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Association rule mining (ARM) is the task of identifying meaningful implication rules 
exhibited in a data set.  Most research has focused on extracting frequent item (FI) sets 
and thus fallen short of the overall ARM objective.  The FI miners fail to identify the 
upper covers that are needed to generate a set of association rules whose size can be 
exploited by an end user.  An alternative to FI mining can be found in formal concept 
analysis (FCA), a branch of applied mathematics.  FCA derives a concept lattice whose 
concepts identify closed FI sets and connections identify the upper covers. However, 
most FCA algorithms construct a complete lattice and therefore include item sets that are 
not frequent.  An iceberg lattice, on the other hand, is a concept lattice whose concepts 
contain only FI sets.  Only three algorithms to construct an iceberg lattice were found in 
literature.  Given that an iceberg concept lattice provides an analysis tool to succinctly 
identify association rules, this study investigated additional algorithms to construct an 
iceberg concept lattice.  This report presents the development and analysis of the Quick 
Iceberg Concept Lattice (QuICL) algorithms.  These algorithms provide incremental 
construction of an iceberg lattice.  QuICL uses recursion instead of iteration to navigate 
the lattice and establish connections, thereby eliminating costly processing incurred by 
past algorithms.  The QuICL algorithms were evaluated against leading FI miners and 
FCA construction algorithms using benchmarks cited in literature.  Results demonstrate 
that QuICL provides performance on the order of FI miners yet additionally derive the 
upper covers.  QuICL, when combined with known algorithms to extract a basis of 
association rules from a lattice, offer a “best known” ARM solution. Beyond this, the 
QuICL algorithms have proved to be very efficient, providing an order of magnitude 
gains over other incremental lattice construction algorithms.  For example, on the 
Mushroom data set, QuICL completes in less than 3 seconds.  Past algorithms exceed 200 
seconds. On T10I4D100k, QuICL completes in less than 120 seconds.  Past algorithms 
approach 10,000 seconds.  QuICL is proved to be the “best known” all around 
incremental lattice construction algorithm.  Runtime complexity is shown to be O(l d i) 
where l is the cardinality of the lattice, d is the average degree of the lattice, and i is a 
mean function on the frequent item extents. 
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Chapter 1  

Introduction 

 

1.1 Problem Statement and Goal 

Association rule mining is the task of identifying meaningful implication rules of 

the form X → Y exhibited in a data set (i.e., relation), where X and Y are subsets of the 

items (i.e., possible distinct values of columns of a data set) and X ∩ Y is ∅ (Agrawal, 

Imieliski, & Swami, 1993).  The degree to which a rule is meaningful is defined by:   

i) support, the number of times both X and Y are found in the data set, and  

ii) confidence, the number of times that X → Y holds true relative to all 
occurrences of X.   

Mining association rules typically involves two steps:  

i) identifying frequent item sets (i.e., X ∪ Y that meets a minimum support 
threshold), and  

ii) deriving association rules from the item sets that meet a level of confidence.   

A well known algorithm to extract the frequent item sets from the data set is 

Apriori (Agrawal, & Srikant, 1994).  Apriori searches the space of all patterns in an 

iterative bottom-up breadth-first manner.  Each iteration obtains counts for its current set 

of candidate patterns and removes from further consideration any candidate patterns that 

are not frequent or cannot be frequent.  Apriori has proved to be efficient for mining 

frequent patterns of small length.  However, for long patterns Apriori can be I/O intensive 

since each iteration requires a full scan of the data set.  Furthermore, a bottom-up 
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algorithm must obtain counts for each set in the power set of all items composing each 

frequent pattern.  Thus, Apriori may be an intractable solution for frequent item sets of 

even moderate length (Han, & Kamber, 2006).  A case in point, considers a data set D 

composed of a single tuple {a1, a2, …, an}.  All subsets of the items of D will be frequent.  

The number of subsets of the items of D will be 2n

i) O = {o ∈ O | ∀ i ∈ I, oRi} and  

 − 1.  For all but a small n, there is not 

sufficient memory or processing cycles for the Apriori algorithm to reach completion.  

This leads to the problem: develop an efficient algorithm that can extract from a data set 

the frequent patterns of moderate to long length (e.g., greater than 30). 

An alternate approach to frequency counting can be found in formal concept 

analysis (FCA) (Ganter, & Wille, 1997).  FCA is a branch of applied mathematics that 

has been applied to a wide variety of applications including linguistics, text retrieval, and 

economics (Ganter, Stumme, & Wille, 2005).  It originated in the early 1980’s and was 

first formalized in 1982 (Wille, 1982).  It has since inspired numerous publications (Priss, 

2006).  According to FCA, a concept is defined as: 

Definition 1.1: Given a set of object identifiers (ids) O, a set of items I, and a 
relation R such that R ⊆ O × I, a formal concept is a pair of sets O ⊆ O and I ⊆ I 
iff: 
 

 
ii) I = {i ∈ I  | ∀ o ∈ O, oRi},  

 
where oRi denotes object o has item i in relation R. 

 
Furthermore, between any two concepts C1 = (O1, I1) and C2 = (O2, I2) an order < exists 

between C1 and C2 iff O1 ⊂ O2 (or equivalently I1 ⊃ I2).  The set of objects of a concept is 

called the extent of the concept and the set of items is called the intent. 
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Let L be the set of all concepts derived from a data set where the attribute-values 

define the set of items and the tuple ids define the set of object ids.  The concepts of L 

can be arranged in a lattice such that a connection (i.e., edge) is made between any two 

concepts C1 and C2 for which order < exists and there is no concept C3 for which 

C1 < C3 < C2.  Given this property, tree terminology from data structures can be applied 

to a lattice.  An ancestor concept Ca of concept C1 is any concept for which an order 

C1 < Ca exists.  A descendent concept Cd of concept C1 is any concept for which an order 

C1 > Cd exists.  A parent concept Cp of concept C1 is ancestor concept for which there is 

no concept C3 such that C1 < C3 < Cp.  A child concept Cc of concept C1 is descendent 

concept for which there is no concept C3 such that C1 > C3 > Cc.  An example of a 

concept lattice derived for a relation R is depicted in Figure 1.1. 

A concept lattice holds a number of interesting properties including:  

Property 1.1: Extent of concept C is the ∩ of sets of O defined by each Ii ∈ I of 
C; dually the intent of C is the ∩ of the sets of I defined by each Oi ∈ O of C. 

Property 1.2: If Ii ∈ I of concept C1 then ∀ C2 | C2 < C1, Ii ∈ I of C2; dually if 
Oi ∈ O of concept C1 then ∀ C3 | C3 > C1, Oi ∈ O of C3. 

Property 1.3: Extent of concept C is the ∩ of the O of all parent concepts of C, ∩ 
with the set of O defined by each Ii ∈ I of C that is not ∈ I of a parent concept of 
C; dually the intent of a concept C is the ∩ of the I of all child concepts of C, ∩ 
with the set of I defined by each Oi ∈ O of C that is not ∈ O of any child concept 
of C. 

 A concept lattice can be incrementally constructed using the Godin, Missaoui, 

and Alaoui (1995) (GMA) algorithm.  GMA algorithm inserts the data for the next object 

into the concept lattice by partitioning all of the concepts in the lattice into three groups: 

modified, generator, and old.  Modified concepts are those whose intent is a subset of the 

next object’s items.  Generator concepts are those whose intent intersects the object’s  
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Figure 1.1: Example concept lattice. 
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items is non-empty and there does not exist an ancestor concept with the same 

intersection set.  Old concepts are those that are neither modified nor generator.  These 

concepts remain unchanged.  For each modified concept, the object id of the next object 

is added to the concept’s extent.  For each generator concept, a new concept is 

constructed with an extent equal to the generator’s extent union the next object’s id, and 

intent equal to the generator’s intent intersect with the next object’s items.  When 

generating new concepts, connections are updated accordingly.   

Concept lattices are of benefit to association rule mining.  A concept’s intent 

corresponds to an item set and the cardinality of extent corresponds to the item set 

support.  Furthermore, the definition of a concept embodies the mathematical notion of 

closure.  Thus, nodes of the concept lattice represent only closed item sets (i.e. an item set 

whose closure yields the same set), whose number can be orders of magnitude lower than 

the number of all item sets (Burdick, Calimlim, & Gehrke, 2001, Stumme, 2002).  The 

concept lattice still contains the necessary and sufficient information to extract 

association rules and to compute both confidence and support.  For example, from the 

concept ({O1O2O8}, {a1b1}) of Figure 1.1 the association rule a1 → b1 can be mined.  The 

support for a1 → b1 can be extracted from the lattice by traversing any path from the 

bottom of the lattice through concepts where {a1b1} is a subset of a concept’s intent.  

Support is the size of the extent of the highest concept where {a1b1} is a subset of a 

concept’s intent.  In this case, support for a1 → b1 is 3, or 30%.  Likewise support for a1, 

the antecedent of a1 → b1, can be extracted.  The support for a1 is 8, or 80%.  Confidence 

is computed as support(rule) / support(antecedent(rule)).  Thus, the confidence of a1 → b1 

is 37.5%.  On the other hand, the confidence for b1 → a1 is 100%, since the antecedent, 
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now b1, has a support of 30%.  In the same manner the association rules a1 → b2 50%supp 

62.5%conf, b2 → a1 50%supp 71.4%conf, and a1b2 → c1 50%supp 100%conf can be mined from 

the concept ({O3O4O5O9O10}, {a1b2c1}).  While a concept lattice contains the necessary 

and sufficient information to compute confidence and support, it includes concepts that 

do not meet the minimum support.  Thus, the GMA algorithm may incur overhead, since 

these concepts are essentially unnecessary artifacts relative to association rule mining. 

An iceberg concept lattice is a concept lattice that contains only the concepts 

whose support meets a given threshold.  For example, Figure 1.2 depicts the concept 

lattice of Figure 1.1 as an iceberg lattice for both a minimum support threshold of 60% 

and for 40%.  As the threshold is lowered, more detail of the underlying concept lattice is 

revealed.  Iceberg concept lattices provide a model from which association rules can be 

efficiently mined (Stumme, 2002).  Consider the alternate notation of an iceberg lattice 

depicted in Figure 1.3 that corresponds to the bottom iceberg lattice of Figure 1.2.  Each 

concept node is labeled with a percentage representing the support together with any 

items, if any, for which there does not exist a greater concept containing the item.  The 

edges are labeled with a percentage indicating the effective drop in confidence between 

the two concepts.  This notation enables association rules to be directly read from the 

iceberg lattices.  An association rule α1 → α2 will hold with 100% confidence for any 

concepts C1 and C2 where C1 is labeled with α1, C2 is labeled with α2, and C1 < C2.  The 

support for the association rule is the support of C1.  For example, the association rule 

d1 → a1 50%supp 100%conf can be read from lattice.  Furthermore, an association rule 

α1α2 → α3 will hold with 100% confidence for any concepts C1, C2, and C3 where C1 is 

labeled with α1, C2 is labeled with α2, C3 is labeled with α3, and C3 > meet (i.e., greatest  
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({O3O4O5O6O7O9O10},{b2})({O1O2O3O4O5O8O9O10},{a1}) ({O2O3 O4O5O6O8O9O10},{c1})

({O1O2O3O4O5O6O7O8O9O10},∅)

({O2O3O4O5O8O9O10},{a1c1}) ({O3O4O5O6O9O10},{b2c1})

(∅,{a1a2b1b2c1c2c3d1d2d3d4})

({O3O4 O5O6O7O9O10},{b2})({O1O2O3O4O5O8O9O10},{a1}) ({O2O3O4O5O6O8O9O10},{c1})

({O1O2O3O4O5O6O7O8O9O10},∅)

({O1O3O5O9O10},{a1d1}) ({O2O3O4O5O8O9O10},{a1c1})

({O3O5O9O10},{a1b2c1d1})

({O3O4O5O6O9O10},{b2c1})

({O3O4O5O9O10},{a1b2c1})

(∅,{a1a2b1b2c1c2c3d1d2d3d4})  
 
 

 
 

Figure 1.2: Examples of an iceberg concept lattice.  Top – iceberg concept lattice at 60% 
support.  Bottom – iceberg concept lattice at 40%.  These iceberg lattices were derived 
from the lattice of Figure 1.1 by discarding concepts not meeting the minimum support 
threshold. 
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Figure 1.3: Iceberg lattice using an alternate notation.  Each concept node is labeled with 
a percentage representing the support together with any items, if any, for which there 
does not exist a greater concept containing the item.  Edges are labeled with a percentage 
indicating the effective drop in confidence between the two concepts. 
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common sub-concept) of C2 and C1.  The support of the association rule is the support of 

the meet concept.  For example, the association rule a1b2 → c1 50%supp 100%conf can be 

read.  An association rule α1 → α2 with less than 100% confidence can be read from any 

concepts C1 and C2 where C1 is labeled with α1, C2 is labeled with α2, and C1< C2.  The 

support will be the support of C2.  The confidence will be the product of the confidences 

noted on the edges along the path from C1 to node C2.  For example, the association rule 

a1 → d1 50%supp 62.5%conf can be read from the lattice of Figure 1.3.  By a combination of 

the previous steps further association rules can be read.  For example, the association rule 

a1b2 → d1 40%supp 80%conf can be read from the lattice (the meet of a1b2 → the node 

labeled 40% support with 80%conf, and d1 is an ancestor of that node).  Similarly, 

c1b2 → d1 40%supp 66.7%conf (the meet of c1b2 → the node label 60% support with 

100%conf, the node label 60% → the node label 50% with 83.4% conf, the node label 

50% → the node label 40% with 80% conf, therefore c1b2 → the node label 40% with a 

66.7%conf  drop in overall confidence1

Extracting association rules from a list of frequent item sets (i.e., intents of a set 

of concepts) may yield an excessive number, even when applying strict thresholds to both 

support and confidence.  The rules may contain highly redundant information, for 

example α1 → α2, α2 → α3, α1 → α3, α1 → α4, α1 → α2α4.  The excessive size and 

redundancy impedes the usefulness of the extracted rules.  What is desired is a 

meaningful subset that can be exploited by an end user.  A basis is a minimal subset of 

association rules that can be combined to form all association rules without any loss of 

information.  A basis can be extracted from an iceberg concept lattice using a systematic 

, d1 is an ancestor of the node label 40%). 

                                                
1 The overall drop in confidence is the product of the confidences noted on the edges along the path.  In this 
case 83.4%  × 80.0%, or 66.7%. 
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traversal of the lattice.  The Duquenne-Guigues (1986) basis  provides extraction of a 

minimal set of association rules with 100% confidence and the Luxenburger (1991) basis 

provides extraction of a minimal set of association rules with less than 100% confidence. 

Stumme, Taouil, Bastide, Pasquier, and Lakhal (2001b) offer algorithms to traverse and 

extract the Duquenne-Guigues basis and the Luxemburger basis from an iceberg concept 

lattice. 

Given that an iceberg concept lattice provides an analysis tool to succinctly 

identify a basis of association rules, additional algorithms to construct an iceberg lattice 

are needed.  This study presents the development of efficient algorithms to construct an 

iceberg lattice.  Its objective; to develop algorithms whose overall performance in 

constructing a lattice is near to the leading algorithms used for association rule mining.  

Since a lattice contains more information, marginally slower performance was considered 

acceptable.  In addition to the development of the algorithms, this study:  

i) presents theory of formal concept analysis as applied to association rule 
mining,  

ii) includes a detailed analysis of performance characteristics of the developed 
algorithms through both theory and practice using benchmark databases (e.g., 
Mushroom, Chess, and T25I10D10k2

iii) enumerates comprehensive benchmarks comparing the performance of the 
developed algorithms to other leading algorithms.   

), and  

 
1.2 Relevance and Significance 

Association rule mining is recognized as an important area within data mining 

(Pasquier, Bastide, Taouil, & Lakhal, 1999a, Burdick et al., 2001, Zaki & Hsiao, 2002, 

and Han & Kamber, 2006).  It has been applied to a wide range of domains including 

                                                
2 Mushroom, Chess, and T25I10D10k are public data sets often used in literature. See Section 4.2. 
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basket analysis (Agrawal et al., 1993, Brin, Motwani, & Silverstein, 1997a), intrusion 

detection (Lee, & Stolfo, 1998), database analysis (Huhtala, Karkkainen, Porkka, & 

Toivonen, 1999, Lopes, Petit, & Lakhal, 2000), geo-spatial decision support (Harms, Li, 

Deogun, & Tadesse, 2002), medical data analysis (Ordonez, Santana, & Braal, 2000), and 

organization of web pages on the World Wide Web (Cooley, Mobasher, & Srivastava, 

1997).  Association rule theory has extended beyond its original domain to include 

correlations (Brin et al., 1997a), dependency rules (Brin, Motwani, & Silverstein, 1998), 

episodes (Mannila, Toivonen, & Verkamo, 1997), sequential patterns (Srikant & 

Agrawal, 1996), and multi-dimensional patterns (Kamber, Han, & Chiang, 1997). 

Since the seminal paper by Agrawal et al. (1993), techniques to derive association 

rules from database have be an active area of research (Agrawal, & Srikant, 1994, Park, 

Chen, & Yu, 1995, Brin et al., 1997a, Bayardo, 1998, Pasquier, Bastide, Taouil, & 

Lakhal, 1999b, Dunkel, & Soparkar, 1999, Shenoy, Haritsa, Sudarshan, Bhalotia, Bawa, 

& Shah, 2000, Pei, Han, & Mao, 2000, Burdick et al., 2001, Stumme, Taouil, Bastide, 

Pasquier, & Lakhal, 2002, Zaki, & Hsiao, 2002, Wang, Han, & Pei, 2003, Lucchese, 

Orlando, & Perego, 2004, Uno, Kiyomi, & Arimura, 2004, and Lucchese, Orlando, & 

Perego, 2006).  However, this research has primarily focused on efficient and innovative 

theory and techniques for the extraction of frequent item sets. As such, they have fallen 

short of the overall task of mining association rules (Yahia, Hamrouni, & Nguifo, 2006).  

Key information not generated by these works is the derivation of upper covers of each 

frequent item set.  An upper cover of a frequent item set I  is a set of  frequent item sets U 

such that ∀ Iu ∈ U, Iu ⊂ I and there does not exist a frequent item set I2 where Iu ⊂ I2 ⊂ I.  

Upper covers are needed in the production of association rules to efficiently generate 
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rules from the frequent item sets that are constrained to a number that can be readily 

exploited by an end user (Zaki, & Hsiao, 2005, Yahia et al., 2006). 

Upper covers are provided in FCA.  Thus, FCA has been presented as a method to 

mine association rules (Pasquier, 2000, Stumme, 2002, Valtchev, Missaoui, Godin, & 

Meridji, 2002a, and Maddouri, 2005).  However, most methods involve a complete lattice 

and therefore are infeasible for mining association rules against large databases.  Of the 

mentioned works, Stumme et al. provides a number of in depth papers on FCA theory 

that includes iceberg concept lattices (Stumme, Bastide, Pasquier, & Lakhal, 2000, 

Stumme, Taouil, Bastide, & Lakhal, 2001a, Stumme , Taouil, Bastide, Pasquier, & 

Lakhal, 2001b, Stumme, 2002 , Stumme et al., 2002, Ganter et al., 2005, and Lakha & 

Stumme, 2005).  Stumme et al. provide a compelling argument for using iceberg concept 

lattices as a model from which a basis of association rules can be efficiently generated.  

Zaki (2000) provides similar arguments.  Algorithms to generate the rules from an 

iceberg lattice are provided in Stumme et al. (2001b).  However the offered algorithm to 

construct an iceberg lattice, TITANIC, fails to produce the upper covers. 

After a diligent search of literature, only three algorithms to construct an iceberg 

lattice were found;  MAGALICE (Rouane, Nehm, Valtchev, & Godin, 2004), CHARM-L 

(Zaki, & Hsiao, 2005), and SPROUT (Choi, 2006).  MAGALICE builds upon the theory 

of the GMA algorithm as formalized by Valtchev, Rouane, and Missaoui (2003b).  

CHARM-L is an extension to the CHARM3

                                                
3  CHARM is a leading algorithm to mine frequent item sets.  This algorithm is discussed further in 
Chapter 2. 

 algorithm (Zaki, & Hsiao, 2002) that 

constructs a lattice as an adjunct data structure to its core.  SPROUT is similar to 

CHARM-L, except it uses a breadth first search. 
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This study presents an investigation into additional algorithms to construct an 

iceberg concept lattice.  The formulation of new algorithms to efficiently construct 

iceberg concept lattices enables lattice traversal algorithms, such as Stumme et al. 

(2001b), to efficiently generate a basis of association rules that can be exploited by an 

end user.  Therefore, the formulation of new algorithms to construct an iceberg concept 

lattice will contribute to the task of association rule mining.  Beyond this, new efficient 

algorithms to construct concept lattices may provide a contribution to the wide set of 

areas where formal concept analysis is applied. 

1.3 Barriers and Issues 

The GMA algorithm (Godin et al., 1995) as introduced is not suitable for 

association rule mining.  It is a top-down, level-wise lattice construction algorithm that 

cannot construct an iceberg lattice, since the supports are not fully determined until the 

completion of the entire lattice.  Thus, concepts that do not meet the minimum support 

threshold are retained during lattice construction.  Such concepts consume memory 

resources.  Furthermore, the representation of concepts contains massive duplication.  

The same object ids and items are present in multiple concepts.  This is evident in the 

simple concept lattice shown in Figure 1.1.  Constructing a concept lattice for a moderate 

or even small data set could quickly exhaust available memory.  Lastly, the GMA 

algorithm is highly dependent on subset checking and intersection operations.  This raises 

strong concerns on runtime performance. 

Chapter 3 will present algorithms to directly construct an iceberg concept lattice.  

The developed algorithms do not construct concepts that do not meet the minimum 

support threshold.  Furthermore, one algorithm adopts a compressed representation to 
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eliminate duplicate entries of object ids and items.  The algorithms, however, introduce 

further dependency on set operations including set difference, union, and intersection.  

Thus, a major challenge was developing techniques to perform fast set operations and 

caching of interim results.  In addition, heuristics that have the potential to reduce the 

number of times set operations were investigated and applied.  For example, insertions of 

items in ascending support order resulted in reducing the number of intersections 

performed. 

1.4 Elements, Hypotheses, Theories, or Research Questions to be Investigated 

The concept lattice is an elegant and well behaved data structure.  It is elegant in 

the sense it provides concise organization of the relationships between a set of objects 

and a set of items.  It is well behaved in that the identical data structure will be 

constructed regardless of the order in which the data is processed.  B-trees, itemset-tidset 

trees of the CHARM algorithm4, and frequent pattern trees of the CLOSET algorithm5

                                                
4  CHARM is a leading algorithm to mine frequent item sets.  This algorithm is discussed further in 
Chapter 2. 
5 CLOSET is another leading algorithm to mine frequent item sets. 

 on 

the other hand are not well-behaved.  Variations of order in which data is processed may 

result in the construction of different structures, although the properties of the given data 

structure are preserved.  Given the elegance and well behavior of a concept lattice, it was 

hypothesized that an iceberg concept lattice based algorithm will provide gains in 

association rule mining and will be effective in mining frequent items sets.  It was 

expected that such algorithm will readily construct a concept lattice for a wide range of 

data sets and will prove to be a viable approach.  It was expected that the algorithm will 

exhibit the same or slightly better performance with respect to memory utilization of the 
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other leading algorithms.  Furthermore, it would be resilient against variations of data 

characteristics and input order. 

It was expected that a lattice based algorithm will exhibit runtime performance on 

the order of leading algorithms to mine frequent item sets, but will probably be slower 

due to greater dependencies on intersection, union, and set difference operations.  

However, the output of the proposed algorithm contains more information.  A lattice 

provides the upper covers needed to derive a basis of association rules.  Given this, it was 

hypothesized that the proposed algorithm will have significant gains relative to the 

overall task of association rule mining. 

1.5 Limitations and Delimitations of the Study 

An in depth analysis of the statistical properties of the various data sets used as 

benchmarks measures of performance were not produced, since this is not the focus of 

this study.  Such information can be found in other works (Valtchev, Grosser, Roume, & 

Hacene, 2002a, Wang et al., 2003, Palmerini, Orlando, & Perego, 2004, and Zaki, & 

Hsiao, 2005). 

 In a survey comparing the performance of lattice construction algorithms, 

Kuznetsov and Obiedkov (2002) note a number of difficulties when attempting to 

perform empirical benchmarks.  Problems include:  

i) difficulties understanding crucial details, 

ii) description of underlying data structures are often omitted,  

iii) algorithms exhibit different behavior on different data sets, and   

iv) different choices in programming languages impede meaningful comparisons.   
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To avoid these problems, this study only performed benchmarks against other algorithms 

that were well understood and readily implemented, or had an implementation available 

from the authors that is either written in Java or readily translated to Java.  This enabled a 

common environment for performing benchmarks and thereby minimized the chances for 

introducing error.  CHARM and CHARM-L are written in C++ and available from the 

authors.  CHARM and CHARM-L was readily translated into Java.  The MAGALICE 

algorithm is part of the Galicia framework (Valtchev et al., 2003a).  Galicia is written in 

Java and is available as open source from the authors.   

1.6 Definition of Terms 

Ancestor Concept – an ancestor of a concept C1 is any concept Ca such that C1 < Ca.  
(C1 > Ca in an inverted lattice) 

Anti-chain – a set of concepts that are mutually incomparable.  That is an order > does 
not exists between any two concepts in the set.  With a concept lattice, an anti-chain 
is formed by any horizontal cut through the lattice such that all remaining concepts 
are either < or > any concept in the anti-chain.  

Association Rule – a meaningful implication rule of the form X → Y exhibited in a data 
set (i.e., relation), where X and Y are subsets of the items and X ∩ Y is ∅. 

Association Rule Mining – the task of identifying association rules exhibited in a data set.  

Basis – a minimal set of association rules that conveys all derivable association rules 
without loss of information. 

Chain – a set of concepts that are mutually comparable.  There exists an order > between 
any two concepts in the set. 

Child Concept – a child for a concept C1 is any concept Cc such that Cc < C1 and there 
does not exist a concept C2 such that Cc < C2 < C1 (Cc > C1 and Cc > C2 > C1 in an 
inverted lattice).  Operator  in C1  Cc indicates that Cc is a child of C1.  Also known 
as a lower cover concept, or an immediate successor. 

Closed Item Set – an item set whose closure yields the same set.  For an item set I the 
closure operation is defined as f ° g (I) where g is a function that identifies the set of 
objects that have a given set of items and f is a function that identifies the set of items 
that have a given set of objects. 
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Closed Set – a set derived upon performing a closure operation on some set.  A set is said 
to be closed if the closure operation derives no further elements.  That is, the closure 
operation derives the original set of elements. 

Closure – the set derived upon performing a closure operation on some set.  See Closed 
Set.  

Closure Operation (or Function) – a set operation (or function) that derives additional 
elements resulting in a closed set.  A closure operation, denoted as ″, must be:  

i) monotonic (i.e., X ⊆ Y → X″ ⊆ Y″),  

ii) extensive (i.e., X ⊆ X″), and 

iii)  idempotent (i.e., (X″)″ = X″).   

With respect to FCA, the closure operation for an item set I is defined as f ° g (I) 
where g is a function that identifies set of objects that have a given set of items and f 
is a function that identifies set of items that have a given set of objects.  Dually, the 
closure operation for an object set O is defined as g ° f (O). 

Complete Lattice – a lattice is said to be complete iff there exists a meet and join 
concepts for any two concepts within the lattice. 

Concept Lattice – a complete set of formal concepts derived from a formal context 
together with connections (i.e., edges) between any two concepts C1 and C2 for which 
an order < exists and there does not exist a concept C3 for which C1 < C3 < C2.  Also 
known as a Galois lattice (Barbut, & Monjardet, 1970). 

Confidence – a measure of the degree to which an association rule is meaningful.  For an 
association rule X → Y, confidence is derived by the number of times both X and Y 
occurs in a data set relative to the number of times X occurs. 

Data Set – an organized set of information on a set of entities of the same type.  With 
respect to data mining, a data set is a set of objects where each object has a set of 
attributes.  Also known as a relation in relational database theory.   

Degree of a Lattice – the maximal number of concepts in any upper cover or lower cover 
within the lattice.  The degree of a lattice, expressed as deg(L), is the maximum of 
({|Covl(c)| | c ∈ L} ∪ ({|Covu(c)| | c ∈ L}). 

Dense Data Set – a data set with a large number of items per object and a limited number 
of distinct items. 

Density – a measure of the completeness of a relation.  For a formal context K{I, O, R}, 
the density of R = |R| / (|I| × |O|) where |R| is the total number of items for all 
objects.  
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Descendent Concept – an ancestor of a concept C1 is any concept Cd such that Cd < C1.  
(C1 < Cd in an inverted lattice) 

Extent – the set of objects having a given set of items.  With respect to FCA, the extent of 
a concept is the set of objects.  

Formal Concept – given a formal context K{I, O, R}, a formal concept is a pair of sets 
O ⊆ O and I ⊆ I iff:  

i) O = {o ∈ O | ∀ i ∈ I, oRi} and  

ii) I = {i ∈ I  | ∀ o ∈ O, oRi},  

where oRi denotes object o has item i in relation R. 

Formal Concept Analysis – a branch of applied mathematics that derives theory from the 
definition of formal concepts. 

Formal Context – a tuple K{I, O, R} where I is a set of items, O is a set of objects, and 
R is a relation such that R ⊂ I × O. The relation R identifies the items contained in 
each object.   

Frequent Item Set – an item set whose support meets a specified threshold. 

Horizontal Representation – data within a data set is organized as a list of the objects 
with each object listing its items.  

Iceberg Concept Lattice – the set of concepts of a concept lattice, together with their 
edges, whose cardinality of extent meet a specified minimum support threshold.   

Infimum (inf) – the greatest lower bounds of a set.  In terms of a concept lattice L the 
infimum is the concept Cinf = C ∈ L | C < C′ ∀ C′ ∈ L ∧ C ≠ C′. It is the top concept 
in a concept lattice (bottom concept in an inverted lattice).   

Intent – the set of common items between a set of objects.  With respect to FCA, the 
intent of a concept is the set of items. 

Item Set – a set of items. 

Join – the least common ancestor of two or more concepts.  For any set of concepts 
{(O1, I1), (O2, I2), …, (On, In)}, the lattice will contain concept (∩n

i=1 Oi, 
closure(∪n

Line Diagram – a diagram depicting a concept lattice.  Also known as a Hasse diagram 
(Pemmaraju, & Skiena, 1990). 

i=1 Ii)).  Such concept is the join of (O1, I1), (O2, I2), …, (On, In). 

Join Semi-lattice – a lattice for which only the join between any set of concepts is 
preserved within the lattice. 



19 

 

Lower Cover – a lower cover of an item set I is a set of item sets U such that ∀ Il ∈ U, Il 
⊃ I and there does not exist an item set I2 where Il ⊃ I2 ⊃ I.  With respect to FCA, a 
lower cover is the set of child concepts.  Function Covl(c) is said to map concept c to 
its lower cover.  Also known as the set of immediate successors. 

Maximal Concept – the greatest concept in terms of order > that contains a given item Ii.  
Function ν(Ii) is said to map item Ii to its maximal concept.  Also known as the item 
concept of item Ii. 

Maximal Frequent Item Set – a frequent item set for which there does not exist another 
item set whose items are a superset. 

Minimal Concept – the smallest concept in terms of order > that contains a given object 
Oi.  Function µ(Oi) is said to map object Oi to its minimal concept.  Also known as 
the object concept of object Oi. 

Meet – the greatest common descendent of two or more concepts.  For a set of concepts 
{(O1, I1), (O2, I2), …, (On, In)}, the lattice will contain concept (closure(∪n

i=1 Oi), 
∩n

Support – a measure of the degree to which an association rule is meaningful.  For an 
association rule X → Y, support is derived by the number of times X ∪ Y occurs in a 
data set.  Support can be expressed as an absolute count or as a percentage of the total 
number of tuples in the data set.  Function γ(c) is said to map concept c to its support. 

i=1 Ii).  Such concept is the meet of (O1, I1), (O2, I2), …, (On, In). 

Meet Semi-lattice – a lattice for which only the meet between any set of concepts is 
preserved within the lattice. 

Order > – An order > is said to exist between any two concepts C1 = (O1, I1) and 
C2 = (O2, I2) such that O1 ⊃ O2 (or I1 ⊂ I2). 

Parent Concept – a parent for a concept C1 is any concept Cp such that C1 < Cp and there 
does not exist a concept C2 such that C1 < C2 < Cp (C1 > Cp and C1 > C2 > Cp in an 
inverted lattice).  Operator  in C1  Cp indicates that Cp is a parent of C1.  Also 
known as an upper cover concept, or immediate predecessor. 

Sparse Data Set – a data set with few items per object and a large number of items. 

Sub-lattice – a lattice extracted from another lattice.  A sub-lattice is formed by selecting 
a concept together with all of its ancestors (or decedents).  If the lattice from which a 
sub-lattice is extracted is a complete lattice, the sub-lattice will be a complete lattice. 

Subsume – between two sets Xi and Xj, if Xi ⊂ Xj and closure of Xi = closure of Xj then 
Xj is said to subsume Xi. 

Subsumption Check – given a set of sets X and a new element Xi, a subsumption check 
ensures that Xi is not subsumed by any Xj ∈ X. 
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Supremum (sup) – the least upper bound of a set.  In terms of a concept lattice L the 
supremum is the concept Csup = C ∈ L | C > C′ ∀ C′ ∈ L ∧ C ≠ C′.  It is the bottom 
concept in the concept lattice (top concept in an inverted lattice). 

Trivial Join – a join concept whose extent is ∅ and intent is the set of all items.  The 
trivial join, if present, is the topmost concept in a concept lattice. 

Trivial Meet – a join concept whose extent is the set of all objects and intent is ∅.  The 
trivial meet, if present, is the bottom most concept in a concept lattice. 

Upper Cover – an upper cover of an item set I is a set of  item sets U such that ∀ Iu ∈ U, 
Iu ⊂ I and there does not exists an item set I2 where Iu ⊂ I2 ⊂ I.  With respect to FCA, 
an upper cover is the set of parent concepts.  Function Covu

1.7 Summary of Background and Problem Statement 

(c) is said to map a 
concept c to its upper cover.  Also known as the set of immediate predecessors. 

Vertical Representation – data within a data set is organized as a list of the items with 
each item listing its objects.  

Width of a Lattice – the size of the maximal anti-chain present in the lattice.  The width 
of a lattice, expressed as w(L), = max ({|a| | a ∈ {anti-chains in L}}). 

 

Association rule mining is the task of identifying meaningful implication rules of 

the form X → Y exhibited in a data set.  It has been applied to a wide range of domains 

including basket analysis, intrusion detection, database analysis, geo-spatial decision 

support, medical data analysis, and organization of pages on the World Wide Web.  

Furthermore, association rule theory has extended beyond its original domain to include 

correlations, dependency rules, episodes, sequential patterns, and multi-dimensional 

patterns.  Association rule mining is an important area of knowledge discovery in 

databases and has been an active area of research. 

A majority of research on association rule mining has focused on efficient 

techniques and innovative theory to extract frequent item sets.  This is of itself an 

exponential problem.  As such, techniques like candidate generation and frequency 
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counting may be intractable for even a moderate sized data set.  Thus, research has been 

directed towards the development of efficient algorithms to prune the search space 

through application of theory and specialized compact data structures.  While this 

research has made significant progress over the last fifteen years, it has focus on only part 

of the association rule mining problem: mining frequent item sets.  In addition to 

identifying the set of frequent item sets, the upper covers of each frequent item set are 

needed to generate a set of association rules whose size is constrained to a number that 

can be exploited by an end user.  The identification of upper covers is generally 

considered to be a worst case quadratic problem in terms of the number of frequent item 

sets. 

An alternative to frequent item set mining algorithms can be found in formal 

concept analysis, a branch of applied mathematics.  Given a formal context K composed 

of a set of objects O, a set of items I, and a relation R  ⊂ O × I, formal concept analysis 

derives a set of concepts where each concept is a pair of sets O ⊆ O and I ⊆ I such that  

O = {o ∈ O | ∀ i ∈ I, oRi} and  I = {i ∈ I | ∀ o ∈ O, oRi}.  Furthermore, between any 

two concepts C1 = (O1, I1) and C2 = (O2, I2) an order < is said to exists between C1 and C2 

iff O1 ⊂ O2.  Thus, the concepts derived from K can be arranged into a lattice structure 

by defining a connection between any two concepts C1 and C2 for which order < exists 

and there is no concept C3 for which C1 < C3 < C2.  The result is a concept lattice.  A 

concept lattice does, however, include concepts whose cardinality of O does not meet a 

minimum support threshold and as such may involve an excessive number of concepts.  

An iceberg lattice is a concept lattice whose set of concepts are restricted to those whose 

cardinality of O meets a minimum support threshold. 
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 Iceberg concept lattices are of benefit to mining association rules.  A concept’s 

intent (i.e., set of I) corresponds to an item set and cardinality of extent (i.e., set of O) 

corresponds to its support.  Furthermore, the definition of a concept embodies the 

mathematical notion of closure.  Thus, nodes of the concept lattice represent only closed 

item sets, whose cardinality can be orders of magnitude lower than the cardinality of all 

item sets.  The iceberg concept lattice still contains the necessary and sufficient 

information to extract association rules and to compute both confidence and support, and 

the connections identifying the upper covers.  Furthermore, the alternate notation of an 

iceberg lattice depicted in Figure 1.3 enables association rules to be directly read from an 

iceberg lattice.  This form of iceberg concept lattice can be readily traversed using the 

Duquenne-Guigues basis and Luxenburger basis to generate a set of association rules that 

can be exploited by an end user. 

After a diligent search of literature, only three algorithms to construct an iceberg 

lattice were found; MAGALICE, CHARM-L, and SPROUT.  Given that an iceberg 

concept lattice provides an analysis tool to succinctly identify a basis of association rules, 

this study investigates additional algorithms to construct an iceberg concept lattice.  

Formulation of new algorithms to construct iceberg concept lattices will therefore make a 

contribution to the task of association rule mining.  Beyond this, new efficient algorithms 

to construct concept lattices may provide a contribution to the wide-set of areas where 

formal concept analysis is applied.  
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Chapter 2 

Review of Literature 

 

2.1 Introduction 

Presented in this chapter is an overview of algorithms for association rule mining 

as well as concept lattice construction.  Details of the CHARM (Zaki, & Hsiao, 2002), 

Valtchev, Missaoui, and Lebrun (2000) post-mining lattice construction , GMA (Godin et 

al., 1995), GALICIA-T (Valtchev et al., 2002), CHARM-L (Zaki, & Hsiao, 2005), 

MAGALICE (Rouane et al., 2004), and Valtchev et al. (2003) generic lattice construction 

algorithms are provided since these have high relevance to the objectives of this study.  

CHARM, with its latter CHARM-L, is the only known example of a frequent item set 

miner that has been extended to produce a concept lattice as an integral part of its 

processing.  Post-mining lattice construction is an approach to generate the lattice as a 

subsequent step to frequent closed item set mining.  It, combined with a frequent closed 

item set mining algorithm, will construct an iceberg lattice.  GMA is an often cited 

incremental lattice construction algorithm that is noted for good performance.  

GALICIA-T is an adaption of a lattice construction algorithm specifically for association 

rule mining.  MAGALICE is an extended GMA algorithm that constructs only an iceberg 

lattice.  Lastly, the generic construction algorithm provides a concise statement of the 

tasks to be performed by an incremental lattice construction algorithm. 
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2.2 Classical Association Rule Mining – Mining of Frequent Item Sets 

Since the Apriori algorithm was introduced in 1993, mining of association rules is 

an active area of research.  There have been many proposed improvements to the Approri 

algorithm including (Agrawal & Srikant, 1994, Park et al., 1995,  Brin, Motwani, 

Ullman, & Tsur, 1997b, Dunkel, & Soparkar, 1999, and Shenoy et al., 2000).  These 

algorithms are effective for mining short frequent patterns, but are not viable for mining 

data sets involving long sets (i.e., above 10 to 15 items) (Burdick et al., 2001, Han, & 

Kamber, 2006). 

There have been a number of algorithms developed to address the mining of long 

frequent item sets.  Most notable are Max-Miner (Bayardo, 1998), MAFIA (Burdick et 

al., 2001), CLOSET (Pei et al., 2000), CHARM (Zaki, & Hsiao, 2002), and CLOSET+ 

(Wang et al., 2003).  Max-Minor extracts maximal frequent item sets (i.e., item sets for 

which no frequent superset is present) using a combined top-down bottom-up search.  It 

exploits the property that all subsets of a frequent item set are also frequent to rapidly 

prune the search space.  While it has proved to be efficient, the set of maximal frequent 

item sets do not contain sufficient information to compute confidence.  Like Max-Miner, 

MAFIA is also a maximal frequent item set algorithm.  It employs an alternate data 

structure based on a vertical data representation (i.e., list of object ids per item) and offers 

a compressed bitmap vector format to address memory concerns.  CHARM constructs an 

itemset-tidset (IT) tree whose nodes are similar to the nodes of a concept lattice.  It is a 

top-down, depth-first search that exploits a notion of equivalence classes to skip levels in 

order to quickly identify closed items sets.  It uses intersection and pruning to 

incrementally add data to the IT tree.  Intersection is noted as an expensive operation that 
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impedes the performance of the CHARM algorithm (Wang et al., 2003).  Like MAFIA, 

CHARM involves a vertical data representation.  CHARM addresses memory concerns 

using a difference based representation to enumerate the sets of object ids below the first 

level of its tree.  Alternatively, CLOSET uses a frequent pattern (FP) tree to provide a 

compact representation of the data in memory.  The FP tree is a horizontal representation 

that maintains counts, each relative to a context of an ordered list of frequent items.  Such 

context corresponds to a branch in the FP tree.  Branches are added to the FP tree upon 

processing an object whose items omit one or more items in the path of an existing 

branch.  Following construction of the FP tree, a divide and conquer algorithm that 

performs physical bottom-up projections on the FP tree together with item set merging 

and sub-item set pruning to identify the set of closed frequent items.  Experiments using 

CLOSET proved it effective for dense data sets (i.e., many items per transaction with few 

distinct items), but CLOSET’s performance degrades rapidly on sparse data sets (i.e., few 

items per transaction with many distinct items) as the minimum support threshold is 

lowered.  CLOSET+ offers several enhancements to CLOSET.  A top-down pseudo 

projection algorithm was added to address sparse data sets, item skipping was introduced 

to further prune the search space, and strategies from other algorithms, such as CHARM, 

were incorporated.  CLOSET+ is considered to be a winning algorithm for mining closed 

frequent item sets (Wang et al., 2003).   

All three algorithms, CHARM, CLOSET, and CLOSET+ begin by performing an 

initial scan over the data set to obtain frequency counts for each item.  This initial 

processing is used to discard any items that are not frequent.  The counts are also used to 

define a sort order for the context used to construct the respective tree structures, 
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although a different order is used by each algorithm.  Sorting the items for the context is a 

heuristic to minimize the branches generated during execution of the algorithm and 

thereby improve efficiency (e.g., CHARM sorts by support, see end of Section 2.3 for 

rationale). 

Max-Miner, CHARM, CLOSET, and CLOSET+ algorithms have been 

extensively validated using experiments against real and synthetic data sets.  The data 

sets include a wide variety of characteristics including:  

i) number of tuples ranging from a few thousand to near a million,  

ii) number of items ranging from low hundreds to tens of thousands,  

iii) contain maximal patterns on the order of ten to a hundred and fifty, and  

iv) represent both sparse and dense data.   

Both CHARM and CLOSET+ demonstrate orders of magnitude performance gains over 

Apriori. 

The Max-Miner, MAFIA, CHARM, and CLOSET+ algorithms focus on just 

identifying the frequent item sets through various search and pruning strategies with 

minimal theory drawn directly from FCA.  TITANIC (Stumme et al., 2002), on the other 

hand, is an algorithm for identifying the intents of concepts of an iceberg concept lattice 

using propositions derived directly from FCA.  It is still a level-wise bottom-up search 

and prune algorithm similar to Apriori.  However, its propositions enable:  

i) calculation of counts for some portion of the candidates patterns to be derived 
from the counts obtained at a previous level,  

ii) computation of the closure sets for each candidate patterns at the previous 
level, and  

iii) early pruning of candidate patterns that cannot be key patterns (i.e., a minimal 
set of items used to generate a closure).   
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By leveraging these propositions, the TITANIC algorithm aggressively reduces the 

search space and reduces the number of database scans.  On completion, the algorithm 

reports the set of closure patterns together with their key item sets.  The set of closure 

patterns represent the set of concept intents and therefore the set of closed item sets.  

TITANIC has two variants; one to compute all closure patterns and a second to compute 

the only frequent closure patterns (i.e., intents of concepts from an iceberg concept 

lattice).  The TITANIC algorithm does not construct the lattice.  Relationships between 

the concepts are not identified and therefore not retained. 

Using two public data sets, the performance of the TITANIC algorithm is 

experimentally evaluated by the authors against the Next-Closure algorithm (Ganter, 

1984), an early algorithm for computing closed sets.  Limited results are reported.  No 

comparisons against the leading algorithms for computing closed frequent items sets are 

offered. 

A recent survey provides an analysis of algorithms for closed frequent item sets 

from both a theoretical and analytical viewpoint (Yahia et al., 2006).  Algorithms 

evaluated include CLOSE (Pasquier et al., 1999a), A-CLOSE (Pasquier et al., 1999b), 

TITANIC, CLOSET, CLOSET+, CHARM, Linear time Closed item set Miner (LCM) 

(Uno et al., 2004), and DCI-Closed (Lucchese et al., 2006).  The CLOSE and A-CLOSE 

algorithms are predecessors to TITANIC.  DCI-Closed and LCM are enhancements to 

CHARM to avoid subsumption checking; a step involving a potential exponential 

asymptotic complexity. The survey first formulates the problem of association rule 

mining from a frequent closed item (FCI) set perspective as two steps, namely:  

i) discover the FCI sets together with their keys and upper covers, then  

ii) from the FCIs, keys, and upper covers derive a basis of association rules.   



28 

 

The algorithms evaluated are classified into one of four categories:  

i) “test-and-generate” those using an iterative bottom-up test and generation of 
candidate sets,  

ii) “divide-and-conquer” those that gathers information in a compact 
representation and then recursively analyze sub-contexts to search for FCIs,  

iii) “hybrid” those that use a combination of the previous two, and 

iv)  “hybrid-without-duplication” those that extend the hybrid algorithms with 
techniques to avoid subsumption checks6

CLOSE , CLOSE-A, and TITANIC are classified as test-and-generate, CLOSET and 

CLOSET+ are examples of divide-and-conquer, CHARM is a hybrid, and DCI-Closed 

and LCM are hybrid-without-duplication.  For each category, various characteristics 

including potential for parallelism, storage format (e.g., vertical or horizontal), and 

generated output (e.g., FCIs, keys) are evaluated.   

In addition to the theoretical analysis, the survey presents results from empirical 

evaluation of the algorithms executed against real and synthetic data sets including three 

dense data sets, three sparse data sets, and a manufactured “worst case” data set.  

Experiments are performed over a full spectrum of minimum support thresholds.  Results 

indicate that the divide-and-conquer, hybrid, and hybrid-without duplication exhibit the 

similar runtime performance and memory profiles that are generally within an order of 

magnitude differential.  Divergence in excess of an order of magnitude appeared at lower 

minimum supports.  The test-and-set algorithms, on the other hand, were overall several 

orders of magnitude slower.   

.   

The Yahia et al. (2006) survey draws several conclusions.  There has been 

“frenzied activity” in developing algorithms that efficiently identify the FCI sets.  These 

                                                
6 A subsumption check ensures that the closure of a candidate item set does not equal a previously 
identified closed item set. 
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algorithms have made significant progress by leveraging theory in combination with 

carefully designed compact data structures.  However, this activity has lost sight of the 

overall goal of producing a set of association rules that is “of exploitable size by end 

users”.  All algorithms fail to produce the upper covers and therefore unable to generate a 

reasonable basis of association rules.  Without the upper covers, the derivation of 

association rules from the FCI set of even a modest context will generate an excessive 

number of rules that cannot be reasonably comprehended by end users.  Other studies 

derive the same conclusion (Zaki, 2000, Valtchev, Missaoui, & Godin, 2004, Zaki, & 

Hsiao, 2005, and Lakha & Stumme, 2005). 

2.3 CHARM Algorithm – An Example of Frequent Item Set Mining 

CHARM (Zaki, & Hsiao, 2002) is an efficient algorithm for mining frequent item 

sets within a data set.  It accomplishes this task by identifying only the set of closed 

frequent item sets.  CHARM dynamically constructs and searches an itemset-oidset7

The itemset-oidset search tree is comprised of nodes similar to concepts in that 

each node contains a set of items and a set of object identifiers (ids).  Initially, the sets in 

the tree may not be closed.  For example, the set AD in node {AD45} in Figure 2.1 is not 

closed since there exists nodes {ADC45}, {ADW45}, and {ADCW45} with the same set 

of object ids.  Only node {ADCW45} represents a closed set.  The CHARM algorithm 

thus prunes the itemset-oidset search tree such that only nodes containing closed item sets  

 tree 

shown in Figure 2.1.  By exploiting closed set theory, CHARM prunes branches and 

skips levels within the tree forming a hybrid search that searches both the item set and 

object set search space. 

                                                
7 The CHARM authors use the terminology itemset-tidset (IT) tree.  Itemset-oidset is being used in this 
discussion to maintain consistency with other presentations. 
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Figure 2.1: Itemset-oidset tree used by the CHARM algorithm.  Example taken from 
(Zaki, & Hsiao, 2002). 
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remain.  Pruning is performed dynamically during the construction process.  Each 

remaining node identifies a potential closed set. 

The itemset-oidset tree is constructed in a recursive process.  The first level below 

the root node is constructed using a pass of the data set.  The result is a set of nodes, each 

containing a single item and its set of object ids.  Thereafter, each node is then expanded 

into a set of child nodes by performing a union of item sets together with an intersection 

on object sets for each sibling to the right of the node.  For example, in Figure 2.1 the 

children of node {D2456} are constructed by performing a union of item sets together 

with an intersection on object sets against {T1356} and {W12345}.  This results in 

children {DT56} and {DW245}.  Note that the children will share a common item set 

prefix.  Each child effectively appends another item to the prefix.  Thus, the children are 

said to be in an equivalence class defined by the parent.  If a generated node has an object 

set whose size is less than a specified minimum support threshold, then that node is 

discarded.  Further pruning is achieved by exploiting the following theorem: 

Theorem 2.3.1.  Let Ii × o(Ii) and Ij × o(Ij) be any two members of an equivalence 
class [P], then the following properties hold true: 
 
Property 2.3.1: o(Ii) = o(Ij) → Ii″ = Ij″ = (Ii ∪ Ij)″ 

Property 2.3.2: o(Ii) ⊂ o(Ij) → Ii″ ≠ Ij″, but Ii″ = (Ii ∪ Ij)″ 

Property 2.3.3: o(Ii) ⊃ o(Ij) → Ii″ ≠ Ij″, but Ij″ = (Ii ∪ Ij)″ 

Property 2.3.4: o(Ii) ≠ o(Ij) → Ii″ ≠ Ij″ ≠ (Ii ∪ Ij)″ 

Property 2.3.1 implies that if two children have the same set of objects then every 

occurrence of the first item set can be replaced with the union of the two item sets.  

Furthermore, the second child can be pruned since it derives the same closure.  Property 

2.3.2 implies that if the first child has an object set that is a subset of the other then every 
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occurrence of the first child’s item set can be replaced with the union of the two item sets.  

The second child, however, cannot be pruned since it generates a different closure.  

Property 2.3.3 is similar in implication to property 2.3.2, however, the item set union is 

expressed by adding a child to the first child.  That grandchild will generate a different 

closure.  Since the grandchild expresses the union of item sets, the second child can be 

pruned.  Property 2.3.4 implies that if two children have object sets that are neither equal 

nor a subset of the other, then each child leads to different closures.  Furthermore, a child 

representing the union of the item sets is added to the first child since it leads to its own 

closure.  Further explanation of these properties together with examples are given in 

(Zaki, & Hsiao, 2002). 

The complete CHARM algorithm is given in Algorithm 2.1.  Lines 1 through 3 

initialize the top level equivalence class consisting of the top node and immediate 

children.  A child is created for each item whose set of object ids meets the minimal 

threshold.  After initializing the set of closed item sets to null (line 4), the function 

CHARM-EXTEND is called to extract the closed item sets (line 5). 

CHARM-EXTEND is a recursive function that dynamically builds and prunes the 

itemset-oidset tree.  It is passed a node representing the top of an equivalence class and 

the set of found closed item sets.  CHARM-EXTEND is composed of two nested loops to 

compare and process each pair of child nodes (lines 7 and 8).  Each pair whose 

intersection does not meet the minimum support threshold is ignored (lines 10 and 11).  

Each remaining pair is compared and processed according the properties 2.3.1 through 

2.3.4 (lines 12 through 21).  For properties 2.3.3 and 2.3.4, a grandchild node is created 

and added as a child of the first in the pair (lines 19 and 21 respectively).  If after  
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Let Node be a tuple {I, O, Children} where I is a set of Items, O is a set of objects, and 

Children is a list of other nodes.  A Node forms an equivalence class. 
 
CHARM(K{I, O, R}, MinSupp) 
1. NTop ← new Node(∅, ∅)    // top level equivalence class 
2. for each Ii ∈ I ∧ |o(Ii)| ≥ MinSupp:   // initialize its children 
3.  Add new Node ({Ii}, o(Ii)) to NTop.Children 
4. C ← ∅         // set of closed item sets 
5. CHARM-EXTEND(NTop, C) 
6. return C        // all closed sets 

 
CHARM-EXTEND(NParent, C) 
7. for each NChild ∈ NParent.Children: 
8.  for each NSibiling ∈ NParent.Children  ∧ NSibling is a later sibling of NChild 
9.             I ← NChild.I ∪ NSibling.I 

10.             O ← NChild.O ∩ NSibling.O 
11.             if  |O| ≥ MinSupp:    // threshold check 
12.                   if NChild.O = NSibling.O:   // property 2.3.1 
13.                         Remove NSibling from NParent.Children 
14.                         Replace NChild.I  with I in all Nodes E where NChild.I ⊂ E.I   
15.                   else if NChild.O ⊂ NSibling.O:  // property 2.3.2 
16.                         Replace NChild.I  with I in all Nodes E where NChild.I ⊂ E.I   
17.                   else if NChild.O ⊃ NSibling.O:   // property 2.3.3 
18.                         Remove NSibling from NParent.Children 
19.                         Add new Node (I, O) to NChild.Children in order f 
20.                   else if NChild.O ≠ NSibling.O:   // property 2.3.4 
21.                         Add new Node (I, O) to NChild.Children in order f 
22.        if  NChild.Children ≠ ∅: 
23.               CHARM-EXTEND (NChild, C) 
24.        if  NChild not subsumed in C: 
25.               Add NChild to C 

 
Algorithm 2.1: The CHARM algorithm8

                                                
8 The authors use a different notation.  Notation has been modified to be consistent with notation of this 
report.  Furthermore, authors express lines 12-21 in a separate function CHARM-PROPERTY.  This 
function has been placed in-line for brevity.  

. (Zaki, & Hsiao, 2002) 
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comparing a node with each of its later siblings the node has children, then 

CHARM_EXTEND is called recursively to process the node (lines 22 and 23).  

Furthermore, the node may represent a closed item set, provided its closure is not an item 

set that has been identified in the traversal of a previous branch.  If the item set’s closure 

is equal to an identified closed item set, the then item set is said to be subsumed.  If not 

subsumed, the item set is added to the list of closed item sets (lines 24 and 25). 

When adding children to a node, the CHARM algorithm will maintain the 

children in order of their supports (order f in lines 19 and 21).  The rationale is to 

encounter properties 2.3.1 and 2.3.2 sooner than later.  For both of these properties, a 

child is not generated for the first node.  As a result, fewer levels are processed thereby 

improving performance. 

As a further enhancement, CHARM uses a difference based representation to 

enumerate the sets of object ids below the first level of the itemset-oidset tree.  These sets 

are termed diff sets.  For example, in Figure 2.1 the object id set of {CD2456} which is a 

child of {C123456} will be represented as diff set {1, 3}.  This results in a compact 

representation and improves performance.  Fast determination of superset, subset, 

equality, and inequality is performed using differences operations on diff sets in place of 

intersections on object id sets. 

