in the storage of many additional object ids sets. Such sets
could amount to substaintial memory consumption during the insertion process.

99

3.8 Asymptotic Complexity of the QuICL Oid-Full Algorithm

Determining the asymptotic complexity of lattice construction algorithms has

been noted to be a “delicate task” (Valtchev et al., 2002). The review of literature of

lattice construction algorithms indicates that the cardinality of the lattice (i.e., number of

concepts) is a factor. However, determining the cardinality of a lattice from an input data

set is of itself a #P complete25

i) time to navigate to the concept above which the new concept will be created
(lines 10 through 19 ultimately recursing at line 15),

 problem (Kuznetsov, 2001). Given this, the expression of

runtime complexity for the QuICL Oid-Full algorithm will include |L| as a factor.

Therefore, in order to postulate a runtime complexity, the cost to add a concept into the

lattice must be assessed.

A concept is created at line 23 of the INSERT function of the QuICL Oid-Full

algorithm (Algorithm 3.4) and then linked into the lattice. Possible terms affecting the

runtime complexity of adding a concept are:

ii) time to execute the prepare-search phase to identify and add entries to the
ToProcessList (lines 10 through 19 not recursing at line 15 or returning at
line 13),

iii) time to purge entries in the ToProcessList that are subsets of other entries
(line 21),

iv) time to create the new concept (line 23),

v) time to process SUPERSET entries in the ToProcessList (lines 25 through 31
for Ti.Type = SUPERSET),

vi) time to process INTERSECT entries in the ToProcessList (lines 25 through
31 for Ti.Type = INTERSECT),

25 #P, pronounced “sharp P” or “number P”, is class of problems in computation theory which is the subset
of NP related to counting (i.e., determining “how many”). #P problems are considered to be more difficult
NP problems. For each #P problem, an easier “does there exists” problem may be NP. Term was first
introduced by Valiant (1979).

100

vii) time to sort the parents of the new concept (line 33), and

viii) time to link the new concept to its base concept (line 35).

The time to navigate to the concept above which a new concept will be created

involves recursion at line 15. The number of times recursion is performed for a given

object id set could be, in the worst case, the height of the lattice minus one. The worst

case for the height of the lattice is the cardinality of the item set. Recursion is performed

using one of the parent concepts as the new base concept. To identify the parent concept

on which to recurse, the INSERT function iterates through the parent concepts and

performs an intersection using object id set passed in the call and the extent of each

parent. The worst case for the number of parent concepts is also the cardinality of item

set. The cost of intersection will be O(k) where k = |O|, provided the object ids are

maintained in sorted order. Therefore, the worst case cost to navigate into the lattice to

the point where a new concept will be inserted is O(m2 k), where m = |I| and k = |O|.

However, this analysis does not account for the fact that the vast majority of concepts are

created as a result of recursive calls. This is often the case, since in a typical lattice the

number of concepts far exceeds the number of items26

The time to execute the prepare-search phase involves iterating over the parent

concepts of the base concept and performing an intersection for each. Each intersection

is between the object ids passed in the call and the extent of the parent. The worst case

. Furthermore, these recursive calls

are invoked at a higher level in the lattice and the concept passed as the base is often the

point above which a new concept will be created. Therefore, the time to navigate is near

zero. Thus, the time to navigate will not be a dominant term in runtime complexity.

26 There are at most |I| concepts created by non-recursive calls, since |I| is the number of times the
INSERT function is called as a result of processing the input data set.

101

for the number of parent concepts is the cardinality of an item set. Furthermore, the

worst case cost of intersection will be O(k) where k = |O|, provided the object ids are in

sorted order. Therefore, the worst case cost execute the prepare-search phase is O(m k),

where m = |I|, and k = |O|. However, this worst case cost would only be realized with

data sets of extreme density27

 Data Set

 and are not representative of real world data sets. For real

world data sets the average number of parent concepts of the base concept will be far less

than the cardinality of the item set. For example, Table 3.2 presents the average degree

(i.e., average number of parents in the upper cover of all concepts) of the lattices

generated by four benchmark data sets often cited in literature. Beyond this, using the

cardinality of the object id set as the factor representing the cost of intersection will be

excessive. For some data sets such as the T10I4D100k, the largest set of object ids will

represent only a fraction of the objects. Furthermore, the cardinality of the object ids sets

(i.e. extents) in a vast majority of concepts will be much smaller. However, the

cardinality of these sets must at least meet the minimum support. Thus, the intersection

cost will be some factor that is greater than the minimum support (best case), less than

the cardinality of the largest object id set (worst case), and probably skewed towards a

lower value depending on the density of the data set (expected case). This factor will be

|O| |I| |L| Avg
Deg

Max
Deg

Mushroom 8,124 119 238,709 5.71 33
Pumsb at 75%supp 49,046 7,116 101,047 7.02 21
T10I4D100k 100,000 999 2,347,374 4.29 846
T25I10D10k 9,219 1,000 2,557,928 4.30 996
 Table 3.2: Sample data set and lattice characteristics28

27 For formal context K{I, O, R}, the density of R = |R| / (|I| × |O|) where |R| is the total number of items
for all objects.
28 See Section 4.2 for further description of these data sets.

.

102

some type of mean function on the cardinality of the extents of frequent items. This

mean will take into account the density of the data set, since the density will affect the

probability of common values between object id sets and therefore generate a greater

number intersection sets whose cardinality is large. The explicit type of mean (e.g.,

arithmetic, quadratic, weighted, etc.) is indeterminate due to the dependency on density.

The term density weighted mean will be used to reference this mean. Given this, an

expected cost to execute the prepare-search phase is O(d i), where d = degavg(L), and i is a

density weighted mean on the cardinality of frequent item extents.

The time to purge entries in the ToProcessList that are subsets of other entries is

the time to execute the PURGE-SUBSETS algorithm. This algorithm compares each

entry with every other entry. The cost to remove an entry can be done in constant time

and therefore is not a factor. Thus, the runtime complexity is O(n2 c) where n is the

number of entries and c is the cost of comparison. The number of entries in the

ToProcessList will at most be number of parents of a concept, which in the worst case is

the cardinality of the set of items. The worst case cost of comparison will be O(k) where

k = |O|, provided the object ids are maintained in sorted order. Therefore, the worst case

time to purge entries in the ToProcessList is O(m2 k), where m = |I| and k = |O|. The

argument to use average degree of the lattice in place of |I| cannot be clearly made due to

the quadratic expression. While the average degree is indeed a fraction of |I|, there can

exist concepts whose number of parents approaches |I| as evident by the maximum

degree given in Table 3.2. However, since the average degree on most data sets is small

(i.e., < 10), there must exist a large number for concepts less than the average to

103

compensate for any outliers. Furthermore, since the degree for a majority of the concepts

must be at least two29

Of the remaining terms, only the time to process INTERSECT entries has the

potential to be a dominant term. Time to create the new concept is O(1), time to process

SUPERSET entries is O(d), time to sort parents is O(d log d), and time to link the new

concept to its base is O(log d), where d = degavg(L). Processing the INTERSECT entries

involves performing a recursive call to the INSERT function. Many of these calls will

result in creating a new concept. The cost to create a new concept, during the processing

of INTERSECT entries, does not need to be consider at this point. This cost will be

accounted for in the overall runtime complexity, since the overall runtime complexity has

factor |L| which includes all concepts. This leaves calls that search for concepts already

present in the lattice. The cost of performing such call will be very similar to cost of

, an even greater number of small concepts must be present.

Therefore, average degree of the lattice will be a better expression than |I|. The cost of

comparison will be less than the cost of intersection. In the cases where neither set is a

subset of the other, this outcome is often determined within a few iterations into each set.

An outcome can be determined as soon as an object id not present in the other set is

found in each. Given that a vast majority of the entries in the ToProcessList are not

subsets of each other, the cost of comparison will probably be near a constant which is

some small fraction of |O|. However, the density of data set may have an effect on this

constant, since a higher density increase the probability of common values between sets.

Therefore, the cost purge entries is O(d2 c), where d = degavg(L) and c is a small fraction

of |O| depending density.

29 There can be at most |I| interior concepts of degree one. Since |L| greatly exceeds |I|, most interior
concepts have a degree greater than one.

104

prepare-search, since the same statements are performed (lines 10 through 19 of

Algorithm 3.4). However, these calls may recurse a number of times through line 15

before ultimately reaching line 13. The number of times recursion is performed will be in

the worse case the height of the lattice. However, the insertion of a new concept is often

at higher levels in the lattice. Furthermore, the parent is often found within a few levels

of recursion and in many cases just one30

Of all the possible terms affecting the runtime complexity of adding a concept

into the lattice, only the time to execute the prepare-search phase, time to purge subsets,

and time to process INTERSECT entries are feasible dominant terms. The complexity

for these terms is O(d i), O(d2 c), and O(d d′ i h) respectively. Given this, it is postulated

that the runtime complexity for the QuICL Oid-Full algorithm will be either O(l d i),

O(l d2 c), or O(l d d′ i h), where l = |L| and the rest as previously stated. While O(l d2 c)

. Therefore, the expected number of times

recursion is performed is a sub-linear function (e.g., log, sqrt) on the height of the lattice.

Thus, the runtime complexity of performing calling INSERT to find a concept already

present in the lattice will be O(d i h), where h is a sub-linear function on the height of the

lattice, and d and i as previously stated. The number of such calls will be a fraction of the

number of parents of a concept depending on density, since density has an effect on the

probability the extent already exists in the lattice. Therefore, the time to process

INTERSECT entries that find concepts already present in the lattice is O(d d′ i h), where

d = degavg(L), d′ is a fraction of d depending on density, i is a density weighted mean on

the cardinality of frequent item extents, and h is a sub-linear function on the height of the

lattice.

30 This behavior was observered by instrumentation added during the benchmarks of Chapter 4. The
number times the calls recurse appear to grow at a slower rate than the height of the lattice.

105

or O(l d d′ i h) on the surface appear to be greater than O(l d i), the probability of a real

effect on the performance by these terms is doubtful, since both c and d′ will often be

very small fractions. Only O(l d i) is assured. Thus, the expected asymptotic complexity

of the QuICL Oid-Full algorithm will at least be O(l d i), but could approach O(l d2 c) or

O(l d d′ i h), where l = |L|, d = degavg(L), i is density weighted mean on the cardinality of

frequent item extents, c is a small fraction of |O| depending density, d′ is a fraction of d

depending on density, and h is a sub-linear function on the height of the lattice.

Determination of the space complexity for the QuICL Oid-Full algorithm will

also include |L| as a factor. Therefore, in order to postulate a space complexity, the space

consumed by each a concept must first be assessed. Each concept is a tuple {I, O,

Parents} where I is a list of items, O is a list of object ids, and Parents is a list of parent

concepts. Given this, a space complexity for the QuICL Oid-Full algorithm of O(l m2 k)

could be considered, where l = |L|, m = |I|, and k = |O|. However, the QuICL Oid-Full

algorithm only stores a given item in only one place within the lattice. The sum of the |I|

for all concepts will be at most |I|. Thus, one m can be removed as a factor. The other m

can be replaced by d, being the average degree of the lattice, for the same arguments

stated during the analysis of runtime complexity. Likewise, k can be replaced with i,

being a density weighted mean on the cardinality of frequent item extents. Therefore, it

is postulated that the memory complexity of the QuICL Oid-Full algorithm is O(l d i)

where l = |L|, d = degavg(L), and i is a density weighted mean on the cardinality of

frequent item extents.

106

3.9 Discussion for an Alternate QuICL

The execution times from preliminary tests of the QuICL Oid-Full algorithm are

very promising. Performance against the Mushroom data set and the T25I10D10k31 data

set appear to be far better than any known algorithms. However, the performance gains

do not hold against some other data sets, such as Chess32

• As new concepts are inserted into the lattice, the object ids of the children of the
new concept will percolate up into the new concept for any object ids that are
common between the children.

. An issue for the QuICL Oid-

Full algorithm is storage of the complete list of object ids in each concept. The same

object ids can be repeated in multiple concepts. This is evident in Figure 3.1. Since the

number of concepts can grow exponentially with respect to the size of the data set, the

size and storage of concept lattice has potential to exceed the capacity of the main

memory. To address this concern, an alternate compressed data structure is sought. Such

alternate notation can be obtained by exploiting the lattice property: if Oi ∈ extent of

concept C1 then ∀ C2 | C2 > C1, Oi ∈ extent of C2. Thus, an Oi ∈ O of concept C2 does

not need to be physically recorded in a concept if there exists a concept C1 such that

C1 < C2 and Oi ∈ O of concept C1. An object Oi need only be recorded in a concept at its

minimal position (i.e., highest position in the inverted lattice). The complete set of O for

a concept can be computed by traversing all ancestors.

Figure 3.7 depicts the same lattice construction progress of Figure 3.1 using the

compressed lattice data structure. In addition to the same observations concerning the

progression given in Figure 3.1, an additional observation is noteworthy:

31 T25I10D10k is another test data set often used in studies of association rule mining. See Section 4.2.
32 Chess is data set often used in studies of association rule mining. See Section 4.2.

107

Inserting a1 ({a1},{O1O2O3O4O5O8O9O10})

(∅,∅)

Inserting a2

(∅,∅)

({a2},{O6O7})({a1},{O1O2O3O4O5O8O9O10})

Inserting b1

({b1},{O1O2O8})

(∅,∅)

({a2},{O6O7})({a1},{O3O4O5O9O10})

({a1},∅)

Inserting c1

({c1},∅) ({b2},∅)

({b1},{O1})

(∅,∅)

(∅,{O3O4O5O9O10})

({a2},{O7})(∅, ∅)

(∅,{O2O8})

(∅, ∅)

(∅,{O6})

Inserting b2

({b2},∅)

({b1},{O1O2O8})

(∅, ∅)

({a1},∅)

(∅,{O3O4O5O9O10}) ({a2},{O6O7})

({c2},{O7})

({c1},∅) ({b2},∅)

({b1},∅)

(∅,∅)

({a1},∅)

(∅,{O3O4O5O9O10})

({a2},∅)(∅,∅)

(∅,{O2O8})

(∅,∅)

(∅,{O6})({c3},{O1})
Inserting c2 and c3

Figure 3.7: Progression of incremental insertion into a compressed lattice. Bold text and
lines identify added new elements. Dashed lines are removed elements.

108

({c2},{O7})

({c1},∅) ({b2},∅)

({b1},∅)

(∅,∅)

({a1},∅)

(∅,{O4})

({a2},∅)(∅,∅)

(∅,{O2O8})

(∅,∅)

(∅,{O6})({c3},{O1})

({d1},∅)

(∅,{O3O5O9O10})

Inserting d1

({d2},∅}

({c2},{O7})

({c1},∅) ({b2},∅)

({b1},∅)

(∅,∅)

({a1},∅)

(∅,{O4})

({a2},∅)(∅,∅)

(∅,{O2O8})

(∅,∅)

(∅,{O6})({c3},{O1})

({d1},∅)

(∅,{O3O5O9O10})

Inserting d2

({d2},∅}

({c2d3},{O7})

({c1},∅) ({b2},∅)

({b1},∅)

(∅,∅)

({a1},∅)

(∅,{O4})

({a2},∅)(∅,∅)

(∅,{O2O8})

(∅,∅)

(∅,{O6})({c3},{O1})

({d1},∅)

(∅,{O3O5O9O10})

Inserting d3

({d2},∅}

({c2d3},{O7})

({c1},∅) ({b2},∅)

({b1},∅)

(∅,∅)

({a1},∅)

(∅,{O4})

({a2},∅)(∅,∅)

(∅,{O2O8})

(∅,∅)

(∅,{O6})({c3},{O1})

({d1},∅)

(∅,{O3O5O9O10})

Inserting d4

({d4},{O4})

Figure 3.7 continued: Progression of incremental insertion into a compressed lattice.
Bold text and lines identify added new elements.

109

3.10 An Incremental Insertion Algorithm Using a Compressed Lattice

Algorithm 3.5 presents an incremental insertion algorithm that uses the

compressed lattice data structure. This is the QuICL algorithm of Algorithm 3.4 with a

few modifications:

i) The tuples now include field Support, since support can no longer be
determined by |O|. Changes to set and use Support are made accordingly
(lines 20, 24, 38, and 40).

ii) The predicates to support construction of an iceberg lattice have been
removed. Support for iceberg lattices using the compressed data structure will
be discussed later in this chapter.

iii) A call is made to a function GET-O to obtain the complete list of object ids
for a concept (line 7). The GET-O algorithm, given in Algorithm 3.6,
traverses the ancestors in the lattice to obtain a concept’s object ids. The
returned set is used instead of the O of a concept when performing subset,
superset, equal, and intersect operations (lines 8, 11, 13, and 15).

iv) Object ids in O that are not at, or will no longer be at, the minimal position33

GET-O-EXTEND within GET-O traverse all ancestors of a concept recursively.

The VisitedSet (line 2) is used to ensure that an ancestor concept is only processed once.

The set O is sorted (line 4) to enable fast subset, superset, equal, and intersect operations

on the returned set.

In a preliminary test, Algorithm 3.5 took 1,560 seconds to execute against the

Mushroom data set. While this execution time is two orders of magnitude greater than

the QuICL Oid-Full, it is interesting to note that it matches the GMA algorithm. Profile

analysis revealed that near 99% of the execution time is consumed by the GET-O

function. Thus, alternate strategies to perform the comparison tests are needed.

are removed from O (lines 21 and 22) prior to constructing the new concept
(line 24). This performs part of the percolation of ids. Removing the
percolated ids from the base concept completes the process (line 25).

33 Minimal position in the highest concept in an inverted lattice that is to hold a given object id.

110

Let Concept be a tuple {I, O, Support, Parents} where I a list of items, O a list of

object ids, Support is the support of the concept, and Parents a list of parent
concepts.

 INSERT(CBase, Ii, O) :

1. ToProcessList ← ∅ // list of tuples {Type, Concept, O} with
2. // Type ∈ {SUPERSET, INTERSECT}, Concept a
3. // reference to the intersecting concept, and O
4. // a set of object ids resulting from an intersection
5.
6. for each CParent ∈ of CBase.Parents: // prepare-search phase
7. OParent ← GET-O(CParent)
8. if O = OParent:
9. Add Ii to CParent.I

10. return CParent
11. else if O ⊂ OParent:
12. return INSERT (CParent, Ii, O)
13. else if O ⊃ ConceptO:
14. Add {SUPERSET, CParent, OParent} to ToProcessList
15. else if O ∩ ConceptO ≠ ∅:
16. Add {INTERSECT, CParent, O ∩ OParent} to ToProcessList
17.
18. PURGE-SUBSETS(ToProcessList)
19.
20. Support ← |O|
21. for each Ti ∈ ToProcessList: // remove ids not at min position
22. O ← O – Ti.O
23.
24. CNew ← New Concept({Ii}, O, Support) // create the new concept
25. CBase.O ← CBase.O − O // percolate object ids
26.
27. for each Ti ∈ ToProcessList: // link phase - process intersections
28. if Ti.Type = SUPERSET:
29. Remove Ti.Concept from CBase.Parents
30. Add Ti.Concept to CNew.Parents
31. else if Ti.Type = INTERSECT:
32. CParent ← INSERT (Ti.Concept, ∅, Ti.O)
33. Add CParent to CNew.Parents
34.
38. Sort CNew.Parents in order of decreasing Support
39.
40. Add CNew to CBase.Parents in order of decreasing Support
41.
42. return CNew

Algorithm 3.5: Incremental item insertion algorithm for a compressed lattice.

111

GET-O(Concept)

1. O ←∅
2. VistedSet ←∅
3. GET-O-EXTEND(Concept, O, VisitedSet)
4. Sort O
5. Returns O

GET-O-EXTEND(Concept, O, VisitedSet)

6. if Concept ∉ VistedSet:
7. Add Concept to VistedSet
8. O ←O ∪ Concept.O
9. for each CParent∈ Concept.Parents:

10. GET-O-EXTEND(CParent, O, VisitedSet)

Algorithm 3.6: Supporting algorithms to extract an object id set.

3.11 A Strategy to Intersect a Concept Lattice

Instead of performing subset, superset, equal, and intersect operations against the

object ids obtained for each individual concept, an alternate strategy is to intersect the

extent of an item with the complete lattice. This strategy exploits the compress lattice

data structure. That is, all object ids are physically stored at only their minimal positions.

As a result, only one concept in the lattice contains a given object id. A vector indexed

by object id can be used to locate the concept. Intersection with the lattice can be

performed by iterating over the item’s extent, lookup each concept using the object id as

an index, and then add the object to the set of intersect object ids stored in the concept.

The intersect object ids are a temporal set that is cleared between item insertions. This

represents the set of object ids at its minimal position that intersects the item’s extent. It

does not represent the extent of a given concept that intersects the item’s extent. The full

intersection set for a concept can be obtained by traversing all ancestors of a concept and

accumulating all object ids in the object id intersection sets.

112

Figure 3.8 illustrates an example of lattice intersection. For the new item I3, the

concept for each object in the extent {O3O4O6} is identified using each object id as an

index into the O2C vector, and the object id is then added to the referenced concept’s

intersection set. In Figure 3.8 the object ids highlighted in bold represent the object ids in

the intersection set. To obtain the full intersection set for a given concept, the concept

and all of its ancestors are traversed accumulating the object ids of the intersection sets.

For example, the full intersection set for concept ({I5}, ∅) is {O3O4O6} and the full

intersection set for concept ({I6}, ∅) is {O3}.

Algorithm 3.7 presents the incremental item insertion algorithm for a compressed

lattice that uses lattice intersection. The related supporting functions used in Algorithm

3.7 are given in Algorithm 3.8. The BUILD-LATTICE function now calls a function

INTERSECT-LATTICE (line 3) to intersect an item’s extent with the concept lattice.

This will set the intersection sets of the concepts referenced by the O2C lookup vector.

INTERSECT-LATTICE is executed once for each item prior to calling INSERT to add

the item into the lattice. The call to function GET-INTERSECT (line 12) is used to

obtain the full set of object ids of a concept that intersect the items extent. However, this

set by itself is not sufficient to determine if a concept’s object ids is a subset, superset, or

equal to the item’s extent. The function HAS-SUPERSET, called on line 13, returns a

boolean indicating if the concept has at least one object id that does not intersect with the

item’s extent. From the Intersect returned by INTERSECT and HasSuper returned by

HAS-SUPERSET the relationship between an item’s extent and a concept can be readily

determined as indicated in Table 3.3.

113

({I5},∅) ({I4},∅)

({I3},∅)

(∅,∅)

({I1},∅)

(∅,{O4})

({I2},∅)(∅,∅) (∅,∅)

(∅,{O6})({I7},{O1O2})

({I6},∅)

(∅,{O3O5})

Inserting I8 {O3O4O6}

O6

O1
O2
O3
O4
O5

Ancestors of ({I5},∅)
∴ ∩ = {O3O4O6}

Ancestors of ({I6},∅)
∴ ∩ = {O3} O2C Vector

Figure 3.8: Illustration of lattice intersection. Vector O2C provides lookup of the concept
holding a given object id. The shaded triangles denote the ancestors of a given concept.
Bolded text denotes the intersecting object ids. For a given concept C, the full set of
intersecting object ids are the intersection object ids in that concept and all ancestor
concepts.

Test on Intersect HasSuper Outcome
|Intersect| = 0 No relationship
|Intersect| = |O| FALSE Item’s Extent = Concept’s Extent
|Intersect| = |O| TRUE Item’s Extent ⊂ Concept’s Extent
|Intersect| < |O| FALSE Item’s Extent ⊃ Concept’s Extent
|Intersect| < |O| TRUE Item’s Extent ∩ Concept’s Extent

Table 3.3: Determination of intersection outcome.

114

The prepare-search phase in the INSERT function uses above tests in place of

previous =, ⊂, ⊃, and ∩ set operations (lines 14, 16, 19, 21, and 23). In addition,

function ADJUST is called following creation of a new concept (line 30). The ADJUST

function is needed to perform adjustments between CNew and CBase concepts in order to

maintain integrity of the compressed lattice data structure. The rest of the INSERT

function is the same as before.

Algorithm 3.8 provides the algorithms for functions supporting Algorithm 3.7.

For these functions, the tuples defining concepts in the lattice are augmented with a set of

temporal fields to hold the results of intersecting an item with the lattice. The fields

include Intersect, FullIntersect, and HasSuper. Intersect are the object ids at their

minimal position that intersect an item’s extent. The FullIntersect is the full list of object

ids of a concept that intersect an item’s extent. HasSuper is a boolean indicating that

there exists at least one object id of the concept that does not intersect with the item’s

extent. Intersect is set by calling the INTERSECT-LATTICE function. FullIntersect and

HasSuper are derived as needed by the GET-INTERSECT and HAS-SUPERSET

functions, respectively. All of the temporal fields are retained during insertion of a given

item and discarded between item insertions. These fields can be implemented using hash

tables or as additional fields in the tuples. In either case, clearing the fields involves a

marginal amount of bookkeeping and performance overhead.

115

Let Concept be a tuple {I, O, Support, Parents} where I a list of items, O a list of
object ids, Support is the support of the concept, and Parents a list of parent
concepts.

Let O2C be a vector whose index Oi identifies the concept Ci | Oi ∈ C.O

BUILD-LATTICE(K{I, O, R})
1. CBottom ← new Concept (∅, ∅)
2. for each Ii ∈ I: // o(Ii) is the set O derived from R
3. INTERSECT-LATTICE(CBottom, o(Ii))
4. INSERT(CBottom, Ii, o(Ii))
5. return CBottom // the lattice

 INSERT(CBase, Ii, O)
6. ToProcessList ← ∅ // list of tuples {Type, Concept, O} with
7. // Type ∈ {SUPERSET, INTERSECT}, Concept a
8. // reference to the intersecting concept, and O
9. // a set of object ids resulting from an intersection

10.
11. for each CParent ∈ of CBase.Parents: // prepare-search phase
12. Intersect ← GET-INTERSECT(CParent)
13. HasSuper ← HAS-SUPERSET(CParent)
14. if Intersect = ∅: // no relationship
15. continue for each with next CParent
16. else if |Intersect| = |O| ∧ HasSuper = FALSE: // equal case
17. Add Ii to CParent.I
18. return CParent
19. else if |Intersect| = |O| ∧ HasSuper = TRUE: // subset case
20. return INSERT (CParent, Ii, O)
21. else if |Intersect| < |O| ∧ HasSuper = FALSE: // superset case
22. Add {SUPERSET, CParent, Intersect} to ToProcessList
23. else if |Intersect| < |O| ∧ HasSuper = TRUE: // intersect case
24. Add {INTERSECT, CParent, Intersect} to ToProcessList
25.
26. PURGE-SUBSETS(ToProcessList)
27.
28. CNew ← New Concept({Ii}, CBase.Intersect, |O|) // create the new concept
29.
30. ADJUST(CBase, CNew)

 . . .

Algorithm 3.7: Incremental item insertion algorithm using lattice intersection.

116

Let tuples of Concepts be augmented with the temporal fields {Intersect, FullIntersect,
HasSuper} where Intersect a list of the concept’s O that intersect with an item’s
extent, FullIntersect a full set of object ids of a concept that intersect with an
item’s extent, and HasSuper a boolean indicating at least one object id of a
concept does not intersect with an item’s extent.

INTERSECT-LATTICE(CBottom, O)
1. All temporal fields of all concepts within the lattice ←∅
2. for each Oi ∈ O: // perform the intersection
3. CMin ← O2C[Oi] // CMin is the concept with Oi at minimal position
4. if CMin ≠ ∅:
5. Add Oi to CMin.Intersect
6. else:
7. Add Oi to CBottom.Intersect

GET-INTERSECT(Concept)
8. if Concept.FullIntersect = ∅:
9. VisitedSet ←∅

10. GET-INTERSECT-EXTEND(Concept, Concept.FullIntersect, VisitedSet)
11. Sort Concept.FullIntersect
12. return Concept.FullIntersect

GET-INTERSECT-EXTEND(Concept, FullIntersect, VisitedSet)
13. if Concept ∉ VisitedSet:
14. Add Concept to VisitedSet
15. Add Concept.Intersect to FullIntersect
16. for each CParent ∈ Concept.Parents:
17. GET-INTERSECT-EXTEND(CParent, FullIntersect, VisitedSet)

HAS-SUPERSET(Concept)
18. if Concept.HasSuper = ∅:
19. if |Concept.Intersect| < |Concept.O|:
20. Concept.HasSuper ← TRUE
21. else:
22. for each CParent ∈ Concept.Parents ∧ Concept.HasSuper = ∅:
23. if HAS-SUPERSET (CParent):
24. Concept.HasSuper ← TRUE
25. if Concept.HasSuper = ∅:
26. Concept.HasSuper ← FALSE
27. return Concept.HasSuper

ADJUST(CBase, CNew)
31. for each Oi ∈ CBase.Intersect:
32. O2C[Oi] ← CNew
33. CBase.O ← CBase.O − CBase.Intersect
34. CNew.Intersect ← CBase.Intersect
35. CBase.Intersect ← ∅

Algorithm 3.8: Algorithms of supporting functions for lattice intersection.

117

The INTERSECT-LATTICE function begins by clearing the values of all

temporal fields of the previous execution (line 1) and then performs the lattice

intersection using the O2C vector (lines 2 through 7). If a concept for an object id is not

found in the O2C vector, then the object id is added to the Intersect temporal field of the

bottom concept. Upon completion of INTERSECT-LATTICE all concepts whose

minimal object ids intersect with the extent of the new item will have their Intersect set

accordingly.

Function GET-INTERSECT returns FullIntersect of a concept. It calls GET-

INTERSECT-EXTEND to assign FullIntersect the Intersect of the concept and all

ancestor concepts (line 10). Following the call to GET-INTERSECT-EXTEND, the

object ids of FullIntersect are sorted. Sorted ids are needed to enable fast set operations.

GET-INTERSECT-EXTEND is the same recursive algorithm as GET-O-EXTEND

previously presented, except it adds the Intersect to the resulting set instead of O. The

assignment to FullIntersect effectively caches the result. This eliminates lattice traversals

in the event that GET-INTERSECT is called more than once for the same concept during

insertion of an item. It would be desirable to cache the interim results gathered during

execution of GET-INTERSECT-EXTEND. However, the algorithm and data structure is

not conducive to such approach.

Function HAS-SUPERSET first checks if a value for the HasSuper field for the

concept has previously been derived (line 18). If so, returns the value of HasSuper,

otherwise it compares the number of object ids between the concept’s intersection and

object id sets. If the number of objects in the intersection set is less, then there exists at

least one object id that is not in the extent of the item. In such case, HasSuper for the

118

concept is set to TRUE and that value is returned. If the size of the intersection set equals

the object id set, then HAS-SUPERSET recurses on each parent concept. If any of the

recursive calls returns TRUE, HasSuper for the concept is set to TRUE and that value is

returned. If none of the recursive calls returns TRUE, HasSuper for the concept is set to

FALSE and that value is returned. These recursive calls will set the HasSuper field for

each parent, thereby caching the intermediary results. The ADJUST function will update

the O2C vector to reference CNew for each of the percolated object ids (lines 31 and 32)

and percolate the intersection sets from CBase to CNew (lines 33 through 35).

In a preliminary test, Algorithm 3.7 (with supporting algorithms of Algorithm 3.8)

took 446 seconds to execute against the Mushroom data set. Thus, Algorithm 3.7

provides a performance gain of a factor of three over Algorithm 3.5. While this is

substantial, the executions times are is still far short of the performance of QuICL Oid-

Full. Profile analysis revealed that 98% of execution time was spent executing the GET-

INTERSECT and HAS-SUPERSET. Virtually all execution time is still spent

performing the lattice intersection.

3.12 A Push Instead of Pull Intersection

Algorithm 3.8 uses a pull-down strategy to complete the intersection process for a

given concept. That is, the GET-INTERSECT function derives FullIntersect by pulling

down the Intersect from all ancestor concepts. This pull-down is performed as needed

the first time the full set of intersect object ids is accessed for a given concept. An

alternate approach is to push the object ids down into the lattice during that lattice

intersect operation. This approach is given in Algorithm 3.9. Here, the LATTICE-

INTERSECT function performs a call to LATTICE-INTERSECT-EXTEND to push an

119

object id into the lattice (line 6). LATTICE-INTERSECT-EXTEND is a recursive

algorithm. It first checks whether the object ids have not already been added to a

concept’s FullIntersect. If so the recursion halts, otherwise the object id is added to a

concept’s FullIntersect and LATTICE-INTERSECT-EXTEND is called for each parent.

Since a concept’s FullIntersect is set during the lattice intersection, the GET-

INTERSECT function for this algorithm simply returns FullIntersect (line 13).

In a preliminary test, Algorithm 3.7 using Algorithm 3.9 took 139 seconds to

execute against the Mushroom data set. This is performance improvement of a factor of

three over Algorithm 3.7 using Algorithm 3.8 and an order of magnitude improvement

over Algorithm 3.5. However, performance of this algorithm is still an order of

magnitude slower than QuICL Oid-Full. Profile analysis revealed that 93% of the

execution time is now consumed executing the INTERSECT-LATTICE function. A

large portion of execution time is still spent performing the lattice intersection. There are

no further apparent improvements to this push approach.

3.13 A Hybrid Pull-Down and Bottom-up Intersection

As a lattice grows, the support functions of both Algorithms 3.8 and 3.9 exhibits a

degradation of performance. The problem is that the object ids percolate to the top

concepts in the lattice, yet the QuICL algorithms need the results of intersection for the

concepts from the bottom-up. Regardless of pull-down or push-down approach, a

traversal through the body of the lattice is required. A strategy to improve performance is

to reduce the number of times the lattice is traversed. One means of achieving this

strategy is to exploit proposition 3.1.

120

Proposition 3.1: If a concept has more than one child, then the set of object ids
for the concept that intersects with an item’s extent will be the intersection of the
set of object ids that intersects with an item’s extent of all child concepts.

Proof: A parent concept is the join concept (i.e., least common ancestor in an
inverted lattice) of all of its children. Therefore, the parent’s extent is the
intersection of the extents of its children. Let Oi be an object id in the extent of a
child that intersects with the items extent, then

i) if Oi is in the extent of all other children, then Oi is in each child’s set
of object ids that intersects the item’s extent, or

ii) if Oi is not in the extent of at least one child, then Oi cannot be in the
parent’s set of object ids that intersects an item’s extent since that set
is a subset of the parent’s extent.

Therefore, the set of object ids that intersects with an item’s extent for a parent
concept will be the intersection of the set of object ids that intersects with an
item’s extent of all child concepts.

Given proposition 3.1, the algorithm to pull-down object ids through the lattice is

only required for concepts that have less than two children. For concepts with two or

more children, the full intersection set of object ids of the concept can be derived by

intersecting the full intersection sets of its children. In doing so, traversal of the lattice

can be limited to only concepts with less than two children. For concepts with two or

more children, only the immediate children are traversed. This savings in lattice traversal

is at the expense of introducing a k-way intersection. Algorithm 3.10 provides an

enhanced GET-INTERSECT function to supersede the one in Algorithm 3.8.

A preliminary test of Algorithms 3.7 and 3.8 using the GET-INTERSECT

function of Algorithm 3.10 took 143 seconds to execute against the Mushroom data set.

This performance is slightly slower than Algorithm 3.9. Thus, the hybrid algorithm may

appear to be a fruitless approach. However, there exists an opportunity for further

121

INTERSECT-LATTICE(CBottom, O)
1. All temporal fields of all concepts within the lattice ←∅
2. for each Oi ∈ O:
3. CMin ← O2C[Oi] // CMin is concept with Oi at minimal

position
4. if CMin ≠ ∅:
5. Add Oi to CMin.Intersect
6. INTERSECT-LATTICE-EXTEND(CMin, Oi)
7. else:
8. Add Oi to CBottom.Intersect

INTERSECT-LATTICE-EXTEND(Concept, Oi)

9. if Oi ∉ Concept. FullIntersect: // need only test last Oi in FullIntersect
10. Add Oi to Concept. FullIntersect
11. for each CChild ∈ Concept.Children:
12. INTERSECT-LATTICE-EXTEND(CChild, Oi)

GET-INTERSECT(Concept)
13. return Concept.FullIntersect

Algorithm 3.9: A push down algorithm for lattice intersection.

GET-INTERSECT(Concept)

1. if Concept.FullIntersect = ∅:
2. if |Concept.Children| < 2:
3. VisitedSet ←∅
4. GET-INTERSECT-EXTEND(
5. Concept, Concept.FullIntersect, VisitedSet)
6. Sort Concept.FullIntersect
7. else:
8. Concept.FullIntersect ←
9. ∩ GET-INTERSECT(Ci) ∀ Ci∈ Concept.Children

10.
11. return Concept.FullIntersect

Algorithm 3.10: Hybrid pull-down and bottom-up intersection algorithm.

122

improvement. Profile analysis revealed 93% of the time is spent executing the hybrid

GET-INTERSECT function. Of this time, 72% is consumed in the pull-down of object

ids. The remaining time is spent performing the k-way intersections together with a

marginal amount of overhead. The time consumed in the pull-down of object ids is a

considerable percentage, yet it is performed only on a limited number of concepts.

Herein lays the opportunity for improvement.

Consider the lattice illustrated in Figure 3.9. As items are inserted, the number of

concepts in the lattice will grow exponentially and thus become very large. Of the

concepts in the lattice, let the concepts that hold object ids at their minimal position be

defined as supports and the concepts that have only one child be defined as dependents.

A concept can be both a support and a dependent. Even though the number of concepts

in the lattice can become very large, the number of supports and dependents is limited as

stated by Propositions 3.2 and 3.3.

Proposition 3.2. The number of support concepts in a compressed concept lattice
data structure can be at most |O|.

Proof: Within a compressed lattice a given object id is stored in only one
concept, its minimal concept. Therefore of all the concepts in the lattice, at most
|O| number of concepts can hold an object id. Since a support concept is defined
to be those concepts that hold object ids, the number of support concepts in the
lattice is at most |O|.

Proposition 3.3. The number of dependent concepts in a concept lattice can be at
most |I|.

Proof: A dependent concept is a concept with only one child. If a concept has
only one child then it exists in the lattice only as a result of inserting an item
having a set of objects that is a ⊃ extent of the child concept. |I| are inserted into
the lattice. Therefore, the number of dependent concept in a concept lattice can
be at most |I|.

123

(∅,{O1O2O3}) (∅,{O6})

(∅,{O4O5})

(∅,{O8O9O10})

({I2},∅) ({I3},∅)

({I1},∅)

(∅,∅) (∅,∅) (∅,∅) (∅,∅)

(∅,∅) (∅,∅) (∅,∅) (∅,∅)

(∅,∅)

(∅,∅)

(∅,∅) (∅,∅) (∅,∅) (∅,∅)

(∅,∅) (∅,∅) (∅,∅) (∅,∅) (∅,∅)

(∅,∅)

(∅,∅) (∅,∅) (∅,∅) (∅,∅)

Supports

Dependents

(∅,∅)

At most |O|

At most |I|

({I3},{O11})

Figure 3.9: Lattice illustrating support and dependent concepts.

124

An outcome of proposition 3.2 is that a dependent concept is dependent upon at

most |O| concepts. A performance gain can be achieved by maintaining a list of support

concepts within each dependent concept. The pull-down of intersecting object ids can be

performed by consulting the list of support concepts thereby bypassing a lattice traversal.

Since by proposition 3.3 the number of dependent concepts is also limited, the overhead

to maintain these support lists in each dependent concept is small. To enable

maintenance of the list of supports, the support concepts will maintain a list of dependent

concepts. As object ids percolate up though the concept lattice, the ADJUST function

can update the dependent and support lists as needed.

Algorithm 3.11 provides modified GET-INTERSECT and ADJUST functions to

utilize and maintain the support and dependent concept lists. GET-INTERSECT is

modified to use the list of support concepts to pull-down the intersecting object ids (lines

3 and 4). The ADJUST function is modified to update the dependent and support lists as

object ids are moved from concept CBase to CNew (lines 13 through 18). While these

modifications correctly maintain the existing support and dependent lists, they do not

create the initial support lists for a concept representing the new item. However, to

enable such functionality, the ADJUST function adds a reference to CNew from CBase in a

temporal field AdjustedTo (line 12).

Algorithm 3.12 provides modified BUILD-LATTICE and INTERSECT-

LATTICE functions to initialize the support list for a new concept resulting from

inserting an item into the lattice. Also provided is an ADD-LINK function to discard a

support list when a concept is no longer a dependent. The INTERSECT-LATTICE

function now returns a set of concepts that are the potential supports for the new item.

125

The set is initialized to be empty (line 13) and populated with a given concept the first

time an object id is added to its intersection set (lines 17 and 18). The set is returned after

iterating through all of the object ids in the item’s extent (line 24). The BUILD-

LATTICE function retains a reference to the returned set (line 3).

The INSERT function was defined to return the concept whose extent equals the

set of object ids passed in the call. The rationale for returning a concept is to enable a

parent-child link to be created when recursively calling the INSERT function. Since the

returned concept can be a new concept, it can be exploited to provide initialization of a

new concept’s support list. The INSERT function can also return an existing concept.

Therefore, the returned concept must be tested to determine if it is a new concept that

needs to be initialized (line 5). During execution of the INSERT function, object ids of a

potential support concept may percolate into other new concepts. In such case the

AdjustedTo field will be set to reference the concept into which object ids have been

percolated (line 11 of Algorithm 3.11). Therefore, the list of potential supports must first

be processed before assigning the list to the new concept. Any concepts with an assigned

AdjustedTo field are replaced by the concept referenced in the field (lines 6 through 8).

In addition, the loop through the support concepts can add the new concept to the list of

dependent concepts of each support (line 9). The corrected list of support concepts is

then assigned to the new concept (line 10).

 In a preliminary test, Algorithms 3.7 and 3.8 using the supporting functions

defined of Algorithms 3.11 and 3.12 took 49 seconds to execute against the Mushroom

data set. This represents a three times improvement over Algorithm 3.9 Profile analysis

revealed that 78% of the execution time was spent executing the GET-INTERSECT and

126

Let tuples of dependent Concepts be augmented with the field {Supports}. Supports is
a list of Concepts holding object ids that support a Dependent

Let tuples of support Concepts be augmented with the field {Dependents}. Dependents

is a list of Concepts that have only one child and are dependent upon the
Concept.

Let tuples of all Concepts be augmented with the temporal field {AdjustedTo}.

AdjustedTo is the concept generated from a base concept. AdjustedTo is
discarded following each item insertion.

GET-INTERSECT(Concept) :

1. if Concept.FullIntersect = ∅:
2. if |Concept.Children| < 2:
3. for each Ci ∈ Concept.Supports:
4. Add Ci.Intersect to Concept.FullIntersect
5. Sort Concept.FullIntersect
6. else
7. Concept.FullIntersect ←
8. ∩ GET-INTERSECT(Ci) ∀ Ci ∈ Concept.Children
9. return Concept.FullIntersect

ADJUST(CBase, CNew) :
10. for each Oi ∈ CBase.Intersect:
11. O2C[Oi] ← CNew
12. CBase.AdjustedTo ← CNew
13. if CBase.Intersect ≠ ∅ ∧ CBase.Dependents ≠ ∅:
14. for each CDependent ∈ CBase.Dependents:
15. Add CNew to CDependent.Supports
16. Add CDependent to CNew.Dependents
17. if CBase.O = ∅:
18. Remove CBase from CDependent.Supports
19. CBase.O ← CBase.O − CBase.Intersect
20. CNew.Intersect ← CBase.Intersect
21. CBase.Intersect ← ∅

Algorithm 3.11: Algorithm modifications to maintain supports and dependents.

127

BUILD-LATTICE(K{I, O, R})

1. CBottom ← new Concept (∅, ∅)
2. for each Ii ∈ I: // o(Ii) is the set O derived from R
3. Supports ←INTERSECT-LATTICE(CBottom, o(Ii))
4. CNew ← INSERT(CBottom, Ii, o(Ii))
5. if |CNew.Children| < 2 ∧ CNew.Supports ≠ ∅: // not an existing concept
6. for each CSupport ∈ Supports: // prepare the supports
7. if CSupport.AdjustedTo ≠ ∅:
8. Replace CSupport with CSupport.AdjustedTo
9. Add CNew to CSupport.Dependents

10. CNew.Supports ←Supports // set the support concepts
11. return CBottom // the lattice

INTERSECT-LATTICE(CBottom, O)
12. All temporal fields of all concepts within the lattice ←∅
13. Supports ← ∅
14. for each Oi ∈ O: // perform the intersection
15. CMin ← O2C[Oi] // CMin is concept with Oi at minimal position
16. if CMin ≠ ∅:
17. if CMin.Intersect = ∅:
18. Add CMin to Supports
19. Add Oi to CMin.Intersect
20. else:
21. if CBottom.Intersect = ∅:
22. Add CBottom to Supports
23. Add Oi to CBottom.Intersect
24. return Supports

ADD-LINK(CParent, CChild)
25. Add CChild to CParent.Children
26. Add CParent to CChild.Parents
27. if |CParent.Children| > 1 ∧ CParent.Supports ≠ ∅: // no longer a dependent ?
28. for each CSupport ∈ CParent.Supports:
29. Remove CParent from CSupport.Dependents
30. CParent.Supports ← ∅

Algorithm 3.12: Algorithms to initialize supports and dependents of a new concept.

128

 HAS-SUPERSET functions. The performance of these algorithms is approaching the

QuICL Oid-Full algorithm. There is still one more step that can be made to improve

performance.

3.14 The QuICL Oid-Less Algorithm

The development of an alternate QuICL algorithm as presented in Algorithms 3.5

through 3.12 maintains sets of object ids and utilizes set operations against the sets of

object ids. Since the support concepts effectively provide a level of indirection to the

object ids sets, the next step is to perform the set operations against the support concepts

themselves. The GET-INTERSECT function will perform a k-way intersect of the

support concepts of each child, the tuples in the ToProcessList retain sets of support

concepts instead of sets of object ids, and the PURGE-SUBSET will purge tuples whose

set of support concepts are a subset of the other tuples. This combined with a few

additional changes results in the QuICL Oid-Less algorithm. Except for object ids in the

temporal field Intersect, the concepts do not hold any object ids.

The complete QuICL Oid-Less algorithm, except for iceberg processing, is given

in Algorithm 3.13. The concept tuples are composed of a list of items I, a list of parent

concepts Parents, a list of child concepts Children, and a concept id (CID). The concepts

do not include a list of object ids since they are no longer needed. However, the concept

tuples do include the support (i.e., |all O|) and a record of the number of object ids that

would be stored in the concept of the compress lattice structure. Both the parent and

children lists are needed since both the parent and child traversals are performed. The

concept id, uniquely assigned when a concept is created, is needed to enable fast

execution of set operations. The tuples of support concepts are augmented with a list of

129

dependents concepts. Dually, tuples of dependent concepts are augmented with a list of

support concepts. Lastly, all tuples are augmented with temporal fields AdjustedTo,

Intersect, IntersectSupports, and HasSuper. IntersectSupports is a list of concepts that

support a concept and have an intersection with the item’s extent. The other fields are the

same as previously defined. All temporal fields are discarded between item insertions.

 The QuICL Oid-Less algorithm begins with the QUICL-OID-LESS function. It

accepts a formal context and returns a constructed lattice. QUICL-OID-LESS is similar

to the BUILD-LATTICE function of Algorithm 3.12 with a few changes. In order to

correctly intersect lists of concepts, the derivation of the concepts supporting the

dependent concepts must be consistent. Therefore, the list of support concepts that

intersect an item’s extent is derived for each dependent concept prior to inserting the item

into the lattice. In algorithm 3.13, the list AllDependents is used to keep track of all the

dependent concepts. Function GET-SUPPORTS-FOR-DEPENDENTS, called on line 4,

is used to initialize each dependent concept with the list of support concepts that have an

intersection with the item’s extent.

The INSERT function for the QuICL Oid-Less algorithm given in Algorithm 3.13

is similar to the INSERT function previously presented. INSERT now accepts the

concept’s support and a list of support concepts. While Supports is not currently used, it

will be used to add support for an iceberg lattice (presented in Section 3.15). INSERT

calls function GET-INTERSECT-SUPPORTS instead of GET-INTERSECT.

GET-INTERSECT-SUPPORTS checks if the intersection supports have already been

derived, if not performs a k-way intersection on the intersection supports of the child

concepts. For dependent concepts these intersection supports have already been set by

130

GET-SUPPORTS-FOR-DEPENDENTS. Following the call to GET-INTERSECT-

SUPPORTS, INSERT obtains the number of intersecting object ids by summation of the

intersection size of all intersection support concepts and sets the variable ISize (line 19).

Conditions on ISize, HasSuper, and the Support passed in the call are used to identify if

an =, ⊂, ⊃, or ∩ relationship exists between a concept’s extent and the item’s extent

(lines 21, 23, 26, 28, and 30). The remainder of INSERT is the same as before except the

tuples in the ToProcessList now contain sets of intersecting support concepts in place of

sets of intersecting object ids. The tuples also retain ISize which is used as the support

value when performing a recursive call to INSERT.

131

Let Concept be a tuple {I, NoOids, Support, Parents, Children, CID} where
 I a list of items, NoOids the number object ids that would be at the minimal

position within this concept, Support the support of a concept, Parents a list of
parent concepts, Children a list of child concepts, and CID a concept id
(uniquely assigned on creation)

Let tuples of dependent Concepts be augmented with the field {Supports} where
 Supports is a list of Concepts holding object ids that support a Dependent

Let tuples of support Concepts be augmented with the field {Dependents} where

Dependents is a list of Concepts that have only one child and are dependent
upon the Concept.

Let tuples of Concepts be augmented with the temporal fields {AdjustedTo, Intersect,

IntersectSize, IntersectSupports, HasSuper} where:
 AdjustedTo references a generated concept into which object ids have been

percolated
 Intersect a list of the concept’s object ids at their minimal position that intersect

with an item’s extent
 IntersectSize the size of Intersect at time of lattice intersection
 IntersectSupports a list of ancestor Concepts that support the Concept and have

an object id that intersects an items extent
 HasSuper a boolean indicating at least one object id of a concept that does not

intersect with an item’s extent.
 All temporal fields are discarded following each item insertion.