As the CHARM algorithm proceeds, a closed item set identified in one branch of 

the itemset-oidset tree may be subsumed by a closed item set identified in a previous 

branch.  Therefore, before adding an item set to the set of closed item sets a subsumption 

check against all found closed items sets must be performed.  To avoid comparing each 

item set with each found item set, introducing an O(n2) overall complexity, the found 
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item sets are placed into a hash table using the summation of the oids as the hash 

function.  This hash function will leverage the fact that an item set will subsume item sets 

that has the same set of oids.  Thus, the subsumption check can be performed in O(1), 

resulting in an O(n) overall complexity. 

2.4 Post Mining Lattice Construction – Valtchev, Missaoui, and Lebrun Algorithm 

An approach to completing the association rule mining problem is to use a closed 

frequent item set mining algorithm, such as CHARM, as the first part of a two step 

process.  Then, subsequently use a lattice construction algorithm to generate the upper 

covers of each closed item set to form the lattice.  Valtchev, Missaoui, and Lebrun (2000) 

(VML) offer an efficient algorithm for such purpose. 

Concepts in the VML algorithm are tuples consisting of intent, parent list, and 

child list.  The parent and child lists identify the upper and lower covers respectively.  

Initially, the parent and child lists of all concepts are empty.  The objective of the VML 

algorithm is to organize a set of concepts into a lattice by populating the parent and child 

lists of each concept.  VML algorithm asserts that the list of concepts can be first sorted 

into {C1, C2, …, Cn} such that the incremental insertion of concept Ci will only update 

the parent-child links between Cprior and Ci where prior < i (i.e., Cprior has already been 

linked into the lattice).  Of the concepts linked into the lattice, there exists a subset that 

does not have any children.  This subset forms an anti-chain (i.e., all concepts are 

mutually incomparable) that is the lower border of the lattice.  This set, denoted as 

Border, is used to identify the parents for the next concept Ci.  If for a concept CBorder ∈ 

Border, CBorder.Intent ∩ Ci.Intent = CBorder.Intent then CBorder is a parent of Ci.  However, 

this may not identify all of the parent concepts.  The missing parent concepts may be 
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“shadowed” by concepts in the Border.  If a concept CBorder ∈ Border shadows a parent 

Cparent then Cparent.Intent ⊂ CBorder.Intent.  Thus, Cparent.Intent ∩ CBorder.Intent ∩ Ci.Intent ≠ 

∅.  In such case, Cparent is the ancestor of CBorder where Ci.Intent ∩ CBorder.Intent = 

Cparent.Intent.  Thus, a set Candidates = {CBorder | CBorder ∈ Border ∧ CBorder.Intent ∩ 

Ci.Intent} can be used to identify the parents of Ci.  However, the candidate set could 

contain concepts that identify the same parent concept, or identify parent concepts that 

are actually ancestors of the true parent concepts.  These cases are the result of join 

concepts existing between the candidates.  The processing of each candidate individually 

can lead to violating the lattice connection property (i.e., a connection is made between 

any two concepts C1 and C2 for which order < exists and there is no concept C3 for which 

C1 < C3 < C2).  This problem can be remedied by removing from the candidates those 

concepts that do not have a maximal intent with respect to the other candidates.  After 

purging the non-maximal concepts, the candidate set will itself form an anti-chain. 

Algorithm 2.2 provides the complete VML algorithm.  Following the sort of 

concepts (line 1), both the lattice and Border set are initialized with the first concept 

(lines 3 and 4).  The remaining concepts are then incrementally inserted (lines 5 through 

13).  Lines 6 through 8 identify the concepts in the Border that have an intersection with 

then next concept’s intent.  Such concepts together with their intersection sets are added 

as tuples to the Candidates set.  The set of Candidate tuples are then purged of any non 

maximal intersection sets (line 9).  Each remaining tuple in Candidates is used to identify 

a parent to be linked to the new concept (lines 10 through 13).  After adding a link 

between each identified parent and the new concept, the Border set is updated by  
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Let Concept be a tuple {Intent, Parents, Children} where Intent is the intent of a 

concept, Parents is a list of parent concepts, and Children is a list of child concepts. 
  
HASSE(C)     // C is a set concepts 

1. Sort(C)           // sort by |Intent| is sufficient 
2. CFirst ← First C ∈ C    // first concept in C 
3. L ←CFirst          // the  lattice 
4. Border ← {CFirst}     // anti-chain of minimal concepts 
5. for each Ci ∈ C past CFirst: 
6.       Candidates ← ∅    // set of tuples {Ci, Intersect} 
7.  for each CBorder ∈ Border ∧ CBorder.Intent ∩ Ci.Intent ≠ ∅: 
8.             Add {CBorder, CBorder.Intent ∩ Ci. Intent} to Candidates 
9.       Candidates ← MAXIMA(Candidates)    // purges non maximal candidates 

10.  for each Yi ∈ Candidates:    // find and link parents 
11.   CParent ← FIND-CONCEPT(Yi.Ci, Yi.Intent) 
12.   Add parent-child link between CParent and Ci 
13.  Border ← (Border – Ci.Parents) ∪ {Ci} 
14. return L 

 
MAXIMA(Candidates)   // Candidates is a set of tuples {Ci, Intersect} 
15. Sort(Candidates)      // sort by |Intersect| is sufficient 
16. MaxIntersects ← ∅ 
17. for each Yi ∈ Candidates: 
18.  if ¬∃ YMax ∈ MaxIntersects | Yi.Intersect ⊂ YMax.Intersect: 
19.   Add Yi to MaxIntersects 
20. return MaxIntersects 

 
FIND-CONCEPT(Ci, Intent)     
21. while Ci.Intent ≠ Intent: 
22.  for each CParent ∈ Ci.Parents: 
23.   if Intent ⊆ CParent.Intent: 
24.    Ci ← CParent 
25.    break out of for each 
26. return Ci 

  
Algorithm 2.2: The Valtchev, Missaoui, and Lebrun lattice construction algorithm. 
(Valtchev et al., 2000) 
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replacing all the parents of the new concept with the new concept.  After all concepts 

have been inserted, the lattice is returned (line 14). 

It is sufficient to sort the concepts (line 1) in the order of increasing size of intent, 

since a child concept must have a larger intent.  Concepts with the same size intent are 

mutually incomparable.  Given this, the sort can be accomplished in linear time.  The sort 

simply arranges the concepts into an array of bucket lists using the intent size as an index, 

and then concatenates the buckets.  The overall asymptotic complexity of the VML 

algorithm is O(l w(L)2 m), where l = |L|, w(L) = width of lattice L, and m = |I|.  An 

improved version achieves O(l w(L) deg(L) m), where deg(L) = degree of lattice L. 

2.5 Incremental Lattice Construction – Missaoui, Godin, and Alaoui Algorithm 

Missaoui, Godin, and Alaoui (1995) algorithm (GMA) is a concept lattice 

construction algorithm that is often cited in literature.  It is an incremental algorithm.  

That is, given a concept lattice L and a new object Oi with its set of items I, the GMA 

algorithm will insert the new object into the lattice and produce a new concept lattice L+.  

Figure 2.2 depicts the incremental insertion of the first six objects relation R of Figure 

1.1.  The bold text and lines identify the changes to the lattice as a result of inserting the 

next object.  The dashed line indicates a link that is removed.  As can be seen in Figure 

2.2, the insertion of an object can result in modifying the extent of several existing 

concepts, generation of several new concepts, addition of links, and occasional removal 

of links.  The insertion of a single object may result in numerous modified concepts and 

the addition of many new concepts. 

The general strategy for the GMA algorithm is to partition the current concepts in 

the lattice into three groups: modified, generator, and old.  Modified are concepts into  



39 

 

 

 

R
   

  A
  B

  C
  D

O
1

a 1
b 1

c 3
d 1

O
2

a 1
b 1

c 1
d 2

O
3

a 1
b 2

c 1
d 1

O
4

a 1
b 2

c 1
d 4

O
5

a 1
b 2

c 1
d 1

O
6

a 2
b 2

c 1
d 2

In
se

rti
ng

 O
1

({
O

1}
,{a

1b
1c

3d
1}

)

In
se

rti
ng

 O
2

(∅
,{a

1b
1c

1c
3d

1d
2}

)G

({
O

1}
,{a

1b
1c

3d
1}

)G
({

O
2}

,{a
1b

1c
1d

2}
)

({
O

1O
2}

,{a
1b

1}
)

In
se

rti
ng

 O
3

(∅
,{a

1b
1b

2c
1c

3d
1d

2}
)G

({
O

1}
,{a

1b
1c

3d
1}

)G
({

O
2}

,{a
1b

1c
1d

2}
)G

({
O

1O
2}

,{a
1b

1}
)G

({
O

3}
,{a

1b
2c

1d
1}

)

({
O

1O
2O

3}
,{a

1}
)

({
O

1O
3}

,{a
1d

1}
)

({
O

2O
3}

,{a
1c

1}
)

In
se

rti
ng

 O
4

(∅
,{a

1b
1b

2c
1c

3d
1d

2d
4}

)G

({
O

1}
,{a

1b
1c

3d
1}

)
({

O
2}

,{a
1b

1c
1d

2}
)

({
O

1O
2}

,{a
1b

1}
)

({
O

3}
,{a

1b
2c

1d
1}

)G

({
O

1O
2O

3O
4}

,{a
1}

)m

({
O

1O
3}

,{a
1d

1}
)

({
O

2O
3O

4}
,{a

1c
1}

)m ({
O

4}
,{a

1b
2c

1d
4}

)

({
O

3O
4}

,{a
1b

2c
1}

)

 
 
Figure 2.2: Progression of incremental object insertion into a concept lattice.  Bold text 
indicates new concepts, inserted items or inserted objects, G a generator concept, m a 
modified concepts, and dashed lines are removed links. 
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Figure 2.2 continued: Progression of incremental object insertion into a concept lattice.  
Bold text indicates new concepts, inserted items or inserted objects, G a generator 
concept, and m a modified concepts. 
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which the object id of the next object is added.  In Figure 2.2, these are denoted with an 

m superscript.  Generators are concepts are used to generate new concepts.  These are 

denoted with a G superscript.  All other concepts are considered old.  Old concepts play 

no role in the insertion process.  They are not changed, are not used to generate concepts, 

and cannot become a parent or a child of a new concept.  Modified concepts are readily 

identified.  The concepts with an intent that is a subset of the next object’s items will 

become modified. The identification of generator concepts, on the other hand, is more 

involved.  Any concept whose intent intersects with, but not a subset of, the object’s 

items is potentially a generator.  However, not all such concepts are generators.  A 

concept is not a generator if there exists an ancestor concept whose intent when 

intersected with the next object’s items produces the same intersection set.  For example, 

when inserting O6 in Figure 2.2 the concepts ({O3O4O5}, {a1b2c1}), ({O3O5}, {a1b2c1d1}), 

and ({O4}, {a1b2c1d4}) all have an intersection set of {a1c1}, but only 

({O3O4O5}, {a1b2c1}) is a generator.  It is an ancestor of the other two.  This 

identification of a generator concept is expressed in Proposition 2.5.1.  Each generator 

concept thus creates a new concept having the extent of the generator union the object id 

as its extent and the intersection set as its intent. 

Proposition 2.5.1:  if (Ox, Ix) = inf {(Oy, Iy) ∈ G | Ix = Iy  ∩ I)} for some set I and 
there does not exist a concept (Oz, Iz) | Iz = I, then (Oy, Iy) is a generator for a 
concept (Ox, Ix) | Ox = Oy ∪ {O} and Oy = Iy ∩ I. 
 

In addition to creating a concept, the new concept must be linked into the lattice.  

Each generator concept will be a child of the concept it generated.  The new concept must 

be further linked into the lattice by searching for its parents.  A potential parent is any 

concept, existing or generated, whose intent is a subset of the new concept’s intent.  In 
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order to preserve the lattice property that a connection exists between two concepts C1 

and C2 provided C1 < C2 and there is no concept C3 for which C1 < C3 < C2, the potential 

parent is a parent only if it does not have a child whose intent is a subset of the new 

concept.  The search for potential parents can be constrained to only consider concepts 

that are modified or generated.  Occasionally a link between a parent and a child must be 

removed.  This occurs when a parent for a concept is found and that parent is currently 

the parent of the generator concept that created the new concept.  An example is the 

insertion of object O4 shown in Figure 2.2.  In these cases the new object is being inserted 

between the parent and the generator.  The removal of the link is required to preserve the 

lattice connection property. 

The complete GMA algorithm is given in Algorithm 2.3.  Lines 1 and 2 bootstrap 

the concept lattice and are only executed upon the insertion of the first object.  For the 

first object, the lattice is initialized with a concept whose extent is the object id and intent 

is the object’s items.  Lines 4 through 10 are pre-steps to the insertion process to ensure 

that the bottom concept in the lattice accounts for all the items of the object.  If the next 

object introduces items that are not presently in the lattice, those items must first be 

inserted to the intent of the bottom concept.  A special case exists when the bottom 

concept has a non-empty extent.  The new items cannot be inserted into that concept.  To 

do so would change the set of items for each object recorded in the extent of the bottom 

concept.  To handle this case, a new bottom concept is generated. 

Line 12 defines a Processed list.  This list will contain references to the modified 

and generated concepts of the current incremental insertion.  The Processed list provides 

a means to validate that a concept is indeed a generator and to limit the search for parents.   
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Let Concept be a tuple {O, I, Children} where O is a set of object ids, I is a set of items, 
and Children is a list of child concepts. 

 

Let CBottom be the supremum of a concept lattice G, G contains a reference to all concepts  
 

ADD(Oi, I)       // Add object Oi together with its set of items I 
1. if CBottom = Ø:            // special case of empty lattice 
2.  CBottom ←  new Concept ({Oi}, I) 
3. else: 
4.  if  I ⊄ CBottom.I:                       // check for items not in the lattice 
5.   if  CBottom.O = Ø:                // a generated bottom 
6.    CBottom.I ← CBottom.I ∪ I 
7.   else:                                       // generate the new bottom 
8.    CNew ← new Concept (Ø, I)    
9.    Add CNew to CBottom.Children 

10.    CBottom ← CNew 
11.  
12.  Processed ← Ø     // a vector of sets of concepts indexed by the cardinality 
13.       // of each intersection set 
14.  for each Ci ∈ G in ascending |I| order: 
15.   if Ci.I ⊆ I:            // modified concept 
16.    Add Oi to Ci.O 
17.    Add Ci to Processed[|Ci.I|]   // possible parent 
18.    if Ci.I = I:                  // no more processing needed? 
19.      return                    
20.   else:                           // existing concept 
21.    Intersect ← Ci.I ∩ I 
22.          // intentionally left blank 
23.    if ¬∃ Cj ∈ Processed[|Intersect|] | Cj.I = Intersect:  // Cj a generator? 
24.     CNew ← new Concept (Ci.O ∪ {Oi}, Intersect) 
25.     Add CNew to Processed[|Intersect|] 
26.     Add Ci to CNew.Children       // modify edges  
27.     for each Ck ∈ Processed ∧ |Ck.I| < |Intersect|:    
28.      if Ck.I ⊂ Intersect:             // is Ck a potential parent of CNew? 
29.       Parent ← TRUE 
30.       for each CChild ∈ Ck.Children ∧ Parent = TRUE: 
31.        if CChild.I ⊂ Intersect: 
32.         Parent ←FALSE 
33.       if Parent = TRUE: 
34.        if Ci ∈ Ck.Children:  
35.         Remove Ci from Ck.Children  
36.        Add CNew to Ck.Children  
37.     if |Intersect| = |I|:  // last valid generator ? 
38.      return    // no more work to do 

Algorithm 2.3: Godin, Missaoui, and Alaoui lattice construction algorithm. (Godin et al., 
1995) 



44 

 

The Processed list is organized as a vector of concepts sets.  The size of intent is used to 

index a given set.  Thus, each set in the Processed list contains concepts whose 

cardinality of intent are the same.  To validate a potential generator, only the set whose 

size of intent is the same as the size of an intersection set will be searched to ensure the 

real generator has not already been found and processed.   

Lines 14 through 38 provide the main loop to insert the next object.  All concepts 

currently in the lattice are processed in the order of the size of their intents.  This order 

will ensure that valid generator concepts are processed first and that all potential parents 

for a new concept will exist in the Processed list at the time of inquiry.  Line 15 tests if a 

concept of the lattice is a modified concept.  If so, the next object’s id is added to the 

modified concept’s extent and the modified concept is added to the list of Processed 

concepts (lines 16 and 17).  If a concept’s intent is equal to the next object’s items, then 

there are no further generator concepts or modified concepts to be found.  Thus the 

algorithm exits (lines 18 and 19).  If a concept in the lattice is not a modified concept, 

then it is an existing concept that is either a generator or old.  Lines 21 and 23 provide the 

predicate to identify generator concepts.  Old concepts are ignored.  For each generator 

concept, a new concept is generated (line 24).  The new concept is added to the Processed 

list and as a parent to the generator concept (lines 25 and 26).  Lines 27 through 36 then 

search the Processed list for potential parents.  A potential parent is a concept whose 

intent is a subset of the new concept’s intent (line 28).  A potential parent is a parent 

provided it does not have a child concept whose intent is a subset of the new concept 

(lines 29 through 32).  If the potential parent is indeed a parent, then the parent is linked 

to the new concept (line 36).  If the parent has the generator concept as a child then the 
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link between the parent and the generator concept is removed (lines 34 and 35).  Lastly, 

lines 37 and 38 provide exit from the function on processing the generator that generates 

the concept with intent equal to the next object’s items.  There will be no valid generators 

beyond this concept.  Therefore, there is no more work to do. 

2.6 Applying FCA to Association Rule Mining – GALICIA-T Algorithm  

GALICIA-T (Valtchev et al., 2002) is an enhanced GMA algorithm adapted 

specifically for generating frequent items sets.  It uses a trie data structure (Knuth, 1998) 

to represent the set of concept intents.  A trie is a tree based data structure that provides a 

compact representation by sharing common prefixes along branches and enables efficient 

search, insertion, and set operations.  Each edge denotes the addition of an item in the 

item set.  Figure 2.3 provides an example of the GALICIA-T trie data structure after 

inserting the first three objects in relation R (middle left), and after inserting the fourth 

object (middle right).  The lattices depicted at the top and bottom of Figure 2.3 

correspond to left and right tries respectively.  The lattices, as shown, are provided for 

illustrative purposes and are not part of the GALICIA-T data structure.  Each filled-in 

circle in the trie corresponds to a concept in the lattice.  Theses nodes are augmented by a 

support count (shown at the northwest position on the circle), and list of lower covers 

(not shown, but can be determined from examination of the corresponding lattice).  

Object ids are not stored in the GALICIA-T data structure. 

Given a concept lattice whose item sets, supports, and lower covers are expressed 

in a trie as described, the GALICIA-T algorithm inserts the next object into the lattice 

through a guided traversal that produces an independent trie data structure.  The 

generated trie represents a set of new concepts.  An example is depicted in the center of  
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R     A  B  C  D
O1 a1 b1 c3 d1
O2 a1 b1 c1 d2
O3 a1 b2 c1 d1
O4 a1 b2 c1 d4

1

Lattice after
inserting O3

(∅,{a1b1b2c1c3d1d2d4})

({O1},{a1b1c3d1}) ({O2},{a1b1c1d2})
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({O1O2O3},{a1})
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d2
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c1
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d1

d1
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2

1 1 1

22

a1

b2

c1

d11

2

Trie after
inserting O3 a1

b1 b2

c1

d2

c3

d1

c1

c1

d1

d1

d4

4

2

1

2

1 1

3 2

Merged trie after
inserting O4

New trie from
inserting O4

Lattice after
inserting O4

(∅,{a1b1b2c1c3d1d2d4})

({O1},{a1b1c3d1}) ({O2},{a1b1c1d2})

({O1O2},{a1b1})

({O3},{a1b2c1d1})

({O1O2O3O4},{a1})

({O1O3},{a1d1}) ({O2O3O4},{a1c1})

({O4},{a1b2c1d4})

({O3O4},{a1b2c1})

 
 

Figure 2.3: Trie data structure used by the GALICIA-T algorithm.  The trie data structure 
before and after inserting object O4 is depicted in the center.  Edges identify an item.  
Filled circles correspond to concepts.  Open circles are just nodes on the path identifying 
an item set.  Each node corresponding to a concept is augmented by its support count 
(shown at the northwest position on the circle), and list of lower covers (not shown).  
Lattices at the top and bottom correspond to the trie structure and are provided of 
illustrative purposes only.  Object ids are not stored in the trie structure.  
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Figure 2.3.  The object’s intent is used to guide the traversal and both the trie child links 

and lower cover links are utilized accordingly.  If a terminal node is encountered during 

the traversal, its support is incremented.  The resulting trie data structure is then merged 

into the source trie to produce a new trie representing the incremented lattice.   

GALICIA-T was evaluated by the authors against the CLOSET algorithm.  

CLOSET outperforms GALICIA-T by a near two orders of magnitude.  However, the 

authors argue that GALICIA-T enables incremental insertion and thus offers a 

performance gain.  The cost of adding an incremental set of objects using GALICIA-T is 

lower than the cost of processing an entire data set by CLOSET.  Valtchev et al. note a 

shortcoming with GALICIA-T: the approach requires generation the entire set of 

concepts including those infrequent with respect to cardinality of extent. 

2.7 Frequent Item Set Mining with Lattice Construction – CHARM-L Algorithm 

The CHARM algorithm presented earlier extracts the set of close frequent item 

sets from a data set without deriving the upper and lower covers.  Zaki and Hsiao (2005) 

acknowledge that upper or lower covers are essential to efficient mining of association 

rules.  Furthermore, they cite that a post-mining lattice construction algorithm can result 

in an O(|L|2) asymptotic complexity, from (Nourine, & Raynaud, 1999).  Zaki and Hsiao 

thus offer an enhanced algorithm, CHARM-L, to dynamically construct the lattice as the 

closed item sets are discovered.   

The lattice of the CHARM-L algorithm is maintained as a separate data structure 

from the CHARM itemset-oidset tree.  When the core CHARM processing identifies a 

new frequent closed item set, CHARM-L will insert the item set into the lattice as a child 

of the concept corresponding to the parent node in the itemset-oidset tree.  What remains 
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is to identify concepts already in the lattice that are to become children of the new 

concept.  These children were added to the lattice as a result of processing previous 

branches in the tree.  To quickly identify these children, the nodes in the tree are 

augmented with a list of concept ids representing the concepts whose intersection of item 

sets equals the node’s item set.  A concept id is uniquely assigned to each concept as it is 

created.  Thus, when a grandchild node is created from a child and sibling nodes, the set 

of concept ids for the grandchild is created by intersecting the concept ids of the child and 

sibling nodes.   

Algorithm 2.4 provides the CHARM-L algorithm.  It is essentially the same as 

Algorithm 2.1 except that a reference to a concept in the lattice is used in place of a set of 

closed item sets (lines 4, 5, 6 and 25).  The nodes in the itemset-oidset tree also maintain 

a list of concept ids (lines 3, 11, 20, 22, and 27).  Lastly, a call to function 

SUBSUMPTION-CHECK-LATTIC-GEN is made in place of the previous hash based 

subsumption check (line 23).  This function will perform the subsumption check and if 

not subsumed, insert a new concept into the lattice.  The call is moved ahead of the 

recursive call to CHARM-EXTEND, since the concept returned from SUBSUMPTION-

CHECK-LATTIC-GEN is passed to CHARM-EXTEND.   

The algorithm for SUBSUMPTION-CHECK-LATTIC-GEN is given in 

Algorithm 2.5.  SUBSUMPTION-CHECK-LATTIC-GEN is passed a concept in the 

lattice representing a parent and an itemset-oidset node representing a candidate closed 

item set.  The node’s list of concept ids is used to lookup the corresponding set of 

potential child concepts (line 1).  If the support of any potential child concepts = |O| of 

the node, then the node is subsumed (line 2).  In such case, the parent concept is returned.  
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Let Node be a tuple {I, O, CIDS, Children} where I is a set of Items, O is a set of 
objects, CIDS is a set of concept ids, and Children is a list of child nodes.  A 
Node forms an equivalence class. 

 
Let Concept be a tuple {I, Supp, Parents, Children, CID} where I is a set of Items, Supp 

is the support of the concept, Parents is a list of parent concepts, Children is a list 
of child concepts, and CID a concept id (uniquely assigned on creation).   

 
CHARM(K{I, O, R}, MinSupp) 
1. NTop ← new Node(∅, ∅, ∅)    // top level equivalence class 
2. for each Ii ∈ I ∧ |o(Ii)| ≥ MinSupp:   // initialize its children 
3.  Add new Node ({Ii}, o(Ii), ∅) to NTop.Children 
4. CTop ← new Concept(∅,∅)    // the lattice 
5. CHARM-EXTEND(NTop, CTop) 
6. Return CTop       // lattice w/all closed sets 

 
CHARM-EXTEND(NParent, CParent) 
7. for each NChild ∈ NParent.Children: 
8.  for each NSibiling ∈ NParent.Children  ∧ NSibling is a later sibling of NChild: 
9.             I ← NChild.I ∪ NSibling.I 

10.             O ← NChild.O ∩ NSibling.O 
11.   CIDS ← NChild.CIDS ∩ NSibling.CIDS 
12.             if |O| ≥ MinSupp:    // threshold check 
13.                   if NChild.O  = NSibling.O:   // property 2.1 
14.                         Remove NSibling from NParent.Children 
15.                         Replace NChild.I  with I in all Nodes E where NChild.I ⊂ E.I   
16.                   else if NChild.O ⊂ NSibling.O:   // property 2.2 
17.                         Replace NChild.I  with I in all Nodes E where NChild.I ⊂ E.I   
18.                   else if NChild.O ⊃ NSibling.O:   // property 2.3 
19.                         Remove NSibling from NParent.Children 
20.                         Add new Node (I, O, CIDS) to NChild.Children in order f 
21.                   else if NChild.O ≠ NSibling.O:   // property 2.4 
22.                         Add new Node (I, O, CIDS) to NChild.Children in order f 
23.       CNew  ← SUBSUMPTION-CHECK-LATTIC-GEN(CParent, NChild) 
24.  if  NChild.Children ≠ ∅: 
25.        CHARM-EXTEND (NChild, CNew) 
26.  if CNew ≠ CParent: 
27.   Add CNew.CID to CIDS of appropriate nodes 

 
Algorithm 2.4: The CHARM-L algorithm9

                                                
9 The authors use a different notation.  Notation has been modified to be consistent with notation of this 
report.  Furthermore, authors express lines 12-22 in a separate function CHARM-PROPERTY.  This 
function has been placed in-line for brevity.  Lines 26 and 27 are expressed in the original algorithm at the 
top of the outer loop as a call to a function UPDATE-C.  Algorithm for UPDATE-C is not provided by the 
authors and its details are unclear. 

.  (Zaki, & Hsiao, 2005) 
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SUBSUMPTION-CHECK-LATTIC-GEN(CParent, NChild) 
1. C ← {Ci | Ci ∈ AllConcepts ∧ Ci.CID ∈ NChild.CIDS} // lookup concepts by CID 
2. if  ∃ Ci ∈ C | Ci.Supp = |NChild.O|:   
3.  return CParent     // NChild is subsumed 
4. CNew ← new Concept (NChild.I, |NChild.O|)   // not subsumed, create the concept 
5. Add link between CParent and CNew   // add new as a child 
6. for each CChild ∈ C ∧ CChild is Minimal: // adjust parent-child links 
7.  Add parent-child link between CNew and CChild  
8.  for each CChildParent ∈ CChild.Parents ∧ CChildParent.I ⊂ CNew.I: 
9.   Remove link between CChildParent and CChild 

10. return CNew 
 

Algorithm 2.5: The CHARM-L subsumption check algorithm10

The performance CHARM-L algorithm is evaluated using empirical tests against 

six of the commonly used benchmark data sets.  CHARM-L is compared against 

CHARM and a post-FCI mining lattice construction algorithm.  CHARM-L exhibits a 

small degradation in performance when compared to CHARM.  The amount of 

degradation increases as the support is lowered.  When compared to post-lattice 

construction, CHARM-L demonstrates significant gains in excess of two orders of 

. 
 
 
If not subsumed, a new concept is created and added as a child of the parent concept (line 

4 and 5).  Of the potential child concepts, only the minimal concepts represent true 

children.  These are added as children to the new concept (lines 6 and 7).  This may result 

in existing edges now violating the lattice connection property.  Thus, for each parent 

concept CChildParent of a concept CChild added as a child of the new concept, the parent-

child link is removed when the intent of CChildParent ⊂ the new concept’s intent (lines 8 and 

9).  Finally, the new concept is returned.  It will be used in the recursive call to CHARM-

EXTEND.  

                                                
10 The authors use a different notation.  Notation has been modified to be consistent with notation of this 
report. 
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magnitude.  The separation in performance increases dramatically as the support is 

lowered. 

2.8 Adding Iceberg Processing to Lattice Construction – MAGALICE Algorithm 

MAGALICE (Rouane et al., 2004) is an extension of an GMA based algorithm to 

enable incremental construction of an iceberg concept lattice.  That is, given an iceberg 

lattice L α 11

The MAGALICE algorithm relies on a strong cardinality property that the extent 

of a jumper meets the minimum support threshold, yet its extent less object Oi does not.  

Thus, the cardinality of extent of all jumpers will equal the minimum support threshold.  

Furthermore, the parents of a jumper will already exist in the lattice prior to insertion and 

upon insertion of Oi will be modified to include Oi.  Thus, the MAGALICE algorithm 

will limit its search for concepts that generate jumpers to those where Oi has been added.  

These concepts are called visible.  A visible concept may generate a jumper for each item 

Ii ∈ of the new object’s items, when the extent of the visible concept intersects the full 

extent of item Ii derived from the data set yields a new extent that meets the minimum 

support threshold.  The new extent will be the extent for a jumper.  The jumper’s intent 

will contain the visible concept’s intent union {Ii}.  However, the intent may be 

 and a new object O, MAGALICE will insert the new object into the lattice 

producing L α+.  After inserting an object using a GMA based algorithm, concepts that do 

not meet the minimum support threshold are discarded.  Thus, the challenge is to 

regenerate concepts for extent intent pairs that were previously discarded that now meet 

the minimum support threshold as a result of adding object Oi.  Such concepts are called 

jumpers.   

                                                
11 An underline with α superscript denotes an iceberg lattice with a minimum support threshold of α. 
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incomplete since additional items, yet to be processed in the new object’s items, may 

generate the same extent.  Thus, the extent intent pair is held in a temporary set until 

processing of all items of the new object is complete. 

When iterating over the items of the new object, some of the items do not need to 

be tested.  Clearly, any item Ii ∈ the visible concept’s intent will not generate a new 

extent.  Furthermore, a Ci ∈ child of the visible concept will not generate a new extent 

that meets the minimum support threshold.  Omitting these items from the iteration will 

eliminate unneeded intersections and thereby improve performance12

                                                
12 The authors provide additional tests to eliminate additional items.  

.   

The MAGALICE algorithm is provided in Algorithm 2.6.  The ADD-OBJECT 

function provides the incremental insertion of a new object into an iceberg concept 

lattice.  It first calls the ADD-OBJECT function of the underlying insertion algorithm to 

insert the object without regard to the minimum support (line 1).  Post insertion 

processing then removes any concepts whose support does not meet the threshold from 

the lattice (lines 2 through 4).  Lastly, a function FIND-FREQUENT-LOWER-COVERS 

is called to generate and add the jumpers (line 5). 

The FIND-FREQUENT-LOWER-COVERS function begins by defining a set, 

denoted as Jumpers, to keep track of generated jumpers and then extract the set of visible 

concepts from the lattice (lines 6 and 7).  The visible concepts are sorted by descending 

support to enable search and generation of jumpers from the bottom-up (line 8).  The 

visible concepts are then processed.  For each visible concept set of extent intent pairs, 

denoted as Candidates, is defined (line 10).  Furthermore, a set of items, denoted as Pool, 

is initialized to the new object’s items less the intent of the visible concept or any of its  
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Let Concept be a tuple {O, I, Children} where O is a set of object ids, I is a set of items, 

and Children is a list of child concepts. 
 
ADD-OBJECT(G, Oi, I)   // Add object Oi together with its set of items I to lattice G 

1. MGA-ADD-OBJECT(G, Oi, I)   // add Oi using MGA based algorithm 
2. for each Ci ∈ G: 
3.  if |Ci.O| < MinSupp: 
4.   Remove Ci from G 
5. FIND-FREQUENT-LOWER-COVERS(G, Oi, I) 

 
FIND-FREQUENT-LOWER-COVERS(G, Oi, I) 

6. Jumpers ← Ø     // set of jumper concepts 
7. V ← {C ∈ G | Oi ∈ C.O}      // get the visible concepts 
8. Sort(V) by descending |I| 
9. for each Ci ∈ V: 

10.  Candidates ← Ø   // set of tuples {O, I} 
11.  Th ← Ci.I     // set of items accounted for 
12.  for each CChild ∈ Ci.Children: 
13.   Th ← Th ∪ CChild.I 
14.  Pool ← I – Th    // set of items to be processed 
15.  for each Ii ∈ Pool: 
16.   Extent ← Ci.O ∩ o(Ii)    // o(Ii) is the set O derived from relation R 
17.   if |Extent| = MinSupp:   // now meets the minimum support? 
18.    CJumper ← Ci ∈ Jumpers ∧ Ci.O = Extent 
19.    if CJumper ≠ ∅:  // jumper was previously created 
20.     Add  CJumper to Ci.Children 
21.     Pool ← Pool − CJumper.I 
22.    else: 
23.     Candidate ←P ∈ Candidates ∧ P.O = Extent 
24.     if Candidate ≠ ∅:   // candidate was previously created 
25.      Add Ii to Candidate.I 
26.     else:  
27.      Add {Extent, Ci.I ∪ {Ii}} to Candidates 
28.  for each Candidatei ∈ Candidates:  
29.   CNew ← new Concept(Candidatei.O, Candidatei.I) 
30.   Add CNew to Ci.Children 
31.   Add CNew to Jumpers    

 
Algorithm 2.6: The MAGALICE algorithm13

                                                
13 At line 13, the authors include additional sets of items that do not need to be tested.  Statements to derive 
these sets have been omitted for brevity.  At line 17 the authors use a relative minimal support test instead 
of an absolute support test.   
 

.  (Rouane et al., 2004) 
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children (lines 11 through 14).  Each item in the Pool may potentially generate a jumper.  

For each item in Pool, a candidate extent is generated (line 16).  The candidate extent is 

tested to see if it meets the minimum support (line 17).  If so, the candidate extent will 

generate a jumper provided it has not previously been encountered.  Thus, the set of 

Jumpers is first examined.  If there exists a jumper with the same extent, then that jumper 

will become a child of the visible concept (line 20).  The items in the jumper’s intent can 

be removed from the Pool since processing those items will identify the same jumper 

(line 21).  If a jumper is not found, the set Candidates is examined.  If there exists a 

candidate having an extent equal to the generated extent, then the test item is added to the 

candidate’s intent; otherwise a new candidate pair is generated (lines 23 through 27).  

After processing all items in the Pool, any candidate pairs are turned into jumpers (lines 

28 through 31).   

The MAGALICE algorithm is evaluated against the Bordat14

                                                
14 An early lattice construction algorithm. 

 algorithm (Bordat, 

1992) for two of the commonly used benchmark data sets.  For one data set, MAGALICE 

demonstrated a fixed sized improvement which increased marginally as the supports were 

lowered.  For the other data set, MAGALICE demonstrated increasing gains as the 

support were lowered.  At low supports a gain by a factor of five is observed.  

Asymptotic complexity for a single insertion is determined to be O(|∆L| k2 + m (m+k) l), 

where l = |L|, m = |I|, and k = |O|. 
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2.9 Other Lattice Construction Algorithms 

Lindig and Datensystene (2000) propose a simple batch algorithm to construct a 

concept lattice.  A batch algorithm constructs a concept lattice from a complete formal 

context.  That is, the algorithm is not constrained to object by object (or item by item) 

insertion and is free to query any point in the formal context as needed.  The proposed 

algorithm begins by constructing a known concept, such as the top (or bottom concept), 

and then proceeds to generate its children (or parents).  The process repeats for each 

found concept until the lattice is complete.  The asymptotic complexity of the algorithm 

is O(l m k2), where l = |L|, m = |I|, and k = |O|.  Empirical evaluation involving several 

synthetic generate data sets against the NextConcept15

Nourine and Raynaud (2002) offer an incremental lattice construction algorithm 

based on a lexicographic tree.  The algorithm is an incremental version of earlier work 

(Nourine, & Raynaud, 1999).  The lexicographic is a trie data structure similar to the one 

used by GALICIA-T, except the roles of intent and extent are reversed.  That is, each 

edge in the trie denotes an object and nodes corresponding to concepts are augmented 

 algorithm (Ganter, 1984) is 

provided.   

Valtchev, Missaoui, and Lebrun (2002b) provide a divide and conquer approach 

to lattice construction.  The input data set is first partitioned into two sets, either based on 

items or objects.  A concept lattice is constructed for each set and the resulting lattices are 

merged.  The asymptotic complexity is evaluated to be O(m (m+k) l log l), where l = |L|, 

m = |I|, and k = |O|.  However, this may only be realized for contexts that exhibit linear 

growth in size of lattice with respect to the number of objects. 

                                                
15 NextConcept is an early batch based algorithm. 
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with an item list.  The common prefixes in object id lists thus share the same branch.  The 

incremental insertion is performed on an item by item basis by using a union operation on 

object ids against each of the pre-existing nodes in the trie, and determining if the result 

is present in the trie.  If the result is present and augmented with an item list, the item is 

added to the node; otherwise it will be a new concept.  Branches and nodes will be added 

to the trie as needed.  The node representing the new concept will be augmented with an 

item set consisting of the item.  The insertion process also identifies a parent concept for 

each new concept.  The remaining task is to identify the children of each new concept 

and link it into the lattice.  Identification of children is performed by test union and count 

procedure for each item in I that is ∉ new concept’s intent.  When linking new concept 

into the lattice, a test is made to remove transitive edges.  The Nourine and Raynaud 

algorithm is evaluated to have an O(m (m+k) l) complexity, where l = |L|, m = |I|, and k = 

|O|.  No empirical suppo rt is provided. 

Kuznetsov and Obiedkov (2002) provide a comparative survey of several lattice 

construction algorithms.  Algorithms include: GMA (Godin et al., 1995), Lindig and 

Datensystene (2000), Nourine and Raynaud (2002), TITANIC (Stumme et al., 2002), 

Valtchev et al. (2002) divide and conquer, Bordat (1992), Close by One (Kuznetsov, 

1993), Chein (1969), and Norris (1978).  Bordat, Close by One, and Chein are batch 

based algorithms.  Norris is an incremental algorithm based on essentially the same 

theoretical principles of the Close by One algorithm.  An overview of the theory and 

implementation of each algorithm is provided including asymptotic complexity.  A 

diverse set of randomly generated data sets each conforming to specified properties (e.g., 

number objects, number attributes, and density) are used to benchmark each algorithm in 
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addition to one real-world data set.  Findings indicate that there is no “best” algorithm 

and the each algorithm exhibit different performance depending on the data set.  The 

GMA algorithm is a good choice for sparse data sets, and batch algorithms are good for 

dense data sets.  The Nourine and Raynaud algorithm was not the winning algorithm for 

any data set even though it has the best asymptotic complexity16.  Valtchev et al. (2002) 

arrive at the same conclusions.  Furthermore, Valtchev et al. state that comparison of 

lattice construction algorithms based on asymptotic complexity is a “delicate task”.  Their 

study reports that the GMA algorithm has good performance for data set with density17

                                                
16 Authors note that their implementation may of impeded performance. 
17 Density is a measure of the completeness of a data set.  For formal context K{I, O, R}, the density of  R 
= |R| / (|I| × |O|) where |R| is the total number of items for all objects. 

 

less than 0.10, but lags with densities greater than 0.50. 

SPROUT (Choi, 2006) is a recent batch-based lattice construction algorithm that 

provides an option to build an iceberg lattice.  It is similar in theory to other batch-based 

algorithms, such as Lindig and Datensystene (2000).  It begins by creating the top 

concept and then generates children for a concept by appending each object not in the 

concept’s extent and inquiring the formal context for the item sets.  Generated concepts 

are tested for closure and pre-existence.  If not closed, the concept is discarded.  If pre-

existent, a parent-child link is added.  The process repeats for each new concept.  The 

author claims the algorithm is faster that any known algorithm including CHARM-L but 

provides no empirical evidence.  Only a single test case for a small lattice (|L| = 530) is 

cited. 
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2.10 A Generic Approach to Incremental Lattice Construction 

Valtchev, Rouane, and Missaoui (2003b) developed a generic approach for the 

development of an incremental lattice construction algorithm.  Valtchev et al. theorizes 

that all past incremental lattice construction algorithms involve:  

i) identification concepts whose extent will be modified to include the new 
object,  

ii) identification of generator concepts that are used to generate a new concepts,  

iii) inclusion of the new object into those concepts identified to be modified,  

iv) generation of the new concepts,  

v) linkage of each new concept to its generator and upper covers, and 

vi)  the removal of resulting transitive links;  

albeit the sequencing and techniques used for each task may differ between the 

algorithms.  The identification of modified and generator concepts can be accomplished 

by partitioning the existing concepts of the lattice into equivalence classes.  Each 

equivalence class is composed of concepts whose intent intersect the next object’s items 

has the same value.  For example, Figure 2.4 depicts the equivalence classes for the last 

three lattice insertions given in Figure 2.2.  Each set of concepts composing an 

equivalence class is enclosed by a dotted line.  Underlined items within each concept 

indicate items that are in the intersection.  The maximum concept in each equivalence 

class is either a modifier or generator depending if its intent is a subset of the next 

object’s items.  When generating new concepts, the intent will be the equivalence class 

intersection set and the extent will be the generator’s extent union the next object.  After 

generating a new concept, it will be a parent of its generator and its parents can be 

derived from the generator’s ancestors.  Finally, transitive links that violate the lattice  
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R     A  B  C  D
O1 a1 b1 c3 d1
O2 a1 b1 c1 d2
O3 a1 b2 c1 d1
O4 a1 b2 c1 d4
O5 a1 b2 c1 d1
O6 a2 b2 c1 d2

Inserting O6

(∅,{a1a2b1b2c1c3d1d2d4})G

({O1},{a1b1c3d1}) ({O2},{a1b1c1d2})G

({O1O2},{a1b1})

({O3O5},{a1b2c1d1})

({O1O2O3O4O5},{a1})

({O1O3O5},{a1d1}) ({O2O3O4O5},{a1c1})G

({O4},{a1b2c1d4})

({O3O4O5},{a1b2c1})G

({O6},{a2b2c1d2})

({O2O3O4O5O6},{c1})

({O3O4O5O6},{b2c1})({O2O6},{c1d2})

Inserting O5

(∅,{a1b1b2c1c3d1d2d4})

({O1},{a1b1c3d1}) ({O2},{a1b1c1d2})

({O1O2},{a1b1})

({O3O5},{a1b2c1d1})m

({O1O2O3O4O5},{a1})m

({O1O3O5},{a1d1})m ({O2O3O4O5},{a1c1})m

({O4},{a1b2c1d4})

({O3O4O5},{a1b2c1})m

equivalence class {a1c1}

equivalence class {a1}

equivalence class {a1d1}

equivalence class {a1b2c1d1}

Inserting O4

(∅,{a1b1b2c1c3d1d2d4})G

({O1},{a1b1c3d1}) ({O2},{a1b1c1d2})

({O1O2},{a1b1})

({O3},{a1b2c1d1})G

({O1O2O3O4},{a1})m

({O1O3},{a1d1}) ({O2O3O4},{a1c1})m

({O4},{a1b2c1d4})

({O3O4},{a1b2c1})

equivalence class {a1}

equivalence class {a1c1}

 
 

Figure 2.4: Object insertions into a concept lattice depicting equivalence classes.  The 
lattices correspond to the progression shown in Figure 2.2 for the last three object 
insertions. Bold italic text within an existing concept indicates the intersection set 
forming the equivalence class.  Bold text and lines indicates new elements, G a generator 
concept, m a modified concept, enclosed dotted line an equivalence class, and dashed line 
is a removed link. 
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connection property can be identified by intersecting the set of modified concepts with 

the parents of a generator.  Such transitive links can be removed.  

The complete generic algorithm for incremental insertions is given in Algorithm 

2.7.  Lines 6 through 13 provide identification of modified concepts and generators.  

Following this, the modified concepts are updated with the new object (lines 14 and 15), 

new concepts are generated (lines 16 through 18), the new concepts are linked into the 

lattice (lines 19 through 21), and any resulting transitive links are removed (lines 22 

through 24).  The algorithm provides a concise statement of the work to be performed as 

an ordered sequence of the major tasks. 

Beyond formulation of the generic algorithm, Valtchev et al. provide a discussion 

of applying various techniques from past work to the individual tasks and derive a 

concrete algorithm.  The theoretical asymptotic complexity for the algorithm is 

O((m+k) k l), where l = |L|, m = |I|, and k = |O|.  This matches the best known theoretical 

complexity.  At the time of the paper, the concrete algorithm had not been implemented 

and thus no empirical data is available. 
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Let Concept be a tuple {O, I, Parents} where O is a set of object ids, I is a set of items, 

and Parents is a list of parent concepts. 
 
COMPUTE_LATTICE_INC(G, Oi, I)   // add object Oi together with its set  
                                                                // of items I to lattice G 

1. Q[ ] ←∅      // vector of equivalence class sets 
2. M ←∅       // set of modified concepts 
3. G ←∅       // set of generator concepts 
4. N ←∅       // set of new concepts 
5.  
6. for each Ci ∈ G:    // put concepts into their equivalence class 
7.  Add Ci to Q[I ∩ C.I] 
8. for each Qi ∈ Q[ ]: 
9.  Ci ← Maximal concept in Qi  

10.  if Ci ⊆ I: 
11.   Add Ci to M   // Ci will be a modified concept 
12.  else: 
13.   Add Ci to G   // Ci is a generator concept 
14. for each CModified ∈ M:  // update the modified concepts   
15.  CModified.O ← CModified.O ∪ {Oi}  
16. for each CGenerator ∈ G:   // generate new concepts 
17.  CNew ← new Concept(CGenerator.O ∪ {Oi}, Q(CGenerator)) 
18.  Add CNew to N 
19. for each CNew ∈ N:   // link the new concepts into the lattice 
20.  Add CNew to its CGenerator.Parents 
21.  COMPUTE_UPPER_COVERS(CNew, its CGenerator) 
22. for each CGenerator ∈ G:   // identify and remove transitive links 
23.  for each CParent ∈ CGenerator.Parents ∩ M: 
24.   Remove CParent from CGenerator.Parents 

 
Algorithm 2.7: Generic incremental lattice insertion algorithm.  (Valtchev et al., 2003b) 
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2.11 Summary of Literature 

Since surfacing in 1993, association rule mining has been a major area of 

research.  However, a large portion of activity has been directed toward mining of 

frequent items sets.  Notable algorithms include CHARM, CLOSET, TITANIC, and 

CLOSET+.  While significant progress has been made, frequent item set mining has 

fallen short of the overall objective of mining association rules.  The frequent item set 

miners fail to identify the upper covers of each closed frequent item set and thus are 

incapable of producing a reasonably sized set of association rules. 

Formal concept construction algorithms have been another strong area of 

research.  Noteworthy algorithms include GMA, Nourine and Raynaud, Lindig and 

Datensystene, and Valtchev et al. divide and conquer.  These algorithms are effective in 

constructing a concept lattice.  They successfully derive the set of closed items sets 

together with their upper covers.  However, these algorithms construct a lattice for all 

closed item sets and not just those which are frequent.  Some algorithms are incremental 

while others are batch.  Batch-based algorithms are not constrained to object by object (or 

item by item) insertion and are free to inquire any point in the formal context as needed.  

The best asymptotic complexity is O(m (m+k) l), where l = |L|, m = |I|, and k = |O|.  

However, benchmarks have proven that asymptotic complexity may not be a good means 

for comparison.  There is no known “best” algorithm.  The GMA algorithm is considered 

to be a good algorithm for data sets with density18

An approach to association rule mining is to use a frequent closed item set mining 

algorithm to generate the set of frequent items and then use a post-mining lattice 

 less than 0.10. 

                                                
18 For formal context K{I, O, R}, the density of  R = |R| / (|I| × |O|) where |R| is the total number of items 
for all objects 
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construction algorithm, such as the VML algorithm, to construct the upper covers.  Such 

approach will be bounded by the asymptotic complexity of the post-mining lattice 

construction algorithm.  For the VML algorithm, its complexity is O(l w(L)  deg(L)  m), 

where l = |L|, w(L)  = width of L , deg(L) = degree of L , and m = |I|.  

Of all algorithms reviewed, only three: CHARM-L, MAGALICE, and SPROUT, 

provide construction of an iceberg concept lattice.  Of these CHARM-L and MAGALICE 

are considered to be the serious contenders for this study.  SPROUT is discounted due to 

the lack of empirical support and batch classification.  CHARM-L constructs a concept 

lattice as a separate data structure from its itemset-oidset tree.  Construction of the lattice 

is, however, an integral part of its processing.  MAGALICE uses an underlying 

incremental lattice construction algorithm, such as GMA, to insert a new object without 

regard to frequency.  Afterwards, it prunes the lattice of infrequent concepts and 

regenerates concepts that become frequent. 

The major works presented in this chapter can be partitioned into three main 

camps engaged in research of association rule mining.  They are: 

i) Agrawal, Han, Hsiao, Pei, Srikant, Wang, and Zaki contributing  research on 
frequent item set mining (Agrawal et al., 1993, Agrawal, & Srikant, 1994, 
Srikant, & Agrawal, 1996, Kamber et al., 1997, Pei et al., 2000, Zaki, 2000, 
Zaki, & Hsiao, 2002, Wang et al., 2003, Zaki, & Hsiao, 2005, and Han, & 
Kamber, 2006) 

ii) Ganter, Lakha, Pasquier Taouil, and Stumme contributing theory on formal 
concept analysis and its application to association rule mining (Ganter 1984, 
Ganter, & Wille, 1997, Pasquier et al, 1999a, Pasquier et al., 1999b, Pasquier 
2000, Stumme et al,, 2000, Stumme et al., 2001a, Stumme et al., 2001b, 
Stumme et al., 2002, Ganter et al., 2005, and Lakha, & Stumme, 2005), and 

iii) Godin, Missaoui, Nourine, Raynaud, Rouane, Valtchev contributing research 
on lattice construction algorithms (Godin et al., 1995, Nourine, & Raynaud, 
1999, Valtchev et al., 2000, Nourine, & Raynaud, 2002, Valtchev et al., 
2002a, Valtchev et al., 2002b, Valtchev et al., 2003a, Valtchev et al., 2003b, 
Valtchev et al., 2004, and Rouane et al., 2004).  
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Of these, Stumme et al. provide a compelling argument for using iceberg concept lattice 

to mine association rules.  It is interesting to note that all of Stumme’s papers depict a 

concept lattice using a compressed notation similar to Figure 1.3.  That is, items are only 

listed at their maximal position.  This together with other information, such as support 

and confidence drops, is sufficient to efficiently extract a basis of association rules.  A 

majority of papers by other authors depict concepts with their full intent and extent.  

While Stumme’s papers provide the theoretical foundation for a compress lattice 

structure, there are no known algorithms that directly used the compress structure.  

Stumme’s own offering, TITANIC (Stumme et al., 2002), does not construct a lattice, let 

alone one using a compressed structure. 

Of the incremental lattice construction algorithms presented in this chapter, it is 

interesting to note that the GMA (Godin et al., 1995), Valtchev et al. (2002) divide and 

conquer, Valtchev et al. (2003b) generic lattice construction algorithm, and MAGALICE 

(Rouane et al., 2004) algorithms use the lattice data structure to drive the processing of 

the algorithms, where as GALICIA-T (Valtchev et al., 2002), Nourine and Raynaud 

(2002), and CHARM-L (Zaki, & Hsiao, 2005) use an alternate data structure to drive the 

algorithm and construct the lattice as a subsequent, although integrated, step.  The main 

data structure for GALICIA-T is a Trie with items on the edges.  Nourine and Raynaud 

use a lexicographic tree that is similar to the Trie of GALICIA-T, except the roles of 

intent and extent are reversed.  CHARM-L uses its itemset-tidset tree. 
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Given this review of literature a strategy for developing new iceberg lattice 

construction algorithms is to: 

i) Adapt the GMA lattice construction algorithm to directly construct an iceberg 
lattice.  It is an algorithm that directly uses the lattice structure to drive its 
process, thereby leveraging lattice theory.  Using GMA as the starting point 
will avoid the expensive reconstruction of discarded concepts incurred with 
the MAGLICE algorithm.  The vertical representation of CHARM and 
CHARM-L may provide insights to accomplishing this task. 

ii) Adopt a compressed lattice structure along the lines of the theory presented by 
Stumme.  This may address memory concerns by minimizing the space 
consumed by the concepts of the lattice.  Furthermore, the compressed lattice 
structure is of the form that basis extraction algorithms, such as Stumme et al. 
(2001b), can be readily used to mine a set of association rules that is 
constrained to a size that can be exploited by the end user. 

iii) Incorporate features of other algorithms to provide further improvement.  For 
example CHARM and Closet+ prescribe a sort order as a heuristic to improve 
performance.  Selection of an appropriate sort order may prove effective in the 
new algorithm.  Valtchev et al. generic lattice construction algorithm, 
CHARM-L, GALICIA-T, and others will be reviewed during development to 
aid in identifying additional opportunities for improvement. 
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Chapter 3  

Methodology 

 

3.1 Introduction 

While GMA (Godin et al., 1995) and like algorithms are not directly suitable to 

construct an iceberg lattice, adapting the algorithm to add data incrementally on an item 

by item basis and interchanging the roles of the set of object ids (O) and the set of items 

(I) results in an algorithm that can directly construct an iceberg concept lattice.  The 

algorithm still performs a top-down level-wise search and insert process; however, these 

changes effectively invert the lattice.  The addition of a predicate to ensure that the 

minimum support threshold has been met is the only remaining change needed to 

construct an iceberg lattice.  Algorithm 3.1 provides the GMA algorithm with these two 

modifications applied (see Section 2.5 Incremental Lattice Construction – Missaoui, 

Godin, and Alaoui Algorithm for a description of the algorihm theory and function).  

Line 22 is the predicate to ensure the minimum support threshold has been met.  A 

complete implementation of Algorithm 3.1, written in Java, is given in Appendix A. 
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Let Concept be a tuple {I, O, Children} where I is a list of items, O is a list of object 
ids, and Children a list of child concepts. 

 
Let CBottom be the infimum of a concept lattice G, G contain a reference to all concepts  
 
ADD(Ii, O)     // Add item id Ii together with its set of object ids O 

1. if CBottom = Ø:                             // special case, empty lattice 
2.  CBottom ←  new Concept ({Ii}, O) 
3. else: 
4.  if  O ⊄ CBottom.O:                      // check O ids not in lattice 
5.   if  CBottom.I = Ø:                   // a generated bottom? 
6.    CBottom.O ←  CBottom.O ∪ O 
7.   else:                                        // generate the new bottom 
8.    CNew ← new Concept (Ø, O)    
9.    Add CNew to CBottom.Children 

10.    CBottom ← CNew 
11.  
12.  Processed ← Ø     // a vector of sets of concepts indexed by the cardinality 
13.       // of an intersection set 
14.  for each Ci ∈ G in ascending |O| order: 
15.   if Ci.O ⊆ O:            // is Ci a modified concept? 
16.    Add Ii to Ci.I 
17.    Add Ci to Processed[|Ci.O|]    // possible parent 
18.    if Ci.O = O:                 // no more processing? 
19.      return                    
20.   else:                            // existing concept 
21.    Intersect ← Ci.O ∩ O 
22.    if |Intersect| ≥ MinSupp: 
23.     if ¬∃ Cj ∈ Processed[|Intersect|] | Cj.O = Intersect:  // is Cj a gen? 
24.      CNew ← new Concept (Ci.I ∪ {Ii}, Intersect)  
25.      Add CNew to Processed[|Intersect|] 
26.      Add Ci to CNew.Children    // modify edges  
27.      for each Ck ∈ Processed ∧ |Ck.O| < |Intersect|:    
28.       if  Ck.O ⊂ Intersect:     // is Ck potential parent? 
29.        Parent ← TRUE 
30.        for each CChild ∈ Ck.Children ∧ Parent = TRUE: 
31.         if CChild.O ⊂ Intersect: 
32.          Parent ←FALSE 
33.        if Parent = TRUE: 
34.         if Ci ∈ Ck.Children:   
35.          Remove Ci from Ck.Children  
36.         Add CNew to Ck.Children  
37.     if |Intersect| = |O|:   // last valid generator ? 
38.      return     // no more work to do 

Algorithm 3.1: The GMA algorithm modified to construct an iceberg lattice. 
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Preliminary tests19 proved the modified GMA algorithm functioned correctly.  