Let O2C be a vector whose index Oi identifies the concept C | O ∈ C.O

Let AllDependents be a list of dependent Concepts

QUICL-OID-LESS(K{I, O, R})

1. CBottom ← new Concept (∅)
2. for each Ii ∈ I: // o(Ii) is the set O derived from R
3. Supports ←INTERSECT-LATTICE(CBottom, o(Ii))
4. GET-SUPPORTS-FOR-DEPENDENTS()
5. CNew ← INSERT(CBottom, Ii, |o(Ii)|, Supports)
6. if |CNew.Children| < 2 ∧ CNew.Supports ≠ ∅: // not an existing concept
7. for each CSupport ∈ Supports: // prepare the supports
8. if CSupport.AdjustedTo ≠ ∅:
9. Replace CSupport with CSupport.AdjustedTo

10. Add CNew to CSupport.Dependents
11. CNew.Supports ←Supports // set the support concepts
12. Add CNew to AllDependents
13. return CBottom // the lattice

Algorithm 3.13: The QuICL Oid-Less algorithm.

132

 INSERT(CBase, Ii, Support, Supports)
14. ToProcessList ← ∅ // list of tuples {Type, Concept, Supp, IntersectSupports}
15. // with Type ∈ {SUPERSET, INTERSECT}
16.
17. for each CParent ∈ of CBase.Parents: // prepare-search phase
18. ISupports ← GET-INTERSECT- SUPPORTS (CParent)
19. ISize ← + CSupport.IntersectSize ∀ CSupport ∈ IntersectSupports
20. HasSuper ← HAS-SUPER(CParent)
21. if ISize = 0: // no relationship
22. continue for each with next CParent
23. else if ISize = Support ∧ HasSuper = FALSE: // equal case
24. Add Ii to CParent.I
25. return CParent
26. else if ISize = Support ∧ HasSuper = TRUE: // subset case
27. return INSERT (CParent, Ii, Support, Supports)
28. else if ISize < Support ∧ HasSuper = FALSE: // superset case
29. Add {SUPERSET, CParent, ISize, ISupports} to ToProcessList
30. else if ISize < Support ∧ HasSuper = TRUE: // intersect case
31. Add {INTERSECT, CParent, ISize, ISupports} to ToProcessList
32.
33. PURGE-SUBSETS(ToProcessList)
34.
35. CNew ← New Concept({Ii}, Support) // create the new concept
36.
37. ADJUST(CBase, CNew)
38.
39. for each Ti ∈ ToProcessList: // link phase to link in CNew
40. if Ti.Type = SUPERSET:
41. Remove parent-child link between Ti.Concept and CBase
42. ADD-LINK(Ti.Concept, CNew)
43. else if Ti.Type = INTERSECT:
44. CParent ← INSERT (Ti.Concept, ∅, Ti.Supp, Ti.IntersectSupports)
45. ADD-LINK(CParent, CNew)
46.
47. // Intentionally left blank
48.
49.
50. Sort CNew.Parents in order of decreasing Support
51.
52. ADD-LINK(CNew, CBase) maintaining decreasing Support order of CBase.Parents
53.
54. return CNew

Algorithm 3.13 continued: The QuICL Oid-Less algorithm.

133

GET-SUPPORTS-FOR-DEPENDENTS()
55. for each CDependent ∈ AllDependents:
56. for each CSupport ∈ CDependent.Supports:
57. if CSupport.Intersect ≠ ∅:
58. Add CSupport to CDependent.IntersectSupports
59. Sort CDependent.IntersectSupports

INTERSECT-LATTICE(CBottom, O)

 (Same as in Algorithm 3.12 except increments IntersectSize of a concept
 for which an object id is added to Intersect)

GET-INTERSECT-SUPPORTS(Concept)
60. if Concept.IntersectSupports = ∅:
61. Concept.IntersectSupports ←
62. ∩ GET- INTERSECT-SUPPORTS (Ci) ∀ Ci ∈ Concept.Children
63. return Concept. IntersectSupports

HAS-SUPERSET(Concept)

 (Same as in Algorithm 3.8 except uses NoOids instead of |O|)

ADJUST(CBase, CNew)
 (same as in Algorithm 3.11)

PURGE-SUBSETS(ToProcessList)
 // ToProcessList is a list of tuples {Type, Concept, ISize, IntersectCs} with
 // Type ∈ {NONE, SUBSET, SUPERSET, INTERSECT}
 (Same as in Algorithm 3.3 except uses IntersectCs in place of Intersect)

COMPARE(C1, C2, Type)
 // C1 and C2 are vectors of Concepts, Type as defined above is an assumed
 // state of comparison. Returns a Type indicating the result of comparison.

 (Same as in Algorithm 3.3 except compares the CID’s of concepts)

ADD-LINK(CParent, CChild)

 (same as in Algorithm 3.12)

Algorithm 3.13 continued: The QuICL Oid-Less algorithm.

134

3.15 Adding Iceberg Processing

The QuICL Oid-Less algorithm presented in Algorithm 3.13 constructs a

complete concept lattice and thus include nodes that do not meet the minimum support

threshold. To produce an iceberg lattice, the algorithm cannot simply discard the

concepts in the lattice that do not meet the minimum support threshold, since these

concepts may represent object ids stored at their minimal position. For example, Figure

3.10 depicts an iceberg lattice within the context of a full lattice. Bold text identifies the

valid concepts that meet the minimum support threshold. The object ids in the remaining

concepts will need to be represented in the iceberg lattice; otherwise the lattice will lose

information. Some of the object ids can be correctly placed into the valid concept and

maintain a compressed lattice structure (i.e., a given object id is stored in only one

concept). For example, O1 can be stored into the concept ({a1}, ∅). However, there may

exist object ids where this is not possible. In Figure 3.10, the object ids O3, O4, O5, O9,

and O10 cannot be stored into valid concepts such that the lattice maintains a compressed

lattice structure. To accommodate the representation of such object ids, a single layer of

place holder concepts will be used. These concepts will be denoted as iced. The lattice

at the top of Figure 3.11 depicts the iceberg lattice of Figure 3.10 with an extra iced

concept to represent the needed object ids. While this lattice involves only one iced

concept, additional iced concepts may appear as further insertions are performed. The

lattice at the bottom of Figure 3.11 depicts such case.

135

({d2},∅}

({c2d3},{O7})

({c1},∅) ({b2},∅)

({b1},∅)

(∅,∅)

({a1},∅)

(∅,∅)

({a2},∅)(∅,∅)

(∅,{O2O8})

(∅,∅)

(∅,{O6})({c3},{O1})

({d1},∅)

(∅,{O3O5O9O10}) ({d4},{O4})

RV

a1 O1 O2 O3 O4 O5 O8 O9 O10
a2 O6 O7
b1 O1 O2 O8
b2 O3 O4 O5 O6 O7 O9 O10
c1 O2 O3 O4 O5 O6 O8 O9 O10
c2 O7
c3 O1
d1 O1 O3 O5 O9 O10
d2 O2 O6 O8
d3 O7
d4 O4

Figure 3.10: Iceberg lattice within a full lattice using a 60% threshold. The iceberg
lattice is in bold text and lines. Grayed out text are concepts that do not meet the
minimum support threshold.

136

Valid
Concepts

Iced
Concepts

({c1},∅) ({b2}, {O7})

(∅,∅)

({a1}, {O1})

(∅, {O2O8}) (∅, {O6}))

(∅,{O3O4 O5O9O10})

Valid
Concepts

Iced
Concepts

({c1},∅) ({b2}, {O7})

(∅,∅)

({a1}, {O1})

(∅, {O2}) (∅, ∅)

(∅,{O3O4})

({e1}, ∅)

(∅,{O5O9O10})(∅,{O8}) (∅,{O6})

Inserting ({e1},{O5O6O7O8O9O10})

Figure 3.11: Iceberg lattice using a compressed structure. Top – iceberg lattice of Figure
3.10. Bottom – iceberg lattice with subsequent insertion of item e1 with objects
{O6O7O8O9O11}.

137

Consider the insertion of item e1 with objects {O6O7O8O9O10} as shown in Figure

3.11. The QuICL INSERT function will be called with the bottom concept (∅, ∅) as the

base. The prepare-search phase will proceed to compare {O6O7O8O9O10} with each

parent. The comparison of ({a1}, {O1}) will identify concepts (∅, {O2O8}) and

(∅, {O3O4O5O9 O10}) as the intersection support concepts representing an intersection set

of {O8O9O10}. Since the size of the intersection set does not meet the minimum support

threshold, these object ids cannot be represented in a valid concept. Instead, these object

ids must be represented as a set of iced concepts. In order for the new concept to

correctly represent the complete set of objects, in this case {O6O7O8O9O10}, each

identified iced concept must be linked as a parent. Similar scenarios are encountered

when comparing {O6O7O8O9O10} to the other parent concepts of the base concept.

An approach to adding iceberg processing is to check that the size of the

intersection set meets the minimum support threshold before recursively calling INSERT

to process an INTERSECT tuple (line 31 of Algorithm 3.13). If the threshold is not met,

then alternate processing to search through the ancestors is invoked to find or create iced

concepts and link them to the new concept. This approach, however, may result in

traversing the lattice. An alternate approach involves leveraging the set of intersection

support concepts that are passed as an argument to the INSERT function. When INSERT

completes by creating a new concept, the new concept must account for all of the support

concepts. Each of the support concepts will either be the concept itself or a support

concept of a parent. Since all parent concepts have been assigned prior to completion of

the INSERT function, an alternate approach is to ignore iced concepts and intersections

that result in iced concepts during the prepare-search phase. Then, at the end of the

138

INSERT function, perform a check to see if all support concepts have been accounted.

Any support concepts that have not been accounted will either be a found iced concept or

a concept from which an iced concept is to be extracted. A found iced concept is a

concept whose size of intersect object ids equals the concept’s support. The final step is

linking the iced concepts, either found or extracted, to the new concept. This alternate

approach has the advantage of identifying the iced concepts by traversing only the

immediate parents, thereby avoiding potential traversals through the lattice. This

approach also reduces the size of the ToProcessList, thereby reducing the execution time

of the PURGE-SUBSETS function (Algorithm 3.13).

Algorithm 3.14 provides a modified INSERT function that supports construction

of iceberg processing. The prepare-search phase will only process valid concepts (line

4). Furthermore, the prepare-search phase ignores any parent concept for which the size

of intersection does not meet the minimum support threshold (lines 8 and 9). Lastly,

INSERT calls the function ICED-INSERT in the event that either an iceberg concept or a

parent concept whose intersection set size did not meet the minimum support threshold

was encountered during the prepare-search phase (lines 34 and 35). ICED-INSERT is

called after processing the ToProcessList.

Algorithm 3.15 provides the functions ICED-INSERT and EXTRACT-ICED-

CONCEPT. ICED-INSERT begins by removing the intersection support concepts of all

parent concepts from the support concepts (lines 1 and 2). The new concept is also

removed from the support concepts (line 3). The remaining support concepts are either

found iced concepts or are concepts from which an iced concept is to be extracted. Note

that the AdjustedTo field will, when set, provide an indirection to a found iced concept.

139

Each found iced concept is added as a parent to the new concept (lines 6 through 9).

From each support concept that is not a found iced concept, an iced concept representing

the intersection set will be extracted. The extracted iced concept is added as a parent to

the new concept (lines 11 and 12).

The EXTRACT-ICED-CONCEPT function, given in Algorithm 3.15, is used to

extract an iced concept from another concept. The concept from which an iced concept is

extracted can be a valid concept or another iced concept. In the case of another iced

concept, the extraction effectively splits the iced concept. When splitting, the children of

the split concept will become children of the extracted concept (lines 15 and 16). Also,

the support of the split concept is adjusted accordingly (line 17). For a valid concept, the

concept will be a child of the extracted concept (line 19). In both cases the ADJUST

function is called to complete further adjustments to the lattice structure (line 21)

The last step in supporting iceberg processing is to only insert items whose

number of objects meets the minimum support threshold. Algorithm 3.16 provides an

updated QUICL-OID-LESS function with this change (line 2). A complete

implementation, written in Java, of the QuICL Oid-Less algorithm with support for

iceberg lattices is provided in Appendix C.

140

INSERT(CBase, Ii, Support, Supports)
1. ToProcessList ← ∅ // list of tuples {Type, Concept, Supp, IntersectSupports}
2. // with Type ∈ {SUPERSET, INTERSECT}
3.
4. for each CParent ∈ of CBase.Parents ∧ CParent.Support ≥ MinSupp: // prepare-search
5. ISupports ← GET-INTERSECT-SUPPORTS(CParent)
6. ISize ← + CSupport.IntersectSize ∀ CSupport ∈ ISupports
7. HasSuper ← HAS-SUPERSET(CParent)
8. if ISize < MinSupp: // no relationship or to be iced
9. continue for each with next CParent

10. else if ISize = Support ∧ HasSuper = FALSE: // equal case
11. Add Ii to CParent.I
12. return CParent
13. else if ISize = Support ∧ HasSuper = TRUE: // subset case
14. return INSERT (C, Ii, Supp, Supports)
15. else if ISize < Support ∧ HasSuper = FALSE: // superset case
16. Add {SUPERSET, CParent, ISize, ISupports} to ToProcessList
17. else if ISize < Support ∧ HasSuper = TRUE: // intersect case
18. Add {INTERSECT, CParent, ISize, ISupports} to ToProcessList
19.
20. PURGE-SUBSETS(ToProcessList)
21.
22. CNew ← New Concept({Ii}, Support) // create the new concept
23.
24. ADJUST(CBase, CNew)
25.
26. for each Ti ∈ ToProcessList: // link phase to link in CNew
27. if Ti.Type = SUPERSET:
28. Remove parent-child link between Ti.Concept and CBase
29. ADD-LINK(Ti.Concept, CNew)
30. else if Ti.Type = INTERSECT:
31. CParent ← INSERT (Ti.Concept, ∅, Ti.Supp, Ti.IntersectSupports)
32. ADD-LINK(CParent, CNew)
33.
34. if encountered CParent.Support < MinSupp ∨ 0 < ISize < MinSupp:
35. ICED-INSERT(CNew, Supports)
36.
37. Sort CNew.Parents in order of decreasing Support
38.
39. ADD-LINK(CNew, CBase) maintaining decreasing Support order of CBase.Parents
40.
41. return CNew

Algorithm 3.14: Modified INSERT algorithm for iceberg processing.

141

ICED-INSERT(CNew, Supports)
1. for each CParent ∈ CNew.Parents: // remove accounted supports
2. Supports ← Supports − GET-INTERSECT-SUPPORTS(CParent)
3. Remove CNew from Supports
4.
5. for each CSupport ∈ Supports: // process remaining supports as iced
6. if CSupport.AdjustedTo ≠ ∅: // a found iced concept by indirection
7. ADD-LINK(CSupport.AdjustedTo, CNew)
8. else if not HAS-SUPERSET(CSupport): // a found iced concept
9. ADD-LINK(CSupport, CNew)

10. else:
11. CIced ← EXTRACT-ICED-CONCEPT(CSupport)
12. ADD-LINK(CIced, CNew)

EXTRACT-ICED-CONCEPT(CSupport)
13. CIced ← New Concept(∅, CSupport.IntersectSize)
14. if CSupport.Support < MinSupp): // split an iceberg concept
15. for each CChild ∈ CSupport.Children:
16. ADD-LINK(CIced, CChild)
17. CSupport.Support ← CSupport.Support − CIced.Support
18. else: // extracting from a valid concept
19. ADD-LINK(CIced, CSupport)
20.
21. ADJUST(CSupport, CIced)

Algorithm 3.15: Algorithms supporting iceberg processing.

QUICL-OID-LESS(K{I, O, R})

1. CBottom ← new Concept (∅)
2. for each Ii ∈ I ∧ |o(Ii)| ≥ MinSupp: // o(Ii) is the set O derived from R
3. Supports ←INTERSECT-LATTICE(CBottom, o(Ii))
4. GET-SUPPORTS-FOR-DEPENDENTS()
5. CNew ← INSERT(CBottom, Ii, |o(Ii)|, Supports)
6. if |CNew.Children| < 2 ∧ CNew.Supports ≠ ∅: // not an existing concept
7. for each CSupport ∈ Supports: // prepare the supports
8. if CSupport.AdjustedTo ≠∅:
9. Replace CSupport with CSupport.AdjustedTo

10. Add CNew to CSupport.Dependents
11. CNew.Supports ←Supports // set the support concepts
12. Add CNew to AllDependents
13. return CBottom // the lattice

Algorithm 3.16: Modified QuICL Oid-Less algorithm for iceberg processing.

142

3.16 Discussion for a Third QuICL Algorithm

The motivation for the QuICL Oid-Less algorithm is to address memory concerns

with the storage of object ids in the concepts, whose number grows exponentially. The

QuICL Oid-Less algorithm is successful in eliminating repeated object ids between item

insertions, however, this is achieved at the expense of considerable complexity. Where

the concepts of the QuICL Oid-Full algorithm simply maintain a list of items, list of

object ids, and a list of parent references, the QuICL Oid-Less algorithm includes with

each concept a parent concept list, a concept child list, count of object ids, support, and

concept id; and augments many concepts with a support concept list, a dependent concept

list, a temporary intersect object id list, a temporary intersect concept id list, adjusted to

reference, intersect size, and a superset indicator. Thus, the savings in storing object ids

are at the expense of consuming memory elsewhere. Furthermore, the QuICL Oid-Less

algorithm may incur runtime overhead beyond its worth.

A compromise between the QuICL Oid-Full and QuICL Oid-Less algorithms may

be found by considering the trie data structure which has surfaced several times literature

(Valtchev et al., 2002, Nourine, & Raynaud 2002). A trie data structure (Knuth, 1998) is

a tree based data structure that provides a compact representation by sharing common

prefixes along branches, and enables efficient search, insertion, and set operations. Each

edge denotes the addition of an element in a set. Thus for the QuICL algorithm, a trie can

be employed to store the object ids of the concepts. Figure 3.12 depicts the use of a trie

to store the object ids. At the top is the concept lattice of Figure 3.1 after inserting items

a1 though c3 of relation in Figure 3.1. In this lattice, the ten object ids of the formal

context are present in the concept lattice multiple times resulting in 51 entries. The

143

bottom of Figure 3.12 depicts a trie to represent all of the oid lists of the lattice. Due to

common prefixes shared between the object id lists, the trie contains only 35 object id

entries. Each concept of the lattice references a position in trie (as shown using dotted

lines). For example, the concept with item set {a1} references the bottom left node in the

trie. This node identifies the object id set {O1O2O3O4O5O8O9O10} as indicated by the

labeled edges on path from the root to the node. Each leaf in the trie will be referenced

by a concept in the lattice. The number of leaves in the trie may be less than the number

of concepts, since a concept may reference an interior node already present in the trie at

the time a concept is generated. For example, the concept with item set {c3} references

the top left node in the trie. This node identifies the object id set {O1}.

3.17 Implementing a Trie in the QuICL Algorithm

 While the trie data structure does provide savings in storing the number of object

id entries, the trie must be carefully implemented to insure the savings in storing object

ids is not outweighed by the overhead of the trie data structure. For example, each node

in trie could be represented as a tuple consisting of a parent reference, child reference,

sibling reference, and the object id of the parent edge. Child and sibling references

facilitate representation of general trees (i.e., any number of children). Both forward and

backward references are required. Forward references are needed to insert an object id

list into the trie. Backward references are needed to identify an object id list. This

representation defeats the objective to reduce space. Assuming 4 bytes to represent a

reference, each object id in the trie would incur an additional 12 bytes overhead. Thus,

the trie in Figure 3.12 using this representation would consume 560 bytes ((12 + 4) × 35).

This exceeds the space used by the original sets of object ids which is 204 bytes (4 × 51).

144

({c2},{O7})

({c1},{O2O3O4O5O6O8O9O10}) ({b2},{O3O4O5O6O7O9O10})

({b1},{O1O2O8})

(∅, ∅)

({a1},{O1O2O3O4O5O8O9O10})

(∅,{O3O4O5O9O10})

({a2},{O6O7})(∅,{O2O3O4O5O8O9O10})

(∅,{O2O8})

(∅,{O3O4O5O6O9O10})

(∅,{O6})({c3},{O1})

•
O1

•
•

O2

•
O3

•
O4

•
O5

•
O8

•
O9

•
O10

•
O8

•
O2

•
O3

•
O4

•
O5

•
O8

•
O6

•
O8

•
O9

•
O8

•
O10

•
O9

•
O10

•
O3

•
O4

•
O5

•
O9

•
O10

•
O6

•
O7

•
O9

•
O10

•
O9

•
O10

•O6

•
O7

•
O7

({c2})

({c1}) ({b2})

({b1})

(∅, ∅)

({a1})

(∅)

({a2})(∅)

(∅)

(∅)

(∅)({c3})

Figure 3.12: Concept lattice using a trie data structure to store object ids. Top – concept
lattice of Figure 3.1 after inserting items a1 through c3. Bottom – same concept lattice
with references into a trie data structure holding the object ids.

145

An alternative implementation is to place all of the object ids of a trie into a

compound trie node. In this representation each node contains a vector of object ids and

a parent reference. Parent references include a reference to a parent trie node and the

index of the parent object id within its vector. Child references can be implemented with

the aid of a global hash table. The reference to a parent trie node, index of the parent

object id, and the first object id of the child trie node comprise a composite key that

uniquely identifies a child trie node. Figure 3.13 provides an example of a trie using

compound trie nodes.

This alternate implementation of the trie has the potential to realize savings in

memory, although not apparent in the example of Figure 3.12. Assuming 4 bytes for

each reference or integer value, the overhead for the compound trie node is at least 24

bytes. This is based on 4 bytes for the reference to the parent trie node, 4 bytes for the

parent index position, and 16 bytes for the hash table entry. Furthermore, each concept

incurs an additional 8 bytes overhead, since they now indirectly reference the oids

through a reference to a trie node and an index position. Using these assumptions and

estimates, Table 3.4 presents calculated memory savings (or excess) in using a trie data

structure. Savings (or excess) are calculated for both the simple trie implementation and

the compound trie node implementation. The lattice of Figure 3.12 and the lattice

generated by the Mushroom data set are used in the analysis. For both cases, the

overhead of the simple trie implementation exceeds the savings offered by the reduced

the number of object id entries. On the other hand, the compound trie node

implementation offers a real savings of 42 MBs for the Mushroom data set, cutting the

memory requirements to store object ids by nearly half.

146

•
O1

•
•

O2

•
O3

•
O4

•
O5

•
O8

•
O9

•
O10

•
O8

•
O2

•
O3

•
O4

•
O5

•
O8

•
O6

•
O8

•
O9

•
O8

•
O10

•
O9

•
O10

•
O3

•
O4

•
O5

•
O9

•
O10

•
O6

•
O7

•
O9

•
O10

•
O9

•
O10

•O6

•
O7

•
O7

O1

O2

O3

O4

O5

O8

O9

O10

O8

oids

oids

O2

O3

O4

O5

O6

O8

O9

O10

oids

O8

oids

O8

oids

O9

O10

O6

O3

O4

O5

O7

O9

O10

oids

oids

O9

O10

oids

O9

O10

oids

O6

O7

O7

oids

∅
oids

Figure 3.13: QuICL trie representation. Top – the trie of Figure 3.12. Bottom –
depiction of same trie using compound trie nodes.

147

Lattice of

Figure 3.11 Mushroom

No object Ids in formal context 10 8,124
No concepts 12 238,709
No object Id entries in the lattice 51 21,936,050
Total bytes to store object ids in concepts 204 87,744,200

No Object id entries in corresponding trie 35 9,577,434
No of compound trie nodes (excluding root) 10 218,034
Bytes to store object ids in a trie 140 38,309,736
Overhead bytes of using simple trie 420 114,929,208
Total bytes for object ids of simple trie 560 153,238,944
Overhead bytes of using compound trie 336 7,142,488
Total bytes for object ids of compound trie 476 45,452,224

Savings (excess) in using simple trie (356) (65,494,744)
Savings (excess) in using compound trie (272) 42,291,976

 Calculations are:
 Total bytes to store object ids in concepts =
 No object Id entries in the lattice × 4
 Bytes to store object ids in a trie =
 No Object id entries in corresponding trie × 4
 Overhead bytes of using simple trie =
 No Object id entries in corresponding trie × 12
 Total bytes for object ids of simple trie =
 Bytes to store object ids in a trie + Overhead bytes of using simple trie
 Overhead bytes of using compound trie =
 No of concepts × 8 + No of compound trie nodes × 24
 Total bytes for object ids of compound trie =
 Bytes to store object ids in a trie + Overhead bytes of using compound trie
 Savings (excess) in using simple trie =
 Total bytes to store object ids in concepts - Total bytes for object ids of simple trie
 Savings (excess) in using compound trie =
 Total bytes to store object ids in concepts - Total bytes for object ids of compound trie

Table 3.4: Sample calculations of memory savings (excess) of trie implementations.

148

3.18 The QuICL Oid-Trie Algorithm

In addition to savings in memory, the trie data structure enables two performance

enhancements. The first is an optimization when performing intersections. Intersections

are accomplished by processing two references into the trie. Typically the references

start in different branches. One reference, the other reference, or both are then advanced

to a parent object id position depending if the two referenced object ids are greater than,

less than, or equal respectively. In the case of equal, the common object id is placed into

an intersection buffer that will be used to create a new compound trie node upon

completing the intersection process. The optimization is to terminate the intersection

processing if at any time the two references reference the same position in the trie. At

that point the remaining object ids of the two lists will be the same. The object ids in the

intersection buffer can then be inserted into the trie using either reference as the insertion

point. The second enhancement is to enable bi-directional traversal of the edge between

a concept and the position in the trie of its object ids. The reference from a trie position

to a concept can be implemented using a hash table. By provided a reference from a trie

position to a concept, the INSERT function of the QuICL algorithm can directly

determine if a concept for a given object id set already exists. If so, the item passed to

the INSERT function is added to the concepts item list and the concept is returned. The

reference to a concept effectively provides a short cut directly to an existing concept,

thereby eliminating the recursive calls used to navigate into the lattice.

The bi-directional enhancement has further significance with respect to the

asymptotic runtime complexity. By providing a direct lookup from a trie position to a

concept, the time to process INTERSECT entries in the ToProcessList that lookup

149

concept in the lattice will be O(d′), where d′ is a fraction of degavg(L) depending on

density. Thus, the term representing the time to process INTERSECT entries in the

ToProcessList will not be a dominant factor in inserting a concept into the lattice.

Therefore, the asymptotic complexity of the QuICL Oid-Trie algorithm will at least be

O(l d i) but could approach O(d2 c), where l = |L|, d = degavg(L), i a density weighted

mean on the cardinality of frequent item extents, and c is a small fraction of |O| depending

density.

The QuICL Oid-Trie algorithm is given in Algorithms 3.17 and 3.18. Like the

QuICL Oid-Full algorithm, a concept lattice is represented as a set of concepts linked

only by references to parents. In addition to the lattice, a trie data structure is represented

as a set of linked TrieNodes. A TrieNode is a tuple composed of a position within a

parent TrieNode and a vector of object ids. A position within a TrieNode, TriePos, is a

tuple composed of a reference to a TrieNode and an index into its vector of object ids.

Thus, each concept in the QuICL Oid-Trie concept lattice is a tuple composed of a list of

items, a trie position that identifies a set of object ids, and list of parents.

The QUICL-OID-TRIE function is similar to the QUICL-OID-FULL with a few

modifications. In addition to creating a Concept to represent an empty lattice, a TrieNode

is created to represent the root of an empty trie (line 2). Before calling the INSERT

function to add an item and its extent into the lattice, a TRIE-INSERT function is used to

add the extent into the trie (line 4). The returned trie position is then passed to the

INSERT function in place of an object id set (line 5).

The TRIE-INSERT is passed a reference to a TrieNode identifying a branch in the

trie passed where an object id set may be grafted, an object id set, and a index into the

150

object id set identifying a subset of object ids yet to be processed. The TRIE-INSERT

function begins by traversing to object ids within the TrieNode while equal to the object

ids yet to be processed (line 7 through 10). If the end of the object ids is reached, the

object id set is already present in the trie. Therefore, a trie position for the object id last

traversed in the TridNode is created and returned (line 12 and 13); otherwise a lookup in

a hash table, TrieChildren, is used to determine if a child branch exists for the remaining

object ids (line 15). If a child branch is found, TRIE-INSERT recurses (line 17 and 18).

If not, a new TrieNode is created for the remaining object ids, the node is added to the

hash table, and a trie position referencing the last object id in the new TrieNode is

returned (lines 20 through 22).

The algorithm for the QuICL Oid-Trie INSERT function, Algorithm 3.18, is the

same as the QuICL Oid-Full algorithm with appropriate changes. References to trie

positions are used in place of object id lists. Lines 18 through 21 provide the insertion of

a new object id set, resulting from an intersection, into the trie. A hash table,

TrieConcepts, is used to provide the reference from a trie position to a concept. Line 26

adds an entry to TrieConcepts upon creating a new concept. Lines 1 through 4 perform a

lookup into TrieConcepts to determine if a concept for a set of object ids already exists.

If so, then item Ii is added to the concept’s item list and the concept is then returned. The

prepare-search phase no longer needs to process the case object ids equal to a parent’s

object ids (lines 11 through 13 of Algorithm 3.4), since this case is handled by the lookup

into TrieConcepts (lines 1 through 4).

151

Let TrieNode be a tuple {ParentPos, O} where ParentPos a TriePos tuple representing
a position in the trie, and O a vector of object ids.

Let TriePos be a tuple {TrieNode, Inx} where TrieNode a reference to a trie node

within the trie and Inx an index position to an object id of its O.

Let Concept be a tuple {I, TriePos, Parents} where I a list of items, TriePos a position

in the trie representing a list of object ids, and Parents a list of parent concepts.

TrieChildren← new hash table

QUICL-OID-TRIE(K{I, O, R}, MinSupp)
1. CBottom ← new Concept (∅, ∅)
2. NodeRoot ← new TrieNode (∅, ∅)
3. for each Ii ∈ I ∧ |o(Ii)| ≥ MinSupp: // o(Ii) is the set O derived from R
4. TP ← TRIE-INSERT(TNRoot, o(Ii), 0)
5. INSERT(CBottom, Ii, TP)
6. return CBottom // the lattice

 TRIE-INSERT(Node, O, Inx) // returns a TriePos for the O
7. NInx ← 0
8. while NInx < |Node.O| ∧ Inx < |O| ∧ Node.O[NInx] = O[Inx]:
9. NInx ← NInx + 1

10. Inx ← Inx + 1
11.
12. if |O| = Inx: // O already exists in the trie
13. return new TriePos(Node, NInx)
14.
15. NParent ← TrieChildren.lookup({Node, NInx, O[Inx]})
16.
17. if NParent ≠ ∅:
18. return TRIE-INSERT(NParent, O, Inx)
19. else:
20. NParent ← new TrieNode(new TriePos(Node, NInx), SUBSET(O, Inx, |O|))
21. TrieChildren.put({Node, NInx, O[Inx]}, NParent)
22. return new TriePos(NParent, |NParent.O| – 1)

Algorithm 3.17: The QuICL Oid-Trie algorithm.

152

TrieConcepts ← new hash table

 INSERT(CBase, Ii, TriePos)

1. CAncestor ← TrieConcepts.lookup(TriePos) // see if a concept already exists
2. if CAncestor ≠ ∅: // for the object id set
3. Add Ii to CAncestor.I
4. return CAncestor
5.
6. ToProcessList ← ∅ // list of tuples {Type, Concept, TriePos} with
7. // Type ∈ {SUPERSET, INTERSECT}, Concept a
8. // reference to the intersecting concept, and TriePos
9. // a position in the trie representing the set of object ids

10. // resulting from an intersection
11.
12. for each CParent ∈ of CBase.Parents: // prepare-search phase
13. if O(TriePos) ⊂ O(CParent.TriePos): // O() is the set of object ids
14. return INSERT(CParent, Ii, TriePos) // identified by a TriePos
15. else if O(TriePos) ⊃ O(CParent.TriePos):
16. Add {SUPERSET, CParent, CParent.TriePos} to ToProcessList
17. else if |O(TriePos) ∩ O(CParent.TriePos)| ≥ MinSupp:
18. TPConv ← position in the trie where TriePos and CParent.TriePos converge
19. ONew← O(TriePos) ∩ O(CParent.TriePos) after converge point
20. TriePosNew ← TRIE-INSERT(TPConv.TrieNode, TPConv.Inx, ONew, 0)
21. Add {INTERSECT, CParent, TriePosNew)} to ToProcessList
22.
23. PURGE-SUBSETS(ToProcessList)
24.
25. CNew ← New Concept({Ii}, TriePos) // create the new concept
26. TrieConcepts.put(TriePos, CNew)
27.
28. for each Ti ∈ ToProcessList: // link phase to link in CNew
29. if Ti.Type = SUPERSET:
30. Remove Ti.Concept from CBase.Parents
31. Add Ti.Concept to CNew.Parents
32. else if T.Type = INTERSECT:
33. CParent ← INSERT(Ti.Concept, ∅, Ti.TriePos)
34. Add CParent to CNew.Parents
35.
36. Sort CNew.Parents in order of decreasing |O|
37.
38. Add CNew to CBase.Parents in order of decreasing |O|
39.
40. return CNew

Algorithm 3.18: INSERT function of the QuICL Oid-Trie algorithm.

153

A complete implementation of the QuICL Oid-Trie algorithm, written in Java, is

provided in Appendix D. The implementation incorporates the QuICL Oid-Full

implementation enhancement to cache the results of intersection as described in

Section 3.7.

3.19 Converting a Data Set to a Vertical Representation

Most data sets are organized in a horizontal representation. That is, a list of

objects each with a set of attributes. The QuICL algorithms are dependent upon a vertical

representation, whereby an item together with its set of objects are incrementally inserted

into the lattice. Therefore, an algorithm to transpose a horizontal representation into a

vertical representation is needed.

The CHARM algorithm has the same requirement of a vertical representation.

Thus, the CHARM algorithm provides a transpose algorithm. The algorithm performs

two passes over the data set and executes in linear time with respect to the number of

objects. The first pass identifies the list of items and obtains counts of the number of

objects for each. Between the passes, a buffer is allocated for each item. Each buffer is

assigned an offset within an output data set where the object ids for the item will be

stored. The second pass performs the transpose. For each object, the buffers represented

by the set of items are identified and appended with the object id. As each buffer fills, it

is flushed to the data set. After completing the second pass, all buffers are flushed to

ensure the object ids are written to the data set. The result is a data set in vertical

representation. An implementation of the transpose algorithm is provided in Appendix E

along with a test harness used to execute the QuICL and GMA algorithms.

154

This algorithm is used as a pre-step to the QuICL algorithm. In addition, an order

for the items can be specified. The order is used when assigning the file offsets to the

buffers. While the transpose involves additional processing overhead, its asymptotic

complexity is linear. Therefore, it will not be the dominant term in the overall process.

3.20 Summary of Methodology

This chapter presented the development of the Quick Iceberg Concept Lattice

(QuICL – pronounced kwi-kəl

The QuICL algorithm has three derivations: Oid-Full, Oid-Less, and Oid-Trie. In

the first derivation, all of the concepts in the concept lattice retain a complete list of the

object ids (oids), hence the name “Oid-Full”. While preliminary results of the QuICL

Oid-Full algorithm were very promising for some data sets, the performance gains do not

hold against some others. An issue for the QuICL Oid-Full algorithm is the storage of

) algorithms. These algorithms provide incremental

construction of a concept lattice along the lines of the GMA algorithm, but approach the

insertion process from the bottom of the lattice rather than a top-down, level-wise search

for generators. The structure of the lattice is used to navigate to a point of change.

Recursion is used instead of iteration to facilitate the location of additional points of

change and enable linkage between parent and child concepts. To support construction of

iceberg lattices, the QuICL algorithms add data on an item by item basis and interchange

the roles of the set of object ids and the set of items. These changes effectively invert the

lattice. Furthermore, the QuICL algorithms exploit the lattice property: if Ii ∈ I of

concept C1 then ∀ C2 | C2 < C1, Ii ∈ I of C2. Thus, each item is recorded in only one

concept within the lattice (i.e., lowest position in the inverted lattice). This representation

conserves space and enables direct extraction of association rules (see Chapter 1).

155

the complete list of object ids in each concept. The same object ids can be repeated in

multiple concepts. Thus, an alternate algorithm, termed Oid-Less, was derived to

eliminate the storage of object ids between the incremental insertions, although

temporary lists of object ids are created and discarded during the insertion process. The

QuICL Oid-Less algorithm is successful in eliminating repeated object ids between item

insertions, however, this is achieved at the expense of considerable complexity.

Therefore, the Oid-Trie derivation was developed as a compromise between Oid-Full and

Oid-Less. Instead of eliminating the oid lists, it utilizes a trie data structure to store the

object ids, thereby reducing memory requirements. In addition to gains in memory

usage, the trie data structure also enabled a few performance enhancements.

Given a lattice L and a new item Ii with its set of object O, an incremental

insertion algorithm such as QuICL is correct if it meets these requirements:

1) if ∃ Ci ∈ L | extent of Ci = O, then insertion is completed by adding Ii to the
intent of Ci, or

2) if ¬∃ Ci ∈ L, | extent of Ci = O, then a new concept CNew with intent {Ii} and
extent O must be created and inserted into the lattice such that:

i. if ∃ Cb ∈ L | Cb > CNew ∧ ¬∃ C3∈ L | Cb > C3 > CNew, then CNew will

be a parent of Cb,

ii. if ¬∃ Cb ∈ L | Cb > CNew, then CNew will be a parent of bottom
concept,

iii. ∀ Cp ∈ L | CNew > Cp ∧ ¬∃ C3∈ L | CNew > C3 > Cp, Cp will be a parent
of CNew,

iv. ∀ Cs ∈ L | extent of Cs ⊄ O ∧ extent of Cs ∩ O ≠ ∅ ∧ ¬∃ C3∈ L |
C3 > Cs ∧ extent of Cs ∩ O = extent of C3 ∩ O, another new concept
CNew' with empty intent and an extent of Cs ∩ O must be inserted into
the lattice with CNew' as a parent of both CNew and Cs, and

156

v. the resulting lattice satisfies the lattice connection property: a
connection exists between two concepts C1 and C2 provided C1 < C2
and there is no concept C3 for which C1 < C3 < C2.

An initial formulation of the QuICL algorithm was proved to meet requirements

1, 2, 2.i, 2.ii, 2.iii, and 2.iv, but failed to meet requirement 2.v. This was corrected in the

QuICL algorithm by removing non-maximal entries (i.e., entries containing object ids

subsets of other entries) from an internal list of SUPERSET and INTERSECT entries.

SUPERSET entries identify concepts that become immediate parents of a new concept.

INTERSECT entries identify concepts are siblings to a new concept that find or generate

other parent concepts.

It is postulated that the asymptotic runtime complexity for the QuICL Oid-Full

algorithm will be at least O(l d i), but could approach O(l d2 c) or O(l d d′ i h), where l =

|L|, d = degavg(L), i is a density weighted mean on the cardinality of frequent item extents,

c is a small fraction of |O| depending density, d′ is a fraction of d depending on density,

and h is a sub-linear function on the height of the lattice. An enhancement of the QuICL

Oid-Trie algorithm eliminates O(d d′ i h) from consideration. The asymptotic memory

complexity is postulated to be O(l d i).

Table 3.4 provides a summary of the advantages and disadvantages of the QuICL

Algorithms. Table 3.4 also notes the strategy to store the object ids representing concept

extents.

157

QuICL
Derivation Storage of Object Ids Advantages Disadvantages

Oid-Full Object ids are
replicated throughout
lattice as needed to
represent concept
extents

• Simple data structure

• Very good performance

• Memory usage for the lattice
may be excessive due to
repeated object ids

Oid-Less Each object id is only
stored once at its
minimal position

• Reduction in memory
consumption for storage of
object ids

• Intersection of concept ids,
instead of object ids, may
provide a gain in performance

• Added complexity may impact
performance

• Many additional fields in the
representation of a concept
may impact memory usage

Oid-Trie Object ids are stored
in a trie data structure
to share common
prefixes between
concept extents

• Reduction in memory usage
without the complexity of
Oid-Less

• Avoids a possible O(l d d′ i h)
runtime complexity

• Early halt of iterations when
performing set operations
may provide a performance
gain

• Traversals between trie nodes
when performing set
operations may impact
performance

Table 3.5: Comparison of QuICL derivations.

158

Chapter 4

Results

4.1 Introduction

This chapter presents the results of empirical evaluations and analysis of the

QuICL algorithms. Seven public data sets often cited in other studies are used as the

benchmarks. Included in this chapter is:

i) a presentation on the characteristics of each data set,

ii) an analysis of algorithm validity for the QuICL algorithms,

iii) results on the effect of input sort order on both runtime and memory usage
for QuICL and GMA algorithms,

iv) runtime results of algorithms against the seven data sets over a spectrum of
minimum supports,

v) memory results of algorithms against the seven data sets over a spectrum of
minimum supports,

vi) performance analysis of the QuICL algorithms,

vii) empirical evidence to support asymptotic runtime complexity analysis,

viii) performance analysis of the GMA algorithm, and

ix) a report on the number of intersections performed by CHARM, QuICL, and
GMA algorithms.

All three variants of the QuICL algorithms are compared against the CHARM,

CHARM-L, GMA, and MAGALICE algorithms. The C version of the CHARM and

CHARM-L algorithms were downloaded from the author’s web site (Zaki, 2008) and

159

translated to Java. The CHARM implementation utilized memory mapped I/O to read the

object ids from a vertical representation of a data set. On translating to Java, the memory

mapped I/O was converted to the available random access classes. This introduced a

performance problem since the CHARM implementation re-reads the sets of object ids

multiple times when generating the first level of CHARM’s itemset-oidset tree. The

implementation was enhanced to cache in memory the object id sets. MAGALICE is part

of the GALICIA open source project (Valtchev et al., 2003) and was downloaded from

the GALICIA website (Valtchev, Godin, Missaoui, Huchard, Napoli, Grosser, et al.,

2008). MAGALICE is written in Java. The GMA algorithm with modifications for

iceberg processing, Algorithm 3.1, was directly implemented in Java. Source listing of

the implementation is provided in Appendix A. Likewise the QuICL algorithms: Oid-

Full, Oid-Less, and Oid-Trie, were implemented in Java. The source listing of each

implementation is provided in Appendix B, C, and D respectively. Appendix E provides

a source listing of a transpose algorithm used to convert a data set from a horizontal

representation to a vertical representation. The source listing also includes a test harness

to execute the QuICL and GMA algorithms.

All benchmarks are executed on an Intel Core 2 Duo CPU at 2.99 GHz with 3.0

GBs memory running Windows XP 2002 with service pack 3. All benchmarks are

executed using the Java JRE version 1.5.0_07 with maximum heap size set to 1.6 GBs.

1.6 GB is the maximum setting allowed by the 1.5 version of the Java VM.

To measure the execution time, all algorithms were instrumented to time the

lattice construction functions exclusive of any I/O time. Time before and after each

execution point is obtained using Java’s System.currentTimeMillis function. The

160

difference between the after and before times divided by 1000 is used to determine an

execution time in seconds. All execution times reported in this chapter are in seconds

rounded to two decimal places. Furthermore, to minimize error all reported execution

times are the average of five separate measurements for each test case.

To measure the memory usage, all algorithms pause before termination. The

memory usage is then obtained from the “Mem Usage” field of the Windows Task

Manager dialog at the time of pause. Thus, the memory usage includes space consumed

by the Java virtual machine, class files of each algorithm, and the heap allocation. All

memory usage reported in this chapter are in megabytes (MBs).

Association rule mining and formal concept analysis are exponential problems.

As such, the runtime performance and memory usage will grow exponentially as the

minimum support for a data set is reduced. Thus, all charts in this chapter (except Figure

4.1) will use a logarithmic scale. By using a logarithmic scale the differences between

the algorithms are more apparent. Furthermore, differences by order of magnitude can be

readily observed. For example, Figure 4.1 displays the runtime performance of the

algorithms against the Mushroom data set using both a fixed scale (top) and logarithmic

scale (bottom). The logarithmic scale provides a clearer depiction of the differences

between the algorithms. Differences in order of magnitude can be easily identified. For

example, the QuICL Oid-Full algorithm is an order of magnitude better than GMA at

10%supp and two orders of magnitude better than MAGALICE. All charts display

minimum support on the horizontal axis and runtime, or memory usage, on the vertical

axis.

161

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

0%10%20%30%40%50%

Mushroom

0.01

0.10

1.00

10.00

100.00

1000.00

0%10%20%30%40%50%

Oid-Full Oid-Trie Oid-Less CHARM
CHARM-L GMA Magalice

Figure 4.1: Logarithmic vs. fixed scale axis. Top – runtime performance using a fixed
scale. Bottom – runtime performance using a logarithmic scale.

162

 4.2 Data Set and Lattice Characteristics

The data sets used for the benchmarks are:

i) Mushroom,

ii) Chess,

iii) Pumsb,

iv) Pumsb*,

v) T10I4D100k,

vi) T25I10D10k, and

vii) T25I20D100k.

The Mushroom data set contains characteristics of various species of mushrooms.

The Chess data set is sequence of steps recorded for a game of chess. Pumsb data set

contains census data. The Pumsb* data set is the Pumsb data set with removal of items

whose support is greater than or equal to 80%. The T10I4D100k, T25I10D10k, and,

T25I20D100k are synthetic data sets generated by the IBM Synthetic Data Generator

(2001). It generates data sets that emulate retail transactions according to a set of input

parameters (e.g., number items, number transactions, average transaction length). The

Mushroom, Chess, Pumsb, Pumsb* and T10I4D100k data sets were downloaded from the

University of Helsinki Frequent Item Set Mining Data set Repository ("Frequent Itemset

Mining Dataset Repository", 2008). The T25I10D10k and T25I20D100k data sets were

downloaded from the High Performance Computing Laboratory of The Institute of

Information Science and Technologies, Pisa, Italy ("DCI: A hybrid algorithm for frequent

set counting datasets", 2008).

163

The characteristics of these data sets together with characteristics of their

generated concept lattices are given in Table 4.1. Density is calculated by |R| / (|O| × |I|)

where |R| is the total number of items for all objects found in the data set, |O| is number

of objects, and |I| is the number of items. As can be observed in Table 4.1, the Chess and

Mushroom data sets are dense, Pumsb and Pumsb* are marginal, and the remaining data

sets are sparse. While the density measure does provide insight into predicting the

behavior of mining algorithms, additional insight can be gained by a density profile. A

density profile is a sorted plot of the number of objects per item. The axes are expressed

in fractions of the total number of objects and total number of items. Therefore, the Y

axis shows the support of an item. The density profiles for each data set are given in

Figure 4.2. The Mushroom data set has about 10% of items with support in excess of

60%supp, the support drops off linearly to 10%supp the over the next 50% of items, and

exhibits a decay curve thereafter. The Chess data set has an approximate linear drop in

support over the span of all items. The Chess data set contains 38 fields of which each

has 2 values, thus representing 76 items. The near linear drop from 100%supp to 0%supp

over the span of all items indicates a linear distribution of selecting one item of field over

the other from being completely biased to being even. The Pumsb data set has a sharp

linear drop from near 100%supp to 5% supp in the first few items. Since for the Pumsb, |O|

is near 50,000, these few items will have sizable object id sets and thus represent a

challenge for mining algorithms. The Pumsb* thus omits items whose support is 80% or

more from the Pumsb data set. For both the Pumsb and Pumsb* there is a decay curve

from 5%supp to 0% supp over the next 25% of items. The density profiles for both plot no

items passed the approximate 30% position. This indicates that there are approximately

164

70% of items that are not represented in the data set. The density profiles for the

T10I4D100K and T25I20D100K data sets both exhibit a decay curve beginning around

8%supp and have a fair percentage of items not represented in the data set. Since both

these data sets contain 100,000 objects, the object id sets for the initial items are around

8,000 but quickly drop to under a 1,000. The T25I10D10K data set has a decay curve

beginning at 10%supp and dropping to 5%supp over the first 10% of items and then a near

linear drop over all remaining items.

In addition to characteristics of the data sets, Table 4.1 includes characteristics of

the generated lattices for a spectrum of minimum supports. Included is the number of

concepts, average degree, maximum degree, and height. These values were obtained by

executing QuICL and/or CHARM-L algorithms. The 20%supp entry for Pumsb was

obtained using the CHARM algorithm (hence the omission of average degree and

maximum degree for that entry). The average degree is the average number of concepts

in the upper cover of each given concept. Maximum degree is the maximum number of

concepts in the upper cover of any concept. Table 4.1 clearly indicates the exponential

growth in size of the lattice as the minimum support is lowered. The average degree and

height tend to grow at a small slow rate as the minimum support is lowered, although the

average degree exhibit a few anomalies (e.g., 0.01%supp of the T10I4D100K data set,

0.05%supp of the T25I20D100K data set, and 0.01%supp of the T25I20D100K data set).

While for the T10I4D100K, T25I20D100K, T25I20D100K data sets the maximum

degree can approach |I| at very low supports, the maximum degree for the lattices of the

other data sets is only a fraction of |I|.

165

Data Set |O| |I| Density
Min

Supp |L|
Avg

Degree
Max

Degree
Height

Chess 3,196 76 0.4933 95% 74 2.64 8 5

85% 1,885 4.40 13 8

75% 11,525 5.49 20 11

65% 49,240 6.17 24 13

 55% 192,863 6.85 27 15

Mushroom 8,124 120 0.1933 50% 45 1.93 9 5

30% 427 3.00 21 9

10% 4,897 3.84 31 14
 0% 238,709 5.71 33 22

Pumsb 49,046 7,117 0.0104 95% 110 2.51 12 4

85% 8,513 5.17 19 9

75% 101,047 7.02 21 12

 65% 496,069 8.31 28 15

Pumsb* 49,046 7,117 0.0071 50% 248 2.82 18 8

40% 2,610 4.22 29 12

30% 16,154 5.14 36 15

 20% 122,262 5.94

T10I4D100k 100,000 1,000 0.0101 0.50% 1,073 1.68 569 5

0.10% 26,806 3.27 796 10

0.05% 46,993 3.10 832 10

0.01% 283,397 2.81 846 11
 0.00% 2,347,374 4.29 846 14
T25I10D10k 9,219 1,000 0.0278 1.00% 5,582 3.58 919 10

0.50% 23,393 3.68 982 12

0.10% 209,436 2.63 996 13

0.05% 576,020 2.74 996 14
 0.00% 2,557,927 4.30 996 17

T25I20D100k 100,000 10,000 0.0028 1.00% 5,256 3.53 800 9

0.50% 27,067 4.09 2,131 12

0.10% 150,970 4.64 4,325 14

0.05% 212,765 4.51 4,703 14
 0.01% 3,519,933 3.67 4,889 18
Table 4.1: Data set and lattice characteristics. |O| is number of objects, |I| is the number
of items, and |L| is number of concepts. Average degree is the average number of
concepts in the upper cover of each given concept. Maximum degree is the maximum
number of concepts in the upper cover of any concept.

166

0.0

0.5

1.0

0 0.5 1

O
bj

ec
ts

Items

Mushroom

0.0

0.5

1.0

0.0 0.5 1.0

O
bj

ec
ts

Items

Pumsb

0.0

0.5

1.0

0 0.5 1

O
bj

ec
ts

Items

Chess

0.0

0.5

1.0

0.0 0.5 1.0

O
bj

ec
ts

Items

Pumsb*

0.0

0.5

1.0

0 0.5 1

O
bj

ec
ts

Items

T25I10D10k

0.0

0.5

1.0

0.0 0.5 1.0

O
bj

ec
ts

Items

T25I20D100k

0.0

0.5

1.0

0.0 0.5 1.0

O
bj

ec
ts

Items

T10I4D100k

Figure 4.2: Density profiles of benchmark data sets.

167

4.3 Algorithm Validity

The QuICL algorithms were validated through a two pronged approach. First is

the manual examination of execution paths of each during the incremental construction of

small lattices. The small data sets of the examples of this report and small subsets (e.g.,

10 items and 20 objects) of the Mushroom data set were used as the test cases. Manual

examination was performed by single step and appropriately set breakpoints within a

debugger. In addition to constructing complete lattices, the iceberg processing was also

tested by setting the minimum support. For all test cases, the QuICL algorithm correctly

constructed the concept lattices.

The second prong of validating the QuICL algorithms is to execute all algorithms

including GMA, CHARM, CHARM-L, and MAGALICE against the benchmark data

sets and compare the characteristics of the generated lattices. If the algorithms produced

the same characteristics then the QuICL algorithms are deemed valid since;

i) the GMA, CHARM, CHARM-L, and MAGALICE are already considered
valid by the research community as evidence by citations found in literature,

ii) data sets used are of sufficient size and variety to encompass special cases,
and

iii) there is a near zero probability that different lattices generated from the same
input will have the same characteristics.

The characteristics include the number of concepts in the lattices and the average degree

of the lattice. The average degree is the average of the number concepts in the upper

cover of each concept. The number of concepts by itself is not sufficient to claim that

two lattices generated from the same input are equivalent. For example, omitting the

PURGE-SUBSETS function in any of the QuICL algorithms will generate a lattice with

168

the same number concepts, but there will exist a number of invalid parent-child links

resulting in a different average degree. Table 4.2 provides four such cases.

Data Set Min
Supp |L|

Average Degree
Valid Invalid

Mushroom 10% 4,897 3.8365 4.7121
Mushroom 0% 238,709 5.7093 6.7231
T10I4D100k 0.05% 46,993 3.0998 3.1577
T10I4D100k 0.00% 2,347,374 4.2880 17.8058

Table 4.2: Cases of invalid average degree. Valid average degree is the average degree
reported by the QuICL algorithms. Invalid average degree is the average degree reported
by the QuICL algorithms without PURGE-SUBSETS. |L| is the number concepts
reported by QuICL algorithms with and without PURGE-SUBSETS.

Appendix F provides the measurements of lattice characteristics for each

algorithm. Table F.1 reports the number of concepts in each lattice, by each benchmark

data set and selected minimum supports. Omitted entries in the tables are result of an

algorithm exceeding the maximum heap size supported by the Java virtual machine. The

QuICL algorithms together with CHARM and CHARM-L report the same number of

concepts for all cases. The GMA algorithm reports a value one greater than the QuICL

and CHARM algorithms for all data sets except Mushroom. This discrepancy is

explained by the difference in lattice representations. The QuICL and CHARM

algorithms do not count the bottom concept when reporting the number of concepts since,

for these algorithms, the bottom concept represents an empty item set. The bottom

concept only serves as an entry point into the lattice. GMA, on the other hand, includes

the bottom concept since it may utilize this concept in the event of items that have all

objects. Such is the case of the Mushroom data set. The MAGALICE algorithm reports

the same number of concepts as GMA for many of the cases. This is expected since the

169

MAGALICE algorithm utilizes the GMA algorithm. The MAGALICE algorithm does,

however, report in some cases a close but erroneous number. Such numbers are

highlighted in Table F.1. These results indicate possible problems with the processing of

jumpers34

4.4 Effect of Sort Order for the QuICL and GMA Algorithms

 within the MAGALICE algorithm. Either MAGALICE has a different

interpretation of minimum support, an error exists in the implementation supplied by the

author, or MAGALICE is invalid.

Table F.2 reports the average degree of each lattice generated by each algorithm,

by each benchmark data set and selected minimum supports. Values are not provided for

the CHARM algorithm since it does not generate upper covers. The MAGALICE

algorithm is also omitted since the number of concepts may be in error. All other

algorithms report the same average degree for all cases.

Given the explainable consistency between the QuICL algorithms and the

CHARM, CHARM-L, and GMA algorithms in both number of concepts and average

degree, the QuICL algorithms are deemed valid.

Before comparing the performance and memory usage of the QuICL algorithms

against the CHARM, GMA, and MAGALICE algorithms, experiments were conducted

to determine if the order of item insertion has an effect on performance and memory

usage. If an effect is realized, then the ordering providing the best performance and

memory usage will be used when comparing the algorithms. For these experiments, the

items are sorted in ascending and descending support order. In addition, each data set as

34 Jumper is the term used by the Magalice algorithm for a concept that is regenerated as a result of adding
a new object. The addition of an object will change the supports of concepts. A concept that was discarded
due to lack of a support may now meet the minimum support threshold. Such concept is given the term
jumper.

170

downloaded from the respective repository is used to represent an unsorted state. The

Chess, Mushroom, Pumsb, and T10I4D100k data sets were used in these experiments.

The CHARM algorithms are not included since they perform sorting as an integral part of

their processing. MAGALICE is not included since it loads the entire formal context into

memory and then operates on the formal context using both an object index and item

index lookup.

Figures 4.3, 4.4, and 4.5 provide the results on the effect of sort order on the

runtime execution for the QuICL Oid-Full, QuICL Oid-Less, and QuICL Oid-Trie

algorithms respectively. Figure 4.6 provides the results on the effect on the runtime

execution of the GMA algorithm. Furthermore, Figures 4.7, 4.8, 4.9, and 4.10 provide

the results on the effect on memory usage for the respective algorithms. The QuICL Oid-

Full and Oid-Trie algorithms provide the best performance by incrementally inserting

items in ascending support order. For QuICL Oid-Full the gain in performance ranges

from a marginal amount to near two times (e.g., T10I4D100k at 0.005% supp) depending

the data set and selected minimum support. Greater gains are generally realized at lower

supports. Similar gains are realized by QuICL Oid-Trie. The differences in execution

time for these algorithms are attributed to the number of intersections. By inserting

concepts in ascending item support order the lattice initially grows at small rate that

accelerates towards later insertions. On the other hand, by inserting in descending order,

the lattice grows rapidly as the initial items are inserted with the growth rate diminishing

over subsequent items. Appendix G provides supporting evidence. While the QuICL

algorithms use the lattice structure to navigate to the points of change within the lattice, a

larger lattice will involve more intersections to locate those points. Therefore, by

171

inserting the items in ascending support order the number of intersections performed over

the course of constructing the entire lattice will be restrained. For both QuICL Oid-Full

and QuICL Oid-Trie the sort order has no effect on memory usage. This is due to the

well-behavior of lattice construction.

For the QuICL Oid-Less algorithm, the best performance and memory usage is

attained by incrementally inserting items in descending support order. Even though the

QuICL Oid-Less algorithm has the same fundamental structure as the QuICL Oid-Full

and QuICL Oid-Trie algorithms, there are two factors that contribute to this conflicting

preference. First, the QuICL Oid-Less performs intersection on sets of concepts rather

than sets of object ids. By inserting items in descending support order, the concepts hold

larger sets of object ids for longer initial period of time. During this time the cost of

intersections is greatly reduced. Second, for each item insertion an intersection with the

lattice as a whole is effectively performed. This results in creating numerous temporary

object id and concept id sets. By inserting the items in descending support order the

space consumed by these sets is restrained. While the lattice is still small, the

intersection with a large object id set will be limited. Likewise, as the lattice gets large,

intersection with small object id set is desired; otherwise the temporary sets will get

exceedingly large (e.g., Chess data set of Figure 4.8). The size of the temporary sets not

only impacts memory consumption, but also performance since it is these sets that are

internally created and processed.

The QuICL Oid-Less algorithm exhibits a runtime preference for ascending order

in the case the T10I4D100k data set. The T10I4D100k data set is a sparse data set. As a

result, there is little gain in the performing intersections at the concept level. Any sets of

172

object ids are quickly broken into small sets as the algorithm proceeds. The effect of sort

order on the number of intersections performed, as stated for the QuICL Oid-Full and

QuICL Oid-Trie algorithms, has a greater impact on performance. The QuICL Oid-Less

algorithm still exhibits a small memory preference for descending order. Given that the

gain in memory is small, the amount of memory being consumed is well within the range

of available memory, and the overall objective is to improve runtime performance; the

best sort order for QuICL Oid-Less will be considered to be ascending when executed

against sparse data sets.

The GMA algorithm also exhibits significant gains in performance by inserting

the items in descending support order for dense data sets and moderate gains by inserting

in ascending order for the T100I4D00k data set. On dense data sets, the differences in

performance can be attributed to the cost of linking new concepts into the lattice. On

creating a new concept, GMA must search the lattice to find its parents. This search is

limited to the set of generated and modified concepts that are identified in the course of

processing an item insertion until the point where a new concept is generated. When

inserting the items in ascending support order, the generated concepts for the next item

will be towards the bottom of the lattice. Thus, the number of generated and modified

concepts encountered before that point will be large. This results in excessive time spent

searching for parents. Inserting items in ascending support order effectively builds the

lattice from the top-down and thus incurs a greater cost when searching for parents.

Inserting items in descending order builds the lattice from the bottom up, greatly reducing

the search cost. Section 4.9 provides evidence to the fact. On sparse data sets, the

number of modified and generated concepts for each item insertion is drastically smaller

173

than on dense data sets. Therefore, the time to search for parents is significantly smaller

and is less than costs of intersections. Thus on sparse data sets, the effect of sort order on

the number of intersections performed, as stated for the QuICL Oid-Full and QuICL Oid-

Trie algorithms, has a greater impact on performance. For the GMA algorithm, the sort

order has no effect on memory usage.

174

QuICL Oid-Full Runtime

0.01

0.10

1.00

10.00

65%75%85%95%

Chess

0.01

0.10

1.00

10.00

0%10%20%30%40%50%

Mushroom

1.00

10.00

100.00

0.0%0.5%1.0%

T10I4D100k

0.10

1.00

10.00

85%90%95%

Pumsb

Asc None Desc

 Chess

T10I4D100k

Min

Supp |L| A
sc

N
on

e

D
es

c

Min
Supp |L| A

sc

N
on

e

D
es

c

 95% 74 0.01 0.01 0.01

1.000% 385 1.67 1.80 1.69

 85% 1,885 0.12 0.14 0.16

0.500% 1,073 2.91 2.95 2.91
 75% 11,525 0.62 0.70 0.87

0.050% 46,993 5.80 7.28 8.22

 65% 49,240 2.44 2.89 4.04

0.005% 769,777 35.58 47.02 61.40

 Mushroom

Pumsb

Min

Supp |L| A
sc

N
on

e

D
es

c

Min
Supp |L| A

sc

N
on

e

D
es

c

 50% 45 0.02 0.02 0.02

95% 110 0.15 0.13 0.15

 30% 427 0.06 0.07 0.08

90% 1,466 1.04 1.56 1.71
 10% 4,897 0.42 0.45 0.53

85% 8,513 5.50 8.20 9.29

 0% 238,709 3.36 3.32 3.90

Figure 4.3: Effect of item sort order on the QuICL Oid-Full runtime execution.

175

QuICL Oid-Less Runtime

1.00

10.00

100.00

1000.00

0.0%0.5%1.0%

T10I4D100k

0.01

0.10

1.00

10.00

100.00

65%75%85%95%

Chess

0.01

0.10

1.00

10.00

100.00

0%10%20%30%40%50%

Mushroom

0.10

1.00

10.00

75%85%95%

Pumsb

Asc None Desc
 Chess

T10I4D100k

Min

Supp |L| A
sc

N
on

e

D
es

c

Min
Supp |L| A

sc

N
on

e

D
es

c

 95% 74 0.02 0.03 0.03

1.000% 385 4.12 4.65 5.32

 85% 1,885 0.08 0.08 0.06

0.500% 1,073 5.61 5.61 8.51
 75% 11,525 0.80 0.71 0.38

0.050% 46,993 12.19 17.38 22.45

 65% 49,240 9.89 9.87 3.54

0.005% 769,777 101.59 122.70 142.91

 Mushroom

Pumsb

Min

Supp |L| A
sc

N
on

e

D
es

c

Min
Supp |L| A

sc

N
on

e

D
es

c

 50% 45 0.03 0.03 0.03

95% 110 0.12 0.12 0.12

 30% 427 0.06 0.05 0.06

90% 1,466 0.29 0.26 0.22
 10% 4,897 1.94 1.29 0.63

85% 8,513 1.02 0.91 0.65

 0% 238,709 12.97 9.18 10.80

75% 101,047 9.86 9.41 7.33

Figure 4.4: Effect of item sort order on the QuICL Oid-Less runtime execution.

176

QuICL Oid-Trie Runtime

0.01

0.10

1.00

10.00

65%75%85%95%

Chess

0.01

0.10

1.00

10.00

0%10%20%30%40%50%

Mushroom

1

10

100

0.0%0.5%1.0%

T10I4D100k

0.01

0.1

1

10

85%90%95%

Pumsb

Asc None Desc

 Chess

T10I4D100k

Min

Supp |L| A
sc

N
on

e

D
es

c

Min
Supp |L| A

sc

N
on

e

D
es

c

 95% 74 0.02 0.02 0.02

1.000% 385 1.92 1.86 1.78

 85% 1,885 0.13 0.12 0.15

0.500% 1,073 3.25 3.26 3.26
 75% 11,525 0.63 0.65 0.90

0.050% 46,993 6.97 8.22 9.48

 65% 49,240 2.73 3.24 4.33

0.005% 769,777 48.35 68.73 88.48

 Mushroom

Pumsb

Min

Supp |L| A
sc

N
on

e

D
es

c

Min
Supp |L| A

sc

N
on

e

D
es

c

 50% 45 0.02 0.04 0.03

95% 110 0.09 0.15 0.16

 30% 427 0.08 0.08 0.08

90% 1,466 0.99 1.57 1.79
 10% 4,897 0.51 0.51 0.54

85% 8,513 5.50 8.70 9.78

 0% 238,709 4.55 4.32 4.42

Figure 4.5: Effect of item sort order on the QuICL Oid-Trie runtime execution.

177

GMA Runtime

1

10

100

1000

10000

0.0%0.5%1.0%

T10I4D100k

0.01

0.1

1

10

100

1000

65%75%85%95%

Chess

0.01
0.1

1
10

100
1000

10000

0%10%20%30%40%50%

Mushroom

0.10

1.00

10.00

100.00

1000.00

85%90%95%

Pumsb

Asc None Desc
 Chess

T10I4D100k

Min

Supp |L| A
sc

N
on

e

D
es

c

Min
Supp |L| A

sc

N
on

e

D
es

c

 95% 75 0.03 0.03 0.03

1.000% 386 2.53 2.71 2.65

 85% 1,886 1.37 1.13 1.23

0.500% 1,074 4.69 5.25 5.91
 75% 11,526 25.61 16.84 18.85

0.050% 46,994 49.86 67.25 90.90

 65% 49,241 314.97 159.01 148.68

0.005% 769,778 822.74 861.79 1107.74

 Mushroom

Pumsb

Min

Supp |L| A
sc

N
on

e

D
es

c

Min
Supp |L| A

sc

N
on

e

D
es

c

 50% 45 0.06 0.06 0.06

95% 111 0.50 0.54 0.60

 30% 427 0.40 0.35 0.39

90% 1,467 9.06 9.95 11.73
 10% 4,897 9.50 6.05 5.09

85% 8,514 105.06 105.77 117.44

 0% 238,709 5278.02 978.76 210.29

Figure 4.6: Effect of item sort order on the GMA runtime execution.

178

QuICL Oid-Full Memory

1

10

100

1000

65%75%85%95%

Chess

1

10

100

1000

0%10%20%30%40%50%

Mushroom

1

10

100

1000

0.0%1.0%2.0%

T10I4D100k

10

100

1000

10000

85%90%95%

Pumsb

Asc None Desc

 Chess

T10I4D100k

Min

Supp |L| A
sc

N
on

e

D
es

c

Min
Supp |L| A

sc

N
on

e

D
es

c

 95% 74 8 8 8

1.000% 385 11 11 11

 85% 1,885 30 30 30

0.500% 1,073 13 12 13
 75% 11,525 138 137 136

0.050% 46,993 48 49 49

 65% 49,240 492 491 519

0.005% 769,777 230 219 201

 Mushroom

Pumsb

Min

Supp |L| A
sc

N
on

e

D
es

c

Min
Supp |L| A

sc

N
on

e

D
es

c

 50% 45 8 8 8

95% 110 29 29 28

 30% 427 13 13 13

90% 1,466 287 295 295
 10% 4,897 42 42 41

85% 8,513 1557 1577 1577

 0% 238,709 153 149 145

Figure 4.7: Effect of item sort order on the QuICL Oid-Full memory usage.

179

QuICL Oid-Less Memory

10

100

1000

0.0%0.5%1.0%

T10I4D100k

1

10

100

1000

65%75%85%95%

Chess

1

10

100

1000

0%10%20%30%40%50%

Mushroom

1

10

100

1000

75%80%85%90%95%

Pumsb

Asc None Desc

 Chess

T10I4D100k

Min

Supp |L| A
sc

N
on

e

D
es

c

Min
Supp |L| A

sc

N
on

e

D
es

c

 95% 74 8 8 8

1.000% 385 50 41 48

 85% 1,885 10 9 9

0.500% 1,073 57 56 52
 75% 11,525 27 24 15

0.050% 46,993 93 82 73

 65% 49,240 234 163 50

0.005% 769,777 345 315 265

 Mushroom

Pumsb

Min

Supp |L| A
sc

N
on

e

D
es

c

Min
Supp |L| A

sc

N
on

e

D
es

c

 50% 45 8 8 8

95% 110 12 12 12

 30% 427 9 9 9

90% 1,466 13 13 13
 10% 4,897 49 32 22

85% 8,513 34 27 20

 0% 238,709 161 119 99

75% 101,047 258 202 145

Figure 4.8: Effect of item sort order on the QuICL Oid-Less memory usage.

180

QuICL Oid-Trie Memory

1

10

100

1000

65%75%85%95%

Chess

1

10

100

1000

0%10%20%30%40%50%

Mushroom

1

10

100

1000

0.0%0.5%1.0%

T10I4D100k

10

100

1000

10000

85%90%95%

Pumsb

Asc None Desc

 Chess

T10I4D100k

Min

Supp |L| A
sc

N
on

e

D
es

c

Min
Supp |L| A

sc

N
on

e

D
es

c

 95% 74 8 8 8

1.000% 385 10 11 11

 85% 1,885 11 11 11

0.500% 1,073 13 13 13
 75% 11,525 32 32 31

0.050% 46,993 48 49 49

 65% 49,240 108 107 107

0.005% 769,777 261 268 269

 Mushroom

Pumsb

Min

Supp |L| A
sc

N
on

e

D
es

c

Min
Supp |L| A

sc

N
on

e

D
es

c

 50% 45 7 8 8

95% 110 29 30 31

 30% 427 9 9 9

90% 1,466 295 291 295
 10% 4,897 19 19 19

85% 8,513 1557 1573 1573

 0% 238,709 114 116 116

Figure 4.9: Effect of item sort order on the QuICL Oid-Trie memory usage.

181

GMA Memory

1

10

100

1000

0.0%0.5%1.0%

T10I4D100k

1

10

100

1000

65%75%85%95%

Chess

1

10

100

1000

0%10%20%30%40%50%

Mushroom

1

10

100

1000

10000

85%90%95%

Pumsb

Asc None Desc

 Chess

T10I4D100k

Min

Supp |L| A
sc

N
on

e

D
es

c

Min
Supp |L| A

sc

N
on

e

D
es

c

 95% 74 9 9 9

1.000% 386 14 14 14

 85% 1,885 33 31 33

0.500% 1,074 19 18 18
 75% 11,525 138 139 139

0.050% 46,994 63 66 66

 65% 49,240 513 515 500

0.005% 769,778 352 362 394

 Mushroom

Pumsb

Min

Supp |L| A
sc

N
on

e

D
es

c

Min
Supp |L| A

sc

N
on

e

D
es

c

 50% 45 11 11 11

95% 111 34 34 36

 30% 427 16 16 16

90% 1,467 295 297 298
 10% 4,897 39 39 39

85% 8,513 1582 1582 1583

 0% 238,709 202 196 194

Figure 4.10: Effect of item sort order on the GMA memory usage.

182

4.5 Comparison of Algorithm Execution Time

The runtime results of executing the algorithms are given in Figures 4.11 through

4.17 for the Chess, Mushroom, Pumsb, Pumsb*, T10I4D100k, T25I10D10K, and

T25I20D100k data sets respectively. All reported times are the average of five separate

test executions of the same test case. Ascending item support order is used for the

QuICL Oid-Full and QuICL Oid-Trie algorithms for all data sets, and for the GMA and

QuICL Oid-Less algorithms on sparse data sets. Descending order is used for GMA and

QuICL Oid-Less on dense data sets. All other algorithms are unsorted since either the

sort order is an integral part of the algorithm (e.g., CHARM) or is not applicable (e.g.,

MAGALICE). All times are in seconds. The plots in each figure display seconds on the

vertical axis and minimum support on the horizontal axis.

GMA is generally slower than the QuICL and CHARM algorithms by an order of

magnitude. GMA diverges further for small minimum supports. There are two factors

that impact the performance of the GMA algorithm. First, each item insertion intersects

the next item’s object ids with a large portion of the concepts currently in the lattice. All

concepts in ascending support order from the top of the lattice through the concept that is

the generator for the next item’s object ids are visited. As a result, the GMA algorithm

visits and intersects more concepts than needed. The QuICL algorithms use the lattice

structure to navigate to a more limited subset of concepts thereby reducing the number of

intersections. The CHARM algorithms provide pruning on its itemset-oidset trie as its

means to limit the number of intersections. Secondly, the GMA links each new concept

into the lattice by searching for parents. While this search is restricted to generated and

modified concepts, the number can still be excessive. For parent concepts already

183

present in the lattice the QuICL Oid-Full and QuICL Oid-Less algorithms navigate the

lattice structure as needed. The QuICL Oid-Trie algorithm alternatively uses a hash table

to directly locate these parents. Other parents are dynamically created and directly linked

using recursive insertion. The CHARM-L algorithm uses set operations on sets of

generator concepts associated with each concept to identify and link parent concepts.

The MAGALICE algorithm demonstrates the worst performance of all the

algorithms. Its performance when compared to the GMA algorithm is at least an order of

magnitude slower, in some cases three order of magnitude (e.g., Pumsb*) at high

supports. The performance does however, appear converge with the GMA as the support

is lowered. The plots for the Chess, Mushroom, and T25I10D10K data sets indicate that

the performance of MAGALICE will be comparable to GMA at 0%supp, although no

conclusive measurements were attainable. These results indicate considerable processing

is involved with the generation of jumpers35

The CHARM algorithm provides the best performance for the Chess, Pumsb, and

Pumsb* data sets. As the support is lowered, the performance gain often exceeds an

order of magnitude over the other algorithms. These results are expected since CHARM

does not derive the upper covers. It only identifies the frequent closed item sets.

Furthermore, CHARM uses a difference based representation for the object ids below the

. As the support is lowered this processing

diminishes since there are fewer discarded concepts that need to be regenerated. Indeed

at 0%supp, no concepts will be discarded and thus there will be no jumpers. At 0%supp

MAGALICE reverts to the underlying GMA processing.

35 Jumper is the term used by the MAGLICE algorithm for a concept that is regenerated as a result of
adding a new object. The addition of an object will change the supports of concepts. A concept that was
discarded due to lack of a support may now meet the minimum support threshold. Such concept is given
the term jumper.

184

first level in its itemset-oidset tree. Since these data sets contain a number of items

having large object id sets (e.g., greater than 200), this difference based representation

provides a real gain in both in memory and runtime execution. The CHARM algorithm

provides the best performance for the T10I4D100k, T25I10D10k, and T25I20D100k data

sets, but only for supports greater than 0.1%, 0.3%, and 0.02% respectively. For these

data sets, these supports are relatively high (i.e., will produce only a small fraction of all

possible frequent item sets) and equate to an absolute support of 100, 28, and 20

respectively. As the support is reduced below these points, the CHARM algorithm is

outperformed by the QuICL Oid-Full and QuICL Oid-Trie algorithms. For the remaining

data set, Mushroom, CHARM is outperformed by QuICL Oid-Full and QuICL Oid-Trie

over all supports.

The CHARM-L algorithm exhibits performance along the lines of CHARM but

degrades as the support is lowered and the number of concepts increases. For dense data

sets the degradation can readily diverge in excess of an order of magnitude. For the

sparse data sets, the divergence is between a factor of two (e.g., T25I10D10k) and a

factor of five (e.g., T25I20D100k). These results are expected since the CHARM-L is an

extension to CHARM that additionally derives the upper covers. The CHARM-L

algorithm still outperforms the QuICL Oid-Full and QuICL Oid-Trie algorithms on the

Pumsb and Pumsb* algorithms over near all supports, and the T10I4D100k,

T25I10D10k, and T25I20D100k at relatively high supports (although higher than with

CHARM). This indicates that the difference based representation of the underlying

CHARM algorithm is still providing a gain. However, the gain is significantly

diminished by the processing required to derive the upper covers. The gain in

185

performance of CHARM-L over QuICL on Pumsb* is approximately a factor of two.

For the Mushroom and Chess data sets, CHARM-L is outperformed by both QuICL Oid-

Full and QuICL Oid-Trie over all supports.

The QuICL Oid-Full algorithm provides the best overall performance for

constructing iceberg lattices. It is only outperformed by CHARM-L on the Pumsb and

Pumsb* data sets and for the T10I4D100k, T25I10D10k, and T25I20D100k at only

relatively high supports. The Pumsb and Pumsb* are data sets that contain items with

very large object id sets (e.g., greater than 10,000) and thus CHARM-L is sufficiently

benefiting from its difference based representation to maintain a lead. While CHARM-L

does outperform the QuICL Oid-Full and QuICL Oid-Trie algorithms at relatively high

supports on the T10I4D100k, T25I10D10k, and, T25I20D100k data sets, the gain is

limited to a few seconds (e.g., 2.53 seconds in T10I4D100k at 0.5% supp and 1.05 seconds

in T25I10D10k at 1.0%supp), although the T25I20D100k exhibits a gain of 57.8 seconds

at 1.0%supp. In all cases, the gain quickly turns into a large loss as the support is lowered

(e.g., loss of 1,534 seconds in T25I10D10k at 0.0% supp and 1,847 seconds in

T10I4D100k at 0.0% supp). At low supports QuICL Oid-Full outperforms CHARM-L by

an excess of an order of magnitude on the Mushroom, T10I4D100K, T25I10D10k, and

T25I20D100k36

The QuICL Oid-Full and QuICL Oid-Trie algorithms exhibit the near same

runtime complexity for all data sets. QuICL Oid-Trie exhibits around 25% loss over

 data sets, and a factor greater than five for Chess.

36 A measurement of an order of magnitude greater was not obtained for the T25I20D100k data set due to
the heap size limit on the Java VM. However, at 0.01%supp a value in excess of an order of magnitude can
be readily inferred by both the trend in CHARM-L’s measurements and by relationship to the CHARM
measurements. At 0.01%supp, CHARM consumes 1,924.78 seconds. The CHARM-L measurements are in
excess 3 × CHARM. Therefore, a value greater than 6,000 seconds is expected for CHARM-L at
0.01%supp.

186

QuICL Oid-Full algorithm, although 45% loss is exhibited for Mushroom at 10%supp and

at most a 12% loss for Pumsb* over all supports. This loss in performance is expected.

The functions to compare and intersect object id sets at the heart of the QuICL Oid-Trie

algorithm will encounter a performance impact, since they must traverse between trie

nodes and not just a simple array. Therefore, the cost of advancing the intersection

indices within these functions will be more than for QuICL Oid-Full. A loss in

performance can also be attributed to cost of adding the object id sets into the trie. To

add an object id set involves walking the trie to identify the point where a new trie node37

The remaining algorithm, QuICL Oid-Less, provides the best performance of the

lattice construction algorithms on the Pumsb data set outperforming CHARM-L by more

than a factor of two over all supports. QuICL Oid-Less is QuICL’s answer to handling

data set containing items with large object id sets. Instead of directly intersecting object

ids, QuICL Oid-Less intersects support concepts (i.e., concepts that logically hold object

ids in a compressed lattice). For concept lattices where the support concepts hold large

will be grafted. Adding object id sets into the Trie may have a minor effect, if any, on the

runtime complexity. To counteract the runtime overhead introduced by the trie data

structure, the QuICL Oid-Trie algorithm incorporates two performance enhancements.

One provides early termination of intersection and compare when the traversals of the

two sets encounter the same trie node. The second provides direct lookup of concepts

that exist in the lattice, thereby avoiding the intersect and compare functions when

searching for such concepts. While these enhancements provide minor gain, they are not

sufficient to overcome the increase in intersection cost.

37 The QuICL Oid-Trie algorithm uses a compound trie node implementation. At most one trie node will
be created for each inserted object id set.

187

sets of object ids, the QuICL Oid-Less algorithm realizes a significant performance gain.

Such is the case for the Pumsb lattice. This gain is also realized for an initial period of

time during the algorithm execution on other data sets. During this time period, the

number of support concepts is limited and the cardinality of object ids they represent is

large. This behavior is observed in the Chess, Mushroom, and Pumsb* data sets. Over

the course of execution, the support concepts fragment resulting degradation of

performance. Indeed, the worst case is the point where all support concepts are iced

concepts with each representing a single object id. For sparse data sets, the execution

rapidly approaches this worst case at which time QuICL Oid-Less exhibits a performance

loss of a factor between two and four when compared to QuICL Oid-Full.

188

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

40%50%60%70%80%90%

Chess

Oid-Full Oid-Trie Oid-Less CHARM
CHARM-L GMA MagaliceMAGALICE

Min
Supp |L|

O
id

-F
ul

l

O
id

-T
rie

O
id

-L
es

s

C
H

A
R

M

C
H

A
R

M
-L

G
M

A

M
AG

AL
IC

E

 95% 74 0.01 0.02 0.01 0.02 0.03 0.04 1.83
 90% 503 0.04 0.05 0.02 0.03 0.06 0.23 9.32
 85% 1,885 0.11 0.12 0.06 0.06 0.14 1.13 31.02
 80% 5,083 0.25 0.30 0.14 0.10 0.35 4.81 76.32
 75% 11,525 0.56 0.61 0.38 0.15 0.91 16.62 162.16
 70% 23,991 1.11 1.36 1.09 0.22 2.54 45.92
 65% 49,240 2.20 2.83 3.52 0.43 6.36 131.83
 60% 98,392 4.57 5.61 11.29 0.75 17.99 381.31
 55% 192,863 8.60 11.13 34.01 1.37 49.04 1148.32
 50% 369,450 21.12 90.35 2.92 130.30
 45% 707,964 40.89 227.01 5.82 343.79
 40% 1,366,833 10.16 924.48

Figure 4.11: Comparison of runtime execution time using the Chess data set.

189

0.01

0.10

1.00

10.00

100.00

0%10%20%30%40%50%

Mushroom

Oid-Full Oid-Trie Oid-Less CHARM
CHARM-L GMA MagaliceMAGALICE

Min
Supp |L|

O
id

-F
ul

l

O
id

-T
rie

O
id

-L
es

s

C
H

A
R

M

C
H

A
R

M
-L

G
M

A

M
AG

AL
IC

E

 50% 45 0.02 0.02 0.03 0.02 0.06 0.04 5.23
 40% 140 0.03 0.03 0.04 0.05 0.10 0.10 11.29
 30% 427 0.06 0.07 0.05 0.11 0.17 0.36 24.69
 20% 1,197 0.14 0.15 0.13 0.26 0.35 1.17 48.11
 10% 4,897 0.38 0.54 0.68 0.66 0.90 5.04 110.89
 5% 12,854 0.73 0.98 2.05 1.32 2.09 13.13 177.82
 1% 51,672 1.61 2.25 5.71 3.12 9.43 50.68 283.66
 0% 238,709 2.99 4.67 10.54 6.36 172.46 209.65

Figure 4.12: Comparison of runtime execution time using the Mushroom data set.

190

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

60%65%70%75%80%85%90%95%

Pumsb

Oid-Full Oid-Trie Oid-Less CHARM
CHARM-L GMA MagaliceMAGALICE

Min
Supp |L|

O
id

-F
ul

l

O
id

-T
rie

O
id

-L
es

s

C
H

A
R

M

C
H

A
R

M
-L

G
M

A

M
AG

AL
IC

E

 95% 110 0.08 0.09 0.11 0.13 0.42 0.66 3574.71
 90% 1,466 1.08 1.14 0.22 0.43 0.79 11.88
 85% 8,513 5.48 5.60 0.65 0.98 1.59 107.61
 80% 33,295 2.27 2.19 5.15
 75% 101,047 7.11 5.23 21.74
 70% 241,258 20.36 10.77 88.84
 65% 496,069 65.90 19.84 304.76
 60% 1,074,627 263.83 39.28 908.79

Figure 4.13: Comparison of runtime execution time using the Pumsb data set.

191

0.10

1.00

10.00

100.00

1000.00

10000.00

20%25%30%35%40%45%50%

Pumsb*

Oid-Full Oid-Trie Oid-Less CHARM
CHARM-L GMA MagaliceMAGALICE

Min
Supp |L|

O
id

-F
ul

l

O
id

-T
rie

O
id

-L
es

s

C
H

A
R

M

C
H

A
R

M
-L

G
M

A

M
AG

AL
IC

E

 50% 248 0.26 0.24 0.24 0.26 0.48 1.69 6057.85
 45% 713 0.67 0.72 0.54 0.46 0.80 6.74
 40% 2,610 1.74 1.96 1.93 0.83 1.24 27.40
 35% 6,133 3.81 4.22 6.04 1.31 2.22 87.94
 30% 16,154 9.85 10.55 22.37 2.33 4.70 262.68
 25% 42,756 71.84 4.41 12.91
 20% 122,262 207.89 8.90 45.40

Figure 4.14: Comparison of runtime execution time using the Pumsb* data set.

192

0.10

1.00

10.00

100.00

1000.00

10000.00

0.0%0.1%0.2%0.3%0.4%0.5%

T10I4D100k

Oid-Full Oid-Trie Oid-Less CHARM
CHARM-L GMA MagaliceMAGALICE

Min
Supp |L|

O
id

-F
ul

l

O
id

-T
rie

O
id

-L
es

s

C
H

A
R

M

C
H

A
R

M
-L

G
M

A

M
AG

AL
IC

E

 0.500% 1,073 3.02 3.39 5.64 0.20 0.49 4.66 430.27
 0.300% 4,509 3.76 4.18 6.62 0.67 1.44 9.35 609.43
 0.100% 26,806 4.88 5.58 8.95 4.60 10.89 31.42 1124.73
 0.050% 46,993 5.90 7.00 12.13 18.87 50.55 49.47 1364.72
 0.030% 71,265 7.54 9.23 17.49 54.00 142.11 70.32 2247.53
 0.010% 283,397 17.94 23.34 50.45 302.08 618.76 253.56
 0.005% 769,777 36.17 49.35 101.30 602.99 1053.38 815.71
 0.000% 2,347,374 116.84 161.47 290.16 1433.06 1963.54 9717.73

Figure 4.15: Comparison of runtime execution time using the T10I4D100k data set.

193

0.10

1.00

10.00

100.00

1000.00

10000.00

0.0%0.1%0.2%0.3%0.4%0.5%

T10I4D100k

Oid-Full Oid-Trie Oid-Less CHARM
CHARM-L GMA MagaliceMAGALICE

Min
Supp |L|

O
id

-F
ul

l

O
id

-T
rie

O
id

-L
es

s

C
H

A
R

M

C
H

A
R

M
-L

G
M

A

M
AG

AL
IC

E

 1.00% 5,582 1.49 1.63 2.26 0.19 0.44 2.68 115.02
 0.50% 23,394 1.72 2.00 2.94 0.61 1.34 8.62 214.44
 0.30% 44,925 2.07 2.43 3.62 1.31 3.41 15.51 302.50
 0.10% 209,436 11.29 15.40 29.29 52.89 179.12 60.47 816.84
 0.05% 576,021 31.63 45.58 85.79 207.04 528.18 200.41
 0.03% 1,438,054 65.53 95.09 180.36 434.07 916.80 823.92
 0.00% 2,557,928 145.35 195.55 466.42 1018.31 1679.37 5003.55

Figure 4.16: Comparison of runtime execution time using the T25I10D10k data set.

194

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

100000.00

0.0%0.2%0.4%0.6%0.8%1.0%

T25I20D100k

Oid-Full Oid-Trie Oid-Less CHARM
CHARM-L GMA MagaliceMAGALICE

Min
Supp |L|

O
id

-F
ul

l

O
id

-T
rie

O
id

-L
es

s

C
H

A
R

M

C
H

A
R

M
-L

G
M

A

M
AG

AL
IC

E

 1.00% 5,256 6.09 6.76 13.39 0.25 0.80 19.74 12117.89
 0.50% 27,067 27.41 30.61 49.77 0.81 2.78 117.71
 0.30% 72,640 44.71 53.99 76.74 1.59 7.90 353.11
 0.10% 150,970 69.91 78.25 108.43 3.24 12.11 816.62
 0.05% 212,765 75.74 89.57 119.77 9.63 35.52 1024.13
 0.03% 461,138 86.85 102.92 144.93 56.02 239.18 1321.71
 0.01% 3,519,933 267.86 407.07 626.32 1924.78 10961.24

Figure 4.17: Comparison of runtime execution time using the T25I20D100k data set.

195

4.6 Comparison of Algorithm Memory Usage

The memory results of executing the algorithms are given in Figures 4.18 through

4.24 for the Chess, Mushroom, Pumsb, Pumsb*, T10I4D100k, T25I10D10K, and

T25I20D100k data sets respectively. All memory measurements were obtained from the

“Mem Usage” field of the Windows Task Manager dialog upon termination of the

algorithm. Ascending item support order is used for the QuICL Oid-Full and QuICL

Oid-Trie algorithms for all data sets, and for the GMA and QuICL Oid-Less algorithms

on sparse data sets. Descending order is used for GMA and QuICL Oid-Less on dense

data sets. All other algorithms are unsorted since either the sort order is an integral part

of the algorithm (e.g., CHARM) or is not applicable (e.g., MAGALICE). All

measurements are in megabytes (MBs). The plots in each figure display MBs on the

vertical axis and minimum support on the horizontal axis.

In addition to the memory results, the algorithms were separately instrumented to

report various characteristics on the internal data structures, consisting of;

i) cardinality of object id entries in lattice for the GMA and QuICL Oid-Full
algorithms,

ii) cardinality of the object id entries in the trie of the QuICL Oid-Trie algorithm,

iii) cardinality of the item entries in the lattice for the GMA and CHARM-L
algorithms, and

iv) the number of parent-child links of the lattice for all lattice construction
algorithms.

These characteristics provide insight into the exhibited memory usage. Results from

executing the instrumented algorithms against the benchmark data sets over a relevant

subset of supports are given in Table 4.3. |L| is the number of concepts in the resulting

lattice. |O′| is the number of object ids in a full lattice. Such value is reflected in the

196

QuICL Oid-Full and GMA algorithms. |O″| is the number of object id entries in the

QuICL Oid-Full trie. No object ids are retained in the QuICL Oid-Less or CHARM-L

lattices. |I′| is the number of items in a full lattice. Such value applies to GMA and

CHARM-L. |I″| is the number of items in the QuICL lattices. |P| is the number of

parent-child links. QuICL Oid-Full and QuICL Oid-Trie maintain only one set of parent-

child links to traverse from children to parents. The other algorithms maintain two sets of

parent-child links to enable bi-directional traversals required of the respective algorithm.

From Table 4.3 rough approximations for memory to represent the internal lattice

can be calculated using factors;

i) 4 bytes for each object id in all lattices or item in QuICL lattice,

ii) 6 bytes for each item in GMA or CHARM-L lattice,

iii) 6 bytes for each parent-child link in QuICL Oid-Full or QuICL Oid-Trie
lattice,

iv) 12 bytes for each parent-child link in all other lattices,

v) 124 bytes for each concept in QuICL Oid-Full lattice,

vi) 216 bytes for each concept in QuICL Oid-Trie lattice,

vii) 320 bytes for each concept in QuICL Oid-Less lattice,

viii) 276 bytes for each concept in GMA lattice, and

ix) 356 bytes for each concept in CHARM-L lattice.

Details of these factors are given in Appendix H. Determination of concept size for

MAGALICE was not performed due to exhibited gross memory consumption.

Calculation of memory usage for each algorithm by applying these factors to the

applicable characteristics of Table 4.3 is given in Appendix I. In addition, Appendix I

includes a comparison to the actual observed memory usage. For the QuICL Oid-Full

197

and QuICL Oid-Trie, and the GMA algorithms, the calculated memory usage is within a

reasonable neighborhood of the observed memory usage. As expected, the observed

memory usage is greater to account for the Java VM, loaded class files, execution stack,

and data structures beyond the lattice. For the QuICL Oid-Less algorithm, the observed

memory usage greatly exceeds that required by the lattice. This excess is a result of the

temporary sets constructed and discarded during each item insertion. Similarly, for the

CHARM-L algorithm the observed memory usage greatly exceeds that of the lattice. In

this case, the excess is for object ids stored in its itemset-oidset tree during processing.

Furthermore, the CHARM-L calculations may not be account for all the factors

contributing to the size of the lattice. A factor that is omitted is a list of generator

concepts associated with each concept.

The MAGALICE exhibits the worst memory usage. Except for a few cases, the

memory usage is well in excess of an order of magnitude for all data sets and supports.

The reason for this excess was not investigated.

QuICL Oid-Full and GMA exhibit similar memory usage for small lattices (i.e.,

less than 200,000 concepts) and diverge for larger lattices (i.e., greater than 500,000).

For both of these algorithms, the number of object id entries stored in the lattice is a

major consumer of memory. For small lattices on dense data sets the space for object ids

can account for more than 95% of the memory consumed. As the lattice becomes large,

the overhead of the concepts will become a dominant term. On large lattices, memory for

the concepts, excluding object ids and items, can account for 38% (e.g., T10I4D100k at

0.01%supp using QuICL Oid-Full) to 72% (e.g., T25I10D10K at 0.0% using QuICL Oid-

Full) of the memory consumed. Furthermore, for large lattices the number of parent-

198

child links account for another 15%. Since the overhead of a concept in the GMA lattice

is greater than in the QuICL Oid-Full lattice and the GMA lattice uses two references for

each parent-child link, the GMA lattice consumes more memory for large lattices. As the

lattice becomes very large GMA exceeds QuICL Oid-Full by a factor approaching two.

For most data sets, the QuICL Oid-Trie algorithm is realizing significant

reduction in the number of object id entries within its trie over the number of object id

entries present in QuICL Oid-Full’s lattice. In only the Pumsb data set is the reduction

less than 1.0%. For the Pumsb*, T10I4D100k, and T25I20D100k the reduction is around

15%. A reduction of 30%, 60%, and 80% is realized for the T25I10D10k, Mushroom,

and Chess data sets respectively. For small lattices, the reduction in object id entries

translates to a significant reduction in memory usage over the QuICL Oid-Full algorithm.

For Pumsb* the reduction in memory usage is around 15% 38

38 Savings exceeding 15% is observed at the 30%supp and thus exceeds the calculated savings. This
anomaly may be attributed to unidentified runtime factors experienced with the QuICL Oid-Full execution.

. A 50% and 75% reduction

is realized for the Mushroom and Chess data sets, although only a 25% reduction is

realized from Mushroom at 0.0%supp. At 0.0%supp the lattice is of sufficient size that the

additional overhead for concepts in the QuICL Oid-Trie lattice is impacting the gain

realized by a reduction in object id entries. For the Chess data set, the reduction in

memory usage enables QuICL Oid-Trie to construct lattices for smaller minimum

supports. For the T10I4D100k, T25I10D10k, and T25I20D100k data sets any gain in

reducing the number of object id entries is nullified or outweighed by the overhead in the

concepts. For very large lattices, the overhead results in loss greater than 50% (e.g.,

T25I10D10k at 0.0%supp).

199

The QuICL Oid-Less algorithm provides further reduction in memory usage by

eliminating the object id entries from permanent storage within the lattice or any

auxiliary data structure. Temporary object id entries are constructed and then discarded

for each item insertion. QuICL Oid-Less eliminates permanent object ids from the lattice

at the expense of further overhead in each concept (e.g., 2.4 times QuICL Oid-Full and

1.3 times QuICL Oid-Trie). The net result is a reduction in memory usage by a factor of

two on the Mushroom data set, factor of five on the Chess data set, and an order of

magnitude on the Pumsb* data set. These gains are sustained over most supports but

diminish slightly for large lattices. On the Chess data set, gains of an order of magnitude

are exhibited at higher supports then settles to a factor of five at lower supports. This

reduction in memory usage enables QuICL Oid-Less to process smaller supports than

QuICL Oid-Full on the Chess and Pumsb* data sets. On the Pumsb data set, the growth

in memory usage as the support is lowered is drastically restrained. This enables QuICL

Oid-Less to process significantly lower supports (e.g., 60%supp as opposed to 85%supp

with QuICL Oid-Full). On the T10I4D100K and T25I10D10K QuICL Oid-Less exhibits

a loss between 5% and 60%. For these data sets, the lattice quickly degrades into a worst

case where there are many iced concepts each representing a single object id39

39 The number of object ids is limited to the formal context. This number should not be confused with the
number of object id entries in a lattice. The number of object id entries can exponentially exceed the
number of object ids in the formal context.

. As a

result, the size of the temporary sets effectively matches the size of the object id entries in

concepts of the QuICL Oid-Full lattice. Thus for these data sets, QuICL Oid-Less will

exhibit the same asymptotic memory complexity as QuICL Oid-Full with around a 50%

overhead. For the T25I20D100k, this worst case state is not reached until very low

supports. Thus, the memory usage of QuICL Oid-Less for this data set is less than

200

QuICL Oid-Full for most supports. QuICL Oid-Less does, however, exhibit somewhat

erratic growth as the support is lowered. This is a result of inserting the items in

ascending support order. Such order exacerbates the size of the temporary sets resulting

from intersection. The reclamation of space consumed by these sets is attributing to this

behavior.

Like QuICL Oid-Less, the CHARM-L algorithm provides a reduction in memory

by eliminating the object id entries from the lattice. CHARM-L does maintain object id

entries in its itemset-oidset tree. These entries are dynamically constructed during the

traversal of the itemset-oidset tree and discarded upon completion of a branch. The

memory consumed for each concept in the CHARM-L lattice is about three times the

memory consumed by the concepts of QuICL Oid-Full. It exceeds the memory

consumed by the concepts of QuICL Oid-Less. Due to very different approaches, the

reduction or gain in memory usage when compared against QuICL algorithms is varied.

CHARM-L exhibits the best asymptotic memory complexity on the Pumsb* data sets

resulting in a reduction near a factor of five over QuICL Oid-Less. On Pumsb the

complexity is slightly better than QuICL Oid-Less. However, for most supports QuICL

Oid-Less provides greater reduction. Only at 60%supp does CHARM-L consume less

memory. CHARM-L has the same memory complexity as QuICL Oid-Full and QuICL

Oid-Trie on the Chess, T10I4D100k, and T25I10D100k data sets. It provides an 85%

gain over QuICL Oid-Full (40% gain over QuICL Oid-Trie) on the Chess data set, but a

loss around a factor of three on the T10I4D100k and T25I10D100k data sets. The

201

memory consumption of CHARM-L somewhat matches the memory consumption of

QuICL Oid-Less on the Mushroom and T25I20D100k data sets40

40 Except for 0.0%supp on Mushroom.

.

The CHARM algorithm does not construct a lattice. As such, its memory

consumption is for processing its itemset-oidset tree and construction its list of frequent

item sets. Since CHARM-L is an extension to CHARM that constructs a concept lattice

the memory consumption of CHARM is expected to be less than CHARM-L. This is

indeed the case. However, the difference between the exhibited memory consumption of

CHARM-L and CHARM should not be interpreted to be the memory for the lattice, since

memory used for the itemset-oidset tree is released upon processing a branch and may be

reused for the lattice.

202

1

10

100

1000

10000

40%50%60%70%80%90%

Chess

Oid-Full Oid-Trie Oid-Less CHARM
CHARM-L GMA MagaliceMAGALICE

Min
Supp |L|

O
id

-F
ul

l

O
id

-T
rie

O
id

-L
es

s

C
H

A
R

M

C
H

A
R

M
-L

G
M

A

M
AG

AL
IC

E

 95% 74 8 7 7 8 8 9 14
 90% 503 13 10 8 9 9 16 67
 85% 1,885 30 11 9 11 10 33 198
 80% 5,083 65 18 11 13 13 68 479
 75% 11,525 138 32 13 14 20 139 1066
 70% 23,991 261 57 23 17 32 267
 65% 49,240 492 108 43 23 63 500
 60% 98,392 939 201 146 32 120 951
 55% 192,863 1656 367 343 53 217 1656
 50% 369,450 646 760 92 435
 45% 707,964 1156 1353 160 868
 40% 1,366,833 268 1568

Figure 4.18: Comparison of memory usage using the Chess data set.