The Mushroom20 data set was used as the test case.  The converted algorithm was tested 

with minimum supports of 50%, 30%, 10%, 1%, and 0%.  The algorithm reported a 

number of concepts of 45, 427, 4,897, 51,672 and 238,709 respectively with execution 

times of 0.04 seconds, 0.39 seconds, 7.17 seconds, 160.28 seconds, and 1,198.08 

seconds21.  The reported number of concepts is the same as found by the CHARM-L 

algorithm.  While the execution time for high supports was comparable to CHARM-L, 

the algorithm significantly degraded by an order of magnitude as support is lowered.  

Detailed measurements of the runtime and memory usage are provided in Chapter 4. 

While the modified GMA algorithm does function correctly, its efficiency cannot 

compete with the leading association rule mining algorithms.  This chapter describes the 

development of the Quick Iceberg Concept Lattice (QuICL – pronounced kwi-kəl

                                                
19 Prelimnary tests are executions of the algorithm during development.  These tests are not performed 
under controlled conditions.  The timings in this chapter are given to illustrate the progression during 
algorithm development.  They are stated in seconds to provde a standard unit for comparison. See 
Chapter 4 Results for controlled measurements and interpretation. 
20 An often used data set for association rule mining and FCA.  See Section 4.2. 
21 Execution times were obtained using an unsorted data.  Sort order was later found to have a large effect 
on execution time.   

) 

algorithms.  These algorithms provide incremental construction of a concept lattice along 

the lines of the GMA algorithm, but approach the insertion process from the bottom of 

the lattice as opposed to a top-down, level-wise search for generators.  The structure of 

the lattice is used to navigate to a point of change.  Recursion is used instead of iteration 

to facilitate the location of additional points of change and enable linkage between parent 

and child concepts.  The result is an algorithm that constructs all 238,709 concepts 

derived from the Mushroom data set in less than three seconds, a performance 

improvement over GMA that is near three orders of magnitude. 
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The QuICL algorithm has three derivations: Oid-Full, Oid-Less, and Oid-Trie.  In 

the first derivation, all of the concepts in the concept lattice retain a complete list of the 

object ids (oids), hence the name “Oid-Full”.  For the Oid-Less derivation, the concepts 

do not retain the list of oids between the incremental insertions.  Some temporary lists of 

object ids are created and discarded during the insertion process.  The Oid-Trie derivation 

is a compromise between Oid-Full and Oid-Less.  Instead of eliminating the oid lists, it 

utilizes a trie data structure to store the oids thereby reducing memory requirements.  In 

addition to reducing memory usage, the trie data structure also enables a few performance 

enhancements (e.g., intersect operations can terminate early upon encountering a 

common branch). 

3.2 Steps Toward an Efficient Incremental Algorithm 

A step towards an efficient incremental insertion algorithm for an iceberg lattice 

is to apply a few minor modifications to the representation of a concept lattice.  In 

addition to interchanging the roles of the set of object ids (O) and the set of items (I) to 

invert the lattice, the I in a given concept can be significantly reduced by exploiting the 

lattice property:  if  Ii ∈ I of concept C1 then ∀ C2 | C2 < C1, Ii ∈ I of C2.  Thus, an item 

Ii ∈ I of concept C1 does not need to be physically recorded in a concept if there exists a 

concept C2 such that C2 > C1 and Ii ∈ I of concept C2.  Instead, the item Ii is implied by 

the lattice structure.  An item Ii need only be recorded in a concept at its maximal 

position (i.e., lowest position in the inverted lattice).  This representation is also desirable 

for direct extraction of association rules (see Chapter 1).  Another modification is to omit 

a topmost concept whose intent is the set of all items in the concept lattice.  As a result, 

the concept lattice becomes a semi-lattice.  The semi-lattice can be readily converted to a 
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complete lattice by a post-construction step to add a common topmost parent for all 

concepts in the lattice that do not have parents.  For the purpose of association rule 

mining, this post-step is not needed.  The final modification is to redefine the bottom 

concept simply as an entry point into the lattice.  Thus, the bottom concept does not hold 

any objects or items.  It is created upon initial construction of an empty lattice and its 

intent or extent is not updated.  It simply holds references to parent concepts.   

The previously mentioned changes will simplify the processing in the GMA 

algorithm without any loss of necessary information needed to formulate association 

rules.  The steps of the GMA algorithm that add an item to the intent of concepts whose 

extent is a proper subset of the next item’s objects are not needed, since the lattice 

structure will imply the item.  As a result, concepts whose extent is a proper subset of the 

next item’s objects will not need to be visited.  Furthermore, the pre-steps to ensure the 

extent of the bottom concept includes new object ids can also be eliminated.  There is, 

however, one small side effect.  In the event an item exists common to all objects, the 

GMA algorithm would place that item and its object ids into the bottom concept.  With 

the proposed changes, the item and object ids will be in a new concept that is the sole 

parent to the bottom concept. 

Given the proposed modifications to the lattice structure, Figure 3.1 depicts the 

progression of incremental item insertions of the data in relation R into an inverted 

concept lattice.  The final lattice of Figure 3.1 is the inverted form of the lattice given in 

Figure 1.1.  Before presenting an initial algorithm to construct a lattice using the 

proposed structure, a few observations in the progression shown are noteworthy:   

• Insertion of an item whose extent = the extent of a concept C within the lattice is 
accomplished by simply adding the item to C.  C can be found by traversing the  
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Figure 3.1: Progression of incremental item insertion into a concept lattice.  Bold text and 
weighted lines identify new elements.  Dashed lines indicate removed elements. 
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Figure 3.1 continued: Progression of incremental item insertion into a concept lattice.  
Bold text and lines identify new elements.  Dashed lines indicate removed elements. 
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Figure 3.1 continued: Progression of incremental item insertion into a concept lattice.  
Bold text and lines identify new elements.   
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Figure 3.1 continued: Progression of incremental item insertion into a concept lattice.  
Bold text and lines identify new elements.   
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lattice from the bottom along any path where the item’s extent ⊆ a concept’s 
extent.  An example is inserting d3 in Figure 3.1. 

• Except for the previous case, a new concept CNew will be added to the lattice.  
That concept will forever hold the item.  

• If an empty lattice is defined as a bottom concept with an empty intent and extent, 
then any subsequent insertion of the new concept CNew will always be performed 
above another concept.  Let the concept above which CNew is to be inserted be 
denoted as CBase.  CBase can be identified by traversing the lattice along any path 
where the item’s extent is ⊂ of a concept’s extent. For example, when inserting d4 
with object id set {O4} into the lattice of Figure 3.1 the base concept will be 
(∅, {O3O4O5O9O10}) . 

• For all parent concepts Cp of CBase such that the extent of Cp is not =, ⊂, or ⊃ of 
new item’s extent, the new concept CNew will be a sibling of each Cp.  CBase will 
be a child of the new concept.  If the extent of a Cp ∩ item’s extent is not empty 
then another new concept with an extent = extent of a Cp ∩ item’s extent must be 
found or inserted above Cp. Such concept can be found, or if needed created, by 
recursing using a null item and extent of a Cp ∩ item’s extent as the set of object 
ids.  The concept returned from the recursive call will also be a parent of CNew.  
An example of finding already existing concepts in the recursive call is inserting 
d2 in Figure 3.1.  An example of creating a new concept in the recursive call is 
inserting b2. 

• For all parent concepts Cp of CBase such that the extent of Cp is ⊂ of extent of 
CNew, CNew will be inserted between CBase and Cp.  CBase will no longer be a child 
of Cp.  Instead the CNew will be a child of Cp and CBase will be a child of the CNew.  
An example is inserting c1 with object id set {O2O3O4O5O6O8O9O10} into the 
lattice of Figure 3.1.  The object ids are a superset of the extent of concept 
(∅, {O3O4O5O9O10}).  Thus, concept (∅, {O2O3O4O5O8O9O10}) is inserted 
between the base concept ({a1}, {O1O2O3O4O5O8O9O10}) and concept 
(∅, {O3O4O5O9O10}). 

Given these observations, an alternative algorithm to the GMA algorithm can be 

formulated.  For each insertion, the GMA algorithm processes all concepts in a top-down, 

level-wise manner to modify existing concepts and to generate new concepts.  The top-

down traversal is used to facilitate correct identification of generators and limit the search 

for parent concepts.  The above observations, however, suggest alternate approach.  The 

identification of generator concepts can be performed from the bottom up using the 
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lattice structure to navigate to a generator (i.e., base concept).  Furthermore, recursion can 

be used to find, or if needed create, the parent concepts. 

Algorithm 3.2 presents an incremental insertion algorithm to construct a concept 

lattice.  For this algorithm, a concept lattice is represented as a set of concepts linked only 

by references to parents.  The data structure for each concept is a tuple composed of a list 

of items, a list of object ids, and a list of parent concepts.  A designated empty concept 

named CBottom provides an entry point into the lattice.  The algorithm begins with the 

BUILD-LATTICE function.  This function accepts a formal context K{I, O, R}.  

BUILD-LATTICE creates an empty concept lattice consisting of the bottom concept 

(line 1) and then incrementally adds each item into the lattice using the INSERT function 

(lines 2 and 3).  After inserting all items, the bottom concept is returned (line 4). 

The INSERT function provides the incremental insertion of an item into the 

lattice or sub-lattice.  INSERT is passed a reference to a concept, referred to as the base 

concept CBase, above which an item id Ii together with its extent O is to be inserted.  The 

item id can and will often be omitted when inserting into a sub-lattice.  INSERT involves 

three phases; 

i) navigate into the lattice and identify a list of concepts to be further processed,  

ii) if needed, construct a new concept, and 

iii) processes the list of concepts identified by the first phase and links the new 
concept into the lattice.   

Both the navigation phase and link phase recursively call the INSERT function as 

needed. 

INSERT begins by defining an empty list of tuples consisting of a type indicator 

with values SUPERSET or INTERSECT, an intersection set, and a reference to the  
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Let Concept be a tuple {I, O, Parents} where I a list of Items, O is a list of Object Ids, 
and Parents a list of parent concepts. 

 
BUILD-LATTICE(K{I, O, R}) 

1. CBottom ← new Concept (∅, ∅) 
2. for each Ii ∈ I: 
3.       INSERT(CBottom, Ii, o(Ii))    // o(Ii) is the set O derived from R 
4. return CBottom       // the lattice 
 

INSERT(CBase, Ii, O) 
5. ToProcessList ← ∅  // list of tuples {Type, Concept, O} with 
6.                                   // Type ∈ {SUPERSET, INTERSECT}, Concept is a  
7.                         // reference to the intersecting concept, and O  
8.                                   // a set of object ids resulting from an intersection 
9.  

10. for each CParent ∈ of CBase.Parents:             // prepare-search phase 
11.  if  O = CParent.O:         
12.   Add Ii to CParent.I 
13.      return CParent     // processing complete 
14.  else if O ⊂ CParent.O:         
15.   return INSERT (CParent, Ii, O)  // recurse using CParent as new CBase 
16.  else if O ⊃ CParent.O: 
17.   Add {SUPERSET, CParent, CParent.O} to ToProcessList 
18.  else if O ∩ C.O ≠ ∅: 
19.   Add {INTERSECT, CParent, O ∩ CParent.O} to ToProcessList 
20.  
21.                                                              // intentionally left blank 
22.  
23. CNew ← New Concept({Ii}, O)        // create the new concept 
24.  
25. for each Ti ∈ ToProcessList:               // link phase to link in CNew  
26.  if  Ti.Type = SUPERSET: 
27.   Remove Ti.Concept from CBase.Parents 
28.   Add Ti.Concept  to CNew.Parents 
29.  else if  Ti.Type = INTERSECT: 
30.   CParent ← INSERT (Ti.Concept, ∅, Ti.O) 
31.   Add CParent to CNew.Parents 
32.  
33. Add CNew to CBase.Parents 
34.  
35. return CNew  

 
Algorithm 3.2:  A recursive incremental lattice construction algorithm. 
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concept that generated the intersection set (line 5).  This list is populated during the 

search-prepare phase and is processed during the link phase.  The intersection set is the 

result of intersecting the object set O passed to the INSERT function with the extent of a 

parent concept.  A type SUPERSET indicates O is a superset of the extent of the parent 

concept.  Type INTERSECT indicates that O is neither superset nor subset.  INSERT 

proceeds to compare O with the extent of each parent of the base concept (lines 10 

through 19).  If O is equal to a parent concept’s extent then the item Ii, if supplied, is 

added to the concepts list of items (lines 11 and 12).  The insertion is complete.  For 

purposes discussed later, INSERT returns a reference to the modified concept (line 13).  

If O is a subset the extent of any parent concept then INSERT recurses using the parent 

as the new base concept (lines 14 and 15).  This effectively navigates into the concept 

lattice to locate the position above which the item will be inserted.  If O is superset of the 

extent of a parent then a tuple composed of SUPERSET, a reference to the parent 

concept, and the parent’s extent is added to the ToProcessList for later processing (lines 

16 and 17).  If O is neither equal to, subset, nor superset of the extent of a parent concept, 

and O intersect the extent of a parent is non-empty, then a tuple composed of 

INTERSECT, a reference to the parent concept, and O intersect the extent of the parent is 

added to the ToProcessList (lines 18 and 19). 

If comparison of O with the extents of all parent concepts of the base concept 

does not encounter a parent concept where O is equal to or a subset of the parent’s extent, 

then a new concept node will be constructed (line 23).  The new concept will contain the 

item Ii in its intent and O as its extent.  The new concept will be a child of all SUPERSET 



79 

 

concepts in the ToProcessList, a sibling to the INTERSECT concepts, and a parent to the 

base concept.  The final phase establishes these parent-child links. 

After creating the new concept, the final phase of the algorithm processes the 

concepts in the ToProcessList and links the new concept into the lattice.  For a parent 

concept in the ToProcessList with a SUPERSET indicator, the parent will no longer be a 

parent of the base concept (line 26).  Instead it will be the parent of the new concept.  

Thus, the parent concept is removed from the base concept’s list of parents (line 27) and 

added to the new concept’s parents (line 28).  Each parent concept for which O is neither 

equal to, a subset of, nor superset of the parent’s extent will be a sibling to the new 

concept. Furthermore, if O intersect the extent of a sibling is not empty then additional 

processing is required to add the information about O intersect the extent of a sibling into 

the lattice.  Such siblings are the concepts in the ToProcessList that have an INTERSECT 

indicator. A concept representing O intersect the extent of a sibling must be found within 

the lattice, or if absent created, and added as a parent of the new concept.  To do this, the 

algorithm recurses using the sibling as the base concept, a null item, and O intersect the 

extent of the sibling as the set of object ids (line 30).  The concept returned by the 

recursive call is added to the new concept’s parents (line 31).  Finally, the new concept is 

added to the parents of the base concept and the new concept is returned (lines 33 and 35) 
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3.3 Walk Through of the Algorithm Execution 

Figure 3.2 provides a sample walkthrough of executing Algorithm 3.2.  This 

walkthrough corresponds to the insertion of b2 in Figure 3.1.  Execution begins with a 

call to INSERT with the CBase referencing the bottom concept {∅, ∅}, Ii = b2, and 

O = {O3O4O5O6O7O9O10}.  The prepare-search phase tests the intersection of O with 

each parent of {∅, ∅}.  The intersection test of O intersect the extent of 

({a1}, {O1O2O3O4O5O8O9O10}) results in adding an INTERSECT tuple to the 

ToProcessList.  The tuple contains the intersection set of {O3O4O5O9O10} and the 

concept ({a1}, {O1O2O3O4O5O8O9O10}).  The intersection test of O intersect the extent of 

({a2}, {O6O7}) results in adding a SUPERSET tuple to the ToProcessList.  Since the 

prepare-search phase did not encounter a parent concept where O ⊆ parent’s extent, a 

new concept ({b2}, {O3O<O5O6O7O9O10}) is created and the tuples of the ToProcessList 

are then processed.  Processing the {INTERSECT, ({a1}, {O1O2O3O4O5O8O9O10}), 

{O3O4O5O9O10}} tuple involves a recursive call to INSERT with the CBase referencing 

the concept ({a1}, {O1O2O3O4O5O8O1O10}), Ii = ∅, and O = {O3O4O5O9O10}.  The 

prepare-search phase of the recursive call to INSERT produces an empty ToProcessList 

since the extent of ({b1}, {O1O2O8}), the sole parent of concept ({a1}, 

{O1O2O3O4O5O8O9O10}), has an empty intersection with {O3O4O5O9O10}.  Thus, the 

recursive call completes by creating the concept (∅, {O3O4O5O9O10}) and adding it as a 

parent of ({a1}, {O1O2O3O4O5O8O9O10}).  The new concept is returned from the 

recursive call.  The returned concept is added as a parent of ({b2}, {O3O4O5O6O7O9O10}) 

by the base invocation of INSERT. 
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Processing the {SUPERSET, ({a2}, {O6O7}), {O6O7}} tuple involves removing 

({a2}, {O6O7}) from the parents of the CBase, being {∅, ∅}, and adding it as a parent to 

the CNew, being ({b2}, {O3O4O5O6O7O9O10}).  At this time all tuples in the ToProcessList 

have been processed.  The first invocation of INSERT completes by adding CNew as a 

parent to CBase and returning a reference to CNew. 

The walkthrough given in Figure 3.2 demonstrates a majority of the execution 

paths through the algorithm.  However, the walkthrough did not execute the paths where 

the O in the call to INSERT are equal to or a subset of the parent’s extent.  Such 

execution paths are readily apparent in many of the other insertions of Figure 3.1.  For 

example, insertion of d3 will call INSERT with CBase referencing the bottom concept 

{∅, ∅}, Ii = d3, and O = {O7}.  The prepare-search phase will recurse with CBase 

referencing the concept ({b2}, {O3O4O5O6O7O9O10}), since the O is a subset of the 

extent.  The prepare-search phase of the recursive call will further recurse with CBase 

referencing the concept ({a2}, {O6O7}).  The prepare-search phase of this recursive call 

will encounter a parent concept whose extent = O.  That concept is ({c2}, {O7}).  In this 

case Ii, being d3, is inserted into the intent of ({c2}, {O7}) and a reference to this concept 

is returned back through all invocations. 
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Inserting b2 with {O3O4O5O6O7O9O10}

({b1},{O1O2O8})

( ∅, ∅ )
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({b2},{O3O4O5O6O7O9O10})
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I  = ∅
Os = {O3O4O5O9O10 }
ToProcessList

∅
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({b1},{O1O2O8})

( ∅, ∅ )

({a2},{O6O7})({a1},{O1O2O3O4O5O8O9O10}) ({b2},{O3O4O5O6O7O9O10})

(∅,{O3O4O5O9O10})

Processing INTERSECT {O3O4O5O9O10}

({b1},{O1O2O8})

( ∅, ∅ )

({a2},{O6O7})({a1},{O1O2O3O4O5O8O9O10})

Lattice after Inserting a1, a2, b1

Processing SUPERSET, {O6O7})

({b1},{O1O2O8})

( ∅, ∅ )

({a2},{O6O7})

({a1},{O1O2O3O4O5O8O9O10}) ({b2},{O3O4O5O6O7O9O10})

(∅,{O3O4O5O9O10})

Final ProcessingRemoved Link

RV

a1 O1 O2 O3 O4 O5 O8 O9 O10
a2 O6 O7
b1 O1 O2 O8
b2 O3 O4 O5 O6 O7 O9 O10
c1 O2 O3 O4 O5 O6 O8 O9 O10
c2 O7
c3 O1
d1 O1 O3 O5 O9 O10
d2 O2 O6 O8
d3 O7
d4 O4

 
 

Figure 3.2: Sample walkthrough of Algorithm 3.2 execution. 
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3.4 Proof of Algorithm Correctness 

Given a lattice L and a new item Ii with its set of object O, an incremental 

insertion algorithm is correct if it meets these requirements: 

1) if ∃ Ci ∈ L | extent of Ci = O, then insertion is completed by adding Ii to the 
intent of Ci, or  
 

2) if ¬∃ Ci ∈ L | extent of Ci = O, then a new concept CNew with intent {Ii} and 
extent O must be created and inserted into the lattice such that:  

  
i. if ∃ Cb ∈ L | Cb > CNew ∧ ¬∃ C3∈ L | Cb > C3 > CNew, then CNew will be 

a parent of Cb, 
 

ii. if ¬∃ Cb ∈ L | Cb > CNew, then CNew will be a parent of bottom concept, 
 

iii. ∀ Cp ∈ L | CNew > Cp ∧ ¬∃ C3∈ L | CNew > C3 > Cp, Cp will be a parent 
of CNew, 

 
iv. ∀ Cs ∈ L | extent of Cs ⊄ O ∧ extent of Cs ∩ O ≠ ∅ ∧ ¬∃ C3∈ L | 

C3 > Cs ∧ extent of Cs ∩ O = extent of C3 ∩ O, another new concept 
CNew' with empty intent and an extent of  Cs ∩ O must be inserted into 
the lattice with CNew' as a parent of both CNew and Cs, and 

 
v. the resulting lattice satisfies the lattice connection property: a connection 

exists between two concepts C1 and C2 provided C1 < C2 and there is no 
concept C3 for which C1 < C3 < C2. 

 
Algorithm 3.2 fulfills requirement 1. 
 

Proof:  Let Lb be a sub-lattice with concept Cb as its bottom concept.  If  ∃ Ci 
∈ Lb | extent of Ci = O ∧  Ci ≠ Cb then Ci will be an ancestor of Cb.  If a parent 
of Cb has an extent = O, then that parent concept is Ci; otherwise Ci can be 
found by searching the sub-lattice defined by any parent concept where extent 
of the concept ⊃ O.  The INSERT function of Algorithm 3.2 examines each 
parent concept of a base concept Cb.  If a parent of the Cb has an extent = O 
then that parent concept is the concept to which Ii is added.  If a parent 
concept has an extent ⊃ O, then that parent is not the concept to which Ii is 
added, but the concept with extent = O will be an ancestor of that parent 
concept.  The INSERT function recurses using the parent concept as Cb.  
Algorithm 3.2  initially calls the INSERT function using the bottom concept 
of the concept lattice as Cb.  
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Algorithm 3.2 creates a new concept under the conditions of requirement 2. 

Proof:  Let Lb be a sub-lattice with concept Cb as its bottom concept.  If ¬∃ Ci 
∈ Lb | extent of Ci = O ∧ Ci ≠ Cb then traversing any path where extent of a 
concept ⊃ O will encounter a concept that does not have any parents whose 
extent ⊇ O.  The INSERT function of Algorithm 3.2 examines each parent 
concept of a base concept Cb.  If a parent concept has an extent ⊃ O, then the 
INSERT function of Algorithm 3.2 algorithm recurses using the parent 
concept as Cb.  If none of the parents have an extent ⊇ O, then the INSERT 
function creates a new concept with an intent {Ii} and extent O.  Algorithm 
3.2  initially calls the INSERT function using the bottom concept of the 
concept lattice as Cb.  

 
Algorithm 3.2 fulfills requirement 2.i. 
 

Proof:  Let if Lb be a sub-lattice with concept Cb as its bottom concept.  If ¬∃ 
Ci ∈ Lb | extent of Ci = O ∧ Ci ≠ Cb, but ∃ Cb' ∈ Lb | Cb' > CNew ∧ ¬∃ C3∈ Lb | 
Cb' > C3 > CNew, then traversing any path where extent of a concept ⊃ O will 
encounter a concept that does not have any parents whose extent ⊇ O.  The 
traversal thus identifies concept Cb' for which there does not exists a C3 ∈ L | 
Cb' > C3 > CNew.  CNew must become a parent of Cb'.  The INSERT function of 
Algorithm 3.2 examines each parent concept of a base concept Cb.  If a parent 
concept has an extent ⊃ O, then the INSERT function recurses using the 
parent concept as Cb.  If none of the parents have an extent ⊇ O, then the 
INSERT function creates a new concept CNew and links it as the parent of base 
concept Cb.  Algorithm 3.2 initially calls the INSERT function using the 
bottom concept of the concept lattice as Cb.  

 
Algorithm 3.2 fulfills requirement 2.ii. 
 

Proof:  Let if Lb be a sub-lattice with concept Cb as its bottom concept.  If ¬∃ 
Ci ∈ Lb | extent of Ci = O ∧ Ci ≠ Cb, and ¬∃ Cb' ∈ Lb | Cb' > CNew then ∀ 
parents of Cb extent of the parent ¬⊇ O.  Therefore, CNew must become a 
parent of Cb.  The INSERT function of Algorithm 3.2 examines each parent 
concept of a base concept Cb.  If none of the parent concepts has an extent ⊇ 
O, the INSERT function creates a new concept CNew and links it as the parent 
of base concept Cb.  Algorithm 3.2 initially calls the INSERT function using 
the bottom concept of the concept lattice as Cb.  

 
Algorithm 3.2 fulfills requirement 2.iii. 
 

Proof:  Let if Lb be a sub-lattice with concept Cb as its bottom concept.  If ¬∃ 
Ci ∈ Lb | extent of Ci = O ∧ Ci ≠ Cb, then traversing any path where extent of a 
concept ⊃ O will encounter a concept that does not have any parents whose 
extent ⊇ O.  Let Cb' be the encountered concept that does not have any parents 
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whose extent ⊇ O.  Let Cb' define a sub-lattice Lb'.  Since CNew is added as a 
parent of Cb', any potential parent Cp ∈ Lb | CNew > Cp must also be ∈ Lb'.  
Furthermore, each parent Cp' of Cb' will be a parent of CNew in the case that the 
CNew > the Cp', or it will be a descendent of the potential parent in the case that 
extent of Cp' ⊃ extent of Cp' ∩ O.  In the later case, the potential parent can be 
identified by traversing the path where the extent of a concept ⊇ extent of Cp' 
∩ O.  The INSERT function of Algorithm 3.2 examines each parent concept 
of a base concept Cb.  If none of the parent concepts has an extent ⊇ O, the 
INSERT function creates a new concept CNew. For each parent concept Cp of 
base concept Cb whose extent ⊂ O, Cp is removed from the parents of Cb and 
is linked as a parent of CNew.  For each parent concept Cp of base concept Cb 
whose extent ⊄ O but whose extent ∩ O ⊂ O, the INSERT function is 
recursively called using Cp as the base concept to locate the parent concept.  If 
there exists a concept whose extent = extent of Cp ∩ O the INSERT function 
will find that concept (by proof of requirement 1). The concept returned by the 
recursive call is linked as a parent of CNew.  Algorithm 3.2 initially calls the 
INSERT function using the bottom concept of the concept lattice as Cb.  
 

Algorithm 3.2 correctly fulfills requirement 2.iv. 
 

Proof:  Let if Lb be a sub-lattice with concept Cb as its bottom concept.  If ¬∃ 
Ci ∈ Lb | extent of Ci = O ∧ Ci ≠ Cb, then traversing any path where extent of a 
concept ⊃ O will encounter a concept that does not have any parents whose 
extent ⊇ O.  Let Cb' be the encountered concept that does not have any parents 
whose extent ⊇ O.  Since CNew is added as a parent of Cb' then for each 
concept Cs ∈ Lb | Cs is a parent of Cb' ∧ extent of Cs ⊄ O ∧ extent of Cs ∩ O ≠ 
∅ ∧ ¬∃ C3∈ L | C3 > Cs ∧ extent of Cs ∩ O = extent of C3 ∩ O a new concept 
CNew' with empty intent and extent Cs ∩ O must be inserted into the lattice.  
CNew' must be a parent of both Cs and CNew .  The INSERT function of 
Algorithm 3.2  examines each parent concept of a base concept Cb.  If none of 
the parent concepts has an extent ⊇ O, the INSERT function creates a new 
concept CNew. For each parent concept Cp of base concept Cb whose extent ⊄ 
O but whose extent ∩ O ⊂ O, the INSERT function is recursively called using 
Cp as the base concept to insert a concept with empty intent and an extent of 
Cs ∩ O.  If the sub-lattice defined by Cs does not contain a concept with extent 
Cs ∩ O, then the INSERT function will create and return a new concept CNew' 
for that extent.  The recursive call will link CNew' as a parent of Cs and return 
CNew'.  CNew' will then be linked as a parent of CNew.  Algorithm 3.2 initially 
calls the INSERT function using the bottom concept of the concept lattice as 
Cb.  
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There is currently a defect in Algorithm 3.2 in that it fails to fulfill requirement 

2.v.  This defect is benign in the sense that the algorithm will produce the correct set of 

concepts22

                                                
22 See section 4.3 Algorithm Validity. 

.  However, it may generate more links than required, many of which may 

violate the lattice connection property.  While the invalid links can be removed by a post-

processing step, the invalid links will compound and generate more invalid links.  The 

result is a significant degradation in performance and memory usage.  Sample insertions 

demonstrating the error are presented in Figures 3.6 through 3.9.  The errors occur due to 

relationships between the concepts referenced in the ToProcessList. 

Figure 3.3 presents an error case in which a parent is linked twice to a given child.  

On inserting I4 with {O1O4}, the prepare-search phase will add tuples {INTERSECT, 

({I1}, {O1O2}), {O1}}, {INTERSECT, ({I2}, {O3O4}), {O4}}, and {INTERSECT, 

({I3}, {O1O3}), {O1}} to the ToProcessList and then create a new concept ({I4}, {O1O4}).  

Processing {INTERSECT, ({I1}, {O1O2}), {O1}} performs a recursive call to INSERT.  

That call will return concept (∅, {O1}), which is then added to the parents of CNew.  

INSERT will be recursively called a second time to process the tuple {INTERSECT, 

({I2}, {O3O4}), {O4}}.  This call will create concept (∅, {O4}), add it as a parent of 

({I2}, {O3O4}), and return it.  The returned concept (∅, {O4}) is then added as a parent to 

CNew.  INSERT will be recursively called a third time to process the tuple {INTERSECT, 

({I3}, {O1O3}), {O1}}.  That call will return a reference to concept (∅, {O1}) which in 

turn is added to the parents of CNew.  CNew has two parent references to the concept 

(∅, {O1}).  
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Figure 3.3: Duplicate parent-child links. 
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Figure 3.4 presents an error case in which the lattice connection property is 

violated.  On inserting I3 with {O1O2O5}, the prepare-search phase will add the tuples 

{INTERSECT, ({I1}, {O1O2O3}), {O1O2}} and {INTERSECT, ({I2}, {O2O4}), {O1}} to 

the ToProcessList and then create new concept ({I3}, {O1O2O5}).  Processing 

{INTERSECT, ({I1}, {O1O2 O3}), {O1O2}} involves a recursive call to INSERT.  The 

prepare-search phase of the recursive call will add a {SUPERESET, (∅, {O2}), {O1O2}} 

tuple in its ToProcessList and then create new concept (∅, {O1O2}).  Processing 

{SUPERESET, (∅, {O2}), {O1O2}} tuple will result in removing (∅, {O2}) from the 

parents of ({I1}, {O1O2O3}) and adding it to the parents of (∅, {O1O2}).  Concept 

(∅, {O1O2}) is returned and then added as a parent of ({I1}, {O1O2O3}) by the base 

invocation of INSERT.  INSERT will be recursively called a second time to process the 

tuple {INTERSECT, ({I2}, {O2O4}), {O1}}.  The prepare-search phase of this call will 

find the concept (∅, {O2}) and return it.  The base invocation of INSERT will then add 

(∅, {O2}) to ({I1}, {O1O2O3}) thereby violating the lattice edge property.  There now 

exists a concept (∅, {O1O2}) which is between concepts ({I1}, {O1O2O3}) and (∅, {O1}).   

Figure 3.5 presents another error case in which the lattice edge property is 

violated.  This case involves an INTERSECT and SUPERSET tuples in the 

ToProcessList.  On inserting I3 with {O1O3O4}, the prepare-search phase will add the 

tuples {INTERSECT, ({I1}, {O1O2}), {O1}} and {SUPERSET, ({I2}, {O1O3}), {O1O3}} 

to the ToProcessList and then create new concept ({I3}, {O1O3O4}).  Processing 

{INTERSECT, ({I1}, {O1O2}), {O1}} performs a recursive call to INSERT.  This 

recursive call will simply find and return concept (∅, {O1}), which is then added as a 

parent of ({I3}, {O1O3O4}) by the base invocation of INSERT.  Processing {SUPERSET,  
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Figure 3.4: Invalid edge as a result of related INTERSECT tuples. 
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Figure 3.5: Invalid edge resulting from related INTERSECT and SUPERSET tuples.  
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({I2}, {O1O3}), {O1O3}} tuple will result in removing ({I2}, {O1O3}) from the parents of 

(∅, ∅) and adding it to the parents of ({I3}, {O1O3O4}).  The edge between (∅, {O1}) 

and ({I3}, {O1O3O4}) now violates the lattice property since concept ({I2}, {O1O3}) 

exists between concepts (∅, {O1}) and ({I3}, {O1O3O4}). 

3.5 Correcting the Flaw 

In all error cases the extra links are a result of relationships existing between the 

concepts referenced in the ToProcessList.  That is, there exists a non-trivial meet in the 

lattice between the related concepts.  The recursive processing over all of the related 

concepts results in adding invalid parent-child links.  Often the invalid link will involve 

the meet of the related concepts.  In such cases, the intersection sets recorded in the tuples 

of ToProcessList of the related concepts will be the extent of the meet and therefore the 

intersection sets will be the same.  Thus, an approach to correcting the flaw is to remove 

all but one of the tuples in the ToProcessList of any tuples having the same intersection 

set.  This approach, however, is not sufficient since there exist cases where the invalid 

link does not involve a concept that is currently in the lattice.  These cases are still the 

result of a relationship between concepts in the ToProcessList.  Figure 3.6 is a case where 

the invalid link is not the meet.  In this case, the related concepts referenced in the 

ToProcessList are ({I1}, {O1O2O3O4}) and ({I2}, {O1O2O3O5}), and the meet concept is 

(∅, {O1O2O3}).  Here, the invalid link is between concepts that are created during the 

item insertion.  The invalid link will occur regardless of the order in which the tuples of 

the ToProcessList are processed.  The processing of {INTERSECT, ({I1}, {O1O2O3O4}), 

{O1O2}} before {INTERSECT, ({I2}, {O1O2O3O4}), {O1O2O5}}, as shown, will create 

the concept (∅, {O1O2}) when processing {INTERSECT, ({I1}, {O1O2O3O4}), {O1O2}}, 
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RV

I1 O1 O2 O3 O4
I2 O1 O2 O3 O5
I3 O3
I4 O1 O2 O5 O6

After Inserting I1, I2, and  I3 :RH

O1 I1 I2 I3 I4
O2 I1 I2 I4
O3 I1 I2
O4 I1
O5 I2 I4
O6 I4 ({I1},{O1O2O3O4}) ({I2},{O1O2O3O5}) 

({I3},{O3}) 

(∅,∅) 

(∅,{O1O2O3}) 

Inserting I4 :  

({I4},{O1O2O5O6}) 
CBase
I = I4
Os = {O1O2O5O6}
ToProcessList

INTERSECT, {O1O2}
INTERSECT, {O1O2O5}

CNew

({I1},{O1O2O3O4}) ({I2},{O1O2O3O5}) 

({I3},{O3}) 

(∅,∅) 

(∅,{O1O2O3}) 

(∅,{ O1O2}) 

Processing INTERSECT, {O1O2} :

({I1},{O1O2O3O4}) ({I2},{O1O2O3O5}) 

({I3},{O3}) 

(∅,∅) 

(∅,{O1O2O3}) 

CBase
I =∅
Os = {O1O2}
ToProcessList
∅

CNew

CBase
I =∅
Os = {O1O2}
SUBSET

({I4},{O1O2O5O6}) 

(∅,{O1O2O5}) 

(∅,{ O1O2}) Processing INTERSECT, {O1O2O5} :

({I1},{O1O2O3O4}) ({I2},{O1O2O3O5}) 

({I3},{O3}) 

(∅,∅) 

(∅,{O1O2O3}) 

CBase
I =∅
Os = {O1O2O5}
ToProcessList

INTERSECT, {O1O2}
CNew

({I4},{O1O2O5O6}) 

now invalid

 
Figure 3.6: Invalid edge generated between new concepts. 
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then create concept (∅, {O1O2O5}) when processing {INTERSECT, ({I2}, {O1O2O3O4}), 

{O1O2O5}}.  On the other hand, if {INTERSECT, ({I2}, {O1O2O3O4}), {O1O2O5}} is 

processed first, then both concepts (∅, {O1O2}) and (∅, {O1O2 O5}) will be created upon 

processing {INTERSECT, ({I2}, {O1O2O3O4}), {O1O2O5}}.  The subsequent processing 

of {INTERSECT, ({I1}, {O1O2O3O4}), {O1O2}} will simply add the violating edge.  

Thus, the strategy to resolve the problem is to identify and remove the tuples in the 

ToProcessList that will add the violating edges.  These tuples will have an intersection set 

that is a subset of the intersection set of other tuples.  Thus to correct the problem, an 

algorithm to purge these tuples from the ToProcessList is needed.   

A purge subsets algorithm involves comparing the intersection set of each tuple 

with the intersection set of every other tuple in the ToProcessList.  This will introduce a 

potential O(n2 m) asymptotic complexity when n is the number of tuples in the 

ToProcessList and m is the size of the intersection sets.  While the number of tuples in a 

given ToProcessList is bounded by the number of parent concepts of a given base 

concept, it is desired that the purge subsets algorithm be highly efficient and avoid any 

unneeded processing.  There is no need to compare two SUPERSET tuples, since 

SUPERSET tuples cannot be a subset of other tuples.  Furthermore, two INTERSECT 

tuples cannot be both a subset and superset of each other.  Therefore, the only tests 

needed between any two tuples are: 

i) a subset test when the first tuple is an INTERSECT, or 

ii) a superset test when the second tuple is an INTERSECT. 

The later will only be performed if the first tuple is not an INTERSECT, or if the result of 

the subset test is false.  Furthermore, to obtain an O(n2 m) complexity but not O(n2 m2) 
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the sets of object ids must be maintained in sorted order.  This is necessary for fast 

determination of subset and superset operations.  These operations can be optimized to 

determine an outcome as soon as possible.  A subset operation on sorted lists can report 

false if at any time an id is found in the first set that does not exist in the second, or the 

number of ids yet to be examined in the first set is greater than the number of ids yet to be 

examined in the second.  Dually, a superset operation can report false if at any time an id 

is found in the second set that does not exist in the first, or the number of ids yet to be 

examined in the first set is less than the number of ids yet to be examined in the second. 

Algorithm 3.3 presents an efficient algorithm to purge tuples in the 

ToProcessList.  Function PURGE-SUBSETS accepts the ToProcessList tuples.  Lines 1 

and 2 provide loops to compare each tuple with every other tuple.  Lines 3 through 6 

perform the comparisons between the tuples and removal of the subset tuples as needed. 

 

 

 
PURGE-SUBSETS(ToProcessList)  
        // ToProcessList is a list of tuples {Type, Concept, O} with 
       //  Type ∈ {NONE, SUBSET, SUPERSET, INTERSECT}, Concept a  
 // reference to a concept, and O is a set of object ids 
 
1. for each Pi ∈ ToProcessList:                            
2.  for each Pj ∈ ToProcessList ∧ Pj comes after Pi:                            
3.   if  Pi.Type = INTERSECT ∧ Pi.O ⊂ Pj.O: 
4.    Remove Pi from ToProcessList 
5.   else if  Pj.Type = INTERSECT ∧ Pi.O ⊃ PjO: 
6.    Remove  Pj from ToProcessList  

 
Algorithm 3.3:  PURGE-SUBSETS algorithm. 
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3.6 The Complete QuICL Oid-Full Algorithm 

In addition to calling the PURGE-SUBSETS functions, there are two more minor 

enhancements; the first provides an additional performance improvement and the second 

enables a specification of a minimum support threshold in order to construct iceberg 

lattices.  The optimization is to maintain a specific order between the parents of each 

concept in order to reduce the number of intersections performed.  The prepare-search 

phase performs intersection tests between the extents of each parent concept and a given 

set of object ids.  If during the iteration over the parents, a parent concept whose extent is 

equal to or subset of the set of object ids is encountered the algorithm returns without 

testing the remaining parents.  To increase the probability that such parent concepts are 

encountered sooner than later, the parents are maintained in descending order of their 

sizes of the extents. 

The processing for iceberg lattices begins by discarding any item whose extent 

does not meet a minimum support threshold.  In addition, the processing must prevent 

construction of concepts resulting from intersections with other concepts and for which 

the size of the concept’s extent would not meet the threshold.  Since the extent for a new 

concept resulting from an intersection with another concept is the intersection set that is 

stored in the tuples of the ToProcessList, a predicate on the size of the intersection set can 

be used to prevent construction of such concept.  The predicate can be tested before 

adding an INTERSECT tuple to the ToProcessList.  The result of applying these changes 

is the QuICL Oid-Full algorithm. 

The QuICL Oid-Full algorithm is given in algorithm 3.4.  The QuICL Oid-Full 

algorithm is Algorithm 3.2 with the stated changes.  Line 21 provides the call to the  
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Let Concept be a tuple {I, O, Parents} where I a list of items, O a list of object ids, 
and Parents a list of parent concepts. 

 
QUICL-OID-FULL(K{I, O, R}, MinSupp) 
1. CBottom ← new Concept (∅, ∅) 
2. for each Ii ∈ I ∧ |o(Ii)| ≥ MinSupp:    // o(Ii) is the set O derived from R 
3.       INSERT(CBottom, Ii, o(Ii)) 
4. return CBottom      // the lattice 
 

   INSERT(CBase, Ii, O)  
5. ToProcessList ← ∅   // list of tuples {Type, Concept, O} with 
6.                                    // Type ∈ {SUPERSET, INTERSECT}, Concept is a  
7.                                // reference to the intersecting concept, and O  
8.                                   // a set of object ids resulting from an intersection 
9.  

10. for each CParent ∈ of CBase.Parents:     // prepare-search phase 
11.  if  O = CParent.O:         
12.   Add Ii to CParent.I 
13.      return CParent     // processing complete 
14.  else if O ⊂ CParent.O:        
15.   return INSERT (CParent, Ii, O)   // recurse using CParent as new CBase 
16.  else if O ⊃ CParent.O: 
17.   Add {SUPERSET, CParent, CParent.O} to ToProcessList 
18.  else if |O ∩ CParent.O| ≥ MinSupp: 
19.   Add {INTERSECT, CParent, O ∩ CParent.O} to ToProcessList 
20.  
21. PURGE-SUBSETS(ToProcessList) 
22.  
23. CNew ← New Concept({Ii}, O)        // create the new concept 
24.  
25. for each Ti ∈ ToProcessList:               // link phase to link in CNew 
26.  if  Ti.Type = SUPERSET: 
27.   Remove Ti.Concept from CBase.Parents 
28.   Add Ti.Concept  to CNew.Parents 
29.  else if  Ti.Type = INTERSECT: 
30.   CParent ← INSERT (Ti.Concept, ∅, Ti.O) 
31.   Add CParent to CNew.Parents  
32.  
33. Sort CNew.Parents in order of decreasing |O| 
34.  
35. Add CNew to CBase.Parents in order of decreasing |O| 
36.  
37. return CNew 

  
Algorithm 3.4: The QuICL Oid-Full algorithm. 
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PURGE-SUBSETS function.  Lines 33 and 35 specify an order for parents of a concept.  

Line 2 is modified to discard items that do not meet the minimum support threshold.  

Line 18 tests that the size of the intersection set meets the minimum support threshold.  A 

complete implementation, written in Java, is provided in Appendix B. 

3.7 An Implementation Enhancement  

Testing and analysis of the QuICL Oid-Full algorithm revealed that more 

intersections are being performed than needed.  This is the result of the same parent 

concepts being intersected from multiple invocations of the INSERT function.  Where the 

same parent is encountered, each invocation has a different base concept that shares the 

parent.  Even though each invocation may be passed a different set of object ids, 

intersecting the object ids with a given parent’s extent will produce the same intersection 

set during insertion of a given item.  This is the case since the intersection set ultimately 

is the intersection of the parent’s extent and the extent of the item.  Thus, an 

implementation enhancement is to cache23

While the intersection set is the same between invocations, the outcome of 

comparison (i.e., =, ⊂, ⊃, and ∩) on which the QuICL algorithm is dependent can be 

different.  The outcome of comparison can be readily determined by performing tests on 

the cardinalities of the intersection set, the parent’s extent, and the object id set passed to  

 each intersection set with its parent concept 

for the duration of an item insertion.  Between item insertions all cached intersection sets 

are discarded.  This enhancement involves augmenting the tuples that represent concepts 

to include an intersection set, Intersect.  Intersect is set the first time a parent concept is 

encountered during an item insertion and cleared between insertions. 

                                                
23 The cache is a simple reference to an intersection set from within each tuple of a concept.  The 
intersection sets are discarded between item insertions. 
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Test on Intersect Outcome 
|Cparent.Intersect| = 0 No relationship 
|Cparent.Intersect| = |O| ∧ |Cparent.Intersect| = |Cparent.O|  O = CParent.O        
|Cparent.Intersect| = |O| ∧ |Cparent.Intersect| < |Cparent.O| O ⊂ CParent.O        
|Cparent.Intersect| < |O| ∧ |Cparent.Intersect| = |Cparent.O| O ⊃ CParent.O        
|Cparent.Intersect| < |O| ∧ |Cparent.Intersect| < |Cparent.O| O ∩ CParent.O        

Table 3.1: Determination of intersection outcome for Oid-Full enhancement. 
Cparent.Intersect is the cached intersection set, O is the object id set passed to INSERT, 
and Cparent.O is the extent of the parent concept. 
 
the INSERT function.  Table 3.1 provides identification of outcome based on the 

cardinality of these sets. 

In caching the intersection set in the parent concept, care must be taken to avoid 

incurring a penalty24

In a preliminary test, the final QuICL Oid-Full algorithm successfully constructed 

the complete lattice for the Mushroom data set in 3.54 seconds.  This represents a gain in 

excess of two orders of magnitude over the modified GMA algorithm (Algorithm 3.1). 

 in memory consumption.  A penalty can be avoided by using the 

appropriate reference as the intersection set.  If the outcome of comparison is equal or a 

subset, then Intersect of the parent concept is assigned the object id set passed to 

INSERT.  If the outcome of comparison is superset, then Intersect is assigned CParent.O.  

If |O ∩ CParent.O| < minimum support, Intersect is assigned an empty set.  A new 

intersection set is created and cached in the parent concept only when the outcome is 

intersection and the intersection set meets the minimum support threshold.  However, 

using a reference to this same set in the INTERSECT tuples of the ToProcess list will 

result in no additional memory consumption.  This set ultimately becomes the extent of a 

new concept that is added to the lattice.  Lastly, on creating a new concept, the Intersect 

is assigned a reference to the concept’s extent. 

                                                
24 Failure to use the appropriate object id sets that are either already present in memory or will be 
subsequently used in the algorithm, will result in the storage of many additional object ids sets.  Such sets 
could amount to substaintial memory consumption during the insertion process. 
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3.8 Asymptotic Complexity of the QuICL Oid-Full Algorithm 

Determining the asymptotic complexity of lattice construction algorithms has 

been noted to be a “delicate task” (Valtchev et al., 2002).  The review of literature of 

lattice construction algorithms indicates that the cardinality of the lattice (i.e., number of 

concepts) is a factor.  However, determining the cardinality of a lattice from an input data 

set is of itself a #P complete25

i) time to navigate to the concept above which the new concept will be created 
(lines 10 through 19 ultimately recursing at line 15), 

 problem (Kuznetsov, 2001).  Given this, the expression of 

runtime complexity for the QuICL Oid-Full algorithm will include |L| as a factor.  

Therefore, in order to postulate a runtime complexity, the cost to add a concept into the 

lattice must be assessed. 

A concept is created at line 23 of the INSERT function of the QuICL Oid-Full 

algorithm (Algorithm 3.4) and then linked into the lattice.  Possible terms affecting the 

runtime complexity of adding a concept are: 

ii) time to execute the prepare-search phase to identify and add entries to the 
ToProcessList (lines 10 through 19 not recursing at line 15 or returning at 
line 13), 

iii) time to purge entries in the ToProcessList that are subsets of other entries 
(line 21), 

iv) time to create the new concept (line 23), 

v) time to process SUPERSET entries in the ToProcessList (lines 25 through 31 
for Ti.Type = SUPERSET), 

vi) time to process INTERSECT entries in the ToProcessList (lines 25 through 
31 for Ti.Type = INTERSECT), 

                                                
25 #P, pronounced “sharp P” or “number P”, is class of problems in computation theory which is the subset 
of NP related to counting (i.e., determining “how many”).  #P problems are considered to be more difficult 
NP problems.  For each #P problem, an easier “does there exists” problem may be NP.  Term was first 
introduced by Valiant (1979). 
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vii) time to sort the parents of the new concept (line 33), and 

viii) time to link the new concept to its base concept (line 35). 

The time to navigate to the concept above which a new concept will be created 

involves recursion at line 15.  The number of times recursion is performed for a given 

object id set could be, in the worst case, the height of the lattice minus one.  The worst 

case for the height of the lattice is the cardinality of the item set.  Recursion is performed 

using one of the parent concepts as the new base concept.  To identify the parent concept 

on which to recurse, the INSERT function iterates through the parent concepts and 

performs an intersection using object id set passed in the call and the extent of each 

parent.  The worst case for the number of parent concepts is also the cardinality of item 

set.  The cost of intersection will be O(k) where k = |O|, provided the object ids are 

maintained in sorted order.  Therefore, the worst case cost to navigate into the lattice to 

the point where a new concept will be inserted is O(m2 k), where m = |I| and k = |O|.  

However, this analysis does not account for the fact that the vast majority of concepts are 

created as a result of recursive calls.  This is often the case, since in a typical lattice the 

number of concepts far exceeds the number of items26

The time to execute the prepare-search phase involves iterating over the parent 

concepts of the base concept and performing an intersection for each.  Each intersection 

is between the object ids passed in the call and the extent of the parent. The worst case 

.  Furthermore, these recursive calls 

are invoked at a higher level in the lattice and the concept passed as the base is often the 

point above which a new concept will be created.  Therefore, the time to navigate is near 

zero.  Thus, the time to navigate will not be a dominant term in runtime complexity. 

                                                
26 There are at most |I| concepts created by non-recursive calls, since |I| is the number of times the 
INSERT function is called as a result of processing the input data set. 
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for the number of parent concepts is the cardinality of an item set.  Furthermore, the 

worst case cost of intersection will be O(k) where k = |O|, provided the object ids are in 

sorted order.  Therefore, the worst case cost execute the prepare-search phase is O(m k), 

where m = |I|, and k = |O|.  However, this worst case cost would only be realized with 

data sets of extreme density27

 Data Set 

 and are not representative of real world data sets.  For real 

world data sets the average number of parent concepts of the base concept will be far less 

than the cardinality of the item set.  For example, Table 3.2 presents the average degree 

(i.e., average number of parents in the upper cover of all concepts) of the lattices 

generated by four benchmark data sets often cited in literature.  Beyond this, using the 

cardinality of the object id set as the factor representing the cost of intersection will be 

excessive.  For some data sets such as the T10I4D100k, the largest set of object ids will 

represent only a fraction of the objects.  Furthermore, the cardinality of the object ids sets 

(i.e. extents) in a vast majority of concepts will be much smaller.  However, the 

cardinality of these sets must at least meet the minimum support.  Thus, the intersection 

cost will be some factor that is greater than the minimum support (best case), less than 

the cardinality of the largest object id set (worst case), and probably skewed towards a 

lower value depending on the density of the data set (expected case).  This factor will be  

 

|O| |I| |L| Avg 
Deg 

Max 
Deg 

Mushroom 8,124 119 238,709 5.71 33 
Pumsb at 75%supp 49,046 7,116 101,047 7.02 21 
T10I4D100k 100,000 999 2,347,374 4.29 846 
T25I10D10k 9,219 1,000 2,557,928 4.30 996 
  Table 3.2: Sample data set and lattice characteristics28

                                                
27 For formal context K{I, O, R}, the density of  R = |R| / (|I| × |O|) where |R| is the total number of items 
for all objects. 
28 See Section 4.2 for further description of these data sets. 

. 
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some type of mean function on the cardinality of the extents of frequent items.  This 

mean will take into account the density of the data set, since the density will affect the 

probability of common values between object id sets and therefore generate a greater 

number intersection sets whose cardinality is large.  The explicit type of mean (e.g., 

arithmetic, quadratic, weighted, etc.) is indeterminate due to the dependency on density.  

The term density weighted mean will be used to reference this mean.  Given this, an 

expected cost to execute the prepare-search phase is O(d i), where d = degavg(L), and i is a 

density weighted mean on the cardinality of frequent  item extents.   

The time to purge entries in the ToProcessList that are subsets of other entries is 

the time to execute the PURGE-SUBSETS algorithm.  This algorithm compares each 

entry with every other entry.  The cost to remove an entry can be done in constant time 

and therefore is not a factor.  Thus, the runtime complexity is O(n2 c) where n is the 

number of entries and c is the cost of comparison.  The number of entries in the 

ToProcessList will at most be number of parents of a concept, which in the worst case is 

the cardinality of the set of items.  The worst case cost of comparison will be O(k) where 

k = |O|, provided the object ids are maintained in sorted order.  Therefore, the worst case 

time to purge entries in the ToProcessList is O(m2 k), where m = |I| and k = |O|.  The 

argument to use average degree of the lattice in place of |I| cannot be clearly made due to 

the quadratic expression.  While the average degree is indeed a fraction of |I|, there can 

exist concepts whose number of parents approaches |I| as evident by the maximum 

degree given in Table 3.2.  However, since the average degree on most data sets is small 

(i.e., < 10), there must exist a large number for concepts less than the average to 
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compensate for any outliers.  Furthermore, since the degree for a majority of the concepts 

must be at least two29

Of the remaining terms, only the time to process INTERSECT entries has the 

potential to be a dominant term.  Time to create the new concept is O(1), time to process 

SUPERSET entries is O(d), time to sort parents is O(d log d), and time to link the new 

concept to its base is O(log d), where d = degavg(L).  Processing the INTERSECT entries 

involves performing a recursive call to the INSERT function.  Many of these calls will 

result in creating a new concept.  The cost to create a new concept, during the processing 

of INTERSECT entries, does not need to be consider at this point.  This cost will be 

accounted for in the overall runtime complexity, since the overall runtime complexity has 

factor |L| which includes all concepts.  This leaves calls that search for concepts already 

present in the lattice.  The cost of performing such call will be very similar to cost of 

, an even greater number of small concepts must be present.  

Therefore, average degree of the lattice will be a better expression than |I|.  The cost of 

comparison will be less than the cost of intersection.  In the cases where neither set is a 

subset of the other, this outcome is often determined within a few iterations into each set.  

An outcome can be determined as soon as an object id not present in the other set is 

found in each.  Given that a vast majority of the entries in the ToProcessList are not 

subsets of each other, the cost of comparison will probably be near a constant which is 

some small fraction of |O|.  However, the density of data set may have an effect on this 

constant, since a higher density increase the probability of common values between sets.  

Therefore, the cost purge entries is O(d2 c), where d = degavg(L) and c is a small fraction 

of |O| depending density.   

                                                
29 There can be at most |I| interior concepts of degree one.  Since |L| greatly exceeds |I|, most interior 
concepts have a degree greater than one. 
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prepare-search, since the same statements are performed (lines 10 through 19 of 

Algorithm 3.4).  However, these calls may recurse a number of times through line 15 

before ultimately reaching line 13.  The number of times recursion is performed will be in 

the worse case the height of the lattice.  However, the insertion of a new concept is often 

at higher levels in the lattice.  Furthermore, the parent is often found within a few levels 

of recursion and in many cases just one30

Of all the possible terms affecting the runtime complexity of adding a concept 

into the lattice, only the time to execute the prepare-search phase, time to purge subsets, 

and time to process INTERSECT entries are feasible dominant terms.  The complexity 

for these terms is O(d i), O(d2 c), and O(d d′ i h) respectively.  Given this, it is postulated 

that the runtime complexity for the QuICL Oid-Full algorithm will be either O(l d i), 

O(l d2 c), or O(l d d′ i h), where l = |L| and the rest as previously stated.  While O(l d2 c) 

.  Therefore, the expected number of times 

recursion is performed is a sub-linear function (e.g., log, sqrt) on the height of the lattice.  

Thus, the runtime complexity of performing calling INSERT to find a concept already 

present in the lattice will be O(d i h), where h is a sub-linear function on the height of the 

lattice, and d and i as previously stated.  The number of such calls will be a fraction of the 

number of parents of a concept depending on density, since density has an effect on the 

probability the extent already exists in the lattice.  Therefore, the time to process 

INTERSECT entries that find concepts already present in the lattice is O(d d′ i  h), where 

d = degavg(L), d′ is a fraction of d depending on density, i is a density weighted mean on 

the cardinality of frequent item extents, and h is a sub-linear function on the height of the 

lattice. 

                                                
30 This behavior was observered by instrumentation added during the benchmarks of Chapter 4.  The 
number times the calls recurse appear to grow at a slower rate than the height of the lattice. 
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or O(l d d′ i h) on the surface appear to be greater than O(l d i), the probability of a real 

effect on the performance by these terms is doubtful, since both c and d′ will often be 

very small fractions.  Only O(l d i) is assured.  Thus, the expected asymptotic complexity 

of the QuICL Oid-Full algorithm will at least be O(l d i), but could approach O(l d2 c) or 

O(l d d′ i  h), where l = |L|, d = degavg(L), i is density weighted mean on the cardinality of 

frequent item extents, c is a small fraction of |O| depending density, d′ is a fraction of d 

depending on density, and h is a sub-linear function on the height of the lattice. 

Determination of the space complexity for the QuICL Oid-Full algorithm will 

also include |L| as a factor.  Therefore, in order to postulate a space complexity, the space 

consumed by each a concept must first be assessed.  Each concept is a tuple {I, O, 

Parents} where I is a list of items, O is a list of object ids, and Parents is a list of parent 

concepts.  Given this, a space complexity for the QuICL Oid-Full algorithm of O(l m2 k) 

could be considered, where l = |L|, m = |I|, and k = |O|.  However, the QuICL Oid-Full 

algorithm only stores a given item in only one place within the lattice.  The sum of the |I| 

for all concepts will be at most |I|.  Thus, one m can be removed as a factor.  The other m 

can be replaced by d, being the average degree of the lattice, for the same arguments 

stated during the analysis of runtime complexity.  Likewise, k can be replaced with i, 

being a density weighted mean on the cardinality of frequent item extents.  Therefore, it 

is postulated that the memory complexity of the QuICL Oid-Full algorithm is O(l d i) 

where l = |L|, d = degavg(L), and i is a density weighted mean on the cardinality of 

frequent item extents. 
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3.9 Discussion for an Alternate QuICL 

The execution times from preliminary tests of the QuICL Oid-Full algorithm are 

very promising.  Performance against the Mushroom data set and the T25I10D10k31 data 

set appear to be far better than any known algorithms.  However, the performance gains 

do not hold against some other data sets, such as Chess32

• As new concepts are inserted into the lattice, the object ids of the children of the 
new concept will percolate up into the new concept for any object ids that are 
common between the children. 

.  An issue for the QuICL Oid-

Full algorithm is storage of the complete list of object ids in each concept. The same 

object ids can be repeated in multiple concepts.  This is evident in Figure 3.1.  Since the 

number of concepts can grow exponentially with respect to the size of the data set, the 

size and storage of concept lattice has potential to exceed the capacity of the main 

memory.  To address this concern, an alternate compressed data structure is sought.  Such 

alternate notation can be obtained by exploiting the lattice property: if Oi ∈ extent of 

concept C1 then ∀ C2 | C2 > C1, Oi ∈ extent of C2.  Thus, an Oi ∈ O of concept C2 does 

not need to be physically recorded in a concept if there exists a concept C1 such that 

C1 < C2 and Oi ∈ O of concept C1.  An object Oi need only be recorded in a concept at its 

minimal position (i.e., highest position in the inverted lattice).  The complete set of O for 

a concept can be computed by traversing all ancestors. 

Figure 3.7 depicts the same lattice construction progress of Figure 3.1 using the 

compressed lattice data structure.  In addition to the same observations concerning the 

progression given in Figure 3.1, an additional observation is noteworthy: 

 

                                                
31 T25I10D10k is another test data set often used in studies of association rule mining.  See Section 4.2. 
32 Chess is data set often used in studies of association rule mining.  See Section 4.2. 
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Inserting a1 ({a1},{O1O2O3O4O5O8O9O10})

(∅,∅)

Inserting a2

(∅,∅)

({a2},{O6O7})({a1},{O1O2O3O4O5O8O9O10})

Inserting b1

({b1},{O1O2O8})

(∅,∅)

({a2},{O6O7})({a1},{O3O4O5O9O10})

({a1},∅)

Inserting c1

({c1},∅) ({b2},∅)

({b1},{O1})

(∅,∅)

(∅,{O3O4O5O9O10})

({a2},{O7})(∅, ∅)

(∅,{O2O8})

(∅, ∅)

(∅,{O6})

Inserting b2

({b2},∅)

({b1},{O1O2O8})

( ∅, ∅ )

({a1},∅)

(∅,{O3O4O5O9O10}) ({a2},{O6O7})

({c2},{O7})

({c1},∅) ({b2},∅)

({b1},∅)

(∅,∅)

({a1},∅)

(∅,{O3O4O5O9O10})

({a2},∅)(∅,∅)

(∅,{O2O8})

(∅,∅)

(∅,{O6})({c3},{O1})
Inserting c2 and c3

 
Figure 3.7: Progression of incremental insertion into a compressed lattice.  Bold text and 
lines identify added new elements.  Dashed lines are removed elements. 
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({c2},{O7})

({c1},∅) ({b2},∅)

({b1},∅)

(∅,∅)

({a1},∅)

(∅,{O4})

({a2},∅)(∅,∅)

(∅,{O2O8})

(∅,∅)

(∅,{O6})({c3},{O1})

({d1},∅)

(∅,{O3O5O9O10})

Inserting d1

({d2},∅}

({c2},{O7})

({c1},∅) ({b2},∅)

({b1},∅)

(∅,∅)   

({a1},∅)

(∅,{O4})

({a2},∅)(∅,∅)

(∅,{O2O8})

(∅,∅)

(∅,{O6})({c3},{O1})

({d1},∅)

(∅,{O3O5O9O10})

Inserting d2

({d2},∅}

({c2d3},{O7})

({c1},∅) ({b2},∅)

({b1},∅)

(∅,∅)   

({a1},∅)

(∅,{O4})

({a2},∅)(∅,∅)

(∅,{O2O8})

(∅,∅)

(∅,{O6})({c3},{O1})

({d1},∅)

(∅,{O3O5O9O10})

Inserting d3

({d2},∅}

({c2d3},{O7})

({c1},∅) ({b2},∅)

({b1},∅)

(∅,∅)   

({a1},∅)

(∅,{O4})

({a2},∅)(∅,∅)

(∅,{O2O8})

(∅,∅)

(∅,{O6})({c3},{O1})

({d1},∅)

(∅,{O3O5O9O10})

Inserting d4

({d4},{O4})

 
Figure 3.7 continued: Progression of incremental insertion into a compressed lattice.  
Bold text and lines identify added new elements. 
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3.10 An Incremental Insertion Algorithm Using a Compressed Lattice 

Algorithm 3.5 presents an incremental insertion algorithm that uses the 

compressed lattice data structure.  This is the QuICL algorithm of Algorithm 3.4 with a 

few modifications: 

i) The tuples now include field Support, since support can no longer be 
determined by |O|.  Changes to set and use Support are made accordingly 
(lines 20, 24, 38, and 40).   

ii) The predicates to support construction of an iceberg lattice have been 
removed.  Support for iceberg lattices using the compressed data structure will 
be discussed later in this chapter.   

iii) A call is made to a function GET-O to obtain the complete list of object ids 
for a concept (line 7).  The GET-O algorithm, given in Algorithm 3.6, 
traverses the ancestors in the lattice to obtain a concept’s object ids.  The 
returned set is used instead of the O of a concept when performing subset, 
superset, equal, and intersect operations (lines 8, 11, 13, and 15).   

iv) Object ids in O that are not at, or will no longer be at, the minimal position33

GET-O-EXTEND within GET-O traverse all ancestors of a concept recursively.  

The VisitedSet (line 2) is used to ensure that an ancestor concept is only processed once.  

The set O is sorted (line 4) to enable fast subset, superset, equal, and intersect operations 

on the returned set. 

In a preliminary test, Algorithm 3.5 took 1,560 seconds to execute against the 

Mushroom data set.  While this execution time is two orders of magnitude greater than 

the QuICL Oid-Full, it is interesting to note that it matches the GMA algorithm.  Profile 

analysis revealed that near 99% of the execution time is consumed by the GET-O 

function.  Thus, alternate strategies to perform the comparison tests are needed. 

 

are removed from O (lines 21 and 22) prior to constructing the new concept 
(line 24).  This performs part of the percolation of ids.  Removing the 
percolated ids from the base concept completes the process (line 25).   

                                                
33 Minimal position in the highest concept in an inverted lattice that is to hold a given object id.  
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Let Concept be a tuple {I, O, Support, Parents} where I a list of items, O a list of 

object ids, Support is the support of the concept, and Parents a list of parent 
concepts.   

 
  INSERT(CBase, Ii, O) : 

1. ToProcessList ← ∅   // list of tuples {Type, Concept, O} with 
2.                                    // Type ∈ {SUPERSET, INTERSECT}, Concept a  
3.                                // reference to the intersecting concept, and O 
4.                                   // a set of object ids resulting from an intersection 
5.  
6. for each CParent ∈ of CBase.Parents:     // prepare-search phase 
7.  OParent ← GET-O(CParent) 
8.  if  O = OParent:         
9.   Add Ii to CParent.I 

10.      return CParent 
11.  else if  O ⊂ OParent:        
12.   return INSERT (CParent, Ii, O) 
13.  else if  O ⊃ ConceptO: 
14.   Add {SUPERSET, CParent, OParent} to ToProcessList 
15.  else if O ∩ ConceptO ≠ ∅: 
16.   Add {INTERSECT, CParent, O ∩ OParent} to ToProcessList 
17.  
18. PURGE-SUBSETS(ToProcessList) 
19.  
20. Support ← |O| 
21. for each Ti ∈ ToProcessList:   // remove ids not at min position 
22.  O ← O – Ti.O 
23.  
24. CNew ← New Concept({Ii}, O, Support)   // create the new concept 
25. CBase.O ←  CBase.O − O      // percolate object ids 
26.  
27. for each Ti ∈ ToProcessList:               // link phase - process intersections 
28.  if  Ti.Type = SUPERSET: 
29.   Remove Ti.Concept from CBase.Parents 
30.   Add Ti.Concept  to CNew.Parents 
31.  else if  Ti.Type = INTERSECT: 
32.   CParent ← INSERT (Ti.Concept, ∅, Ti.O) 
33.   Add CParent to CNew.Parents 
34.  
38. Sort CNew.Parents in order of decreasing Support 
39.  
40. Add CNew to CBase.Parents  in order of decreasing Support 
41.  
42. return CNew 

Algorithm 3.5: Incremental item insertion algorithm for a compressed lattice. 
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GET-O(Concept)  

1. O ←∅ 
2. VistedSet ←∅ 
3. GET-O-EXTEND(Concept, O, VisitedSet) 
4. Sort O 
5. Returns O 

 
GET-O-EXTEND(Concept, O, VisitedSet)  

6. if Concept ∉ VistedSet: 
7.  Add Concept to VistedSet 
8.  O ←O ∪ Concept.O 
9.  for each CParent∈ Concept.Parents: 

10.   GET-O-EXTEND(CParent, O, VisitedSet)  
 

Algorithm 3.6: Supporting algorithms to extract an object id set. 
 

3.11 A Strategy to Intersect a Concept Lattice 

Instead of performing subset, superset, equal, and intersect operations against the 

object ids obtained for each individual concept, an alternate strategy is to intersect the 

extent of an item with the complete lattice.  This strategy exploits the compress lattice 

data structure.  That is, all object ids are physically stored at only their minimal positions.  

As a result, only one concept in the lattice contains a given object id.  A vector indexed 

by object id can be used to locate the concept.  Intersection with the lattice can be 

performed by iterating over the item’s extent, lookup each concept using the object id as 

an index, and then add the object to the set of intersect object ids stored in the concept.  

The intersect object ids are a temporal set that is cleared between item insertions.  This 

represents the set of object ids at its minimal position that intersects the item’s extent.  It 

does not represent the extent of a given concept that intersects the item’s extent.  The full 

intersection set for a concept can be obtained by traversing all ancestors of a concept and 

accumulating all object ids in the object id intersection sets.  
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Figure 3.8 illustrates an example of lattice intersection.  For the new item I3, the 

concept for each object in the extent {O3O4O6} is identified using each object id as an 

index into the O2C vector, and the object id is then added to the referenced concept’s 

intersection set.  In Figure 3.8 the object ids highlighted in bold represent the object ids in 

the intersection set.  To obtain the full intersection set for a given concept, the concept 

and all of its ancestors are traversed accumulating the object ids of the intersection sets.  

For example, the full intersection set for concept ({I5}, ∅) is {O3O4O6} and the full 

intersection set for concept ({I6}, ∅) is {O3}. 

Algorithm 3.7 presents the incremental item insertion algorithm for a compressed 

lattice that uses lattice intersection.  The related supporting functions used in Algorithm 

3.7 are given in Algorithm 3.8.  The BUILD-LATTICE function now calls a function 

INTERSECT-LATTICE (line 3) to intersect an item’s extent with the concept lattice.  

This will set the intersection sets of the concepts referenced by the O2C lookup vector.  

INTERSECT-LATTICE is executed once for each item prior to calling INSERT to add 

the item into the lattice.  The call to function GET-INTERSECT (line 12) is used to 

obtain the full set of object ids of a concept that intersect the items extent.  However, this 

set by itself is not sufficient to determine if a concept’s object ids is a subset, superset, or 

equal to the item’s extent.  The function HAS-SUPERSET, called on line 13, returns a 

boolean indicating if the concept has at least one object id that does not intersect with the 

item’s extent.  From the Intersect returned by INTERSECT and HasSuper returned by 

HAS-SUPERSET the relationship between an item’s extent and a concept can be readily 

determined as indicated in Table 3.3. 
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({I5},∅) ({I4},∅)

({I3},∅)

(∅,∅)

({I1},∅)

(∅,{O4})

({I2},∅)(∅,∅) (∅,∅)

(∅,{O6})({I7},{O1O2})

({I6},∅)

(∅,{O3O5})

Inserting I8 {O3O4O6} 

O6

O1
O2
O3
O4
O5

Ancestors of ({I5},∅)
∴ ∩ = {O3O4O6} 

Ancestors of ({I6},∅)
∴ ∩ = {O3} O2C Vector

 
 
 
 
 

Figure 3.8: Illustration of lattice intersection.  Vector O2C provides lookup of the concept 
holding a given object id.  The shaded triangles denote the ancestors of a given concept.  
Bolded text denotes the intersecting object ids.  For a given concept C, the full set of 
intersecting object ids are the intersection object ids in that concept and all ancestor 
concepts. 
 
 
Test on Intersect HasSuper Outcome 
|Intersect| = 0  No relationship 
|Intersect| = |O| FALSE Item’s Extent = Concept’s Extent 
|Intersect| = |O| TRUE Item’s Extent ⊂ Concept’s Extent 
|Intersect| < |O| FALSE Item’s Extent ⊃ Concept’s Extent 
|Intersect| < |O| TRUE Item’s Extent ∩ Concept’s Extent 

Table 3.3: Determination of intersection outcome. 
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The prepare-search phase in the INSERT function uses above tests in place of 

previous =, ⊂, ⊃, and ∩ set operations (lines 14, 16, 19, 21, and 23).  In addition, 

function ADJUST is called following creation of a new concept (line 30).  The ADJUST 

function is needed to perform adjustments between CNew and CBase concepts in order to 

maintain integrity of the compressed lattice data structure.  The rest of the INSERT 

function is the same as before. 

Algorithm 3.8 provides the algorithms for functions supporting Algorithm 3.7.  

For these functions, the tuples defining concepts in the lattice are augmented with a set of 

temporal fields to hold the results of intersecting an item with the lattice.  The fields 

include Intersect, FullIntersect, and HasSuper.  Intersect are the object ids at their 

minimal position that intersect an item’s extent.  The FullIntersect is the full list of object 

ids of a concept that intersect an item’s extent.  HasSuper is a boolean indicating that 

there exists at least one object id of the concept that does not intersect with the item’s 

extent.  Intersect is set by calling the INTERSECT-LATTICE function.  FullIntersect and 

HasSuper are derived as needed by the GET-INTERSECT and HAS-SUPERSET 

functions, respectively.  All of the temporal fields are retained during insertion of a given 

item and discarded between item insertions.  These fields can be implemented using hash 

tables or as additional fields in the tuples.  In either case, clearing the fields involves a 

marginal amount of bookkeeping and performance overhead. 
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Let Concept be a tuple {I, O, Support, Parents} where I a list of items, O a list of 
object ids, Support is the support of the concept, and Parents a list of parent 
concepts. 

 
Let O2C be a vector whose index Oi identifies the concept Ci | Oi ∈ C.O 
 
BUILD-LATTICE(K{I, O, R}) 
1. CBottom ← new Concept (∅, ∅) 
2. for each Ii ∈ I:        // o(Ii) is the set O derived from R 
3.       INTERSECT-LATTICE(CBottom, o(Ii)) 
4.       INSERT(CBottom, Ii, o(Ii)) 
5. return CBottom        // the lattice 
 

   INSERT(CBase, Ii, O)  
6. ToProcessList ← ∅   // list of tuples {Type, Concept, O} with 
7.                                    // Type ∈ {SUPERSET, INTERSECT}, Concept a  
8.                                // reference to the intersecting concept, and O  
9.                                  // a set of object ids resulting from an intersection 

10.  
11. for each CParent ∈ of CBase.Parents:    // prepare-search phase 
12.  Intersect ← GET-INTERSECT(CParent) 
13.     HasSuper ← HAS-SUPERSET(CParent) 
14.  if  Intersect = ∅:                                                    // no relationship 
15.   continue for each with next CParent 
16.  else if |Intersect| = |O| ∧ HasSuper = FALSE:    // equal case     
17.   Add Ii to CParent.I 
18.      return CParent 
19.  else if |Intersect| = |O| ∧ HasSuper = TRUE:      // subset case        
20.   return INSERT (CParent, Ii, O) 
21.  else if |Intersect| < |O| ∧ HasSuper = FALSE:     // superset case   
22.   Add {SUPERSET, CParent, Intersect} to ToProcessList 
23.  else if |Intersect| < |O| ∧ HasSuper = TRUE:      // intersect case 
24.   Add {INTERSECT, CParent, Intersect} to ToProcessList 
25.  
26. PURGE-SUBSETS(ToProcessList) 
27.  
28. CNew ← New Concept({Ii}, CBase.Intersect, |O|)       // create the new concept 
29.  
30. ADJUST(CBase, CNew) 

   .  .  . 
 

Algorithm 3.7: Incremental item insertion algorithm using lattice intersection. 
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Let tuples of Concepts be augmented with the temporal fields {Intersect, FullIntersect, 
HasSuper} where Intersect a list of the concept’s O that intersect with an item’s 
extent, FullIntersect a full set of object ids of a concept that intersect with an 
item’s extent, and HasSuper a boolean indicating at least one object id of a 
concept does not intersect with an item’s extent.   

 

INTERSECT-LATTICE(CBottom, O) 
1. All temporal fields of all concepts within the lattice ←∅ 
2. for each Oi ∈ O:      // perform the intersection 
3.  CMin ← O2C[Oi]    // CMin is the concept with Oi at minimal position 
4.  if CMin ≠ ∅:      
5.   Add Oi to CMin.Intersect 
6.  else:  
7.   Add Oi to CBottom.Intersect 

 

GET-INTERSECT(Concept)  
8. if Concept.FullIntersect = ∅: 
9.  VisitedSet ←∅ 

10.  GET-INTERSECT-EXTEND(Concept, Concept.FullIntersect, VisitedSet) 
11.  Sort Concept.FullIntersect 
12. return Concept.FullIntersect 

 

GET-INTERSECT-EXTEND(Concept, FullIntersect, VisitedSet)  
13. if Concept ∉ VisitedSet: 
14.  Add Concept to VisitedSet 
15.  Add Concept.Intersect to FullIntersect 
16.  for each CParent ∈ Concept.Parents: 
17.   GET-INTERSECT-EXTEND(CParent, FullIntersect, VisitedSet) 

 

HAS-SUPERSET(Concept)  
18. if Concept.HasSuper = ∅: 
19.  if |Concept.Intersect| < |Concept.O|: 
20.   Concept.HasSuper ← TRUE 
21.  else: 
22.   for each CParent ∈ Concept.Parents ∧ Concept.HasSuper = ∅: 
23.    if HAS-SUPERSET (CParent): 
24.     Concept.HasSuper ← TRUE 
25.   if Concept.HasSuper = ∅: 
26.    Concept.HasSuper ← FALSE 
27. return Concept.HasSuper  

 

ADJUST(CBase, CNew)  
31. for each Oi ∈ CBase.Intersect: 
32.  O2C[Oi] ← CNew 
33. CBase.O ← CBase.O − CBase.Intersect 
34. CNew.Intersect ← CBase.Intersect 
35. CBase.Intersect ← ∅ 

Algorithm 3.8: Algorithms of supporting functions for lattice intersection. 



117 

 

The INTERSECT-LATTICE function begins by clearing the values of all 

temporal fields of the previous execution (line 1) and then performs the lattice 

intersection using the O2C vector (lines 2 through 7).  If a concept for an object id is not 

found in the O2C vector, then the object id is added to the Intersect temporal field of the 

bottom concept.  Upon completion of INTERSECT-LATTICE all concepts whose 

minimal object ids intersect with the extent of the new item will have their Intersect set 

accordingly. 

Function GET-INTERSECT returns FullIntersect of a concept.  It calls GET-

INTERSECT-EXTEND to assign FullIntersect the Intersect of the concept and all 

ancestor concepts (line 10).  Following the call to GET-INTERSECT-EXTEND, the 

object ids of FullIntersect are sorted.  Sorted ids are needed to enable fast set operations.  

GET-INTERSECT-EXTEND is the same recursive algorithm as GET-O-EXTEND 

previously presented, except it adds the Intersect to the resulting set instead of O.  The 

assignment to FullIntersect effectively caches the result.  This eliminates lattice traversals 

in the event that GET-INTERSECT is called more than once for the same concept during 

insertion of an item.  It would be desirable to cache the interim results gathered during 

execution of GET-INTERSECT-EXTEND.  However, the algorithm and data structure is 

not conducive to such approach.   

Function HAS-SUPERSET first checks if a value for the HasSuper field for the 

concept has previously been derived (line 18).  If so, returns the value of HasSuper, 

otherwise it compares the number of object ids between the concept’s intersection and 

object id sets.  If the number of objects in the intersection set is less, then there exists at 

least one object id that is not in the extent of the item.  In such case, HasSuper for the 
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concept is set to TRUE and that value is returned.  If the size of the intersection set equals 

the object id set, then HAS-SUPERSET recurses on each parent concept.  If any of the 

recursive calls returns TRUE, HasSuper for the concept is set to TRUE and that value is 

returned.  If none of the recursive calls returns TRUE, HasSuper for the concept is set to 

FALSE and that value is returned.  These recursive calls will set the HasSuper field for 

each parent, thereby caching the intermediary results.  The ADJUST function will update 

the O2C vector to reference CNew for each of the percolated object ids (lines 31 and 32) 

and percolate the intersection sets from CBase to CNew (lines 33 through 35). 

In a preliminary test, Algorithm 3.7 (with supporting algorithms of Algorithm 3.8) 

took 446 seconds to execute against the Mushroom data set.  Thus, Algorithm 3.7 

provides a performance gain of a factor of three over Algorithm 3.5.  While this is 

substantial, the executions times are is still far short of the performance of QuICL Oid-

Full.  Profile analysis revealed that 98% of execution time was spent executing the GET-

INTERSECT and HAS-SUPERSET.  Virtually all execution time is still spent 

performing the lattice intersection. 

3.12 A Push Instead of Pull Intersection 

Algorithm 3.8 uses a pull-down strategy to complete the intersection process for a 

given concept.  That is, the GET-INTERSECT function derives FullIntersect by pulling 

down the Intersect from all ancestor concepts.  This pull-down is performed as needed 

the first time the full set of intersect object ids is accessed for a given concept.  An 

alternate approach is to push the object ids down into the lattice during that lattice 

intersect operation.  This approach is given in Algorithm 3.9.  Here, the LATTICE-

INTERSECT function performs a call to LATTICE-INTERSECT-EXTEND to push an 
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object id into the lattice (line 6).  LATTICE-INTERSECT-EXTEND is a recursive 

algorithm.  It first checks whether the object ids have not already been added to a 

concept’s FullIntersect.  If so the recursion halts, otherwise the object id is added to a 

concept’s FullIntersect and LATTICE-INTERSECT-EXTEND is called for each parent.  

Since a concept’s FullIntersect is set during the lattice intersection, the GET-

INTERSECT function for this algorithm simply returns FullIntersect (line 13). 

In a preliminary test, Algorithm 3.7 using Algorithm 3.9 took 139 seconds to 

execute against the Mushroom data set.  This is performance improvement of a factor of 

three over Algorithm 3.7 using Algorithm 3.8 and an order of magnitude improvement 

over Algorithm 3.5.  However, performance of this algorithm is still an order of 

magnitude slower than QuICL Oid-Full.  Profile analysis revealed that 93% of the 

execution time is now consumed executing the INTERSECT-LATTICE function.  A 

large portion of execution time is still spent performing the lattice intersection.  There are 

no further apparent improvements to this push approach. 

3.13 A Hybrid Pull-Down and Bottom-up Intersection 

As a lattice grows, the support functions of both Algorithms 3.8 and 3.9 exhibits a 

degradation of performance.  The problem is that the object ids percolate to the top 

concepts in the lattice, yet the QuICL algorithms need the results of intersection for the 

concepts from the bottom-up.  Regardless of pull-down or push-down approach, a 

traversal through the body of the lattice is required.  A strategy to improve performance is 

to reduce the number of times the lattice is traversed.  One means of achieving this 

strategy is to exploit proposition 3.1.  
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Proposition 3.1:  If a concept has more than one child, then the set of object ids 
for the concept that intersects with an item’s extent will be the intersection of the 
set of object ids that intersects with an item’s extent of all child concepts. 
 
Proof: A parent concept is the join concept (i.e., least common ancestor in an 
inverted lattice) of all of its children.  Therefore, the parent’s extent is the 
intersection of the extents of its children.  Let Oi be an object id in the extent of a 
child that intersects with the items extent, then  
 

i) if Oi is in the extent of all other children, then Oi is in each child’s set 
of object ids that intersects the item’s extent, or  

ii) if Oi is not in the extent of at least one child, then Oi cannot be in the 
parent’s set of object ids that intersects an item’s extent since that set 
is a subset of the parent’s extent.   

Therefore, the set of object ids that intersects with an item’s extent for a parent 
concept will be the intersection of the set of object ids that intersects with an 
item’s extent of all child concepts. 
 
Given proposition 3.1, the algorithm to pull-down object ids through the lattice is 

only required for concepts that have less than two children.  For concepts with two or 

more children, the full intersection set of object ids of the concept can be derived by 

intersecting the full intersection sets of its children.  In doing so, traversal of the lattice 

can be limited to only concepts with less than two children.  For concepts with two or 

more children, only the immediate children are traversed.  This savings in lattice traversal 

is at the expense of introducing a k-way intersection.  Algorithm 3.10 provides an 

enhanced GET-INTERSECT function to supersede the one in Algorithm 3.8.  

A preliminary test of Algorithms 3.7 and 3.8 using the GET-INTERSECT 

function of Algorithm 3.10 took 143 seconds to execute against the Mushroom data set.  

This performance is slightly slower than Algorithm 3.9.  Thus, the hybrid algorithm may 

appear to be a fruitless approach.  However, there exists an opportunity for further 
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INTERSECT-LATTICE(CBottom, O) 
1. All temporal fields of all concepts within the lattice ←∅ 
2. for each Oi ∈ O:   
3.  CMin ← O2C[Oi]     // CMin is concept with Oi at minimal 

position 
4.  if CMin ≠ ∅: 
5.   Add Oi to CMin.Intersect 
6.   INTERSECT-LATTICE-EXTEND(CMin, Oi) 
7.  else: 
8.   Add Oi to CBottom.Intersect 

 
INTERSECT-LATTICE-EXTEND(Concept, Oi) 

9.  if Oi ∉ Concept. FullIntersect:     // need only test last Oi in FullIntersect 
10.  Add Oi to Concept. FullIntersect 
11.  for each CChild ∈ Concept.Children: 
12.   INTERSECT-LATTICE-EXTEND(CChild, Oi) 

 
GET-INTERSECT(Concept)  
13. return Concept.FullIntersect 

 
Algorithm 3.9: A push down algorithm for lattice intersection. 
 
 
 
GET-INTERSECT(Concept)  

1. if Concept.FullIntersect = ∅: 
2.  if |Concept.Children| < 2: 
3.   VisitedSet ←∅ 
4.   GET-INTERSECT-EXTEND( 
5.        Concept, Concept.FullIntersect, VisitedSet) 
6.   Sort Concept.FullIntersect 
7.  else: 
8.   Concept.FullIntersect ←  
9.        ∩ GET-INTERSECT(Ci) ∀ Ci∈ Concept.Children  

10.  
11. return Concept.FullIntersect 

 
Algorithm 3.10: Hybrid pull-down and bottom-up intersection algorithm. 
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improvement.  Profile analysis revealed 93% of the time is spent executing the hybrid 

GET-INTERSECT function.  Of this time, 72% is consumed in the pull-down of object 

ids.  The remaining time is spent performing the k-way intersections together with a 

marginal amount of overhead.  The time consumed in the pull-down of object ids is a 

considerable percentage, yet it is performed only on a limited number of concepts.  

Herein lays the opportunity for improvement. 

Consider the lattice illustrated in Figure 3.9.  As items are inserted, the number of 

concepts in the lattice will grow exponentially and thus become very large.  Of the 

concepts in the lattice, let the concepts that hold object ids at their minimal position be 

defined as supports and the concepts that have only one child be defined as dependents.  

A concept can be both a support and a dependent.  Even though the number of concepts 

in the lattice can become very large, the number of supports and dependents is limited as 

stated by Propositions 3.2 and 3.3. 

Proposition 3.2.  The number of support concepts in a compressed concept lattice 
data structure can be at most |O|. 
 
Proof:  Within a compressed lattice a given object id is stored in only one 
concept, its minimal concept.  Therefore of all the concepts in the lattice, at most 
|O| number of concepts can hold an object id.  Since a support concept is defined 
to be those concepts that hold object ids, the number of support concepts in the 
lattice is at most |O|. 
 
Proposition 3.3.  The number of dependent concepts in a concept lattice can be at 
most |I|. 
 
Proof:  A dependent concept is a concept with only one child.  If a concept has 
only one child then it exists in the lattice only as a result of inserting an item 
having a set of objects that is a ⊃ extent of the child concept.  |I| are inserted into 
the lattice.  Therefore, the number of dependent concept in a concept lattice can 
be at most |I|. 
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Figure 3.9: Lattice illustrating support and dependent concepts.   
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An outcome of proposition 3.2 is that a dependent concept is dependent upon at 

most |O| concepts.  A performance gain can be achieved by maintaining a list of support 

concepts within each dependent concept.  The pull-down of intersecting object ids can be 

performed by consulting the list of support concepts thereby bypassing a lattice traversal.  

Since by proposition 3.3 the number of dependent concepts is also limited, the overhead 

to maintain these support lists in each dependent concept is small.  To enable 

maintenance of the list of supports, the support concepts will maintain a list of dependent 

concepts.  As object ids percolate up though the concept lattice, the ADJUST function 

can update the dependent and support lists as needed.  

Algorithm 3.11 provides modified GET-INTERSECT and ADJUST functions to 

utilize and maintain the support and dependent concept lists.  GET-INTERSECT is 

modified to use the list of support concepts to pull-down the intersecting object ids (lines 

3 and 4).  The ADJUST function is modified to update the dependent and support lists as 

object ids are moved from concept CBase to CNew (lines 13 through 18).  While these 

modifications correctly maintain the existing support and dependent lists, they do not 

create the initial support lists for a concept representing the new item.  However, to 

enable such functionality, the ADJUST function adds a reference to CNew from CBase in a 

temporal field AdjustedTo (line 12).  

Algorithm 3.12 provides modified BUILD-LATTICE and INTERSECT-

LATTICE functions to initialize the support list for a new concept resulting from 

inserting an item into the lattice.  Also provided is an ADD-LINK function to discard a 

support list when a concept is no longer a dependent.  The INTERSECT-LATTICE 

function now returns a set of concepts that are the potential supports for the new item. 
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The set is initialized to be empty (line 13) and populated with a given concept the first 

time an object id is added to its intersection set (lines 17 and 18).  The set is returned after 

iterating through all of the object ids in the item’s extent (line 24).  The BUILD-

LATTICE function retains a reference to the returned set (line 3).   

The INSERT function was defined to return the concept whose extent equals the 

set of object ids passed in the call.  The rationale for returning a concept is to enable a 

parent-child link to be created when recursively calling the INSERT function.  Since the 

returned concept can be a new concept, it can be exploited to provide initialization of a 

new concept’s support list.  The INSERT function can also return an existing concept.  

Therefore, the returned concept must be tested to determine if it is a new concept that 

needs to be initialized (line 5).  During execution of the INSERT function, object ids of a 

potential support concept may percolate into other new concepts.  In such case the 

AdjustedTo field will be set to reference the concept into which object ids have been 

percolated (line 11 of Algorithm 3.11).  Therefore, the list of potential supports must first 

be processed before assigning the list to the new concept.  Any concepts with an assigned 

AdjustedTo field are replaced by the concept referenced in the field (lines 6 through 8).  

In addition, the loop through the support concepts can add the new concept to the list of 

dependent concepts of each support (line 9).  The corrected list of support concepts is 

then assigned to the new concept (line 10).   

 In a preliminary test, Algorithms 3.7 and 3.8 using the supporting functions 

defined of Algorithms 3.11 and 3.12 took 49 seconds to execute against the Mushroom 

data set.  This represents a three times improvement over Algorithm 3.9  Profile analysis 

revealed that 78% of the execution time was spent executing the GET-INTERSECT and  
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Let tuples of dependent Concepts be augmented with the field {Supports}.  Supports is 
a list of Concepts holding object ids that support a Dependent 

 
Let tuples of support Concepts be augmented with the field {Dependents}.  Dependents 

is a list of Concepts that have only one child and are dependent upon the 
Concept. 

 
Let tuples of all Concepts be augmented with the temporal field {AdjustedTo}.  

AdjustedTo is the concept generated from a base concept.  AdjustedTo is 
discarded following each item insertion. 

 
GET-INTERSECT(Concept) : 

1. if Concept.FullIntersect = ∅: 
2.  if |Concept.Children| < 2: 
3.   for each Ci ∈ Concept.Supports: 
4.    Add Ci.Intersect to Concept.FullIntersect 
5.   Sort Concept.FullIntersect 
6.  else 
7.   Concept.FullIntersect ←  
8.      ∩ GET-INTERSECT(Ci) ∀ Ci ∈ Concept.Children  
9. return Concept.FullIntersect 

 
ADJUST(CBase, CNew) : 
10. for each Oi ∈ CBase.Intersect: 
11.  O2C[Oi] ← CNew 
12. CBase.AdjustedTo ← CNew  
13. if CBase.Intersect ≠ ∅ ∧ CBase.Dependents ≠ ∅: 
14.  for each CDependent ∈ CBase.Dependents: 
15.   Add CNew to CDependent.Supports 
16.   Add CDependent to CNew.Dependents 
17.   if CBase.O = ∅: 
18.    Remove CBase from CDependent.Supports 
19. CBase.O ← CBase.O − CBase.Intersect 
20. CNew.Intersect ← CBase.Intersect 
21. CBase.Intersect ← ∅ 

 
Algorithm 3.11: Algorithm modifications to maintain supports and dependents.  
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BUILD-LATTICE(K{I, O, R}) 

1. CBottom ← new Concept (∅, ∅) 
2. for each Ii ∈ I:       // o(Ii) is the set O derived from R 
3.       Supports ←INTERSECT-LATTICE(CBottom, o(Ii))  
4.       CNew ← INSERT(CBottom, Ii, o(Ii)) 
5.  if |CNew.Children| < 2 ∧ CNew.Supports ≠ ∅:     // not an existing concept 
6.   for each CSupport ∈ Supports:   // prepare the supports 
7.    if CSupport.AdjustedTo ≠ ∅: 
8.     Replace CSupport with CSupport.AdjustedTo 
9.    Add CNew to CSupport.Dependents 

10.   CNew.Supports ←Supports   // set the support concepts 
11. return CBottom         // the lattice 

 
INTERSECT-LATTICE(CBottom, O) 
12. All temporal fields of all concepts within the lattice ←∅ 
13. Supports ← ∅ 
14. for each Oi ∈ O:      // perform the intersection 
15.  CMin ← O2C[Oi]    // CMin is concept with Oi at minimal position 
16.  if CMin ≠ ∅: 
17.   if CMin.Intersect = ∅: 
18.    Add CMin to Supports 
19.   Add Oi to CMin.Intersect 
20.  else:  
21.   if CBottom.Intersect = ∅: 
22.    Add CBottom to Supports 
23.   Add Oi to CBottom.Intersect 
24. return Supports 

 
ADD-LINK(CParent, CChild) 
25. Add CChild to CParent.Children 
26. Add CParent to CChild.Parents 
27. if |CParent.Children| > 1 ∧ CParent.Supports ≠ ∅:   // no longer a dependent ? 
28.  for each CSupport ∈ CParent.Supports: 
29.   Remove CParent from CSupport.Dependents 
30.  CParent.Supports ← ∅      

 
Algorithm 3.12: Algorithms to initialize supports and dependents of a new concept. 
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 HAS-SUPERSET functions.  The performance of these algorithms is approaching the 

QuICL Oid-Full algorithm.  There is still one more step that can be made to improve 

performance. 

3.14 The QuICL Oid-Less Algorithm 

The development of an alternate QuICL algorithm as presented in Algorithms 3.5 

through 3.12 maintains sets of object ids and utilizes set operations against the sets of 

object ids.  Since the support concepts effectively provide a level of indirection to the 

object ids sets, the next step is to perform the set operations against the support concepts 

themselves.  The GET-INTERSECT function will perform a k-way intersect of the 

support concepts of each child, the tuples in the ToProcessList retain sets of support 

concepts instead of sets of object ids, and the PURGE-SUBSET will purge tuples whose 

set of support concepts are a subset of the other tuples.  This combined with a few 

additional changes results in the QuICL Oid-Less algorithm.  Except for object ids in the 

temporal field Intersect, the concepts do not hold any object ids. 

The complete QuICL Oid-Less algorithm, except for iceberg processing, is given 

in Algorithm 3.13.  The concept tuples are composed of a list of items I, a list of parent 

concepts Parents, a list of child concepts Children, and a concept id (CID).  The concepts 

do not include a list of object ids since they are no longer needed.  However, the concept 

tuples do include the support (i.e., |all O|) and a record of the number of object ids that 

would be stored in the concept of the compress lattice structure.  Both the parent and 

children lists are needed since both the parent and child traversals are performed.  The 

concept id, uniquely assigned when a concept is created, is needed to enable fast 

execution of set operations.  The tuples of support concepts are augmented with a list of 
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dependents concepts.  Dually, tuples of dependent concepts are augmented with a list of 

support concepts.  Lastly, all tuples are augmented with temporal fields AdjustedTo, 

Intersect, IntersectSupports, and HasSuper.  IntersectSupports is a list of concepts that 

support a concept and have an intersection with the item’s extent.  The other fields are the 

same as previously defined.  All temporal fields are discarded between item insertions. 

 The QuICL Oid-Less algorithm begins with the QUICL-OID-LESS function.  It 

accepts a formal context and returns a constructed lattice.  QUICL-OID-LESS is similar 

to the BUILD-LATTICE function of Algorithm 3.12 with a few changes.  In order to 

correctly intersect lists of concepts, the derivation of the concepts supporting the 

dependent concepts must be consistent.  Therefore, the list of support concepts that 

intersect an item’s extent is derived for each dependent concept prior to inserting the item 

into the lattice.  In algorithm 3.13, the list AllDependents is used to keep track of all the 

dependent concepts.  Function GET-SUPPORTS-FOR-DEPENDENTS, called on line 4, 

is used to initialize each dependent concept with the list of support concepts that have an 

intersection with the item’s extent.   

The INSERT function for the QuICL Oid-Less algorithm given in Algorithm 3.13 

is similar to the INSERT function previously presented.  INSERT now accepts the 

concept’s support and a list of support concepts.  While Supports is not currently used, it 

will be used to add support for an iceberg lattice (presented in Section 3.15).  INSERT 

calls function GET-INTERSECT-SUPPORTS instead of GET-INTERSECT.  

GET-INTERSECT-SUPPORTS checks if the intersection supports have already been 

derived, if not performs a k-way intersection on the intersection supports of the child 

concepts.  For dependent concepts these intersection supports have already been set by 
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GET-SUPPORTS-FOR-DEPENDENTS.  Following the call to GET-INTERSECT-

SUPPORTS, INSERT obtains the number of intersecting object ids by summation of the 

intersection size of all intersection support concepts and sets the variable ISize (line 19).  

Conditions on ISize, HasSuper, and the Support passed in the call are used to identify if 

an =, ⊂, ⊃, or ∩ relationship exists between a concept’s extent and the item’s extent 

(lines 21, 23, 26, 28, and 30).  The remainder of INSERT is the same as before except the 

tuples in the ToProcessList now contain sets of intersecting support concepts in place of 

sets of intersecting object ids.  The tuples also retain ISize which is used as the support 

value when performing a recursive call to INSERT. 
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Let Concept be a tuple {I, NoOids, Support, Parents, Children, CID} where 
 I a list of items, NoOids the number object ids that would be at the minimal 

position within this concept, Support the support of a concept, Parents a list of 
parent concepts, Children a list of child concepts, and CID a concept id 
(uniquely assigned on creation)   

 
Let tuples of dependent Concepts be augmented with the field {Supports} where 
 Supports is a list of Concepts holding object ids that support a Dependent 

 
Let tuples of support Concepts be augmented with the field {Dependents} where 

Dependents is a list of Concepts that have only one child and are dependent 
upon the Concept. 

 
Let tuples of Concepts be augmented with the temporal fields {AdjustedTo, Intersect, 

IntersectSize, IntersectSupports, HasSuper} where: 
 AdjustedTo references a generated concept into which object ids have been 

percolated 
 Intersect a list of the concept’s object ids at their minimal position that intersect 

with an item’s extent 
 IntersectSize the size of Intersect at time of lattice intersection  
 IntersectSupports a list of ancestor Concepts that support the Concept and have 

an object id that intersects an items extent 
 HasSuper a boolean indicating at least one object id of a concept that does not 

intersect with an item’s extent.   
 All temporal fields are discarded following each item insertion. 

 
Let O2C be a vector whose index Oi identifies the concept C | O ∈ C.O 
 
Let AllDependents be a list of dependent Concepts 

 
QUICL-OID-LESS(K{I, O, R}) 

1. CBottom ← new Concept (∅) 
2. for each Ii ∈ I:        // o(Ii) is the set O derived from R 
3.       Supports ←INTERSECT-LATTICE(CBottom, o(Ii)) 
4.  GET-SUPPORTS-FOR-DEPENDENTS( ) 
5.       CNew ← INSERT(CBottom, Ii, |o(Ii)|, Supports) 
6.  if |CNew.Children| < 2 ∧ CNew.Supports ≠ ∅:     // not an existing concept 
7.   for each CSupport ∈ Supports:   // prepare the supports 
8.    if CSupport.AdjustedTo ≠ ∅: 
9.     Replace CSupport with CSupport.AdjustedTo 

10.    Add CNew to CSupport.Dependents 
11.   CNew.Supports ←Supports   // set the support concepts 
12.   Add CNew to AllDependents 
13. return CBottom         // the lattice 

 
Algorithm 3.13: The QuICL Oid-Less algorithm. 
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 INSERT(CBase, Ii, Support, Supports) 
14. ToProcessList ← ∅  // list of tuples {Type, Concept, Supp, IntersectSupports} 
15.                                   // with Type ∈ {SUPERSET, INTERSECT} 
16.  
17. for each CParent ∈ of CBase.Parents:      // prepare-search phase 
18.  ISupports ← GET-INTERSECT- SUPPORTS (CParent) 
19.  ISize ← + CSupport.IntersectSize ∀ CSupport ∈ IntersectSupports 
20.     HasSuper ← HAS-SUPER(CParent) 
21.  if  ISize = 0:                                                     // no relationship 
22.   continue for each with next CParent 
23.  else if ISize = Support ∧ HasSuper = FALSE:    // equal case     
24.   Add Ii to CParent.I 
25.      return CParent 
26.  else if  ISize = Support ∧ HasSuper = TRUE:      // subset case        
27.   return INSERT (CParent, Ii, Support, Supports) 
28.  else if ISize < Support ∧ HasSuper = FALSE:     // superset case   
29.   Add {SUPERSET, CParent, ISize, ISupports} to ToProcessList 
30.  else if ISize < Support ∧ HasSuper = TRUE:      // intersect case 
31.   Add {INTERSECT, CParent, ISize, ISupports} to ToProcessList 
32.  
33. PURGE-SUBSETS(ToProcessList) 
34.  
35. CNew ← New Concept({Ii}, Support)                      // create the new concept 
36.  
37. ADJUST(CBase, CNew) 
38.  
39. for each Ti ∈ ToProcessList:                // link phase to link in CNew 
40.  if  Ti.Type = SUPERSET: 
41.   Remove  parent-child link between Ti.Concept and CBase 
42.   ADD-LINK(Ti.Concept, CNew) 
43.  else if  Ti.Type = INTERSECT: 
44.   CParent ← INSERT (Ti.Concept, ∅, Ti.Supp, Ti.IntersectSupports) 
45.   ADD-LINK(CParent, CNew) 
46.  
47. // Intentionally left blank 
48.  
49.  
50. Sort CNew.Parents in order of decreasing Support 
51.  
52. ADD-LINK(CNew, CBase) maintaining decreasing Support order of CBase.Parents 
53.    
54. return CNew 

 
Algorithm 3.13 continued: The QuICL Oid-Less algorithm. 
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GET-SUPPORTS-FOR-DEPENDENTS( ) 
55. for each CDependent ∈ AllDependents: 
56.  for each CSupport ∈ CDependent.Supports: 
57.   if CSupport.Intersect ≠ ∅: 
58.    Add CSupport to CDependent.IntersectSupports 
59.  Sort CDependent.IntersectSupports 

 
INTERSECT-LATTICE(CBottom, O) 

 (  Same as in Algorithm 3.12 except increments IntersectSize of a concept 
         for which an object id is added to Intersect ) 
 

GET-INTERSECT-SUPPORTS(Concept)  
60. if Concept.IntersectSupports = ∅: 
61.  Concept.IntersectSupports ←  
62.    ∩ GET- INTERSECT-SUPPORTS (Ci) ∀ Ci ∈ Concept.Children  
63. return Concept. IntersectSupports 

 
HAS-SUPERSET(Concept)  

 (  Same as in Algorithm 3.8 except uses NoOids instead of |O| ) 
 

ADJUST(CBase, CNew)  
      (  same as in Algorithm 3.11 ) 
 

PURGE-SUBSETS(ToProcessList)  
                 // ToProcessList is a list of tuples {Type, Concept, ISize, IntersectCs} with 
                //  Type ∈ {NONE, SUBSET, SUPERSET, INTERSECT} 
 (  Same as in Algorithm 3.3 except uses IntersectCs in place of Intersect )  
    

COMPARE(C1, C2, Type)  
          // C1 and C2 are vectors of Concepts, Type as defined above is an assumed  
          // state of comparison. Returns a Type indicating the result of comparison. 

 (  Same as in Algorithm 3.3 except compares the CID’s of concepts )  
 
ADD-LINK(CParent, CChild) 

      (  same as in Algorithm 3.12 ) 
  

Algorithm 3.13 continued: The QuICL Oid-Less algorithm. 
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3.15 Adding Iceberg Processing 

The QuICL Oid-Less algorithm presented in Algorithm 3.13 constructs a 

complete concept lattice and thus include nodes that do not meet the minimum support 

threshold.  To produce an iceberg lattice, the algorithm cannot simply discard the 

concepts in the lattice that do not meet the minimum support threshold, since these 

concepts may represent object ids stored at their minimal position.  For example, Figure 

3.10 depicts an iceberg lattice within the context of a full lattice.  Bold text identifies the 

valid concepts that meet the minimum support threshold.  The object ids in the remaining 

concepts will need to be represented in the iceberg lattice; otherwise the lattice will lose 

information. Some of the object ids can be correctly placed into the valid concept and 

maintain a compressed lattice structure (i.e., a given object id is stored in only one 

concept).  For example, O1 can be stored into the concept ({a1}, ∅).  However, there may 

exist object ids where this is not possible.  In Figure 3.10, the object ids O3, O4, O5, O9, 

and O10 cannot be stored into valid concepts such that the lattice maintains a compressed 

lattice structure.  To accommodate the representation of such object ids, a single layer of 

place holder concepts will be used.  These concepts will be denoted as iced.  The lattice 

at the top of Figure 3.11 depicts the iceberg lattice of Figure 3.10 with an extra iced 

concept to represent the needed object ids.  While this lattice involves only one iced 

concept, additional iced concepts may appear as further insertions are performed.  The 

lattice at the bottom of Figure 3.11 depicts such case. 
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Figure 3.10: Iceberg lattice within a full lattice using a 60% threshold.  The iceberg 
lattice is in bold text and lines.  Grayed out text are concepts that do not meet the 
minimum support threshold. 
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Figure 3.11: Iceberg lattice using a compressed structure.  Top – iceberg lattice of Figure 
3.10.  Bottom – iceberg lattice with subsequent insertion of item e1 with objects 
{O6O7O8O9O11}. 
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Consider the insertion of item e1 with objects {O6O7O8O9O10} as shown in Figure 

3.11.  The QuICL INSERT function will be called with the bottom concept (∅, ∅) as the 

base.  The prepare-search phase will proceed to compare {O6O7O8O9O10} with each 

parent.  The comparison of ({a1}, {O1}) will identify concepts (∅, {O2O8}) and 

(∅, {O3O4O5O9 O10}) as the intersection support concepts representing an intersection set 

of {O8O9O10}.  Since the size of the intersection set does not meet the minimum support 

threshold, these object ids cannot be represented in a valid concept.  Instead, these object 

ids must be represented as a set of iced concepts.  In order for the new concept to 

correctly represent the complete set of objects, in this case {O6O7O8O9O10}, each 

identified iced concept must be linked as a parent.  Similar scenarios are encountered 

when comparing {O6O7O8O9O10} to the other parent concepts of the base concept. 

An approach to adding iceberg processing is to check that the size of the 

intersection set meets the minimum support threshold before recursively calling INSERT 

to process an INTERSECT tuple (line 31 of Algorithm 3.13).  If the threshold is not met, 

then alternate processing to search through the ancestors is invoked to find or create iced 

concepts and link them to the new concept.  This approach, however, may result in 

traversing the lattice.  An alternate approach involves leveraging the set of intersection 

support concepts that are passed as an argument to the INSERT function.  When INSERT 

completes by creating a new concept, the new concept must account for all of the support 

concepts.  Each of the support concepts will either be the concept itself or a support 

concept of a parent.  Since all parent concepts have been assigned prior to completion of 

the INSERT function, an alternate approach is to ignore iced concepts and intersections 

that result in iced concepts during the prepare-search phase.  Then, at the end of the 



138 

 

INSERT function, perform a check to see if all support concepts have been accounted.  

Any support concepts that have not been accounted will either be a found iced concept or 

a concept from which an iced concept is to be extracted.  A found iced concept is a 

concept whose size of intersect object ids equals the concept’s support.  The final step is 

linking the iced concepts, either found or extracted, to the new concept.  This alternate 

approach has the advantage of identifying the iced concepts by traversing only the 

immediate parents, thereby avoiding potential traversals through the lattice.  This 

approach also reduces the size of the ToProcessList, thereby reducing the execution time 

of the PURGE-SUBSETS function (Algorithm 3.13). 

Algorithm 3.14 provides a modified INSERT function that supports construction 

of iceberg processing.  The prepare-search phase will only process valid concepts (line 

4).  Furthermore, the prepare-search phase ignores any parent concept for which the size 

of intersection does not meet the minimum support threshold (lines 8 and 9).  Lastly, 

INSERT calls the function ICED-INSERT in the event that either an iceberg concept or a 

parent concept whose intersection set size did not meet the minimum support threshold 

was encountered during the prepare-search phase (lines 34 and 35).  ICED-INSERT is 

called after processing the ToProcessList.  

Algorithm 3.15 provides the functions ICED-INSERT and EXTRACT-ICED-

CONCEPT.  ICED-INSERT begins by removing the intersection support concepts of all 

parent concepts from the support concepts (lines 1 and 2).  The new concept is also 

removed from the support concepts (line 3).  The remaining support concepts are either 

found iced concepts or are concepts from which an iced concept is to be extracted.  Note 

that the AdjustedTo field will, when set, provide an indirection to a found iced concept.  
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Each found iced concept is added as a parent to the new concept (lines 6 through 9).  

From each support concept that is not a found iced concept, an iced concept representing 

the intersection set will be extracted.  The extracted iced concept is added as a parent to 

the new concept (lines 11 and 12). 