203

1

10

100

1000

10000

0%10%20%30%40%50%

Mushroom

Oid-Full Oid-Trie Oid-Less CHARM
CHARM-L GMA MagaliceMAGALICE

Min
Supp |L|

O
id

-F
ul

l

O
id

-T
rie

O
id

-L
es

s

C
H

A
R

M

C
H

A
R

M
-L

G
M

A

M
AG

AL
IC

E

 50% 45 8 7 8 12 12 11 44
 40% 140 9 8 9 13 13 13 62
 30% 427 13 9 10 14 14 16 110
 20% 1,197 20 11 13 17 18 23 209
 10% 4,897 42 19 22 19 22 40 483
 5% 12,854 65 29 35 22 28 61 823
 1% 51,672 107 54 55 37 71 109 1488
 0% 238,709 153 114 100 70 397 194

Figure 4.19: Comparison of memory usage using the Mushroom data set.

204

1

10

100

1000

10000

60%65%70%75%80%85%90%95%

Pumsb

Oid-Full Oid-Trie Oid-Less CHARM
CHARM-L GMA MagaliceMAGALICE

Min
Supp |L|

O
id

-F
ul

l

O
id

-T
rie

O
id

-L
es

s

C
H

A
R

M

C
H

A
R

M
-L

G
M

A

M
AG

AL
IC

E

 95% 110 29 29 9 25 24 36 412
 90% 1,466 287 275 11 39 35 298
 85% 8,513 1557 1552 18 50 48 1582
 80% 33,295 40 58 74
 75% 101,047 100 77 166
 70% 241,258 234 123 359
 65% 496,069 717 196 709
 60% 1,074,627 1658 332 1423

Figure 4.20: Comparison of memory usage using the Pumsb data set.

205

1

10

100

1000

10000

20%25%30%35%40%45%50%

Pumsb*

Oid-Full Oid-Trie Oid-Less CHARM
CHARM-L GMA MagaliceMAGALICE

Min
Supp |L|

O
id

-F
ul

l

O
id

-T
rie

O
id

-L
es

s

C
H

A
R

M

C
H

A
R

M
-L

G
M

A

M
AG

AL
IC

E

 50% 248 38 36 11 36 32 42 439
 45% 713 86 78 17 47 45 87
 40% 2,610 263 222 57 58 51 259
 35% 6,133 553 460 95 62 69 528
 30% 16,154 1276 1024 234 77 84 1222
 25% 42,756 701 98 119
 20% 122,262 1224 132 220

Figure 4.21: Comparison of memory usage using the Pumsb* data set.

206

10

100

1000

10000

0.0%0.1%0.2%0.3%0.4%0.5%

T10I4D100k

Oid-Full Oid-Trie Oid-Less CHARM
CHARM-L GMA MagaliceMAGALICE

Min
Supp |L|

O
id

-F
ul

l

O
id

-T
rie

O
id

-L
es

s

C
H

A
R

M

C
H

A
R

M
-L

G
M

A

M
AG

AL
IC

E

 0.500% 1,073 13 13 57 34 42 19 617
 0.300% 4,509 18 19 62 49 52 25 755
 0.100% 26,806 40 40 77 74 76 52 1076
 0.050% 46,993 48 48 93 99 96 64 1300
 0.030% 71,265 57 61 102 114 116 75 1658
 0.010% 283,397 116 129 205 201 284 159
 0.005% 769,777 230 261 345 355 637 352
 0.000% 2,347,374 546 820 896 711 1552 1048

Figure 4.22: Comparison of memory usage using the T10I4D100k data set.

207

10

100

1000

10000

0.0%0.2%0.4%0.6%0.8%1.0%

T25I10D10k

Oid-Full Oid-Trie Oid-Less CHARM
CHARM-L GMA MagaliceMAGALICE

Min
Supp |L|

O
id

-F
ul

l

O
id

-T
rie

O
id

-L
es

s

C
H

A
R

M

C
H

A
R

M
-L

G
M

A

M
AG

AL
IC

E

 1.00% 5,582 11 12 21 19 21 14 165
 0.50% 23,394 18 19 25 23 36 24 241
 0.30% 44,925 25 26 34 32 56 35 335
 0.10% 209,436 74 82 116 92 184 104 879
 0.05% 576,021 151 181 235 164 446 236
 0.03% 1,438,054 321 408 493 275 992 561
 0.00% 2,557,928 583 945 1156 533 1548 1554

Figure 4.23: Comparison of memory usage using the T25I10D10k data set.

208

11

110

1100

0.0%0.2%0.4%0.6%0.8%1.0%

T25I20D100k

Oid-Full Oid-Trie Oid-Less CHARM
CHARM-L GMA MagaliceMAGALICE

Min
Supp |L|

O
id

-F
ul

l

O
id

-T
rie

O
id

-L
es

s

C
H

A
R

M

C
H

A
R

M
-L

G
M

A

M
AG

AL
IC

E

 1.00% 5,256 36 37 94 48 48 42 1090
 0.50% 27,067 105 105 114 90 115 113
 0.30% 72,640 189 185 167 124 139 204
 0.10% 150,970 263 256 186 162 236 291
 0.05% 212,765 287 287 199 207 311 327
 0.03% 461,138 365 379 307 313 521 457
 0.01% 3,519,933 1094 1349 1306 658

Figure 4.24: Comparison of memory usage using the T25I20D100k data set.

209

Min

Supp |L| |O′| |O″| |I′| |I″| |P|

C
he

ss

95% 74 232,224 50,036 202 9 198
85% 1,885 5,341,131 933,670 9,018 16 8,302
75% 11,525 29,631,737 5,099,269 70,729 23 63,270
65% 49,240 112,611,870 19,857,410 346,926 29 303,912
55% 192,863 383,151,148 69,458,506 1,535,601 35 1,321,976

M
us

hr
oo

m

50% 45 238,282 106,077 152 13 88
30% 427 1,384,872 494,819 2,115 28 1,282
10% 4,897 6,961,076 2,490,957 33,322 56 18,790
0% 238,709 21,936,050 9,577,434 3,982,989 119 1,362,867

P
um

sb
 95% 110 5,245,186 5,182,774 310 13 279

90% 1,466 66,249,882 65,982,078 6,446 20 5,887
85% 8,513 366,699,694 365,244,637 48,761 24 43,993
80% 33,295 1,363,773,560

231,559 25 203,885

P
im

sb
* 50% 248 7,009,886 6,756,195 924 27 703

40% 2,610 57,137,840 49,131,427 15,422 46 11,028
30% 16,154 278,455,886 235,356,264 120,185 60 82,959
20% 122,262 1,490,739,095

1,123,645 86 726,335

T1
0I

4D
10

0k
 0.500% 1,073 1,357,945 1,251,699 1,800 569 1,800

0.100% 26,806 6,638,031 5,705,060 88,164 797 87,564
0.050% 46,993 8,040,209 6,810,733 149,459 839 145,671
0.010% 283,397 12,091,976 10,140,956 833,624 867 796,040
0.005% 769,777 15,204,154 12,220,186 2,491,078 869 2,307,800
0.000% 2,347,374 19,216,860 14,140,919 9,315,849 870 10,065,478

T2
5I

10
D

10
k 1.00% 5,582 797,573 631,166 20,314 919 19,992

0.50% 23,394 1,904,796 1,307,129 89,585 982 86,092

0.10% 209,436 4,882,207 3,504,219 588,817 996 551,827
0.05% 576,021 7,079,426 4,930,114 1,718,173 996 1,575,898
0.00% 2,557,928 12,175,844 7,120,716 9,802,820 996 10,992,589

T2
5I

20
D

10
0k

 1.00% 5,256 6,733,629 6,402,159 18,543 800 18,543
0.50% 27,067 21,851,821 20,495,570 110,606 2,131 110,606
0.10% 150,970 53,984,829 47,581,685 701,476 4,329 700,913
0.05% 212,765 58,082,074 50,199,243 967,539 4,729 958,619
0.01% 3,519,933 114,598,522 77,861,760 5,072 12,925,176

Table 4.3: Characteristics of internal data structures. |L| is the number of concepts in the
lattice, |O′| is the number of object id entries in a full lattice, |O″| is the number of object
id entries in the QuICL Oid-Full trie, |I′| is the number of item entries in a full lattice, |I″|
is the number of item entries in the QuICL lattices, and |P| is the number of parent-child
links.

210

4.7 Performance Analysis of the QuICL Algorithms

To gain a better understanding of time spent within the QuICL algorithms and to

provide empirical evidence for rationale concerning its runtime behavior, the QuICL

algorithms was separately instrumented to time key sections of respective INSERT

functions (Algorithms 3.4, 3.14, and 3.18). The INSERT function performs the

incremental insertion of the next item. For the QuICL Oid-Full algorithm (Algorithm

3.4), instrumentation includes:

i) Insert – total time spent in the INSERT function,

ii) Prep – time to execute the prepare-search phase (lines 10 through 19),

iii) Prep Navigate – time to execute the prepare-search that terminates upon
reaching line 15,

iv) Prep Link – time to execute the prepare-search that terminates upon
reaching line 13,

v) Prep Create – time to execute the prepare-search that completes without
reaching lines 13 or 15,

vi) Purge – time to execute the PURGE-SUBSETS function (line 21),

vii) Superset Link - time to link a new concept to parent superset concepts (lines
25 through 31 processing SUPERSET tuples), and

viii) Intersect Link - time to link a new concept to parent intersect concepts (lines
25 through 31 processing INTERSECT tuples, excluding time consumed in
the recursive call to INSERT).

Prep, Purge, Superset Link, and Intersect Link are exclusive of each other and account for

the majority of time spent in the INSERT function. Likewise, Prep Navigate, Prep Link,

and Prep Create are exclusive of each other and account for the time spent in the prepare-

search phase.

Results from executing the instrumented QuICL Oid-Full algorithm against all

benchmark data sets for relevant subset of supports are given in Table 4.4 and 4.5.

211

Ascending support order is used for all test data sets. Insert is the total seconds spent in

the INSERT function. Prep, Purge, Superset Link, and Intersect Link are times spent

executing the respective sections of the INSERT function. Other accounts for the

remaining time spent in the INSERT function. Find Link is derived by summing half of

the Prep Navigate, all of Prep Link, and half of Intersect Link. This value represents, to

some degree, the time to find and link parent concepts already present in the lattice.

Prep, Prep Navigate, Prep Link, Prep Create, Purge, Superset Link, Intersect Link, Other,

and Find Link are given as a percentage of Insert time with actual seconds subscripted.

For QuICL Oid-Full algorithm, the majority of execution time is spent in the

prepare-search phase, in most cases over 75%. The proportion of time does decrease as

the support is lowered and the size of the lattice increases. Most executions of the

prepare-search phase complete with the creation of a new concept, since Prep Create time

accounts for near all Prep time. Thus, time to execute the prepare-search phase is the

dominant part of the overall execution time. However, the time to purge subset entries is

also significant and its proportion of time generally increases with the size of the lattice.

For example, on T25I10D10k the Purge time grows from 2% at 0.3%supp to 32% at

0.0%supp, whereas on Mushroom the Purge time fluctuates around 21% over the spectrum

of supports. There are no cases where Purge time exceeds Prep time. This seems to

indicate that the time to purge subset entries will not be dominant. However, the time to

purge subset entries is a significant amount of the overall time that cannot be discounted.

The Prep Navigate time is negligible reaching between 1% and 3% in a few cases (e.g.,

1% in T10I4D100k at 0.005%supp, 3% in T20I10D10k at 0.0%supp). This indicates that

the time to navigate into the lattice is an insignificant term in runtime complexity. Some

212

portion of the Prep Navigate time, Intersect Link time, combined with all of the Prep

Link time will be representative of the time to find and link parents already present in the

lattice. The Find Link time, is to some degree, a representation of this value. In most

cases, the Find Link time is just a few percent. However, it can exceed 10% of the

overall execution time on large lattices. For example, on both T10I4D100k and

T25I10D10k the Find Link time is 11% at 0.0%supp. On Mushroom the Find Link is 11%

at 1.0%supp and 21% at 0.0%supp. This indicates that the time to process INTERSECT

entries that find and link existing concepts can become a significant portion of time. Like

time to purge subsets, it cannot be discounted. The remaining time, expressed by Other,

is generally a few percent41

The portions of time spent executing the sections of the QuICL Oid-Trie INSERT

function is comparable to the portions reported for QuICL Oid-Full’s INSERT function

. This time accounts for creating a concept, sorting parents of

a new concept, linking a concept to its base concept, and other minor terms. These are

negligible with respect to runtime complexity.

The QuICL Oid-Trie algorithm was instrumented in the same manner as QuICL

Oid-Full except the time for Prep Link is now for the time to look up a concept given a

trie position (lines 1 through 4 of Algorithm 3.18). Results from executing the

instrumented QuICL Oid-Trie algorithm against all benchmark data sets for a relevant

subset of supports are given in Tables 4.6 and 4.7. Ascending support order is used for

all data sets. Like Tables 4.4 and 4.5, Insert is the total number of seconds spent in the

QuICL Oid-Trie’s INSERT function and Prep, Prep Navigate, Prep Link, Prep Create,

Purge, Superset Link, Intersect Link, Other, and Find Link are given as a percentage of

Insert time with actual seconds subscripted.

41 Chess at 85%supp is an exception.

213

with a few changes. The actual seconds of QuICL Oid-Trie’s Prep Create, and therefore

Prep, is slightly less than QuICL Oid-Full on the Chess, Pumsb, and Pumsb* data sets but

more on Mushroom, T100I4D100k, T25I10D10k, and T25I20D100k data sets. At low

supports on the latter data sets, QuICL Oid-Trie’s Prep Create takes twice as much as

QuICL Oid-Full. The Prep Create is slower since QuICL Oid-Trie’s intersect function

must traverse between trie nodes. However, an enhancement incorporated into QuICL

Oid-Trie is providing a gain on Chess, Pumsb, and Pumsb* data sets. The enhancement

halts intersection processing when the traversals of the object id sets are within the same

trie node. Thus for Chess, Pumsb, and Pumsb*, the underlying trie has a sufficient

number of object id sets sharing common prefixes to realize a gain. The actual seconds

for Purge time is slower on QuICL Oid-Trie42

42 Pumsb* at 30%supp is an exception.

. Since comparisons start at the leaves in

the trie and terminate as soon as an object id is found in each set that is not in the other

set, the common trie nodes are rarely reached. Thus, the additional cost of traverse

between tree nodes, although limited, is resulting in slower purge times. Times for

Superset Link and Intersect Link are basically the same between QuICL Oid-Trie and

QuICL Oid-Full. For QuICL Oid-Trie, the Prep Navigate time is very small resulting in

0% being reported in all cases. This is a result of the direct lookup of existing concepts

by oid trie position. The time now remaining in Prep Navigate is reflective of the actual

time to navigate to the concept above which a new concept will be created. Clearly, this

time is negligible. Furthermore, the lookup is providing an 80% reduction in the Prep

Find time. Thus, Find Link time is limited to less than 5% in all test cases. Therefore for

QuICL Oid-Trie, the time to find and link existing concepts is not a dominant term of the

runtime complexity. The gains achieved in some sections of the QuICL Oid-Trie

214

algorithm are, however, not sufficient to offset the overhead incurred in traversing the trie

nodes.

The QuICL Oid-Less algorithm was instrumented in the same manner as QuICL

Oid-Full with the additional instrumentation:

i) Iceberg – time to process iced concepts (lines 34 and 35 of Algorithm 3.14).

Results from executing the instrumented QuICL Oid-Less algorithm against all

benchmark data sets for a relevant subset of supports are given in Tables 4.8 and 4.9.

Descending support order is used for all data sets to provide consistent analysis. As

shown in Table 4.4 and 4.5, Insert is the total number of seconds spent in the QuICL Oid-

Less’s INSERT function and Prep, Prep Navigate, Prep Link, Prep Create, Purge,

Superset Link, Intersect Link, Iceberg, Other, and Find Link are given as a percentage of

Insert time with actual seconds subscripted.

The portions of time spent in the sections of the QuICL Oid-Less INSERT

function is different to the portions reported in QuICL Oid-Full. The portion of time

spent in Prep increases as the support is lowered. For all data sets, the portion of time

exceeds 74% at low supports. The actual seconds spent in QuICL Oid-Less Prep is less

than QuICL Oid-Full at high supports, but is generally more at low supports. For

example, QuICL Oid-Less Prep time is 11.95 seconds on T25I20D100k at 0.1%supp

where QuICL Oid-Full is 66.04 seconds, but at 0.01% supp QuICL Oid-Less is 447.88

seconds where QuICL Oid-Full is 180.99 seconds. At high supports, QuICL Oid-Less is

benefiting from intersecting sets of support concepts rather than sets of object ids, but as

the support is lowered the support concepts fragment result in greater runtime

consumption. For Pumsb, T25I20D100k, and to some degree Chess, the point at which

to gain turns into a loss is significantly lower (e.g., T25I20D100K at 0.01% supp). These

215

data sets contain items with large object id sets and thus sustain a benefit for a greater

spectrum of supports. The actual seconds for QuICL Oid-Less’ Purge is slightly less than

QuICL Oid-Full on Mushroom, Chess, Pumsb, and Pumsb* data sets, and slightly more

on T10I4D100k, T25I10D10k, and T25I20D100K data sets. The portion of time spent in

Purge is less due to additional time consumed elsewhere. An additional time component

incurred by QuICL Oid-Less is the time to process iced concepts. The Iceberg time

accounts for around 30% at high supports but drops as the support is lowered. At

0.0%supp the Iceberg time is zero since there are no iced concepts. The actual seconds for

Superset Link time is about the same as QuICL Oid-Full. The actual seconds for

Intersect Link and Other vary since the QuICL Oid-Less algorithm involves additional

adjustments to information retained in the concepts (e.g., dependent and support concept

lists, support, etc.). Overall, the QuICL Oid-Less algorithm provides gain at high

supports and suffers a loss as the support is lowered. For data sets that contain items

having large object sets the gain turns into a loss at significantly lower supports.

216

Min

Supp |L| Insert Prep Purge Superset
Link

Intersect
Link Other

M
us

hr
oo

m
 10% 4,897 0.46 78% 0.36 17% 0.08 0% 0.00 2% 0.01 2% 0.01

5% 12,854 0.88 70% 0.62 23% 0.20 0% 0.00 1% 0.01 6% 0.05
1% 51,672 1.86 69% 1.28 24% 0.45 1% 0.02 3% 0.05 3% 0.06
0% 238,709 3.30 65% 2.14 20% 0.67 2% 0.07 7% 0.22 6% 0.20

C
he

ss

85% 1,885 0.12 75% 0.09 8% 0.01 0% 0.00 0% 0.00 17% 0.02
75% 11,525 0.63 83% 0.52 11% 0.07 0% 0.00 2% 0.01 5% 0.03
65% 49,240 2.50 80% 2.00 14% 0.36 1% 0.02 3% 0.07 2% 0.05
55% 192,863 9.94 79% 7.87 17% 1.65 0% 0.04 2% 0.15 2% 0.23

Pu
ms

b 90% 1,466 0.96 98% 0.94 1% 0.01 0% 0.00 0% 0.00 1% 0.01
85% 8,513 5.30 99% 5.23 1% 0.05 0% 0.00 0% 0.00 0% 0.02

P
um

sb
* 50% 248 0.23 96% 0.22 4% 0.01 0% 0.00 0% 0.00 0% 0.00

40% 2,610 1.69 89% 1.50 9% 0.16 0% 0.00 0% 0.00 2% 0.03
30% 16,154 9.53 84% 8.02 15% 1.46 0% 0.01 0% 0.01 0% 0.03

T1
0I

4D
10

0k
 0.100% 26,806 4.85 99% 4.78 1% 0.03 0% 0.00 0% 0.01 1% 0.03

0.050% 46,993 6.00 97% 5.79 2% 0.11 0% 0.01 0% 0.02 1% 0.07
0.010% 283,397 15.86 85% 13.44 10% 1.62 0% 0.04 1% 0.12 4% 0.64
0.005% 769,777 29.50 77% 22.75 16% 4.68 1% 0.24 2% 0.48 5% 1.35
0.000% 2,347,374 95.99 58% 55.72 31% 29.32 2% 1.78 2% 2.18 7% 6.99

T2
5I

10
D

10
k

0.30% 44,925 1.93 95% 1.83 2% 0.04 1% 0.01 2% 0.03 1% 0.02
0.10% 209,436 8.61 77% 6.66 15% 1.32 0% 0.02 2% 0.14 5% 0.47
0.05% 576,021 21.53 72% 15.59 19% 4.19 1% 0.22 1% 0.21 6% 1.32
0.03% 1,438,054 43.22 68% 29.54 21% 9.11 1% 0.61 2% 0.77 7% 3.19
0.00% 2,557,928 114.58 58% 66.55 32% 37.08 2% 2.31 2% 2.84 5% 5.80

T2
5I

20
D

10
0k

 0.30% 72,640 44.19 99% 43.94 0% 0.11 0% 0.01 0% 0.04 0% 0.09
0.10% 150,970 66.56 99% 66.04 0% 0.17 0% 0.02 0% 0.09 0% 0.24
0.05% 212,765 72.88 99% 72.24 0% 0.32 0% 0.02 0% 0.09 0% 0.21
0.03% 461,138 83.14 97% 80.49 2% 1.80 0% 0.11 0% 0.29 1% 0.45
0.01% 3,519,933 226.18 80% 180.99 16% 35.96 1% 1.47 1% 2.16 2% 5.60

Table 4.4: Timings of the main QuICL Oid-Full sections. Insert is the total seconds spent
in the INSERT function. Prep, Purge, Superset Link, Intersect Link is the time spent in
the respective sections. Other accounts for the remaining time spent in the INSERT
function. Prep, Purge, Superset Link, Intersect Link and Other are given as a percentage
of Insert time with actual seconds subscripted.

217

Min

Supp |L| Insert Prep Prep
Navigate

Prep
Find

Prep
Create

Find
Link

M
us

hr
oo

m
 10% 4,897 0.46 78% 0.36 0% 0.00 0% 0.00 78% 0.36 2% 0.01

5% 12,854 0.88 70% 0.62 1% 0.01 2% 0.02 68% 0.60 3% 0.03
1% 51,672 1.86 69% 1.28 0% 0.00 9% 0.17 59% 1.10 11% 0.20
0% 238,709 3.30 65% 2.14 1% 0.02 17% 0.57 45% 1.50 21% 0.69

C
he

ss

85% 1,885 0.12 75% 0.09 0% 0.00 0% 0.00 75% 0.09 0% 0.00
75% 11,525 0.63 83% 0.52 0% 0.00 2% 0.01 83% 0.52 3% 0.02
65% 49,240 2.50 80% 2.00 0% 0.00 2% 0.04 78% 1.95 3% 0.08
55% 192,863 9.94 79% 7.87 0% 0.00 3% 0.32 76% 7.51 4% 0.40

Pu
ms

b 90% 1,466 0.96 98% 0.94 0% 0.00 1% 0.01 97% 0.93 1% 0.01
85% 8,513 5.30 99% 5.23 0% 0.00 0% 0.02 98% 5.22 0% 0.02

P
um

sb
* 50% 248 0.23 96% 0.22 0% 0.00 0% 0.00 96% 0.22 0% 0.00

40% 2,610 1.69 89% 1.50 0% 0.00 0% 0.00 89% 1.50 0% 0.00
30% 16,154 9.53 84% 8.02 0% 0.00 0% 0.04 84% 7.98 1% 0.05

T1
0I

4D
10

0k
 0.100% 26,806 4.85 99% 4.78 0% 0.00 0% 0.01 98% 4.77 0% 0.02

0.050% 46,993 6.00 97% 5.79 0% 0.00 1% 0.04 96% 5.75 1% 0.05
0.010% 283,397 15.86 85% 13.44 0% 0.01 2% 0.29 83% 13.13 2% 0.36
0.005% 769,777 29.50 77% 22.75 1% 0.32 4% 1.29 71% 21.08 6% 1.69
0.000% 2,347,374 95.99 58% 55.72 2% 2.05 9% 8.28 47% 45.12 11% 10.40

T2
5I

10
D

10
k

0.30% 44,925 1.93 95% 1.83 0% 0.00 2% 0.04 92% 1.78 3% 0.06
0.10% 209,436 8.61 77% 6.66 0% 0.00 1% 0.09 76% 6.56 2% 0.16
0.05% 576,021 21.53 72% 15.59 1% 0.12 3% 0.74 68% 14.69 4% 0.91
0.03% 1,438,054 43.22 68% 29.54 1% 0.49 5% 2.18 62% 26.75 7% 2.81
0.00% 2,557,928 114.58 58% 66.55 3% 3.52 8% 9.69 46% 53.01 11% 12.87

T2
5I

20
D

10
0k

 0.30% 72,640 44.19 99% 43.94 0% 0.00 1% 0.23 99% 43.70 1% 0.25
0.10% 150,970 66.56 99% 66.04 0% 0.00 0% 0.30 99% 65.72 1% 0.35
0.05% 212,765 72.88 99% 72.24 0% 0.00 1% 0.40 99% 71.82 1% 0.45
0.03% 461,138 83.14 97% 80.49 0% 0.02 1% 0.81 96% 79.61 1% 0.97
0.01% 3,519,933 226.18 80% 180.99 0% 1.03 2% 5.24 77% 174.37 3% 6.84

Table 4.5: Additional timings of QuICL Oid-Full sections. Insert is the total seconds
spent in the INSERT function. Prep, Prep Navigate, Prep Link, Prep Create, and Find
Link are given as a percentage of Insert time with actual seconds subscripted.

218

Min

Supp |L| Insert Prep Purge Superset
Link

Intersect
Link Other

M
us

hr
oo

m
 10% 4,897 0.44 70% 0.31 23% 0.10 2% 0.01 0% 0.00 5% 0.02

5% 12,854 0.87 70% 0.61 24% 0.21 0% 0.00 2% 0.02 3% 0.03
1% 51,672 2.06 65% 1.33 28% 0.57 1% 0.02 3% 0.06 4% 0.08
0% 238,709 4.51 64% 2.90 20% 0.88 2% 0.08 3% 0.14 11% 0.51

C
he

ss

85% 1,885 0.10 80% 0.08 10% 0.01 0% 0.00 0% 0.00 10% 0.01
75% 11,525 0.58 74% 0.43 17% 0.10 0% 0.00 0% 0.00 9% 0.05
65% 49,240 2.58 77% 1.98 18% 0.47 0% 0.01 2% 0.04 3% 0.08
55% 192,863 10.25 70% 7.19 24% 2.43 0% 0.05 2% 0.16 4% 0.42
45% 707,964 38.75 65% 25.11 27% 10.34 1% 0.24 2% 0.60 6% 2.46

Pu
ms

b 90% 1,466 0.89 98% 0.87 2% 0.02 0% 0.00 0% 0.00 0% 0.00
85% 8,513 4.97 98% 4.86 2% 0.09 0% 0.01 0% 0.01 0% 0.00

P
um

sb
* 50% 248 0.22 86% 0.19 9% 0.02 0% 0.00 0% 0.00 5% 0.01

40% 2,610 1.72 83% 1.43 16% 0.28 0% 0.00 0% 0.00 1% 0.01
30% 16,154 3.71 80% 2.98 19% 0.70 0% 0.01 0% 0.01 0% 0.01

T1
0I

4D
10

0k
 0.100% 26,806 5.06 98% 4.97 1% 0.03 0% 0.00 0% 0.01 1% 0.05

0.050% 46,993 6.23 96% 5.98 2% 0.13 0% 0.01 0% 0.02 1% 0.09
0.010% 283,397 20.87 85% 17.66 9% 1.97 0% 0.04 2% 0.40 4% 0.80
0.005% 769,777 44.72 80% 35.80 13% 5.89 1% 0.25 1% 0.35 5% 2.43
0.000% 2,347,374 150.97 68% 103.35 24% 36.72 1% 1.73 1% 2.13 5% 7.04

T2
5I

10
D

10
k

0.30% 44,925 2.22 93% 2.07 2% 0.04 1% 0.02 1% 0.02 3% 0.07
0.10% 209,436 13.54 82% 11.13 13% 1.70 0% 0.06 1% 0.07 4% 0.58
0.05% 576,021 39.01 80% 31.28 13% 5.11 1% 0.23 1% 0.20 6% 2.19
0.03% 1,438,054 87.50 78% 68.61 14% 12.26 1% 0.62 1% 0.70 6% 5.31
0.00% 2,557,928 181.21 66% 120.16 25% 45.19 1% 2.44 2% 3.06 6% 10.36

T2
5I

20
D

10
0k

 0.30% 72,640 45.79 99% 45.31 0% 0.15 0% 0.01 0% 0.04 1% 0.28
0.10% 150,970 69.25 99% 68.51 0% 0.22 0% 0.06 0% 0.12 0% 0.34
0.05% 212,765 76.34 98% 75.16 1% 0.46 0% 0.24 0% 0.10 0% 0.38
0.03% 461,138 89.81 96% 85.96 2% 2.22 0% 0.11 0% 0.22 1% 1.30
0.01% 3,519,933 365.21 83% 304.58 12% 45.52 0% 1.58 1% 2.25 3% 11.28

Table 4.6: Timings of the main QuICL Oid-Trie sections. Insert is the total seconds spent
in the INSERT function. Prep, Purge, Superset Link, Intersect Link is the time spent in
the respective sections. Other accounts for the remaining time spent in the INSERT
function. Prep, Purge, Superset Link, Intersect Link and Other are given as a percentage
of Insert time with actual seconds subscripted.

219

Min

Supp |L| Insert Prep Prep
Navigate

Prep
Find

Prep
Create

Find
Link

M
us

hr
oo

m
 10% 4,897 0.44 70% 0.31 0% 0.00 0% 0.00 70% 0.31 0% 0.00

5% 12,854 0.87 70% 0.61 0% 0.00 0% 0.00 70% 0.61 1% 0.01
1% 51,672 2.06 65% 1.33 0% 0.00 1% 0.02 63% 1.30 2% 0.05
0% 238,709 4.51 64% 2.90 0% 0.00 3% 0.12 61% 2.76 4% 0.19

C
he

ss

85% 1,885 0.10 80% 0.08 0% 0.00 0% 0.00 80% 0.08 0% 0.00
75% 11,525 0.58 74% 0.43 0% 0.00 0% 0.00 74% 0.43 0% 0.00
65% 49,240 2.58 77% 1.98 0% 0.00 2% 0.04 75% 1.93 2% 0.06
55% 192,863 10.25 70% 7.19 0% 0.00 2% 0.19 68% 6.97 3% 0.27
45% 707,964 38.75 65% 25.11 0% 0.00 2% 0.93 62% 24.05 3% 1.23

Pu
ms

b 90% 1,466 0.89 98% 0.87 0% 0.00 0% 0.00 97% 0.86 0% 0.00
85% 8,513 4.97 98% 4.86 0% 0.00 0% 0.01 98% 4.85 0% 0.02

P
um

sb
* 50% 248 0.22 86% 0.19 0% 0.00 0% 0.00 86% 0.19 0% 0.00

40% 2,610 1.72 83% 1.43 0% 0.00 0% 0.00 83% 1.43 0% 0.00
30% 16,154 3.71 80% 2.98 0% 0.00 0% 0.01 80% 2.97 1% 0.02

T1
0I

4D
10

0k
 0.100% 26,806 5.06 98% 4.97 0% 0.00 0% 0.00 98% 4.96 0% 0.01

0.050% 46,993 6.23 96% 5.98 0% 0.00 0% 0.00 96% 5.97 0% 0.01
0.010% 283,397 20.87 85% 17.66 0% 0.01 0% 0.07 84% 17.56 1% 0.28
0.005% 769,777 44.72 80% 35.80 0% 0.11 0% 0.19 79% 35.45 1% 0.42
0.000% 2,347,374 150.97 68% 103.35 0% 0.24 1% 1.81 67% 101.11 2% 3.00

T2
5I

10
D

10
k

0.30% 44,925 2.22 93% 2.07 0% 0.00 0% 0.00 93% 2.07 0% 0.01
0.10% 209,436 13.54 82% 11.13 0% 0.00 0% 0.02 82% 11.09 0% 0.06
0.05% 576,021 39.01 80% 31.28 0% 0.03 0% 0.11 80% 31.10 1% 0.23
0.03% 1,438,054 87.50 78% 68.61 0% 0.31 1% 0.53 77% 67.67 1% 1.04
0.00% 2,557,928 181.21 66% 120.16 0% 0.48 1% 1.97 65% 117.44 2% 3.74

T2
5I

20
D

10
0k

 0.30% 72,640 45.79 99% 45.31 0% 0.00 0% 0.02 99% 45.29 0% 0.04
0.10% 150,970 69.25 99% 68.51 0% 0.00 0% 0.04 99% 68.46 0% 0.10
0.05% 212,765 76.34 98% 75.16 0% 0.00 0% 0.05 98% 75.08 0% 0.10
0.03% 461,138 89.81 96% 85.96 0% 0.01 0% 0.13 96% 85.78 0% 0.25
0.01% 3,519,933 365.21 83% 304.58 0% 0.62 0% 1.28 83% 302.44 1% 2.72

Table 4.7: Additional timings of QuICL Oid-Trie sections. Insert is the total seconds
spent in the INSERT function. Prep, Prep Navigate, Prep Link, Prep Create, and Find
Link are given as a percentage of Insert time with actual seconds subscripted.

220

Min

Supp |L| Insert Prep Purge Iceberg Superset
Link

Intersect
Link Other

M
us

hr
oo

m
 10% 4,897 0.60 57% 0.34 3% 0.02 28% 0.17 0% 0.00 0% 0.00 12% 0.07

5% 12,854 1.95 78% 1.52 2% 0.03 16% 0.31 0% 0.00 1% 0.01 4% 0.08
1% 51,672 5.61 87% 4.86 2% 0.13 7% 0.38 0% 0.01 1% 0.06 3% 0.17
0% 238,709 10.70 84% 9.02 3% 0.32 0% 0.05 1% 0.07 2% 0.22 10% 1.02

C
he

ss

85% 74 0.04 25% 0.01 0% 0.00 25% 0.01 0% 0.00 25% 0.01 25% 0.01
75% 1,885 0.38 63% 0.24 3% 0.01 13% 0.05 0% 0.00 0% 0.00 21% 0.08
65% 11,525 3.68 81% 2.98 3% 0.11 8% 0.29 0% 0.01 1% 0.04 7% 0.25
55% 49,240 34.36 87% 29.77 2% 0.82 8% 2.72 0% 0.06 1% 0.22 2% 0.77
45% 192,863 231.60 89% 205.35 3% 5.90 5% 11.96 0% 0.21 0% 1.14 3% 7.04

P
um

sb

90% 1,466 0.13 46% 0.06 0% 0.00 31% 0.04 0% 0.00 8% 0.01 15% 0.02
80% 33,295 2.36 74% 1.74 3% 0.06 9% 0.21 0% 0.00 2% 0.04 13% 0.31
70% 241,258 21.65 69% 14.89 3% 0.61 19% 4.01 0% 0.07 2% 0.37 8% 1.70
60% 1,074,627 271.26 75% 202.63 2% 4.25 16% 42.95 0% 0.50 1% 1.88 7% 19.05

P
um

sb
* 50% 248 0.12 25% 0.03 0% 0.00 58% 0.07 0% 0.00 0% 0.00 17% 0.02

40% 2,610 1.80 71% 1.27 4% 0.07 18% 0.33 0% 0.00 0% 0.00 7% 0.13
30% 16,154 22.41 87% 19.56 3% 0.72 5% 1.16 0% 0.00 0% 0.01 4% 0.96

T1
0I

4D
10

0k
 0.100% 26,806 3.48 53% 1.83 1% 0.03 32% 1.11 0% 0.01 1% 0.02 14% 0.48

0.050% 46,993 6.60 68% 4.48 2% 0.13 23% 1.50 0% 0.02 1% 0.04 7% 0.43
0.010% 283,397 45.05 86% 38.52 5% 2.20 5% 2.41 0% 0.05 1% 0.23 4% 1.64
0.005% 769,777 96.73 87% 84.62 6% 6.08 3% 3.38 0% 0.24 1% 0.54 2% 1.87
0.000% 2,347,374 283.28 85% 239.56 12% 32.82 0% 0.94 1% 1.89 1% 3.62 2% 4.45

T2
5I

10
D

10
k

0.30% 44,925 1.67 62% 1.04 3% 0.05 19% 0.31 1% 0.02 2% 0.04 13% 0.21
0.10% 209,436 28.35 89% 25.10 6% 1.57 3% 0.76 0% 0.04 0% 0.11 3% 0.77
0.05% 576,021 87.99 90% 78.98 5% 4.78 1% 1.27 0% 0.12 0% 0.31 3% 2.53
0.03% 1,438,054 180.65 90% 162.45 6% 10.63 1% 2.25 0% 0.65 1% 0.94 2% 3.73
0.00% 2,557,928 462.36 88% 408.33 8% 38.81 0% 1.32 1% 2.96 1% 4.29 1% 6.65

T2
5I

20
D

10
0k

 0.30% 72,640 11.34 64% 7.27 1% 0.12 23% 2.64 0% 0.01 1% 0.07 11% 1.23
0.10% 150,970 17.59 68% 11.95 1% 0.23 15% 2.68 0% 0.02 1% 0.16 14% 2.55
0.05% 212,765 21.65 72% 15.52 2% 0.45 15% 3.33 0% 0.05 1% 0.14 10% 2.16
0.03% 461,138 45.30 77% 34.94 5% 2.36 10% 4.42 0% 0.09 1% 0.43 7% 3.06
0.01% 3,519,933 526.15 85% 447.88 9% 47.66 2% 12.77 0% 1.27 1% 2.88 3% 13.69

Table 4.8: Timings of the main QuICL Oid-Less sections. Insert is the total seconds
spent in the INSERT function. Prep, Purge, Superset Link, Intersect Link is the time
spent in the respective sections. Other accounts for the remaining time spent in the
INSERT function. Prep, Purge, Superset Link, Intersect Link and Other are given as a
percentage of Insert time with actual seconds subscripted.

221

Min

Supp |L| Insert Prep Prep
Navigate

Prep
Find

Prep
Create

Find
Link

M
us

hr
oo

m
 10% 4,897 0.60 57% 0.34 2% 0.01 5% 0.03 50% 0.30 6% 0.04

5% 12,854 1.95 78% 1.52 7% 0.14 6% 0.11 65% 1.27 9% 0.18
1% 51,672 5.61 87% 4.86 6% 0.31 7% 0.40 74% 4.14 10% 0.59
0% 238,709 10.70 84% 9.02 4% 0.44 13% 1.40 67% 7.15 16% 1.73

C
he

ss

85% 74 0.04 26% 0.01 0% 0.00 0% 0.00 26% 0.01 13% 0.01
75% 1,885 0.38 64% 0.24 0% 0.00 20% 0.08 44% 0.17 20% 0.08
65% 11,525 3.68 81% 2.98 0% 0.00 11% 0.40 70% 2.57 11% 0.42
55% 49,240 34.36 87% 29.77 0% 0.00 7% 2.43 79% 27.31 7% 2.54
45% 192,863 231.60 89% 205.35 0% 0.37 6% 14.84 82% 190.02 7% 15.60

P
um

sb

90% 1,466 0.13 45% 0.06 0% 0.00 12% 0.02 32% 0.04 16% 0.02
80% 33,295 2.36 74% 1.74 0% 0.01 13% 0.31 60% 1.42 14% 0.33
70% 241,258 21.65 69% 14.89 0% 0.01 13% 2.80 56% 12.03 14% 2.99
60% 1,074,627 271.26 75% 202.63 0% 0.57 11% 30.83 63% 170.99 12% 32.06

P
um

sb
* 50% 248 0.12 21% 0.03 0% 0.00 0% 0.00 21% 0.03 0% 0.00

40% 2,610 1.80 71% 1.27 6% 0.11 1% 0.01 64% 1.15 4% 0.07
30% 16,154 22.41 87% 19.56 1% 0.24 0% 0.11 86% 19.21 1% 0.24

T1
0I

4D
10

0k
 0.100% 26,806 3.48 53% 1.83 0% 0.00 3% 0.11 49% 1.72 3% 0.12

0.050% 46,993 6.60 68% 4.48 0% 0.00 2% 0.12 66% 4.36 2% 0.14
0.010% 283,397 45.05 85% 38.52 0% 0.05 1% 0.45 84% 38.00 1% 0.59
0.005% 769,777 96.73 87% 84.62 0% 0.33 2% 2.09 85% 82.14 3% 2.53
0.000% 2,347,374 283.28 85% 239.56 1% 3.17 19% 54.91 64% 181.21 21% 58.30

T2
5I

10
D

10
k

0.30% 44,925 1.67 62% 1.04 0% 0.00 5% 0.09 57% 0.95 7% 0.11
0.10% 209,436 28.35 89% 25.10 0% 0.03 1% 0.16 88% 24.91 1% 0.23
0.05% 576,021 87.99 90% 78.98 0% 0.31 1% 1.09 88% 77.53 2% 1.40
0.03% 1,438,054 180.65 90% 162.45 1% 1.07 2% 4.40 87% 156.89 3% 5.41
0.00% 2,557,928 462.36 88% 408.33 1% 6.14 47% 218.91 40% 182.99 48% 224.13

T2
5I

20
D

10
0k

 0.30% 72,640 11.34 64% 7.27 0% 0.00 3% 0.35 61% 6.92 3% 0.38
0.10% 150,970 17.59 68% 11.95 0% 0.00 3% 0.46 65% 11.47 3% 0.54
0.05% 212,765 21.65 72% 15.52 0% 0.00 5% 1.09 67% 14.41 5% 1.16
0.03% 461,138 45.30 77% 34.94 0% 0.03 4% 1.91 73% 32.96 5% 2.14
0.01% 3,519,933 526.15 85% 447.88 1% 4.32 2% 11.44 82% 431.86 3% 15.04

 Table 4.9: Additional timings of QuICL Oid-Less sections. Insert is the total seconds
spent in the INSERT function. Prep, Prep Navigate, Prep Link, Prep Create, and Find
Link are given as a percentage of Insert time with actual seconds subscripted.

222

4.8 Empirical Evidence to Support Asymptotic Complexity Analysis

To provide empirical evidence in support of the asymptotic complexity analysis,

the QuICL Oid-Full algorithm was separately instrumented to report |L|, degavg(L),

number of intersections performed, and the number of iterations in the innermost loop of

the intersection function. Applying these values in the formulas expressed in the runtime

complexity will result in a calculated time that can be compared against the actual

timings reported by the instrumented QuICL Oid-Full algorithm of Section 4.7. Any

correlations found between the calculated times and actual times provide evidence

supporting the runtime complexity.

For QuICL Oid-Full, the dominant term affecting runtime complexity is time to

execute the prepare-search phase to identify and add entries to the ToProcessList.

However, the time to purge subset entries is also significant. These times are reported by

the instrumented QuICL Oid-Full as Prep Create and Purge, respectively. Furthermore,

the runtime complexity of each is O(l d i) and O(l d2 c), where l = |L|, d = degavg(L), i is a

density weighted mean on the cardinality of frequent item extents, and c is a small

fraction of |O| depending density. Table 4.10 presents empirical evidence in support of

these complexities. Abs Supp is the absolute support derived by |O| × Min Supp. Factor i

must be ≥ Abs Supp. Avg Inter is an attempt to represent factor i. It is the average cost

of intersection derived by number of iterations in the innermost loop / number of

intersections. This value is indeed ≥ Abs Supp, is less than the cardinality of the

maximum object id set, and appears to skew towards Abs Supp depending on density.

Avg Deg is the average degree of the lattice. Prep Create C is a constant used to derive

Prep Create Calc time. This value represents a constant unit of work incurred by the

223

algorithm. Prep Create Calc is the calculated time. Its value = |L| × Avg Inter × Avg Deg

× Prep Create C. Prep Create Actual is the Prep Create time reported by the instrumented

QuICL Oid-Full algorithm. Purge C is a constant used to derive Purge Calc time. In this

case Purge C represents both a constant unit of work incurred by the algorithm and factor

c. Thus, Purge Calc = |L| × (Avg Deg)2 × Purge C. Purge Actual is the Purge time

reported by the instrumented QuICL Oid-Full algorithm. Prep Create C and Purge C

were adjusted for each data set, until the calculated times are near the reported actual

times.

For most data sets, a Purge C constant could be found such that the calculated

times are well correlated to the actual times. This indicates the purge time is indeed

O(l d2 c). The T25I20D100k is the only exception. Here the actual times indicate either

a greater complexity or the use of average degree in place of |I| is not a good fit.

Alternative means such as quadratic (i.e., RMS) or average of averages at each level in

the lattice were substituted, but did not offer better correlations.

For dense data sets a Prep Create C could be found such that the calculated times

are well correlated to the actual times. This indicates that the prepare-search time is

indeed O(l d i). However, on sparse data sets a Prep Create C could not be found. In

these data sets the actual times have a greater growth rate than O(l d i). This does not

necessarily disprove an O(l d i). Simply, the value for i derived by number of iterations

in the innermost loop / number of intersections is not a good mean function. On sparse

data sets, the Avg Inters drops too quickly as the support is lowered. The discrepancy

between dense and sparse data does indicate that density is a factor in computing the

mean. Also, use of average degree in place of |I| may not be the good fit.

224

Min
Supp |L| Abs

Supp
Avg
Inter

Avg
Deg

Prep Create Purge

C Calc Actual C Calc Actual
M

us
hr

oo
m

50% 45 4,062 7,232 1.98 5E-09 0.00 0.02 1E-07 0.00 0.00
40% 140 3,250 6,390 2.33 5E-09 0.01 0.03 1E-07 0.00 0.00

30% 427 2,437 5,100 3.00 5E-09 0.03 0.05 1E-07 0.00 0.01
20% 1,197 1,625 3,950 3.32 5E-09 0.08 0.12 1E-07 0.00 0.02
10% 4,897 812 2,611 3.84 5E-09 0.25 0.34 1E-07 0.01 0.07

5% 12,854 406 1,748 4.17 5E-09 0.47 0.63 1E-07 0.02 0.19
1% 51,672 203 774 4.75 5E-09 0.95 1.15 1E-07 0.12 0.47

0% 238,709 0 263 5.71 5E-09 1.80 1.65 1E-07 0.78 0.67

C
he

ss

95% 74 3,036 3,169 2.68 2.5E-09 0.00 0.01 2E-07 0.00 0.00
90% 503 2,876 3,093 3.64 2.5E-09 0.01 0.05 2E-07 0.00 0.00

85% 1,885 2,717 2,992 4.40 2.5E-09 0.06 0.10 2E-07 0.01 0.00
80% 5,083 2,557 2,894 5.03 2.5E-09 0.19 0.23 2E-07 0.03 0.03
75% 11,525 2,397 2,804 5.49 2.5E-09 0.44 0.54 2E-07 0.07 0.06

70% 23,991 2,237 2,712 5.84 2.5E-09 0.95 1.05 2E-07 0.16 0.13
65% 49,240 2,077 2,607 6.17 2.5E-09 1.98 1.98 2E-07 0.38 0.36

60% 98,392 1,918 2,490 6.51 2.5E-09 3.99 4.23 2E-07 0.84 0.75
55% 192,863 1,758 2,361 6.85 2.5E-09 7.80 7.52 2E-07 1.81 1.69

P
um

sb
 95% 110 46,594 48,525 2.54 2.5E-09 0.03 0.10 1E-07 0.00 0.00

90% 1,466 44,141 47,035 4.02 2.5E-09 0.69 0.94 1E-07 0.00 0.00
85% 8,513 41,689 45,455 5.17 2.5E-09 5.00 5.23 1E-07 0.02 0.03

P
um

sb
*

50% 248 24,523 35,780 2.83 5E-09 0.13 0.24 3E-06 0.01 0.01

45% 713 22,071 31,836 3.38 5E-09 0.38 0.63 3E-06 0.02 0.02
40% 2,610 19,618 27,614 4.23 5E-09 1.52 1.51 3E-06 0.14 0.16

35% 6,133 17,166 24,987 4.69 5E-09 3.60 3.16 3E-06 0.41 0.45
30% 16,154 14,714 22,221 5.14 5E-09 9.22 8.13 3E-06 1.28 1.45

Table 4.10: Empirical evidence of asymptotic runtime analysis. Abs Supp = |O| × Min
Supp. Avg Inter = number of iterations in the innermost loop / number of intersections.
Avg Deg is the average degree of the lattice. Prep Create C is a constant used to derive
Prep Create Calc time. Prep Create Calc = |L| × Avg Inter × Avg Deg × Prep Create C.
Prep Create Actual is the Prep Create time reported by the instrumented QuICL Oid-Full.
Purge C is a constant used to derive Purge Calc time. Purge Calc = |L| × (Avg Deg)2 ×
Purge C. Purge Actual is the Purge time reported by the instrumented QuICL Oid-Full.