The EXTRACT-ICED-CONCEPT function, given in Algorithm 3.15, is used to 

extract an iced concept from another concept.  The concept from which an iced concept is 

extracted can be a valid concept or another iced concept.  In the case of another iced 

concept, the extraction effectively splits the iced concept.  When splitting, the children of 

the split concept will become children of the extracted concept (lines 15 and 16).  Also, 

the support of the split concept is adjusted accordingly (line 17).  For a valid concept, the 

concept will be a child of the extracted concept (line 19).  In both cases the ADJUST 

function is called to complete further adjustments to the lattice structure (line 21)  

The last step in supporting iceberg processing is to only insert items whose 

number of objects meets the minimum support threshold.  Algorithm 3.16 provides an 

updated QUICL-OID-LESS function with this change (line 2).  A complete 

implementation, written in Java, of the QuICL Oid-Less algorithm with support for 

iceberg lattices is provided in Appendix C. 
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INSERT(CBase, Ii, Support, Supports)  
1. ToProcessList ← ∅  // list of tuples {Type, Concept, Supp, IntersectSupports} 
2.          // with Type ∈ {SUPERSET, INTERSECT} 
3.  
4. for each CParent ∈ of CBase.Parents ∧ CParent.Support ≥ MinSupp:  // prepare-search 
5.  ISupports ← GET-INTERSECT-SUPPORTS(CParent) 
6.  ISize ← + CSupport.IntersectSize ∀ CSupport ∈ ISupports 
7.     HasSuper ← HAS-SUPERSET(CParent) 
8.  if  ISize < MinSupp:            // no relationship or to be iced 
9.   continue for each with next CParent 

10.  else if  ISize = Support ∧ HasSuper = FALSE:    // equal case     
11.   Add Ii to CParent.I 
12.      return CParent 
13.  else if  ISize = Support ∧ HasSuper = TRUE:      // subset case        
14.   return INSERT (C, Ii, Supp, Supports) 
15.  else if ISize < Support ∧ HasSuper = FALSE:     // superset case   
16.   Add {SUPERSET, CParent, ISize, ISupports} to ToProcessList 
17.  else if ISize < Support ∧ HasSuper = TRUE:      // intersect case 
18.   Add {INTERSECT, CParent, ISize, ISupports} to ToProcessList 
19.  
20. PURGE-SUBSETS(ToProcessList) 
21.  
22. CNew ← New Concept({Ii}, Support)       // create the new concept 
23.  
24. ADJUST(CBase, CNew) 
25.  
26. for each Ti ∈ ToProcessList:                // link phase to link in CNew 
27.  if Ti.Type = SUPERSET: 
28.   Remove parent-child link between Ti.Concept and CBase 
29.   ADD-LINK(Ti.Concept, CNew) 
30.  else if Ti.Type = INTERSECT: 
31.   CParent ← INSERT (Ti.Concept, ∅, Ti.Supp, Ti.IntersectSupports) 
32.   ADD-LINK(CParent, CNew) 
33.  
34. if encountered CParent.Support < MinSupp ∨ 0 < ISize < MinSupp: 
35.  ICED-INSERT(CNew, Supports) 
36.  
37. Sort CNew.Parents in order of decreasing Support 
38.  
39. ADD-LINK(CNew, CBase) maintaining decreasing Support order of CBase.Parents 
40.    
41. return CNew 

 
Algorithm 3.14: Modified INSERT algorithm for iceberg processing.  
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ICED-INSERT(CNew, Supports) 
1. for each CParent ∈ CNew.Parents:    // remove accounted supports 
2.  Supports ← Supports − GET-INTERSECT-SUPPORTS(CParent) 
3. Remove CNew from Supports 
4.      
5. for each CSupport ∈ Supports:   // process remaining supports as iced  
6.  if CSupport.AdjustedTo ≠ ∅:            // a found iced concept by indirection 
7.   ADD-LINK(CSupport.AdjustedTo, CNew) 
8.  else if not HAS-SUPERSET(CSupport):   // a found iced concept 
9.   ADD-LINK(CSupport, CNew) 

10.  else: 
11.   CIced ← EXTRACT-ICED-CONCEPT(CSupport) 
12.   ADD-LINK(CIced, CNew) 

 
EXTRACT-ICED-CONCEPT(CSupport) 
13. CIced ← New Concept(∅, CSupport.IntersectSize)  
14. if CSupport.Support < MinSupp):  // split an iceberg concept 
15.  for each CChild ∈ CSupport.Children: 
16.   ADD-LINK(CIced, CChild)  
17.  CSupport.Support ← CSupport.Support − CIced.Support  
18. else:         // extracting from a valid concept 
19.  ADD-LINK(CIced, CSupport) 
20.  
21. ADJUST(CSupport, CIced) 

 
Algorithm 3.15: Algorithms supporting iceberg processing.  
 
QUICL-OID-LESS(K{I, O, R}) 

1. CBottom ← new Concept (∅) 
2. for each Ii ∈ I ∧ |o(Ii)| ≥ MinSupp:    // o(Ii) is the set O derived from R 
3.       Supports ←INTERSECT-LATTICE(CBottom, o(Ii)) 
4.  GET-SUPPORTS-FOR-DEPENDENTS( ) 
5.       CNew ← INSERT(CBottom, Ii, |o(Ii)|, Supports) 
6.  if |CNew.Children| < 2 ∧ CNew.Supports ≠ ∅:     // not an existing concept 
7.   for each CSupport ∈ Supports:   // prepare the supports 
8.    if CSupport.AdjustedTo ≠∅: 
9.     Replace CSupport with CSupport.AdjustedTo 

10.    Add CNew to CSupport.Dependents 
11.   CNew.Supports ←Supports   // set the support concepts 
12.   Add CNew to AllDependents 
13. return CBottom         // the lattice 

 
Algorithm 3.16: Modified QuICL Oid-Less algorithm for iceberg processing.  
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3.16 Discussion for a Third QuICL Algorithm  

The motivation for the QuICL Oid-Less algorithm is to address memory concerns 

with the storage of object ids in the concepts, whose number grows exponentially.  The 

QuICL Oid-Less algorithm is successful in eliminating repeated object ids between item 

insertions, however, this is achieved at the expense of considerable complexity.  Where 

the concepts of the QuICL Oid-Full algorithm simply maintain a list of items, list of 

object ids, and a list of parent references, the QuICL Oid-Less algorithm includes with 

each concept a parent concept list, a concept child list, count of object ids, support, and 

concept id; and augments many concepts with a support concept list, a dependent concept 

list, a temporary intersect object id list, a temporary intersect concept id list, adjusted to 

reference, intersect size, and a superset indicator.  Thus, the savings in storing object ids 

are at the expense of consuming memory elsewhere.  Furthermore, the QuICL Oid-Less 

algorithm may incur runtime overhead beyond its worth.   

A compromise between the QuICL Oid-Full and QuICL Oid-Less algorithms may 

be found by considering the trie data structure which has surfaced several times literature 

(Valtchev et al., 2002, Nourine, & Raynaud 2002).  A trie data structure (Knuth, 1998) is 

a tree based data structure that provides a compact representation by sharing common 

prefixes along branches, and enables efficient search, insertion, and set operations.  Each 

edge denotes the addition of an element in a set.  Thus for the QuICL algorithm, a trie can 

be employed to store the object ids of the concepts.  Figure 3.12 depicts the use of a trie 

to store the object ids.  At the top is the concept lattice of Figure 3.1 after inserting items 

a1 though c3 of relation in Figure 3.1.  In this lattice, the ten object ids of the formal 

context are present in the concept lattice multiple times resulting in 51 entries.  The 
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bottom of Figure 3.12 depicts a trie to represent all of the oid lists of the lattice.  Due to 

common prefixes shared between the object id lists, the trie contains only 35 object id 

entries.  Each concept of the lattice references a position in trie (as shown using dotted 

lines).  For example, the concept with item set {a1} references the bottom left node in the 

trie.  This node identifies the object id set {O1O2O3O4O5O8O9O10} as indicated by the 

labeled edges on path from the root to the node.  Each leaf in the trie will be referenced 

by a concept in the lattice.  The number of leaves in the trie may be less than the number 

of concepts, since a concept may reference an interior node already present in the trie at 

the time a concept is generated.  For example, the concept with item set {c3} references 

the top left node in the trie.  This node identifies the object id set {O1}. 

3.17 Implementing a Trie in the QuICL Algorithm 

 While the trie data structure does provide savings in storing the number of object 

id entries, the trie must be carefully implemented to insure the savings in storing object 

ids is not outweighed by the overhead of the trie data structure.  For example, each node 

in trie could be represented as a tuple consisting of a parent reference, child reference, 

sibling reference, and the object id of the parent edge.  Child and sibling references 

facilitate representation of general trees (i.e., any number of children).  Both forward and 

backward references are required.  Forward references are needed to insert an object id 

list into the trie.  Backward references are needed to identify an object id list.  This 

representation defeats the objective to reduce space.  Assuming 4 bytes to represent a 

reference, each object id in the trie would incur an additional 12 bytes overhead.  Thus, 

the trie in Figure 3.12 using this representation would consume 560 bytes ((12 + 4) × 35).  

This exceeds the space used by the original sets of object ids which is 204 bytes (4 × 51). 
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Figure 3.12: Concept lattice using a trie data structure to store object ids.  Top – concept 
lattice of Figure 3.1 after inserting items a1 through c3.  Bottom – same concept lattice 
with references into a trie data structure holding the object ids. 
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An alternative implementation is to place all of the object ids of a trie into a 

compound trie node.  In this representation each node contains a vector of object ids and 

a parent reference.  Parent references include a reference to a parent trie node and the 

index of the parent object id within its vector.  Child references can be implemented with 

the aid of a global hash table.  The reference to a parent trie node, index of the parent 

object id, and the first object id of the child trie node comprise a composite key that 

uniquely identifies a child trie node.  Figure 3.13 provides an example of a trie using 

compound trie nodes. 

This alternate implementation of the trie has the potential to realize savings in 

memory, although not apparent in the example of Figure 3.12.  Assuming 4 bytes for 

each reference or integer value, the overhead for the compound trie node is at least 24 

bytes.  This is based on 4 bytes for the reference to the parent trie node, 4 bytes for the 

parent index position, and 16 bytes for the hash table entry.  Furthermore, each concept 

incurs an additional 8 bytes overhead, since they now indirectly reference the oids 

through a reference to a trie node and an index position.  Using these assumptions and 

estimates, Table 3.4 presents calculated memory savings (or excess) in using a trie data 

structure.  Savings (or excess) are calculated for both the simple trie implementation and 

the compound trie node implementation.  The lattice of Figure 3.12 and the lattice 

generated by the Mushroom data set are used in the analysis.  For both cases, the 

overhead of the simple trie implementation exceeds the savings offered by the reduced 

the number of object id entries.  On the other hand, the compound trie node 

implementation offers a real savings of 42 MBs for the Mushroom data set, cutting the 

memory requirements to store object ids by nearly half. 
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Figure 3.13: QuICL trie representation.  Top – the trie of Figure 3.12.  Bottom – 
depiction of same trie using compound trie nodes. 
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Lattice of  

Figure 3.11 Mushroom 

No object Ids in formal context 10  8,124  
No concepts 12  238,709  
No object Id entries in the lattice 51  21,936,050  
Total bytes to store object ids in concepts 204  87,744,200  

No Object id entries in corresponding trie 35  9,577,434  
No of compound trie nodes (excluding root) 10  218,034  
Bytes to store object ids in a trie 140  38,309,736  
Overhead bytes of using simple trie 420  114,929,208  
Total bytes for object ids of simple trie 560  153,238,944  
Overhead bytes of using compound trie 336  7,142,488  
Total bytes for object ids of compound trie 476  45,452,224  

Savings (excess) in using simple trie (356) (65,494,744) 
Savings (excess) in using compound trie (272) 42,291,976  
 
  Calculations are: 
 Total bytes to store object ids in concepts = 
  No object Id entries in the lattice × 4 
 Bytes to store object ids in a trie =  
  No Object id entries in corresponding trie × 4 
 Overhead bytes of using simple trie  = 
  No Object id entries in corresponding trie × 12 
 Total bytes for object ids of simple trie  =  
  Bytes to store object ids in a trie + Overhead bytes of using simple trie  
 Overhead bytes of using compound trie = 
  No of concepts × 8 + No of compound trie nodes × 24 
 Total bytes for object ids of compound trie = 
  Bytes to store object ids in a trie + Overhead bytes of using compound trie 
 Savings (excess) in using simple trie = 
  Total bytes to store object ids in concepts - Total bytes for object ids of simple trie 
 Savings (excess) in using compound trie = 
  Total bytes to store object ids in concepts - Total bytes for object ids of compound trie 

 
Table 3.4: Sample calculations of memory savings (excess) of trie implementations. 
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3.18 The QuICL Oid-Trie Algorithm 

In addition to savings in memory, the trie data structure enables two performance 

enhancements.  The first is an optimization when performing intersections.  Intersections 

are accomplished by processing two references into the trie.  Typically the references 

start in different branches.  One reference, the other reference, or both are then advanced 

to a parent object id position depending if the two referenced object ids are greater than, 

less than, or equal respectively.  In the case of equal, the common object id is placed into 

an intersection buffer that will be used to create a new compound trie node upon 

completing the intersection process.  The optimization is to terminate the intersection 

processing if at any time the two references reference the same position in the trie.  At 

that point the remaining object ids of the two lists will be the same.  The object ids in the 

intersection buffer can then be inserted into the trie using either reference as the insertion 

point.  The second enhancement is to enable bi-directional traversal of the edge between 

a concept and the position in the trie of its object ids.  The reference from a trie position 

to a concept can be implemented using a hash table.  By provided a reference from a trie 

position to a concept, the INSERT function of the QuICL algorithm can directly 

determine if a concept for a given object id set already exists.  If so, the item passed to 

the INSERT function is added to the concepts item list and the concept is returned.  The 

reference to a concept effectively provides a short cut directly to an existing concept, 

thereby eliminating the recursive calls used to navigate into the lattice. 

The bi-directional enhancement has further significance with respect to the 

asymptotic runtime complexity.  By providing a direct lookup from a trie position to a 

concept, the time to process INTERSECT entries in the ToProcessList that lookup 
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concept in the lattice will be O(d′), where d′ is a fraction of degavg(L) depending on 

density.  Thus, the term representing the time to process INTERSECT entries in the 

ToProcessList will not be a dominant factor in inserting a concept into the lattice.  

Therefore, the asymptotic complexity of the QuICL Oid-Trie algorithm will at least be 

O(l d i) but could approach O(d2 c), where l = |L|, d = degavg(L), i a density weighted 

mean on the cardinality of frequent item extents, and c is a small fraction of |O| depending 

density. 

The QuICL Oid-Trie algorithm is given in Algorithms 3.17 and 3.18.  Like the 

QuICL Oid-Full algorithm, a concept lattice is represented as a set of concepts linked 

only by references to parents.  In addition to the lattice, a trie data structure is represented 

as a set of linked TrieNodes.  A TrieNode is a tuple composed of a position within a 

parent TrieNode and a vector of object ids.  A position within a TrieNode, TriePos, is a 

tuple composed of a reference to a TrieNode and an index into its vector of object ids.  

Thus, each concept in the QuICL Oid-Trie concept lattice is a tuple composed of a list of 

items, a trie position that identifies a set of object ids, and list of parents.   

The QUICL-OID-TRIE function is similar to the QUICL-OID-FULL with a few 

modifications.  In addition to creating a Concept to represent an empty lattice, a TrieNode 

is created to represent the root of an empty trie (line 2).  Before calling the INSERT 

function to add an item and its extent into the lattice, a TRIE-INSERT function is used to 

add the extent into the trie (line 4).  The returned trie position is then passed to the 

INSERT function in place of an object id set (line 5). 

The TRIE-INSERT is passed a reference to a TrieNode identifying a branch in the 

trie passed where an object id set may be grafted, an object id set, and a index into the 
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object id set identifying a subset of object ids yet to be processed.  The TRIE-INSERT 

function begins by traversing to object ids within the TrieNode while equal to the object 

ids yet to be processed (line 7 through 10).  If the end of the object ids is reached, the 

object id set is already present in the trie.  Therefore, a trie position for the object id last 

traversed in the TridNode is created and returned (line 12 and 13); otherwise a lookup in 

a hash table, TrieChildren, is used to determine if a child branch exists for the remaining 

object ids (line 15).  If a child branch is found, TRIE-INSERT recurses (line 17 and 18).  

If not, a new TrieNode is created for the remaining object ids, the node is added to the 

hash table, and a trie position referencing the last object id in the new TrieNode is 

returned (lines 20 through 22).  

The algorithm for the QuICL Oid-Trie INSERT function, Algorithm 3.18, is the 

same as the QuICL Oid-Full algorithm with appropriate changes.  References to trie 

positions are used in place of object id lists.  Lines 18 through 21 provide the insertion of 

a new object id set, resulting from an intersection, into the trie.  A hash table, 

TrieConcepts, is used to provide the reference from a trie position to a concept.  Line 26 

adds an entry to TrieConcepts upon creating a new concept.  Lines 1 through 4 perform a 

lookup into TrieConcepts to determine if a concept for a set of object ids already exists.  

If so, then item Ii is added to the concept’s item list and the concept is then returned.  The 

prepare-search phase no longer needs to process the case object ids equal to a parent’s 

object ids (lines 11 through 13 of Algorithm 3.4), since this case is handled by the lookup 

into TrieConcepts (lines 1 through 4).  
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Let TrieNode be a tuple {ParentPos, O} where ParentPos a TriePos tuple representing 
a position in the trie, and O a vector of object ids. 

 
Let TriePos be a tuple {TrieNode, Inx} where TrieNode a reference to a trie node 

within the trie and Inx an index position to an object id of its O. 
 
Let Concept be a tuple {I, TriePos, Parents} where I a list of items, TriePos a position 

in the trie representing a list of object ids, and Parents a list of parent concepts. 
 

TrieChildren← new hash table 
 
QUICL-OID-TRIE(K{I, O, R}, MinSupp) 
1. CBottom ← new Concept (∅, ∅) 
2. NodeRoot ← new TrieNode (∅, ∅) 
3. for each Ii ∈ I ∧ |o(Ii)| ≥ MinSupp:    // o(Ii) is the set O derived from R 
4.  TP ← TRIE-INSERT(TNRoot, o(Ii), 0) 
5.       INSERT(CBottom, Ii, TP) 
6. return CBottom      // the lattice 
 

   TRIE-INSERT(Node, O, Inx)  // returns a TriePos for the O 
7. NInx ← 0 
8. while NInx < |Node.O| ∧ Inx < |O| ∧ Node.O[NInx] = O[Inx]: 
9.  NInx ← NInx + 1 

10.  Inx ← Inx + 1 
11.  
12. if |O| = Inx:          // O already exists in the trie 
13.  return new TriePos(Node, NInx) 
14.          
15. NParent ← TrieChildren.lookup({Node, NInx, O[Inx]}) 
16.  
17. if NParent ≠ ∅: 
18.  return TRIE-INSERT(NParent, O, Inx) 
19. else: 
20.  NParent ← new TrieNode(new TriePos(Node, NInx), SUBSET(O, Inx, |O|)) 
21.  TrieChildren.put({Node, NInx, O[Inx]}, NParent) 
22.  return new TriePos(NParent, |NParent.O| – 1)       

 
Algorithm 3.17: The QuICL Oid-Trie algorithm. 
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TrieConcepts ← new hash table  
 
   INSERT(CBase, Ii, TriePos)  

1. CAncestor ← TrieConcepts.lookup(TriePos)  // see if a concept already exists 
2. if CAncestor ≠ ∅:                          // for the object id set 
3.  Add Ii to CAncestor.I 
4.  return CAncestor  
5.  
6. ToProcessList ← ∅   // list of tuples {Type, Concept, TriePos} with 
7.                                     // Type ∈ {SUPERSET, INTERSECT}, Concept a  
8.                                 // reference to the intersecting concept, and TriePos  
9.                                    // a position in the trie representing the set of object ids  

10.           // resulting from an intersection 
11.  
12. for each CParent ∈ of CBase.Parents:      // prepare-search phase 
13.  if  O(TriePos) ⊂ O(CParent.TriePos):        // O( ) is the set of object ids 
14.   return INSERT(CParent, Ii, TriePos)   // identified by a TriePos 
15.  else if  O(TriePos) ⊃ O(CParent.TriePos): 
16.   Add {SUPERSET, CParent, CParent.TriePos} to ToProcessList 
17.  else if |O(TriePos) ∩ O(CParent.TriePos)| ≥ MinSupp: 
18.   TPConv ← position in the trie where TriePos and CParent.TriePos converge 
19.   ONew← O(TriePos) ∩ O(CParent.TriePos) after converge point 
20.   TriePosNew ← TRIE-INSERT(TPConv.TrieNode, TPConv.Inx, ONew, 0) 
21.   Add {INTERSECT, CParent, TriePosNew)} to ToProcessList 
22.  
23. PURGE-SUBSETS(ToProcessList) 
24.  
25. CNew ← New Concept({Ii}, TriePos)    // create the new concept 
26. TrieConcepts.put(TriePos, CNew) 
27.  
28. for each Ti ∈ ToProcessList:                // link phase to link in CNew 
29.  if  Ti.Type = SUPERSET: 
30.   Remove Ti.Concept from CBase.Parents 
31.   Add Ti.Concept  to CNew.Parents 
32.  else if  T.Type = INTERSECT: 
33.   CParent ← INSERT(Ti.Concept, ∅, Ti.TriePos) 
34.   Add CParent to CNew.Parents  
35.  
36. Sort CNew.Parents in order of decreasing |O| 
37.  
38. Add CNew to CBase.Parents in order of decreasing |O| 
39.  
40. return CNew 

  
Algorithm 3.18: INSERT function of the QuICL Oid-Trie algorithm. 
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A complete implementation of the QuICL Oid-Trie algorithm, written in Java, is 

provided in Appendix D.  The implementation incorporates the QuICL Oid-Full 

implementation enhancement to cache the results of intersection as described in 

Section 3.7. 

3.19 Converting a Data Set to a Vertical Representation  

Most data sets are organized in a horizontal representation.  That is, a list of 

objects each with a set of attributes.  The QuICL algorithms are dependent upon a vertical 

representation, whereby an item together with its set of objects are incrementally inserted 

into the lattice.  Therefore, an algorithm to transpose a horizontal representation into a 

vertical representation is needed. 

The CHARM algorithm has the same requirement of a vertical representation.  

Thus, the CHARM algorithm provides a transpose algorithm.  The algorithm performs 

two passes over the data set and executes in linear time with respect to the number of 

objects.  The first pass identifies the list of items and obtains counts of the number of 

objects for each.  Between the passes, a buffer is allocated for each item.  Each buffer is 

assigned an offset within an output data set where the object ids for the item will be 

stored.  The second pass performs the transpose.  For each object, the buffers represented 

by the set of items are identified and appended with the object id.  As each buffer fills, it 

is flushed to the data set.  After completing the second pass, all buffers are flushed to 

ensure the object ids are written to the data set.  The result is a data set in vertical 

representation.  An implementation of the transpose algorithm is provided in Appendix E 

along with a test harness used to execute the QuICL and GMA algorithms. 
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This algorithm is used as a pre-step to the QuICL algorithm.  In addition, an order 

for the items can be specified.  The order is used when assigning the file offsets to the 

buffers.  While the transpose involves additional processing overhead, its asymptotic 

complexity is linear.  Therefore, it will not be the dominant term in the overall process.  

3.20 Summary of Methodology  

This chapter presented the development of the Quick Iceberg Concept Lattice 

(QuICL – pronounced kwi-kəl

The QuICL algorithm has three derivations: Oid-Full, Oid-Less, and Oid-Trie.  In 

the first derivation, all of the concepts in the concept lattice retain a complete list of the 

object ids (oids), hence the name “Oid-Full”.  While preliminary results of the QuICL 

Oid-Full algorithm were very promising for some data sets, the performance gains do not 

hold against some others.  An issue for the QuICL Oid-Full algorithm is the storage of 

) algorithms.  These algorithms provide incremental 

construction of a concept lattice along the lines of the GMA algorithm, but approach the 

insertion process from the bottom of the lattice rather than a top-down, level-wise search 

for generators.  The structure of the lattice is used to navigate to a point of change.  

Recursion is used instead of iteration to facilitate the location of additional points of 

change and enable linkage between parent and child concepts.  To support construction of 

iceberg lattices, the QuICL algorithms add data on an item by item basis and interchange 

the roles of the set of object ids and the set of items.  These changes effectively invert the 

lattice.  Furthermore, the QuICL algorithms exploit the lattice property:  if Ii ∈ I of 

concept C1 then ∀ C2 | C2 < C1, Ii ∈ I of C2.  Thus, each item is recorded in only one 

concept within the lattice (i.e., lowest position in the inverted lattice).  This representation 

conserves space and enables direct extraction of association rules (see Chapter 1).   
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the complete list of object ids in each concept. The same object ids can be repeated in 

multiple concepts.  Thus, an alternate algorithm, termed Oid-Less, was derived to 

eliminate the storage of object ids between the incremental insertions, although 

temporary lists of object ids are created and discarded during the insertion process.  The 

QuICL Oid-Less algorithm is successful in eliminating repeated object ids between item 

insertions, however, this is achieved at the expense of considerable complexity.  

Therefore, the Oid-Trie derivation was developed as a compromise between Oid-Full and 

Oid-Less.  Instead of eliminating the oid lists, it utilizes a trie data structure to store the 

object ids, thereby reducing memory requirements.  In addition to gains in memory 

usage, the trie data structure also enabled a few performance enhancements. 

Given a lattice L and a new item Ii with its set of object O, an incremental 

insertion algorithm such as QuICL is correct if it meets these requirements: 

1) if ∃ Ci ∈ L | extent of Ci = O, then insertion is completed by adding Ii to the 
intent of Ci, or  
 

2) if ¬∃ Ci ∈ L, | extent of Ci = O, then a new concept CNew with intent {Ii} and 
extent O must be created and inserted into the lattice such that:  

  
i. if ∃ Cb ∈ L | Cb > CNew ∧ ¬∃ C3∈ L | Cb > C3 > CNew, then CNew will 

be a parent of Cb, 
 

ii. if ¬∃ Cb ∈ L | Cb > CNew, then CNew will be a parent of bottom 
concept, 
 

iii. ∀ Cp ∈ L | CNew > Cp ∧ ¬∃ C3∈ L | CNew > C3 > Cp, Cp will be a parent 
of CNew, 
 

iv. ∀ Cs ∈ L | extent of Cs ⊄ O ∧ extent of Cs ∩ O ≠ ∅ ∧ ¬∃ C3∈ L | 
C3 > Cs ∧ extent of Cs ∩ O = extent of C3 ∩ O, another new concept 
CNew' with empty intent and an extent of  Cs ∩ O must be inserted into 
the lattice with CNew' as a parent of both CNew and Cs, and 
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v. the resulting lattice satisfies the lattice connection property: a 
connection exists between two concepts C1 and C2 provided C1 < C2 
and there is no concept C3 for which C1 < C3 < C2. 

 

An initial formulation of the QuICL algorithm was proved to meet requirements 

1, 2, 2.i, 2.ii, 2.iii, and 2.iv, but failed to meet requirement 2.v.  This was corrected in the 

QuICL algorithm by removing non-maximal entries (i.e., entries containing object ids 

subsets of other entries) from an internal list of SUPERSET and INTERSECT entries.  

SUPERSET entries identify concepts that become immediate parents of a new concept.  

INTERSECT entries identify concepts are siblings to a new concept that find or generate 

other parent concepts.   

It is postulated that the asymptotic runtime complexity for the QuICL Oid-Full 

algorithm will be at least O(l d i), but could approach O(l d2 c) or O(l d d′ i h), where l = 

|L|, d = degavg(L), i is a density weighted mean on the cardinality of frequent item extents, 

c is a small fraction of |O| depending density, d′ is a fraction of d depending on density, 

and h is a sub-linear function on the height of the lattice.  An enhancement of the QuICL 

Oid-Trie algorithm eliminates O(d d′ i h) from consideration.  The asymptotic memory 

complexity is postulated to be O(l d i). 

Table 3.4 provides a summary of the advantages and disadvantages of the QuICL 

Algorithms.  Table 3.4 also notes the strategy to store the object ids representing concept 

extents. 
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QuICL 
Derivation Storage of Object Ids Advantages Disadvantages 

Oid-Full Object ids are 
replicated throughout 
lattice as needed to 
represent concept 
extents  

• Simple data structure 

• Very good performance 

• Memory usage for the lattice 
may be excessive due to 
repeated object ids 

Oid-Less Each object id is only 
stored once at its 
minimal position  

• Reduction in memory 
consumption for storage of 
object ids 

• Intersection of concept ids, 
instead of object ids, may 
provide a gain in performance 

• Added complexity may impact 
performance 

• Many additional fields in the 
representation of a concept 
may impact memory usage 

Oid-Trie Object ids are stored 
in a trie data structure 
to share common 
prefixes between 
concept extents 

• Reduction in memory usage 
without the complexity of 
Oid-Less 

• Avoids a possible O(l d d′ i h) 
runtime complexity 

• Early halt of iterations when 
performing set operations 
may provide a performance 
gain 

• Traversals between trie nodes 
when performing set 
operations may impact 
performance 

Table 3.5: Comparison of QuICL derivations. 
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Chapter 4 

Results 

 

4.1 Introduction 

This chapter presents the results of empirical evaluations and analysis of the 

QuICL algorithms.  Seven public data sets often cited in other studies are used as the 

benchmarks.  Included in this chapter is: 

i) a presentation on the characteristics of each data set, 

ii) an analysis of algorithm validity for the QuICL algorithms, 

iii) results on the effect of input sort order on both runtime and memory usage 
for QuICL and GMA algorithms,  

iv) runtime results of algorithms against the seven data sets over a spectrum of 
minimum supports,  

v) memory results of algorithms against the seven data sets over a spectrum of 
minimum supports,  

vi) performance analysis of the QuICL algorithms,  

vii) empirical evidence to support asymptotic runtime complexity analysis, 

viii) performance analysis of the GMA algorithm, and 

ix) a report on the number of intersections performed by CHARM, QuICL, and 
GMA algorithms. 

All three variants of the QuICL algorithms are compared against the CHARM, 

CHARM-L, GMA, and MAGALICE algorithms.  The C version of the CHARM and 

CHARM-L algorithms were downloaded from the author’s web site (Zaki, 2008) and 
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translated to Java.  The CHARM implementation utilized memory mapped I/O to read the 

object ids from a vertical representation of a data set.  On translating to Java, the memory 

mapped I/O was converted to the available random access classes.  This introduced a 

performance problem since the CHARM implementation re-reads the sets of object ids 

multiple times when generating the first level of CHARM’s itemset-oidset tree.  The 

implementation was enhanced to cache in memory the object id sets.  MAGALICE is part 

of the GALICIA open source project (Valtchev et al., 2003) and was downloaded from 

the GALICIA website (Valtchev, Godin, Missaoui, Huchard, Napoli, Grosser, et al., 

2008).  MAGALICE is written in Java.  The GMA algorithm with modifications for 

iceberg processing, Algorithm 3.1, was directly implemented in Java.  Source listing of 

the implementation is provided in Appendix A.  Likewise the QuICL algorithms: Oid-

Full, Oid-Less, and Oid-Trie, were implemented in Java.  The source listing of each 

implementation is provided in Appendix B, C, and D respectively.  Appendix E provides 

a source listing of a transpose algorithm used to convert a data set from a horizontal 

representation to a vertical representation.  The source listing also includes a test harness 

to execute the QuICL and GMA algorithms. 

All benchmarks are executed on an Intel Core 2 Duo CPU at 2.99 GHz with 3.0 

GBs memory running Windows XP 2002 with service pack 3.  All benchmarks are 

executed using the Java JRE version 1.5.0_07 with maximum heap size set to 1.6 GBs.  

1.6 GB is the maximum setting allowed by the 1.5 version of the Java VM. 

To measure the execution time, all algorithms were instrumented to time the 

lattice construction functions exclusive of any I/O time.  Time before and after each 

execution point is obtained using Java’s System.currentTimeMillis function.  The 
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difference between the after and before times divided by 1000 is used to determine an 

execution time in seconds.  All execution times reported in this chapter are in seconds 

rounded to two decimal places.  Furthermore, to minimize error all reported execution 

times are the average of five separate measurements for each test case.  

To measure the memory usage, all algorithms pause before termination.  The 

memory usage is then obtained from the “Mem Usage” field of the Windows Task 

Manager dialog at the time of pause.  Thus, the memory usage includes space consumed 

by the Java virtual machine, class files of each algorithm, and the heap allocation.  All 

memory usage reported in this chapter are in megabytes (MBs).  

Association rule mining and formal concept analysis are exponential problems.  

As such, the runtime performance and memory usage will grow exponentially as the 

minimum support for a data set is reduced.  Thus, all charts in this chapter (except Figure 

4.1) will use a logarithmic scale.  By using a logarithmic scale the differences between 

the algorithms are more apparent.  Furthermore, differences by order of magnitude can be 

readily observed.  For example, Figure 4.1 displays the runtime performance of the 

algorithms against the Mushroom data set using both a fixed scale (top) and logarithmic 

scale (bottom).  The logarithmic scale provides a clearer depiction of the differences 

between the algorithms.  Differences in order of magnitude can be easily identified.  For 

example, the QuICL Oid-Full algorithm is an order of magnitude better than GMA at 

10%supp and two orders of magnitude better than MAGALICE.  All charts display 

minimum support on the horizontal axis and runtime, or memory usage, on the vertical 

axis.  
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Figure 4.1: Logarithmic vs. fixed scale axis.  Top – runtime performance using a fixed 
scale.  Bottom – runtime performance using a logarithmic scale. 
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 4.2 Data Set and Lattice Characteristics 

The data sets used for the benchmarks are: 

i) Mushroom, 

ii) Chess,  

iii) Pumsb, 

iv) Pumsb*, 

v) T10I4D100k, 

vi) T25I10D10k, and 

vii) T25I20D100k. 

The Mushroom data set contains characteristics of various species of mushrooms.  

The Chess data set is sequence of steps recorded for a game of chess.  Pumsb data set 

contains census data.  The Pumsb* data set is the Pumsb data set with removal of items 

whose support is greater than or equal to 80%.  The T10I4D100k, T25I10D10k, and, 

T25I20D100k are synthetic data sets generated by the IBM Synthetic Data Generator 

(2001).  It generates data sets that emulate retail transactions according to a set of input 

parameters (e.g., number items, number transactions, average transaction length).  The 

Mushroom, Chess, Pumsb, Pumsb* and T10I4D100k data sets were downloaded from the 

University of Helsinki Frequent Item Set Mining Data set Repository ("Frequent Itemset 

Mining Dataset Repository", 2008).  The T25I10D10k and T25I20D100k data sets were 

downloaded from the High Performance Computing Laboratory of The Institute of 

Information Science and Technologies, Pisa, Italy ("DCI: A hybrid algorithm for frequent 

set counting datasets", 2008).   
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The characteristics of these data sets together with characteristics of their 

generated concept lattices are given in Table 4.1.  Density is calculated by |R| / (|O| × |I|) 

where |R| is the total number of items for all objects found in the data set, |O| is number 

of objects, and |I| is the number of items.  As can be observed in Table 4.1, the Chess and 

Mushroom data sets are dense, Pumsb and Pumsb* are marginal, and the remaining data 

sets are sparse.  While the density measure does provide insight into predicting the 

behavior of mining algorithms, additional insight can be gained by a density profile.  A 

density profile is a sorted plot of the number of objects per item.  The axes are expressed 

in fractions of the total number of objects and total number of items.  Therefore, the Y 

axis shows the support of an item.  The density profiles for each data set are given in 

Figure 4.2. The Mushroom data set has about 10% of items with support in excess of 

60%supp, the support drops off linearly to 10%supp the over the next 50% of items, and 

exhibits a decay curve thereafter.  The Chess data set has an approximate linear drop in 

support over the span of all items.  The Chess data set contains 38 fields of which each 

has 2 values, thus representing 76 items.  The near linear drop from 100%supp to 0%supp 

over the span of all items indicates a linear distribution of selecting one item of field over 

the other from being completely biased to being even.  The Pumsb data set has a sharp 

linear drop from near 100%supp to 5% supp in the first few items.  Since for the Pumsb, |O| 

is near 50,000, these few items will have sizable object id sets and thus represent a 

challenge for mining algorithms.  The Pumsb* thus omits items whose support is 80% or 

more from the Pumsb data set.  For both the Pumsb and Pumsb* there is a decay curve 

from 5%supp to 0% supp over the next 25% of items.  The density profiles for both plot no 

items passed the approximate 30% position.  This indicates that there are approximately 
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70% of items that are not represented in the data set.  The density profiles for the 

T10I4D100K and T25I20D100K data sets both exhibit a decay curve beginning around 

8%supp and have a fair percentage of items not represented in the data set.  Since both 

these data sets contain 100,000 objects, the object id sets for the initial items are around 

8,000 but quickly drop to under a 1,000.  The T25I10D10K data set has a decay curve 

beginning at 10%supp and dropping to 5%supp over the first 10% of items and then a near 

linear drop over all remaining items.  

In addition to characteristics of the data sets, Table 4.1 includes characteristics of 

the generated lattices for a spectrum of minimum supports.  Included is the number of 

concepts, average degree, maximum degree, and height.  These values were obtained by 

executing QuICL and/or CHARM-L algorithms.  The 20%supp entry for Pumsb was 

obtained using the CHARM algorithm (hence the omission of average degree and 

maximum degree for that entry).  The average degree is the average number of concepts 

in the upper cover of each given concept. Maximum degree is the maximum number of 

concepts in the upper cover of any concept.  Table 4.1 clearly indicates the exponential 

growth in size of the lattice as the minimum support is lowered.  The average degree and 

height tend to grow at a small slow rate as the minimum support is lowered, although the 

average degree exhibit a few anomalies (e.g., 0.01%supp of the T10I4D100K data set, 

0.05%supp of the T25I20D100K data set, and 0.01%supp of the T25I20D100K data set).  

While for the T10I4D100K, T25I20D100K, T25I20D100K data sets the maximum 

degree can approach |I| at very low supports, the maximum degree for the lattices of the 

other data sets is only a fraction of |I|.  
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Data Set |O| |I| Density 
Min 

Supp |L| 
Avg 

Degree 
Max 

Degree 
Height 

Chess 3,196 76 0.4933 95% 74 2.64 8 5 
  

   
85% 1,885 4.40 13 8 

  
   

75% 11,525 5.49 20 11 
  

   
65% 49,240 6.17 24 13 

        55% 192,863 6.85 27 15 

Mushroom 8,124 120 0.1933 50% 45 1.93 9 5 
  

   
30% 427 3.00 21 9 

  
   

10% 4,897 3.84 31 14 
        0% 238,709 5.71 33 22 

Pumsb 49,046 7,117 0.0104 95% 110 2.51 12 4 
  

   
85% 8,513 5.17 19 9 

    
75% 101,047 7.02 21 12 

        65% 496,069 8.31 28 15 

Pumsb* 49,046 7,117 0.0071 50% 248 2.82 18 8 
  

   
40% 2,610 4.22 29 12 

    
30% 16,154 5.14 36 15 

        20% 122,262 5.94     

T10I4D100k 100,000 1,000 0.0101 0.50% 1,073 1.68 569 5 
  

   
0.10% 26,806 3.27 796 10 

    
0.05% 46,993 3.10 832 10 

  
   

0.01% 283,397 2.81 846 11 
        0.00% 2,347,374 4.29 846 14 
T25I10D10k 9,219 1,000 0.0278 1.00% 5,582 3.58 919 10 
  

   
0.50% 23,393 3.68 982 12 

    
0.10% 209,436 2.63 996 13 

  
   

0.05% 576,020 2.74 996 14 
        0.00% 2,557,927 4.30 996 17 

T25I20D100k 100,000 10,000 0.0028 1.00% 5,256 3.53 800 9 
  

   
0.50% 27,067 4.09 2,131 12 

    
0.10% 150,970 4.64 4,325 14 

  
   

0.05% 212,765 4.51 4,703 14 
        0.01% 3,519,933 3.67 4,889 18 
Table 4.1: Data set and lattice characteristics.  |O| is number of objects, |I| is the number 
of items, and |L| is number of concepts.  Average degree is the average number of 
concepts in the upper cover of each given concept. Maximum degree is the maximum 
number of concepts in the upper cover of any concept. 
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Figure 4.2: Density profiles of benchmark data sets. 
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4.3 Algorithm Validity 

The QuICL algorithms were validated through a two pronged approach.  First is 

the manual examination of execution paths of each during the incremental construction of 

small lattices.  The small data sets of the examples of this report and small subsets (e.g., 

10 items and 20 objects) of the Mushroom data set were used as the test cases.  Manual 

examination was performed by single step and appropriately set breakpoints within a 

debugger.  In addition to constructing complete lattices, the iceberg processing was also 

tested by setting the minimum support.  For all test cases, the QuICL algorithm correctly 

constructed the concept lattices.   

The second prong of validating the QuICL algorithms is to execute all algorithms 

including GMA, CHARM, CHARM-L, and MAGALICE against the benchmark data 

sets and compare the characteristics of the generated lattices.  If the algorithms produced 

the same characteristics then the QuICL algorithms are deemed valid since; 

i) the GMA, CHARM, CHARM-L, and MAGALICE are already considered 
valid by the research community as evidence by citations found in literature, 

ii) data sets used are of sufficient size and variety to encompass special cases, 
and 

iii) there is a near zero probability that different lattices generated from the same 
input will have the same characteristics. 

The characteristics include the number of concepts in the lattices and the average degree 

of the lattice.  The average degree is the average of the number concepts in the upper 

cover of each concept.  The number of concepts by itself is not sufficient to claim that 

two lattices generated from the same input are equivalent.  For example, omitting the 

PURGE-SUBSETS function in any of the QuICL algorithms will generate a lattice with 
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the same number concepts, but there will exist a number of invalid parent-child links 

resulting in a different average degree.  Table 4.2 provides four such cases. 

 

Data Set Min 
Supp |L| 

Average Degree 
Valid Invalid 

Mushroom 10% 4,897 3.8365 4.7121 
Mushroom 0% 238,709 5.7093 6.7231 
T10I4D100k 0.05% 46,993 3.0998 3.1577 
T10I4D100k 0.00% 2,347,374 4.2880 17.8058 

Table 4.2: Cases of invalid average degree.  Valid average degree is the average degree 
reported by the QuICL algorithms.  Invalid average degree is the average degree reported 
by the QuICL algorithms without PURGE-SUBSETS.  |L| is the number concepts 
reported by QuICL algorithms with and without PURGE-SUBSETS. 

 

Appendix F provides the measurements of lattice characteristics for each 

algorithm.  Table F.1 reports the number of concepts in each lattice, by each benchmark 

data set and selected minimum supports.  Omitted entries in the tables are result of an 

algorithm exceeding the maximum heap size supported by the Java virtual machine.  The 

QuICL algorithms together with CHARM and CHARM-L report the same number of 

concepts for all cases.  The GMA algorithm reports a value one greater than the QuICL 

and CHARM algorithms for all data sets except Mushroom.  This discrepancy is 

explained by the difference in lattice representations.  The QuICL and CHARM 

algorithms do not count the bottom concept when reporting the number of concepts since, 

for these algorithms, the bottom concept represents an empty item set.  The bottom 

concept only serves as an entry point into the lattice.  GMA, on the other hand, includes 

the bottom concept since it may utilize this concept in the event of items that have all 

objects.  Such is the case of the Mushroom data set.  The MAGALICE algorithm reports 

the same number of concepts as GMA for many of the cases.  This is expected since the 
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MAGALICE algorithm utilizes the GMA algorithm.  The MAGALICE algorithm does, 

however, report in some cases a close but erroneous number.  Such numbers are 

highlighted in Table F.1.  These results indicate possible problems with the processing of 

jumpers34

4.4 Effect of Sort Order for the QuICL and GMA Algorithms 

 within the MAGALICE algorithm.  Either MAGALICE has a different 

interpretation of minimum support, an error exists in the implementation supplied by the 

author, or MAGALICE is invalid. 

Table F.2 reports the average degree of each lattice generated by each algorithm, 

by each benchmark data set and selected minimum supports.  Values are not provided for 

the CHARM algorithm since it does not generate upper covers.  The MAGALICE 

algorithm is also omitted since the number of concepts may be in error.  All other 

algorithms report the same average degree for all cases. 

Given the explainable consistency between the QuICL algorithms and the 

CHARM, CHARM-L, and GMA algorithms in both number of concepts and average 

degree, the QuICL algorithms are deemed valid. 

Before comparing the performance and memory usage of the QuICL algorithms 

against the CHARM, GMA, and MAGALICE algorithms, experiments were conducted 

to determine if the order of item insertion has an effect on performance and memory 

usage.  If an effect is realized, then the ordering providing the best performance and 

memory usage will be used when comparing the algorithms.  For these experiments, the 

items are sorted in ascending and descending support order.  In addition, each data set as 

                                                
34 Jumper is the term used by the Magalice algorithm for a concept that is regenerated as a result of adding 
a new object.  The addition of an object will change the supports of concepts.  A concept that was discarded 
due to lack of a support may now meet the minimum support threshold.  Such concept is given the term 
jumper. 
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downloaded from the respective repository is used to represent an unsorted state.  The 

Chess, Mushroom, Pumsb, and T10I4D100k data sets were used in these experiments.  

The CHARM algorithms are not included since they perform sorting as an integral part of 

their processing.  MAGALICE is not included since it loads the entire formal context into 

memory and then operates on the formal context using both an object index and item 

index lookup. 

Figures 4.3, 4.4, and 4.5 provide the results on the effect of sort order on the 

runtime execution for the QuICL Oid-Full, QuICL Oid-Less, and QuICL Oid-Trie 

algorithms respectively.  Figure 4.6 provides the results on the effect on the runtime 

execution of the GMA algorithm.  Furthermore, Figures 4.7, 4.8, 4.9, and 4.10 provide 

the results on the effect on memory usage for the respective algorithms.  The QuICL Oid-

Full and Oid-Trie algorithms provide the best performance by incrementally inserting 

items in ascending support order.  For QuICL Oid-Full the gain in performance ranges 

from a marginal amount to near two times (e.g., T10I4D100k at 0.005% supp) depending 

the data set and selected minimum support.  Greater gains are generally realized at lower 

supports.  Similar gains are realized by QuICL Oid-Trie.  The differences in execution 

time for these algorithms are attributed to the number of intersections.  By inserting 

concepts in ascending item support order the lattice initially grows at small rate that 

accelerates towards later insertions.  On the other hand, by inserting in descending order, 

the lattice grows rapidly as the initial items are inserted with the growth rate diminishing 

over subsequent items.  Appendix G provides supporting evidence.  While the QuICL 

algorithms use the lattice structure to navigate to the points of change within the lattice, a 

larger lattice will involve more intersections to locate those points.  Therefore, by 
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inserting the items in ascending support order the number of intersections performed over 

the course of constructing the entire lattice will be restrained.  For both QuICL Oid-Full 

and QuICL Oid-Trie the sort order has no effect on memory usage.  This is due to the 

well-behavior of lattice construction. 

For the QuICL Oid-Less algorithm, the best performance and memory usage is 

attained by incrementally inserting items in descending support order.  Even though the 

QuICL Oid-Less algorithm has the same fundamental structure as the QuICL Oid-Full 

and QuICL Oid-Trie algorithms, there are two factors that contribute to this conflicting 

preference.  First, the QuICL Oid-Less performs intersection on sets of concepts rather 

than sets of object ids.  By inserting items in descending support order, the concepts hold 

larger sets of object ids for longer initial period of time.  During this time the cost of 

intersections is greatly reduced.  Second, for each item insertion an intersection with the 

lattice as a whole is effectively performed.  This results in creating numerous temporary 

object id and concept id sets.  By inserting the items in descending support order the 

space consumed by these sets is restrained.  While the lattice is still small, the 

intersection with a large object id set will be limited.  Likewise, as the lattice gets large, 

intersection with small object id set is desired; otherwise the temporary sets will get 

exceedingly large (e.g., Chess data set of  Figure 4.8).  The size of the temporary sets not 

only impacts memory consumption, but also performance since it is these sets that are 

internally created and processed. 

The QuICL Oid-Less algorithm exhibits a runtime preference for ascending order 

in the case the T10I4D100k data set.  The T10I4D100k data set is a sparse data set.  As a 

result, there is little gain in the performing intersections at the concept level.  Any sets of 
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object ids are quickly broken into small sets as the algorithm proceeds. The effect of sort 

order on the number of intersections performed, as stated for the QuICL Oid-Full and 

QuICL Oid-Trie algorithms, has a greater impact on performance. The QuICL Oid-Less 

algorithm still exhibits a small memory preference for descending order.  Given that the 

gain in memory is small, the amount of memory being consumed is well within the range 

of available memory, and the overall objective is to improve runtime performance; the 

best sort order for QuICL Oid-Less will be considered to be ascending when executed 

against sparse data sets. 

The GMA algorithm also exhibits significant gains in performance by inserting 

the items in descending support order for dense data sets and moderate gains by inserting 

in ascending order for the T100I4D00k data set.  On dense data sets, the differences in 

performance can be attributed to the cost of linking new concepts into the lattice.  On 

creating a new concept, GMA must search the lattice to find its parents.  This search is 

limited to the set of generated and modified concepts that are identified in the course of 

processing an item insertion until the point where a new concept is generated.  When 

inserting the items in ascending support order, the generated concepts for the next item 

will be towards the bottom of the lattice.  Thus, the number of generated and modified 

concepts encountered before that point will be large.  This results in excessive time spent 

searching for parents.  Inserting items in ascending support order effectively builds the 

lattice from the top-down and thus incurs a greater cost when searching for parents.  

Inserting items in descending order builds the lattice from the bottom up, greatly reducing 

the search cost.  Section 4.9 provides evidence to the fact.  On sparse data sets, the 

number of modified and generated concepts for each item insertion is drastically smaller 
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than on dense data sets.  Therefore, the time to search for parents is significantly smaller 

and is less than costs of intersections.  Thus on sparse data sets, the effect of sort order on 

the number of intersections performed, as stated for the QuICL Oid-Full and QuICL Oid-

Trie algorithms, has a greater impact on performance.  For the GMA algorithm, the sort 

order has no effect on memory usage. 
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Figure 4.3: Effect of item sort order on the QuICL Oid-Full runtime execution. 
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Figure 4.4: Effect of item sort order on the QuICL Oid-Less runtime execution. 
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Figure 4.5: Effect of item sort order on the QuICL Oid-Trie runtime execution. 
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Figure 4.6: Effect of item sort order on the GMA runtime execution. 
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Figure 4.7: Effect of item sort order on the QuICL Oid-Full memory usage. 
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Figure 4.8: Effect of item sort order on the QuICL Oid-Less memory usage. 
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Figure 4.9: Effect of item sort order on the QuICL Oid-Trie memory usage. 
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Figure 4.10: Effect of item sort order on the GMA memory usage. 
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4.5 Comparison of Algorithm Execution Time 

The runtime results of executing the algorithms are given in Figures 4.11 through 

4.17 for the Chess, Mushroom, Pumsb, Pumsb*, T10I4D100k, T25I10D10K, and 

T25I20D100k data sets respectively.  All reported times are the average of five separate 

test executions of the same test case.  Ascending item support order is used for the 

QuICL Oid-Full and QuICL Oid-Trie algorithms for all data sets, and for the GMA and 

QuICL Oid-Less algorithms on sparse data sets.  Descending order is used for GMA and 

QuICL Oid-Less on dense data sets.  All other algorithms are unsorted since either the 

sort order is an integral part of the algorithm (e.g., CHARM) or is not applicable (e.g., 

MAGALICE).  All times are in seconds.  The plots in each figure display seconds on the 

vertical axis and minimum support on the horizontal axis.   

GMA is generally slower than the QuICL and CHARM algorithms by an order of 

magnitude.  GMA diverges further for small minimum supports.  There are two factors 

that impact the performance of the GMA algorithm.  First, each item insertion intersects 

the next item’s object ids with a large portion of the concepts currently in the lattice.  All 

concepts in ascending support order from the top of the lattice through the concept that is 

the generator for the next item’s object ids are visited.  As a result, the GMA algorithm 

visits and intersects more concepts than needed.  The QuICL algorithms use the lattice 

structure to navigate to a more limited subset of concepts thereby reducing the number of 

intersections.  The CHARM algorithms provide pruning on its itemset-oidset trie as its 

means to limit the number of intersections.  Secondly, the GMA links each new concept 

into the lattice by searching for parents.  While this search is restricted to generated and 

modified concepts, the number can still be excessive.  For parent concepts already 
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present in the lattice the QuICL Oid-Full and QuICL Oid-Less algorithms navigate the 

lattice structure as needed.  The QuICL Oid-Trie algorithm alternatively uses a hash table 

to directly locate these parents.  Other parents are dynamically created and directly linked 

using recursive insertion.  The CHARM-L algorithm uses set operations on sets of 

generator concepts associated with each concept to identify and link parent concepts.   

The MAGALICE algorithm demonstrates the worst performance of all the 

algorithms.  Its performance when compared to the GMA algorithm is at least an order of 

magnitude slower, in some cases three order of magnitude (e.g., Pumsb*) at high 

supports.  The performance does however, appear converge with the GMA as the support 

is lowered.  The plots for the Chess, Mushroom, and T25I10D10K data sets indicate that 

the performance of MAGALICE will be comparable to GMA at 0%supp, although no 

conclusive measurements were attainable.  These results indicate considerable processing 

is involved with the generation of jumpers35

The CHARM algorithm provides the best performance for the Chess, Pumsb, and 

Pumsb* data sets.  As the support is lowered, the performance gain often exceeds an 

order of magnitude over the other algorithms.  These results are expected since CHARM 

does not derive the upper covers.  It only identifies the frequent closed item sets.  

Furthermore, CHARM uses a difference based representation for the object ids below the 

.  As the support is lowered this processing 

diminishes since there are fewer discarded concepts that need to be regenerated.  Indeed 

at 0%supp, no concepts will be discarded and thus there will be no jumpers.  At 0%supp 

MAGALICE reverts to the underlying GMA processing. 

                                                
35 Jumper is the term used by the MAGLICE algorithm for a concept that is regenerated as a result of 
adding a new object.  The addition of an object will change the supports of concepts.  A concept that was 
discarded due to lack of a support may now meet the minimum support threshold.  Such concept is given 
the term jumper. 
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first level in its itemset-oidset tree.  Since these data sets contain a number of items 

having large object id sets (e.g., greater than 200), this difference based representation 

provides a real gain in both in memory and runtime execution.  The CHARM algorithm 

provides the best performance for the T10I4D100k, T25I10D10k, and T25I20D100k data 

sets, but only for supports greater than 0.1%, 0.3%, and 0.02% respectively.  For these 

data sets, these supports are relatively high (i.e., will produce only a small fraction of all 

possible frequent item sets) and equate to an absolute support of 100, 28, and 20 

respectively.  As the support is reduced below these points, the CHARM algorithm is 

outperformed by the QuICL Oid-Full and QuICL Oid-Trie algorithms.  For the remaining 

data set, Mushroom, CHARM is outperformed by QuICL Oid-Full and QuICL Oid-Trie 

over all supports.  

The CHARM-L algorithm exhibits performance along the lines of CHARM but 

degrades as the support is lowered and the number of concepts increases.  For dense data 

sets the degradation can readily diverge in excess of an order of magnitude.  For the 

sparse data sets, the divergence is between a factor of two (e.g., T25I10D10k) and a 

factor of five (e.g., T25I20D100k).  These results are expected since the CHARM-L is an 

extension to CHARM that additionally derives the upper covers.  The CHARM-L 

algorithm still outperforms the QuICL Oid-Full and QuICL Oid-Trie algorithms on the 

Pumsb and Pumsb* algorithms over near all supports, and the T10I4D100k, 

T25I10D10k, and T25I20D100k at relatively high supports (although higher than with 

CHARM).  This indicates that the difference based representation of the underlying 

CHARM algorithm is still providing a gain.  However, the gain is significantly 

diminished by the processing required to derive the upper covers.  The gain in 
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performance of CHARM-L over QuICL on Pumsb* is approximately a factor of two.  

For the Mushroom and Chess data sets, CHARM-L is outperformed by both QuICL Oid-

Full and QuICL Oid-Trie over all supports.  

The QuICL Oid-Full algorithm provides the best overall performance for 

constructing iceberg lattices. It is only outperformed by CHARM-L on the Pumsb and 

Pumsb* data sets and for the T10I4D100k, T25I10D10k, and T25I20D100k at only 

relatively high supports.  The Pumsb and Pumsb* are data sets that contain items with 

very large object id sets (e.g., greater than 10,000) and thus CHARM-L is sufficiently 

benefiting from its difference based representation to maintain a lead.  While CHARM-L 

does outperform the QuICL Oid-Full and QuICL Oid-Trie algorithms at relatively high 

supports on the T10I4D100k, T25I10D10k, and, T25I20D100k data sets, the gain is 

limited to a few seconds (e.g., 2.53 seconds in T10I4D100k at 0.5% supp and 1.05 seconds 

in T25I10D10k at 1.0%supp), although the T25I20D100k exhibits a gain of 57.8 seconds 

at 1.0%supp.  In all cases, the gain quickly turns into a large loss as the support is lowered 

(e.g., loss of 1,534 seconds in T25I10D10k at 0.0% supp and 1,847 seconds in 

T10I4D100k at 0.0% supp).  At low supports QuICL Oid-Full outperforms CHARM-L by 

an excess of an order of magnitude on the Mushroom, T10I4D100K, T25I10D10k, and 

T25I20D100k36

The QuICL Oid-Full and QuICL Oid-Trie algorithms exhibit the near same 

runtime complexity for all data sets.  QuICL Oid-Trie exhibits around 25% loss over 

 data sets, and a factor greater than five for Chess.  

                                                
36 A measurement of an order of magnitude greater was not obtained for the T25I20D100k data set due to 
the heap size limit on the Java VM.  However, at 0.01%supp a value in excess of an order of magnitude can 
be readily inferred by both the trend in CHARM-L’s measurements and by relationship to the CHARM 
measurements.  At 0.01%supp, CHARM consumes 1,924.78 seconds.  The CHARM-L measurements are in 
excess 3 × CHARM.  Therefore, a value greater than 6,000 seconds is expected for CHARM-L at 
0.01%supp. 
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QuICL Oid-Full algorithm, although 45% loss is exhibited for Mushroom at 10%supp and 

at most a 12% loss for Pumsb* over all supports.  This loss in performance is expected.  

The functions to compare and intersect object id sets at the heart of the QuICL Oid-Trie 

algorithm will encounter a performance impact, since they must traverse between trie 

nodes and not just a simple array.  Therefore, the cost of advancing the intersection 

indices within these functions will be more than for QuICL Oid-Full.  A loss in 

performance can also be attributed to cost of adding the object id sets into the trie.  To 

add an object id set involves walking the trie to identify the point where a new trie node37

The remaining algorithm, QuICL Oid-Less, provides the best performance of the 

lattice construction algorithms on the Pumsb data set outperforming CHARM-L by more 

than a factor of two over all supports.  QuICL Oid-Less is QuICL’s answer to handling 

data set containing items with large object id sets.  Instead of directly intersecting object 

ids, QuICL Oid-Less intersects support concepts (i.e., concepts that logically hold object 

ids in a compressed lattice).  For concept lattices where the support concepts hold large 

 

will be grafted.  Adding object id sets into the Trie may have a minor effect, if any, on the 

runtime complexity.  To counteract the runtime overhead introduced by the trie data 

structure, the QuICL Oid-Trie algorithm incorporates two performance enhancements.  

One provides early termination of intersection and compare when the traversals of the 

two sets encounter the same trie node.  The second provides direct lookup of concepts 

that exist in the lattice, thereby avoiding the intersect and compare functions when 

searching for such concepts.  While these enhancements provide minor gain, they are not 

sufficient to overcome the increase in intersection cost.   

                                                
37 The QuICL Oid-Trie algorithm uses a compound trie node implementation.  At most one trie node will 
be created for each inserted object id set. 
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sets of object ids, the QuICL Oid-Less algorithm realizes a significant performance gain.  

Such is the case for the Pumsb lattice.  This gain is also realized for an initial period of 

time during the algorithm execution on other data sets.  During this time period, the 

number of support concepts is limited and the cardinality of object ids they represent is 

large.  This behavior is observed in the Chess, Mushroom, and Pumsb* data sets.  Over 

the course of execution, the support concepts fragment resulting degradation of 

performance.  Indeed, the worst case is the point where all support concepts are iced 

concepts with each representing a single object id.  For sparse data sets, the execution 

rapidly approaches this worst case at which time QuICL Oid-Less exhibits a performance 

loss of a factor between two and four when compared to QuICL Oid-Full. 
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Figure 4.11: Comparison of runtime execution time using the Chess data set. 
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Figure 4.12: Comparison of runtime execution time using the Mushroom data set. 
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Figure 4.13: Comparison of runtime execution time using the Pumsb data set. 
 



191 

 

0.10

1.00

10.00

100.00

1000.00

10000.00

20%25%30%35%40%45%50%

Pumsb* 

Oid-Full Oid-Trie Oid-Less CHARM
CHARM-L GMA MagaliceMAGALICE

  
  

         
  

  

Min 
Supp |L| 

O
id

-F
ul

l 

O
id

-T
rie

 

O
id

-L
es

s 

C
H

A
R

M
 

C
H

A
R

M
-L

 

G
M

A 

M
AG

AL
IC

E 

  
  50% 248 0.26 0.24 0.24 0.26 0.48 1.69 6057.85   
  45% 713 0.67 0.72 0.54 0.46 0.80 6.74     
  40% 2,610 1.74 1.96 1.93 0.83 1.24 27.40     
  35% 6,133 3.81 4.22 6.04 1.31 2.22 87.94     
  30% 16,154 9.85 10.55 22.37 2.33 4.70 262.68     
  25% 42,756     71.84 4.41 12.91       
  20% 122,262     207.89 8.90 45.40       
                      
Figure 4.14: Comparison of runtime execution time using the Pumsb* data set. 
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Figure 4.15: Comparison of runtime execution time using the T10I4D100k data set. 
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Figure 4.16: Comparison of runtime execution time using the T25I10D10k data set. 
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Figure 4.17: Comparison of runtime execution time using the T25I20D100k data set. 
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4.6 Comparison of Algorithm Memory Usage 

The memory results of executing the algorithms are given in Figures 4.18 through 

4.24 for the Chess, Mushroom, Pumsb, Pumsb*, T10I4D100k, T25I10D10K, and 

T25I20D100k data sets respectively.  All memory measurements were obtained from the 

“Mem Usage” field of the Windows Task Manager dialog upon termination of the 

algorithm.  Ascending item support order is used for the QuICL Oid-Full and QuICL 

Oid-Trie algorithms for all data sets, and for the GMA and QuICL Oid-Less algorithms 

on sparse data sets.  Descending order is used for GMA and QuICL Oid-Less on dense 

data sets.  All other algorithms are unsorted since either the sort order is an integral part 

of the algorithm (e.g., CHARM) or is not applicable (e.g., MAGALICE).  All 

measurements are in megabytes (MBs).  The plots in each figure display MBs on the 

vertical axis and minimum support on the horizontal axis.   

In addition to the memory results, the algorithms were separately instrumented to 

report various characteristics on the internal data structures, consisting of; 

i) cardinality of object id entries in lattice for the GMA and QuICL Oid-Full 
algorithms, 

ii) cardinality of the object id entries in the trie of the QuICL Oid-Trie algorithm, 

iii) cardinality of the item entries in the lattice for the GMA and CHARM-L 
algorithms, and  

iv) the number of parent-child links of the lattice for all lattice construction 
algorithms. 

These characteristics provide insight into the exhibited memory usage.  Results from 

executing the instrumented algorithms against the benchmark data sets over a relevant 

subset of supports are given in Table 4.3.  |L| is the number of concepts in the resulting 

lattice.  |O′| is the number of object ids in a full lattice.  Such value is reflected in the 
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QuICL Oid-Full and GMA algorithms.  |O″| is the number of object id entries in the 

QuICL Oid-Full trie.  No object ids are retained in the QuICL Oid-Less or CHARM-L 

lattices.  |I′| is the number of items in a full lattice.  Such value applies to GMA and 

CHARM-L.  |I″| is the number of items in the QuICL lattices.  |P| is the number of 

parent-child links.  QuICL Oid-Full and QuICL Oid-Trie maintain only one set of parent-

child links to traverse from children to parents.  The other algorithms maintain two sets of 

parent-child links to enable bi-directional traversals required of the respective algorithm.   

From Table 4.3 rough approximations for memory to represent the internal lattice 

can be calculated using factors; 

i) 4 bytes for each object id in all lattices or item in QuICL lattice, 

ii) 6 bytes for each item in GMA or CHARM-L lattice, 

iii) 6 bytes for each parent-child link in QuICL Oid-Full or QuICL Oid-Trie 
lattice, 

iv) 12 bytes for each parent-child link in all other lattices, 

v) 124 bytes for each concept in QuICL Oid-Full lattice, 

vi) 216 bytes for each concept in QuICL Oid-Trie lattice, 

vii) 320 bytes for each concept in QuICL Oid-Less lattice, 

viii) 276 bytes for each concept in GMA lattice, and 

ix) 356 bytes for each concept in CHARM-L lattice. 

Details of these factors are given in Appendix H.  Determination of concept size for 

MAGALICE was not performed due to exhibited gross memory consumption.  

Calculation of memory usage for each algorithm by applying these factors to the 

applicable characteristics of Table 4.3 is given in Appendix I.  In addition, Appendix I 

includes a comparison to the actual observed memory usage.  For the QuICL Oid-Full 
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and QuICL Oid-Trie, and the GMA algorithms, the calculated memory usage is within a 

reasonable neighborhood of the observed memory usage.  As expected, the observed 

memory usage is greater to account for the Java VM, loaded class files, execution stack, 

and data structures beyond the lattice.  For the QuICL Oid-Less algorithm, the observed 

memory usage greatly exceeds that required by the lattice.  This excess is a result of the 

temporary sets constructed and discarded during each item insertion.  Similarly, for the 

CHARM-L algorithm the observed memory usage greatly exceeds that of the lattice.  In 

this case, the excess is for object ids stored in its itemset-oidset tree during processing.  

Furthermore, the CHARM-L calculations may not be account for all the factors 

contributing to the size of the lattice.  A factor that is omitted is a list of generator 

concepts associated with each concept.   

The MAGALICE exhibits the worst memory usage.  Except for a few cases, the 

memory usage is well in excess of an order of magnitude for all data sets and supports.  

The reason for this excess was not investigated. 

QuICL Oid-Full and GMA exhibit similar memory usage for small lattices (i.e., 

less than 200,000 concepts) and diverge for larger lattices (i.e., greater than 500,000).  

For both of these algorithms, the number of object id entries stored in the lattice is a 

major consumer of memory.  For small lattices on dense data sets the space for object ids 

can account for more than 95% of the memory consumed.  As the lattice becomes large, 

the overhead of the concepts will become a dominant term.  On large lattices, memory for 

the concepts, excluding object ids and items, can account for 38% (e.g., T10I4D100k at 

0.01%supp using QuICL Oid-Full) to 72% (e.g., T25I10D10K at 0.0% using QuICL Oid-

Full) of the memory consumed.  Furthermore, for large lattices the number of parent-
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child links account for another 15%.  Since the overhead of a concept in the GMA lattice 

is greater than in the QuICL Oid-Full lattice and the GMA lattice uses two references for 

each parent-child link, the GMA lattice consumes more memory for large lattices.  As the 

lattice becomes very large GMA exceeds QuICL Oid-Full by a factor approaching two. 

For most data sets, the QuICL Oid-Trie algorithm is realizing significant 

reduction in the number of object id entries within its trie over the number of object id 

entries present in QuICL Oid-Full’s lattice.  In only the Pumsb data set is the reduction 

less than 1.0%.  For the Pumsb*, T10I4D100k, and T25I20D100k the reduction is around 

15%.  A reduction of 30%, 60%, and 80% is realized for the T25I10D10k, Mushroom, 

and Chess data sets respectively.  For small lattices, the reduction in object id entries 

translates to a significant reduction in memory usage over the QuICL Oid-Full algorithm.  

For Pumsb* the reduction in memory usage is around 15% 38

                                                
38 Savings exceeding 15% is observed at the 30%supp and thus exceeds the calculated savings.  This 
anomaly may be attributed to unidentified runtime factors experienced with the QuICL Oid-Full execution.  

.  A 50% and 75% reduction 

is realized for the Mushroom and Chess data sets, although only a 25% reduction is 

realized from Mushroom at 0.0%supp.  At 0.0%supp the lattice is of sufficient size that the 

additional overhead for concepts in the QuICL Oid-Trie lattice is impacting the gain 

realized by a reduction in object id entries.  For the Chess data set, the reduction in 

memory usage enables QuICL Oid-Trie to construct lattices for smaller minimum 

supports.  For the T10I4D100k, T25I10D10k, and T25I20D100k data sets any gain in 

reducing the number of object id entries is nullified or outweighed by the overhead in the 

concepts.  For very large lattices, the overhead results in loss greater than 50% (e.g., 

T25I10D10k at 0.0%supp). 
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The QuICL Oid-Less algorithm provides further reduction in memory usage by 

eliminating the object id entries from permanent storage within the lattice or any 

auxiliary data structure.  Temporary object id entries are constructed and then discarded 

for each item insertion.  QuICL Oid-Less eliminates permanent object ids from the lattice 

at the expense of further overhead in each concept (e.g., 2.4 times QuICL Oid-Full and 

1.3 times QuICL Oid-Trie).  The net result is a reduction in memory usage by a factor of 

two on the Mushroom data set, factor of five on the Chess data set, and an order of 

magnitude on the Pumsb* data set.  These gains are sustained over most supports but 

diminish slightly for large lattices.  On the Chess data set, gains of an order of magnitude 

are exhibited at higher supports then settles to a factor of five at lower supports.  This 

reduction in memory usage enables QuICL Oid-Less to process smaller supports than 

QuICL Oid-Full on the Chess and Pumsb* data sets.  On the Pumsb data set, the growth 

in memory usage as the support is lowered is drastically restrained.  This enables QuICL 

Oid-Less to process significantly lower supports (e.g., 60%supp as opposed to 85%supp 

with QuICL Oid-Full).  On the T10I4D100K and T25I10D10K QuICL Oid-Less exhibits 

a loss between 5% and 60%.  For these data sets, the lattice quickly degrades into a worst 

case where there are many iced concepts each representing a single object id39

                                                
39 The number of object ids is limited to the formal context.  This number should not be confused with the 
number of object id entries in a lattice.  The number of object id entries can exponentially exceed the 
number of object ids in the formal context. 

.  As a 

result, the size of the temporary sets effectively matches the size of the object id entries in 

concepts of the QuICL Oid-Full lattice.  Thus for these data sets, QuICL Oid-Less will 

exhibit the same asymptotic memory complexity as QuICL Oid-Full with around a 50% 

overhead.  For the T25I20D100k, this worst case state is not reached until very low 

supports.  Thus, the memory usage of QuICL Oid-Less for this data set is less than 
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QuICL Oid-Full for most supports.  QuICL Oid-Less does, however, exhibit somewhat 

erratic growth as the support is lowered.  This is a result of inserting the items in 

ascending support order.  Such order exacerbates the size of the temporary sets resulting 

from intersection.  The reclamation of space consumed by these sets is attributing to this 

behavior.  

Like QuICL Oid-Less, the CHARM-L algorithm provides a reduction in memory 

by eliminating the object id entries from the lattice.  CHARM-L does maintain object id 

entries in its itemset-oidset tree.  These entries are dynamically constructed during the 

traversal of the itemset-oidset tree and discarded upon completion of a branch.  The 

memory consumed for each concept in the CHARM-L lattice is about three times the 

memory consumed by the concepts of QuICL Oid-Full.  It exceeds the memory 

consumed by the concepts of QuICL Oid-Less.  Due to very different approaches, the 

reduction or gain in memory usage when compared against QuICL algorithms is varied.  

CHARM-L exhibits the best asymptotic memory complexity on the Pumsb* data sets 

resulting in a reduction near a factor of five over QuICL Oid-Less.  On Pumsb the 

complexity is slightly better than QuICL Oid-Less.  However, for most supports QuICL 

Oid-Less provides greater reduction.  Only at 60%supp does CHARM-L consume less 

memory.  CHARM-L has the same memory complexity as QuICL Oid-Full and QuICL 

Oid-Trie on the Chess, T10I4D100k, and T25I10D100k data sets.  It provides an 85% 

gain over QuICL Oid-Full (40% gain over QuICL Oid-Trie) on the Chess data set, but a 

loss around a factor of three on the T10I4D100k and T25I10D100k data sets.  The 
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memory consumption of CHARM-L somewhat matches the memory consumption of 

QuICL Oid-Less on the Mushroom and T25I20D100k data sets40

                                                
40 Except for 0.0%supp on Mushroom. 

. 

The CHARM algorithm does not construct a lattice.  As such, its memory 

consumption is for processing its itemset-oidset tree and construction its list of frequent 

item sets.  Since CHARM-L is an extension to CHARM that constructs a concept lattice 

the memory consumption of CHARM is expected to be less than CHARM-L.  This is 

indeed the case.  However, the difference between the exhibited memory consumption of 

CHARM-L and CHARM should not be interpreted to be the memory for the lattice, since 

memory used for the itemset-oidset tree is released upon processing a branch and may be 

reused for the lattice. 



202 

 

 

1

10

100

1000

10000

40%50%60%70%80%90%

Chess

Oid-Full Oid-Trie Oid-Less CHARM
CHARM-L GMA MagaliceMAGALICE

  
  

         
  

  

Min 
Supp |L| 

O
id

-F
ul

l 

O
id

-T
rie

 

O
id

-L
es

s 

C
H

A
R

M
 

C
H

A
R

M
-L

 

G
M

A 

M
AG

AL
IC

E 

  
  95% 74 8 7 7 8 8 9 14   
  90% 503 13 10 8 9 9 16 67   
  85% 1,885 30 11 9 11 10 33 198   
  80% 5,083 65 18 11 13 13 68 479   
  75% 11,525 138 32 13 14 20 139 1066   
  70% 23,991 261 57 23 17 32 267     
  65% 49,240 492 108 43 23 63 500     
  60% 98,392 939 201 146 32 120 951     
  55% 192,863 1656 367 343 53 217 1656     
  50% 369,450   646 760 92 435       
  45% 707,964   1156 1353 160 868       
  40% 1,366,833       268 1568       

                      
Figure 4.18: Comparison of memory usage using the Chess data set. 
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Figure 4.19: Comparison of memory usage using the Mushroom data set. 
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Figure 4.20: Comparison of memory usage using the Pumsb data set. 
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  20% 122,262     1224 132 220       

                      
Figure 4.21: Comparison of memory usage using the Pumsb* data set. 
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  0.300% 4,509 18 19 62 49 52 25 755   
  0.100% 26,806 40 40 77 74 76 52 1076   
  0.050% 46,993 48 48 93 99 96 64 1300   
  0.030% 71,265 57 61 102 114 116 75 1658   
  0.010% 283,397 116 129 205 201 284 159     
  0.005% 769,777 230 261 345 355 637 352     
  0.000% 2,347,374 546 820 896 711 1552 1048     

                      
Figure 4.22: Comparison of memory usage using the T10I4D100k data set. 
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  1.00% 5,582 11 12 21 19 21 14 165   
  0.50% 23,394 18 19 25 23 36 24 241   
  0.30% 44,925 25 26 34 32 56 35 335   
  0.10% 209,436 74 82 116 92 184 104 879   
  0.05% 576,021 151 181 235 164 446 236     
  0.03% 1,438,054 321 408 493 275 992 561     
  0.00% 2,557,928 583 945 1156 533 1548 1554     
                      
Figure 4.23: Comparison of memory usage using the T25I10D10k data set. 
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  1.00% 5,256 36 37 94 48 48 42 1090   
  0.50% 27,067 105 105 114 90 115 113     
  0.30% 72,640 189 185 167 124 139 204     
  0.10% 150,970 263 256 186 162 236 291     
  0.05% 212,765 287 287 199 207 311 327     
  0.03% 461,138 365 379 307 313 521 457     
  0.01% 3,519,933 1094 1349 1306 658         

                      
Figure 4.24: Comparison of memory usage using the T25I20D100k data set. 
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Min 

Supp |L| |O′| |O″| |I′| |I″| |P| 

C
he

ss
 

95% 74 232,224 50,036 202 9 198 
85% 1,885 5,341,131 933,670 9,018 16 8,302 
75% 11,525 29,631,737 5,099,269 70,729 23 63,270 
65% 49,240 112,611,870 19,857,410 346,926 29 303,912 
55% 192,863 383,151,148 69,458,506 1,535,601 35 1,321,976 

M
us

hr
oo

m
 

50% 45 238,282 106,077 152 13 88 
30% 427 1,384,872 494,819 2,115 28 1,282 
10% 4,897 6,961,076 2,490,957 33,322 56 18,790 
0% 238,709 21,936,050 9,577,434 3,982,989 119 1,362,867 

P
um

sb
 95% 110 5,245,186 5,182,774 310 13 279 

90% 1,466 66,249,882 65,982,078 6,446 20 5,887 
85% 8,513 366,699,694 365,244,637 48,761 24 43,993 
80% 33,295 1,363,773,560 

 
231,559 25 203,885 

P
im

sb
* 50% 248 7,009,886 6,756,195 924 27 703 

40% 2,610 57,137,840 49,131,427 15,422 46 11,028 
30% 16,154 278,455,886 235,356,264 120,185 60 82,959 
20% 122,262 1,490,739,095 

 
1,123,645 86 726,335 

T1
0I

4D
10

0k
 0.500% 1,073 1,357,945 1,251,699 1,800 569 1,800 

0.100% 26,806 6,638,031 5,705,060 88,164 797 87,564 
0.050% 46,993 8,040,209 6,810,733 149,459 839 145,671 
0.010% 283,397 12,091,976 10,140,956 833,624 867 796,040 
0.005% 769,777 15,204,154 12,220,186 2,491,078 869 2,307,800 
0.000% 2,347,374 19,216,860 14,140,919 9,315,849 870 10,065,478 

T2
5I

10
D

10
k 1.00% 5,582 797,573 631,166 20,314 919 19,992 

0.50% 23,394 1,904,796 1,307,129 89,585 982 86,092 

0.10% 209,436 4,882,207 3,504,219 588,817 996 551,827 
0.05% 576,021 7,079,426 4,930,114 1,718,173 996 1,575,898 
0.00% 2,557,928 12,175,844 7,120,716 9,802,820 996 10,992,589 

T2
5I

20
D

10
0k

 1.00% 5,256 6,733,629 6,402,159 18,543 800 18,543 
0.50% 27,067 21,851,821 20,495,570 110,606 2,131 110,606 
0.10% 150,970 53,984,829 47,581,685 701,476 4,329 700,913 
0.05% 212,765 58,082,074 50,199,243 967,539 4,729 958,619 
0.01% 3,519,933  114,598,522 77,861,760   5,072 12,925,176 

Table 4.3: Characteristics of internal data structures.  |L| is the number of concepts in the 
lattice, |O′| is the number of object id entries in a full lattice, |O″| is the number of object 
id entries in the QuICL Oid-Full trie, |I′| is the number of item entries in a full lattice, |I″| 
is the number of item entries in the QuICL lattices, and |P| is the number of parent-child 
links.   
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4.7 Performance Analysis of the QuICL Algorithms 

To gain a better understanding of time spent within the QuICL algorithms and to 

provide empirical evidence for rationale concerning its runtime behavior, the QuICL 

algorithms was separately instrumented to time key sections of respective INSERT 

functions (Algorithms 3.4, 3.14, and 3.18).  The INSERT function performs the 

incremental insertion of the next item.  For the QuICL Oid-Full algorithm (Algorithm 

3.4), instrumentation includes: 

i) Insert – total time spent in the INSERT function, 

ii) Prep – time to execute the prepare-search phase (lines 10 through 19), 

iii) Prep Navigate – time to execute the prepare-search that terminates upon 
reaching line 15, 

iv) Prep Link – time to execute the prepare-search that terminates upon 
reaching line 13, 

v) Prep Create – time to execute the prepare-search that completes without 
reaching lines 13 or 15, 

vi) Purge – time to execute the PURGE-SUBSETS function (line 21), 

vii) Superset Link - time to link a new concept to parent superset concepts (lines 
25 through 31 processing SUPERSET tuples), and 

viii) Intersect Link - time to link a new concept to parent intersect concepts (lines 
25 through 31 processing INTERSECT tuples, excluding time consumed in 
the recursive call to INSERT). 

Prep, Purge, Superset Link, and Intersect Link are exclusive of each other and account for 

the majority of time spent in the INSERT function.  Likewise, Prep Navigate, Prep Link, 

and Prep Create are exclusive of each other and account for the time spent in the prepare-

search phase.   

Results from executing the instrumented QuICL Oid-Full algorithm against all 

benchmark data sets for relevant subset of supports are given in Table 4.4 and 4.5.  
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Ascending support order is used for all test data sets.  Insert is the total seconds spent in 

the INSERT function.  Prep, Purge, Superset Link, and Intersect Link are times spent 

executing the respective sections of the INSERT function.  Other accounts for the 

remaining time spent in the INSERT function.  Find Link is derived by summing half of 

the Prep Navigate, all of Prep Link, and half of Intersect Link.  This value represents, to 

some degree, the time to find and link parent concepts already present in the lattice.  

Prep, Prep Navigate, Prep Link, Prep Create, Purge, Superset Link, Intersect Link, Other, 

and Find Link are given as a percentage of Insert time with actual seconds subscripted. 

For QuICL Oid-Full algorithm, the majority of execution time is spent in the 

prepare-search phase, in most cases over 75%.  The proportion of time does decrease as 

the support is lowered and the size of the lattice increases.  Most executions of the 

prepare-search phase complete with the creation of a new concept, since Prep Create time 

accounts for near all Prep time.  Thus, time to execute the prepare-search phase is the 

dominant part of the overall execution time.  However, the time to purge subset entries is 

also significant and its proportion of time generally increases with the size of the lattice.  

For example, on T25I10D10k the Purge time grows from 2% at 0.3%supp to 32% at 

0.0%supp, whereas on Mushroom the Purge time fluctuates around 21% over the spectrum 

of supports.  There are no cases where Purge time exceeds Prep time.  This seems to 

indicate that the time to purge subset entries will not be dominant.  However, the time to 

purge subset entries is a significant amount of the overall time that cannot be discounted.  

The Prep Navigate time is negligible reaching between 1% and 3% in a few cases (e.g., 

1% in T10I4D100k at 0.005%supp, 3% in T20I10D10k at 0.0%supp).  This indicates that 

the time to navigate into the lattice is an insignificant term in runtime complexity.  Some 
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portion of the Prep Navigate time, Intersect Link time, combined with all of the Prep 

Link time will be representative of the time to find and link parents already present in the 

lattice.  The Find Link time, is to some degree, a representation of this value.  In most 

cases, the Find Link time is just a few percent.  However, it can exceed 10% of the 

overall execution time on large lattices.  For example, on both T10I4D100k and 

T25I10D10k the Find Link time is 11% at 0.0%supp.  On Mushroom the Find Link is 11% 

at 1.0%supp and 21% at 0.0%supp.  This indicates that the time to process INTERSECT 

entries that find and link existing concepts can become a significant portion of time.  Like 

time to purge subsets, it cannot be discounted.  The remaining time, expressed by Other, 

is generally a few percent41

The portions of time spent executing the sections of the QuICL Oid-Trie INSERT 

function is comparable to the portions reported for QuICL Oid-Full’s INSERT function 

.  This time accounts for creating a concept, sorting parents of 

a new concept, linking a concept to its base concept, and other minor terms.  These are 

negligible with respect to runtime complexity. 

The QuICL Oid-Trie algorithm was instrumented in the same manner as QuICL 

Oid-Full except the time for Prep Link is now for the time to look up a concept given a 

trie position (lines 1 through 4 of Algorithm 3.18).  Results from executing the 

instrumented QuICL Oid-Trie algorithm against all benchmark data sets for a relevant 

subset of supports are given in Tables 4.6 and 4.7.  Ascending support order is used for 

all data sets.  Like Tables 4.4 and 4.5, Insert is the total number of seconds spent in the 

QuICL Oid-Trie’s INSERT function and Prep, Prep Navigate, Prep Link, Prep Create, 

Purge, Superset Link, Intersect Link, Other, and Find Link are given as a percentage of 

Insert time with actual seconds subscripted. 

                                                
41 Chess at 85%supp is an exception.   
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with a few changes.  The actual seconds of QuICL Oid-Trie’s Prep Create, and therefore 

Prep, is slightly less than QuICL Oid-Full on the Chess, Pumsb, and Pumsb* data sets but 

more on Mushroom, T100I4D100k, T25I10D10k, and T25I20D100k data sets.  At low 

supports on the latter data sets, QuICL Oid-Trie’s Prep Create takes twice as much as 

QuICL Oid-Full.  The Prep Create is slower since QuICL Oid-Trie’s intersect function 

must traverse between trie nodes.  However, an enhancement incorporated into QuICL 

Oid-Trie is providing a gain on Chess, Pumsb, and Pumsb* data sets.  The enhancement 

halts intersection processing when the traversals of the object id sets are within the same 

trie node.  Thus for Chess, Pumsb, and Pumsb*, the underlying trie has a sufficient 

number of object id sets sharing common prefixes to realize a gain.  The actual seconds 

for Purge time is slower on QuICL Oid-Trie42

                                                
42 Pumsb* at 30%supp is an exception. 

.  Since comparisons start at the leaves in 

the trie and terminate as soon as an object id is found in each set that is not in the other 

set, the common trie nodes are rarely reached.  Thus, the additional cost of traverse 

between tree nodes, although limited, is resulting in slower purge times.  Times for 

Superset Link and Intersect Link are basically the same between QuICL Oid-Trie and 

QuICL Oid-Full.  For QuICL Oid-Trie, the Prep Navigate time is very small resulting in 

0% being reported in all cases.  This is a result of the direct lookup of existing concepts 

by oid trie position.  The time now remaining in Prep Navigate is reflective of the actual 

time to navigate to the concept above which a new concept will be created.  Clearly, this 

time is negligible.  Furthermore, the lookup is providing an 80% reduction in the Prep 

Find time.  Thus, Find Link time is limited to less than 5% in all test cases.  Therefore for 

QuICL Oid-Trie, the time to find and link existing concepts is not a dominant term of the 

runtime complexity.  The gains achieved in some sections of the QuICL Oid-Trie 
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algorithm are, however, not sufficient to offset the overhead incurred in traversing the trie 

nodes. 

The QuICL Oid-Less algorithm was instrumented in the same manner as QuICL 

Oid-Full with the additional instrumentation: 

i) Iceberg – time to process iced concepts (lines 34 and 35 of Algorithm 3.14). 

Results from executing the instrumented QuICL Oid-Less algorithm against all 

benchmark data sets for a relevant subset of supports are given in Tables 4.8 and 4.9. 

Descending support order is used for all data sets to provide consistent analysis.  As 

shown in Table 4.4 and 4.5, Insert is the total number of seconds spent in the QuICL Oid-

Less’s INSERT function and Prep, Prep Navigate, Prep Link, Prep Create, Purge, 

Superset Link, Intersect Link, Iceberg, Other, and Find Link are given as a percentage of 

Insert time with actual seconds subscripted. 

The portions of time spent in the sections of the QuICL Oid-Less INSERT 

function is different to the portions reported in QuICL Oid-Full.  The portion of time 

spent in Prep increases as the support is lowered.  For all data sets, the portion of time 

exceeds 74% at low supports.  The actual seconds spent in QuICL Oid-Less Prep is less 

than QuICL Oid-Full at high supports, but is generally more at low supports.  For 

example, QuICL Oid-Less Prep time is 11.95 seconds on T25I20D100k at 0.1%supp 

where QuICL Oid-Full is 66.04 seconds, but at 0.01% supp QuICL Oid-Less is 447.88 

seconds where QuICL Oid-Full is 180.99 seconds.  At high supports, QuICL Oid-Less is 

benefiting from intersecting sets of support concepts rather than sets of object ids, but as 

the support is lowered the support concepts fragment result in greater runtime 

consumption.  For Pumsb, T25I20D100k, and to some degree Chess, the point at which 

to gain turns into a loss is significantly lower (e.g., T25I20D100K at 0.01% supp).  These 
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data sets contain items with large object id sets and thus sustain a benefit for a greater 

spectrum of supports.  The actual seconds for QuICL Oid-Less’ Purge is slightly less than 

QuICL Oid-Full on Mushroom, Chess, Pumsb, and Pumsb* data sets, and slightly more 

on T10I4D100k, T25I10D10k, and T25I20D100K data sets.  The portion of time spent in 

Purge is less due to additional time consumed elsewhere.  An additional time component 

incurred by QuICL Oid-Less is the time to process iced concepts.  The Iceberg time 

accounts for around 30% at high supports but drops as the support is lowered.  At 

0.0%supp the Iceberg time is zero since there are no iced concepts.  The actual seconds for 

Superset Link time is about the same as QuICL Oid-Full.  The actual seconds for 

Intersect Link and Other vary since the QuICL Oid-Less algorithm involves additional 

adjustments to information retained in the concepts (e.g., dependent and support concept 

lists, support, etc.).  Overall, the QuICL Oid-Less algorithm provides gain at high 

supports and suffers a loss as the support is lowered.  For data sets that contain items 

having large object sets the gain turns into a loss at significantly lower supports. 
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Min 

Supp |L| Insert Prep Purge Superset 
Link 

Intersect 
Link Other 

M
us

hr
oo

m
 10% 4,897 0.46 78% 0.36 17% 0.08 0% 0.00 2% 0.01 2% 0.01 

5% 12,854 0.88 70% 0.62 23% 0.20 0% 0.00 1% 0.01 6% 0.05 
1% 51,672 1.86 69% 1.28 24% 0.45 1% 0.02 3% 0.05 3% 0.06 
0% 238,709 3.30 65% 2.14 20% 0.67 2% 0.07 7% 0.22 6% 0.20 

C
he

ss
 

85% 1,885 0.12 75% 0.09 8% 0.01 0% 0.00 0% 0.00 17% 0.02 
75% 11,525 0.63 83% 0.52 11% 0.07 0% 0.00 2% 0.01 5% 0.03 
65% 49,240 2.50 80% 2.00 14% 0.36 1% 0.02 3% 0.07 2% 0.05 
55% 192,863 9.94 79% 7.87 17% 1.65 0% 0.04 2% 0.15 2% 0.23 

Pu
ms

b 90% 1,466 0.96 98% 0.94 1% 0.01 0% 0.00 0% 0.00 1% 0.01 
85% 8,513 5.30 99% 5.23 1% 0.05 0% 0.00 0% 0.00 0% 0.02 

P
um

sb
* 50% 248 0.23 96% 0.22 4% 0.01 0% 0.00 0% 0.00 0% 0.00 

40% 2,610 1.69 89% 1.50 9% 0.16 0% 0.00 0% 0.00 2% 0.03 
30% 16,154 9.53 84% 8.02 15% 1.46 0% 0.01 0% 0.01 0% 0.03 

T1
0I

4D
10

0k
 0.100% 26,806 4.85 99% 4.78 1% 0.03 0% 0.00 0% 0.01 1% 0.03 

0.050% 46,993 6.00 97% 5.79 2% 0.11 0% 0.01 0% 0.02 1% 0.07 
0.010% 283,397 15.86 85% 13.44 10% 1.62 0% 0.04 1% 0.12 4% 0.64 
0.005% 769,777 29.50 77% 22.75 16% 4.68 1% 0.24 2% 0.48 5% 1.35 
0.000% 2,347,374 95.99 58% 55.72 31% 29.32 2% 1.78 2% 2.18 7% 6.99 

T2
5I

10
D

10
k 

0.30% 44,925 1.93 95% 1.83 2% 0.04 1% 0.01 2% 0.03 1% 0.02 
0.10% 209,436 8.61 77% 6.66 15% 1.32 0% 0.02 2% 0.14 5% 0.47 
0.05% 576,021 21.53 72% 15.59 19% 4.19 1% 0.22 1% 0.21 6% 1.32 
0.03% 1,438,054 43.22 68% 29.54 21% 9.11 1% 0.61 2% 0.77 7% 3.19 
0.00% 2,557,928 114.58 58% 66.55 32% 37.08 2% 2.31 2% 2.84 5% 5.80 

T2
5I

20
D

10
0k

 0.30% 72,640 44.19 99% 43.94 0% 0.11 0% 0.01 0% 0.04 0% 0.09 
0.10% 150,970 66.56 99% 66.04 0% 0.17 0% 0.02 0% 0.09 0% 0.24 
0.05% 212,765 72.88 99% 72.24 0% 0.32 0% 0.02 0% 0.09 0% 0.21 
0.03% 461,138 83.14 97% 80.49 2% 1.80 0% 0.11 0% 0.29 1% 0.45 
0.01% 3,519,933 226.18 80% 180.99 16% 35.96 1% 1.47 1% 2.16 2% 5.60 

Table 4.4: Timings of the main QuICL Oid-Full sections.  Insert is the total seconds spent 
in the INSERT function.  Prep, Purge, Superset Link, Intersect Link is the time spent in 
the respective sections.  Other accounts for the remaining time spent in the INSERT 
function.  Prep, Purge, Superset Link, Intersect Link and Other are given as a percentage 
of Insert time with actual seconds subscripted. 
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Min 

Supp |L| Insert Prep Prep 
Navigate 

Prep 
Find 

Prep 
Create 

Find 
Link 

M
us

hr
oo

m
 10% 4,897 0.46 78% 0.36 0% 0.00 0% 0.00 78% 0.36 2% 0.01 

5% 12,854 0.88 70% 0.62 1% 0.01 2% 0.02 68% 0.60 3% 0.03 
1% 51,672 1.86 69% 1.28 0% 0.00 9% 0.17 59% 1.10 11% 0.20 
0% 238,709 3.30 65% 2.14 1% 0.02 17% 0.57 45% 1.50 21% 0.69 

C
he

ss
 

85% 1,885 0.12 75% 0.09 0% 0.00 0% 0.00 75% 0.09 0% 0.00 
75% 11,525 0.63 83% 0.52 0% 0.00 2% 0.01 83% 0.52 3% 0.02 
65% 49,240 2.50 80% 2.00 0% 0.00 2% 0.04 78% 1.95 3% 0.08 
55% 192,863 9.94 79% 7.87 0% 0.00 3% 0.32 76% 7.51 4% 0.40 

Pu
ms

b 90% 1,466 0.96 98% 0.94 0% 0.00 1% 0.01 97% 0.93 1% 0.01 
85% 8,513 5.30 99% 5.23 0% 0.00 0% 0.02 98% 5.22 0% 0.02 

P
um

sb
* 50% 248 0.23 96% 0.22 0% 0.00 0% 0.00 96% 0.22 0% 0.00 

40% 2,610 1.69 89% 1.50 0% 0.00 0% 0.00 89% 1.50 0% 0.00 
30% 16,154 9.53 84% 8.02 0% 0.00 0% 0.04 84% 7.98 1% 0.05 

T1
0I

4D
10

0k
 0.100% 26,806 4.85 99% 4.78 0% 0.00 0% 0.01 98% 4.77 0% 0.02 

0.050% 46,993 6.00 97% 5.79 0% 0.00 1% 0.04 96% 5.75 1% 0.05 
0.010% 283,397 15.86 85% 13.44 0% 0.01 2% 0.29 83% 13.13 2% 0.36 
0.005% 769,777 29.50 77% 22.75 1% 0.32 4% 1.29 71% 21.08 6% 1.69 
0.000% 2,347,374 95.99 58% 55.72 2% 2.05 9% 8.28 47% 45.12 11% 10.40 

T2
5I

10
D

10
k 

0.30% 44,925 1.93 95% 1.83 0% 0.00 2% 0.04 92% 1.78 3% 0.06 
0.10% 209,436 8.61 77% 6.66 0% 0.00 1% 0.09 76% 6.56 2% 0.16 
0.05% 576,021 21.53 72% 15.59 1% 0.12 3% 0.74 68% 14.69 4% 0.91 
0.03% 1,438,054 43.22 68% 29.54 1% 0.49 5% 2.18 62% 26.75 7% 2.81 
0.00% 2,557,928 114.58 58% 66.55 3% 3.52 8% 9.69 46% 53.01 11% 12.87 

T2
5I

20
D

10
0k

 0.30% 72,640 44.19 99% 43.94 0% 0.00 1% 0.23 99% 43.70 1% 0.25 
0.10% 150,970 66.56 99% 66.04 0% 0.00 0% 0.30 99% 65.72 1% 0.35 
0.05% 212,765 72.88 99% 72.24 0% 0.00 1% 0.40 99% 71.82 1% 0.45 
0.03% 461,138 83.14 97% 80.49 0% 0.02 1% 0.81 96% 79.61 1% 0.97 
0.01% 3,519,933 226.18 80% 180.99 0% 1.03 2% 5.24 77% 174.37 3% 6.84 

Table 4.5: Additional timings of QuICL Oid-Full sections.  Insert is the total seconds 
spent in the INSERT function.  Prep, Prep Navigate, Prep Link, Prep Create, and Find 
Link are given as a percentage of Insert time with actual seconds subscripted. 
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Min 

Supp |L| Insert Prep Purge Superset 
Link 

Intersect 
Link Other 

M
us

hr
oo

m
 10% 4,897 0.44 70% 0.31 23% 0.10 2% 0.01 0% 0.00 5% 0.02 

5% 12,854 0.87 70% 0.61 24% 0.21 0% 0.00 2% 0.02 3% 0.03 
1% 51,672 2.06 65% 1.33 28% 0.57 1% 0.02 3% 0.06 4% 0.08 
0% 238,709 4.51 64% 2.90 20% 0.88 2% 0.08 3% 0.14 11% 0.51 

C
he

ss
 

85% 1,885 0.10 80% 0.08 10% 0.01 0% 0.00 0% 0.00 10% 0.01 
75% 11,525 0.58 74% 0.43 17% 0.10 0% 0.00 0% 0.00 9% 0.05 
65% 49,240 2.58 77% 1.98 18% 0.47 0% 0.01 2% 0.04 3% 0.08 
55% 192,863 10.25 70% 7.19 24% 2.43 0% 0.05 2% 0.16 4% 0.42 
45% 707,964 38.75 65% 25.11 27% 10.34 1% 0.24 2% 0.60 6% 2.46 

Pu
ms

b 90% 1,466 0.89 98% 0.87 2% 0.02 0% 0.00 0% 0.00 0% 0.00 
85% 8,513 4.97 98% 4.86 2% 0.09 0% 0.01 0% 0.01 0% 0.00 

P
um

sb
* 50% 248 0.22 86% 0.19 9% 0.02 0% 0.00 0% 0.00 5% 0.01 

40% 2,610 1.72 83% 1.43 16% 0.28 0% 0.00 0% 0.00 1% 0.01 
30% 16,154 3.71 80% 2.98 19% 0.70 0% 0.01 0% 0.01 0% 0.01 

T1
0I

4D
10

0k
 0.100% 26,806 5.06 98% 4.97 1% 0.03 0% 0.00 0% 0.01 1% 0.05 

0.050% 46,993 6.23 96% 5.98 2% 0.13 0% 0.01 0% 0.02 1% 0.09 
0.010% 283,397 20.87 85% 17.66 9% 1.97 0% 0.04 2% 0.40 4% 0.80 
0.005% 769,777 44.72 80% 35.80 13% 5.89 1% 0.25 1% 0.35 5% 2.43 
0.000% 2,347,374 150.97 68% 103.35 24% 36.72 1% 1.73 1% 2.13 5% 7.04 

T2
5I

10
D

10
k 

0.30% 44,925 2.22 93% 2.07 2% 0.04 1% 0.02 1% 0.02 3% 0.07 
0.10% 209,436 13.54 82% 11.13 13% 1.70 0% 0.06 1% 0.07 4% 0.58 
0.05% 576,021 39.01 80% 31.28 13% 5.11 1% 0.23 1% 0.20 6% 2.19 
0.03% 1,438,054 87.50 78% 68.61 14% 12.26 1% 0.62 1% 0.70 6% 5.31 
0.00% 2,557,928 181.21 66% 120.16 25% 45.19 1% 2.44 2% 3.06 6% 10.36 

T2
5I

20
D

10
0k

 0.30% 72,640 45.79 99% 45.31 0% 0.15 0% 0.01 0% 0.04 1% 0.28 
0.10% 150,970 69.25 99% 68.51 0% 0.22 0% 0.06 0% 0.12 0% 0.34 
0.05% 212,765 76.34 98% 75.16 1% 0.46 0% 0.24 0% 0.10 0% 0.38 
0.03% 461,138 89.81 96% 85.96 2% 2.22 0% 0.11 0% 0.22 1% 1.30 
0.01% 3,519,933 365.21 83% 304.58 12% 45.52 0% 1.58 1% 2.25 3% 11.28 

Table 4.6: Timings of the main QuICL Oid-Trie sections.  Insert is the total seconds spent 
in the INSERT function.  Prep, Purge, Superset Link, Intersect Link is the time spent in 
the respective sections.  Other accounts for the remaining time spent in the INSERT 
function.  Prep, Purge, Superset Link, Intersect Link and Other are given as a percentage 
of Insert time with actual seconds subscripted. 
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Min 

Supp |L| Insert Prep Prep 
Navigate 

Prep 
Find 

Prep 
Create 

Find 
Link 

M
us

hr
oo

m
 10% 4,897 0.44 70% 0.31 0% 0.00 0% 0.00 70% 0.31 0% 0.00 

5% 12,854 0.87 70% 0.61 0% 0.00 0% 0.00 70% 0.61 1% 0.01 
1% 51,672 2.06 65% 1.33 0% 0.00 1% 0.02 63% 1.30 2% 0.05 
0% 238,709 4.51 64% 2.90 0% 0.00 3% 0.12 61% 2.76 4% 0.19 

C
he

ss
 

85% 1,885 0.10 80% 0.08 0% 0.00 0% 0.00 80% 0.08 0% 0.00 
75% 11,525 0.58 74% 0.43 0% 0.00 0% 0.00 74% 0.43 0% 0.00 
65% 49,240 2.58 77% 1.98 0% 0.00 2% 0.04 75% 1.93 2% 0.06 
55% 192,863 10.25 70% 7.19 0% 0.00 2% 0.19 68% 6.97 3% 0.27 
45% 707,964 38.75 65% 25.11 0% 0.00 2% 0.93 62% 24.05 3% 1.23 

Pu
ms

b 90% 1,466 0.89 98% 0.87 0% 0.00 0% 0.00 97% 0.86 0% 0.00 
85% 8,513 4.97 98% 4.86 0% 0.00 0% 0.01 98% 4.85 0% 0.02 

P
um

sb
* 50% 248 0.22 86% 0.19 0% 0.00 0% 0.00 86% 0.19 0% 0.00 

40% 2,610 1.72 83% 1.43 0% 0.00 0% 0.00 83% 1.43 0% 0.00 
30% 16,154 3.71 80% 2.98 0% 0.00 0% 0.01 80% 2.97 1% 0.02 

T1
0I

4D
10

0k
 0.100% 26,806 5.06 98% 4.97 0% 0.00 0% 0.00 98% 4.96 0% 0.01 

0.050% 46,993 6.23 96% 5.98 0% 0.00 0% 0.00 96% 5.97 0% 0.01 
0.010% 283,397 20.87 85% 17.66 0% 0.01 0% 0.07 84% 17.56 1% 0.28 
0.005% 769,777 44.72 80% 35.80 0% 0.11 0% 0.19 79% 35.45 1% 0.42 
0.000% 2,347,374 150.97 68% 103.35 0% 0.24 1% 1.81 67% 101.11 2% 3.00 

T2
5I

10
D

10
k 

0.30% 44,925 2.22 93% 2.07 0% 0.00 0% 0.00 93% 2.07 0% 0.01 
0.10% 209,436 13.54 82% 11.13 0% 0.00 0% 0.02 82% 11.09 0% 0.06 
0.05% 576,021 39.01 80% 31.28 0% 0.03 0% 0.11 80% 31.10 1% 0.23 
0.03% 1,438,054 87.50 78% 68.61 0% 0.31 1% 0.53 77% 67.67 1% 1.04 
0.00% 2,557,928 181.21 66% 120.16 0% 0.48 1% 1.97 65% 117.44 2% 3.74 

T2
5I

20
D

10
0k

 0.30% 72,640 45.79 99% 45.31 0% 0.00 0% 0.02 99% 45.29 0% 0.04 
0.10% 150,970 69.25 99% 68.51 0% 0.00 0% 0.04 99% 68.46 0% 0.10 
0.05% 212,765 76.34 98% 75.16 0% 0.00 0% 0.05 98% 75.08 0% 0.10 
0.03% 461,138 89.81 96% 85.96 0% 0.01 0% 0.13 96% 85.78 0% 0.25 
0.01% 3,519,933 365.21 83% 304.58 0% 0.62 0% 1.28 83% 302.44 1% 2.72 

Table 4.7: Additional timings of QuICL Oid-Trie sections.  Insert is the total seconds 
spent in the INSERT function.  Prep, Prep Navigate, Prep Link, Prep Create, and Find 
Link are given as a percentage of Insert time with actual seconds subscripted. 
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Min 

Supp |L| Insert Prep Purge Iceberg Superset 
Link 

Intersect 
Link Other 

M
us

hr
oo

m
 10% 4,897 0.60 57% 0.34 3% 0.02 28% 0.17 0% 0.00 0% 0.00 12% 0.07 

5% 12,854 1.95 78% 1.52 2% 0.03 16% 0.31 0% 0.00 1% 0.01 4% 0.08 
1% 51,672 5.61 87% 4.86 2% 0.13 7% 0.38 0% 0.01 1% 0.06 3% 0.17 
0% 238,709 10.70 84% 9.02 3% 0.32 0% 0.05 1% 0.07 2% 0.22 10% 1.02 

C
he

ss
 

85% 74 0.04 25% 0.01 0% 0.00 25% 0.01 0% 0.00 25% 0.01 25% 0.01 
75% 1,885 0.38 63% 0.24 3% 0.01 13% 0.05 0% 0.00 0% 0.00 21% 0.08 
65% 11,525 3.68 81% 2.98 3% 0.11 8% 0.29 0% 0.01 1% 0.04 7% 0.25 
55% 49,240 34.36 87% 29.77 2% 0.82 8% 2.72 0% 0.06 1% 0.22 2% 0.77 
45% 192,863 231.60 89% 205.35 3% 5.90 5% 11.96 0% 0.21 0% 1.14 3% 7.04 

P
um

sb
 

90% 1,466 0.13 46% 0.06 0% 0.00 31% 0.04 0% 0.00 8% 0.01 15% 0.02 
80% 33,295 2.36 74% 1.74 3% 0.06 9% 0.21 0% 0.00 2% 0.04 13% 0.31 
70% 241,258 21.65 69% 14.89 3% 0.61 19% 4.01 0% 0.07 2% 0.37 8% 1.70 
60% 1,074,627 271.26 75% 202.63 2% 4.25 16% 42.95 0% 0.50 1% 1.88 7% 19.05 

P
um

sb
* 50% 248 0.12 25% 0.03 0% 0.00 58% 0.07 0% 0.00 0% 0.00 17% 0.02 

40% 2,610 1.80 71% 1.27 4% 0.07 18% 0.33 0% 0.00 0% 0.00 7% 0.13 
30% 16,154 22.41 87% 19.56 3% 0.72 5% 1.16 0% 0.00 0% 0.01 4% 0.96 

T1
0I

4D
10

0k
 0.100% 26,806 3.48 53% 1.83 1% 0.03 32% 1.11 0% 0.01 1% 0.02 14% 0.48 

0.050% 46,993 6.60 68% 4.48 2% 0.13 23% 1.50 0% 0.02 1% 0.04 7% 0.43 
0.010% 283,397 45.05 86% 38.52 5% 2.20 5% 2.41 0% 0.05 1% 0.23 4% 1.64 
0.005% 769,777 96.73 87% 84.62 6% 6.08 3% 3.38 0% 0.24 1% 0.54 2% 1.87 
0.000% 2,347,374 283.28 85% 239.56 12% 32.82 0% 0.94 1% 1.89 1% 3.62 2% 4.45 

T2
5I

10
D

10
k 

0.30% 44,925 1.67 62% 1.04 3% 0.05 19% 0.31 1% 0.02 2% 0.04 13% 0.21 
0.10% 209,436 28.35 89% 25.10 6% 1.57 3% 0.76 0% 0.04 0% 0.11 3% 0.77 
0.05% 576,021 87.99 90% 78.98 5% 4.78 1% 1.27 0% 0.12 0% 0.31 3% 2.53 
0.03% 1,438,054 180.65 90% 162.45 6% 10.63 1% 2.25 0% 0.65 1% 0.94 2% 3.73 
0.00% 2,557,928 462.36 88% 408.33 8% 38.81 0% 1.32 1% 2.96 1% 4.29 1% 6.65 

T2
5I

20
D

10
0k

 0.30% 72,640 11.34 64% 7.27 1% 0.12 23% 2.64 0% 0.01 1% 0.07 11% 1.23 
0.10% 150,970 17.59 68% 11.95 1% 0.23 15% 2.68 0% 0.02 1% 0.16 14% 2.55 
0.05% 212,765 21.65 72% 15.52 2% 0.45 15% 3.33 0% 0.05 1% 0.14 10% 2.16 
0.03% 461,138 45.30 77% 34.94 5% 2.36 10% 4.42 0% 0.09 1% 0.43 7% 3.06 
0.01% 3,519,933 526.15 85% 447.88 9% 47.66 2% 12.77 0% 1.27 1% 2.88 3% 13.69 

Table 4.8: Timings of the main QuICL Oid-Less sections.  Insert is the total seconds 
spent in the INSERT function.  Prep, Purge, Superset Link, Intersect Link is the time 
spent in the respective sections.  Other accounts for the remaining time spent in the 
INSERT function.  Prep, Purge, Superset Link, Intersect Link and Other are given as a 
percentage of Insert time with actual seconds subscripted. 
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Min 

Supp |L| Insert Prep Prep 
Navigate 

Prep 
Find 

Prep 
Create 

Find 
Link 

M
us

hr
oo

m
 10% 4,897 0.60 57% 0.34 2% 0.01 5% 0.03 50% 0.30 6% 0.04 

5% 12,854 1.95 78% 1.52 7% 0.14 6% 0.11 65% 1.27 9% 0.18 
1% 51,672 5.61 87% 4.86 6% 0.31 7% 0.40 74% 4.14 10% 0.59 
0% 238,709 10.70 84% 9.02 4% 0.44 13% 1.40 67% 7.15 16% 1.73 

C
he

ss
 

85% 74 0.04 26% 0.01 0% 0.00 0% 0.00 26% 0.01 13% 0.01 
75% 1,885 0.38 64% 0.24 0% 0.00 20% 0.08 44% 0.17 20% 0.08 
65% 11,525 3.68 81% 2.98 0% 0.00 11% 0.40 70% 2.57 11% 0.42 
55% 49,240 34.36 87% 29.77 0% 0.00 7% 2.43 79% 27.31 7% 2.54 
45% 192,863 231.60 89% 205.35 0% 0.37 6% 14.84 82% 190.02 7% 15.60 

P
um

sb
 

90% 1,466 0.13 45% 0.06 0% 0.00 12% 0.02 32% 0.04 16% 0.02 
80% 33,295 2.36 74% 1.74 0% 0.01 13% 0.31 60% 1.42 14% 0.33 
70% 241,258 21.65 69% 14.89 0% 0.01 13% 2.80 56% 12.03 14% 2.99 
60% 1,074,627 271.26 75% 202.63 0% 0.57 11% 30.83 63% 170.99 12% 32.06 

P
um

sb
* 50% 248 0.12 21% 0.03 0% 0.00 0% 0.00 21% 0.03 0% 0.00 

40% 2,610 1.80 71% 1.27 6% 0.11 1% 0.01 64% 1.15 4% 0.07 
30% 16,154 22.41 87% 19.56 1% 0.24 0% 0.11 86% 19.21 1% 0.24 

T1
0I

4D
10

0k
 0.100% 26,806 3.48 53% 1.83 0% 0.00 3% 0.11 49% 1.72 3% 0.12 

0.050% 46,993 6.60 68% 4.48 0% 0.00 2% 0.12 66% 4.36 2% 0.14 
0.010% 283,397 45.05 85% 38.52 0% 0.05 1% 0.45 84% 38.00 1% 0.59 
0.005% 769,777 96.73 87% 84.62 0% 0.33 2% 2.09 85% 82.14 3% 2.53 
0.000% 2,347,374 283.28 85% 239.56 1% 3.17 19% 54.91 64% 181.21 21% 58.30 

T2
5I

10
D

10
k 

0.30% 44,925 1.67 62% 1.04 0% 0.00 5% 0.09 57% 0.95 7% 0.11 
0.10% 209,436 28.35 89% 25.10 0% 0.03 1% 0.16 88% 24.91 1% 0.23 
0.05% 576,021 87.99 90% 78.98 0% 0.31 1% 1.09 88% 77.53 2% 1.40 
0.03% 1,438,054 180.65 90% 162.45 1% 1.07 2% 4.40 87% 156.89 3% 5.41 
0.00% 2,557,928 462.36 88% 408.33 1% 6.14 47% 218.91 40% 182.99 48% 224.13 

T2
5I

20
D

10
0k

 0.30% 72,640 11.34 64% 7.27 0% 0.00 3% 0.35 61% 6.92 3% 0.38 
0.10% 150,970 17.59 68% 11.95 0% 0.00 3% 0.46 65% 11.47 3% 0.54 
0.05% 212,765 21.65 72% 15.52 0% 0.00 5% 1.09 67% 14.41 5% 1.16 
0.03% 461,138 45.30 77% 34.94 0% 0.03 4% 1.91 73% 32.96 5% 2.14 
0.01% 3,519,933 526.15 85% 447.88 1% 4.32 2% 11.44 82% 431.86 3% 15.04 

 Table 4.9: Additional timings of QuICL Oid-Less sections.  Insert is the total seconds 
spent in the INSERT function.  Prep, Prep Navigate, Prep Link, Prep Create, and Find 
Link are given as a percentage of Insert time with actual seconds subscripted. 
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4.8 Empirical Evidence to Support Asymptotic Complexity Analysis 

To provide empirical evidence in support of the asymptotic complexity analysis, 

the QuICL Oid-Full algorithm was separately instrumented to report |L|, degavg(L), 

number of intersections performed, and the number of iterations in the innermost loop of 

the intersection function.  Applying these values in the formulas expressed in the runtime 

complexity will result in a calculated time that can be compared against the actual 

timings reported by the instrumented QuICL Oid-Full algorithm of Section 4.7.  Any 

correlations found between the calculated times and actual times provide evidence 

supporting the runtime complexity. 