225

Min
Supp |L| Abs

Supp
Inter
Avg

Avg
Deg

Prep Create Purge

C Calc Actual C Calc Actual
T1

0I
4D

10
0k

2.000% 155 2,000 6,128 1.00 5E-08 0.05 0.47 7E-07 0.00 0.00

1.000% 385 1,000 4,196 1.03 5E-08 0.08 1.75 7E-07 0.00 0.00

0.500% 1,073 500 3,253 1.68 5E-08 0.29 2.97 7E-07 0.00 0.00

0.300% 4,509 300 2,739 2.57 5E-08 1.58 3.71 7E-07 0.02 0.00

0.100% 26,806 100 1,761 3.27 5E-08 7.71 4.86 7E-07 0.20 0.02

0.050% 46,993 50 960 3.10 5E-08 6.99 5.90 7E-07 0.32 0.10

0.030% 71,265 30 518 2.88 5E-08 5.32 7.15 7E-07 0.41 0.27

0.010% 283,397 10 142 2.81 5E-08 5.66 14.04 7E-07 1.57 1.54

0.005% 769,777 5 72 3.00 5E-08 8.31 23.36 7E-07 4.84 4.78

0.000% 2,347,374 0 33 4.29 5E-08 16.51 51.83 7E-07 30.21 29.29

T2
5I

10
D

10
k

5.00% 72 461 1,055 1.00 5E-08 0.00 0.02 7E-07 0.00 0.00

3.00% 389 277 755 1.00 5E-08 0.01 0.39 7E-07 0.00 0.00

1.00% 5,582 92 531 3.58 5E-08 0.53 1.45 7E-07 0.05 0.01

0.50% 23,394 46 468 3.68 5E-08 2.02 1.64 7E-07 0.22 0.01

0.30% 44,925 28 366 3.59 5E-08 2.95 1.79 7E-07 0.40 0.03

0.10% 209,436 9 46 2.63 5E-08 1.27 7.67 7E-07 1.02 1.34

0.05% 576,021 5 26 2.74 5E-08 2.04 18.11 7E-07 3.02 4.13

0.03% 1,438,054 3 18 3.01 5E-08 3.91 32.73 7E-07 9.12 9.26

0.00% 2,557,928 0 14 4.30 5E-08 7.88 63.06 7E-07 33.07 36.76

T2
5I

20
D

10
0k

3.00% 19 3,000 6,787 1.00 5E-08 0.01 0.01 7E-07 0.00 0.00

2.00% 143 2,000 4,823 1.10 5E-08 0.04 0.25 7E-07 0.00 0.00

1.00% 5,256 1,000 3,000 3.53 5E-08 2.78 6.22 7E-07 0.05 0.00

0.50% 27,067 500 2,000 4.09 5E-08 11.06 27.92 7E-07 0.32 0.02

0.30% 72,640 300 1,636 4.74 5E-08 28.18 45.27 7E-07 1.14 0.10

0.10% 150,970 100 1,254 4.64 5E-08 43.94 67.32 7E-07 2.28 0.16

0.05% 212,765 50 1,122 4.51 5E-08 53.77 73.62 7E-07 3.02 0.30

0.03% 461,138 30 766 4.14 5E-08 73.11 81.74 7E-07 5.53 1.72

0.01% 3,519,933 10 108 3.67 5E-08 69.96 190.44 7E-07 33.22 35.72

Table 4.10 continued: Empirical evidence of asymptotic runtime analysis.

226

4.9 Performance Analysis of the GMA Algorithm

To gain an understanding of time spent within the GMA algorithm and to provide

empirical evidence for rationale concerning its runtime behavior, GMA was separately

instrumented to time key sections of its ADD function (Algorithm 3.1). The ADD

function performs the incremental insertion of the next item. Instrumentation includes:

i) Add – total time spent in the ADD function,

ii) Sort – time to sort concepts prior to iteration (line 14),

iii) Intersect – time spent performing intersections (line 21, also determines
outcome of comparison for lines 15 and 18),

iv) Generator Test – time spent checking that a potential generator is indeed a
generator (loop expressed by the ∀ of line 23), and

v) Link – time to find parents and link new concepts into the lattice (lines 27
through 36).

The results from executing the instrumented GMA algorithm against all

benchmark data sets for relevant subset of supports are given in Table 4.11 (ascending

support order) and Table 4.12 (descending support order). Column Add is the total

seconds spent in the ADD function. Columns Sort, Intersect, Generator Test, and Link

show the time spent executing respective sections of the ADD function. Other accounts

for the remaining time spent in the ADD function. Sort, Intersect, Generator Test, Link,

and Other are given as a percentage of Add time with actual seconds subscripted.

For GMA, considerable amount of time is consumed searching for parents and

linking new concepts into the lattice. On dense data sets using descending order, the time

to link parents is the dominant term ranging between 50% and 96% of the total time43

43 Pumsb* at 50%supp is an exception.

.

Furthermore, use of ascending order greatly exacerbates the Link time, up to 29 times

227

more (e.g., Mushroom at 0.0%supp) resulting in the Link time exceeding 90% of the total

time in all cases. On sparse data set using descending order, the Link time is generally

limited to a small percentage value44

Beyond the Link time, the time to perform intersections is next major consumer.

It is generally the dominant term of the runtime complexity on sparse data sets ranging

between 61% to 89% when using ascending order, and 62% to 90% when using

descending order. The only exceptions are T10I4D100k at 0.0% supp, T25I10D10k at

0.03% supp and 0.0% supp, and T25I20D100k at 0.01%supp on ascending order; and

T25I10D10k at 0.0% supp on descending order. In these test cases, the Generator Test

time is significant and has an impact on the total time. On dense data sets, the Intersect

time is between 0% and 25% when using ascending order, and 4% to 56% when using

descending order. In most cases

. For ascending order, the Link time ranges from 4%

to 52% of the total time with the higher percents generally encountered at lower supports.

For all data sets, the actual seconds for link time is greater on ascending order.

45

44 14% on T10I4D100k at 0.0%supp and 21% on T25I10D10k at 0.0%supp are a couple of exceptions.
45 Mushroom at 0.0%supp is the only exception.

, the actual seconds for Intersect is more on descending

order, up to seven times (e.g., Chess at less than 75%supp). This is reflective of the fact

that insertion in descending order will result in more intersections.

In general, the Generator Test time has a small percentage value, except in the

cases previously mentioned. In such cases, the time consumed for Generator Test is

exacerbated by ascending order. In general, time spent on sorting concepts is negligible,

but might exceed 10% of the overall execution time in a few cases (e.g., T25I10D10k at

0.1%supp and 0.05%supp in ascending order and all supports in descending order). Here the

sorting time is exacerbated by descending order.

228

Min

Supp |L| Add Sort Intersect Generator
Test Link Other

M
us

hr
oo

m
 10% 4,897 9.43 0% 0.00 9% 0.89 0% 0.01 90% 8.48 1% 0.05

5% 12,854 37.44 0% 0.02 6% 2.29 0% 0.06 93% 34.91 0% 0.16
1% 51,672 369.67 0% 0.08 2% 8.70 0% 0.72 97% 359.40 0% 0.77
0% 238,709 5,254.37 0% 0.70 1% 38.11 1% 38.67 99% 5176.76 0% 0.13

C
he

ss

85% 1,886 1.36 0% 0.00 4% 0.05 0% 0.00 95% 1.29 1% 0.02
75% 11,526 25.51 0% 0.01 1% 0.30 0% 0.02 98% 25.11 0% 0.07
65% 49,241 315.32 0% 0.03 0% 1.50 0% 0.26 99% 313.11 0% 0.42
55% 192,864 3,794.69 0% 0.13 0% 6.82 0% 4.16 100% 3781.96 0% 1.62

Pu
ms

b 90% 1,467 8.88 0% 0.00 7% 0.63 0% 0.01 91% 8.08 2% 0.16
85% 8,514 104.24 0% 0.01 4% 3.67 0% 0.08 96% 99.94 1% 0.54

P
um

sb
* 50% 249 1.27 0% 0.00 25% 0.32 0% 0.00 70% 0.89 5% 0.06

40% 2,611 31.93 0% 0.01 10% 3.24 0% 0.01 89% 28.48 1% 0.19
30% 16,155 457.21 0% 0.02 4% 17.19 0% 0.25 96% 439.01 0% 0.74

T1
0I

4D
10

0k

0.100% 26,807 31.94 1% 0.36 89% 28.31 0% 0.00 6% 1.99 4% 1.28
0.050% 46,994 50.00 1% 0.63 90% 44.90 0% 0.01 6% 3.04 3% 1.42
0.010% 283,398 255.73 2% 4.79 84% 214.86 1% 1.83 13% 32.03 1% 2.22
0.005% 769,778 819.77 2% 15.08 67% 545.45 4% 34.82 27% 219.93 1% 4.49
0.000% 2,347,375 9,723.21 1% 67.25 16% 1508.63 32% 3087.01 52% 5043.36 0% 16.96

T2
5I

10
D

10
k

0.30% 44,926 15.89 6% 0.95 81% 12.94 0% 0.02 10% 1.60 2% 0.38
0.10% 209,437 61.69 10% 5.98 77% 47.42 1% 0.35 11% 6.78 2% 1.16
0.05% 576,022 203.48 10% 21.22 61% 123.91 7% 13.54 20% 41.53 2% 3.28
0.03% 1,438,055 829.72 7% 56.12 32% 269.52 25% 206.92 35% 288.76 1% 8.40
0.00% 2,557,929 5,066.23 2% 108.58 9% 453.26 46% 2319.62 43% 2162.48 0% 22.29

T2
5I

20
D

10
0k

 0.30% 72,641 360.82 2% 5.73 89% 321.55 0% 0.06 8% 28.11 1% 5.37
0.10% 150,971 831.99 3% 21.50 92% 763.89 0% 0.11 4% 37.43 1% 9.06
0.05% 212,766 1,021.30 3% 30.43 92% 934.73 0% 0.16 4% 45.67 1% 10.31
0.03% 461,139 1,314.02 3% 39.56 84% 1109.13 0% 2.94 12% 151.51 1% 10.88
0.01% 3,519,934 10,809.01 2% 251.71 43% 4623.86 4% 441.33 50% 5452.81 0% 39.30

Table 4.11: Timings of GMA algorithm sections using ascending order. Add is the total
seconds spent in the ADD function. Sort, Intersect, Generator Test, and Link is the time
spent in respective sections of the ADD function. Other accounts for the remaining time
spent in the ADD function. Sort, Intersect, Generator Test, Link, and Other are given as
a percentage of Add time with actual seconds subscripted.

229

Min

Supp |L| Add Sort Intersect Generator
Test Link Other

M
us

hr
oo

m
 10% 4,897 4.98 1% 0.04 48% 2.41 0% 0.02 50% 2.51 0% 0.00

5% 12,854 12.94 1% 0.09 42% 5.40 1% 0.11 57% 7.34 0% 0.00
1% 51,672 50.46 1% 0.65 24% 12.36 1% 0.46 73% 36.66 1% 0.33
0% 238,709 206.72 2% 3.50 11% 21.72 2% 4.31 86% 176.98 0% 0.21

C
he

ss

85% 1,886 1.22 1% 0.01 15% 0.18 1% 0.01 81% 0.99 2% 0.03
75% 11,526 18.61 0% 0.03 11% 2.02 0% 0.04 88% 16.43 0% 0.09
65% 49,241 146.51 0% 0.15 7% 10.93 0% 0.27 92% 134.84 0% 0.32
55% 192,864 1,247.66 0% 1.01 4% 49.79 0% 1.49 96% 1195.31 0% 0.06

Pu
ms

b 90% 1,467 11.24 0% 0.01 32% 3.58 0% 0.00 68% 7.64 0% 0.01
85% 8,514 114.78 0% 0.02 19% 22.35 0% 0.02 80% 91.71 1% 0.68

P
um

sb
* 50% 249 1.45 0% 0.00 56% 0.81 0% 0.00 44% 0.64 0% 0.00

40% 2,611 27.20 0% 0.02 42% 11.38 1% 0.15 58% 15.64 0% 0.01
30% 16,155 270.79 0% 0.10 30% 80.38 0% 1.01 70% 189.14 0% 0.16

T1
0I

4D
10

0k

0.100% 26,807 56.07 3% 1.96 91% 51.17 0% 0.01 2% 1.27 3% 1.66
0.050% 46,994 91.31 5% 4.43 91% 83.21 0% 0.03 2% 1.69 2% 1.95
0.010% 283,398 453.17 10% 44.59 86% 391.82 0% 0.31 2% 10.64 1% 5.81
0.005% 769,778 1,132.01 12% 140.23 82% 929.01 0% 4.00 4% 46.01 1% 12.76
0.000% 2,347,375 3,743.05 12% 441.53 62% 2317.73 12% 436.21 14% 506.44 1% 41.14

T2
5I

10
D

10
k

0.30% 44,926 30.59 12% 3.55 82% 25.02 0% 0.02 4% 1.28 2% 0.72
0.10% 209,437 132.98 20% 26.24 75% 99.09 0% 0.12 3% 3.75 3% 3.78
0.05% 576,022 339.38 24% 82.33 67% 227.33 1% 2.70 5% 17.20 3% 9.82
0.03% 1,438,055 870.10 25% 218.59 57% 500.02 5% 47.37 9% 78.83 3% 25.29
0.00% 2,557,929 2,277.33 18% 399.62 35% 801.83 25% 558.24 21% 467.04 2% 50.60

T2
5I

20
D

10
0k

 0.30% 72,641 740.54 3% 23.08 92% 683.00 0% 0.09 4% 26.99 1% 7.38
0.10% 150,971 1,383.49 5% 72.99 91% 1262.74 0% 0.12 2% 33.82 1% 13.82
0.05% 212,766 1,960.86 7% 135.88 90% 1760.38 0% 0.17 2% 43.45 1% 20.98
0.03% 461,139 4,547.71 9% 431.78 87% 3964.11 0% 0.93 2% 97.30 1% 53.59
0.01% 3,519,934 30,885.52 26% 8024.57 69% 21456.19 0% 49.94 3% 1020.69 1% 334.13

Table 4.12: Timings of GMA algorithm sections using descending order. Add is the total
seconds spent in the ADD function. Sort, Intersect, Generator Test, and Link is the time
spent in respective sections of the ADD function. Other accounts for the remaining time
spent in the ADD function. Sort, Intersect, Generator Test, Link, and Other are given as
a percentage of Add time with actual seconds subscripted.

230

4.10 Comparison of Intersections

As a final comparison between algorithms, CHARM, GMA, QuICL Oid-Full, and

QuICL Oid-Trie were instrumented to report the number of intersections performed

during the construction of a lattice. For GMA (Algorithm 3.1), the number of

intersections is the number of times through the main loop of line 14. Each time through

the loop, one intersection is performed. The result of intersection is used to determine the

outcome of ⊆ at line 15, outcome of = at line 18, and the intersection set of line 21. The

number of intersections does not include any comparison tests involved with testing for

generators or searching for parent concepts. For QuICL Oid-Full (Algorithm 3.4), the

number of intersections equals the number of times through the prepare-search loop of

line 10. Each time through the loop, one intersection is performed. The result of

intersection is used to determine the outcome of =, ⊂, and ⊃ (lines 11, 14, and 16

respectively), and the intersection set of lines 18 and 19. The number of intersections

does not include any comparison tests involved with purging subset entries. For

CHARM, the number of intersections is the number performed at line 10 of Algorithm

2.1. Ascending support order is used for QuICL Oid-Full and QuICL Oid-Trie. Both

ascending and descending support order is used for GMA. CHARM internally performs

a sort.

Table 4.13 provides the results for the purpose of comparison. In comparing

CHARM to QuICL Oid-Full, QuICL Oid-Full performs 20% to 45% more intersections

on Chess with the percentage increasing as the support is lowered, 18% to 65% more on

Pumsb* with the percentage decreasing as the support is lowered, and 12% more (at

10%supp) to 19% less (at 0.0%supp) on Mushroom. On T10I4D100k and T25I10D10k,

231

QuICL Oid-Full performs approximately 5 times more intersections at high supports but

16% and 39% less, respectively, at 0.0%supp. On T25I20D100K, the number intersections

for QuICL Oid-Full are more than sixty times that of the CHARM algorithm at high

supports, but drops to 64% more at 0.01%supp. QuICL Oid-Trie performs 0% to 4% less

intersections than QuICL Oid-Full. This small gain is the result of the direct look-up of

parent concepts already present in the lattice. The look-up effectively bypasses a small

number of intersections. In comparing QuICL Oid-Full with GMA ascending, GMA

performs more intersections ranging from a few percent (e.g., on Mushroom) to over an

order of magnitude (e.g., on T25I20D100k). GMA algorithm performs about time five

times more intersections in descending order of the input than in ascending. This clearly

indicates that the number of intersections performed by incremental insertion is

significantly restrained using ascending support order over descending order.

232

Min

Supp |L| CHARM Oid-Full Oid-Trie GMA
Ascending

GMA
Descending

C
he

ss

85% 1,885 2,040 2,453 2,453 2,469 8,872

75% 11,525 12,300 16,194 16,194 16,494 101,650
65% 49,240 52,680 73,012 73,012 76,422 580,043
55% 192,863 206,058 299,452 299,451 325,385 2,776,025

45% 707,964 764,897 1,147,942

M
us

hr
oo

m
 10% 4,897 13,755 15,411 15,060 28,274 159,598

5% 12,854 41,559 42,475 41,337 84,328 559,654

1% 51,672 204,831 171,773 165,005 433,931 2,658,520
0% 238,709 722,998 585,509 561,327 3,008,711 13,294,536

P
um

sb
* 50% 248 386 636 631 1,046 2,681

40% 2,610 4,094 5,724 5,715 10,468 44,619
30% 16,154 29,763 35,214 35,197 62,533 373,966

T1
0I

4D
10

0k
 0.100% 26,806 84,549 492,326 492,324 2,121,378 11,065,654

0.050% 46,993 450,339 1,076,219 1,076,189 3,540,405 22,135,262
0.001% 283,397 11,425,072 15,273,903 15,270,100 18,980,003 158,563,214
0.001% 769,777 26,845,219 41,432,480 41,400,882 53,023,943 429,938,356
0.000% 2,347,374 135,897,608 113,860,447 110,427,801 186,602,383 1,321,116,356

T2
5I

10
D

10
k 0.300% 44,926 122,921 741,001 740,938 6,109,812 20,184,635

0.100% 209,436 12,213,130 17,410,550 17,407,832 27,460,247 113,839,759
0.050% 576,022 45,080,919 57,975,763 57,941,620 81,843,625 303,212,996
0.030% 1,438,054 87,667,671 112,295,967 112,054,097 196,187,133 751,113,513
0.000% 2,557,928 255,133,119 155,603,121 150,763,040 362,230,207 1,349,704,766

T2
5I

20
D

10
0k

 0.300% 72,640 72,439 4,628,183 4,628,183 31,933,715 99,224,142

0.100% 150,970 152,995 9,525,668 9,525,668 106,471,253 279,288,120
0.050% 212,765 388,754 11,837,524 11,837,501 143,330,271 503,391,739

0.030% 461,138 3,068,334 19,085,665 19,083,580 168,701,767 1,602,853,580
0.010% 3,519,933 148,382,639 243,262,618 243,019,880

Table 4.13: Comparison of intersections by algorithm.

233

4.11 Summary of Results

This chapter has presented the results of empirical evaluations and analysis of the

QuICL algorithms against the GMA, CHARM, CHARM-L, and MAGALICE

algorithms. The CHARM and CHARM-L algorithms were downloaded from the

author’s web site and converted to Java. MAGALICE was downloaded from the Galicia

project. Its source is in Java. An iceberg enhanced GMA algorithm and the QuICL

algorithms were directly implemented in Java. Thus, all algorithms are in Java enabling

all tests to be performed on the same platform and environment.

The Mushroom, Chess, Pumsb, Pumsb*, T10I4D100k, T25I10D10k, and

T25I20D100k data sets were used as the benchmarks. Mushroom and Chess are

examples of dense data sets, Pumsb and Pumsb* are marginal, and the rest are sparse.

The characteristics of the lattices generated from these data sets indicate that the size of

the lattice grows exponentially as the support is lowered, but the average degree and

height of the lattice grows at a slow steady rate. The maximum degree on sparse data sets

quickly approaches |I|, where on dense data sets the maximum degree is much closer to

the average. The density of a data set, calculated by |R| / (|O| × |I|), can be readily

observed in a density profile.

The QuICL algorithms were validated by a two prong approach; first through

manual inspection of the construction of small lattices. All test lattices, including iceberg

lattices, were correctly constructed. The second prong involved executing all algorithms

including GMA, CHARM, CHARM-L, and MAGALICE against the benchmark data

sets and comparing the characteristics of the generated lattices. The QuICL algorithms

reported the same |L| as CHARM and CHARM-L, and a difference of at most one for

234

GMA on all data sets and selected supports. The difference is readily explained by the

underlying representation of each lattice. The QuICL algorithms reported the same

degavg(L) as the CHARM-L and GMA algorithms. Based on the consistent

characteristics of the lattices constructed by the QuICL, CHARM, CHARM-L, and GMA

algorithms, the QuICL algorithms were deemed valid.

Before comparing the performance and memory usage of the QuICL algorithms

against the CHARM, GMA, and MAGALICE algorithms, experiments were conducted

to determine if the order of item insertion has an effect on performance and memory

usage. If an effect is realized, then the order providing the best performance and memory

usage will be used when comparing the algorithms. The results of experiments indicate

that QuICL Oid-Full and QuICL Oid-Trie provide the best performance by incrementally

inserting items in ascending support order. By inserting concepts in ascending item

support order, the lattice initially grows at small rate that accelerates towards later

insertions, thereby restraining the number of intersections performed. For QuICL Oid-

Less, the best performance on dense data sets is attained by incrementally inserting items

in descending support order. This conflicting preference is the result of intersecting sets

of support concepts instead sets of object ids. On sparse data sets, the intersection of

support concepts had reduced effects. Therefore on sparse data sets, ascending order

provides the best performance. The GMA algorithm also exhibits significant gains in

performance by inserting the items in descending support order for dense data sets, up to

an order of magnitude. Here the conflicting preference is attributed to the cost to link

new concepts into the lattice. However, the cost of searching for parents has a reduced

effect on sparse data sets. Thus, on sparse data sets the ascending order provides the best

235

performance. For QuICL Oid-Full, QuICL Oid-Trie, and GMA, the sort order had no

effect on memory usage. This is due to the well behavior of lattice construction. For

QuICL Oid-Less, descending order resulted in less memory usage. Descending order

restrains the size of temporary sets created during item insertion.

Using the sort order providing the best performance and memory usage, the

performance of QuICL algorithms were compared to CHARM, CHARM-L, GMA, and

MAGALICE through empirical tests against the seven benchmark data sets. The QuICL

Oid-Full algorithm provided the best overall performance for constructing iceberg

lattices. It is only outperformed by CHARM-L on the Pumsb and Pumsb* data sets and

for sparse data at only relatively high supports. The Pumsb and Pumsb* data sets contain

items with very large object id sets. Thus, CHARM-L is benefiting from its difference

based representation of object id sets. While CHARM-L does outperform QuICL Oid-

Full at relatively high supports on sparse data, the gain is generally limited to a few

seconds. In all cases, the gain quickly degenerates into a large loss as the support is

lowered. At low supports, QuICL Oid-Full outperforms CHARM-L by an excess of an

order of magnitude on the four data sets, and a factor greater than five on a fifth. QuICL

Oid-Trie exhibits the near same runtime complexity as QuICL Oid-Full for all data sets

with a small performance overhead. This loss in performance is expected since the

compare and intersect functions must traverse between trie nodes. QuICL Oid-Less,

provides the best performance of the lattice construction algorithms on the Pumsb data

set outperforming CHARM-L by more than a factor of two over all supports. QuICL

Oid-Less is QuICL’s answer to handling data set containing items with large object id

sets. On data sets containing items with large object sets, such as Pumsb, QuICL Oid-

236

Less realizes a significant performance gain. This gain may also be realized for an initial

period of time during the algorithm execution on other data sets.

CHARM provides the best performance for the Chess, Pumsb, and Pumsb* data

sets. These results are expected since CHARM does not derive the upper covers and it

uses a difference based representation for the sets of object ids. On these data sets the

difference based representation provides a real gain in both in memory and runtime

execution. The CHARM algorithm provides the best performance on sparse data sets at

relatively high supports, but is outperformed by QuICL Oid-Full and QuICL Oid-Trie

algorithms at low supports. CHARM is outperformed by QuICL Oid-Full and QuICL

Oid-Trie on Mushroom over all supports. CHARM-L exhibits performance along the

lines of CHARM but degrades by a factor of two to an excess of an order of magnitude as

the support is lowered. These results are expected since the CHARM-L is an extension to

CHARM that additionally derives the upper covers. CHARM-L is outperformed by

QuICL Oid-Full and QuICL Oid-Trie on Chess over all supports.

GMA is generally slower than the QuICL and CHARM algorithms by an order of

magnitude with greater divergence at lower minimum supports. There are the two main

factors attributing to its degradation of performance. First, it performs more intersections

than needed. Second, it incurs an expensive search for parents when linking a new

concept into the lattice. MAGALICE exhibits the worst performance of all the

algorithms. When compared to the GMA algorithm, MAGALICE is at least an order of

magnitude slower.

QuICL Oid-Full and GMA exhibit similar memory usage for small lattices and

diverge for larger lattices. For both algorithms, the number of object id entries stored in a

237

lattice is a major consumer of memory space, accounting for more than 95% of the

memory used on small lattices. As the lattice becomes large, the overhead of storing the

concepts can become a dominant term. Furthermore, for large lattices the number of

parent-child links account for another 15%. Since the overhead of GMA concepts is

greater and GMA uses two references for each parent-child link, a GMA lattice can

consume two times more memory than QuICL Oid-Full on large lattices. QuICL Oid-

Trie algorithm realizes a savings in the number of object id entries its trie between 15%

and 80% over the QuICL Oid-Full lattice. For small lattices, these savings translate to a

significant reduction in memory usage enabling QuICL Oid-Trie to process lower

supports. However, on large lattices any gain in reducing the number of object id entries

is outweighed by the overhead in the concepts. The QuICL Oid-Less algorithm provides

further reduction in memory by eliminating the object id entries from permanent storage

within the lattice. The permanent object ids are eliminated at the expense of additional

overhead in each concept. The net change is a reduction in memory space between a

factor of two to an order of magnitude. For dense data sets, these gains are sustained

over most supports but diminish slightly for large lattices. Thus, QuICL Oid-Less is able

to process lower supports than QuICL Oid-Full. However, on some sparse data sets,

QuICL Oid-Less exhibits an excess between 5% and 60%. For these data sets, the lattice

quickly degrades to a worst case where there are many iced concepts each representing a

single object id. Like QuICL Oid-Less, the CHARM-L algorithm provides reduction in

memory usage by eliminating the object id entries from the lattice. The overhead for

concepts in the CHARM-L lattice is about three times QuICL Oid-Full and thus exceeds

QuICL Oid-Less. Due to very different approaches, the reduction or gain in memory

238

space when compared against QuICL algorithms is varied. The CHARM algorithm does

not construct a lattice. As such, it generally provides the best memory usage. Memory is

temporarily consumed during processing of its itemset-oidset tree and permanently

consumed by the list of found frequent item sets. The MAGACLICE algorithm exhibited

gross memory consumption.

Performance analysis indicates that QuICL Oid-Full spends a majority of time in

the prepare-search phase. In most cases the proportion of time is over 75% but decreases

as the support is lowered. Thus, the prepare-search phase is the dominant part of the

overall execution time. However, the time to purge subset entries is also significant and

its proportion of time generally increases with the size of the lattice. Likewise, time to

find and link parent concepts already in the lattice is also significant and increases with

the size of the lattice. The remaining sections of the QuICL Oid-Full algorithm consume

a negligible amount of time and are therefore insignificant.

Portions of time spent in the sections of the QuICL Oid-Trie are similar to QuICL

Oid-Full with a few changes. On the Chess, Pumsb, and Pumsb* data sets, the actual

seconds in the prepare-search phase is slightly less, but up to two times more on the other

data sets. Traversal between trie nodes during intersection is accounting for the

additional time. For Chess, Pumsb, and Pumsb, an enhancement to halt intersection

processing when the traversals of the object id sets are within the same trie node is

achieving a gain. For these data sets, the trie has a large number of object id sets sharing

common prefixes. A second enhancement to directly lookup existing concepts limits the

proportion of time to find and link existing concepts to less than 5%. Thus for QuICL

Oid-Trie, this time is not a dominant term.

239

The portions of time spent in the sections of QuICL Oid-Less is different from

QuICL Oid-Full. The portion of time spent executing the prepare-search increases as the

support is lowered. For all data sets, this portion of time still exceeds 74% at low

supports. The actual seconds spent is less than QuICL Oid-Full at high supports, but is

generally more at low supports. At high supports QuICL Oid-Less is benefiting from

intersecting sets of support concepts, but as the support is lowered the support concepts

fragment resulting in greater runtime consumption. An additional time component

incurred by QuICL Oid-Less is the time to process iced concepts. This time is around

30% at high supports but drops as the support is lowered. Overall, the QuICL Oid-Less

algorithm provides a gain at high supports and realizes a loss as the support is lowered.

To provide empirical evidence in support of the asymptotic complexity analysis

QuICL Oid-Full was separately instrumented to report |L|, degavg(L), number of

intersections performed, and the number of iterations in the innermost loop of the

intersection function. From the reported values, a calculated time can be derived using

the formulas expressed in the runtime complexity. Correlations found between the

calculated times and actual times provide evidence supporting the runtime complexity.

For dense data sets a prepare-search time constant could be found such that the calculated

times are well correlated to the actual times. This indicates the prepare search time is

indeed O(l d i). However, on sparse data sets such constant could not be found. This

does not necessarily disprove an O(l d i). Instead, it indicates that the mean used for

calculating i is not appropriate. The discrepancy between dense and sparse data does,

however, indicate that density is a factor in computing the mean. For most data sets, a

240

purge time constant could be found such that the calculated purge times are well

correlated to the actual times. This indicates the purge time is indeed O(l d2 c).

Performance analysis of the GMA algorithm indicates that it spends considerable

time on searching for parents and linking new concepts into the lattice. On dense data

sets using descending order, the time ranges between 50% and 96%. Furthermore, use of

ascending order greatly exacerbates the search and link time. On sparse data using

descending order, the time is generally limited to a small percentage. Beyond the search

and link time, the time to perform intersections is next major consumer. It is generally

the dominant term on sparse data sets, and between 0% and 25% when using ascending

order on dense data sets. In most cases, the actual time spent on performing intersections

is more when using descending order. The generator test time and time to sort concepts

is a small percent, except in a few cases. Generator test is exacerbated by ascending

order whereas sort time is exacerbated by descending order.

As a final comparison between algorithms, CHARM, GMA, QuICL Oid-Full, and

QuICL Oid-Trie were instrumented to report the number of intersections performed

during the construction of a lattice. QuICL Oid-Full performs 20% to 45% more

intersections than CHARM on Chess, 18% to 65% more on Pumsb*, but up to 19% less

on Mushroom. On T10I4D100k and T25I10D10k QuICL Oid-Full performs around five

times more intersections at high supports but 16% and 39% less, respectively, at 0.0%supp.

QuICL Oid-Trie performs 0% to 4% less intersections than QuICL Oid-Full. In

comparing QuICL Oid-Full with GMA ascending, GMA performs more intersections

ranging from a few percent to over an order of magnitude. GMA descending performs

around five times more intersections than GMA ascending.

241

Chapter 5

Conclusions, Implications, Recommendations, and Summary

5.1 Conclusions

It was hypothesized that an iceberg concept lattice based algorithm will provide

gains in association rule mining and will be effective in mining frequent items sets. This

is found to be true. All QuICL algorithms correctly construct iceberg concept lattices for

the specified minimum support threshold. The concepts of the iceberg lattices identify

the frequent item sets together with their supports. The QuICL algorithms were validated

by comparing the characteristics of the lattices generated by QuICL against those

generated by GMA, CHARM46

46 CHARM does not construct a lattice. However, the number of frequent item sets identified by CHARM
can be compared to the number of concepts in the lattice generated by QuICL.

, CHARM-L, and MAGALICE. All differences were

explained. Therefore, the QuICL algorithms are deemed valid. Furthermore, the lattices

constructed by QuICL are of the form corresponding to Figure 1.3. That is, each item is

represented in a single concept, its maximal concept, each concept readily identifies its

support, and the drop in confidence along an edge can be easily computed (i.e.,

support(parent) / support(child)). This notation enables association rules to be directly

read from the lattice. Furthermore, a basis of association rules can be generated by

traversing the lattice. The lattice is of the form whereby the Stumme et al. (2001b)

242

algorithms can extract the Duquenne-Guigues basis and the Luxemburger basis.

Therefore, the QuICL algorithms provide gains in association rule mining.

It was hypothesized that an iceberg concept lattice based algorithm will readily

construct a concept lattice for a wide range of data sets and will prove to be a viable

approach. This is found to be effectively true. The QuICL algorithms were tested

against seven data sets using a spectrum of supports. The data sets represent a variety of

characteristics including:

i) number of tuples ranging from a few thousand to a hundred thousand,

ii) number of items ranging from below a hundred to ten thousand,

iii) both sparse and dense data, and

iv) items with large object sets.

The QuICL algorithms constructed lattices for all supports on three of the data sets

(Mushroom, T10I4D100k, and T25I10D10k), all but very near 0.0%supp on another

(T25I20D100k), and medium to high supports on the other three (Chess, Pumsb,

Pumsb*). The QuICL algorithms were unable to produce lattices over all supports for

four of the data sets due to memory constraints. However, CHARM, CHARM-L, GMA,

and MAGALICE were also unable to produce lattices over all supports for the same data

sets due to memory constraints. CHARM was able to identify the frequent item sets for

supports lower than QuICL on three of the data sets. But, CHARM does not produce the

upper covers and is therefore deficient in the overall goal of identifying a useable set of

association rules. CHARM-L did produce a lattice at a slightly lower support on one data

set, but on another, failed at a support where the QuICL algorithms succeeded. On data

sets containing items with large object sets, QuICL Oid-Full could only produce a lattice

at high supports where CHARM-L could construct lattices for significantly lower

243

supports. On these data sets, QuICL Oid-Less was able to construct lattices for the same

supports as CHARM-L. All QuICL algorithms were able to construct lattices for all data

sets and supports where the GMA and MAGALICE succeeded. Given that the QuICL

algorithms were able to construct lattices for all supports on three of the data sets, were

more or less able to construct lattices at supports where CHARM-L was successful, and

they were able construct lattices for all supports where GMA and MAGALICE

succeeded, the QuICL algorithms have proved to be a viable approach.

It was hypothesized that an iceberg concept lattice based algorithm will exhibit

the same or slightly better memory utilization than other leading algorithms. With

respect to CHARM, a leading frequent item set miner, this is found to be false. CHARM

does not construct a lattice. Therefore, there is no concept overhead, no parent-child

links, and no retention of object id sets. Furthermore, CHARM uses a difference based

representation for its temporary object id sets and these sets are released as soon as

possible. Thus, CHARM consumes significantly less memory on dense data sets. While

at high supports CHARM is only slightly less, CHARM is factor of two to over an order

of magnitude better than QuICL Oid-Full at low supports. On sparse data sets, QuICL

Oid-Full consumed slightly more over all supports. However, on one sparse data set,

CHARM consumed more memory. For the dense data sets, QuICL Oid-Trie and QuICL

Oid-Less derivations did provide a reduction is memory space over QuICL Oid-Full, but

the reduction was not sufficient to match CHARM. QuICL Oid-Trie and QuICL Oid-

Less still consume 50% to ten times more than CHARM at low supports.

With respect to leading lattice construction algorithms, the hypothesis concerning

memory was found to be mostly true. Memory consumption for QuICL Oid-Full was the

244

same as GMA on dense data sets, and the QuICL Oid-Trie and QuICL Oid-Less

derivations generally provided a 50% to 80% reduction in memory usage. On sparse data

sets, QuICL Oid-Full was 10% to 40% less over most supports, although greater

reduction was provided at low supports. When compared against CHARM-L, the QuICL

algorithms provide similar reduction on sparse data sets. However, on dense data sets

CHARM-L consumes less memory. The difference based representation of the

underlying CHARM algorithm is providing a benefit. Therefore, CHARM-L is realizing

a gain, especially on data sets having items with large object sets. However, QuICL Oid-

Trie and QuICL Oid-Less do challenge CHARM-L and at some supports provide a

reduction in memory usage.

It was hypothesized that an iceberg concept lattice based algorithm will exhibit

runtime performance on the order of leading algorithms to mine frequent item sets, but

will probably be slower due to greater dependencies on intersection, union, and set

difference operations. The QuICL algorithms were found to have performance on the

order of leading algorithms to mine frequent item sets and, in a few of cases, provided the

best performance. On the Mushroom, a dense data set, QuICL Oid-Full was faster than

CHARM by a factor of two over all supports. For example, at 0.0%supp QuICL Oid-Full

was less than three seconds where CHARM took over six seconds. On Chess, another

dense data set, QuICL was slower by a factor of four. On two sparse data sets, QuICL

was slower by a few seconds at high supports, but as the support was lowered QuICL

provided gains around an order of magnitude. For example, on T10I4D100k at 0.5%supp,

QuICL Oid-Full took three seconds where CHARM was under a second. At 0.0% supp,

QuICL was under 120 seconds where CHARM was over 1,400. However, on a third

245

sparse data set, CHARM maintained a significant lead over most supports. Only at

0.01% supp, did QuICL prevail. On data sets containing items with large object sets,

CHARM was faster by an approximate factor of four (less at low supports and more at

high supports). While for these data sets the QuICL Oid-Less derivation did provide

some savings and was able to match or beat CHARM at high to medium supports, it lost

by a factor of four to an order of magnitude at low supports.

QuICL Oid-Full provided the best all around performance of the lattice based

algorithms. On both dense and sparse data sets, QuICL Oid-Full provided approximately

50% savings over GMA at high supports and an order of magnitude savings at low

supports. For example, QuICL Oid-Full constructed the entire lattice for Mushroom in

less than three seconds where GMA took over 200 seconds. For T10I4D100k, a sparse

data set, QuICL Oid-Full completed in less than 120 seconds where GMA is near 10,000

seconds. QuICL Oid-Full provided near two orders of magnitude savings over

MAGALICE. When compared against CHARM-L, QuICL generally provided the best

performance. On Mushroom, CHARM-L is at least three times slower. At 0.0%supp,

QuICL Oid-Full was less than three seconds, whereas CHARM-L approached 200

seconds. Likewise on Chess, CHARM-L was at least three times slower. Only on data

sets containing items with very large object sets did CHARM-L prevail. On these data

sets, CHARM-L was five times faster. However, on one such data set the QuICL Oid-

Less derivation was four times faster over all supports. On sparse data sets, QuICL Oid-

Full was slower by a few seconds at high supports, but as the support was lowered

QuICL Oid-Full provided gains around an order of magnitude. For example, on

T10I4D100k at 0.5%supp, QuICL Oid-Full took three seconds where CHARM-L was

246

under one second. At 0.0% supp, QuICL was under 120 seconds whereas CHARM-L was

near 2,000 seconds.

It was hypothesized that an iceberg concept lattice based algorithm will be

resilient against variations of data characteristics and input order. This is found to be

partially true. QuICL Oid-Full provided the best all around performance of the lattice

based algorithms. It performed well on both dense and sparse data sets, and for small and

large data sets. The QuICL Oid-Less and QuICL Oid-Trie derivations only offer gains in

memory and or performance on dense data sets. The input order did indeed have no

effect on the memory consumption on QuICL Oid-Full and QuICL Oid-Trie. This is due

to the well behavior of lattice construction. Only for QuICL Oid-Less did input order

have an effect. Insertion in descending support order restrained the size of temporary

sets. The input order did have a large effect on the performance for all QuICL

derivations. All QuICL algorithms are subject to a natural preference for ascending

support order. Such order impedes the initial growth of the lattice, thereby reducing the

number of required intersections. QuICL Oid-Less did exhibit a conflicting preference

on dense data sets. In this case, QuICL Oid-Less offers significant savings in the cost of

each intersection by inserting items in descending order.

In conclusion, this study investigated the development of efficient algorithms to

construct an iceberg lattice. Its objective was to develop an algorithm whose overall

performance in constructing a lattice is comparable to the leading algorithms used for

association rule mining. Furthermore, it was proposed that such algorithm would provide

gains relative to the overall task of association rule mining. This objective has been met.

The performance of QuICL algorithms is on the order of leading algorithms to mine

247

frequent item sets, and QuICL additionally derives the upper covers. The lattices

constructed by QuICL are of the form whereby association rules can be directly read and

a basis can be readily generated. The Stumme et al. (2001b) algorithms can be used to

extract the Duquenne-Guigues basis and the Luxemburger basis. Thus, the QuICL

algorithms provide significant gains in the overall task of association rule mining. They

enable the generation of association rules whose size is constrained to a number that can

be exploited by the end user. Therefore, the QuICL algorithms offer a significant

contribution to association rule mining. Beyond this, it was proposed that new efficient

algorithms to construct concept lattices may present a contribution to formal concept

analysis. The QuICL algorithms provide an order of magnitude gains in performance

over GMA, an often cited incremental lattice construction algorithm. It is noted that

GMA provides good performance on data sets whose density is less than 0.10. QuICL

provides excellent performance on both sparse and dense data sets. For example, on the

T10I4D100k, a sparse data set, QuICL provides a gain over GMA of two orders of

magnitude (e.g., less than 120 seconds verses near 10,000 seconds at 0.0%supp). On

Mushroom, a dense data set, the same two order magnitude gain is realized (e.g. three

seconds verses 200 seconds at 0.0%Supp), likewise on Chess (e.g., less than ten second

verses over 1,000 seconds at 55%supp). Literature has noted there is no known “best”

algorithm for lattice construction and that each algorithm demonstrates different

performance on different data sets, yet QuICL Oid-Full provides the best all-around

performance. QuICL Oid-Trie provides a reasonable tradeoff between performance and

memory enabling it to create lattices for lower suppo rts. QuICL Oid-Less addresses a

special class of data sets containing items with large object sets. These derivations allow

248

construction of lattices for cases where GMA fails. Therefore, the QuICL algorithms

offer a significant contribution to formal concept analysis.

5.2 Implications

Association rule mining is a challenging task due to the exponential nature of the

problem. Small to moderate data sets can readily generate millions of frequent item sets.

From a technical perspective, association rule mining presents challenges in both runtime

execution and memory usage. Attention to efficiency is needed to ensure algorithms are

successful within space and time constraints. However, efficiency is only one factor in

assessing the effectiveness of association rule mining. Critical to the effectiveness, is a

means to constrain the number of found association rules to a size that can be exploited

by the end user. It is here where most past work has fallen short. The QuICL algorithms

have maintained an attention to efficiency while at the same time derived the missing

information needed to generate a basis of association rule. This has been achieved

through a formal concept analysis approach. It is therefore postulated that QuICL

algorithms offer the best solution to mining frequent items together with the upper

covers. The QuICL algorithms combined with algorithms to extract a basis of association

rules from a lattice, such as Stumme et al. (2001b), will provide the most efficient path to

derive a set of association rules whose size is constrained to an exploitable number.

Frequent item set mining and lattice construction algorithms derived from formal

concept analysis has in the past been two separate areas of research. Very few studies

compare results of frequent item set miners against lattice construction algorithms, yet

these areas are clearly related. Results included in this study, together with analysis of

work performed in each area, indicate lattice construction algorithms are typically an

249

order of magnitude slower than frequent item set miners. Only CHARM-L provides

good results in reducing the gap. The QuICL algorithms have gone a step further. The

QuICL algorithms are true incremental lattice construction algorithms that have

efficiency on the order of frequent item set miners. The QuICL algorithms have

effectively bridged the gap.

The QuICL algorithms have incorporated the best features of a number of

algorithms. The main loop of the QuICL algorithms is very similar to the main loop of

CHARM. Both compare an incoming object id set against an id set present in its data

structure and perform different actions depending if the sets are =, ⊂, ⊃, or ∩ meeting the

minimum support threshold, although the actions of each are adapt to the respective data

structure. The purge subsets function is the same as MAXIMA function of the Valtchev

et al. (2000) (VML) lattice construction algorithm. Both serve the same purpose of

preventing invalid parent-child links. The QuICL algorithms conform to the general

principles of the Valtchev et al. (2003) generic lattice construction algorithm, although a

different ordering of steps is utilized. The idea to use a trie structure for QuICL Oid-Trie

was borrowed from the GALICIA-T (Valtchev et al., 2002) and Nourine and Raynaud

(2002) algorithms. The rationale to maintain parent concepts id descending support order

was borrowed from CHARM (Zaki, & Hsiao, 2002). CHARM sorts its child nodes in

order to increase the probability of detecting, sooner than later, a case which conserves

processing. Likewise, the order of parent concepts increases the probability of

conserving processing.

250

QuICL algorithms differ from past work in several notable ways;

i) The QuICL algorithm is a pure incremental lattice construction algorithm.
That is, its sole data structure driving its processing is a lattice. Many
other algorithms are driven by some other data structure and construct the
lattice as an integral sub-task. Such algorithms include: GALICIA-T
(Valtchev et al., 2002), Nourine and Raynaud (2002), and CHARM-L
(Zaki, & Hsiao, 2005). By being a pure incremental lattice construction
algorithm, the foundation of QuICL is based solely on formal concept
analysis. Additional theory derived from FCA may provide for further
improvements to QuICL.

ii) The QuICL algorithms have recognized that it is sufficient to store an item
in only its maximal position. There is no need to include the item in all
descendent concepts. Thus, the only modified concepts will be those
where an item is inserted at its maximal position. This eliminates the need
to modify a substantial number of concepts thereby significantly
improving performance.

iii) In comparing QuICL to GMA (Godin et al., 1995), both identify generator
concepts. For QuICL, the generators are base concepts that do not have a
parent whose object id set that is a superset of the incoming object id set.
QuICL differs from GMA in that it identifies the lowest generator
concepts first, whereas GMA first identifies the highest. Thus, QuICL
eliminates the step to validate a candidate generator is indeed a generator,
a potentially time consuming process. Furthermore, since QuICL
approaches the lattice from the bottom up, its recursion directly identifies
the parent concepts. This eliminates the very expensive task of searching
for parents incurred by GMA. This task is exacerbated on dense data sets.

iv) While QuICL does conform to the general principles of the Valtchev et al.
(2003) generic lattice construction algorithm, it has effectively, through
recursion, folded the sequential steps into an interleaved process. The
main outcome is, again, the direct identification of parents when linking a
new concept into the lattice.

Given this discussion and the results presented in this report, it is postulated that

QuICL is the “best known” all around incremental lattice construction algorithm.

251

5.3 Recommendations

Given the favorable results and conclusions of this report, the QuICL algorithms

are recommended for use in association rule mining and formal concept lattice

construction. They are proven to be correct and highly efficient. For association rule

mining, the QuICL algorithms provide the missing information needed to extract a basis

of association rules. They are ready to be combined with basis extraction algorithms to

form a complete solution for association rule mining. Furthermore, the QuICL

algorithms are ready to be included in lattice construction and analysis suites, such as

Galicia (Valtchev el al., 2003).

An obvious next step is to combine QuICL with basis extraction algorithms, such

as Stumme et al. (2001b), in order to further validate the claim of the “best known”

association rule mining solution. Another step is evaluation against a broader set of data

sets and other lattice construction algorithms. This is needed to further validate the claim

of “best known” all around lattice construction algorithm.

An issue for QuICL, as well as frequent item set miners and lattice construction

algorithms in general, is memory consumption. The exponential nature of the problem

can quickly exhaust memory space. All algorithms used in this study failed to produce a

complete lattice for four of the seven data sets. In each case the failure was due to

memory constraints. The QuICL Oid-Less and QuICL Oid-Trie derivations were able

the construct lattices at lower supports than QuICL Oid-Full and GMA, but still failed at

some point. The CHARM algorithm was able to process even lower supports. Further

investigation into CHARM’s difference based representation may shed light on additional

improvements to QuICL. Another avenue for reducing memory may be found in

252

Algorithm 3.9. This algorithm pushes lattice intersected object ids into the descendents

of each support concepts that logically represent the intersected object id. This algorithm

was abandoned in place of a hybrid pull-down bottom-up algorithm, since no further

performance enhancements were apparent. However, this algorithm does hold a key to

saving memory. The QuICL algorithms determine if two sets are =, ⊂, ⊃, or ∩ using the

cardinality of intersection sets. With the exception of the purge subset function, the

actual ids are not needed. Thus, Algorithm 3.9 could simply increment an intersection

count in all descendents instead of appending an object id. Thus, the temporary sets of

QuICL Oid-Less would not be needed. This approach is dependent upon finding an

alternate solution to purge subsets.

Further improvements to QuICL may be found by closer examination of number

of intersections performed by QuICL and CHARM. QuICL is on par with CHARM in a

number of cases, yet there are still further cases where QuICL performs significantly

more intersections. Studying these cases may shed light on other enhancements. Also,

investigations in the cost of intersection may prove fruitful.

The MAGALICE (Rouane et al., 2004) algorithm exhibited the worst

performance of all algorithms, however, its intent has merit. Its intent is to enable

incremental insertion of an object to an existing iceberg lattice. The rationale is to

facilitate the addition of new set of objects to an already constructed lattice. For

example, in a retail system it may be desired to add transactions for the previous day into

a lattice derived from the all past transactions. The downfall of the MAGACLICE

algorithm is that the adjustments are made for each individual object. Instead, some

method to adjust the lattice for a set of new objects as a whole is needed. This may

253

involve retention of information about object sets that did not meet the minimum support

threshold, construction of a separate complete lattice for the new objects, assessment of

the concepts in the new lattice relative to the retained information, and integration of

selected new concepts into the lattice. This is area for future research.

5.4 Summary

Association rule mining is the task of identifying meaningful implication rules of

the form X → Y exhibited in a data set, where X and Y are subsets of the items and

X ∩ Y is ∅. It has been applied to a wide range of domains including basket analysis,

database analysis, and organization of pages on the World Wide Web. Furthermore,

association rule theory has extended beyond its original domain to include correlations,

dependency rules, episodes, sequential patterns, and multi-dimensional patterns.

Association rule mining has thus been a major area of research. However, a large portion

of activity has been focused on efficient techniques and innovative theory to extract

frequent item (FI) sets. Notable algorithms include CHARM, CLOSET, TITANIC, and

CLOSET+. While significant progress has been made, FI mining has fallen short of the

overall objective of mining association rules. The FI miners fail to identify the upper

covers of each closed FI set. The upper covers are needed to generate a set of association

rules whose size is constrained to a number that can be exploited by an end user. The

identification of upper covers is generally considered to be a worst case quadratic

problem in terms of the number of FI sets.

An alternative to FI mining algorithms can be found in formal concept analysis

(FCA), a branch of applied mathematics. Given a formal context composed of a set of

objects O, a set of items I, and a relation R ⊂ O × I, FCA derives a set of concepts

254

where each concept is a pair of sets O ⊆ O and I ⊆ I such that O = {o ∈ O | ∀ i ∈ I,

oRi} and I = {i ∈ I | ∀ o ∈ O, oRi}. Furthermore, between any two concepts

C1 = (O1, I1) and C2 = (O2, I2) an order < is said to exists between C1 and C2 iff O1 ⊂ O2.

Thus, the derived concepts can be arranged into a lattice structure by defining a

connection between any two concepts C1 and C2 for which order < exists and there is no

concept C3 for which C1 < C3 < C2. The result is a lattice whose concepts identify the set

of closed FIs (I) together with their support (|O|), and its connections identify the upper

covers.

The study of FCA has been a strong area of research. Noteworthy algorithms

include Godin, Missaoui, and Alaoui (Godin et al., 1995) (GMA), Nourine and Raynaud

(2002), Lindig and Datensystene (2000), and Valtchev et al. (2002) divide and conquer.

Some are batch while others are incremental (i.e., insert object by object or item by item).

The best known asymptotic complexity is O(m (m+k) l), where l = |L|, m = |I|, and

k = |O|. However, benchmarks have proven that asymptotic complexity may not be the

best measurement for comparison. To date there is no known “best” algorithm. GMA,

an incremental algorithm, is considered to be a good algorithm for data sets with density

less than 0.10.

Most FCA construction algorithms construct a complete lattice whose concepts

identify all closed item sets and not just those that are frequent. An iceberg lattice, on the

other hand, is a concept lattice whose concepts are restricted to those where |O| meets a

minimum support threshold. An iceberg lattice contains the necessary and sufficient

information to extract association rules. Furthermore, the alternate notation of an iceberg

lattice depicted in Figure 1.3 enables association rules to be directly read from iceberg

255

lattices. This form of iceberg concept lattice can be readily traversed to extract a basis of

association rules that can be exploited by an end user. Only three algorithms to construct

an iceberg lattice were found in literature; MAGALICE (Rouane et al., 2004),

CHARM-L (Zaki, & Hsiao, 2005), and SPROUT (Choi, 2006). Given that an iceberg

concept lattice provides an analysis tool to succinctly identify a basis of association rules,

this study investigated additional algorithms to construct an iceberg concept lattice.

This report presented the development and analysis of the Quick Iceberg Concept

Lattice (QuICL – pronounced kwi-kəl

QuICL has three derivations; Oid-Full, Oid-Less, and Oid-Trie. In the first

derivation, all of the concepts in the concept lattice retain a complete list of the object ids

(oids), hence the name “Oid-Full”. While results of QuICL Oid-Full were promising for

some data sets, the performance gains do not hold against others. An issue for QuICL

Oid-Full is storage of the complete list of object ids in each concept. The same object ids

can be repeated in multiple concepts. Thus, an alternate algorithm, termed Oid-Less, was

derived to eliminate the permanent storage of object ids. QuICL Oid-Less is successful

) algorithms. These algorithms provide

incremental construction of a concept lattice along the lines of GMA, but approach the

insertion process from the bottom of the lattice rather than top-down. The structure of the

lattice is used to navigate to a point of change. Recursion is used instead of iteration to

identify additional points of change and to enable connections between parent and child

concepts. To support construction of iceberg lattices, the QuICL algorithms add data on

an item by item basis and interchange the roles of the set of object identifiers (ids) and

the set of items. These changes effectively invert the lattice. Furthermore, the lattice of

the QuICL algorithms conforms to the notation of Figure 1.3.

256

in eliminating the object ids, however, this is achieved at the expense of considerable

complexity. Therefore, the Oid-Trie derivation was developed as a compromise between

QuICL Oid-Full and QuICL Oid-Less. Instead of eliminating the object ids, it utilizes a

trie data structure to store the ids in a compressed structure, thereby reducing memory

requirements. The QuICL algorithms were proved to be correct and validated by

comparing the characteristics of the lattices generated by QuICL against lattices

generated by other algorithms. The runtime complexity for the QuICL Oid-Full

algorithm is postulated to be at least O(l d i), but could approach O(l d2 c) or O(l d d′ i h),

where l = |L|, d = degavg(L), i a density weighted mean on the cardinality of frequent item

extents, c is a small fraction of |O| depending density, d′ is a fraction of d depending on

density, and h is a sub-linear function on the height of L. An enhancement of the QuICL

Oid-Trie algorithm eliminates O(d d′ h) from consideration. The memory complexity is

postulated to be O(l d i).

Evaluations of the QuICL algorithms against GMA, CHARM, CHARM-L, and

MAGALICE were conducted using seven public data sets. The data sets include both

sparse and dense data, and some contain items with large object sets. Before comparing

QuICL against the other algorithms, experiments were conducted to determine if the

order of item insertion has an effect on performance and memory usage. Best

performance for QuICL Oid-Full and QuICL Oid-Trie was attained by incrementally

inserting items in ascending support order. This order inhibits the initial growth of the

lattice, thereby reducing the number of required intersections. For QuICL Oid-Less and

GMA, descending support order provides the best performance on dense data sets. Other

257

factors in each algorithm contribute to this conflicting preference. Except for QuICL

Oid-Less, the sort order had no effect on memory.

In comparing QuICL to CHARM, an FI miner, CHARM provides the best

performance on most dense data sets. These results are expected since CHARM does not

derive the upper covers and it uses a difference based representation for the sets of object

ids. However, on sparse data sets, CHARM is outperformed by QuICL Oid-Full as the

support is lowered. CHARM is also outperformed by QuICL Oid-Full on Mushroom, a

dense data set, over all supports. The QuICL algorithms consume significantly more

memory than CHARM on dense data sets and slightly more memory on sparse data sets.

On dense data sets, QuICL Oid-Trie and QuICL Oid-Less derivations provide a reduction

in memory usage over QuICL Oid-Full, but the reduction is not sufficient enough to

match CHARM.

QuICL Oid-Full provided the best overall performance for constructing iceberg

lattices. It outperforms GMA by an order of magnitude and MAGALICE by two orders

of magnitude. It is only outperformed by CHARM-L on data sets containing items with

large object sets, and for the sparse data sets at relatively high supports. However, on

sparse data sets, the gain of CHARM-L is generally limited to a few seconds which

quickly turns into a large loss as the support is lowered. At low supports, QuICL Oid-

Full outperforms CHARM-L in excess of an order of magnitude on most data sets.

QuICL Oid-Trie exhibits the near same runtime complexity as QuICL Oid-Full for all

data sets with a small performance overhead. It provides a reasonable tradeoff between

performance and memory. QuICL Oid-Less is QuICL’s answer to handling data set that

contains items with large object id sets. By intersecting concept sets instead of object id

258

sets, QuICL Oid-Less realizes a significant performance gain on such data sets and

outperforms CHARM-L by more than a factor of two. With respect to memory usage,

QuICL Oid-Full was the same as GMA on dense data sets, but provided 10% to 40%

reduction on sparse data. QuICL Oid-Trie and QuICL Oid-Less derivations generally

provide additional reduction in memory usage. When compared against CHARM-L, the

QuICL algorithms provide similar reduction in memory usage on sparse data sets.

However, on dense data sets CHARM-L consumes less memory. The difference based

representation of the underlying CHARM algorithm is providing a benefit. QuICL Oid-

Trie and QuICL Oid-Less do, however, challenge CHARM-L and at some supports

provide a reduction in memory usage.

Empirical evidence supporting asymptotic runtime complexity for the O(l d i) and

O(l d2 c) was provided. In all except sparse data, strong correlations between observed

and calculated execution times were present for O(l d i). The lack of correlation on

sparse data does not necessarily disprove an O(l d i) complexity. Instead, it indicates that

the mean used for calculating i is not appropriate. The discrepancy between dense and

sparse data does, however, indicate that density is a factor in computing the mean.

In conclusion, this study has met its objective to develop a lattice based algorithm

whose overall performance is near the leading algorithms used for association rule

mining. Furthermore, the constructed lattices are of the form whereby association rules

can be directly read and a basis can be readily extracted. Therefore, the QuICL

algorithms offer a significant contribution to association rule mining. Beyond this, the

QuICL algorithms have proved to be very efficient, providing an order of magnitude

gains over prior incremental lattice construction algorithm. For example, on the

259

T10I4D100k data set, GMA takes near 10,000 seconds where QuICL Oid-Full completes

in less than 120 seconds. On Chess at 55%supp, GMA is over 1,000 seconds where Oid

Full is less than ten seconds. QuICL Oid-Full provides the best all around performance

on both dense and sparse data. QuICL Oid-Trie provides a reasonable tradeoff between

performance and memory, enabling it to create lattices for lower supports. QuICL Oid-

Less addresses a special class of data sets that contain items with large object id sets.

Therefore, the QuICL algorithms offer a significant contribution to formal concept

analysis.

260

Epilogue

While this report presented the QuICL derivations in the order of QuICL Oid-

Full, QuICL Oid-Less, and QuICL Oid-Trie, the QuICL Oid-Less derivation was actually

developed first. At the start of this study, it was assumed that the storage of object ids

within all concepts would exhaust available memory. Therefore, attention was focused

on deriving an algorithm that used the compressed lattice structure. After attaining the

best possible results through a sequence of enhancements, the early algorithms were

reconstructed to confirm the preliminary timings for this report. When re-implementing

Algorithm 3.5, an error was introduced. The call to clear the temporary set of pull-down

object ids was omitted. On executing the re-implemented Algorithm 3.5, execution times

of a few hours were expected. As a result of the omission the algorithm executed in 80

seconds, and it produced a correct lattice. Analysis revealed that the concepts retained

the complete list of object ids. Thus, the QuICL Oid-Full algorithm was discovered.

Additional enhancements reduced the time to those given in this report. This is a lesson

learned. Test assumptions, they may lead to great discoveries. The QuICL Oid-Less

derivation still had merit with a special class of data sets.

261

Appendix A

Implementation of the Modified GMA Algorithm

import java.io.PrintStream;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;

/**
 * The Godin Missaoui Alaoui algorithm to construct a Concept Lattice.
 *
 * This is an implementation of algorithm one found in the article: "Incremental concept formation
 * algorithms based on Galois (concept) lattices", R. Godin, R. Missaoui, and H Alaoui.
 *
 * This implementation has swapped the roles of items and objects and has added a minimal support test.
 * As a result this algorithm constructs an iceberg concept lattice.
 *
 * A concept lattice consists of a bottom concept. Concepts
 * are discovered then added as ancestors using the method insert.
 *
 * @author David T. Smith
 */
public class GMAConceptLattice implements ConceptLattice {
 /**
 * A concept within the lattice. A concept contains a complete list of item ids and object ids together
 * with parent and child lists. The parents and children lists provide the edges between the concepts.
 */
 public static class Concept {
 IntArray iids = new IntArray();;
 int[] oids;
 List<Concept> children = new ArrayList<Concept>();
 ArrayList<Concept> parents = new ArrayList<Concept>();

 public Concept(int iid, int[] oids) {
 addAttr(iid);
 this.oids = oids;
 }

 public void addAttr(int iid) {
 iids.add(iid);
 }
 }

 private int minSupport = 0;
 private Concept bottom = new Concept(-1, new int[0]);
 private List<Concept> allConcepts = new ArrayList<Concept>();
 private int[] intersectBuff;
 private ArrayList<ArrayList<Concept>> processedList = new ArrayList<ArrayList<Concept>>();

 /**
 * Construct an empty concept lattice. The minimum support is specified.
 *
 * @param minSupport - the minimum support

262

 */
 public GMAConceptLatticeAdd(int minSupport, int buffSize) {
 this.minSupport = minSupport;
 this.intersectBuff = new int[buffSize];
 allConcepts.add(bottom);
 }

 /**
 * The GMA incremental insert algorithm to insert a new item into the lattice
 * @param iid - item id to be added
 * @param oids - object ids of objects holding the item
 */
 public void insert(int iid, int[] oids) {
 // Special case for an empty lattice - bottom concept is empty
 if (bottom.iids.size() == 0 && bottom.oids.length == 0) {
 // Just add the item ids and object ids to the empty bottom concept
 bottom.addAttr(iid);
 bottom.oids = oids;
 return;
 }

 // Union the oids with the bottom oids
 int inx1 = 0;
 int inx2 = 0;
 int usize = 0;
 while (inx1 < oids.length && inx2 < bottom.oids.length) {
 if (oids[inx1] == bottom.oids[inx2]) {
 intersectBuff[usize++] = oids[inx1];
 inx1++;
 inx2++;
 } else if (oids[inx1] < bottom.oids[inx2]) {
 intersectBuff[usize++] = oids[inx1++];
 } else {
 intersectBuff[usize++] = bottom.oids[inx2++];

 }
 }

 while (inx1 < oids.length) {
 intersectBuff[usize++] = oids[inx1++];
 }

 while (inx2 < bottom.oids.length) {
 intersectBuff[usize++] = bottom.oids[inx2++];
 }

 // Test if the oids contain ids that are do not exist in the lattice.
 if (usize > bottom.oids.length) {
 int[] noids = new int[usize];
 System.arraycopy(intersectBuff, 0, noids, 0, usize);
 if (bottom.iids.size() == 0) {
 bottom.oids = noids;
 } else {
 Concept newC = new Concept(-1, noids);
 allConcepts.add(newC);
 bottom.children.add(newC);

263

 newC.parents.add(bottom);
 bottom = newC;
 }
 }

 // Insure the process list has a bucket allocated for the current oids size
 while (processedList.size() > oids.length) {
 processedList.remove(processedList.size() - 1);
 }

 // Empty the processed list
 for (ArrayList<Concept> list : processedList) {
 list.clear();
 }

 processedList.ensureCapacity(oids.length);

 while (processedList.size() <= oids.length) {
 processedList.add(new ArrayList<Concept>());
 }

 // Process, in ascending order of support, all concepts in the current concept list
 Collections.sort(allConcepts, conceptComparator);

 int end = allConcepts.size();
 for (int i = 0; i < end; i++) {
 Concept c = allConcepts.get(i);
 int[] oids1 = c.oids;
 int[] oids2 = oids;
 inx1 = 0;
 inx2 = 0;
 int i1;
 int i2;
 boolean subset = true;
 boolean superset = true;
 int isize = 0;

 if (inx1 < oids1.length && inx2 < oids2.length) {
 i1 = oids1[inx1++];
 i2 = oids2[inx2++];
 for (;;) {
 if (i1 == i2) {
 intersectBuff[isize++] = i1;
 if (inx1 < oids1.length && inx2 < oids2.length) {
 i1 = oids1[inx1++];
 i2 = oids2[inx2++];
 } else {
 break;
 }
 } else if (i1 < i2) {
 subset = false;
 if (inx1 < oids1.length) {
 i1 = oids1[inx1++];
 } else {
 superset = false;
 break;

264

 }
 } else {
 superset = false;
 if (inx2 < oids2.length) {
 i2 = oids2[inx2++];
 } else {
 subset = false;
 break;
 }
 }
 }
 }

 if (isize < minSupport) {
 continue;
 }

 if (inx1 < oids1.length) {
 subset = false;
 }

 if (inx2 < oids2.length) {
 superset = false;
 }

 if (subset && superset) {
 c.addAttr(iid);
 return;
 }

 if (subset) {
 c.addAttr(iid);
 processedList.get(isize).add(c);
 } else if (isize >= minSupport){ // Additional test for min support threshold
 List<Concept> bkt = processedList.get(isize);
 boolean isGen = true;
 for (Concept p : bkt) {
 if (isize == p.oids.length) {
 int inx = 0;
 for (inx = 0; inx < isize && intersectBuff[inx] == p.oids[inx]; inx++) {
 }
 if (inx == isize) { // equal?
 isGen = false;
 break;
 }
 }
 }

 if (isGen) {
 int[] noids = new int[isize];
 System.arraycopy(intersectBuff, 0, noids, 0, isize);
 Concept newC = new Concept(iid, noids);
 allConcepts.add(newC);
 processedList.get(isize).add(newC);

 newC.children.add(c);

265

 c.parents.add(newC);

 outer: for (List<Concept> bkt2 : processedList) {
 for (Concept p : bkt2) {
 if (p.oids.length >= isize) {
 break outer;
 }

 if (isSubset(p.oids, newC.oids)) {
 boolean isParent = true;
 for (Concept ch : p.children) {
 if (isSubset(ch.oids, newC.oids)) {
 isParent = false;
 break;
 }
 }
 if (isParent) {
 p.children.remove(c);
 c.parents.remove(p);
 p.children.add(newC);
 newC.parents.add(p);
 }
 }
 }
 }

 if (isize == oids.length) {
 return;
 }
 }
 }
 }
 }

 /**
 * Test for subset
 * @param ids1
 * @param ids2
 * @return true if ids1 subset of ids2
 */
 private boolean isSubset(int[] ids1, int[] ids2) {
 int inx1 = ids1.length - 1;
 int inx2 = ids2.length - 1;
 int i1 = ids1[inx1];
 int i2 = ids2[inx2];

 for (;;) {
 if (inx1 > inx2) {
 return false;
 }
 if (i1 == i2) {
 if (inx1 == 0) {
 return true;
 }
 i1 = ids1[--inx1];
 i2 = ids2[--inx2];

266

 } else if (i1 > i2) {
 return false;
 } else {
 if (inx2 == 0) {
 return false;
 }
 i2 = ids2[--inx2];
 }
 }
 }

 /**
 * Comparator used to sort concepts in ascending order of support
 */
 private static Comparator<Concept> conceptComparator = new Comparator<Concept>() {
 public int compare(Concept o1, Concept o2) {
 return o1.oids.length - o2.oids.length;
 }
 };

 public int getNoConcepts() {
 return allConcepts.size();
 }
}

267

Appendix B

Implementation of the QuICL Oid-Full Algorithm

import java.io.PrintStream;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;

/**
 * The QuICL Oid-Full algorithm to construct a Concept Lattice.
 *
 * A concept lattice consists of a bottom concept. Discovered concepts are then added as ancestors using
 * the method insert.
 *
 * @author David T. Smith
 */
public class OidfullConceptLattice implements ConceptLattice {
 /**
 * A concept within the lattice. A concept contains a list of physical item ids and a complete list
 * of object ids together with parents lists. The parents provide the edges between the concepts.
 */
 public static class Concept {
 int[] aids;
 int[] oids;
 int[] intersectOids;
 List<Concept> parents;

 public Concept(int aid, int[] oids, int noParents) {
 addAttr(aid);
 this.oids = oids;
 parents = new ArrayList<Concept>(noParents);
 }

 public void addAttr(int aid) {
 if (aid < 0) {
 return;
 }
 if (aids == null) {
 aids = new int[1];
 } else {
 int[] naids = new int[aids.length + 1];
 System.arraycopy(aids, 0, naids, 0, aids.length);
 aids = naids;
 }
 aids[aids.length - 1] = aid;
 }
 }

 /**
 * A class defining a tuple that is placed into the ToProcessList.
 */
 private static class IntersectInfo {

268

 SetCmp type;
 Concept concept;

 public IntersectInfo(SetCmp type, Concept concept) {
 this.type = type;
 this.concept = concept;
 }
 }

 private int minSupport = 0;
 private Concept bottom = new Concept(-1, null, 16);
 private enum SetCmp { UNKNOWN, EQ, SUBSET, SUPERSET, INTERSECT };
 private List<Concept> allConcepts = new ArrayList<Concept>();
 private int[] intersectBuff;
 private static final int[] emptyOids = new int[0];

 /**
 * Construct an empty concept lattice. The minimum support is specified.
 *
 * @param minSupport - the minimum support
 * @param buffSize - the size for an intersection buffer
 */
 public OidfullConceptLattice(int minSupport, int buffSize) {
 this.minSupport = minSupport;
 this.intersectBuff = new int[buffSize];
 }

 /**
 * Insert a new item into the concept lattice
 *
 * @param iid - item id to be added
 * @param oids - the list of object ids - passed as an int array
 */
 public void insert(int iid, int[] oids) {
 if (oids.length >= minSupport) {
 insert(bottom, iid, oids);
 for (Concept c : allConcepts) {
 c. intersectOids = null;
 }
 }
 }

 /**
 * The QuICL Oid-Full incremental insert algorithm to insert a new item into the lattice
 *
 * @param baseC - concept above which a new concept is found or inserted
 * @param iid - item id to be added
 * @param oids - object ids of objects holding the item
 * @return the found or created concept
 */
 private Concept insert(Concept bottom, int iid, int[] oids) {
 // create the ToProcessList to hold tuples
 List<IntersectInfo> toProcessList = new ArrayList<IntersectInfo>();

 for (Concept parentC : bottom.parents) { // prepare-search phase
 // Intersect and compare oids w/testC.oids

269

 if (parentC.intersectOids == null) {
 int[] poids = parentC.oids;
 int inx1 = 0;
 int inx2 = 0;
 int i1;
 int i2;
 int isize = 0;
 i1 = oids[inx1++];
 i2 = poids[inx2++];

 for (;;) {
 if (i1 == i2) {
 intersectBuff[isize++] = i1;
 if (inx1 < oids.length && inx2 < poids.length) {
 i1 = oids[inx1++];
 i2 = poids[inx2++];
 } else {
 break;
 }
 } else if (i1 < i2) {
 if (inx1 < oids.length) {
 i1 = oids[inx1++];
 } else {
 break;
 }
 } else {
 if (inx2 < poids.length) {
 i2 = poids[inx2++];
 } else {
 break;
 }
 }
 }

 // cache the result in the parent concept
 if (isize == oids.length) {
 parentC.intersectOids = oids;
 } else if (isize == parentC.oids.length) {
 parentC.intersectOids = parentC.oids;
 } else {
 if (isize < minSupport) {
 parentC.intersectOids = emptyOids;
 } else {
 parentC.intersectOids = new int[isize];
 System.arraycopy(intersectBuff, 0, parentC.intersectOids, 0, isize);
 }
 }
 }

 if (parentC.intersectOids.length < minSupport) {
 continue;
 }

 // process the outcome of the intersection
 if (parentC.intersectOids.length == oids.length) {
 if (parentC.oids.length == parentC.intersectOids.length) { // Equal

270

 parentC.addAttr(iid);
 return parentC;
 } else { // Subset
 return insert(parentC, iid, oids);
 }
 } else {
 if (parentC.oids.length <= parentC.intersectOids.length) { // Superset
 toProcessList.add(new IntersectInfo(SetCmp.SUPERSET, parentC));
 } else { // Intersect
 toProcessList.add(new IntersectInfo(SetCmp.INTERSECT, parentC));
 }
 }
 }

 purgeSubsets(toProcessList);

 Concept newC = new Concept(iid, oids, toProcessList.size());
 allConcepts.add(newC);

 for (IntersectInfo p : toProcessList) { // link phase
 if (p.type == SetCmp.SUPERSET) {
 bottom.parents.remove(p.concept);
 newC.parents.add(p.concept);

 } else if (p.type == SetCmp.INTERSECT) {
 Concept parentC = insert(p.concept, -1, p.concept. intersectOids);
 newC.parents.add(parentC);
 }
 }

 Collections.sort(newC.parents, conceptComparator);

 int inx = Collections.binarySearch(bottom.parents, newC, conceptComparator);
 if (inx < 0) {
 inx = -inx - 1;
 }

 bottom.parents.add(inx, newC);

 return newC;
 }

 /**
 * Comparator used to sort concepts in descending order of support
 */
 private static Comparator conceptComparator = new Comparator() {
 public int compare(Object o1, Object o2) {
 return ((Concept) o2).oids.length - ((Concept) o1).oids.length;
 }
 };

 /**
 * Purge tuples in the ToProcesList that have intersection sets that are subsets of other tuples.
 * Purged tuples are marked as UNKNOWN
 *
 * @param toProcessList

271

 */
 private void purgeSubsets(List<IntersectInfo> toProcessList) {
 for (int i = 0; i < toProcessList.size() - 1; i++) {
 IntersectInfo interInfo1 = toProcessList.get(i);
 if (interInfo1.type != SetCmp.UNKNOWN) {
 for (int j = i + 1; j < toProcessList.size(); j++) {
 IntersectInfo interInfo2 = toProcessList.get(j);
 if (interInfo2.type != SetCmp.UNKNOWN) {
 int[] oids1 = interInfo1.concept.intersectOids;
 int[] oids2 = interInfo2.concept.intersectOids;
 int inx1 = oids1.length - 1;;
 int inx2 = oids2.length - 1;;
 int i1 = oids1[inx1];
 int i2 = oids2[inx2];

 boolean subset = true;
 boolean superset = true;

 if (interInfo1.type == SetCmp.INTERSECT) {
 for (;;) {
 if (inx1 > inx2) {
 subset = false;
 break;
 }
 if (i1 == i2) {
 if (inx1 == 0) {
 break;
 }
 i1 = oids1[--inx1];
 i2 = oids2[--inx2];
 } else if (i1 > i2) {
 subset = false;
 break;
 } else {
 superset = false;
 if (inx2 == 0) {
 subset = false;
 break;
 }
 i2 = oids2[--inx2];
 }
 }
 if (subset) {
 interInfo1.type = SetCmp.UNKNOWN;
 }
 } else {
 subset = false;
 }

 if (interInfo2.type == SetCmp.INTERSECT && superset && !subset) {
 for (;;) {
 if (inx1 < inx2) {
 superset = false;
 break;
 }
 if (i1 == i2) {

272

 if (inx2 == 0) {
 break;
 }
 i1 = oids1[--inx1];
 i2 = oids2[--inx2];
 } else if (i1 < i2) {
 superset = false;
 break;
 } else {
 if (inx1 == 0) {
 superset = false;
 break;
 }
 i1 = oids1[--inx1];
 }
 }
 if (superset) {
 interInfo2.type = SetCmp.UNKNOWN;

 }
 }
 }
 }
 }
 }
 }

 public int getNoConcepts() {
 return allConcepts.size();
 }
}

273

Appendix C

Implementation of the QuICL Oid-Less Algorithm

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Comparator;
import java.util.HashMap;
import java.util.List;

/**
 * The QuICL Oid-Less algorithm to construct a Concept Lattice.
 *
 * A concept lattice consists of a bottom concept. Concepts are discovered and added as ancestors
 * using the method insert.
 *
 * @author David T. Smith
 */
public class OidlessConceptLattice implements ConceptLattice {
 /**
 * A concept within the lattice. A concept contains a list of physical item ids, count of object ids,
 * support, and other temporal fields used during item insertion. The parents and children provide the
 * edges between the concepts.
 */
 public static class Concept implements Comparable {
 private static int nextConceptId = 0;
 private int id = nextConceptId++;
 private int[] aids;
 private int noOids;
 private int support;
 private ConceptArray parents= new ConceptArray();
 private ConceptArray children= new ConceptArray();
 private Concept[] intersectSupportConcepts;
 private int intersectSize = 0;
 private int noIntersectOids = 0;
 private IntArray intersectOids = null;
 private HasSupers hasSuper = HasSupers.UNKNOWN;
 private Concept adjusted;
 private static ConceptArray hasSuperProcessedConcepts = new ConceptArray();
 private static ConceptArray intersectProcessedConcepts = new ConceptArray();
 private static ConceptArray intersectBaseConcepts = new ConceptArray();
 private static ConceptArray adjustedFromConcepts = new ConceptArray();

 public Concept(int aid, int noOids, int support) {
 addAttr(aid);
 this.noOids = noOids;
 this.support = support;
 }

 public static void clearTemporalFields() {
 for (Concept concept : intersectProcessedConcepts) {
 concept.intersectSupportConcepts = null;
 concept.intersectSize = 0;
 }

274

 for (Concept concept : hasSuperProcessedConcepts) {
 concept.hasSuper = HasSupers.UNKNOWN;
 concept.intersectSize = 0;
 }

 for (Concept concept : intersectBaseConcepts) {
 concept.noIntersectOids = 0;
 concept.intersectOids = null;
 }

 for (Concept concept : adjustedFromConcepts) {
 concept.adjusted = null;
 }

 intersectProcessedConcepts.clear();
 hasSuperProcessedConcepts.clear();
 intersectBaseConcepts.clear();
 adjustedFromConcepts.clear();
 }

 public void addAttr(int aid) {
 if (aid < 0) {
 return;
 }
 if (aids == null) {
 aids = new int[1];
 } else {
 int[] naids = new int[aids.length + 1];
 System.arraycopy(aids, 0, naids, 0, aids.length);
 aids = naids;
 }
 aids[aids.length - 1] = aid;
 }

 public void subtractNoOids(int noOids) {
 this.noOids -= noOids;
 }

 public void subtractSupport(int adjustment) {
 support -= adjustment;
 }

 public void addIntersectOid(int oid) {
 if (intersectOids == null) {
 intersectOids = new IntArray();
 intersectBaseConcepts.add(this);
 }

 intersectOids.add(oid);
 noIntersectOids++;
 }

 public void setIntersectOids(IntArray intersectOids) {
 this.intersectOids = intersectOids;
 intersectBaseConcepts.add(this);
 }

275

 public Concept[] getIntersectSupportConcepts() {
 if (intersectSupportConcepts == null) {
 intersectSize = 0;

 Concept[] newIntersectionConcepts = kwayIntersect(children);
 for (Concept c : newIntersectionConcepts) {
 intersectSize += c.noIntersectOids;
 }

 setIntersectSupportConcepts(newIntersectionConcepts);
 }
 return intersectSupportConcepts;
 }

 public void setIntersectSupportConcepts(Concept[] intersectionConcepts) {
 intersectProcessedConcepts.add(this);
 this.intersectSupportConcepts = intersectionConcepts;
 }

 public int getIntersectSize() {
 getIntersectSupportConcepts();
 return intersectSize;
 }

 public void setIntersectSize(int intersectSize) {
 this.intersectSize = intersectSize;
 }

 public Concept[] kwayIntersect(ConceptArray children) {
 Concept[][] iters = new Concept[children.size()][];
 int[] inxs = new int[children.size()];
 int i = 0;

 for (Concept child : children) {
 iters[i++] = child.getIntersectSupportConcepts();
 }

 int p1 = 0;
 int p2 = 1;
 int kwayBuffInx = 0;
 if (inxs[p1] < iters[p1].length) {
 int cid1 = iters[p1][inxs[p1]++].id;
 while (inxs[p2] < iters[p2].length) {
 int cid2 = iters[p2][inxs[p2]++].id;
 if (cid1 < cid2) {
 cid1 = cid2;
 p1 = p2;
 p2 = (p2 + 1) % iters.length;
 } else if (cid1 == cid2) {
 p2 = (p2 + 1) % iters.length;
 if (p1 == p2) {
 Concept c = iters[p2][inxs[p2] - 1];
 intersectBuff[kwayBuffInx++] = c;
 p2 = (p2 + 1) % iters.length;
 }

276

 }
 }
 }

 Concept[] intersectConcepts = new Concept[kwayBuffInx];
 System.arraycopy(intersectBuff, 0, intersectConcepts, 0, kwayBuffInx);

 return intersectConcepts;
 }

 public boolean hasSuperset() {
 if (hasSuper == HasSupers.UNKNOWN) {
 IntArray intersection = intersectOids;
 boolean hasSuperset = noOids > (intersection == null ? 0 : intersection.size());

 if (!hasSuperset) {
 for (Concept parent : parents) {
 if (parent.hasSuperset()) {
 hasSuperset = true;
 break;
 }
 }
 }

 if (hasSuperset) {
 hasSuper = HasSupers.YES;
 } else {
 hasSuper = HasSupers.NO;
 }

 hasSuperProcessedConcepts.add(this);
 }
 return hasSuper == HasSupers.YES;
 }

 public int compareTo(Object o) {
 return id - ((Concept) o).id;
 }

 public void setNoIntersectOids(int noIntersectOids) {
 this.noIntersectOids = noIntersectOids;
 }

 public void setInsersectSize(int intersectSize) {
 this.intersectSize = intersectSize;
 }

 public void setAdjusted(Concept generatedConcept) {
 this.adjusted = generatedConcept;
 adjustedFromConcepts.add(this);
 }
 }

 /**
 * A utility class for performance. ConceptArray provides similar function ArrayList<Concept> with
 * a few performance enhancements (e.g., binary sort based removal).

277

 */
 public static class ConceptArray extends FastArrayList<Concept> {
 public ConceptArray(int noParents) {
 super(noParents);
 }

 public ConceptArray() {
 super();
 }

 public ConceptArray(Concept[] concepts) {
 super(concepts);
 }
 }

 /**
 * Class defining a tuple that is placed into the ToProcessList.
 */
 private static class IntersectInfo {
 SetCmp type;
 Concept concept;
 Concept[] intersectSupportConcepts;

 public IntersectInfo(SetCmp type, Concept concept, Concept[] intersectSupportConcepts) {
 this.type = type;
 this.concept = concept;
 this.intersectSupportConcepts = intersectSupportConcepts;
 }
 }

 private enum SetCmp { UNKNOWN, EQ, SUBSET, SUPERSET, INTERSECT };
 private enum HasSupers {UNKNOWN, YES, NO };

 private ConceptArray oid2Concept = new ConceptArray();
 private ConceptArray allDependents = new ConceptArray();
 private ConceptArray allConcepts = new ConceptArray();
 private Concept bottom = new Concept(-1, 0, Integer.MAX_VALUE, 0);
 private static Concept[] intersectBuff;
 private int minSupport = 0;
 private HashMap<Concept, ConceptArray> supportCsMap =
 new HashMap<Concept, ConceptArray>();

 private HashMap<Concept, ConceptArray> dependentCsMap =
 new HashMap<Concept, ConceptArray>();

 /**
 * Construct an empty concept lattice. The minimum support is specified.
 *
 * @param minSupport - the minimum support
 */
 public OidlessConceptLattice(int minSupport, int buffSize) {
 this.minSupport = minSupport;
 intersectBuff = new Concept[buffSize];
 }

 /**

278

 * Insert a new item into the concept lattice
 *
 * @param iid - item id to be added
 * @param oids - the list of object ids - passed as an int array
 */
 public void insert(int aid, int[] oids) {
 if (oids.length >= minSupport) {
 Concept[] supportConcepts = intersectLattice(oids);

 Concept newC = insert(bottom, aid, oids.length, supportConcepts);

 if (newC.children.size() == 1 && !hasSupportCs(newC)) {
 ConceptArray adjustedSupports = new ConceptArray(supportConcepts.length);

 for (Concept support : supportConcepts) {
 if (support.adjusted != null) {
 support = support.adjusted;
 }

 adjustedSupports.add(support);
 ConceptArray dependents = dependentCsMap.get(support);
 if (dependents == null) {
 dependents = new ConceptArray();
 dependentCsMap.put(support, dependents);
 }
 dependents.add(newC);
 }

 adjustedSupports.sort();
 supportCsMap.put(newC, adjustedSupports);
 allDependents.add(newC);
 }
 }
 }

 /**
 * The QuICL Oid-Less incremental insert algorithm to insert a new item into the lattice
 *
 * @param baseC - concept above which a new concept is found or inserted
 * @param iid - item id to be added
 * @param support - the support for the new concept
 * @param supportConcepts - array of Concepts that are the supports.
 * @return the found or created concept
 */
 private Concept insert(Concept baseC, int iid, int support, Concept[] supportConcepts) {
 // create the ToProcessList to hold tuples
 List<IntersectInfo> toProcessList = new ArrayList<IntersectInfo>();
 boolean hasIceberg = false;

 for (Concept parentC : baseC.parents) { // prepare-search phase
 if (parentC.support < minSupport) { // test for iceberg concept
 hasIceberg = true;
 continue;
 }

 Concept[] intersectSupportConcepts = parentC.getIntersectSupportConcepts();

279

 if (intersectSupportConcepts.length == 0) {
 continue;
 }

 int isize = parentC.getIntersectSize();
 boolean hasSuper = parentC.hasSuperset();

 if (isize == support) {
 if (!hasSuper) { // equal
 parentC.addAttr(iid);
 return parentC;
 } else { // subset
 return insert(parentC, iid, support, supportConcepts);
 }
 } else {
 if (!hasSuper) { // superset
 toProcessList.add(new IntersectInfo(SetCmp.SUPERSET, parentC,
 intersectSupportConcepts));
 } else { // intersect
 if (parentC.getIntersectSize() < minSupport) {
 hasIceberg = true;
 } else {
 toProcessList.add(new IntersectInfo(SetCmp.INTERSECT, parentC,
 intersectSupportConcepts));
 }
 }
 }
 }

 purgeSubsets(toProcessList);

 Concept newC = new Concept(iid, baseC.noIntersectOids, support);
 allConcepts.add(newC);

 adjust(baseC, newC);

 for (IntersectInfo interInfo : toProcessList) { // link phase
 if (interInfo.type == SetCmp.SUPERSET) {
 removeLink(interInfo.concept, baseC);
 addLink(interInfo.concept, newC);
 } else if (interInfo.type == SetCmp.INTERSECT) {
 int isize = interInfo.concept.getIntersectSize();
 Concept parentC = insert(interInfo.concept, -1, isize,
 interInfo.intersectSupportConcepts);
 addLink(parentC, newC);
 }
 }

 if (hasIceberg) { // iceberg processing
 Concept[][] iters = new Concept[newC.parents.size() + 1][];
 int[] inxs = new int[iters.length + 1];
 int i = 0;

 for (Concept t : newC.parents) {

280

 iters[i++] = t.getIntersectSupportConcepts();
 }
 iters[i] = new Concept[] { baseC };

 int supportConceptInx = 0;
 outer: while (supportConceptInx < supportConcepts.length) {
 for (i = 0; i < iters.length; i++) {
 for(;;) {
 if (inxs[i] == iters[i].length) {
 break;
 }
 int r = iters[i][inxs[i]].id - supportConcepts[supportConceptInx].id;
 if (r < 0){
 inxs[i]++;
 } else if (r == 0) {
 supportConceptInx++;
 continue outer;
 } else {
 break;
 }
 }
 }
 icebergLink(supportConcepts[supportConceptInx++], newC);
 }
 }

 baseC.setAdjusted(newC);
 newC.parents.sort(conceptComparator);

 int inx = baseC.parents.binarySearch(newC, conceptComparator);
 if (inx < 0) {
 inx = -inx - 1;
 }

 addLink(newC, baseC, inx);

 return newC;
 }

 /**
 * Comparator to sort concepts in descending support order
 */
 private static Comparator<Concept> conceptComparator = new Comparator<Concept>() {
 public int compare(Concept o1, Concept o2) {
 return o2.support - o1.support;
 }
 };

 /**
 * Extract and link up iceberg concepts to a new concept
 *
 * @param supportC - concept that is/will become an iceberg concept
 * @param newC
 */
 private void icebergLink(Concept supportC, Concept newC) {
 if (supportC.adjusted != null) {

281

 addLink(supportC.adjusted, newC);
 } else if (supportC.support == supportC.noIntersectOids) {
 addLink(supportC, newC);
 } else {
 Concept icebergConcept = icebergInsert(supportC);
 adjust(supportC, icebergConcept);
 addLink(icebergConcept, newC);
 }
 }

 /**
 * Construct an iceberg concept from another concept
 *
 * @param fromC - concept from which an iceberg is extracted
 */
 private Concept icebergInsert(Concept fromC) {
 int isize = fromC.intersectOids.size();

 Concept icebergConcept = new Concept(-1, isize, isize, 0);

 if (fromC.support < minSupport) {
 for (Concept child : fromC.children) { // split an iceberg concept
 addLink(icebergConcept, child);
 }
 fromC.subtractSupport(isize);
 } else {
 addLink(icebergConcept, fromC); // extracting from a non iceberg concept
 }
 return icebergConcept;
 }

 /**
 * Perform a lattice intersection
 *
 * @param oids - object ids for the intersection
 * @return a list of concepts that are referenced by the object ids
 */
 public Concept[] intersectLattice(int[] oids) {
 Concept.clearTemporalFields();
 int buffInx = 0;
 for (int i = 0; i < oids.length; i++) {
 int oid = oids[i];
 Concept concept = getConcept(oid);
 if (concept == null) {
 if (bottom.noIntersectOids == 0) {
 intersectBuff[buffInx++] = bottom;
 }
 bottom.addIntersectOid(oid);
 } else {
 if (concept.noIntersectOids == 0) {
 intersectBuff[buffInx++] = concept;
 }
 concept.addIntersectOid(oid);
 }
 }

282

 Concept[] supportConcepts = new Concept[buffInx];
 System.arraycopy(intersectBuff, 0, supportConcepts, 0, buffInx);
 Arrays.sort(supportConcepts);

 getSupportsForDependents();

 return supportConcepts;
 }

 /**
 * Pull-down the support concept list for concepts that have an intersection with a new item
 */
 private void getSupportsForDependents() {
 for (Concept dependent : allDependents) {
 ConceptArray supports = supportCsMap.get(dependent);
 int buffInx = 0;
 int intersectSize = 0;

 for (Concept supportC : supports) {
 if (supportC.noIntersectOids > 0) {
 intersectBuff[buffInx++] = supportC;
 intersectSize += supportC.noIntersectOids;
 }
 }

 Concept[] intersectSupportConcepts = new Concept[buffInx];
 System.arraycopy(intersectBuff, 0, intersectSupportConcepts, 0, buffInx);
 Arrays.sort(intersectSupportConcepts);
 dependent.setIntersectSupportConcepts(intersectSupportConcepts);
 dependent.setInsersectSize(intersectSize);
 }
 }

 /**
 * Adjust the temporal field to account for a new concept
 *
 * @param fromC
 * @param newC
 */
 public void adjust(Concept fromC, Concept newC) {
 fromC.setAdjusted(newC);

 setOid2Concept(fromC.intersectOids, newC);

 if (fromC.intersectSupportConcepts != null) {
 Concept[] newIntersectionSupportConcepts =
 new Concept[fromC.intersectSupportConcepts.length];
 System.arraycopy(fromC.intersectSupportConcepts, 0,
 newIntersectionSupportConcepts, 0, fromC.intersectSupportConcepts.length);
 newC.setIntersectSupportConcepts(newIntersectionSupportConcepts);
 newC.setIntersectSize(fromC.getIntersectSize());
 }

 if (fromC.intersectOids == null) {
 return;
 }

283

 fromC.subtractNoOids(fromC.noIntersectOids);

 if (hasDependentCs(fromC)) {
 for (Concept dependent : getDependentCs(fromC)) {
 addSupportC(dependent, newC);
 addDependentC(newC, dependent);
 if (fromC.noOids == 0) {
 removeSupportC(dependent, fromC);
 }
 }
 if (fromC.noOids == 0) {
 removeDependentCs(fromC);
 }
 }

 newC.setIntersectOids(fromC.intersectOids.cloneArray());
 newC.setNoIntersectOids(fromC.noIntersectOids);
 IntArray bottomIntersect = fromC.intersectOids;
 bottomIntersect.clear();
 }

 /**
 * Get a concept using the object id to concept map
 *
 * @param oid the object id
 * @return concept holding the object id
 */
 public Concept getConcept(int oid) {
 if (oid < oid2Concept.size()) {
 return oid2Concept.get(oid);
 } else {
 return null;
 }
 }

 /**
 * Update entries in the object id to concept map
 *
 * @param oids - list of object ids held by a new concept
 * @param newC - new concept holding the ids
 */
 public void setOid2Concept(IntArray oids, Concept newC) {
 if (oids != null) {
 for (IntIterator iter = oids.iterator(); iter.hasNext();) {
 int oid = iter.next();
 while (oid >= oid2Concept.size()) {
 oid2Concept.add(null);
 }
 oid2Concept.set(oid, newC);
 }
 }
 }

 /**
 * Purge tuples in the ToProcesList that have concept support sets that are subsets of other concept

284

 * support sets of other tuples
 *
 * @param toProcessList
 */
 private void purgeSubsets(List<IntersectInfo> toProcessList) {
 for (int i = 0; i < toProcessList.size() - 1; i++) {
 IntersectInfo interInfo1 = toProcessList.get(i);
 if (interInfo1.type != SetCmp.UNKNOWN) {
 for (int j = i + 1; j < toProcessList.size(); j++) {
 IntersectInfo interInfo2 = toProcessList.get(j);
 if (interInfo2.type != SetCmp.UNKNOWN) {
 Concept[] oids1 = interInfo1.intersectSupportConcepts;
 Concept[] oids2 = interInfo2.intersectSupportConcepts;
 int inx1 = oids1.length - 1;;
 int inx2 = oids2.length - 1;;
 int i1 = oids1[inx1].id;
 int i2 = oids2[inx2].id;
 boolean subset = true;
 boolean superset = true;

 if (interInfo1.type == SetCmp.INTERSECT) {
 for (;;) {
 if (inx1 > inx2) {
 subset = false;
 break;
 }
 if (i1 == i2) {
 if (inx1 == 0) {
 break;
 }
 i1 = oids1[--inx1].id;
 i2 = oids2[--inx2].id;
 } else if (i1 > i2) {
 subset = false;
 break;
 } else {
 superset = false;
 if (inx2 == 0) {
 subset = false;
 break;
 }
 i2 = oids2[--inx2].id;
 }
 }
 if (subset) {
 interInfo1.type = SetCmp.UNKNOWN;

 }
 } else {
 subset = false;
 }

 if (interInfo2.type == SetCmp.INTERSECT && superset && !subset) {
 for (;;) {
 if (inx1 < inx2) {
 superset = false;

285

 break;
 }
 if (i1 == i2) {
 if (inx2 == 0) {
 break;
 }
 i1 = oids1[--inx1].id;
 i2 = oids2[--inx2].id;
 } else if (i1 < i2) {
 superset = false;
 break;
 } else {
 if (inx1 == 0) {
 superset = false;
 break;
 }
 i1 = oids1[--inx1].id;
 }
 }
 if (superset) {
 interInfo2.type = SetCmp.UNKNOWN;

 }
 }
 }
 }
 }
 }
 }

 private void addLink(Concept parent, Concept child) {
 addLink(parent, child, -1);
 }

 private void addLink(Concept parent, Concept child, int inx) {
 parent.children.add(child);
 if (inx < 0) {
 child.parents.add(parent);
 } else {
 child.parents.add(inx, parent);
 }
 if (getSupportCs(parent) != null && parent.children.size() > 1) {
 for (Concept supportConcept : getSupportCs(parent)) {
 removeDependentC(supportConcept, parent);
 }
 removeSupports(parent);
 allDependents.removeSorted(parent);
 }
 }

 private void removeLink(Concept parent, Concept child) {
 parent.children.removeSorted(child);
 child.parents.remove(parent);
 }

 public boolean hasDependentCs(Concept concept) {

286

 return dependentCsMap.get(concept) != null;
 }

 public ConceptArray getDependentCs(Concept concept) {
 return dependentCsMap.get(concept);
 }

 public void addDependentC(Concept toConcept, Concept dependent) {
 ConceptArray dependentCs = dependentCsMap.get(toConcept);

 if (dependentCs == null) {
 dependentCs = new ConceptArray();
 dependentCsMap.put(toConcept, dependentCs);
 }

 dependentCs.add(dependent);
 }

 public boolean hasSupportCs(Concept concept) {
 return supportCsMap.get(concept) != null;
 }

 public void addSupportC(Concept toConcept, Concept concept) {
 ConceptArray supportCs = supportCsMap.get(toConcept);
 supportCs.add(concept);
 }

 public void removeSupportC(Concept fromConcept, Concept concept) {
 ConceptArray supports = supportCsMap.get(fromConcept);
 supports.removeSorted(concept);
 }

 public ConceptArray getSupportCs(Concept concept) {
 return supportCsMap.get(concept);
 }

 public void removeSupports(Concept fromConcept) {
 supportCsMap.remove(fromConcept);
 }

 public void removeDependentC(Concept fromConcept, Concept concept) {
 ConceptArray dependents = dependentCsMap.get(fromConcept);
 dependents.removeSorted(concept);
 }

 public void removeDependentCs(Concept fromConcept) {
 dependentCsMap.remove(fromConcept);
 }

 public int getNoConcepts() {
 return allConcepts.size();
 }
}

287

Appendix D

Implementation of the QuICL Oid-Trie Algorithm

import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.List;

/**
 * The QuICL Oid-Trie algorithm to construct a Concept Lattice. This is the Oid-Full algorithm
 * only using a trie data structure to represent object ids.
 *
 * A concept lattice consists of a bottom concept. Concepts are discovered and added as ancestors
 * using the method insert.
 *
 * @author David T. Smith
 */
public class OidTrieConceptLattice implements ConceptLattice {

 /**
 * A position in the Trie representing an object set. A TriePos references a TrieNode
 * and an offset within that node which is the last object in the object set.
 */
 private static class TriePos {
 TrieNode node;
 int offset;

 TriePos(TrieNode node, int offset) {
 this.node = node;
 this.offset = offset;
 }

 int getLength() {
 return node.length + offset + 1;
 }

 public int hashCode() {
 return node.hashCode() + offset;
 }

 public boolean equals(Object o) {
 TriePos r = (TriePos) o;
 return r.node == node && r.offset == offset;
 }
 }

 /**
 * A Trie child reference. A TrieChildRef is used a key to lookup a child trie node.
 */
 private static class TrieChildRef extends TriePos {
 int baseOid;

 TrieChildRef(TriePos pos, int baseOid) {

288

 super(pos.node, pos.offset);
 this.baseOid = baseOid;
 }

 public TrieChildRef(TrieNode node, int lastOffset, int baseOid) {
 super(node, lastOffset);
 this.baseOid = baseOid;
 }

 public int hashCode() {
 return node.hashCode() + (offset + 1) * (baseOid + 1);
 }

 public boolean equals(Object o) {
 TrieChildRef r = (TrieChildRef) o;
 return r.node == node && r.offset == offset && r.baseOid == baseOid;
 }
 }

 /**
 * A node within the Trie. Each node is linked to child nodes using a hashtable. A TrieChildRef
 * will serve as the key.
 */
 private static class TrieNode {
 int oids[];
 TriePos parent;
 int length;

 TrieNode(int oids[], int offset, TriePos child, int length) {
 this.oids = new int[oids.length - offset];
 System.arraycopy(oids, offset, this.oids, 0, oids.length - offset);
 this.parent = child;
 this.length = length;
 }

 TriePos insert(int[] oids, int offset) {
 TriePos r = insert(this, oids, offset);
 return r;
 }

 static TriePos insert(TrieNode node, int[] oids, int offset) {
 int nodeOffset = 0;
 int lastOffset = 0;
 while (nodeOffset < node.oids.length && offset < oids.length &&
 node.oids[nodeOffset] == oids[offset]) {
 lastOffset = nodeOffset;
 nodeOffset++;
 offset++;
 }

 if (offset == oids.length) {
 return new TriePos(node, lastOffset);
 }

 TrieChildRef key = new TrieChildRef(node, lastOffset, oids[offset]);

289

 TrieNode parent = trieChildren.get(key);

 if (parent != null) {
 return insert(parent, oids, offset);
 }

 parent = new TrieNode(oids, offset, new TriePos(node, lastOffset),
 node.length + nodeOffset);
 trieChildren.put(key, parent);
 TriePos pos = new TriePos(parent, oids.length - offset - 1);
 return pos;
 }
 }