For QuICL Oid-Full, the dominant term affecting runtime complexity is time to 

execute the prepare-search phase to identify and add entries to the ToProcessList.  

However, the time to purge subset entries is also significant.  These times are reported by 

the instrumented QuICL Oid-Full as Prep Create and Purge, respectively.  Furthermore, 

the runtime complexity of each is O(l d i) and O(l d2 c), where l = |L|, d = degavg(L), i is a 

density weighted mean on the cardinality of frequent item extents, and c is a small 

fraction of |O| depending density.  Table 4.10 presents empirical evidence in support of 

these complexities.  Abs Supp is the absolute support derived by |O| × Min Supp.  Factor i 

must be ≥ Abs Supp.  Avg Inter is an attempt to represent factor i.  It is the average cost 

of intersection derived by number of iterations in the innermost loop / number of 

intersections.  This value is indeed ≥ Abs Supp, is less than the cardinality of the 

maximum object id set, and appears to skew towards Abs Supp depending on density.  

Avg Deg is the average degree of the lattice.  Prep Create C is a constant used to derive 

Prep Create Calc time.  This value represents a constant unit of work incurred by the 
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algorithm.  Prep Create Calc is the calculated time.  Its value = |L| × Avg Inter × Avg Deg 

× Prep Create C.  Prep Create Actual is the Prep Create time reported by the instrumented 

QuICL Oid-Full algorithm.  Purge C is a constant used to derive Purge Calc time.  In this 

case Purge C represents both a constant unit of work incurred by the algorithm and factor 

c.  Thus, Purge Calc = |L| × (Avg Deg)2 × Purge C.  Purge Actual is the Purge time 

reported by the instrumented QuICL Oid-Full algorithm.  Prep Create C and Purge C 

were adjusted for each data set, until the calculated times are near the reported actual 

times. 

For most data sets, a Purge C constant could be found such that the calculated 

times are well correlated to the actual times.  This indicates the purge time is indeed 

O(l d2 c).  The T25I20D100k is the only exception.  Here the actual times indicate either 

a greater complexity or the use of average degree in place of |I| is not a good fit.  

Alternative means such as quadratic (i.e., RMS) or average of averages at each level in 

the lattice were substituted, but did not offer better correlations. 

For dense data sets a Prep Create C could be found such that the calculated times 

are well correlated to the actual times.  This indicates that the prepare-search time is 

indeed O(l d i).  However, on sparse data sets a Prep Create C could not be found.  In 

these data sets the actual times have a greater growth rate than O(l d i).  This does not 

necessarily disprove an O(l d i).  Simply, the value for i derived by number of iterations 

in the innermost loop / number of intersections is not a good mean function.  On sparse 

data sets, the Avg Inters drops too quickly as the support is lowered.  The discrepancy 

between dense and sparse data does indicate that density is a factor in computing the 

mean.  Also, use of average degree in place of |I| may not be the good fit.
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Min 
Supp |L| Abs 

Supp 
Avg 
Inter 

Avg 
Deg 

Prep Create Purge 

C Calc Actual C Calc Actual 
M

us
hr

oo
m

 
50% 45 4,062 7,232 1.98 5E-09 0.00 0.02 1E-07 0.00 0.00 
40% 140 3,250 6,390 2.33 5E-09 0.01 0.03 1E-07 0.00 0.00 

30% 427 2,437 5,100 3.00 5E-09 0.03 0.05 1E-07 0.00 0.01 
20% 1,197 1,625 3,950 3.32 5E-09 0.08 0.12 1E-07 0.00 0.02 
10% 4,897 812 2,611 3.84 5E-09 0.25 0.34 1E-07 0.01 0.07 

5% 12,854 406 1,748 4.17 5E-09 0.47 0.63 1E-07 0.02 0.19 
1% 51,672 203 774 4.75 5E-09 0.95 1.15 1E-07 0.12 0.47 

0% 238,709 0 263 5.71 5E-09 1.80 1.65 1E-07 0.78 0.67 

C
he

ss
 

95% 74 3,036 3,169 2.68 2.5E-09 0.00 0.01 2E-07 0.00 0.00 
90% 503 2,876 3,093 3.64 2.5E-09 0.01 0.05 2E-07 0.00 0.00 

85% 1,885 2,717 2,992 4.40 2.5E-09 0.06 0.10 2E-07 0.01 0.00 
80% 5,083 2,557 2,894 5.03 2.5E-09 0.19 0.23 2E-07 0.03 0.03 
75% 11,525 2,397 2,804 5.49 2.5E-09 0.44 0.54 2E-07 0.07 0.06 

70% 23,991 2,237 2,712 5.84 2.5E-09 0.95 1.05 2E-07 0.16 0.13 
65% 49,240 2,077 2,607 6.17 2.5E-09 1.98 1.98 2E-07 0.38 0.36 

60% 98,392 1,918 2,490 6.51 2.5E-09 3.99 4.23 2E-07 0.84 0.75 
55% 192,863 1,758 2,361 6.85 2.5E-09 7.80 7.52 2E-07 1.81 1.69 

P
um

sb
 95% 110 46,594 48,525 2.54 2.5E-09 0.03 0.10 1E-07 0.00 0.00 

90% 1,466 44,141 47,035 4.02 2.5E-09 0.69 0.94 1E-07 0.00 0.00 
85% 8,513 41,689 45,455 5.17 2.5E-09 5.00 5.23 1E-07 0.02 0.03 

P
um

sb
* 

50% 248 24,523 35,780 2.83 5E-09 0.13 0.24 3E-06 0.01 0.01 

45% 713 22,071 31,836 3.38 5E-09 0.38 0.63 3E-06 0.02 0.02 
40% 2,610 19,618 27,614 4.23 5E-09 1.52 1.51 3E-06 0.14 0.16 

35% 6,133 17,166 24,987 4.69 5E-09 3.60 3.16 3E-06 0.41 0.45 
30% 16,154 14,714 22,221 5.14 5E-09 9.22 8.13 3E-06 1.28 1.45 

Table 4.10: Empirical evidence of asymptotic runtime analysis.  Abs Supp = |O| × Min 
Supp.  Avg Inter = number of iterations in the innermost loop / number of intersections.  
Avg Deg is the average degree of the lattice.  Prep Create C is a constant used to derive 
Prep Create Calc time.  Prep Create Calc = |L| × Avg Inter × Avg Deg × Prep Create C.  
Prep Create Actual is the Prep Create time reported by the instrumented QuICL Oid-Full.  
Purge C is a constant used to derive Purge Calc time.  Purge Calc = |L| × (Avg Deg)2 × 
Purge C.  Purge Actual is the Purge time reported by the instrumented QuICL Oid-Full.  



225 

 

 

  

Min 
Supp |L| Abs 

Supp 
Inter 
Avg 

Avg 
Deg 

Prep Create Purge 

C Calc Actual C Calc Actual 
T1

0I
4D

10
0k

 
2.000% 155 2,000 6,128 1.00 5E-08 0.05 0.47 7E-07 0.00 0.00 

1.000% 385 1,000 4,196 1.03 5E-08 0.08 1.75 7E-07 0.00 0.00 

0.500% 1,073 500 3,253 1.68 5E-08 0.29 2.97 7E-07 0.00 0.00 

0.300% 4,509 300 2,739 2.57 5E-08 1.58 3.71 7E-07 0.02 0.00 

0.100% 26,806 100 1,761 3.27 5E-08 7.71 4.86 7E-07 0.20 0.02 

0.050% 46,993 50 960 3.10 5E-08 6.99 5.90 7E-07 0.32 0.10 

0.030% 71,265 30 518 2.88 5E-08 5.32 7.15 7E-07 0.41 0.27 

0.010% 283,397 10 142 2.81 5E-08 5.66 14.04 7E-07 1.57 1.54 

0.005% 769,777 5 72 3.00 5E-08 8.31 23.36 7E-07 4.84 4.78 

0.000% 2,347,374 0 33 4.29 5E-08 16.51 51.83 7E-07 30.21 29.29 

T2
5I

10
D

10
k 

5.00% 72 461 1,055 1.00 5E-08 0.00 0.02 7E-07 0.00 0.00 

3.00% 389 277 755 1.00 5E-08 0.01 0.39 7E-07 0.00 0.00 

1.00% 5,582 92 531 3.58 5E-08 0.53 1.45 7E-07 0.05 0.01 

0.50% 23,394 46 468 3.68 5E-08 2.02 1.64 7E-07 0.22 0.01 

0.30% 44,925 28 366 3.59 5E-08 2.95 1.79 7E-07 0.40 0.03 

0.10% 209,436 9 46 2.63 5E-08 1.27 7.67 7E-07 1.02 1.34 

0.05% 576,021 5 26 2.74 5E-08 2.04 18.11 7E-07 3.02 4.13 

0.03% 1,438,054 3 18 3.01 5E-08 3.91 32.73 7E-07 9.12 9.26 

0.00% 2,557,928 0 14 4.30 5E-08 7.88 63.06 7E-07 33.07 36.76 

T2
5I

20
D

10
0k

 

3.00% 19 3,000 6,787 1.00 5E-08 0.01 0.01 7E-07 0.00 0.00 

2.00% 143 2,000 4,823 1.10 5E-08 0.04 0.25 7E-07 0.00 0.00 

1.00% 5,256 1,000 3,000 3.53 5E-08 2.78 6.22 7E-07 0.05 0.00 

0.50% 27,067 500 2,000 4.09 5E-08 11.06 27.92 7E-07 0.32 0.02 

0.30% 72,640 300 1,636 4.74 5E-08 28.18 45.27 7E-07 1.14 0.10 

0.10% 150,970 100 1,254 4.64 5E-08 43.94 67.32 7E-07 2.28 0.16 

0.05% 212,765 50 1,122 4.51 5E-08 53.77 73.62 7E-07 3.02 0.30 

0.03% 461,138 30 766 4.14 5E-08 73.11 81.74 7E-07 5.53 1.72 

0.01% 3,519,933 10 108 3.67 5E-08 69.96 190.44 7E-07 33.22 35.72 

Table 4.10 continued: Empirical evidence of asymptotic runtime analysis.   
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4.9 Performance Analysis of the GMA Algorithm 

To gain an understanding of time spent within the GMA algorithm and to provide 

empirical evidence for rationale concerning its runtime behavior, GMA was separately 

instrumented to time key sections of its ADD function (Algorithm 3.1).  The ADD 

function performs the incremental insertion of the next item.  Instrumentation includes: 

i) Add – total time spent in the ADD function, 

ii) Sort – time to sort concepts prior to iteration (line 14), 

iii) Intersect – time spent performing intersections (line 21, also determines 
outcome of comparison for lines 15 and 18), 

iv) Generator Test – time spent checking that a potential generator is indeed a 
generator (loop expressed by the ∀ of line 23), and  

v) Link – time to find parents and link new concepts into the lattice (lines 27 
through 36). 

The results from executing the instrumented GMA algorithm against all 

benchmark data sets for relevant subset of supports are given in Table 4.11 (ascending 

support order) and Table 4.12 (descending support order).  Column Add is the total 

seconds spent in the ADD function.  Columns Sort, Intersect, Generator Test, and Link 

show the time spent executing respective sections of the ADD function.  Other accounts 

for the remaining time spent in the ADD function.  Sort, Intersect, Generator Test, Link, 

and Other are given as a percentage of Add time with actual seconds subscripted. 

For GMA, considerable amount of time is consumed searching for parents and 

linking new concepts into the lattice.  On dense data sets using descending order, the time 

to link parents is the dominant term ranging between 50% and 96% of the total time43

                                                
43 Pumsb* at 50%supp is an exception. 

.  

Furthermore, use of ascending order greatly exacerbates the Link time, up to 29 times 
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more (e.g., Mushroom at 0.0%supp) resulting in the Link time exceeding 90% of the total 

time in all cases.  On sparse data set using descending order, the Link time is generally 

limited to a small percentage value44

Beyond the Link time, the time to perform intersections is next major consumer.  

It is generally the dominant term of the runtime complexity on sparse data sets ranging 

between 61% to 89% when using ascending order, and 62% to 90% when using 

descending order.  The only exceptions are T10I4D100k at 0.0% supp, T25I10D10k at 

0.03% supp and 0.0% supp, and T25I20D100k at 0.01%supp on ascending order; and 

T25I10D10k at 0.0% supp on descending order.  In these test cases, the Generator Test 

time is significant and has an impact on the total time.  On dense data sets, the Intersect 

time is between 0% and 25% when using ascending order, and 4% to 56% when using 

descending order.  In most cases

.  For ascending order, the Link time ranges from 4% 

to 52% of the total time with the higher percents generally encountered at lower supports.  

For all data sets, the actual seconds for link time is greater on ascending order. 

45

                                                
44 14% on T10I4D100k at 0.0%supp and 21% on T25I10D10k at 0.0%supp are a couple of exceptions. 
45 Mushroom at 0.0%supp is the only exception. 

, the actual seconds for Intersect is more on descending 

order, up to seven times (e.g., Chess at less than 75%supp).  This is reflective of the fact 

that insertion in descending order will result in more intersections. 

In general, the Generator Test time has a small percentage value, except in the 

cases previously mentioned.  In such cases, the time consumed for Generator Test is 

exacerbated by ascending order.  In general, time spent on sorting concepts is negligible, 

but might exceed 10% of the overall execution time in a few cases (e.g., T25I10D10k at 

0.1%supp and 0.05%supp in ascending order and all supports in descending order).  Here the 

sorting time is exacerbated by descending order. 



228 

 

 

 
Min 

Supp |L| Add Sort Intersect Generator 
Test Link Other 

M
us

hr
oo

m
 10% 4,897 9.43 0% 0.00 9% 0.89 0% 0.01 90% 8.48 1% 0.05 

5% 12,854 37.44 0% 0.02 6% 2.29 0% 0.06 93% 34.91 0% 0.16 
1% 51,672 369.67 0% 0.08 2% 8.70 0% 0.72 97% 359.40 0% 0.77 
0% 238,709 5,254.37 0% 0.70 1% 38.11 1% 38.67 99% 5176.76 0% 0.13 

C
he

ss
 

85% 1,886 1.36 0% 0.00 4% 0.05 0% 0.00 95% 1.29 1% 0.02 
75% 11,526 25.51 0% 0.01 1% 0.30 0% 0.02 98% 25.11 0% 0.07 
65% 49,241 315.32 0% 0.03 0% 1.50 0% 0.26 99% 313.11 0% 0.42 
55% 192,864 3,794.69 0% 0.13 0% 6.82 0% 4.16 100% 3781.96 0% 1.62 

Pu
ms

b 90% 1,467 8.88 0% 0.00 7% 0.63 0% 0.01 91% 8.08 2% 0.16 
85% 8,514 104.24 0% 0.01 4% 3.67 0% 0.08 96% 99.94 1% 0.54 

P
um

sb
* 50% 249 1.27 0% 0.00 25% 0.32 0% 0.00 70% 0.89 5% 0.06 

40% 2,611 31.93 0% 0.01 10% 3.24 0% 0.01 89% 28.48 1% 0.19 
30% 16,155 457.21 0% 0.02 4% 17.19 0% 0.25 96% 439.01 0% 0.74 

T1
0I

4D
10

0k
 

0.100% 26,807 31.94 1% 0.36 89% 28.31 0% 0.00 6% 1.99 4% 1.28 
0.050% 46,994 50.00 1% 0.63 90% 44.90 0% 0.01 6% 3.04 3% 1.42 
0.010% 283,398 255.73 2% 4.79 84% 214.86 1% 1.83 13% 32.03 1% 2.22 
0.005% 769,778 819.77 2% 15.08 67% 545.45 4% 34.82 27% 219.93 1% 4.49 
0.000% 2,347,375 9,723.21 1% 67.25 16% 1508.63 32% 3087.01 52% 5043.36 0% 16.96 

T2
5I

10
D

10
k 

0.30% 44,926 15.89 6% 0.95 81% 12.94 0% 0.02 10% 1.60 2% 0.38 
0.10% 209,437 61.69 10% 5.98 77% 47.42 1% 0.35 11% 6.78 2% 1.16 
0.05% 576,022 203.48 10% 21.22 61% 123.91 7% 13.54 20% 41.53 2% 3.28 
0.03% 1,438,055 829.72 7% 56.12 32% 269.52 25% 206.92 35% 288.76 1% 8.40 
0.00% 2,557,929 5,066.23 2% 108.58 9% 453.26 46% 2319.62 43% 2162.48 0% 22.29 

T2
5I

20
D

10
0k

 0.30% 72,641 360.82 2% 5.73 89% 321.55 0% 0.06 8% 28.11 1% 5.37 
0.10% 150,971 831.99 3% 21.50 92% 763.89 0% 0.11 4% 37.43 1% 9.06 
0.05% 212,766 1,021.30 3% 30.43 92% 934.73 0% 0.16 4% 45.67 1% 10.31 
0.03% 461,139 1,314.02 3% 39.56 84% 1109.13 0% 2.94 12% 151.51 1% 10.88 
0.01% 3,519,934 10,809.01 2% 251.71 43% 4623.86 4% 441.33 50% 5452.81 0% 39.30 

Table 4.11: Timings of GMA algorithm sections using ascending order.  Add is the total 
seconds spent in the ADD function.  Sort, Intersect, Generator Test, and Link is the time 
spent in respective sections of the ADD function.  Other accounts for the remaining time 
spent in the ADD function.  Sort, Intersect, Generator Test, Link, and Other are given as 
a percentage of Add time with actual seconds subscripted. 
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Min 

Supp |L| Add Sort Intersect Generator 
Test Link Other 

M
us

hr
oo

m
 10% 4,897 4.98 1% 0.04 48% 2.41 0% 0.02 50% 2.51 0% 0.00 

5% 12,854 12.94 1% 0.09 42% 5.40 1% 0.11 57% 7.34 0% 0.00 
1% 51,672 50.46 1% 0.65 24% 12.36 1% 0.46 73% 36.66 1% 0.33 
0% 238,709 206.72 2% 3.50 11% 21.72 2% 4.31 86% 176.98 0% 0.21 

C
he

ss
 

85% 1,886 1.22 1% 0.01 15% 0.18 1% 0.01 81% 0.99 2% 0.03 
75% 11,526 18.61 0% 0.03 11% 2.02 0% 0.04 88% 16.43 0% 0.09 
65% 49,241 146.51 0% 0.15 7% 10.93 0% 0.27 92% 134.84 0% 0.32 
55% 192,864 1,247.66 0% 1.01 4% 49.79 0% 1.49 96% 1195.31 0% 0.06 

Pu
ms

b 90% 1,467 11.24 0% 0.01 32% 3.58 0% 0.00 68% 7.64 0% 0.01 
85% 8,514 114.78 0% 0.02 19% 22.35 0% 0.02 80% 91.71 1% 0.68 

P
um

sb
* 50% 249 1.45 0% 0.00 56% 0.81 0% 0.00 44% 0.64 0% 0.00 

40% 2,611 27.20 0% 0.02 42% 11.38 1% 0.15 58% 15.64 0% 0.01 
30% 16,155 270.79 0% 0.10 30% 80.38 0% 1.01 70% 189.14 0% 0.16 

T1
0I

4D
10

0k
 

0.100% 26,807 56.07 3% 1.96 91% 51.17 0% 0.01 2% 1.27 3% 1.66 
0.050% 46,994 91.31 5% 4.43 91% 83.21 0% 0.03 2% 1.69 2% 1.95 
0.010% 283,398 453.17 10% 44.59 86% 391.82 0% 0.31 2% 10.64 1% 5.81 
0.005% 769,778 1,132.01 12% 140.23 82% 929.01 0% 4.00 4% 46.01 1% 12.76 
0.000% 2,347,375 3,743.05 12% 441.53 62% 2317.73 12% 436.21 14% 506.44 1% 41.14 

T2
5I

10
D

10
k 

0.30% 44,926 30.59 12% 3.55 82% 25.02 0% 0.02 4% 1.28 2% 0.72 
0.10% 209,437 132.98 20% 26.24 75% 99.09 0% 0.12 3% 3.75 3% 3.78 
0.05% 576,022 339.38 24% 82.33 67% 227.33 1% 2.70 5% 17.20 3% 9.82 
0.03% 1,438,055 870.10 25% 218.59 57% 500.02 5% 47.37 9% 78.83 3% 25.29 
0.00% 2,557,929 2,277.33 18% 399.62 35% 801.83 25% 558.24 21% 467.04 2% 50.60 

T2
5I

20
D

10
0k

 0.30% 72,641 740.54 3% 23.08 92% 683.00 0% 0.09 4% 26.99 1% 7.38 
0.10% 150,971 1,383.49 5% 72.99 91% 1262.74 0% 0.12 2% 33.82 1% 13.82 
0.05% 212,766 1,960.86 7% 135.88 90% 1760.38 0% 0.17 2% 43.45 1% 20.98 
0.03% 461,139 4,547.71 9% 431.78 87% 3964.11 0% 0.93 2% 97.30 1% 53.59 
0.01% 3,519,934 30,885.52 26% 8024.57 69% 21456.19 0% 49.94 3% 1020.69 1% 334.13 

Table 4.12: Timings of GMA algorithm sections using descending order.  Add is the total 
seconds spent in the ADD function.  Sort, Intersect, Generator Test, and Link is the time 
spent in respective sections of the ADD function.  Other accounts for the remaining time 
spent in the ADD function.  Sort, Intersect, Generator Test, Link, and Other are given as 
a percentage of Add time with actual seconds subscripted. 
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4.10 Comparison of Intersections 

As a final comparison between algorithms, CHARM, GMA, QuICL Oid-Full, and 

QuICL Oid-Trie were instrumented to report the number of intersections performed 

during the construction of a lattice.  For GMA (Algorithm 3.1), the number of 

intersections is the number of times through the main loop of line 14.  Each time through 

the loop, one intersection is performed.  The result of intersection is used to determine the 

outcome of ⊆ at line 15, outcome of = at line 18, and the intersection set of line 21.  The 

number of intersections does not include any comparison tests involved with testing for 

generators or searching for parent concepts.  For QuICL Oid-Full (Algorithm 3.4), the 

number of intersections equals the number of times through the prepare-search loop of 

line 10.  Each time through the loop, one intersection is performed.  The result of 

intersection is used to determine the outcome of =, ⊂, and ⊃ (lines 11, 14, and 16 

respectively), and the intersection set of lines 18 and 19.  The number of intersections 

does not include any comparison tests involved with purging subset entries.  For 

CHARM, the number of intersections is the number performed at line 10 of Algorithm 

2.1.  Ascending support order is used for QuICL Oid-Full and QuICL Oid-Trie.  Both 

ascending and descending support order is used for GMA.  CHARM internally performs 

a sort.   

Table 4.13 provides the results for the purpose of comparison.  In comparing 

CHARM to QuICL Oid-Full, QuICL Oid-Full performs 20% to 45% more intersections 

on Chess with the percentage increasing as the support is lowered, 18% to 65% more on 

Pumsb* with the percentage decreasing as the support is lowered, and 12% more (at 

10%supp) to 19% less (at 0.0%supp) on Mushroom.  On T10I4D100k and T25I10D10k, 
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QuICL Oid-Full performs approximately 5 times more intersections at high supports but 

16% and 39% less, respectively, at 0.0%supp.  On T25I20D100K, the number intersections 

for QuICL Oid-Full are more than sixty times that of the CHARM algorithm at high 

supports, but drops to 64% more at 0.01%supp.  QuICL Oid-Trie performs 0% to 4% less 

intersections than QuICL Oid-Full.  This small gain is the result of the direct look-up of 

parent concepts already present in the lattice.  The look-up effectively bypasses a small 

number of intersections.  In comparing QuICL Oid-Full with GMA ascending, GMA 

performs more intersections ranging from a few percent (e.g., on Mushroom) to over an 

order of magnitude (e.g., on T25I20D100k).  GMA algorithm performs about time five 

times more intersections in descending order of the input than in ascending.  This clearly 

indicates that the number of intersections performed by incremental insertion is 

significantly restrained using ascending support order over descending order. 
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Min 

Supp |L| CHARM Oid-Full Oid-Trie GMA 
Ascending 

GMA 
Descending 

C
he

ss
 

85% 1,885 2,040 2,453 2,453 2,469 8,872 

75% 11,525 12,300 16,194 16,194 16,494 101,650 
65% 49,240 52,680 73,012 73,012 76,422 580,043 
55% 192,863 206,058 299,452 299,451 325,385 2,776,025 

45% 707,964 764,897   1,147,942     

M
us

hr
oo

m
 10% 4,897 13,755 15,411 15,060 28,274 159,598 

5% 12,854 41,559 42,475 41,337 84,328 559,654 

1% 51,672 204,831 171,773 165,005 433,931 2,658,520 
0% 238,709 722,998 585,509 561,327 3,008,711 13,294,536 

P
um

sb
* 50% 248 386 636 631 1,046 2,681 

40% 2,610 4,094 5,724 5,715 10,468 44,619 
30% 16,154 29,763 35,214 35,197 62,533 373,966 

T1
0I

4D
10

0k
 0.100% 26,806 84,549 492,326 492,324 2,121,378 11,065,654 

0.050% 46,993 450,339 1,076,219 1,076,189 3,540,405 22,135,262 
0.001% 283,397 11,425,072 15,273,903 15,270,100 18,980,003 158,563,214 
0.001% 769,777 26,845,219 41,432,480 41,400,882 53,023,943 429,938,356 
0.000% 2,347,374 135,897,608 113,860,447 110,427,801 186,602,383 1,321,116,356 

T2
5I

10
D

10
k 0.300% 44,926 122,921 741,001 740,938 6,109,812 20,184,635 

0.100% 209,436 12,213,130 17,410,550 17,407,832 27,460,247 113,839,759 
0.050% 576,022 45,080,919 57,975,763 57,941,620 81,843,625 303,212,996 
0.030% 1,438,054 87,667,671 112,295,967 112,054,097 196,187,133 751,113,513 
0.000% 2,557,928 255,133,119 155,603,121 150,763,040 362,230,207 1,349,704,766 

T2
5I

20
D

10
0k

 0.300% 72,640 72,439 4,628,183 4,628,183 31,933,715 99,224,142 

0.100% 150,970 152,995 9,525,668 9,525,668 106,471,253 279,288,120 
0.050% 212,765 388,754 11,837,524 11,837,501 143,330,271 503,391,739 

0.030% 461,138 3,068,334 19,085,665 19,083,580 168,701,767 1,602,853,580 
0.010% 3,519,933 148,382,639 243,262,618 243,019,880     

Table 4.13: Comparison of intersections by algorithm. 
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4.11 Summary of Results 

This chapter has presented the results of empirical evaluations and analysis of the 

QuICL algorithms against the GMA, CHARM, CHARM-L, and MAGALICE 

algorithms.  The CHARM and CHARM-L algorithms were downloaded from the 

author’s web site and converted to Java.  MAGALICE was downloaded from the Galicia 

project.  Its source is in Java.  An iceberg enhanced GMA algorithm and the QuICL 

algorithms were directly implemented in Java.  Thus, all algorithms are in Java enabling 

all tests to be performed on the same platform and environment. 

The Mushroom, Chess, Pumsb, Pumsb*, T10I4D100k, T25I10D10k, and 

T25I20D100k data sets were used as the benchmarks.  Mushroom and Chess are 

examples of dense data sets, Pumsb and Pumsb* are marginal, and the rest are sparse.  

The characteristics of the lattices generated from these data sets indicate that the size of 

the lattice grows exponentially as the support is lowered, but the average degree and 

height of the lattice grows at a slow steady rate.  The maximum degree on sparse data sets 

quickly approaches |I|, where on dense data sets the maximum degree is much closer to 

the average.  The density of a data set, calculated by |R| / (|O| × |I|), can be readily 

observed in a density profile.   

The QuICL algorithms were validated by a two prong approach; first through 

manual inspection of the construction of small lattices.  All test lattices, including iceberg 

lattices, were correctly constructed.  The second prong involved executing all algorithms 

including GMA, CHARM, CHARM-L, and MAGALICE against the benchmark data 

sets and comparing the characteristics of the generated lattices.  The QuICL algorithms 

reported the same |L| as CHARM and CHARM-L, and a difference of at most one for 
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GMA on all data sets and selected supports.  The difference is readily explained by the 

underlying representation of each lattice.  The QuICL algorithms reported the same 

degavg(L) as the CHARM-L and GMA algorithms.  Based on the consistent 

characteristics of the lattices constructed by the QuICL, CHARM, CHARM-L, and GMA 

algorithms, the QuICL algorithms were deemed valid. 

Before comparing the performance and memory usage of the QuICL algorithms 

against the CHARM, GMA, and MAGALICE algorithms, experiments were conducted 

to determine if the order of item insertion has an effect on performance and memory 

usage.  If an effect is realized, then the order providing the best performance and memory 

usage will be used when comparing the algorithms.  The results of experiments indicate 

that QuICL Oid-Full and QuICL Oid-Trie provide the best performance by incrementally 

inserting items in ascending support order.  By inserting concepts in ascending item 

support order, the lattice initially grows at small rate that accelerates towards later 

insertions, thereby restraining the number of intersections performed.  For QuICL Oid-

Less, the best performance on dense data sets is attained by incrementally inserting items 

in descending support order.  This conflicting preference is the result of intersecting sets 

of support concepts instead sets of object ids.  On sparse data sets, the intersection of 

support concepts had reduced effects.  Therefore on sparse data sets, ascending order 

provides the best performance.  The GMA algorithm also exhibits significant gains in 

performance by inserting the items in descending support order for dense data sets, up to 

an order of magnitude.  Here the conflicting preference is attributed to the cost to link 

new concepts into the lattice.  However, the cost of searching for parents has a reduced 

effect on sparse data sets.  Thus, on sparse data sets the ascending order provides the best 
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performance.  For QuICL Oid-Full, QuICL Oid-Trie, and GMA, the sort order had no 

effect on memory usage.  This is due to the well behavior of lattice construction.  For 

QuICL Oid-Less, descending order resulted in less memory usage.  Descending order 

restrains the size of temporary sets created during item insertion. 

Using the sort order providing the best performance and memory usage, the 

performance of QuICL algorithms were compared to CHARM, CHARM-L, GMA, and 

MAGALICE through empirical tests against the seven benchmark data sets.  The QuICL 

Oid-Full algorithm provided the best overall performance for constructing iceberg 

lattices.  It is only outperformed by CHARM-L on the Pumsb and Pumsb* data sets and 

for sparse data at only relatively high supports.  The Pumsb and Pumsb* data sets contain 

items with very large object id sets.  Thus, CHARM-L is benefiting from its difference 

based representation of object id sets.  While CHARM-L does outperform QuICL Oid-

Full at relatively high supports on sparse data, the gain is generally limited to a few 

seconds.  In all cases, the gain quickly degenerates into a large loss as the support is 

lowered.  At low supports, QuICL Oid-Full outperforms CHARM-L by an excess of an 

order of magnitude on the four data sets, and a factor greater than five on a fifth.  QuICL 

Oid-Trie exhibits the near same runtime complexity as QuICL Oid-Full for all data sets 

with a small performance overhead.  This loss in performance is expected since the 

compare and intersect functions must traverse between trie nodes.  QuICL Oid-Less, 

provides the best performance of the lattice construction algorithms on the Pumsb data 

set outperforming CHARM-L by more than a factor of two over all supports.  QuICL 

Oid-Less is QuICL’s answer to handling data set containing items with large object id 

sets.  On data sets containing items with large object sets, such as Pumsb, QuICL Oid-
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Less realizes a significant performance gain.  This gain may also be realized for an initial 

period of time during the algorithm execution on other data sets.   

CHARM provides the best performance for the Chess, Pumsb, and Pumsb* data 

sets.  These results are expected since CHARM does not derive the upper covers and it 

uses a difference based representation for the sets of object ids.  On these data sets the 

difference based representation provides a real gain in both in memory and runtime 

execution.  The CHARM algorithm provides the best performance on sparse data sets at 

relatively high supports, but is outperformed by QuICL Oid-Full and QuICL Oid-Trie 

algorithms at low supports.  CHARM is outperformed by QuICL Oid-Full and QuICL 

Oid-Trie on Mushroom over all supports.  CHARM-L exhibits performance along the 

lines of CHARM but degrades by a factor of two to an excess of an order of magnitude as 

the support is lowered.  These results are expected since the CHARM-L is an extension to 

CHARM that additionally derives the upper covers.  CHARM-L is outperformed by 

QuICL Oid-Full and QuICL Oid-Trie on Chess over all supports. 

GMA is generally slower than the QuICL and CHARM algorithms by an order of 

magnitude with greater divergence at lower minimum supports.  There are the two main 

factors attributing to its degradation of performance.  First, it performs more intersections 

than needed.  Second, it incurs an expensive search for parents when linking a new 

concept into the lattice.  MAGALICE exhibits the worst performance of all the 

algorithms.  When compared to the GMA algorithm, MAGALICE is at least an order of 

magnitude slower.   

QuICL Oid-Full and GMA exhibit similar memory usage for small lattices and 

diverge for larger lattices.  For both algorithms, the number of object id entries stored in a 
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lattice is a major consumer of memory space, accounting for more than 95% of the 

memory used on small lattices.  As the lattice becomes large, the overhead of storing the 

concepts can become a dominant term.  Furthermore, for large lattices the number of 

parent-child links account for another 15%.  Since the overhead of GMA concepts is 

greater and GMA uses two references for each parent-child link, a GMA lattice can 

consume two times more memory than QuICL Oid-Full on large lattices.  QuICL Oid-

Trie algorithm realizes a savings in the number of object id entries its trie between 15% 

and 80% over the QuICL Oid-Full lattice.  For small lattices, these savings translate to a 

significant reduction in memory usage enabling QuICL Oid-Trie to process lower 

supports.  However, on large lattices any gain in reducing the number of object id entries 

is outweighed by the overhead in the concepts.  The QuICL Oid-Less algorithm provides 

further reduction in memory by eliminating the object id entries from permanent storage 

within the lattice.  The permanent object ids are eliminated at the expense of additional 

overhead in each concept.  The net change is a reduction in memory space between a 

factor of two to an order of magnitude.  For dense data sets, these gains are sustained 

over most supports but diminish slightly for large lattices.  Thus, QuICL Oid-Less is able 

to process lower supports than QuICL Oid-Full.  However, on some sparse data sets, 

QuICL Oid-Less exhibits an excess between 5% and 60%.  For these data sets, the lattice 

quickly degrades to a worst case where there are many iced concepts each representing a 

single object id.  Like QuICL Oid-Less, the CHARM-L algorithm provides reduction in 

memory usage by eliminating the object id entries from the lattice.  The overhead for 

concepts in the CHARM-L lattice is about three times QuICL Oid-Full and thus exceeds 

QuICL Oid-Less.  Due to very different approaches, the reduction or gain in memory 
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space when compared against QuICL algorithms is varied.  The CHARM algorithm does 

not construct a lattice.  As such, it generally provides the best memory usage.  Memory is 

temporarily consumed during processing of its itemset-oidset tree and permanently 

consumed by the list of found frequent item sets.  The MAGACLICE algorithm exhibited 

gross memory consumption.   

Performance analysis indicates that QuICL Oid-Full spends a majority of time in 

the prepare-search phase.  In most cases the proportion of time is over 75% but decreases 

as the support is lowered.  Thus, the prepare-search phase is the dominant part of the 

overall execution time.  However, the time to purge subset entries is also significant and 

its proportion of time generally increases with the size of the lattice.  Likewise, time to 

find and link parent concepts already in the lattice is also significant and increases with 

the size of the lattice.  The remaining sections of the QuICL Oid-Full algorithm consume 

a negligible amount of time and are therefore insignificant.  

Portions of time spent in the sections of the QuICL Oid-Trie are similar to QuICL 

Oid-Full with a few changes.  On the Chess, Pumsb, and Pumsb* data sets, the actual 

seconds in the prepare-search phase is slightly less, but up to two times more on the other 

data sets.  Traversal between trie nodes during intersection is accounting for the 

additional time.  For Chess, Pumsb, and Pumsb, an enhancement to halt intersection 

processing when the traversals of the object id sets are within the same trie node is 

achieving a gain.  For these data sets, the trie has a large number of object id sets sharing 

common prefixes.  A second enhancement to directly lookup existing concepts limits the 

proportion of time to find and link existing concepts to less than 5%.  Thus for QuICL 

Oid-Trie, this time is not a dominant term.   
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The portions of time spent in the sections of QuICL Oid-Less is different from 

QuICL Oid-Full.  The portion of time spent executing the prepare-search increases as the 

support is lowered.  For all data sets, this portion of time still exceeds 74% at low 

supports.  The actual seconds spent is less than QuICL Oid-Full at high supports, but is 

generally more at low supports.  At high supports QuICL Oid-Less is benefiting from 

intersecting sets of support concepts, but as the support is lowered the support concepts 

fragment resulting in greater runtime consumption.  An additional time component 

incurred by QuICL Oid-Less is the time to process iced concepts.  This time is around 

30% at high supports but drops as the support is lowered.  Overall, the QuICL Oid-Less 

algorithm provides a gain at high supports and realizes a loss as the support is lowered. 

To provide empirical evidence in support of the asymptotic complexity analysis 

QuICL Oid-Full was separately instrumented to report |L|, degavg(L), number of 

intersections performed, and the number of iterations in the innermost loop of the 

intersection function.  From the reported values, a calculated time can be derived using 

the formulas expressed in the runtime complexity.   Correlations found between the 

calculated times and actual times provide evidence supporting the runtime complexity.  

For dense data sets a prepare-search time constant could be found such that the calculated 

times are well correlated to the actual times.  This indicates the prepare search time is 

indeed O(l d i).  However, on sparse data sets such constant could not be found.  This 

does not necessarily disprove an O(l d i).  Instead, it indicates that the mean used for 

calculating i is not appropriate.  The discrepancy between dense and sparse data does, 

however, indicate that density is a factor in computing the mean.  For most data sets, a 
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purge time constant could be found such that the calculated purge times are well 

correlated to the actual times.  This indicates the purge time is indeed O(l d2 c).   

Performance analysis of the GMA algorithm indicates that it spends considerable 

time on searching for parents and linking new concepts into the lattice.  On dense data 

sets using descending order, the time ranges between 50% and 96%.  Furthermore, use of 

ascending order greatly exacerbates the search and link time.  On sparse data using 

descending order, the time is generally limited to a small percentage.  Beyond the search 

and link time, the time to perform intersections is next major consumer.  It is generally 

the dominant term on sparse data sets, and between 0% and 25% when using ascending 

order on dense data sets.  In most cases, the actual time spent on performing intersections 

is more when using descending order.  The generator test time and time to sort concepts 

is a small percent, except in a few cases.  Generator test is exacerbated by ascending 

order whereas sort time is exacerbated by descending order. 

As a final comparison between algorithms, CHARM, GMA, QuICL Oid-Full, and 

QuICL Oid-Trie were instrumented to report the number of intersections performed 

during the construction of a lattice.  QuICL Oid-Full performs 20% to 45% more 

intersections than CHARM on Chess, 18% to 65% more on Pumsb*, but up to 19% less 

on Mushroom.  On T10I4D100k and T25I10D10k QuICL Oid-Full performs around five 

times more intersections at high supports but 16% and 39% less, respectively, at 0.0%supp.  

QuICL Oid-Trie performs 0% to 4% less intersections than QuICL Oid-Full.  In 

comparing QuICL Oid-Full with GMA ascending, GMA performs more intersections 

ranging from a few percent to over an order of magnitude.  GMA descending performs 

around five times more intersections than GMA ascending. 
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Chapter 5 

Conclusions, Implications, Recommendations, and Summary 

 

5.1 Conclusions 

It was hypothesized that an iceberg concept lattice based algorithm will provide 

gains in association rule mining and will be effective in mining frequent items sets.  This 

is found to be true.  All QuICL algorithms correctly construct iceberg concept lattices for 

the specified minimum support threshold.  The concepts of the iceberg lattices identify 

the frequent item sets together with their supports.  The QuICL algorithms were validated 

by comparing the characteristics of the lattices generated by QuICL against those 

generated by GMA, CHARM46

                                                
46 CHARM does not construct a lattice.  However, the number of frequent item sets identified by CHARM 
can be compared to the number of concepts in the lattice generated by QuICL. 

, CHARM-L, and MAGALICE.  All differences were 

explained.  Therefore, the QuICL algorithms are deemed valid.  Furthermore, the lattices 

constructed by QuICL are of the form corresponding to Figure 1.3.  That is, each item is 

represented in a single concept, its maximal concept, each concept readily identifies its 

support, and the drop in confidence along an edge can be easily computed (i.e., 

support(parent) / support(child)).  This notation enables association rules to be directly 

read from the lattice.  Furthermore, a basis of association rules can be generated by 

traversing the lattice.  The lattice is of the form whereby the Stumme et al. (2001b) 
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algorithms can extract the Duquenne-Guigues basis and the Luxemburger basis.  

Therefore, the QuICL algorithms provide gains in association rule mining. 

It was hypothesized that an iceberg concept lattice based algorithm will readily 

construct a concept lattice for a wide range of data sets and will prove to be a viable 

approach.  This is found to be effectively true.  The QuICL algorithms were tested 

against seven data sets using a spectrum of supports.  The data sets represent a variety of 

characteristics including: 

i) number of tuples ranging from a few thousand to a hundred thousand,  

ii) number of items ranging from below a hundred to ten thousand,  

iii) both sparse and dense data, and 

iv) items with large object sets. 

The QuICL algorithms constructed lattices for all supports on three of the data sets 

(Mushroom, T10I4D100k, and T25I10D10k), all but very near 0.0%supp on another 

(T25I20D100k), and medium to high supports on the other three (Chess, Pumsb, 

Pumsb*).  The QuICL algorithms were unable to produce lattices over all supports for 

four of the data sets due to memory constraints.  However, CHARM, CHARM-L, GMA, 

and MAGALICE were also unable to produce lattices over all supports for the same data 

sets due to memory constraints.  CHARM was able to identify the frequent item sets for 

supports lower than QuICL on three of the data sets.  But, CHARM does not produce the 

upper covers and is therefore deficient in the overall goal of identifying a useable set of 

association rules.  CHARM-L did produce a lattice at a slightly lower support on one data 

set, but on another, failed at a support where the QuICL algorithms succeeded.  On data 

sets containing items with large object sets, QuICL Oid-Full could only produce a lattice 

at high supports where CHARM-L could construct lattices for significantly lower 
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supports.  On these data sets, QuICL Oid-Less was able to construct lattices for the same 

supports as CHARM-L.  All QuICL algorithms were able to construct lattices for all data 

sets and supports where the GMA and MAGALICE succeeded.  Given that the QuICL 

algorithms were able to construct lattices for all supports on three of the data sets, were 

more or less able to construct lattices at supports where CHARM-L was successful, and 

they were able construct lattices for all supports where GMA and MAGALICE 

succeeded, the QuICL algorithms have proved to be a viable approach. 

It was hypothesized that an iceberg concept lattice based algorithm will exhibit 

the same or slightly better memory utilization than other leading algorithms.  With 

respect to CHARM, a leading frequent item set miner, this is found to be false.  CHARM 

does not construct a lattice.  Therefore, there is no concept overhead, no parent-child 

links, and no retention of object id sets.  Furthermore, CHARM uses a difference based 

representation for its temporary object id sets and these sets are released as soon as 

possible.  Thus, CHARM consumes significantly less memory on dense data sets.  While 

at high supports CHARM is only slightly less, CHARM is factor of two to over an order 

of magnitude better than QuICL Oid-Full at low supports.  On sparse data sets, QuICL 

Oid-Full consumed slightly more over all supports.  However, on one sparse data set, 

CHARM consumed more memory.  For the dense data sets, QuICL Oid-Trie and QuICL 

Oid-Less derivations did provide a reduction is memory space over QuICL Oid-Full, but 

the reduction was not sufficient to match CHARM.  QuICL Oid-Trie and QuICL Oid-

Less still consume 50% to ten times more than CHARM at low supports. 

With respect to leading lattice construction algorithms, the hypothesis concerning 

memory was found to be mostly true.  Memory consumption for QuICL Oid-Full was the 
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same as GMA on dense data sets, and the QuICL Oid-Trie and QuICL Oid-Less 

derivations generally provided a 50% to 80% reduction in memory usage.  On sparse data 

sets, QuICL Oid-Full was 10% to 40% less over most supports, although greater 

reduction was provided at low supports.  When compared against CHARM-L, the QuICL 

algorithms provide similar reduction on sparse data sets.  However, on dense data sets 

CHARM-L consumes less memory.  The difference based representation of the 

underlying CHARM algorithm is providing a benefit.  Therefore, CHARM-L is realizing 

a gain, especially on data sets having items with large object sets.  However, QuICL Oid-

Trie and QuICL Oid-Less do challenge CHARM-L and at some supports provide a 

reduction in memory usage. 

It was hypothesized that an iceberg concept lattice based algorithm will exhibit 

runtime performance on the order of leading algorithms to mine frequent item sets, but 

will probably be slower due to greater dependencies on intersection, union, and set 

difference operations.  The QuICL algorithms were found to have performance on the 

order of leading algorithms to mine frequent item sets and, in a few of cases, provided the 

best performance.  On the Mushroom, a dense data set, QuICL Oid-Full was faster than 

CHARM by a factor of two over all supports.  For example, at 0.0%supp QuICL Oid-Full 

was less than three seconds where CHARM took over six seconds.  On Chess, another 

dense data set, QuICL was slower by a factor of four.  On two sparse data sets, QuICL 

was slower by a few seconds at high supports, but as the support was lowered QuICL 

provided gains around an order of magnitude.  For example, on T10I4D100k at 0.5%supp, 

QuICL Oid-Full took three seconds where CHARM was under a second.  At 0.0% supp, 

QuICL was under 120 seconds where CHARM was over 1,400.  However, on a third 
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sparse data set, CHARM maintained a significant lead over most supports.  Only at 

0.01% supp, did QuICL prevail.  On data sets containing items with large object sets, 

CHARM was faster by an approximate factor of four (less at low supports and more at 

high supports).  While for these data sets the QuICL Oid-Less derivation did provide 

some savings and was able to match or beat CHARM at high to medium supports, it lost 

by a factor of four to an order of magnitude at low supports. 

QuICL Oid-Full provided the best all around performance of the lattice based 

algorithms.  On both dense and sparse data sets, QuICL Oid-Full provided approximately 

50% savings over GMA at high supports and an order of magnitude savings at low 

supports.  For example, QuICL Oid-Full constructed the entire lattice for Mushroom in 

less than three seconds where GMA took over 200 seconds.  For T10I4D100k, a sparse 

data set, QuICL Oid-Full completed in less than 120 seconds where GMA is near 10,000 

seconds.  QuICL Oid-Full provided near two orders of magnitude savings over 

MAGALICE.  When compared against CHARM-L, QuICL generally provided the best 

performance.  On Mushroom, CHARM-L is at least three times slower.  At 0.0%supp, 

QuICL Oid-Full was less than three seconds, whereas CHARM-L approached 200 

seconds.  Likewise on Chess, CHARM-L was at least three times slower.  Only on data 

sets containing items with very large object sets did CHARM-L prevail.  On these data 

sets, CHARM-L was five times faster.  However, on one such data set the QuICL Oid-

Less derivation was four times faster over all supports.  On sparse data sets, QuICL Oid-

Full was slower by a few seconds at high supports, but as the support was lowered 

QuICL Oid-Full provided gains around an order of magnitude.  For example, on 

T10I4D100k at 0.5%supp, QuICL Oid-Full took three seconds where CHARM-L was 
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under one second.  At 0.0% supp, QuICL was under 120 seconds whereas CHARM-L was 

near 2,000 seconds. 

It was hypothesized that an iceberg concept lattice based algorithm will be 

resilient against variations of data characteristics and input order.  This is found to be 

partially true.  QuICL Oid-Full provided the best all around performance of the lattice 

based algorithms.  It performed well on both dense and sparse data sets, and for small and 

large data sets.  The QuICL Oid-Less and QuICL Oid-Trie derivations only offer gains in 

memory and or performance on dense data sets.  The input order did indeed have no 

effect on the memory consumption on QuICL Oid-Full and QuICL Oid-Trie.  This is due 

to the well behavior of lattice construction.  Only for QuICL Oid-Less did input order 

have an effect.  Insertion in descending support order restrained the size of temporary 

sets.  The input order did have a large effect on the performance for all QuICL 

derivations.  All QuICL algorithms are subject to a natural preference for ascending 

support order.  Such order impedes the initial growth of the lattice, thereby reducing the 

number of required intersections.  QuICL Oid-Less did exhibit a conflicting preference 

on dense data sets.  In this case, QuICL Oid-Less offers significant savings in the cost of 

each intersection by inserting items in descending order. 

In conclusion, this study investigated the development of efficient algorithms to 

construct an iceberg lattice.  Its objective was to develop an algorithm whose overall 

performance in constructing a lattice is comparable to the leading algorithms used for 

association rule mining.  Furthermore, it was proposed that such algorithm would provide 

gains relative to the overall task of association rule mining.  This objective has been met.  

The performance of QuICL algorithms is on the order of leading algorithms to mine 
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frequent item sets, and QuICL additionally derives the upper covers.  The lattices 

constructed by QuICL are of the form whereby association rules can be directly read and 

a basis can be readily generated.  The Stumme et al. (2001b) algorithms can be used to 

extract the Duquenne-Guigues basis and the Luxemburger basis.  Thus, the QuICL 

algorithms provide significant gains in the overall task of association rule mining.  They 

enable the generation of association rules whose size is constrained to a number that can 

be exploited by the end user.  Therefore, the QuICL algorithms offer a significant 

contribution to association rule mining.  Beyond this, it was proposed that new efficient 

algorithms to construct concept lattices may present a contribution to formal concept 

analysis.  The QuICL algorithms provide an order of magnitude gains in performance 

over GMA, an often cited incremental lattice construction algorithm.  It is noted that 

GMA provides good performance on data sets whose density is less than 0.10.  QuICL 

provides excellent performance on both sparse and dense data sets.  For example, on the 

T10I4D100k, a sparse data set, QuICL provides a gain over GMA of two orders of 

magnitude (e.g., less than 120 seconds verses near 10,000 seconds at 0.0%supp).  On 

Mushroom, a dense data set, the same two order magnitude gain is realized (e.g. three 

seconds verses 200 seconds at 0.0%Supp), likewise on Chess (e.g., less than ten second 

verses over 1,000 seconds at 55%supp).  Literature has noted there is no known “best” 

algorithm for lattice construction and that each algorithm demonstrates different 

performance on different data sets, yet QuICL Oid-Full provides the best all-around 

performance.  QuICL Oid-Trie provides a reasonable tradeoff between performance and 

memory enabling it to create lattices for lower suppo rts.  QuICL Oid-Less addresses a 

special class of data sets containing items with large object sets.  These derivations allow 
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construction of lattices for cases where GMA fails.  Therefore, the QuICL algorithms 

offer a significant contribution to formal concept analysis. 

5.2 Implications 

Association rule mining is a challenging task due to the exponential nature of the 

problem.  Small to moderate data sets can readily generate millions of frequent item sets.  

From a technical perspective, association rule mining presents challenges in both runtime 

execution and memory usage.  Attention to efficiency is needed to ensure algorithms are 

successful within space and time constraints.  However, efficiency is only one factor in 

assessing the effectiveness of association rule mining.  Critical to the effectiveness, is a 

means to constrain the number of found association rules to a size that can be exploited 

by the end user.  It is here where most past work has fallen short.  The QuICL algorithms 

have maintained an attention to efficiency while at the same time derived the missing 

information needed to generate a basis of association rule.  This has been achieved 

through a formal concept analysis approach.  It is therefore postulated that QuICL 

algorithms offer the best solution to mining frequent items together with the upper 

covers.  The QuICL algorithms combined with algorithms to extract a basis of association 

rules from a lattice, such as Stumme et al. (2001b), will provide the most efficient path to 

derive a set of association rules whose size is constrained to an exploitable number. 

Frequent item set mining and lattice construction algorithms derived from formal 

concept analysis has in the past been two separate areas of research.  Very few studies 

compare results of frequent item set miners against lattice construction algorithms, yet 

these areas are clearly related.  Results included in this study, together with analysis of 

work performed in each area, indicate lattice construction algorithms are typically an 
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order of magnitude slower than frequent item set miners.  Only CHARM-L provides 

good results in reducing the gap.  The QuICL algorithms have gone a step further.  The 

QuICL algorithms are true incremental lattice construction algorithms that have 

efficiency on the order of frequent item set miners.  The QuICL algorithms have 

effectively bridged the gap. 

The QuICL algorithms have incorporated the best features of a number of 

algorithms.  The main loop of the QuICL algorithms is very similar to the main loop of 

CHARM.  Both compare an incoming object id set against an id set present in its data 

structure and perform different actions depending if the sets are =, ⊂, ⊃, or ∩ meeting the 

minimum support threshold, although the actions of each are adapt to the respective data 

structure.  The purge subsets function is the same as MAXIMA function of the Valtchev 

et al. (2000) (VML) lattice construction algorithm.  Both serve the same purpose of 

preventing invalid parent-child links.  The QuICL algorithms conform to the general 

principles of the Valtchev et al. (2003) generic lattice construction algorithm, although a 

different ordering of steps is utilized.  The idea to use a trie structure for QuICL Oid-Trie 

was borrowed from the GALICIA-T (Valtchev et al., 2002) and Nourine and Raynaud 

(2002) algorithms.  The rationale to maintain parent concepts id descending support order 

was borrowed from CHARM (Zaki, & Hsiao, 2002).  CHARM sorts its child nodes in 

order to increase the probability of detecting, sooner than later, a case which conserves 

processing.  Likewise, the order of parent concepts increases the probability of 

conserving processing. 
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QuICL algorithms differ from past work in several notable ways;   

i) The QuICL algorithm is a pure incremental lattice construction algorithm.  
That is, its sole data structure driving its processing is a lattice.  Many 
other algorithms are driven by some other data structure and construct the 
lattice as an integral sub-task.  Such algorithms include: GALICIA-T 
(Valtchev et al., 2002), Nourine and Raynaud (2002), and CHARM-L 
(Zaki, & Hsiao, 2005).  By being a pure incremental lattice construction 
algorithm, the foundation of QuICL is based solely on formal concept 
analysis.  Additional theory derived from FCA may provide for further 
improvements to QuICL.   

ii) The QuICL algorithms have recognized that it is sufficient to store an item 
in only its maximal position.  There is no need to include the item in all 
descendent concepts.  Thus, the only modified concepts will be those 
where an item is inserted at its maximal position.  This eliminates the need 
to modify a substantial number of concepts thereby significantly 
improving performance.   

iii) In comparing QuICL to GMA (Godin et al., 1995), both identify generator 
concepts.  For QuICL, the generators are base concepts that do not have a 
parent whose object id set that is a superset of the incoming object id set.  
QuICL differs from GMA in that it identifies the lowest generator 
concepts first, whereas GMA first identifies the highest.  Thus, QuICL 
eliminates the step to validate a candidate generator is indeed a generator, 
a potentially time consuming process.  Furthermore, since QuICL 
approaches the lattice from the bottom up, its recursion directly identifies 
the parent concepts.  This eliminates the very expensive task of searching 
for parents incurred by GMA.  This task is exacerbated on dense data sets. 

iv) While QuICL does conform to the general principles of the Valtchev et al. 
(2003) generic lattice construction algorithm, it has effectively, through 
recursion, folded the sequential steps into an interleaved process.  The 
main outcome is, again, the direct identification of parents when linking a 
new concept into the lattice.   

Given this discussion and the results presented in this report, it is postulated that 

QuICL is the “best known” all around incremental lattice construction algorithm. 
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5.3 Recommendations 

Given the favorable results and conclusions of this report, the QuICL algorithms 

are recommended for use in association rule mining and formal concept lattice 

construction.  They are proven to be correct and highly efficient.  For association rule 

mining, the QuICL algorithms provide the missing information needed to extract a basis 

of association rules.  They are ready to be combined with basis extraction algorithms to 

form a complete solution for association rule mining.  Furthermore, the QuICL 

algorithms are ready to be included in lattice construction and analysis suites, such as 

Galicia (Valtchev el al., 2003). 

An obvious next step is to combine QuICL with basis extraction algorithms, such 

as Stumme et al. (2001b), in order to further validate the claim of the “best known” 

association rule mining solution.  Another step is evaluation against a broader set of data 

sets and other lattice construction algorithms.  This is needed to further validate the claim 

of “best known” all around lattice construction algorithm. 