 /**
 * A concept within the lattice. A concept contains a reference into a trie representing a list of object
 * ids, list of item ids, and a list of parents. The parents provide the edges between the concepts.
 */
 public static class Concept {
 int[] aids;
 TriePos oids;
 TriePos intersectOids;
 List<Concept> parents;

 public Concept(int aid, TriePos oids, int noParents) {
 addAttr(aid);
 this.oids = oids;
 this. intersectOids = oids;
 parents = new ArrayList<Concept>(noParents);
 }

 public void addAttr(int aid) {
 if (aid < 0) {
 return;
 }
 if (aids == null) {
 aids = new int[1];
 } else {
 int[] naids = new int[aids.length + 1];
 System.arraycopy(aids, 0, naids, 0, aids.length);
 aids = naids;
 }
 aids[aids.length - 1] = aid;
 }
 }

 /**
 * A class defining a tuple that is placed into the ToProcessList.
 */
 private static class IntersectInfo {
 SetCmp type;
 Concept concept;

 public IntersectInfo(SetCmp type, Concept concept) {
 this.type = type;
 this.concept = concept;

290

 }
 }

 private int minSupport = 0;
 private Concept bottom = new Concept(-1, null, 16);
 private TrieNode root = new TrieNode(new int[0], 0, null, 0);
 private enum SetCmp {UNKNOWN, EQ, SUBSET, SUPERSET, INTERSECT};
 private List<Concept> allConcepts = new ArrayList<Concept>();
 private int[] intersectBuff;
 private static HashMap<TrieChildRef, TrieNode> trieChildren =
 new HashMap<TrieChildRef, TrieNode>();
 private static HashMap<TriePos, Concept> trieConcepts = new HashMap<TriePos, Concept>();

 /**
 * Construct an empty concept lattice. The minimum support is specified.
 *
 * @param minSupport - the minimum support
 * @param buffSize -the size for an intersection buffer
 */
 public OidTrieConceptLattice(int minSupport, int buffSize) {
 this.minSupport = minSupport;
 this.intersectBuff = new int[buffSize];
 }

 /**
 * Insert a new item into the concept lattice.
 *
 * @param iid - item id to be added
 * @param oids - the list of object ids - passed as an int array
 */
 public void insert(int iid, int[] oids) {
 if (oids.length >= minSupport) {
 insert(bottom, iid, root.insert(oids, 0));
 for (Concept c : allConcepts) {
 c. intersectOids = null;
 }
 }
 }

 /**
 * The QuICL Oid-Trie incremental insert algorithm to insert a new item into the lattice
 *
 * @param baseC - concept above which a new concept is found or inserted
 * @param iid - item id to be added
 * @param oids - a trie position representing a set of object ids of objects holding the item
 * @return the found or created concept
 */
 private Concept insert(Concept bottom, int iid, TriePos oids) {
 Concept trieConcept = trieConcepts.get(oids);
 if (trieConcept != null) {
 trieConcept.addAttr(iid);
 return trieConcept;
 }

 // create the ToProcessList to hold tuples

291

 List<IntersectInfo> toProcessList = new ArrayList<IntersectInfo>();

 for (Concept parentC : bottom.parents) { // prepare-search phase
 if (parentC.intersectOids == null) {
 // Intersect and compare oids w/parentC.oids
 TrieNode trie1 = oids.node;
 TrieNode trie2 = parentC.oids.node;
 int inx1 = oids.offset;
 int inx2 = parentC.oids.offset;
 int[] oids1 = trie1.oids;
 int[] oids2 = trie2.oids;
 int i1 = oids1[inx1];
 int i2 = oids2[inx2];
 int ipos = intersectBuff.length;

 if (trie1 != trie2) {
 for (;;) {
 if (i1 == i2) {
 intersectBuff[--ipos] = i1;
 if (inx1 == 0) {
 inx1 = trie1.parent.offset;
 trie1 = trie1.parent.node;
 if (trie1 == root) {
 if (inx2 > 0 || trie2.parent.node != root) {
 }
 break;
 }
 oids1 = trie1.oids;
 i1 = oids1[inx1];
 if (inx2 > 0 && trie1 == trie2) {
 i2 = oids2[--inx2];
 break;
 }
 } else {
 i1 = oids1[--inx1];
 }
 if (inx2 == 0) {
 inx2 = trie2.parent.offset;
 trie2 = trie2.parent.node;
 if (trie2 == root) {
 break;
 }
 oids2 = trie2.oids;
 i2 = oids2[inx2];
 if (trie1 == trie2) {
 break;
 }
 } else {
 i2 = oids2[--inx2];
 }
 } else if (i1 > i2) {
 if (inx1 == 0) {
 inx1 = trie1.parent.offset;
 trie1 = trie1.parent.node;
 if (trie1 == root) {
 break;

292

 }
 oids1 = trie1.oids;
 i1 = oids1[inx1];
 if (trie1 == trie2) {
 break;
 }
 } else {
 i1 = oids1[--inx1];
 }
 } else {
 if (inx2 == 0) {
 inx2 = trie2.parent.offset;
 trie2 = trie2.parent.node;
 if (trie2 == root) {
 break;
 }
 oids2 = trie2.oids;
 i2 = oids2[inx2];
 if (trie1 == trie2) {
 break;
 }
 } else {
 i2 = oids2[--inx2];
 }
 }
 }
 }

 int isize;

 if (trie1 == trie2) {
 if (inx1 < inx2) {
 inx2 = inx1;
 } else if (inx1 > inx2) {
 inx1 = inx2;
 }
 isize= trie1.length + inx1 + 1 + (intersectBuff.length - ipos);
 }else {
 isize = intersectBuff.length - ipos;
 }

 // cache the result in the parent concept
 if (isize == oids.getLength()) {
 parentC.intersectOids = oids;
 } else if (isize == parentC.oids.getLength()) {
 parentC.intersectOids = parentC.oids;
 } else {
 if (isize < minSupport) {
 parentC.intersectOids = rootPos;
 } else {
 if (trie1 == trie2) {
 while (inx1 >= 0) {
 intersectBuff[--ipos] = trie1.oids[inx1--];
 }
 parentC.intersectOids = trie1.insert(intersectBuff, ipos);
 } else {

293

 parentC.intersectOids = root.insert(intersectBuff, ipos);

 }
 }
 }
 }

 if (parentC.intersectOids.getLength() < minSupport) {
 continue;
 }

 // process the outcome of the intersection
 if (parentC.intersectOids.getLength() == oids.getLength()) {
 if (parentC.oids.getLength() != parentC.intersectOids.getLength()) { // Subset
 return insert(parentC, iid, oids);
 }
 } else {
 if (parentC.oids.getLength() <= parentC.intersectOids.getLength()) { // Superset
 toProcessList.add(new IntersectInfo(SetCmp.SUPERSET, parentC));
 } else { // Intersect
 toProcessList.add(new IntersectInfo(SetCmp.INTERSECT, parentC));
 }
 }
 }
 }

 /**
 * Comparator used to sort concepts in descending order of support
 */
 private static Comparator conceptComparator = new Comparator() {
 public int compare(Object o1, Object o2) {
 return ((Concept) o2).oids.getLength() - ((Concept) o1).oids.getLength();
 }
 };

 /**
 * Purge tuples in the ToProcesList that have intersection sets that are subsets of other intersection
 * sets of other tuples
 *
 * @param toProcessList
 */
 private void purgeSubsets(List<IntersectInfo> toProcessList) {
 for (int i = 0; i < toProcessList.size() - 1; i++) {
 IntersectInfo interInfo1 = toProcessList.get(i);
 if (interInfo1.type != SetCmp.UNKNOWN) {
 for (int j = i + 1; j < toProcessList.size(); j++) {
 IntersectInfo interInfo2 = toProcessList.get(j);
 if (interInfo2.type != SetCmp.UNKNOWN) {
 TrieNode trie1 = interInfo1.concept.intersectOids.node;
 TrieNode trie2 = interInfo2.concept.intersectOids.node;
 int inx1 = interInfo1.concept.intersectOids.offset;
 int inx2 = interInfo2.concept.intersectOids.offset;
 int[] oids1 = trie1.oids;
 int[] oids2 = trie2.oids;
 int i1 = oids1[inx1];
 int i2 = oids2[inx2];

294

 boolean subset = true;
 boolean superset = true;

 if (interInfo1.type == SetCmp.INTERSECT) {
 if (trie1 != trie2) {
 for (;;) {
 if (trie1.length + inx1 > trie2.length + inx2) {
 subset = false;
 break;
 }
 if (i1 == i2) {
 if (inx1 == 0) {
 if (trie1.parent.node == root) {
 break;
 }
 inx1 = trie1.parent.offset;
 trie1 = trie1.parent.node;
 oids1 = trie1.oids;
 i1 = oids1[inx1];

 if (inx2 > 0 && trie1 == trie2) {
 i2 = oids2[--inx2];
 break;
 }
 } else {
 i1 = oids1[--inx1];;
 }
 if (inx2 == 0) {
 inx2 = trie2.parent.offset;
 trie2 = trie2.parent.node;
 oids2 = trie2.oids;

 i2 = oids2[inx2];
 if (trie1 == trie2) {
 break;
 }
 } else {
 i2 = oids2[--inx2];
 }
 } else if (i1 > i2) {
 subset = false;
 break;
 } else {
 superset = false;
 if (inx2 == 0) {
 if (trie2.parent.node == root) {
 subset = false;
 break;
 }

 inx2 = trie2.parent.offset;
 trie2 = trie2.parent.node;
 oids2 = trie2.oids;
 i2 = oids2[inx2];

295

 if (trie1 == trie2) {
 break;
 }
 } else {
 i2 = oids2[--inx2];
 }
 }
 }
 }
 if (trie1 == trie2 && inx1 > inx2) {
 subset = false;
 }

 if (subset) {
 interInfo1.type = SetCmp.UNKNOWN;

 }
 } else {
 subset = false;
 }

 if (interInfo2.type == SetCmp.INTERSECT && superset && !subset) {
 if (trie1 != trie2) {
 for (;;) {
 if (trie1.length + inx1 < trie2.length + inx2) {
 superset = false;
 break;
 }
 if (i1 == i2) {
 if (inx2 == 0) {
 if (trie2.parent.node == root) {
 break;
 }
 inx2 = trie2.parent.offset;
 trie2 = trie2.parent.node;
 oids2 = trie2.oids;

 i2 = oids2[inx2];

 if (inx1 > 0 && trie1 == trie2) {
 i1 = oids1[--inx1];
 break;
 }
 } else {
 i2 = oids2[--inx2];
 }
 if (inx1 == 0) {
 inx1 = trie1.parent.offset;
 trie1 = trie1.parent.node;
 oids1 = trie1.oids;
 i1 = oids1[inx1];
 if (trie1 == trie2) {
 break;
 }

 } else {

296

 i1 = oids1[--inx1];
 }

 } else if (i1 < i2) {
 superset = false;
 break;
 } else {
 if (inx1 == 0) {
 if (trie1.parent.node == root) {
 superset = false;
 break;
 }

 inx1 = trie1.parent.offset;
 trie1 = trie1.parent.node;
 oids1 = trie1.oids;
 i1 = oids1[inx1];

 if (trie1 == trie2) {
 break;
 }
 } else {
 i1 = oids1[--inx1];
 }
 }
 }
 }
 if (trie1 == trie2 && inx1 < inx2) {
 superset = false;
 }
 if (superset) {
 interInfo2.type = SetCmp.UNKNOWN;

 }
 }
 }
 }
 }
 }
 }

 public int getNoConcepts() {
 return allConcepts.size();
 }
}

297

Appendix E

Implementation of Supporting Functions

import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.PrintStream;
import java.io.RandomAccessFile;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;

/**
 * A test harness to run the QuICL algorithms and the iceberg modified GMA algorithm.
 * This harness includes function to transpose a data set from horizontal to vertical representation.
 *
 * Synopsis:
 *
 * java BuildLattice [options]
 *
 * where options are:
 *
 * -i [inputFile] - the input file
 * -f [format] - the file format:
 * ibm - horizontal text base series of numbers, tid oid no_ids [iid ...] per row
 * txt - horizontal text base series of numbers [iid ...] per row
 * vert - vertical binary series of numbers produced by this harnes
 * (default ibm)
 * -a [algorithm] - the selected agorithm:
 * oidfull - QuICL Oid-Full
 * oidless - QuICL Oid-Less
 * oidtrie - QuICL Oid-Trie
 * gma - GMA
* transpose – only create transpose file from horizontal input
 * (default oidfull)
 * -g [support] - the relative support, a real number between 1 and 0 (default 0).
* -G [support] - the absolute support.
 * -r [transposeFile] - a intermediate file in vertical format produced by this harness
 * -s [sortOrder] - items sorted by support (ignored if format is vert)
 * asc - ascending support order
 * desc -descending support order
 * (default unsorted)
 * -n [no rows] – Process only the first n objects in the data set (default all objects).
 * -m [no columns] – Process only the first m items in data set (default all items).
 *
 * @author David T. Smith
 */
public class BuildLattice {
 // internal interface used to hide disk vs. memory based input
 public interface RandomAccess {
 void seek(long offset) throws IOException;
 void writeInt(int i) throws IOException;
 int readInt() throws IOException;

298

 void setLength(long l) throws IOException;
 String readLine() throws IOException;
 long length() throws IOException;
 long getFilePointer() throws IOException;
 }

 // disk based implementation of RandomAccess
 private static class RandomAccessFileI extends RandomAccessFile implements RandomAccess {
 public RandomAccessFileI(String fileName, String mode) throws FileNotFoundException {
 super(fileName, mode);
 }
 }

 // memory based implementation of RandomAccess
 private static class RandomAccessByteI implements RandomAccess {
 byte[] buffer = new byte[0];
 int pos = 0;

 public void seek(long offset) throws IOException {
 pos = (int) offset;
 }

 public void writeInt(int i) throws IOException {
 for (int k = 3; k >= 0; k--) {
 write((i >> (8 * k)) & 0xFF);
 }
 }

 public int readInt() throws IOException {
 return ((read() << 24) | (read() << 16) | (read() << 8) | read());
 }

 public int read() throws IOException {
 if (pos < buffer.length) {
 return buffer[pos++] & 0XFF;
 } else if (pos == buffer.length){
 pos++;
 return -1;
 } else {
 throw new IOException("Read past EOF");
 }
 }

 public void write(int i) {
 buffer[pos++] = (byte) i;
 }

 public void setLength(long l) throws IOException {
 byte[] newBuffer = new byte[(int) l];
 System.arraycopy(buffer, 0, newBuffer, 0, Math.min((int) l,
 buffer.length));
 buffer = newBuffer;
 }

 public String readLine() throws IOException {
 StringBuffer input = new StringBuffer();

299

 int c;

 loop: for(;;) {
 switch (c = read()) {
 case -1:
 case '\n':
 break loop;
 case '\r':
 long cur = pos;
 if ((read()) != '\n') {
 seek(cur);
 }
 break loop;
 default:
 input.append((char) c);
 break;
 }
 }

 if ((c == -1) && (input.length() == 0)) {
 return null;
 }

 return input.toString();
 }

 public long length() throws IOException {
 return buffer.length;
 }

 public long getFilePointer() throws IOException {
 return pos;
 }
 }

 /**
 * Internal class to transpose a horizontal file to vertical format
 */
 private static class TransposeDB {
 private static final int bufferSize = 1024;

 private static class OidWriter {
 RandomAccess out;
 int aid;
 int offset;
 int support;
 int[] oidBuffer = new int[bufferSize];
 int size = 0;

 public OidWriter(int aid, RandomAccess out) {
 this.aid = aid;
 this.out = out;
 }

 public void incrSupport() {
 support++;

300

 }

 public int getSize() {
 return (2 + support) * (Integer.SIZE / Byte.SIZE);
 }

 public int setOffset(int offset) throws IOException {
 this.offset = offset;
 out.seek(offset);
 out.writeInt(aid);
 this.offset += Integer.SIZE / Byte.SIZE;
 out.writeInt(support);
 this.offset += Integer.SIZE / Byte.SIZE;
 return this.offset + (support * (Integer.SIZE / Byte.SIZE));
 }

 public void appendOid(int oid) throws IOException {
 if (size == bufferSize) {
 flush();
 }
 oidBuffer[size++] = oid;
 }

 public void flush() throws IOException {
 if (size > 0) {
 out.seek(offset);
 for (int i = 0; i < size; i++) {
 out.writeInt(oidBuffer[i]);
 }
 offset += size * (Integer.SIZE / Byte.SIZE);
 size = 0;
 }
 }
 }

 ArrayList<OidWriter> oidWriters = new ArrayList<OidWriter>();
 ArrayList<Integer> oidWritersIndex = new ArrayList<Integer>();
 private boolean sortAsc;
 private boolean sortDesc;
 private int prefix;
 private int oidInx;
 private int nCols;
 private int nRows;
 private boolean hasTid;
 private boolean hasOid;
 private boolean hasCount;
 private int countInx;

 public TransposeDB(boolean hasTid, boolean hasOid, boolean hasCount, boolean sortAsc,
 boolean sortDesc, int nCols, int nRows) throws IOException {
 this.hasTid = hasTid;
 this.hasOid = hasOid;
 this.hasCount = hasCount;
 this.sortAsc = sortAsc;
 this.sortDesc = sortDesc;
 this.nCols = nCols;

301

 this.nRows = nRows;
 prefix = 0;
 countInx = -1;
 oidInx = -1;

 if (hasTid) {
 prefix++;
 }
 if (hasOid) {
 oidInx = prefix;
 prefix++;
 }
 if (hasCount) {
 countInx = prefix;
 prefix++;
 }
 }

 public void rotate(RandomAccess in, RandomAccess out) throws IOException {
 out.setLength(0);
 prepVertical(in, out);
 in.seek(0);
 writeVertical(in);
 }

 private void prepVertical(RandomAccess in, RandomAccess out) throws IOException {
 String line;
 int noid = 0;
 int nRows = 0;
 while ((line = in.readLine()) != null) {
 if (this.nRows >= 0 && nRows >= this.nRows) {
 break;
 }
 nRows++;
 line = line.replaceAll("[]+"," ");
 String[] parts = line.split("[,]");
 if (oidInx < 0) {
 noid++;
 } else {
 int oid = Integer.parseInt(parts[oidInx]);
 if (oid > noid) {
 noid = oid;
 }
 }
 for (int i = prefix; i < parts.length; i++) {
 if (nCols > 0 && i - prefix >= nCols) {
 break;
 }
 String part = parts[i];
 int aid = Integer.parseInt(part);
 while (oidWriters.size() <= aid) {
 oidWriters.add(null);
 }

 OidWriter oidWriter = oidWriters.get(aid);
 if (oidWriter == null) {

302

 oidWriter = new OidWriter(aid, out);
 oidWriters.set(aid, oidWriter);
 }

 oidWriter.incrSupport();
 }
 }

 for (int i = 0; i < oidWriters.size(); i++) {
 oidWritersIndex.add(i);
 }

 if (sortAsc) {
 Collections.sort(oidWritersIndex, new Comparator() {
 public int compare(Object o1, Object o2) {
 int inx1 = (Integer) o1;
 int inx2 = (Integer) o2;
 OidWriter oidWriter1 = oidWriters.get(inx1);
 OidWriter oidWriter2 = oidWriters.get(inx2);
 if (oidWriter2 == null) {
 return 1;
 }
 if (oidWriter1 == null) {
 return -1;
 }
 return oidWriter1.support - oidWriter2.support;
 }
 });
 }

 if (sortDesc) {
 Collections.sort(oidWritersIndex, new Comparator() {
 public int compare(Object o1, Object o2) {
 int inx1 = (Integer) o1;
 int inx2 = (Integer) o2;
 OidWriter oidWriter1 = oidWriters.get(inx1);
 OidWriter oidWriter2 = oidWriters.get(inx2);
 if (oidWriter1 == null) {
 return 1;
 }
 if (oidWriter2 == null) {
 return -1;
 }
 return oidWriter2.support - oidWriter1.support;
 }
 });

 }

 long fileSize = 2 * (Integer.SIZE / Byte.SIZE);
 for (int oidWriterIndex : oidWritersIndex) {
 OidWriter oidWriter = oidWriters.get(oidWriterIndex);
 if (oidWriter != null) {
 fileSize += oidWriter.getSize();
 }
 }

303

 out.setLength(fileSize);

 int offset = 0;
 out.seek(offset);
 out.writeInt(noid);
 out.seek(offset);
 int i = out.readInt();
 offset += Integer.SIZE / Byte.SIZE;
 out.writeInt(oidWriters.size() - 1);
 offset += Integer.SIZE / Byte.SIZE;

 for (int oidWriterIndex : oidWritersIndex) {
 OidWriter oidWriter = oidWriters.get(oidWriterIndex);
 if (oidWriter != null) {
 offset = oidWriter.setOffset(offset);
 }
 }
 }

 private void writeVertical(RandomAccess in) throws IOException {
 String line;
 int oid = 0;
 int nRows = 0;
 while ((line = in.readLine()) != null) {
 if (this.nRows >= 0 && nRows >= this.nRows) {
 break;
 }
 nRows++;
 line = line.replaceAll("[]+"," ");
 String[] parts = line.split("[,]");
 if (oidInx < 0) {
 oid++;
 } else {
 oid = Integer.parseInt(parts[oidInx]);
 }
 for (int i = prefix; i < parts.length; i++) {
 if (nCols > 0 && i - prefix >= nCols) {
 break;
 }
 int aid = Integer.parseInt(parts[i]);
 OidWriter oidWriter = oidWriters.get(aid);
 if (oidWriter == null) {
 System.out.println("error");
 }
 oidWriter.appendOid(oid);
 }
 }

 for (OidWriter oidWriter : oidWriters) {
 if (oidWriter != null) {
 oidWriter.flush();
 }
 }
 }
 }

304

 public static void main(String[] args) throws IOException {
 ParmParser parmParser = new ParmParser(args, "i: a:r:s:n:m:f:g:G ");

 String inFileName = null;
 String rotateFileName = null;
 String sort = "none";
 String format = "vert";
 String algo = "oidfull";
 boolean sortDesc = false;
 boolean sortAsc = false;
 boolean hasOid = true;
 boolean hasTid = true;
 int nCols = -1;
 int nRows = -1;
 float relativeSupport = 0;
 int absSupport = 0;

 int c;
 while ((c = parmParser.getopt()) != -1) {
 switch (c) {
 case 'f':
 format = parmParser.getOptarg();
 if (format.equals("ibm")) {
 hasTid = true;
 hasOid = true;
 hasCount = true;
 }
 if (format.equals("txt")) {
 hasTid = false;
 hasOid = false;
 hasCount = false;
 }
 if (format.equals("vert")) {
 hasTid = false;
 hasOid = false;
 hasCount = false;
 }
 break;
 case 'i':
 inFileName = parmParser.getOptarg();
 break;
 case 'r':
 rotateFileName = parmParser.getOptarg();
 break;
 case 'a':
 algo = parmParser.getOptarg();
 break;
 case 's':
 sort = parmParser.getOptarg();
 if (sort.equals("asc")) {
 sortAsc = true;
 }
 if (sort.equals("desc")) {
 sortDesc = true;
 }

305

 break;
 case 'g':
 relativeSupport = Float.parseFloat(parmParser.getOptarg());
 break;
 case 'G':
 absSupport = Integer.parseInt(parmParser.getOptarg());
 break;
 case 'n':
 nCols = Integer.parseInt(parmParser.getOptarg());
 break;
 case 'm':
 nRows = Integer.parseInt(parmParser.getOptarg());
 break;
 }
 }

 RandomAccess in;
 RandomAccess rotate;

 in = new RandomAccessFileI(inFileName,"r");

 if (!format.equals("vert")) {
 if (rotateFileName == null) {
 rotate = new RandomAccessByteI();
 } else {
 rotate = new RandomAccessFileI(rotateFileName, "rw");
 }
 TransposeDB rotator = new TransposeDB(hasTid, hasOid, hasCount, sortAsc,
 sortDesc, nCols, nRows);
 rotator.rotate(in, rotate);
 in = rotate;
 in.seek(0);
 }

 long latTime = 0;;

 int noids = in.readInt();
 int naids = in.readInt();

 int minSupport = absSupport;

 if (minSupport == 0) {
 minSupport= (int) (noids * relativeSupport + .5);
 }

 if (minSupport == 0) {
 minSupport = 1;
 }

 ConceptLattice cl = null;

 if (algo.equals("gma ")) {
 cl = new GMAConceptLattice(minSupport, noids);
 } else if (algo.equals("oidfull")) {
 cl = new OidfullConceptLattice(minSupport, noids);
 } else if (algo.equals("oidless ")) {

306

 cl = new OidlessConceptLattice(minSupport, noids);
 } else if (algo.equals("oidtrie")) {
 cl = new OidTrieConceptLattice(minSupport, noids);
 } else if (algo.equals("transpose")) {
 System.exit(0);
 }

 Thread.currentThread().setPriority(Thread.MAX_PRIORITY);

 while (in.getFilePointer() < in.length()) {
 markTime = System.currentTimeMillis();

 int aid = in.readInt();
 int support = in.readInt();

 if (support < minSupport) {
 in.seek(in.getFilePointer() + (support * 4));
 continue;
 }

 int[] oids = new int[support];
 for (int i = 0; i < support; i++) {
 int oid = in.readInt();
 oids[i] = oid;
 }

 long markTime = System.currentTimeMillis();
 cl.insert(aid, oids);
 latTime+= System.currentTimeMillis() - markTime;
 }

 double time = (System.currentTimeMillis() - startBuildTime) / 1000.0;
 System.out.print(algo + "\t" + inFileName + "\t" + sort + "\t" + relativeSupport + "\t" +
 cl.getNoConcepts() + "\t" + (latTime/1000.0));
 }

}

307

Appendix F

Empirical Data in Support of Algorithm Validity
 Min

Supp

O
id

-F
ul

l

O
id

-T
rie

O
id

-L
es

s

C
H

A
R

M

C
H

A
R

M
-L

G
M

A

MA
GA

LIC
E

C
he

ss

95% 74 74 74 74 74 75 74
90% 503 503 503 503 503 504 499
85% 1,885 1,885 1,885 1,885 1,885 1,886 1,886
80% 5,083 5,083 5,083 5,083 5,083 5,084 5,084
75% 11,525 11,525 11,525 11,525 11,525 11,526 11,526
70% 23,991 23,991 23,991 23,991 23,991 23,992
65% 49,240 49,240 49,240 49,240 49,240 49,241
60% 98,392 98,392 98,392 98,392 98,392 98,393
55% 192,863 192,863 192,863 192,863 192,863 192,864
50% 369,450 369,450 369,450 369,450
45% 707,964 707,964 707,964
40% 1,366,833 1,366,833

M
us

hr
oo

m

50% 45 45 45 45 45 45 45
40% 140 140 140 140 140 140 140
30% 427 427 427 427 427 427 427
20% 1,197 1,197 1,197 1,197 1,197 1,197 1,197
10% 4,897 4,897 4,897 4,897 4,897 4,897 4,885
5% 12,854 12,854 12,854 12,854 12,854 12,854 12,843
1% 51,672 51,672 51,672 51,672 51,672 51,672 51,640
0% 238,709 238,709 238,709 238,709 238,709 238,709 238,709

P
um

sb

95% 110 110 110 110 110 111 111
90% 1,466 1,466 1,466 1,466 1,466 1,467
85% 8,513 8,513 8,513 8,513 8,513 8,514
80% 33,295 33,295 33,295
75% 101,047 101,047 101,047
70% 241,258 241,258 241,258
65% 496,069 496,069 496,069
60% 1,074,627 1,074,627

P
um

sb
*

50% 248 248 248 248 248 249 253
45% 713 713 713 713 713 714
40% 2,610 2,610 2,610 2,610 2,610 2,611
35% 6,133 6,133 6,133 6,133 6,133 6,134
30% 16,154 16,154 16,154 16,154 16,154 16,155
25% 42,756 42,756 42,756
20% 122,262 122,262

Table F.1: Algorithm validity as assessed by number of concepts. Highlighted values are
considered to be in error.

308

 Min
Supp

O
id

-F
ul

l

O
id

-T
rie

O
id

-L
es

s

C
H

A
R

M

C
H

A
R

M
-L

G
M

A

M
AG

AL
IC

E

T1
0I

4D
10

0k

2.000% 155 155 155 155 155 156 156
1.000% 385 385 385 385 385 386 386
0.500% 1,073 1,073 1,073 1,073 1,073 1,074 1,073
0.300% 4,509 4,509 4,509 4,509 4,509 4,510 4,509
0.100% 26,806 26,806 26,806 26,806 26,806 26,807 26,564
0.050% 46,993 46,993 46,993 46,993 46,993 46,994 46,253
0.030% 71,265 71,265 71,265 71,265 71,265 71,266 69,117
0.010% 283,397 283,397 282,397 283,397 283,397 283,398
0.005% 769,777 769,777 769,777 769,777 769,777 769,778
0.000% 2,347,374 2,347,374 2,347,374 2,347,374 2,347,374 2,347,375

T2
0I

10
D

10
k

5.00% 72 72 72 72 72 73 73
3.00% 389 389 389 389 389 390 390
1.00% 5,582 5,582 5,582 5,582 5,582 5,583 5,451
0.50% 23,394 23,394 23,394 23,394 23,394 23,395 22,538
0.30% 44,925 44,925 44,925 44,925 44,925 44,926 44,926
0.10% 209,436 209,436 209,436 209,436 209,436 209,437 176,749
0.05% 576,021 576,021 576,021 576,021 576,021 576,022
0.03% 1,438,054 1,438,054 1,438,054 1,438,054 1,438,054 1,438,055
0.00% 2,557,928 2,557,928 2,557,928 2,557,928 2,557,928 2,557,929

T2
0I

20
D

10
0k

3.00% 19 19 19 19 19 20 20
2.00% 143 143 143 143 143 144 144
1.00% 5,256 5,256 5,256 5,256 5,256 5,257 5,257
0.50% 27,067 27,067 27,067 27,067 27,067 27,068
0.30% 72,640 72,640 72,640 72,640 72,640 72,641
0.10% 150,970 150,970 150,970 150,970 150,970 150,971
0.05% 212,765 212,765 212,765 212,765 212,765 212,766
0.03% 461,138 461,138 461,138 461,138 461,138 461,139
0.01% 3,519,933 3,519,933 3,519,933 3,518,933 3,519,933

Table F.1 continued: Algorithm validity as assessed by number of concepts. Highlighted
values are considered to be in error.

309

 Min
Supp

O
id

-F
ul

l

O
id

-T
rie

O
id

-L
es

s

C
H

A
R

M

C
H

A
R

M
-L

G
M

A

M
AG

AL
IC

E

C
he

ss

95% 2.6400 2.6400 2.6400 2.6400 2.6400
90% 3.6329 3.6329 3.6329 3.6329 3.6329
85% 4.4019 4.4019 4.4019 4.4019 4.4019
80% 5.0313 5.0313 5.0313 5.0313 5.0313
75% 5.4893 5.4893 5.4893 5.4893 5.4893
70% 5.8376 5.8376 5.8376 5.8376 5.8376
65% 6.1719 6.1719 6.1719 6.1719 6.1719
60% 6.5147 6.5147 6.5147 6.5147 6.5147
55% 6.8544 6.8544 6.8544 6.8544 6.8544
50%
45%
40%

M
us

hr
oo

m

50% 1.9348 1.9348 1.9348 1.9348 1.9348
40% 2.3121 2.3121 2.3121 2.3121 2.3121
30% 2.9977 2.9977 2.9977 2.9977 2.9977
20% 3.3222 3.3222 3.3222 3.3222 3.3222
10% 3.8365 3.8365 3.8365 3.8365 3.8365
5% 4.1670 4.1670 4.1670 4.1670 4.1670
1% 4.7521 4.7521 4.7521 4.7521 4.7521
0% 5.7093 5.7093 5.7093 5.7093 5.7093

P
um

sb

95% 2.5135 2.5135 2.5135 2.5135 2.5135
90% 4.0130 4.0130 4.0130 4.0130 4.0130
85% 5.1671 5.1671 5.1671 5.1671 5.1671
80% 6.1234 6.1234
75% 7.0167 7.0167
70% 7.8129 7.8129
65% 8.3051 8.3051
60%

P
um

sb
*

50% 2.8233 2.8233 2.8233 2.8233 2.8233
45% 3.3768 3.3768 3.3768 3.3768 3.3768
40% 4.2237 4.2237 4.2237 4.2237 4.2237
35% 4.6920 4.6920 4.6920 4.6920 4.6920
30% 5.1352 5.1352 5.1352 5.1352 5.1352
25% 5.5662 5.5662
20% 5.9408

Table F.2: Algorithm validity as assessed by average degree.

310

 Min
Supp

O
id

-F
ul

l

O
id

-T
rie

O
id

-L
es

s

C
H

A
R

M

C
H

A
R

M
-L

G
M

A

M
AG

AL
IC

E

T1
0I

4D
10

0k

2.000% 0.9936 0.9936 0.9936 0.9936 0.9936
1.000% 1.0259 1.0259 1.0259 1.0259 1.0259
0.500% 1.6760 1.6760 1.6760 1.6760 1.6760
0.300% 2.5656 2.5656 2.5656 2.5656 2.5656
0.100% 3.2665 3.2665 3.2665 3.2665 3.2665
0.050% 3.0998 3.0998 3.0998 3.0998 3.0998
0.030% 2.8808 2.8808 2.8808 2.8808 2.8808
0.010% 2.8089 2.8089 2.8089 2.8089 2.8089
0.005% 2.9980 2.9980 2.9980 2.9980 2.9980
0.000% 4.2880 4.2880 4.2880 4.2880 4.2880

T2
5I

10
D

10
k

5.00% 0.9863 0.9863 0.9863 0.9863 0.9863
3.00% 0.9974 0.9974 0.9974 0.9974 0.9974
1.00% 3.5809 3.5809 3.5809 3.5809 3.5809
0.50% 3.6799 3.6799 3.6799 3.6799 3.6799
0.30% 3.5860 3.5860 3.5860 3.5860 3.5860
0.10% 2.6348 2.6348 2.6348 2.6348 2.6348
0.05% 2.7358 2.7358 2.7358 2.7358 2.7358
0.03% 3.0100 3.0100 3.0100 3.0100 3.0100
0.00% 4.2975 4.2975 4.2975 4.2975 4.2975

T2
5I

20
D

10
0k

3.00% 0.9500 0.9500 0.9500 0.9500 0.9500
2.00% 1.0903 1.0903 1.0903 1.0903 1.0903
1.00% 3.5273 3.5273 3.5273 3.5273 3.5273
0.50% 4.0862 4.0862 4.0862 4.0862 4.0862
0.30% 4.7434 4.7434 4.7434 4.7434 4.7434
0.10% 4.6427 4.6427 4.6427 4.6427 4.6427
0.05% 4.5055 4.5055 4.5055 4.5055 4.5055
0.03% 4.1401 4.1401 4.1401 4.1401 4.1401
0.01% 3.6720 3.6720 3.6720 3.6720

Table F.2 continued: Algorithm validity as assessed by average degree.

311

Appendix G

Effect of Item Sort Order on Lattice Growth

N
Ascending Insertion Descending Insertion

Item |Item O| |L| Item |Item O| |L|

1 50 1,975 1 58 3,195 1
2 19 1,980 2 52 3,185 3
3 68 1,984 3 29 3,181 7
4 70 2,007 4 40 3,170 15
5 15 2,026 5 60 3,149 31
6 11 2,129 6 36 3,099 63
7 38 2,196 7 7 3,076 127
8 27 2,205 8 62 3,060 191
9 54 2,216 9 34 3,040 383

10 21 2,225 10 56 3,021 767
11 72 2,345 11 66 3,021 1,151
12 74 2,407 13 48 3,013 2,303
13 17 2,500 15 5 2,971 4,607
14 31 2,526 18 9 2,874 8,063
15 46 2,556 21 25 2,860 16,071
16 44 2,612 26 3 2,839 21,319
17 64 2,631 32 42 2,714 36,203
18 42 2,714 46 64 2,631 47,537
19 3 2,839 69 44 2,612 61,462
20 25 2,860 99 46 2,556 72,178
21 9 2,874 140 31 2,526 80,468
22 5 2,971 219 17 2,500 87,314
23 48 3,013 349 74 2,407 92,913
24 56 3,021 568 72 2,345 93,407
25 66 3,021 925 21 2,225 94,768
26 34 3,040 1,600 54 2,216 96,010
27 62 3,060 2,737 27 2,205 96,972
28 7 3,076 4,626 38 2,196 97,867
29 36 3,099 8,182 11 2,129 98,176
30 60 3,149 12,484 15 2,026 98,264
31 40 3,170 22,000 70 2,007 98,316
32 29 3,181 35,377 68 1,984 98,383
33 52 3,185 69,518 19 1,980 98,383
34 58 3,195 98,392 50 1,975 98,392

Table G.1: Effect of sort order on lattice growth using Chess data set at 60%supp. Item
and |Item O| is the item id and size of the item’s extent of the Nth item. |L| is the size of
lattice after insertion of the 1 through Nth item of the given sort order.

312

N
Ascending Insertion Descending Insertion

Item |Item O| |L| Item |Item O| |L|

1 7032 15,223 1 7072 38,749 1
2 4526 15,463 2 161 36,856 3
3 7046 16,487 3 197 36,746 7
4 4799 16,666 4 4502 36,492 15
5 2354 16,736 5 84 36,475 23
6 7052 17,230 7 4499 36,386 47
7 7026 17,486 9 168 36,267 63
8 167 18,513 10 4933 35,782 112
9 0 18,629 11 4937 35,387 210

10 6857 19,226 12 4496 34,214 418
11 4953 19,349 13 277 34,042 605
12 5946 19,349 13 4493 32,200 851
13 6856 19,349 13 4503 29,661 927
14 4786 19,414 14 4798 29,632 959
15 70 19,930 15 4413 29,349 1,459
16 7036 21,490 20 2297 29,189 1,674
17 2299 21,636 21 7057 28,619 2,318
18 155 21,690 22 4807 27,370 2,331
19 4525 21,851 28 4833 27,370 2,331
20 4680 21,916 40 6867 26,769 3,674
21 4780 21,916 40 4527 26,481 3,682
22 4518 22,007 63 4627 26,481 3,709
23 6869 22,277 67 4727 26,481 3,709
24 6922 22,277 67 4785 26,481 3,709
25 66 22,339 68 2301 25,362 3,771
26 7022 22,502 74 2401 25,362 3,771
27 2300 23,684 76 15 24,822 3,908
28 7042 24,150 83 4946 24,445 6,338
29 111 24,206 84 14 24,224 6,353
30 252 24,206 84 163 24,224 6,353
31 14 24,224 85 111 24,206 6,372
32 163 24,224 85 252 24,206 6,372
33 4946 24,445 103 7042 24,150 6,398
34 15 24,822 104 2300 23,684 6,493
35 2301 25,362 106 7022 22,502 6,539

Table G.2: Effect of sort order on lattice growth using Pumsb* data set at 30%supp. Item
and |Item O| is the item id and size of the item’s extent of the Nth item. |L| is the size of
lattice after insertion of the 1 through Nth item of the given sort order.

313

N
Ascending Insertion Descending Insertion

Item |Item O| |L| Item |Item O| |L|

36 2401 25,362 106 66 22,339 6,721
37 4527 26,481 125 6869 22,277 6,776
38 4627 26,481 153 6922 22,277 6,776
39 4727 26,481 153 4518 22,007 7,100
40 4785 26,481 153 4680 21,916 8,761
41 6867 26,769 205 4780 21,916 8,761
42 4807 27,370 230 4525 21,851 11,130
43 4833 27,370 230 155 21,690 11,235
44 7057 28,619 273 2299 21,636 11,337
45 2297 29,189 282 7036 21,490 12,593
46 4413 29,349 314 70 19,930 12,613
47 4798 29,632 343 4786 19,414 13,671
48 4503 29,661 385 4953 19,349 13,685
49 4493 32,200 553 5946 19,349 13,685
50 277 34,042 740 6856 19,349 13,685
51 4496 34,214 881 6857 19,226 13,885
52 4937 35,387 1,106 0 18,629 13,908
53 4933 35,782 1,416 167 18,513 13,910
54 168 36,267 2,596 7026 17,486 14,900
55 4499 36,386 4,928 7052 17,230 14,940
56 84 36,475 6,396 2354 16,736 14,942
57 4502 36,492 12,245 4799 16,666 15,303
58 197 36,746 12,825 7046 16,487 16,104
59 161 36,856 14,395 4526 15,463 16,110
60 7072 38,749 16,154 7032 15,223 16,154

Table G.2 continued: Effect of sort order on lattice growth using Pumsb* data set at
30%supp. Item and |Item O| is the item id and size of the item’s extent of the Nth item. |L|
is the size of lattice after insertion of the 1 through Nth item of the given sort order.

314

Appendix H

Size of the QuICL, GMA, and CHARM-L Data Elements

Table H.1 provides the memory consumption of the data elements in the QuICL,

GMA and CHARM-L implementations. These are based upon examination of the

sources and applying the Java memory sizes given in Table H.2

Data structure element Memory in bytes
Object id 4
Item in QuICL lattice 4
Item in GMA and CHARM lattice

Item references are stored in an ArrayList. Therefore a factor of 1.5 is applied
to account for unused capacity

6

Parent child link in QuICL Oid-Full or Oid-Trie lattice
Parent child links are stored in an ArrayList. Therefore a factor of 1.5 is applied
to account for unused capacity. Only a single reference is used to traverse
from child to parent.

6

Parent child link in QuICL Oid-Less, GMA, or CHARM-L lattice
Parent child links are stored in an ArrayList. Therefore a factor of 1.5 is applied
to account for unused capacity. Furthermore, two references are used for each
to enable bi-directional traversal.

12

Concept in QuICL Oid-Full lattice
As determined by:

3 × Object reference + 1 × ArrayList overhead + 1 × Object overhead +
2 × array overhead.

124

Concept in QuICL Oid-Trie lattice (includes TrieNode overhead)
Assume ratio of TrieNode to Concept is near 1.0 :

5 × int + 9 × Object reference + 7 × Object overhead +
2 × array overhead + 1 × ArrayList overhead.

The seven objects are: a Concept, two TriePos, TrieNode, TrieChildRef, and
two HashMapEntry.

216

Concept in QuICL Oid-Less lattice
As determined by:

5 × int + 7 × Object reference + 1 × Object overhead +
2 × array overhead + 3 × ArrayList overhead.

320

Concept in GMA lattice
As determined by:

4 × Object reference + 1 × Object overhead + 1 × array overhead +
3 × ArrayList overhead.

276

Concept in CHARM-L lattice
As determined by:

2 × int + 1 × long + 3 × Object reference + 1 × Object overhead +
4 × ArrayList overhead.

One ArrayList is a List of ArrayLists. At least one ArrayList is assumed to be
present in the List.

356

Table H.1: Memory consumption of QuICL, GMA, and CHARM-L data elements.

315

Java primitive or data structure Memory in bytes
int 4
long 8
Object reference 4
array overhead 12
Object overhead 8
ArrayList overhead (or similar structure)

Value is based on assumption that a large number of ArrayLists will have a
maximum size over the course of execution that is less than the default initial
capacity.

80

Table H.2: Memory consumption of Java data elements.

316

Appendix I

Calculated Memory Consumption
 Min

Supp
Calculated Memory Consumption of QuICL Oid-Full in MBs (% of total)

Actual
Concepts Object Ids Items P-C Links Total

C
he

ss
 85% 0 (1%) 21 (99%) 0 (0%) 0 (0%) 22 30

75% 1 (1%) 119 (98%) 0 (0%) 0 (0%) 120 138

65% 6 (1%) 450 (98%) 0 (0%) 2 (0%) 458 492

55% 24 (2%) 1533 (98%) 0 (0%) 8 (1%) 1564 1656

M
us

hr
oo

m 50% 0 (1%) 1 (99%) 0 (0%) 0 (0%) 1 8

30% 0 (1%) 6 (99%) 0 (0%) 0 (0%) 6 13

10% 1 (2%) 28 (97%) 0 (0%) 0 (0%) 29 42

0% 30 (24%) 88 (70%) 0 (0%) 8 (7%) 126 153

P
um

sb
 95% 0 (0%) 21 (100%) 0 (0%) 0 (0%) 21 29

90% 0 (0%) 265 (100%) 0 (0%) 0 (0%) 265 287
80% 1 (0%) 1467 (100%) 0 (0%) 0 (0%) 1468 1557

P
im

sb
* 50% 0 (0%) 28 (100%) 0 (0%) 0 (0%) 28 38

40% 0 (0%) 229 (100%) 0 (0%) 0 (0%) 229 263

30% 2 (0%) 1114 (100%) 0 (0%) 0 (0%) 1116 1276

T1
0I

4D
10

0k

0.500% 0 (2%) 5 (97%) 0 (0%) 0 (0%) 6 13

0.100% 3 (11%) 27 (87%) 0 (0%) 1 (2%) 30 40

0.050% 6 (15%) 32 (83%) 0 (0%) 1 (2%) 39 48

0.010% 35 (40%) 48 (55%) 0 (0%) 5 (5%) 88 116

0.005% 95 (56%) 61 (36%) 0 (0%) 14 (8%) 170 230

0.000% 291 (68%) 77 (18%) 0 (0%) 60 (14%) 428 546

T2
5I

10
D

10
k 1.000% 1 (17%) 3 (80%) 0 (0%) 0 (3%) 4 11

0.500% 3 (26%) 8 (69%) 0 (0%) 1 (5%) 11 18

0.100% 26 (53%) 20 (40%) 0 (0%) 3 (7%) 49 74

0.050% 71 (65%) 28 (26%) 0 (0%) 9 (9%) 109 151

0.000% 317 (73%) 49 (11%) 0 (0%) 66 (15%) 432 583

T2
5I

20
D

10
0k

 1.000% 1 (2%) 27 (97%) 0 (0%) 0 (0%) 28 36

0.500% 3 (4%) 87 (96%) 0 (0%) 1 (1%) 91 105

0.100% 19 (8%) 216 (90%) 0 (0%) 4 (2%) 239 263

0.050% 26 (10%) 232 (88%) 0 (0%) 6 (2%) 264 287

0.010% 436 (49%) 458 (51%) 0 (0%) 0 (0%) 895 1094

Table I.1: Calculated memory consumption of QuICL Oid-Full lattice. Actual is the
memory usage reported by the “Mem Usage” field of the Windows Task Manager upon
termination of algorithm execution.

317

 Min
Supp

Calculated Memory Consumption of QuICL Oid-Trie in MBs (% of total)
Actual

Concepts Object Ids Items P-C Links Total
C

he
ss

 85% 0 (10%) 4 (89%) 0 (0%) 0 (1%) 4 11

75% 2 (11%) 20 (88%) 0 (0%) 0 (2%) 23 32

65% 11 (12%) 79 (86%) 0 (0%) 2 (2%) 92 108

55% 42 (13%) 278 (85%) 0 (0%) 8 (2%) 327 367

M
us

hr
oo

m 50% 0 (2%) 0 (98%) 0 (0%) 0 (0%) 0 7

30% 0 (4%) 2 (95%) 0 (0%) 0 (0%) 2 11

10% 1 (9%) 10 (89%) 0 (0%) 0 (1%) 11 19

0% 52 (53%) 38 (39%) 0 (0%) 8 (8%) 98 114

P
um

sb
 95% 0 (0%) 21 (100%) 0 (0%) 0 (0%) 21 29

90% 0 (0%) 264 (100%) 0 (0%) 0 (0%) 264 275
80% 2 (0%) 1461 (100%) 0 (0%) 0 (0%) 1463 1552

P
im

sb
* 50% 0 (0%) 27 (100%) 0 (0%) 0 (0%) 27 36

40% 1 (0%) 197 (100%) 0 (0%) 0 (0%) 197 222

30% 3 (0%) 941 (100%) 0 (0%) 0 (0%) 945 1024

T1
0I

4D
10

0k

0.500% 0 (4%) 5 (95%) 0 (0%) 0 (0%) 5 13

0.100% 6 (20%) 23 (78%) 0 (0%) 1 (2%) 29 40

0.050% 10 (27%) 27 (71%) 0 (0%) 1 (2%) 38 48

0.010% 61 (57%) 41 (38%) 0 (0%) 5 (4%) 107 129

0.005% 166 (73%) 49 (21%) 0 (0%) 14 (6%) 229 261

0.000% 507 (81%) 57 (9%) 0 (0%) 60 (10%) 624 820

T2
5I

10
D

10
k 1.000% 1 (31%) 3 (66%) 0 (0%) 0 (3%) 4 12

0.500% 5 (47%) 5 (48%) 0 (0%) 1 (5%) 11 19

0.100% 45 (72%) 14 (22%) 0 (0%) 3 (5%) 63 82

0.050% 124 (81%) 20 (13%) 0 (0%) 9 (6%) 154 181

0.000% 553 (85%) 28 (4%) 0 (0%) 66 (10%) 647 945

T2
5I

20
D

10
0k

 1.000% 1 (4%) 26 (95%) 0 (0%) 0 (0%) 27 37

0.500% 6 (7%) 82 (93%) 0 (0%) 1 (1%) 89 105

0.100% 33 (14%) 190 (84%) 0 (0%) 4 (2%) 227 256

0.050% 46 (18%) 201 (80%) 0 (0%) 6 (2%) 253 287

0.010% 760 (71%) 311 (29%) 0 (0%) 0 (0%) 1072 1349

Table I.2: Calculated memory consumption of QuICL Oid-Trie lattice. Actual is the
memory usage reported by the “Mem Usage” field of the Windows Task Manager upon
termination of algorithm execution.

318

 Min
Supp

Calculated Memory Consumption of QuICL Oid-Less in MBs (% of total)
Actual

Concepts Object Ids Items P-C Links Total
C

he
ss

 85% 1 (86%) 0 (0%) 0 (14%) 1 9

75% 4 (83%) 0 (0%) 1 (17%) 4 13

65% 16 (81%) 0 (0%) 4 (19%) 19 43

55% 62 (80%) 0 (0%) 16 (20%) 78 343

M
us

hr
oo

m 50% 0 (93%) 0 (0%) 0 (7%) 0 8

30% 0 (90%) 0 (0%) 0 (10%) 0 10

10% 2 (87%) 0 (0%) 0 (13%) 2 22

0% 76 (82%) 0 (0%) 16 (18%) 93 100

P
um

sb
 95% 0 (91%) 0 (0%) 0 (9%) 0 8

90% 0 (87%) 0 (0%) 0 (13%) 1 18
80% 3 (84%) 0 (0%) 1 (16%) 3 100

P
im

sb
* 50% 0 (90%) 0 (0%) 0 (10%) 0 11

40% 1 (86%) 0 (0%) 0 (14%) 1 47

30% 5 (84%) 0 (0%) 1 (16%) 6 234

T1
0I

4D
10

0k

0.500% 0 (94%) 0 (1%) 0 (6%) 0 57

0.100% 9 (89%) 0 (0%) 1 (11%) 10 77

0.050% 15 (90%) 0 (0%) 2 (10%) 17 93

0.010% 91 (90%) 0 (0%) 10 (10%) 100 205

0.005% 246 (90%) 0 (0%) 28 (10%) 274 345

0.000% 751 (86%) 0 (0%) 121 (14%) 872 896

T2
5I

10
D

10
k 1.000% 2 (88%) 0 (0%) 0 (12%) 2 21

0.500% 7 (88%) 0 (0%) 1 (12%) 9 25

0.100% 67 (91%) 0 (0%) 7 (9%) 74 116

0.050% 184 (91%) 0 (0%) 19 (9%) 203 235

0.000% 819 (86%) 0 (0%) 132 (14%) 950 1156

T2
5I

20
D

10
0k

 1.000% 2 (88%) 0 (0%) 0 (12%) 2 94

0.500% 9 (87%) 0 (0%) 1 (13%) 10 114

0.100% 48 (85%) 0 (0%) 8 (15%) 57 186

0.050% 68 (86%) 0 (0%) 12 (14%) 80 199

0.010% 1126 (100%) 0 (0%) 0 (0%) 1126 1306

Table I.3: Calculated memory consumption of QuICL Oid-Less lattice. Actual is the
memory usage reported by the “Mem Usage” field of the Windows Task Manager upon
termination of algorithm execution.

319

 Min
Supp

Calculated Memory Consumption of GMA in MBs (% of total)
Actual

Concepts Object Ids Items P-C Links Total
C

he
ss

 85% 1 (2%) 21 (97%) 0 (0%) 0 (0%) 22 33

75% 3 (3%) 119 (97%) 0 (0%) 1 (1%) 122 139

65% 14 (3%) 450 (96%) 0 (0%) 4 (1%) 468 500

55% 53 (3%) 1533 (96%) 0 (0%) 16 (1%) 1602 1656

M
us

hr
oo

m 50% 0 (1%) 1 (99%) 0 (0%) 0 (0%) 1 11

30% 0 (2%) 6 (98%) 0 (0%) 0 (0%) 6 16

10% 1 (5%) 28 (95%) 0 (0%) 0 (1%) 29 40

0% 66 (39%) 88 (52%) 0 (0%) 16 (10%) 170 194

P
um

sb
 95% 0 (0%) 21 (100%) 0 (0%) 0 (0%) 21 36

90% 0 (0%) 265 (100%) 0 (0%) 0 (0%) 265 298
80% 2 (0%) 1467 (100%) 0 (0%) 1 (0%) 1470 1582

P
im

sb
* 50% 0 (0%) 28 (100%) 0 (0%) 0 (0%) 28 42

40% 1 (0%) 229 (100%) 0 (0%) 0 (0%) 229 259

30% 4 (0%) 1114 (100%) 0 (0%) 1 (0%) 1119 1222

T1
0I

4D
10

0k

0.500% 0 (5%) 5 (94%) 0 (0%) 0 (0%) 6 19

0.100% 7 (21%) 27 (76%) 0 (0%) 1 (3%) 35 52

0.050% 13 (28%) 32 (69%) 0 (0%) 2 (4%) 47 64

0.010% 78 (57%) 48 (36%) 0 (0%) 10 (7%) 136 159

0.005% 212 (71%) 61 (20%) 0 (0%) 28 (9%) 301 352

0.000% 648 (77%) 77 (9%) 0 (0%) 121 (14%) 846 1048

T2
5I

10
D

10
k 1.000% 2 (31%) 3 (64%) 0 (0%) 0 (5%) 5 14

0.500% 6 (43%) 8 (50%) 0 (0%) 1 (7%) 15 24

0.100% 58 (69%) 20 (23%) 0 (0%) 7 (8%) 84 104

0.050% 159 (77%) 28 (14%) 0 (0%) 19 (9%) 206 235

0.000% 706 (80%) 49 (5%) 0 (0%) 132 (15%) 887 1156

T2
5I

20
D

10
0k

 1.000% 1 (5%) 27 (94%) 0 (0%) 0 (1%) 29 42

0.500% 7 (8%) 87 (91%) 0 (0%) 1 (1%) 96 113

0.100% 42 (16%) 216 (81%) 0 (0%) 8 (3%) 266 291

0.050% 59 (19%) 232 (77%) 0 (0%) 12 (4%) 303 327

0.010% 972 (68%) 458 (32%) 0 (0%) 0 (0%) 1430

Table I.4: Calculated memory consumption of GMA lattice. Actual is the memory usage
reported by the “Mem Usage” field of the Windows Task Manager upon termination of
algorithm execution.

320

 Min
Supp

Calculated Memory Consumption of CHARM-L in MBs (% of total)
Actual

Concepts Object Ids Items P-C Links Total
C

he
ss

 85% 1 (83%) 0 (4%) 0 (12%) 1 10

75% 4 (80%) 0 (5%) 1 (15%) 5 20

65% 18 (78%) 1 (6%) 4 (16%) 23 63

55% 69 (76%) 6 (7%) 16 (17%) 91 217

M
us

hr
oo

m 50% 0 (91%) 0 (3%) 0 (6%) 0 12

30% 0 (86%) 0 (5%) 0 (9%) 0 14

10% 2 (83%) 0 (6%) 0 (11%) 2 22

0% 85 (72%) 16 (14%) 16 (14%) 117 397

P
um

sb
 95% 0 (90%) 0 (3%) 0 (8%) 0 24

90% 1 (84%) 0 (4%) 0 (11%) 1 35
80% 3 (81%) 0 (5%) 1 (14%) 4 48

P
im

sb
* 50% 0 (88%) 0 (4%) 0 (8%) 0 32

40% 1 (83%) 0 (5%) 0 (12%) 1 51

30% 6 (80%) 0 (7%) 1 (14%) 7 84

T1
0I

4D
10

0k

0.500% 0 (93%) 0 (2%) 0 (5%) 0 42

0.100% 10 (87%) 0 (3%) 1 (10%) 11 76

0.050% 17 (88%) 1 (3%) 2 (9%) 19 96

0.010% 101 (89%) 3 (3%) 10 (8%) 114 284

0.005% 274 (88%) 10 (3%) 28 (9%) 312 637

0.000% 836 (84%) 37 (4%) 121 (12%) 994 1552

T2
5I

10
D

10
k 1.000% 2 (86%) 0 (4%) 0 (10%) 2 21

0.500% 8 (86%) 0 (4%) 1 (11%) 10 36

0.100% 75 (89%) 2 (3%) 7 (8%) 84 184

0.050% 205 (89%) 7 (3%) 19 (8%) 231 446

0.000% 911 (84%) 39 (4%) 132 (12%) 1082 1548

T2
5I

20
D

10
0k

 1.000% 2 (86%) 0 (3%) 0 (10%) 2 48

0.500% 10 (84%) 0 (4%) 1 (12%) 11 115

0.100% 54 (83%) 3 (4%) 8 (13%) 65 162

0.050% 76 (83%) 4 (4%) 12 (13%) 91 207

0.010% 1253 (100%) 0 (0%) 0 (0%) 1253

Table I.5: Calculated memory consumption of CHARM-L lattice. Actual is the memory
usage from the “Mem Usage” field of the Windows Task Manager upon termination of
algorithm execution.

321

Reference List

Agrawal, R., Imieliski, T., & Swami, A. (1993). Mining association rules between sets of
items in large databases, Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data. 207-216, Washington, D.C., United States:
ACM Press.

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules in large
databases, Proceedings of the 20th International Conference on Very Large
Databases, 487-499, Santiago, Chile.

Barbut, M., & Monjardet, B. (1970). Ordre et classification: Algebre et combinatoire.:
Hachette.

Bayardo, R. J. Jr. (1998). Efficiently mining long patterns from databases, Proceedings of
the 1998 ACM SIGMOD International Conference on Management of Data, 85-93,
Seattle, Washington, United States: ACM.

Bordat, J. P. (1992). Sur i'algorithmique combinatoire d'ordres finis. Université de
Montpellier.

Brin, S., Motwani, R., & Silverstein, C. (1998). Beyond market baskets: Generalizing
association rules to dependence rules, Data Mining and Knowledge Discovery, 2(1),
39-68.

Brin, S., Motwani, R., & Silverstein, C. (1997a). Beyond market baskets: Generalizing
association rules to correlations, Proceedings of the 1997 ACM SIGMOD
International Conference on Management of Data, 265-276, Tucson, Arizona, United
States: ACM.

Brin, S., Motwani, R., Ullman, J. D., & Tsur, S. (1997b). Dynamic itemset counting and
implication rules for market basket data, Proceedings of the 1997 ACM SIGMOD
International Conference on Management of Data, 255-264, Tucson, Arizona, United
States: ACM.

Burdick, D., Calimlim, M., & Gehrke J. (2001). Mafia: A maximal frequent itemset
algorithm for transactional databases, Proceedings of the 17th International
Conference on Data Engineering, 443-452: IEEE Computer Society.

Chein, M. (1969). Algorithme de recherche des sous-matrices premières d’une matrice.
Bull. Math. Soc. Sci. Math. R.S. Roumanie, 13, 21-25.

Choi, V. (2006). Faster algorithms for constructing a Galois/concept lattice, Proceedings
of SIAM Conference on Discrete Mathematics. Victoria, British Columbia, Canada.

Cooley, R., Mobasher, B., & Srivastava, J. (1997). Web mining: Information and pattern
discovery on the world wide web, Proceedings of the 9th International Conference on
Tools with Artificial Intelligence, 558-567: IEEE Computer Society.

322

DCI: A hybrid algorithm for frequent set counting - datasets. (2008). Retrieved 2008,
from http://miles.cnuce.cnr.it/~palmeri/datam/DCI/datasets.php

Dunkel, B., & Soparkar, N. (1999). Data organization and access for efficient data
mining, Proceedings of the 15th International Conference on Data Engineering, 522-
529: IEEE Computer Society.

Duquenne, V., & Guigues, J. L. (1986). Famille minimale d'implications informatives
re'sultant d'un tableau de donne'es binaires. Mathe'matiques et Sciences Humaines,
24(95), 8-18.

Frequent Itemset Mining Dataset Repository. (2008). Retrieved 2008, from
http://fimi.cs.helsinki.fi/data/

Ganter, B. (1984). Two basic algorithms in concept analysis. TU Darmstadt, Germany.

Ganter, B., Stumme, G., & Wille, R. (2005). Formal Concept Analysis: Foundations and
Applications: Springer-Verlag.

Ganter, B., & Wille, R. (1997). Formal Concept Analysis: Mathematical Foundations:
Springer-Verlag, New York, Inc.

Godin, R., Missaoui, R., & Alaoui, H. (1995). Incremental concept formation algorithms
based on galois (concept) lattices. Computational Intelligence, 11(2), 246-267.

Han, J., & Kamber, M. (2006). Data Mining Concepts and Techniques (2nd ed.): Morgan
Kaufmann.

Harms, S., Li, D., Deogun, J., & Tadesse, T. (2002). Efficient rule discovery in a geo-
spatial decision support system, Proceedings of the 2002 Annual National Conference
on Digital Government Research, 1-7. Los Angeles, California: Digital Government
Society of North America.

Huhtala, Y., Karkkainen, J., Porkka, P., & Toivonen, H. (1999). Tane: An efficient
algorithm for discovering functional and approximate dependencies. The Computer
Journal, 42(2), 100-111.

IBM synthetic data generator. (2001). from
http://www.almaden.ibm.com/software/quest/Resources/

Kamber, M., Han, J., & Chiang, J. Y. (1997). Metarule-guided mining of multi-
dimensional association rules using data cubes, Proceedings of the 3rd International
Conference on Knowledge Discovery and Data Mining, 207-210.

Knuth, D. E. (1998). The Art of Computer Programming, Vol. 3, Sorting and Searching
(2nd. ed.). Reading, MA: Addison-Wesley.

323

Kuznetsov, S. O. (1993). A fast algorithm for construction of all intersections of objects
from a finite semilattice. Automatic Documentation and Mathematical Linguistics,
27(5), 11-21.

Kuznetsov, S. O. (2001). On computing the size of a lattice and related decision
problems. Order, 18(4), 13-21.

Kuznetsov, S. O., & Obiedkov, S. A. (2002). Comparing performance of algorithms for
generating concept lattices. Journal of Experimental & Theoretical Artificial
Intelligence, 14(2/3), 189-216.

Lakha, l., & Stumme, G. (2005). Efficient mining of association rules based on formal
concept analysis. Lecture Notes in Computer Science, 3626, 180-195.

Lee, W., & Stolfo, S. J. (1998). Data mining approaches for intrusion detection,
Proceedings of the 7th conference on USENIX Security Symposium - Volume 7. San
Antonio, Texas: USENIX Association.

Lindig, C., & Datensystene, G. (2000). Fast concept analysis. Working with Conceptual
Structures – Contributions to ICCS 2000, 152-161: Shaker Verlag.

Lopes, S., Petit, J. M., & Lakhal, L. (2000). Efficient discovery of functional
dependencies and armstrong relations, Proceedings of the 7th International
Conference on Extending Database Technology: Advances in Database Technology,
350-364: Springer-Verlag.

Lucchese, C., Orlando, S., & Perego, R. (2004). DCI Closed: A fast and memory efficient
algorithm to mine frequent closed itemsets.

Lucchese, C., Orlando, S., & Perego, R. (2006). Fast and memory efficient mining of
frequent closed itemsets. IEEE Transactions on Knowledge and Data Enginering,
18(1), 21-36.

Luxenburger, M. (1991). Implications partielles dans un contexte. Mathe'matiques,
Informatique et Sciences Humaines, 29(113), 35-55.

Maddouri, M. (2005). A formal concept analysis approach to discover association rules
from data, Proceedings of the 6th International Conference on Concept Lattices and
Their Applications, 10-21. Olomouc, Czech Republic.

Mannila, H., Toivonen, H., & Verkamo, A. I. (1997). Discovery of frequent episodes in
event sequences. Data Mining Knowledge Discovery, 1(3), 259-289.

Norris, E. M. (1978). An algorithm for computing the maximal rectangles in a binary
relation. Rev. Roumaine Math. Pures Appl., 23(2), 243-250.

Nourine, L., & Raynaud, O. (1999). A fast algorithm for building lattices. Inf. Process.
Lett., 71(5-6), 199-204.

324

Nourine, L., & Raynaud, O. (2002). A fast incremental algorithm for building lattices.
Journal of Experimental & Theoretical Artificial Intelligence, 14(2&3), 217-227.

Ordonez, C., Santana, C. A., & Braal, L. (2000). Discovering interesting association rules
in medical data, Proceedings of the ACM SIGMOD Workshop on Research Issues on
Data Mining and Knowledge Discovery, 78-85.

Palmerini, P., Orlando, S., & Perego, R. (2004). Statistical properties of transactional
databases, Proceedings of the 2004 ACM Symposium on Applied Computing, 515-
519. Nicosia, Cyprus: ACM.

Park, J. S., Chen, M. S., & Yu, P. S. (1995). An effective hash-based algorithm for
mining association rules, Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data, 175-186. San Jose, California, United States:
ACM.

Pasquier, N. (2000). Mining association rules using formal concept analysis, Proceedings
of the 8th International Conference on Conceptual Structures, 259-264. Darmstadt,
Germany: Springer-Verlag.

Pasquier, N., Bastide, Y., Taouil, R., & Lakhal, L. (1999a). Efficient mining of
association rules using closed itemset lattices. Inf. Syst., 24(1), 25-46.

Pasquier, N., Bastide, Y., Taouil, R., & Lakhal, L. (1999b). Discovering frequent closed
itemsets for association rules, Proceedings of the 7th International Conference on
Database Theory, 398-416: Springer-Verlag.

Pei, J., Han, J., & Mao, R. (2000). Closet: An efficient algorithm for mining frequent
closed itemsets, Proceedings of the ACM SIGMOD Workshop on Research Issues in
Data Mining and Knowledge Discovery, 21-30.

Pemmaraju, S., & Skiena, S. (1990). Computational discrete mathematics:
Combinatorics and graph theory with mathematica. Reading, MA: Addison-Wesley.

Priss, U. (2006). A formal concept analysis bibliography. from
http://www.upriss.org.uk/fca/bibliography.html

Rouane, M. H., Nehm´e, K., Valtchev, P., & Godin, R. (2004). On-line maintenance of
iceberg concept lattices, Contributions to the 12th International Conference on
Conceptual Structures. Huntsville, AL: Shaker Verlag.

Shenoy, P., Haritsa, J. R., Sudarshan, S., Bhalotia, G., Bawa, M., & Shah, D. (2000).
Turbo-charging vertical mining of large databases. Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data, 22-33. Dallas, Tx:
ACM

325

Srikant, R., & Agrawal, R. (1996). Mining sequential patterns: Generalizations and
performance improvements, Proceedings of the 5th International Conference on
Extending Database Technology: Advances in Database Technology, 3-17: Springer-
Verlag.

Stumme, G. (2002). Efficient data mining based on formal concept analysis, Proceedings
of the 13th International Conference on Database and Expert Systems Applications,
534-546: Springer-Verlag.

Stumme, G., Bastide, Y., Pasquier, N., & Lakhal, L. (2000). Fast computation of concept
lattices using data mining techniques, Proceedings of 7th International Workshop on
Knowledge Representation Meets Databases, 129-139.

Stumme, G., Taouil, R., Bastide, Y., & Lakhal, L. (2001a). Conceptual clustering with
iceberg concept lattices, Proceedings of GI-Fachgruppentreffen Maschinelles
Lernen'01, Universität Dortmund, 763.

Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., & Lakhal, L. (2001b). Intelligent
structuring and reducing of association rules with formal concept analysis,
Proceedings of the Joint German/Austrian Conference on AI: Advances in Artificial
Intelligence, 335-350: Springer-Verlag.

Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., & Lakhal, L. (2002). Computing
iceberg concept lattices with titanic. Data Knowledge Engineering, 42(2), 189-222.

Uno, T., Kiyomi, M., & Arimura, H. (2004). LCM ver. 2: Effcient mining algorithms for
frequent/closed/maximal itemsets. Proceedings of the IEEE ICDM Workshop on
Frequent Itemset Mining Implementations, Brighton, UK.

Valiant, L. (1979). The Complexity of Computing the Permanent. Theoretical Computer
Science, 8, 189-201: Elsevier.

Valtchev, P., Godin, R., Missaoui, R., Huchard, M., Napoli, A., Grosser, D., et al. (2008).
Project Galicia. 2008, from http://www.iro.umontreal.ca/~galicia/

Valtchev, P., Grosser, D., Roume, C., & Hacene, M. R. (2003a). Galicia: An open
platform for lattices, In Using Conceptual Structures: Contributions to the 11th Intl.
Conference on Conceptual Structures, 241-254. Dresden, Germany.

Valtchev, P., Missaoui, R., & Godin, R. (2004). Formal concept analysis for knowledge
discovery and data mining: The new challenges. Lecture Notes in Computer Science,
2961, 352-371: Springer-Berlin/Heidelberg.

Valtchev, P., Missaoui, R., Godin, R., & Meridji, M. (2002a). Generating frequent
itemsets incrementally: Two novel approaches based on Galois lattice theory. Journal
of Experimental & Theoretical Artificial Intelligence, 14(2-3), 115–142.

326

Valtchev, P., Missaoui, R., & Lebrun, P. (2000). A fast algorithm for building the hasse
diagram of a Galois lattice, Proceedings of Colloque LaCIM 2000, 293-306.
Montréal.

Valtchev, P., Missaoui, R., & Lebrun, P. (2002b). A partition-based approach towards
constructing galois (concept) lattices. Discrete Mathematics, 256(3), 801-829.

Valtchev, P., Rouane, H., & Missaoui, R. (2003b). A generic scheme for the design of
efficient on-line algorithms for lattices. Lecture Notes in Computer Science, 2746,
282-295 : Springer-Berlin/Heidelberg.

Wang, J., Han, J., & Pei, J. (2003). Closet+: Searching for the best strategies for mining
frequent closed itemsets, Proceedings of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 236-245. Washington, D.C.:
ACM Press.

Wille, R. (1982). Restructuring lattice theory: An approach based on hierarchies of
concepts, Ordered Sets, 445-470. Dordrecht Boston.

Yahia, S. B., Hamrouni, T., & Nguifo, E. M. (2006). Frequent closed itemset based
algorithms: A thorough structural and analytical survey. ACM SIGKDD
Explorations, 8(1), 93-104.

Zaki, M. J. (2000). Generating non-redundant association rules, Proceedings of the 6th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
34-43. Boston, Massachusetts, United States: ACM.

Zaki, M. J. (2008). Mohammed J. Zaki. 2008, from http://www.cs.rpi.edu/~zaki/

Zaki, M. J., & Hsiao, C. (2002). Charm: An efficient algorithm for closed itemset mining,
Proceedings of SIAM International Conference on Data Mining, 457-473.

Zaki, M. J., & Hsiao, C. (2005). Efficient algorithms for mining closed itemsets and their
lattice structure. IEEE Transactions on Knowledge and Data Engineering, 17(4),
462-478.

	Nova Southeastern University
	NSUWorks
	2009

	A Formal Concept Analysis Approach to Association Rule Mining: The QuICL Algorithms
	David T. Smith
	Share Feedback About This Item
	NSUWorks Citation

	List of Tables
	List of Figures
	List of Algorithms
	Chapter 1
	Introduction
	1.1 Problem Statement and Goal
	Figure 1.1: Example concept lattice.
	Figure 1.2: Examples of an iceberg concept lattice. Top – iceberg concept lattice at 60% support. Bottom – iceberg concept lattice at 40%. These iceberg lattices were derived from the lattice of Figure 1.1 by discarding concepts not meeting the min...
	Figure 1.3: Iceberg lattice using an alternate notation. Each concept node is labeled with a percentage representing the support together with any items, if any, for which there does not exist a greater concept containing the item. Edges are labeled...

	1.2 Relevance and Significance
	1.3 Barriers and Issues
	1.4 Elements, Hypotheses, Theories, or Research Questions to be Investigated
	1.5 Limitations and Delimitations of the Study
	1.6 Definition of Terms
	1.7 Summary of Background and Problem Statement

	Review of Literature
	2.1 Introduction
	2.2 Classical Association Rule Mining – Mining of Frequent Item Sets
	2.3 CHARM Algorithm – An Example of Frequent Item Set Mining
	Figure 2.1: Itemset-oidset tree used by the CHARM algorithm. Example taken from (Zaki, & Hsiao, 2002).
	Algorithm 2.1: The CHARM algorithm7F . (Zaki, & Hsiao, 2002)

	2.4 Post Mining Lattice Construction – Valtchev, Missaoui, and Lebrun Algorithm
	Algorithm 2.2: The Valtchev, Missaoui, and Lebrun lattice construction algorithm. (Valtchev et al., 2000)

	2.5 Incremental Lattice Construction – Missaoui, Godin, and Alaoui Algorithm
	Figure 2.2: Progression of incremental object insertion into a concept lattice. Bold text indicates new concepts, inserted items or inserted objects, G a generator concept, m a modified concepts, and dashed lines are removed links.
	Algorithm 2.3: Godin, Missaoui, and Alaoui lattice construction algorithm. (Godin et al., 1995)

	2.6 Applying FCA to Association Rule Mining – GALICIA-T Algorithm
	Figure 2.3: Trie data structure used by the GALICIA-T algorithm. The trie data structure before and after inserting object O4 is depicted in the center. Edges identify an item. Filled circles correspond to concepts. Open circles are just nodes on ...

	2.7 Frequent Item Set Mining with Lattice Construction – CHARM-L Algorithm
	Algorithm 2.4: The CHARM-L algorithm8F . (Zaki, & Hsiao, 2005)
	Algorithm 2.5: The CHARM-L subsumption check algorithm9F .
	Algorithm 2.6: The MAGALICE algorithm12F . (Rouane et al., 2004)

	2.9 Other Lattice Construction Algorithms
	2.10 A Generic Approach to Incremental Lattice Construction
	Figure 2.4: Object insertions into a concept lattice depicting equivalence classes. The lattices correspond to the progression shown in Figure 2.2 for the last three object insertions. Bold italic text within an existing concept indicates the interse...
	Algorithm 2.7: Generic incremental lattice insertion algorithm. (Valtchev et al., 2003b)

	2.11 Summary of Literature

	Chapter 3
	Methodology
	3.1 Introduction
	Algorithm 3.1: The GMA algorithm modified to construct an iceberg lattice.

	3.2 Steps Toward an Efficient Incremental Algorithm
	Figure 3.1: Progression of incremental item insertion into a concept lattice. Bold text and weighted lines identify new elements. Dashed lines indicate removed elements.
	Algorithm 3.2: A recursive incremental lattice construction algorithm.

	3.3 Walk Through of the Algorithm Execution
	Figure 3.2: Sample walkthrough of Algorithm 3.2 execution.

	3.4 Proof of Algorithm Correctness
	Figure 3.3: Duplicate parent-child links.
	Figure 3.4: Invalid edge as a result of related INTERSECT tuples.
	Figure 3.5: Invalid edge resulting from related INTERSECT and SUPERSET tuples.

	3.5 Correcting the Flaw
	Figure 3.6: Invalid edge generated between new concepts.
	Algorithm 3.3: PURGE-SUBSETS algorithm.

	3.6 The Complete QuICL Oid-Full Algorithm
	Algorithm 3.4: The QuICL Oid-Full algorithm.

	3.7 An Implementation Enhancement
	Table 3.1: Determination of intersection outcome for Oid-Full enhancement. Cparent.Intersect is the cached intersection set, O is the object id set passed to INSERT, and Cparent.O is the extent of the parent concept.

	3.8 Asymptotic Complexity of the QuICL Oid-Full Algorithm
	Table 3.2: Sample data set and lattice characteristics27F .

	3.9 Discussion for an Alternate QuICL
	Figure 3.7: Progression of incremental insertion into a compressed lattice. Bold text and lines identify added new elements. Dashed lines are removed elements.

	3.10 An Incremental Insertion Algorithm Using a Compressed Lattice
	Algorithm 3.5: Incremental item insertion algorithm for a compressed lattice.
	Algorithm 3.6: Supporting algorithms to extract an object id set.

	3.11 A Strategy to Intersect a Concept Lattice
	Figure 3.8: Illustration of lattice intersection. Vector O2C provides lookup of the concept holding a given object id. The shaded triangles denote the ancestors of a given concept. Bolded text denotes the intersecting object ids. For a given conce...
	Table 3.3: Determination of intersection outcome.
	Algorithm 3.7: Incremental item insertion algorithm using lattice intersection.
	Algorithm 3.8: Algorithms of supporting functions for lattice intersection.

	3.12 A Push Instead of Pull Intersection
	3.13 A Hybrid Pull-Down and Bottom-up Intersection
	Algorithm 3.9: A push down algorithm for lattice intersection.
	Algorithm 3.10: Hybrid pull-down and bottom-up intersection algorithm.
	Figure 3.9: Lattice illustrating support and dependent concepts.
	Algorithm 3.11: Algorithm modifications to maintain supports and dependents.
	Algorithm 3.12: Algorithms to initialize supports and dependents of a new concept.

	3.14 The QuICL Oid-Less Algorithm
	Algorithm 3.13: The QuICL Oid-Less algorithm.

	3.15 Adding Iceberg Processing
	Figure 3.10: Iceberg lattice within a full lattice using a 60% threshold. The iceberg lattice is in bold text and lines. Grayed out text are concepts that do not meet the minimum support threshold.
	Figure 3.11: Iceberg lattice using a compressed structure. Top – iceberg lattice of Figure 3.10. Bottom – iceberg lattice with subsequent insertion of item e1 with objects {O6O7O8O9O11}.
	Algorithm 3.14: Modified INSERT algorithm for iceberg processing.
	Algorithm 3.15: Algorithms supporting iceberg processing.
	Algorithm 3.16: Modified QuICL Oid-Less algorithm for iceberg processing.

	3.16 Discussion for a Third QuICL Algorithm
	3.17 Implementing a Trie in the QuICL Algorithm
	Figure 3.12: Concept lattice using a trie data structure to store object ids. Top – concept lattice of Figure 3.1 after inserting items a1 through c3. Bottom – same concept lattice with references into a trie data structure holding the object ids.
	Figure 3.13: QuICL trie representation. Top – the trie of Figure 3.12. Bottom – depiction of same trie using compound trie nodes.
	Table 3.4: Sample calculations of memory savings (excess) of trie implementations.

	3.18 The QuICL Oid-Trie Algorithm
	Algorithm 3.17: The QuICL Oid-Trie algorithm.
	Algorithm 3.18: INSERT function of the QuICL Oid-Trie algorithm.

	3.19 Converting a Data Set to a Vertical Representation
	3.20 Summary of Methodology
	Table 3.5: Comparison of QuICL derivations.

	Chapter 4
	Results
	4.1 Introduction
	Figure 4.1: Logarithmic vs. fixed scale axis. Top – runtime performance using a fixed scale. Bottom – runtime performance using a logarithmic scale.

	4.2 Data Set and Lattice Characteristics
	Table 4.1: Data set and lattice characteristics. |O| is number of objects, |I| is the number of items, and |L| is number of concepts. Average degree is the average number of concepts in the upper cover of each given concept. Maximum degree is the ma...
	Figure 4.2: Density profiles of benchmark data sets.

	4.3 Algorithm Validity
	Table 4.2: Cases of invalid average degree. Valid average degree is the average degree reported by the QuICL algorithms. Invalid average degree is the average degree reported by the QuICL algorithms without PURGE-SUBSETS. |L| is the number concepts...

	4.4 Effect of Sort Order for the QuICL and GMA Algorithms
	Figure 4.3: Effect of item sort order on the QuICL Oid-Full runtime execution.
	Figure 4.4: Effect of item sort order on the QuICL Oid-Less runtime execution.
	Figure 4.5: Effect of item sort order on the QuICL Oid-Trie runtime execution.
	Figure 4.6: Effect of item sort order on the GMA runtime execution.
	Figure 4.7: Effect of item sort order on the QuICL Oid-Full memory usage.
	Figure 4.8: Effect of item sort order on the QuICL Oid-Less memory usage.
	Figure 4.9: Effect of item sort order on the QuICL Oid-Trie memory usage.
	Figure 4.10: Effect of item sort order on the GMA memory usage.

	4.5 Comparison of Algorithm Execution Time
	Figure 4.11: Comparison of runtime execution time using the Chess data set.
	Figure 4.12: Comparison of runtime execution time using the Mushroom data set.
	Figure 4.13: Comparison of runtime execution time using the Pumsb data set.
	Figure 4.14: Comparison of runtime execution time using the Pumsb* data set.
	Figure 4.15: Comparison of runtime execution time using the T10I4D100k data set.
	Figure 4.16: Comparison of runtime execution time using the T25I10D10k data set.
	Figure 4.17: Comparison of runtime execution time using the T25I20D100k data set.

	4.6 Comparison of Algorithm Memory Usage
	Figure 4.18: Comparison of memory usage using the Chess data set.
	Figure 4.19: Comparison of memory usage using the Mushroom data set.
	Figure 4.20: Comparison of memory usage using the Pumsb data set.
	Figure 4.21: Comparison of memory usage using the Pumsb* data set.
	Figure 4.22: Comparison of memory usage using the T10I4D100k data set.
	Figure 4.23: Comparison of memory usage using the T25I10D10k data set.
	Figure 4.24: Comparison of memory usage using the T25I20D100k data set.
	Table 4.3: Characteristics of internal data structures. |L| is the number of concepts in the lattice, |O(| is the number of object id entries in a full lattice, |O(| is the number of object id entries in the QuICL Oid-Full trie, |I(| is the number of...

	4.7 Performance Analysis of the QuICL Algorithms
	Table 4.4: Timings of the main QuICL Oid-Full sections. Insert is the total seconds spent in the INSERT function. Prep, Purge, Superset Link, Intersect Link is the time spent in the respective sections. Other accounts for the remaining time spent i...
	Table 4.5: Additional timings of QuICL Oid-Full sections. Insert is the total seconds spent in the INSERT function. Prep, Prep Navigate, Prep Link, Prep Create, and Find Link are given as a percentage of Insert time with actual seconds subscripted.
	Table 4.6: Timings of the main QuICL Oid-Trie sections. Insert is the total seconds spent in the INSERT function. Prep, Purge, Superset Link, Intersect Link is the time spent in the respective sections. Other accounts for the remaining time spent i...
	Table 4.7: Additional timings of QuICL Oid-Trie sections. Insert is the total seconds spent in the INSERT function. Prep, Prep Navigate, Prep Link, Prep Create, and Find Link are given as a percentage of Insert time with actual seconds subscripted.
	Table 4.8: Timings of the main QuICL Oid-Less sections. Insert is the total seconds spent in the INSERT function. Prep, Purge, Superset Link, Intersect Link is the time spent in the respective sections. Other accounts for the remaining time spent i...
	Table 4.9: Additional timings of QuICL Oid-Less sections. Insert is the total seconds spent in the INSERT function. Prep, Prep Navigate, Prep Link, Prep Create, and Find Link are given as a percentage of Insert time with actual seconds subscripted.

	4.8 Empirical Evidence to Support Asymptotic Complexity Analysis
	Table 4.10: Empirical evidence of asymptotic runtime analysis. Abs Supp = |O| (Min Supp. Avg Inter = number of iterations in the innermost loop / number of intersections. Avg Deg is the average degree of the lattice. Prep Create C is a constant u...

	4.9 Performance Analysis of the GMA Algorithm
	Table 4.11: Timings of GMA algorithm sections using ascending order. Add is the total seconds spent in the ADD function. Sort, Intersect, Generator Test, and Link is the time spent in respective sections of the ADD function. Other accounts for the ...
	Table 4.12: Timings of GMA algorithm sections using descending order. Add is the total seconds spent in the ADD function. Sort, Intersect, Generator Test, and Link is the time spent in respective sections of the ADD function. Other accounts for the...

	4.10 Comparison of Intersections
	Table 4.13: Comparison of intersections by algorithm.

	4.11 Summary of Results

	Chapter 5
	Conclusions, Implications, Recommendations, and Summary
	5.1 Conclusions
	5.2 Implications
	5.3 Recommendations
	5.4 Summary

	Epilogue
	Appendix A
	Implementation of the Modified GMA Algorithm
	Appendix B
	Implementation of the QuICL Oid-Full Algorithm
	Appendix C
	Implementation of the QuICL Oid-Less Algorithm
	Appendix D
	Implementation of the QuICL Oid-Trie Algorithm
	Appendix E
	Implementation of Supporting Functions
	Empirical Data in Support of Algorithm Validity
	Table F.1: Algorithm validity as assessed by number of concepts. Highlighted values are considered to be in error.
	Table F.2: Algorithm validity as assessed by average degree.

	Appendix G
	Effect of Item Sort Order on Lattice Growth
	Table G.1: Effect of sort order on lattice growth using Chess data set at 60%supp. Item and |Item O| is the item id and size of the item’s extent of the Nth item. |L| is the size of lattice after insertion of the 1 through Nth item of the given sort...
	Table G.2: Effect of sort order on lattice growth using Pumsb* data set at 30%supp. Item and |Item O| is the item id and size of the item’s extent of the Nth item. |L| is the size of lattice after insertion of the 1 through Nth item of the given sor...

	Appendix H
	Size of the QuICL, GMA, and CHARM-L Data Elements
	Table H.1: Memory consumption of QuICL, GMA, and CHARM-L data elements.

	Appendix I
	Calculated Memory Consumption
	Table I.1: Calculated memory consumption of QuICL Oid-Full lattice. Actual is the memory usage reported by the “Mem Usage” field of the Windows Task Manager upon termination of algorithm execution.
	Table I.2: Calculated memory consumption of QuICL Oid-Trie lattice. Actual is the memory usage reported by the “Mem Usage” field of the Windows Task Manager upon termination of algorithm execution.
	Table I.3: Calculated memory consumption of QuICL Oid-Less lattice. Actual is the memory usage reported by the “Mem Usage” field of the Windows Task Manager upon termination of algorithm execution.
	Table I.4: Calculated memory consumption of GMA lattice. Actual is the memory usage reported by the “Mem Usage” field of the Windows Task Manager upon termination of algorithm execution.
	Table I.5: Calculated memory consumption of CHARM-L lattice. Actual is the memory usage from the “Mem Usage” field of the Windows Task Manager upon termination of algorithm execution.

	Reference List
	Agrawal, R., Imieliski, T., & Swami, A. (1993). Mining association rules between sets of items in large databases, Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. 207-216, Washington, D.C., United States: ACM Press.
	Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules in large databases, Proceedings of the 20th International Conference on Very Large Databases, 487-499, Santiago, Chile.
	Barbut, M., & Monjardet, B. (1970). Ordre et classification: Algebre et combinatoire.: Hachette.
	Bayardo, R. J. Jr. (1998). Efficiently mining long patterns from databases, Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, 85-93, Seattle, Washington, United States: ACM.
	Bordat, J. P. (1992). Sur i'algorithmique combinatoire d'ordres finis. Université de Montpellier.
	Brin, S., Motwani, R., & Silverstein, C. (1998). Beyond market baskets: Generalizing association rules to dependence rules, Data Mining and Knowledge Discovery, 2(1), 39-68.
	Brin, S., Motwani, R., & Silverstein, C. (1997a). Beyond market baskets: Generalizing association rules to correlations, Proceedings of the 1997 ACM SIGMOD International Conference on Management of Data, 265-276, Tucson, Arizona, United States: ACM.
	Brin, S., Motwani, R., Ullman, J. D., & Tsur, S. (1997b). Dynamic itemset counting and implication rules for market basket data, Proceedings of the 1997 ACM SIGMOD International Conference on Management of Data, 255-264, Tucson, Arizona, United States...
	Burdick, D., Calimlim, M., & Gehrke J. (2001). Mafia: A maximal frequent itemset algorithm for transactional databases, Proceedings of the 17th International Conference on Data Engineering, 443-452: IEEE Computer Society.
	Chein, M. (1969). Algorithme de recherche des sous-matrices premières d’une matrice. Bull. Math. Soc. Sci. Math. R.S. Roumanie, 13, 21-25.
	Choi, V. (2006). Faster algorithms for constructing a Galois/concept lattice, Proceedings of SIAM Conference on Discrete Mathematics. Victoria, British Columbia, Canada.
	Cooley, R., Mobasher, B., & Srivastava, J. (1997). Web mining: Information and pattern discovery on the world wide web, Proceedings of the 9th International Conference on Tools with Artificial Intelligence, 558-567: IEEE Computer Society.
	DCI: A hybrid algorithm for frequent set counting - datasets. (2008). Retrieved 2008, from http://miles.cnuce.cnr.it/~palmeri/datam/DCI/datasets.php
	Dunkel, B., & Soparkar, N. (1999). Data organization and access for efficient data mining, Proceedings of the 15th International Conference on Data Engineering, 522-529: IEEE Computer Society.
	Duquenne, V., & Guigues, J. L. (1986). Famille minimale d'implications informatives re'sultant d'un tableau de donne'es binaires. Mathe'matiques et Sciences Humaines, 24(95), 8-18.
	Frequent Itemset Mining Dataset Repository. (2008). Retrieved 2008, from http://fimi.cs.helsinki.fi/data/
	Ganter, B. (1984). Two basic algorithms in concept analysis. TU Darmstadt, Germany.
	Ganter, B., Stumme, G., & Wille, R. (2005). Formal Concept Analysis: Foundations and Applications: Springer-Verlag.
	Ganter, B., & Wille, R. (1997). Formal Concept Analysis: Mathematical Foundations: Springer-Verlag, New York, Inc.
	Godin, R., Missaoui, R., & Alaoui, H. (1995). Incremental concept formation algorithms based on galois (concept) lattices. Computational Intelligence, 11(2), 246-267.
	Han, J., & Kamber, M. (2006). Data Mining Concepts and Techniques (2nd ed.): Morgan Kaufmann.
	Harms, S., Li, D., Deogun, J., & Tadesse, T. (2002). Efficient rule discovery in a geo-spatial decision support system, Proceedings of the 2002 Annual National Conference on Digital Government Research, 1-7. Los Angeles, California: Digital Governmen...
	Huhtala, Y., Karkkainen, J., Porkka, P., & Toivonen, H. (1999). Tane: An efficient algorithm for discovering functional and approximate dependencies. The Computer Journal, 42(2), 100-111.
	IBM synthetic data generator. (2001). from http://www.almaden.ibm.com/software/quest/Resources/
	Kamber, M., Han, J., & Chiang, J. Y. (1997). Metarule-guided mining of multi-dimensional association rules using data cubes, Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, 207-210.
	Knuth, D. E. (1998). The Art of Computer Programming, Vol. 3, Sorting and Searching (2nd. ed.). Reading, MA: Addison-Wesley.
	Kuznetsov, S. O. (1993). A fast algorithm for construction of all intersections of objects from a finite semilattice. Automatic Documentation and Mathematical Linguistics, 27(5), 11-21.
	Kuznetsov, S. O. (2001). On computing the size of a lattice and related decision problems. Order, 18(4), 13-21.
	Kuznetsov, S. O., & Obiedkov, S. A. (2002). Comparing performance of algorithms for generating concept lattices. Journal of Experimental & Theoretical Artificial Intelligence, 14(2/3), 189-216.
	Lakha, l., & Stumme, G. (2005). Efficient mining of association rules based on formal concept analysis. Lecture Notes in Computer Science, 3626, 180-195.
	Lee, W., & Stolfo, S. J. (1998). Data mining approaches for intrusion detection, Proceedings of the 7th conference on USENIX Security Symposium - Volume 7. San Antonio, Texas: USENIX Association.
	Lindig, C., & Datensystene, G. (2000). Fast concept analysis. Working with Conceptual Structures – Contributions to ICCS 2000, 152-161: Shaker Verlag.
	Lopes, S., Petit, J. M., & Lakhal, L. (2000). Efficient discovery of functional dependencies and armstrong relations, Proceedings of the 7th International Conference on Extending Database Technology: Advances in Database Technology, 350-364: Springer-...
	Lucchese, C., Orlando, S., & Perego, R. (2004). DCI Closed: A fast and memory efficient algorithm to mine frequent closed itemsets.
	Lucchese, C., Orlando, S., & Perego, R. (2006). Fast and memory efficient mining of frequent closed itemsets. IEEE Transactions on Knowledge and Data Enginering, 18(1), 21-36.
	Luxenburger, M. (1991). Implications partielles dans un contexte. Mathe'matiques, Informatique et Sciences Humaines, 29(113), 35-55.
	Maddouri, M. (2005). A formal concept analysis approach to discover association rules from data, Proceedings of the 6th International Conference on Concept Lattices and Their Applications, 10-21. Olomouc, Czech Republic.
	Mannila, H., Toivonen, H., & Verkamo, A. I. (1997). Discovery of frequent episodes in event sequences. Data Mining Knowledge Discovery, 1(3), 259-289.
	Norris, E. M. (1978). An algorithm for computing the maximal rectangles in a binary relation. Rev. Roumaine Math. Pures Appl., 23(2), 243-250.
	Nourine, L., & Raynaud, O. (1999). A fast algorithm for building lattices. Inf. Process. Lett., 71(5-6), 199-204.
	Nourine, L., & Raynaud, O. (2002). A fast incremental algorithm for building lattices. Journal of Experimental & Theoretical Artificial Intelligence, 14(2&3), 217-227.
	Ordonez, C., Santana, C. A., & Braal, L. (2000). Discovering interesting association rules in medical data, Proceedings of the ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery, 78-85.
	Palmerini, P., Orlando, S., & Perego, R. (2004). Statistical properties of transactional databases, Proceedings of the 2004 ACM Symposium on Applied Computing, 515-519. Nicosia, Cyprus: ACM.
	Park, J. S., Chen, M. S., & Yu, P. S. (1995). An effective hash-based algorithm for mining association rules, Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data, 175-186. San Jose, California, United States: ACM.
	Pasquier, N. (2000). Mining association rules using formal concept analysis, Proceedings of the 8th International Conference on Conceptual Structures, 259-264. Darmstadt, Germany: Springer-Verlag.
	Pasquier, N., Bastide, Y., Taouil, R., & Lakhal, L. (1999a). Efficient mining of association rules using closed itemset lattices. Inf. Syst., 24(1), 25-46.
	Pasquier, N., Bastide, Y., Taouil, R., & Lakhal, L. (1999b). Discovering frequent closed itemsets for association rules, Proceedings of the 7th International Conference on Database Theory, 398-416: Springer-Verlag.
	Pei, J., Han, J., & Mao, R. (2000). Closet: An efficient algorithm for mining frequent closed itemsets, Proceedings of the ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, 21-30.
	Pemmaraju, S., & Skiena, S. (1990). Computational discrete mathematics: Combinatorics and graph theory with mathematica. Reading, MA: Addison-Wesley.
	Priss, U. (2006). A formal concept analysis bibliography. from http://www.upriss.org.uk/fca/bibliography.html
	Rouane, M. H., Nehm´e, K., Valtchev, P., & Godin, R. (2004). On-line maintenance of iceberg concept lattices, Contributions to the 12th International Conference on Conceptual Structures. Huntsville, AL: Shaker Verlag.
	Shenoy, P., Haritsa, J. R., Sudarshan, S., Bhalotia, G., Bawa, M., & Shah, D. (2000). Turbo-charging vertical mining of large databases. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 22-33. Dallas, Tx: ACM
	Srikant, R., & Agrawal, R. (1996). Mining sequential patterns: Generalizations and performance improvements, Proceedings of the 5th International Conference on Extending Database Technology: Advances in Database Technology, 3-17: Springer-Verlag.
	Stumme, G. (2002). Efficient data mining based on formal concept analysis, Proceedings of the 13th International Conference on Database and Expert Systems Applications, 534-546: Springer-Verlag.
	Stumme, G., Bastide, Y., Pasquier, N., & Lakhal, L. (2000). Fast computation of concept lattices using data mining techniques, Proceedings of 7th International Workshop on Knowledge Representation Meets Databases, 129-139.
	Stumme, G., Taouil, R., Bastide, Y., & Lakhal, L. (2001a). Conceptual clustering with iceberg concept lattices, Proceedings of GI-Fachgruppentreffen Maschinelles Lernen'01, Universität Dortmund, 763.
	Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., & Lakhal, L. (2001b). Intelligent structuring and reducing of association rules with formal concept analysis, Proceedings of the Joint German/Austrian Conference on AI: Advances in Artificial Intellig...
	Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., & Lakhal, L. (2002). Computing iceberg concept lattices with titanic. Data Knowledge Engineering, 42(2), 189-222.
	Uno, T., Kiyomi, M., & Arimura, H. (2004). LCM ver. 2: Effcient mining algorithms for frequent/closed/maximal itemsets. Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations, Brighton, UK.
	Valiant, L. (1979). The Complexity of Computing the Permanent. Theoretical Computer Science, 8, 189-201: Elsevier.
	Valtchev, P., Godin, R., Missaoui, R., Huchard, M., Napoli, A., Grosser, D., et al. (2008). Project Galicia. 2008, from http://www.iro.umontreal.ca/~galicia/
	Valtchev, P., Grosser, D., Roume, C., & Hacene, M. R. (2003a). Galicia: An open platform for lattices, In Using Conceptual Structures: Contributions to the 11th Intl. Conference on Conceptual Structures, 241-254. Dresden, Germany.
	Valtchev, P., Missaoui, R., & Godin, R. (2004). Formal concept analysis for knowledge discovery and data mining: The new challenges. Lecture Notes in Computer Science, 2961, 352-371: Springer-Berlin/Heidelberg.
	Valtchev, P., Missaoui, R., Godin, R., & Meridji, M. (2002a). Generating frequent itemsets incrementally: Two novel approaches based on Galois lattice theory. Journal of Experimental & Theoretical Artificial Intelligence, 14(2-3), 115–142.
	Valtchev, P., Missaoui, R., & Lebrun, P. (2000). A fast algorithm for building the hasse diagram of a Galois lattice, Proceedings of Colloque LaCIM 2000, 293-306. Montréal.
	Valtchev, P., Missaoui, R., & Lebrun, P. (2002b). A partition-based approach towards constructing galois (concept) lattices. Discrete Mathematics, 256(3), 801-829.
	Valtchev, P., Rouane, H., & Missaoui, R. (2003b). A generic scheme for the design of efficient on-line algorithms for lattices. Lecture Notes in Computer Science, 2746, 282-295 : Springer-Berlin/Heidelberg.
	Wang, J., Han, J., & Pei, J. (2003). Closet+: Searching for the best strategies for mining frequent closed itemsets, Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 236-245. Washington, D.C.: ACM Press.
	Wille, R. (1982). Restructuring lattice theory: An approach based on hierarchies of concepts, Ordered Sets, 445-470. Dordrecht Boston.
	Yahia, S. B., Hamrouni, T., & Nguifo, E. M. (2006). Frequent closed itemset based algorithms: A thorough structural and analytical survey. ACM SIGKDD Explorations, 8(1), 93-104.
	Zaki, M. J. (2000). Generating non-redundant association rules, Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 34-43. Boston, Massachusetts, United States: ACM.
	Zaki, M. J. (2008). Mohammed J. Zaki. 2008, from http://www.cs.rpi.edu/~zaki/
	Zaki, M. J., & Hsiao, C. (2002). Charm: An efficient algorithm for closed itemset mining, Proceedings of SIAM International Conference on Data Mining, 457-473.
	Zaki, M. J., & Hsiao, C. (2005). Efficient algorithms for mining closed itemsets and their lattice structure. IEEE Transactions on Knowledge and Data Engineering, 17(4), 462-478.