An issue for QuICL, as well as frequent item set miners and lattice construction 

algorithms in general, is memory consumption.  The exponential nature of the problem 

can quickly exhaust memory space.  All algorithms used in this study failed to produce a 

complete lattice for four of the seven data sets.  In each case the failure was due to 

memory constraints.  The QuICL Oid-Less and QuICL Oid-Trie derivations were able 

the construct lattices at lower supports than QuICL Oid-Full and GMA, but still failed at 

some point.  The CHARM algorithm was able to process even lower supports.  Further 

investigation into CHARM’s difference based representation may shed light on additional 

improvements to QuICL.  Another avenue for reducing memory may be found in 
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Algorithm 3.9.  This algorithm pushes lattice intersected object ids into the descendents 

of each support concepts that logically represent the intersected object id.  This algorithm 

was abandoned in place of a hybrid pull-down bottom-up algorithm, since no further 

performance enhancements were apparent.  However, this algorithm does hold a key to 

saving memory.  The QuICL algorithms determine if two sets are =, ⊂, ⊃, or ∩ using the 

cardinality of intersection sets.  With the exception of the purge subset function, the 

actual ids are not needed.  Thus, Algorithm 3.9 could simply increment an intersection 

count in all descendents instead of appending an object id.  Thus, the temporary sets of 

QuICL Oid-Less would not be needed.  This approach is dependent upon finding an 

alternate solution to purge subsets. 

Further improvements to QuICL may be found by closer examination of number 

of intersections performed by QuICL and CHARM.  QuICL is on par with CHARM in a 

number of cases, yet there are still further cases where QuICL performs significantly 

more intersections.  Studying these cases may shed light on other enhancements.  Also, 

investigations in the cost of intersection may prove fruitful. 

The MAGALICE (Rouane et al., 2004) algorithm exhibited the worst 

performance of all algorithms, however, its intent has merit.  Its intent is to enable 

incremental insertion of an object to an existing iceberg lattice.  The rationale is to 

facilitate the addition of new set of objects to an already constructed lattice.  For 

example, in a retail system it may be desired to add transactions for the previous day into 

a lattice derived from the all past transactions.  The downfall of the MAGACLICE 

algorithm is that the adjustments are made for each individual object.  Instead, some 

method to adjust the lattice for a set of new objects as a whole is needed.  This may 
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involve retention of information about object sets that did not meet the minimum support 

threshold, construction of a separate complete lattice for the new objects, assessment of 

the concepts in the new lattice relative to the retained information, and integration of 

selected new concepts into the lattice.  This is area for future research. 

5.4 Summary 

Association rule mining is the task of identifying meaningful implication rules of 

the form X → Y exhibited in a data set, where X and Y are subsets of the items and 

X ∩ Y is ∅.  It has been applied to a wide range of domains including basket analysis, 

database analysis, and organization of pages on the World Wide Web.  Furthermore, 

association rule theory has extended beyond its original domain to include correlations, 

dependency rules, episodes, sequential patterns, and multi-dimensional patterns.  

Association rule mining has thus been a major area of research.  However, a large portion 

of activity has been focused on efficient techniques and innovative theory to extract 

frequent item (FI) sets.  Notable algorithms include CHARM, CLOSET, TITANIC, and 

CLOSET+.  While significant progress has been made, FI mining has fallen short of the 

overall objective of mining association rules.  The FI miners fail to identify the upper 

covers of each closed FI set.  The upper covers are needed to generate a set of association 

rules whose size is constrained to a number that can be exploited by an end user.  The 

identification of upper covers is generally considered to be a worst case quadratic 

problem in terms of the number of FI sets. 

An alternative to FI mining algorithms can be found in formal concept analysis 

(FCA), a branch of applied mathematics.  Given a formal context composed of a set of 

objects O, a set of items I, and a relation R  ⊂ O × I, FCA derives a set of concepts 
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where each concept is a pair of sets O ⊆ O and I ⊆ I such that  O = {o ∈ O | ∀ i ∈ I, 

oRi} and  I = {i ∈ I | ∀ o ∈ O, oRi}.  Furthermore, between any two concepts 

C1 = (O1, I1) and C2 = (O2, I2) an order < is said to exists between C1 and C2 iff O1 ⊂ O2.  

Thus, the derived concepts can be arranged into a lattice structure by defining a 

connection between any two concepts C1 and C2 for which order < exists and there is no 

concept C3 for which C1 < C3 < C2.  The result is a lattice whose concepts identify the set 

of closed FIs (I) together with their support (|O|), and its connections identify the upper 

covers. 

The study of FCA has been a strong area of research.  Noteworthy algorithms 

include Godin, Missaoui, and Alaoui (Godin et al., 1995) (GMA), Nourine and Raynaud 

(2002), Lindig and Datensystene (2000), and Valtchev et al. (2002) divide and conquer.  

Some are batch while others are incremental (i.e., insert object by object or item by item).  

The best known asymptotic complexity is O(m (m+k) l), where l = |L|, m = |I|, and 

k = |O|.  However, benchmarks have proven that asymptotic complexity may not be the 

best measurement for comparison.  To date there is no known “best” algorithm.  GMA, 

an incremental algorithm, is considered to be a good algorithm for data sets with density 

less than 0.10. 

Most FCA construction algorithms construct a complete lattice whose concepts 

identify all closed item sets and not just those that are frequent.  An iceberg lattice, on the 

other hand, is a concept lattice whose concepts are restricted to those where |O| meets a 

minimum support threshold.  An iceberg lattice contains the necessary and sufficient 

information to extract association rules.  Furthermore, the alternate notation of an iceberg 

lattice depicted in Figure 1.3 enables association rules to be directly read from iceberg 
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lattices.  This form of iceberg concept lattice can be readily traversed to extract a basis of 

association rules that can be exploited by an end user.  Only three algorithms to construct 

an iceberg lattice were found in literature; MAGALICE (Rouane et al., 2004), 

CHARM-L (Zaki, & Hsiao, 2005), and SPROUT (Choi, 2006).  Given that an iceberg 

concept lattice provides an analysis tool to succinctly identify a basis of association rules, 

this study investigated additional algorithms to construct an iceberg concept lattice. 

This report presented the development and analysis of the Quick Iceberg Concept 

Lattice (QuICL – pronounced kwi-kəl

QuICL has three derivations; Oid-Full, Oid-Less, and Oid-Trie.  In the first 

derivation, all of the concepts in the concept lattice retain a complete list of the object ids 

(oids), hence the name “Oid-Full”.  While results of QuICL Oid-Full were promising for 

some data sets, the performance gains do not hold against others.  An issue for QuICL 

Oid-Full is storage of the complete list of object ids in each concept. The same object ids 

can be repeated in multiple concepts.  Thus, an alternate algorithm, termed Oid-Less, was 

derived to eliminate the permanent storage of object ids.  QuICL Oid-Less is successful 

) algorithms.  These algorithms provide 

incremental construction of a concept lattice along the lines of GMA, but approach the 

insertion process from the bottom of the lattice rather than top-down.  The structure of the 

lattice is used to navigate to a point of change.  Recursion is used instead of iteration to 

identify additional points of change and to enable connections between parent and child 

concepts.  To support construction of iceberg lattices, the QuICL algorithms add data on 

an item by item basis and interchange the roles of the set of object identifiers (ids) and 

the set of items.  These changes effectively invert the lattice.  Furthermore, the lattice of 

the QuICL algorithms conforms to the notation of Figure 1.3. 
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in eliminating the object ids, however, this is achieved at the expense of considerable 

complexity.  Therefore, the Oid-Trie derivation was developed as a compromise between 

QuICL Oid-Full and QuICL Oid-Less.  Instead of eliminating the object ids, it utilizes a 

trie data structure to store the ids in a compressed structure, thereby reducing memory 

requirements.  The QuICL algorithms were proved to be correct and validated by 

comparing the characteristics of the lattices generated by QuICL against lattices 

generated by other algorithms.  The runtime complexity for the QuICL Oid-Full 

algorithm is postulated to be at least O(l d i), but could approach O(l d2 c) or O(l d d′ i h), 

where l = |L|, d = degavg(L), i a density weighted mean on the cardinality of frequent item 

extents, c is a small fraction of |O| depending density, d′ is a fraction of d depending on 

density, and h is a sub-linear function on the height of L.  An enhancement of the QuICL 

Oid-Trie algorithm eliminates O(d d′ h) from consideration.  The memory complexity is 

postulated to be O(l d i). 

Evaluations of the QuICL algorithms against GMA, CHARM, CHARM-L, and 

MAGALICE were conducted using seven public data sets.  The data sets include both 

sparse and dense data, and some contain items with large object sets.  Before comparing 

QuICL against the other algorithms, experiments were conducted to determine if the 

order of item insertion has an effect on performance and memory usage.  Best 

performance for QuICL Oid-Full and QuICL Oid-Trie was attained by incrementally 

inserting items in ascending support order.  This order inhibits the initial growth of the 

lattice, thereby reducing the number of required intersections.  For QuICL Oid-Less and 

GMA, descending support order provides the best performance on dense data sets.  Other 
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factors in each algorithm contribute to this conflicting preference.  Except for QuICL 

Oid-Less, the sort order had no effect on memory. 

In comparing QuICL to CHARM, an FI miner, CHARM provides the best 

performance on most dense data sets.  These results are expected since CHARM does not 

derive the upper covers and it uses a difference based representation for the sets of object 

ids.  However, on sparse data sets, CHARM is outperformed by QuICL Oid-Full as the 

support is lowered.  CHARM is also outperformed by QuICL Oid-Full on Mushroom, a 

dense data set, over all supports.  The QuICL algorithms consume significantly more 

memory than CHARM on dense data sets and slightly more memory on sparse data sets.  

On dense data sets, QuICL Oid-Trie and QuICL Oid-Less derivations provide a reduction 

in memory usage over QuICL Oid-Full, but the reduction is not sufficient enough to 

match CHARM. 

QuICL Oid-Full provided the best overall performance for constructing iceberg 

lattices.  It outperforms GMA by an order of magnitude and MAGALICE by two orders 

of magnitude.  It is only outperformed by CHARM-L on data sets containing items with 

large object sets, and for the sparse data sets at relatively high supports.  However, on 

sparse data sets, the gain of CHARM-L is generally limited to a few seconds which 

quickly turns into a large loss as the support is lowered.  At low supports, QuICL Oid-

Full outperforms CHARM-L in excess of an order of magnitude on most data sets.  

QuICL Oid-Trie exhibits the near same runtime complexity as QuICL Oid-Full for all 

data sets with a small performance overhead.  It provides a reasonable tradeoff between 

performance and memory.  QuICL Oid-Less is QuICL’s answer to handling data set that 

contains items with large object id sets.  By intersecting concept sets instead of object id 
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sets, QuICL Oid-Less realizes a significant performance gain on such data sets and 

outperforms CHARM-L by more than a factor of two.  With respect to memory usage, 

QuICL Oid-Full was the same as GMA on dense data sets, but provided 10% to 40% 

reduction on sparse data.  QuICL Oid-Trie and QuICL Oid-Less derivations generally 

provide additional reduction in memory usage.  When compared against CHARM-L, the 

QuICL algorithms provide similar reduction in memory usage on sparse data sets.  

However, on dense data sets CHARM-L consumes less memory.  The difference based 

representation of the underlying CHARM algorithm is providing a benefit.  QuICL Oid-

Trie and QuICL Oid-Less do, however, challenge CHARM-L and at some supports 

provide a reduction in memory usage. 

Empirical evidence supporting asymptotic runtime complexity for the O(l d i) and 

O(l d2 c) was provided.  In all except sparse data, strong correlations between observed 

and calculated execution times were present for O(l d i).  The lack of correlation on 

sparse data does not necessarily disprove an O(l d i) complexity.  Instead, it indicates that 

the mean used for calculating i is not appropriate.  The discrepancy between dense and 

sparse data does, however, indicate that density is a factor in computing the mean. 

In conclusion, this study has met its objective to develop a lattice based algorithm 

whose overall performance is near the leading algorithms used for association rule 

mining.  Furthermore, the constructed lattices are of the form whereby association rules 

can be directly read and a basis can be readily extracted.  Therefore, the QuICL 

algorithms offer a significant contribution to association rule mining.  Beyond this, the 

QuICL algorithms have proved to be very efficient, providing an order of magnitude 

gains over prior incremental lattice construction algorithm.  For example, on the 
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T10I4D100k data set, GMA takes near 10,000 seconds where QuICL Oid-Full completes 

in less than 120 seconds.  On Chess at 55%supp, GMA is over 1,000 seconds where Oid 

Full is less than ten seconds.  QuICL Oid-Full provides the best all around performance 

on both dense and sparse data.  QuICL Oid-Trie provides a reasonable tradeoff between 

performance and memory, enabling it to create lattices for lower supports.  QuICL Oid-

Less addresses a special class of data sets that contain items with large object id sets.  

Therefore, the QuICL algorithms offer a significant contribution to formal concept 

analysis. 
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Epilogue 

 
While this report presented the QuICL derivations in the order of QuICL Oid-

Full, QuICL Oid-Less, and QuICL Oid-Trie, the QuICL Oid-Less derivation was actually 

developed first.  At the start of this study, it was assumed that the storage of object ids 

within all concepts would exhaust available memory.  Therefore, attention was focused 

on deriving an algorithm that used the compressed lattice structure.  After attaining the 

best possible results through a sequence of enhancements, the early algorithms were 

reconstructed to confirm the preliminary timings for this report.  When re-implementing 

Algorithm 3.5, an error was introduced.  The call to clear the temporary set of pull-down 

object ids was omitted.  On executing the re-implemented Algorithm 3.5, execution times 

of a few hours were expected.  As a result of the omission the algorithm executed in 80 

seconds, and it produced a correct lattice.  Analysis revealed that the concepts retained 

the complete list of object ids.  Thus, the QuICL Oid-Full algorithm was discovered.  

Additional enhancements reduced the time to those given in this report.  This is a lesson 

learned.  Test assumptions, they may lead to great discoveries.  The QuICL Oid-Less 

derivation still had merit with a special class of data sets. 

 



261 

 

Appendix A 

Implementation of the Modified GMA Algorithm 

import java.io.PrintStream; 
import java.util.ArrayList; 
import java.util.Collections; 
import java.util.Comparator; 
import java.util.List; 
 
/** 
 * The Godin Missaoui Alaoui algorithm to construct a Concept Lattice.  
 *  
 * This is an implementation of algorithm one found in the article: "Incremental concept formation  
 * algorithms based on Galois (concept) lattices", R. Godin, R. Missaoui, and H Alaoui. 
 *  
 * This implementation has swapped the roles of items and objects and has added a minimal support test.   
 * As a result this algorithm constructs an iceberg concept lattice. 
 *  
 * A concept lattice consists of a bottom concept. Concepts 
 * are discovered then added as ancestors using the method insert. 
 *  
 * @author David T. Smith 
 */ 
public class GMAConceptLattice implements ConceptLattice { 
 /** 
  * A concept within the lattice.  A concept contains a complete list of item ids and object ids together  
  * with parent and child lists.  The parents and children lists provide the edges between the concepts. 
  */ 
 public static class Concept { 
  IntArray iids = new IntArray();; 
  int[] oids; 
  List<Concept> children = new ArrayList<Concept>(); 
  ArrayList<Concept> parents = new ArrayList<Concept>(); 
 
  public Concept(int iid, int[] oids) { 
   addAttr(iid); 
   this.oids = oids; 
  } 
 
  public void addAttr(int iid) { 
   iids.add(iid); 
  } 
 } 
  
 private int minSupport = 0; 
 private Concept bottom = new Concept(-1, new int[0]); 
 private List<Concept> allConcepts = new ArrayList<Concept>(); 
 private int[] intersectBuff;  
 private ArrayList<ArrayList<Concept>> processedList = new ArrayList<ArrayList<Concept>>(); 
  
 /** 
  * Construct an empty concept lattice. The minimum support is specified. 
  *  
  * @param minSupport - the minimum support 
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  */ 
 public GMAConceptLatticeAdd(int minSupport, int buffSize) { 
  this.minSupport = minSupport; 
  this.intersectBuff = new int[buffSize]; 
  allConcepts.add(bottom); 
 } 
 
 /** 
  * The GMA incremental insert algorithm to insert a new item into the lattice 
  * @param iid - item id to be added 
  * @param oids - object ids of objects holding the item 
  */ 
 public void insert(int iid, int[] oids) { 
  // Special case for an empty lattice - bottom concept is empty 
  if (bottom.iids.size() == 0 && bottom.oids.length == 0) { 
   // Just add the item ids and object ids to the empty bottom concept 
   bottom.addAttr(iid); 
   bottom.oids = oids; 
   return; 
  } 
   
  // Union the oids with the bottom oids 
  int inx1 = 0; 
  int inx2 = 0; 
  int usize = 0; 
  while (inx1 < oids.length && inx2 < bottom.oids.length) { 
   if (oids[inx1] == bottom.oids[inx2]) { 
    intersectBuff[usize++] = oids[inx1]; 
    inx1++; 
    inx2++; 
   } else if (oids[inx1] < bottom.oids[inx2]) { 
    intersectBuff[usize++] = oids[inx1++]; 
   } else { 
    intersectBuff[usize++] = bottom.oids[inx2++];     
  
   } 
  } 
   
  while (inx1 < oids.length) { 
   intersectBuff[usize++] = oids[inx1++];   
  } 
   
  while (inx2 < bottom.oids.length) { 
   intersectBuff[usize++] = bottom.oids[inx2++];   
  } 
 
  // Test if the oids contain ids that are do not exist in the lattice.  
  if (usize > bottom.oids.length) { 
   int[] noids = new int[usize]; 
   System.arraycopy(intersectBuff, 0, noids, 0, usize); 
   if (bottom.iids.size() == 0) { 
    bottom.oids = noids; 
   } else { 
    Concept newC = new Concept(-1, noids);     
    allConcepts.add(newC); 
    bottom.children.add(newC); 
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    newC.parents.add(bottom); 
    bottom = newC; 
   } 
  } 
   
  // Insure the process list has a bucket allocated for the current oids size 
  while (processedList.size() > oids.length) { 
   processedList.remove(processedList.size() - 1); 
  } 
   
  // Empty the processed list 
  for (ArrayList<Concept> list : processedList) { 
   list.clear(); 
  } 
 
  processedList.ensureCapacity(oids.length); 
   
  while (processedList.size() <= oids.length) { 
   processedList.add(new ArrayList<Concept>()); 
  } 
 
  // Process, in ascending order of support, all concepts in the current concept list  
  Collections.sort(allConcepts, conceptComparator); 
   
  int end = allConcepts.size();    
  for (int i = 0; i < end; i++) {   
   Concept c = allConcepts.get(i); 
   int[] oids1 = c.oids; 
   int[] oids2 = oids; 
   inx1 = 0; 
   inx2 = 0; 
   int i1; 
   int i2; 
   boolean subset = true; 
   boolean superset = true; 
   int isize = 0; 
 
   if (inx1 < oids1.length && inx2 < oids2.length) { 
    i1 = oids1[inx1++]; 
    i2 = oids2[inx2++]; 
    for (;;) { 
     if (i1 == i2) { 
      intersectBuff[isize++] = i1; 
      if (inx1 < oids1.length && inx2 < oids2.length) { 
       i1 = oids1[inx1++]; 
       i2 = oids2[inx2++]; 
      } else { 
       break; 
      } 
     } else if (i1 < i2) { 
      subset = false; 
      if (inx1 < oids1.length) { 
       i1 = oids1[inx1++]; 
      } else { 
       superset = false; 
       break; 
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      } 
     } else { 
      superset = false; 
      if (inx2 < oids2.length) { 
       i2 = oids2[inx2++]; 
      } else { 
       subset = false; 
       break; 
      } 
     } 
    } 
   } 
       
   if (isize < minSupport) { 
    continue; 
   } 
 
   if (inx1 < oids1.length) { 
    subset = false; 
   } 
 
   if (inx2 < oids2.length) { 
    superset = false; 
   } 
    
   if (subset && superset) {  
    c.addAttr(iid); 
    return; 
   } 
       
   if (subset) {  
    c.addAttr(iid); 
    processedList.get(isize).add(c); 
   } else if (isize >= minSupport){ // Additional test for min support threshold  
    List<Concept> bkt = processedList.get(isize); 
    boolean isGen = true; 
    for (Concept p : bkt) { 
     if (isize == p.oids.length) { 
      int inx = 0; 
      for (inx = 0; inx < isize && intersectBuff[inx] == p.oids[inx]; inx++) {   
      } 
      if (inx == isize) {    // equal? 
       isGen = false; 
       break; 
      } 
     } 
    } 
     
    if (isGen) { 
     int[] noids = new int[isize]; 
     System.arraycopy(intersectBuff, 0, noids, 0, isize); 
     Concept newC = new Concept(iid, noids); 
     allConcepts.add(newC); 
     processedList.get(isize).add(newC); 
 
     newC.children.add(c); 
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     c.parents.add(newC); 
      
     outer:  for (List<Concept> bkt2 : processedList) { 
      for (Concept p : bkt2) { 
       if (p.oids.length >= isize) { 
        break outer; 
       } 
        
       if (isSubset(p.oids, newC.oids)) { 
        boolean isParent = true; 
        for (Concept ch : p.children) { 
         if (isSubset(ch.oids, newC.oids)) { 
          isParent = false; 
          break; 
         } 
        } 
        if (isParent) { 
         p.children.remove(c); 
         c.parents.remove(p); 
         p.children.add(newC); 
         newC.parents.add(p); 
        } 
       } 
      } 
     } 
 
     if (isize == oids.length) {  
      return; 
     }  
    } 
   } 
  } 
 } 
 
 /** 
  * Test for subset 
  * @param ids1 
  * @param ids2 
  * @return true if ids1 subset of ids2 
  */ 
 private boolean isSubset(int[] ids1, int[] ids2) { 
  int inx1 = ids1.length - 1; 
  int inx2 = ids2.length - 1; 
  int i1 = ids1[inx1]; 
  int i2 = ids2[inx2]; 
 
  for (;;) { 
   if (inx1 > inx2) { 
    return false; 
   } 
   if (i1 == i2) { 
    if (inx1 == 0) { 
     return true; 
    } 
    i1 = ids1[--inx1]; 
    i2 = ids2[--inx2]; 
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   } else if (i1 > i2) { 
    return false; 
   } else { 
    if (inx2 == 0) { 
     return false; 
    } 
    i2 = ids2[--inx2]; 
   } 
  }   
 } 
  
 /** 
  * Comparator used to sort concepts in ascending order of support 
  */ 
 private static Comparator<Concept> conceptComparator = new Comparator<Concept>() { 
  public int compare(Concept o1, Concept o2) { 
   return o1.oids.length - o2.oids.length; 
  } 
 }; 
 
 public int getNoConcepts() { 
  return allConcepts.size(); 
 } 
} 
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Appendix B 

Implementation of the QuICL Oid-Full Algorithm 

 
import java.io.PrintStream; 
import java.util.ArrayList; 
import java.util.Collections; 
import java.util.Comparator; 
import java.util.List; 
 
/** 
 * The QuICL Oid-Full algorithm to construct a Concept Lattice.  
 *  
 * A concept lattice consists of a bottom concept. Discovered concepts are then added as ancestors using 
 * the method insert. 
 *  
 * @author David T. Smith 
 */ 
public class OidfullConceptLattice implements ConceptLattice { 
 /** 
  * A concept within the lattice.  A concept contains a list of physical item ids and a complete list 
  * of object ids together with parents lists.  The parents provide the edges between the concepts. 
  */ 
 public static class Concept  { 
  int[] aids; 
  int[] oids; 
  int[] intersectOids; 
  List<Concept> parents; 
 
  public Concept(int aid, int[] oids, int noParents) { 
   addAttr(aid); 
   this.oids = oids; 
   parents = new ArrayList<Concept>(noParents); 
  } 
 
  public void addAttr(int aid) { 
   if (aid < 0) { 
    return; 
   } 
   if (aids == null) { 
    aids = new int[1]; 
   } else { 
    int[] naids = new int[aids.length + 1]; 
    System.arraycopy(aids, 0, naids, 0, aids.length); 
    aids = naids; 
   } 
   aids[aids.length - 1] = aid; 
  } 
 } 
  
 /** 
  * A class defining a tuple that is placed into the ToProcessList. 
  */ 
 private static class IntersectInfo { 
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  SetCmp type; 
  Concept concept; 
   
  public IntersectInfo(SetCmp type, Concept concept) { 
   this.type = type; 
   this.concept = concept; 
  } 
 } 
  
 private int minSupport = 0; 
 private Concept bottom = new Concept(-1, null, 16); 
 private enum SetCmp { UNKNOWN, EQ, SUBSET, SUPERSET, INTERSECT };  
 private List<Concept> allConcepts = new ArrayList<Concept>();  
 private int[] intersectBuff; 
 private static final int[] emptyOids = new int[0]; 
 
 /** 
  * Construct an empty concept lattice. The minimum support is specified. 
  *  
  * @param minSupport - the minimum support 
  * @param buffSize - the size for an intersection buffer 
  */ 
 public OidfullConceptLattice(int minSupport, int buffSize) { 
  this.minSupport = minSupport; 
  this.intersectBuff = new int[buffSize]; 
 } 
 
 /** 
  * Insert a new item into the concept lattice 
  *  
  * @param iid - item id to be added 
  * @param oids - the list of object ids - passed as an int array 
  */ 
 public void insert(int iid, int[] oids) { 
  if (oids.length >= minSupport) { 
   insert(bottom, iid, oids); 
   for (Concept c : allConcepts) { 
    c. intersectOids = null; 
   } 
  } 
 } 
 
 /** 
  * The QuICL Oid-Full incremental insert algorithm to insert a new item into the lattice 
  * 
  * @param baseC - concept above which a new concept is found or inserted 
  * @param iid - item id to be added 
  * @param oids - object ids of objects holding the item 
  * @return the found or created concept 
  */ 
 private Concept insert(Concept bottom, int iid, int[] oids) { 
  // create the ToProcessList to hold tuples 
  List<IntersectInfo> toProcessList = new ArrayList<IntersectInfo>(); 
   
  for (Concept parentC : bottom.parents) {   // prepare-search phase    
   // Intersect and compare oids w/testC.oids 
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   if (parentC.intersectOids == null) {      
    int[] poids = parentC.oids; 
    int inx1 = 0; 
    int inx2 = 0; 
    int i1; 
    int i2; 
    int isize = 0; 
    i1 = oids[inx1++]; 
    i2 = poids[inx2++]; 
 
    for (;;) { 
     if (i1 == i2) { 
      intersectBuff[isize++] = i1; 
      if (inx1 < oids.length && inx2 < poids.length) { 
       i1 = oids[inx1++]; 
       i2 = poids[inx2++]; 
      } else { 
       break; 
      } 
     } else if (i1 < i2) { 
      if (inx1 < oids.length) { 
       i1 = oids[inx1++]; 
      } else { 
       break; 
      } 
     } else { 
      if (inx2 < poids.length) { 
       i2 = poids[inx2++]; 
      } else { 
       break; 
      } 
     } 
    } 
     
    // cache the result in the parent concept 
    if (isize == oids.length) { 
     parentC.intersectOids = oids; 
    } else if (isize == parentC.oids.length) { 
     parentC.intersectOids = parentC.oids; 
    } else { 
     if (isize < minSupport) { 
      parentC.intersectOids = emptyOids; 
     } else { 
      parentC.intersectOids = new int[isize]; 
      System.arraycopy(intersectBuff, 0, parentC.intersectOids, 0, isize); 
     } 
    }      
   } 
      
   if (parentC.intersectOids.length < minSupport) { 
    continue; 
   } 
 
   // process the outcome of the intersection 
   if (parentC.intersectOids.length == oids.length) { 
    if (parentC.oids.length == parentC.intersectOids.length) {  // Equal 
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     parentC.addAttr(iid); 
     return parentC; 
    } else {          // Subset 
     return insert(parentC, iid, oids); 
    } 
   } else {      
    if (parentC.oids.length <= parentC.intersectOids.length) {  // Superset 
     toProcessList.add(new IntersectInfo(SetCmp.SUPERSET, parentC)); 
    } else {                         // Intersect 
     toProcessList.add(new IntersectInfo(SetCmp.INTERSECT, parentC)); 
    } 
   } 
  } 
  
  purgeSubsets(toProcessList); 
    
  Concept newC = new Concept(iid, oids, toProcessList.size()); 
  allConcepts.add(newC); 
   
  for (IntersectInfo p : toProcessList) {   // link phase 
   if (p.type == SetCmp.SUPERSET) { 
    bottom.parents.remove(p.concept); 
    newC.parents.add(p.concept); 
  
   } else if (p.type == SetCmp.INTERSECT) { 
    Concept parentC = insert(p.concept, -1, p.concept. intersectOids);   
     newC.parents.add(parentC); 
   } 
  } 
   
  Collections.sort(newC.parents, conceptComparator); 
 
  int inx = Collections.binarySearch(bottom.parents, newC, conceptComparator); 
  if (inx < 0) { 
   inx = -inx - 1; 
  } 
   
  bottom.parents.add(inx, newC); 
   
  return newC; 
 } 
  
 /** 
  * Comparator used to sort concepts in descending order of support 
  */ 
 private static Comparator conceptComparator = new Comparator() { 
  public int compare(Object o1, Object o2) { 
   return ((Concept) o2).oids.length - ((Concept) o1).oids.length; 
  }   
 }; 
  
 /** 
  * Purge tuples in the ToProcesList that have intersection sets that are subsets of other tuples. 
  * Purged tuples are marked as UNKNOWN 
  *  
  * @param toProcessList 
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  */ 
 private void purgeSubsets(List<IntersectInfo> toProcessList) { 
  for (int i = 0; i < toProcessList.size() - 1; i++) { 
   IntersectInfo interInfo1 = toProcessList.get(i); 
   if (interInfo1.type != SetCmp.UNKNOWN) { 
    for (int j = i + 1; j < toProcessList.size(); j++) { 
     IntersectInfo interInfo2 = toProcessList.get(j); 
     if (interInfo2.type != SetCmp.UNKNOWN) {  
      int[] oids1 = interInfo1.concept.intersectOids;  
      int[] oids2 = interInfo2.concept.intersectOids;  
      int inx1 = oids1.length - 1;; 
      int inx2 = oids2.length - 1;; 
      int i1 = oids1[inx1]; 
      int i2 = oids2[inx2]; 
       
      boolean subset = true; 
      boolean superset = true; 
       
      if (interInfo1.type == SetCmp.INTERSECT) { 
       for (;;) { 
        if (inx1 > inx2) { 
         subset = false; 
         break; 
        } 
        if (i1 == i2) { 
         if (inx1 == 0) { 
          break; 
         } 
         i1 = oids1[--inx1]; 
         i2 = oids2[--inx2]; 
        } else if (i1 > i2) { 
         subset = false; 
         break; 
        } else { 
         superset = false; 
         if (inx2 == 0) { 
          subset = false; 
          break; 
         } 
         i2 = oids2[--inx2]; 
        } 
       } 
       if (subset) { 
        interInfo1.type = SetCmp.UNKNOWN;     
       } 
      } else { 
       subset = false; 
      } 
       
      if (interInfo2.type == SetCmp.INTERSECT && superset && !subset) { 
       for (;;) { 
        if (inx1 < inx2) { 
         superset = false; 
         break; 
        } 
        if (i1 == i2) { 
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         if (inx2 == 0) { 
          break; 
         } 
         i1 = oids1[--inx1]; 
         i2 = oids2[--inx2]; 
        } else if (i1 < i2) { 
         superset = false; 
         break; 
        } else { 
         if (inx1 == 0) { 
          superset = false; 
          break; 
         } 
         i1 = oids1[--inx1]; 
        } 
       } 
       if (superset) { 
        interInfo2.type = SetCmp.UNKNOWN;    
     
       }        
      } 
     } 
    } 
   } 
  } 
 } 
  
 public int getNoConcepts() { 
  return allConcepts.size(); 
 } 
} 
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Appendix C 

Implementation of the QuICL Oid-Less Algorithm 

import java.util.ArrayList; 
import java.util.Arrays; 
import java.util.Comparator; 
import java.util.HashMap; 
import java.util.List; 
 
/** 
 * The QuICL Oid-Less algorithm to construct a Concept Lattice.  
 *  
 * A concept lattice consists of a bottom concept. Concepts are discovered and added as ancestors 
 * using the method insert. 
 *  
 * @author David T. Smith 
 */ 
public class OidlessConceptLattice implements ConceptLattice { 
 /** 
  * A concept within the lattice.  A concept contains a list of physical item ids, count of object ids, 
  * support, and other temporal fields used during item insertion.  The parents and children provide the 
  * edges between the concepts. 
  */ 
 public static class Concept implements Comparable { 
  private static int nextConceptId = 0; 
  private int id = nextConceptId++; 
  private int[] aids; 
  private int noOids; 
  private int support; 
  private ConceptArray parents= new ConceptArray(); 
  private ConceptArray children= new ConceptArray(); 
  private Concept[] intersectSupportConcepts; 
  private int intersectSize = 0; 
  private int noIntersectOids = 0; 
  private IntArray intersectOids = null; 
  private HasSupers hasSuper = HasSupers.UNKNOWN; 
  private Concept adjusted; 
  private static ConceptArray hasSuperProcessedConcepts = new ConceptArray(); 
  private static ConceptArray intersectProcessedConcepts = new ConceptArray(); 
  private static ConceptArray intersectBaseConcepts = new ConceptArray(); 
  private static ConceptArray adjustedFromConcepts = new ConceptArray(); 
   
  public Concept(int aid, int noOids, int support) { 
   addAttr(aid); 
   this.noOids = noOids; 
   this.support = support; 
  } 
 
  public static void clearTemporalFields() { 
   for (Concept concept : intersectProcessedConcepts) { 
    concept.intersectSupportConcepts = null; 
    concept.intersectSize = 0; 
   } 
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   for (Concept concept : hasSuperProcessedConcepts) { 
    concept.hasSuper = HasSupers.UNKNOWN; 
    concept.intersectSize = 0; 
   } 
 
   for (Concept concept : intersectBaseConcepts) { 
    concept.noIntersectOids = 0; 
    concept.intersectOids = null; 
   } 
 
   for (Concept concept : adjustedFromConcepts) { 
    concept.adjusted = null; 
   } 
 
   intersectProcessedConcepts.clear(); 
   hasSuperProcessedConcepts.clear(); 
   intersectBaseConcepts.clear(); 
   adjustedFromConcepts.clear(); 
  } 
 
  public void addAttr(int aid) { 
   if (aid < 0) { 
    return; 
   } 
   if (aids == null) { 
    aids = new int[1]; 
   } else { 
    int[] naids = new int[aids.length + 1]; 
    System.arraycopy(aids, 0, naids, 0, aids.length); 
    aids = naids; 
   } 
   aids[aids.length - 1] = aid; 
  } 
 
  public void subtractNoOids(int noOids) { 
   this.noOids -= noOids; 
  } 
 
  public void subtractSupport(int adjustment) { 
   support -= adjustment; 
  } 
 
  public void addIntersectOid(int oid) { 
   if (intersectOids == null) { 
    intersectOids = new IntArray(); 
    intersectBaseConcepts.add(this); 
   } 
 
   intersectOids.add(oid); 
   noIntersectOids++; 
  } 
 
  public void setIntersectOids(IntArray intersectOids) { 
   this.intersectOids = intersectOids; 
   intersectBaseConcepts.add(this); 
  } 
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  public Concept[] getIntersectSupportConcepts() { 
   if (intersectSupportConcepts == null) { 
    intersectSize = 0; 
 
    Concept[] newIntersectionConcepts = kwayIntersect(children); 
    for (Concept c : newIntersectionConcepts) { 
     intersectSize += c.noIntersectOids; 
    } 
 
    setIntersectSupportConcepts(newIntersectionConcepts); 
   } 
   return intersectSupportConcepts; 
  } 
   
  public void setIntersectSupportConcepts(Concept[] intersectionConcepts) { 
   intersectProcessedConcepts.add(this); 
   this.intersectSupportConcepts = intersectionConcepts; 
  } 
 
  public int getIntersectSize() { 
   getIntersectSupportConcepts(); 
   return intersectSize; 
  } 
 
  public void setIntersectSize(int intersectSize) { 
   this.intersectSize = intersectSize; 
  } 
   
  public Concept[] kwayIntersect(ConceptArray children) { 
   Concept[][] iters = new Concept[children.size()][]; 
   int[] inxs = new int[children.size()]; 
   int i = 0; 
 
   for (Concept child : children) { 
    iters[i++] = child.getIntersectSupportConcepts(); 
   } 
 
   int p1 = 0; 
   int p2 = 1; 
   int kwayBuffInx = 0; 
   if (inxs[p1] < iters[p1].length) { 
    int cid1 = iters[p1][inxs[p1]++].id; 
    while (inxs[p2] < iters[p2].length) { 
     int cid2 = iters[p2][inxs[p2]++].id; 
     if (cid1 < cid2) { 
      cid1 = cid2; 
      p1 = p2; 
      p2 = (p2 + 1) % iters.length; 
     } else if (cid1 == cid2) { 
      p2 = (p2 + 1) % iters.length; 
      if (p1 == p2) { 
       Concept c = iters[p2][inxs[p2] - 1]; 
       intersectBuff[kwayBuffInx++] = c; 
       p2 = (p2 + 1) % iters.length; 
      } 
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     } 
    } 
   } 
    
   Concept[] intersectConcepts = new Concept[kwayBuffInx]; 
   System.arraycopy(intersectBuff, 0, intersectConcepts, 0, kwayBuffInx); 
 
   return intersectConcepts; 
  } 
 
  public boolean hasSuperset() { 
   if (hasSuper == HasSupers.UNKNOWN) { 
    IntArray intersection = intersectOids; 
    boolean hasSuperset = noOids > (intersection == null ? 0 : intersection.size()); 
 
    if (!hasSuperset) { 
     for (Concept parent : parents) { 
      if (parent.hasSuperset()) { 
       hasSuperset = true; 
       break; 
      } 
     } 
    } 
 
    if (hasSuperset) { 
     hasSuper = HasSupers.YES; 
    } else { 
     hasSuper = HasSupers.NO; 
    } 
 
    hasSuperProcessedConcepts.add(this); 
   } 
   return hasSuper == HasSupers.YES; 
  } 
 
  public int compareTo(Object o) { 
   return id - ((Concept) o).id; 
  } 
 
  public void setNoIntersectOids(int noIntersectOids) { 
   this.noIntersectOids = noIntersectOids; 
  } 
 
  public void setInsersectSize(int intersectSize) { 
   this.intersectSize = intersectSize; 
  } 
 
  public void setAdjusted(Concept generatedConcept) { 
   this.adjusted = generatedConcept; 
   adjustedFromConcepts.add(this); 
  } 
 } 
 
 /** 
  * A utility class for performance.  ConceptArray provides similar function ArrayList<Concept> with  
 * a few performance enhancements (e.g., binary sort based removal). 
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  */ 
 public static class ConceptArray extends FastArrayList<Concept>  { 
  public ConceptArray(int noParents) { 
   super(noParents); 
  } 
 
  public ConceptArray() { 
   super(); 
  } 
 
  public ConceptArray(Concept[] concepts) { 
   super(concepts); 
  }   
 } 
  
 /** 
  * Class defining a tuple that is placed into the ToProcessList. 
  */ 
 private static class IntersectInfo { 
  SetCmp type; 
  Concept concept; 
  Concept[] intersectSupportConcepts; 
 
  public IntersectInfo(SetCmp type, Concept concept, Concept[] intersectSupportConcepts) { 
   this.type = type; 
   this.concept = concept; 
   this.intersectSupportConcepts = intersectSupportConcepts; 
  } 
 } 
  
 private enum SetCmp { UNKNOWN, EQ, SUBSET, SUPERSET, INTERSECT }; 
 private enum HasSupers {UNKNOWN, YES, NO }; 
 
 private ConceptArray oid2Concept = new ConceptArray(); 
 private ConceptArray allDependents = new ConceptArray(); 
 private ConceptArray allConcepts = new ConceptArray(); 
 private Concept bottom = new Concept(-1, 0, Integer.MAX_VALUE, 0); 
 private static Concept[] intersectBuff; 
 private int minSupport = 0; 
 private HashMap<Concept, ConceptArray> supportCsMap =  
            new HashMap<Concept, ConceptArray>(); 
 
 private HashMap<Concept, ConceptArray> dependentCsMap =  
            new HashMap<Concept, ConceptArray>(); 
 
 /** 
  * Construct an empty concept lattice. The minimum support is specified. 
  *  
  * @param minSupport - the minimum support 
  */ 
 public OidlessConceptLattice(int minSupport, int buffSize) { 
  this.minSupport = minSupport; 
  intersectBuff = new Concept[buffSize]; 
 } 
 
 /** 
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  * Insert a new item into the concept lattice 
  *  
  * @param iid - item id to be added 
  * @param oids - the list of object ids - passed as an int array 
  */ 
 public void insert(int aid, int[] oids) { 
  if (oids.length >= minSupport) { 
   Concept[] supportConcepts = intersectLattice(oids); 
 
   Concept newC = insert(bottom, aid, oids.length, supportConcepts); 
 
   if (newC.children.size() == 1 && !hasSupportCs(newC)) { 
    ConceptArray adjustedSupports = new ConceptArray(supportConcepts.length); 
  
    for (Concept support : supportConcepts) { 
     if (support.adjusted != null) { 
      support = support.adjusted; 
     } 
 
     adjustedSupports.add(support); 
     ConceptArray dependents = dependentCsMap.get(support); 
     if (dependents == null) { 
      dependents = new ConceptArray(); 
      dependentCsMap.put(support, dependents); 
     } 
     dependents.add(newC); 
    } 
 
    adjustedSupports.sort(); 
    supportCsMap.put(newC, adjustedSupports); 
    allDependents.add(newC); 
   } 
  } 
 } 
 
 /** 
  * The QuICL Oid-Less incremental insert algorithm to insert a new item into the lattice 
  * 
  * @param baseC - concept above which a new concept is found or inserted 
  * @param iid - item id to be added 
  * @param support - the support for the new concept 
  * @param supportConcepts - array of Concepts that are the supports. 
  * @return the found or created concept 
  */ 
 private Concept insert(Concept baseC, int iid, int support, Concept[] supportConcepts) {   
  // create the ToProcessList to hold tuples 
  List<IntersectInfo> toProcessList = new ArrayList<IntersectInfo>(); 
  boolean hasIceberg = false; 
 
  for (Concept parentC : baseC.parents) { // prepare-search phase 
   if (parentC.support < minSupport) {  // test for iceberg concept 
    hasIceberg = true; 
    continue; 
   } 
 
   Concept[] intersectSupportConcepts = parentC.getIntersectSupportConcepts();   
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   if (intersectSupportConcepts.length == 0) { 
    continue; 
   } 
 
   int isize = parentC.getIntersectSize(); 
   boolean hasSuper = parentC.hasSuperset(); 
 
   if (isize == support) { 
    if (!hasSuper) {       // equal 
     parentC.addAttr(iid); 
     return parentC; 
    } else {         // subset 
     return insert(parentC, iid, support, supportConcepts); 
    } 
   } else { 
    if (!hasSuper) {       // superset 
     toProcessList.add(new IntersectInfo(SetCmp.SUPERSET, parentC, 
              intersectSupportConcepts)); 
    } else {         // intersect 
     if (parentC.getIntersectSize() < minSupport) { 
      hasIceberg = true; 
     } else { 
      toProcessList.add(new IntersectInfo(SetCmp.INTERSECT, parentC, 
              intersectSupportConcepts)); 
     } 
    } 
   } 
  } 
 
  purgeSubsets(toProcessList); 
 
  Concept newC = new Concept(iid, baseC.noIntersectOids, support); 
  allConcepts.add(newC); 
  
  adjust(baseC, newC); 
 
  for (IntersectInfo interInfo : toProcessList) {   // link phase 
   if (interInfo.type == SetCmp.SUPERSET) { 
    removeLink(interInfo.concept, baseC); 
    addLink(interInfo.concept, newC); 
   } else if (interInfo.type == SetCmp.INTERSECT) { 
    int isize = interInfo.concept.getIntersectSize(); 
    Concept parentC = insert(interInfo.concept, -1, isize, 
              interInfo.intersectSupportConcepts); 
    addLink(parentC, newC); 
   } 
  } 
 
  if (hasIceberg) {        // iceberg processing 
   Concept[][] iters = new Concept[newC.parents.size() + 1][]; 
   int[] inxs = new int[iters.length + 1]; 
   int i = 0; 
 
   for (Concept t : newC.parents) { 
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    iters[i++] =  t.getIntersectSupportConcepts(); 
   }    
   iters[i] = new Concept[] { baseC }; 
 
   int supportConceptInx = 0; 
   outer: while (supportConceptInx < supportConcepts.length) { 
    for (i = 0; i < iters.length; i++) { 
     for(;;) { 
      if (inxs[i] == iters[i].length) { 
       break; 
      } 
      int r = iters[i][inxs[i]].id - supportConcepts[supportConceptInx].id; 
      if (r < 0){ 
       inxs[i]++;     
      } else if (r == 0) { 
       supportConceptInx++; 
       continue outer; 
      } else { 
       break; 
      } 
     } 
    } 
    icebergLink(supportConcepts[supportConceptInx++], newC); 
   }    
  } 
 
  baseC.setAdjusted(newC); 
  newC.parents.sort(conceptComparator); 
 
  int inx = baseC.parents.binarySearch(newC, conceptComparator); 
  if (inx < 0) { 
   inx = -inx - 1; 
  } 
 
  addLink(newC, baseC, inx); 
 
  return newC; 
 } 
 
 /** 
  * Comparator to sort concepts in descending support order 
  */ 
 private static Comparator<Concept> conceptComparator = new Comparator<Concept>() { 
  public int compare(Concept o1, Concept o2) { 
   return o2.support - o1.support; 
  } 
 }; 
 
 /** 
  * Extract and link up iceberg concepts to a new concept 
  * 
  * @param supportC - concept that is/will become an iceberg concept 
  * @param newC 
  */ 
 private void icebergLink(Concept supportC, Concept newC) { 
  if (supportC.adjusted != null) { 
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   addLink(supportC.adjusted, newC); 
  } else if (supportC.support == supportC.noIntersectOids) { 
   addLink(supportC, newC); 
  } else { 
   Concept icebergConcept = icebergInsert(supportC); 
   adjust(supportC, icebergConcept); 
   addLink(icebergConcept, newC); 
  } 
 } 
 
 /** 
  * Construct an iceberg concept from another concept 
  *  
  * @param fromC - concept from which an iceberg is extracted 
  */ 
 private Concept icebergInsert(Concept fromC) { 
  int isize = fromC.intersectOids.size(); 
 
  Concept icebergConcept = new Concept(-1, isize, isize, 0); 
 
  if (fromC.support < minSupport) {    
   for (Concept child : fromC.children) {  // split an iceberg concept 
    addLink(icebergConcept, child); 
   } 
   fromC.subtractSupport(isize);   
  } else {   
   addLink(icebergConcept, fromC);   // extracting from a non iceberg concept 
  } 
  return icebergConcept; 
 } 
 
 /** 
  * Perform a lattice intersection 
  *  
  * @param oids - object ids for the intersection 
  * @return a list of concepts that are referenced by the object ids 
  */ 
 public Concept[] intersectLattice(int[] oids) { 
  Concept.clearTemporalFields(); 
  int buffInx = 0; 
  for (int i = 0; i < oids.length; i++) { 
   int oid = oids[i]; 
   Concept concept = getConcept(oid); 
   if (concept == null) { 
    if (bottom.noIntersectOids == 0) { 
     intersectBuff[buffInx++] = bottom; 
    } 
    bottom.addIntersectOid(oid); 
   } else { 
    if (concept.noIntersectOids == 0) { 
     intersectBuff[buffInx++] = concept; 
    } 
    concept.addIntersectOid(oid); 
   } 
  } 
   



282 

 

  Concept[] supportConcepts = new Concept[buffInx]; 
  System.arraycopy(intersectBuff, 0, supportConcepts, 0, buffInx); 
  Arrays.sort(supportConcepts); 
 
  getSupportsForDependents(); 
 
  return supportConcepts; 
 } 
 
 /** 
  * Pull-down the support concept list for concepts that have an intersection with a new item 
  */ 
 private void getSupportsForDependents() { 
  for (Concept dependent : allDependents) { 
   ConceptArray supports = supportCsMap.get(dependent); 
   int buffInx = 0; 
   int intersectSize = 0; 
 
   for (Concept supportC : supports) { 
    if (supportC.noIntersectOids > 0) { 
     intersectBuff[buffInx++] = supportC; 
     intersectSize += supportC.noIntersectOids; 
    } 
   } 
 
   Concept[] intersectSupportConcepts = new Concept[buffInx]; 
   System.arraycopy(intersectBuff, 0, intersectSupportConcepts, 0, buffInx); 
   Arrays.sort(intersectSupportConcepts); 
   dependent.setIntersectSupportConcepts(intersectSupportConcepts); 
   dependent.setInsersectSize(intersectSize); 
  } 
 } 
 
 /** 
  * Adjust the temporal field to account for a new concept 
  * 
  * @param fromC 
  * @param newC 
  */ 
 public void adjust(Concept fromC, Concept newC) { 
  fromC.setAdjusted(newC); 
   
  setOid2Concept(fromC.intersectOids, newC); 
   
  if (fromC.intersectSupportConcepts != null) { 
   Concept[] newIntersectionSupportConcepts =  
          new Concept[fromC.intersectSupportConcepts.length]; 
   System.arraycopy(fromC.intersectSupportConcepts, 0,  
      newIntersectionSupportConcepts, 0, fromC.intersectSupportConcepts.length); 
   newC.setIntersectSupportConcepts(newIntersectionSupportConcepts); 
   newC.setIntersectSize(fromC.getIntersectSize()); 
  }  
   
  if (fromC.intersectOids == null) { 
   return; 
  } 
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  fromC.subtractNoOids(fromC.noIntersectOids); 
 
  if (hasDependentCs(fromC)) { 
   for (Concept dependent : getDependentCs(fromC)) { 
    addSupportC(dependent, newC); 
    addDependentC(newC, dependent); 
    if (fromC.noOids == 0) { 
     removeSupportC(dependent, fromC); 
    } 
   } 
   if (fromC.noOids == 0) { 
    removeDependentCs(fromC); 
   } 
  } 
 
  newC.setIntersectOids(fromC.intersectOids.cloneArray()); 
  newC.setNoIntersectOids(fromC.noIntersectOids); 
  IntArray bottomIntersect = fromC.intersectOids; 
  bottomIntersect.clear(); 
 } 
 
 /** 
  * Get a concept using the object id to concept map 
  *  
  * @param oid the object id 
  * @return concept holding the object id 
  */ 
 public Concept getConcept(int oid) { 
  if (oid < oid2Concept.size()) { 
   return oid2Concept.get(oid); 
  } else { 
   return null; 
  } 
 } 
 
 /** 
  * Update entries in the object id to concept map 
       * 
  * @param oids - list of object ids held by a new concept 
  * @param newC - new concept holding the ids 
  */ 
 public void setOid2Concept(IntArray oids, Concept newC) { 
  if (oids != null) { 
   for (IntIterator iter = oids.iterator(); iter.hasNext();) { 
    int oid = iter.next(); 
    while (oid >= oid2Concept.size()) { 
     oid2Concept.add(null); 
    } 
    oid2Concept.set(oid, newC); 
   } 
  } 
 } 
  
 /** 
  * Purge tuples in the ToProcesList that have concept support sets that are subsets of other concept  
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  * support sets of other tuples 
  *  
  * @param toProcessList 
  */ 
 private void purgeSubsets(List<IntersectInfo> toProcessList) { 
  for (int i = 0; i < toProcessList.size() - 1; i++) { 
   IntersectInfo interInfo1 = toProcessList.get(i); 
   if (interInfo1.type != SetCmp.UNKNOWN) { 
    for (int j = i + 1; j < toProcessList.size(); j++) { 
     IntersectInfo interInfo2 = toProcessList.get(j); 
     if (interInfo2.type != SetCmp.UNKNOWN) {  
      Concept[] oids1 = interInfo1.intersectSupportConcepts;  
      Concept[] oids2 = interInfo2.intersectSupportConcepts;  
      int inx1 = oids1.length - 1;; 
      int inx2 = oids2.length - 1;; 
      int i1 = oids1[inx1].id; 
      int i2 = oids2[inx2].id; 
      boolean subset = true; 
      boolean superset = true; 
       
      if (interInfo1.type == SetCmp.INTERSECT) { 
       for (;;) { 
        if (inx1 > inx2) { 
         subset = false; 
         break; 
        } 
        if (i1 == i2) { 
         if (inx1 == 0) { 
          break; 
         } 
         i1 = oids1[--inx1].id; 
         i2 = oids2[--inx2].id; 
        } else if (i1 > i2) { 
         subset = false; 
         break; 
        } else { 
         superset = false; 
         if (inx2 == 0) { 
          subset = false; 
          break; 
         } 
         i2 = oids2[--inx2].id; 
        } 
       } 
       if (subset) { 
        interInfo1.type = SetCmp.UNKNOWN;    
     
       } 
      } else { 
       subset = false; 
      } 
       
      if (interInfo2.type == SetCmp.INTERSECT && superset && !subset) { 
       for (;;) { 
        if (inx1 < inx2) { 
         superset = false; 
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         break; 
        } 
        if (i1 == i2) { 
         if (inx2 == 0) { 
          break; 
         } 
         i1 = oids1[--inx1].id; 
         i2 = oids2[--inx2].id; 
        } else if (i1 < i2) { 
         superset = false; 
         break; 
        } else { 
         if (inx1 == 0) { 
          superset = false; 
          break; 
         } 
         i1 = oids1[--inx1].id; 
        } 
       } 
       if (superset) { 
        interInfo2.type = SetCmp.UNKNOWN;    
     
       }        
      } 
     } 
    } 
   } 
  } 
 } 
 
 private void addLink(Concept parent, Concept child) { 
  addLink(parent, child, -1); 
 } 
 
 private void addLink(Concept parent, Concept child, int inx) { 
  parent.children.add(child); 
  if (inx < 0) { 
   child.parents.add(parent); 
  } else { 
   child.parents.add(inx, parent); 
  } 
  if (getSupportCs(parent) != null && parent.children.size() > 1) { 
   for (Concept supportConcept : getSupportCs(parent)) { 
    removeDependentC(supportConcept, parent); 
   } 
   removeSupports(parent); 
   allDependents.removeSorted(parent); 
  } 
 } 
 
 private void removeLink(Concept parent, Concept child) { 
  parent.children.removeSorted(child); 
  child.parents.remove(parent); 
 } 
 
 public boolean hasDependentCs(Concept concept) { 
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  return dependentCsMap.get(concept) != null; 
 } 
 
 public ConceptArray getDependentCs(Concept concept) { 
  return dependentCsMap.get(concept); 
 } 
 
 public void addDependentC(Concept toConcept, Concept dependent) { 
  ConceptArray dependentCs = dependentCsMap.get(toConcept); 
 
  if (dependentCs == null) { 
   dependentCs = new ConceptArray(); 
   dependentCsMap.put(toConcept, dependentCs); 
  } 
 
  dependentCs.add(dependent); 
 } 
 
 public boolean hasSupportCs(Concept concept) { 
  return supportCsMap.get(concept) != null; 
 } 
 
 public void addSupportC(Concept toConcept, Concept concept) { 
  ConceptArray supportCs = supportCsMap.get(toConcept); 
  supportCs.add(concept); 
 } 
 
 public void removeSupportC(Concept fromConcept, Concept concept) { 
  ConceptArray supports = supportCsMap.get(fromConcept); 
  supports.removeSorted(concept); 
 } 
 
 public ConceptArray getSupportCs(Concept concept) { 
  return supportCsMap.get(concept); 
 } 
 
 public void removeSupports(Concept fromConcept) { 
  supportCsMap.remove(fromConcept); 
 } 
 
 public void removeDependentC(Concept fromConcept, Concept concept) { 
  ConceptArray dependents = dependentCsMap.get(fromConcept); 
  dependents.removeSorted(concept); 
 } 
 
 public void removeDependentCs(Concept fromConcept) { 
  dependentCsMap.remove(fromConcept); 
 } 
  
 public int getNoConcepts() { 
  return allConcepts.size(); 
 } 
} 
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Appendix D 

Implementation of the QuICL Oid-Trie Algorithm 

import java.util.ArrayList; 
import java.util.Collections; 
import java.util.Comparator; 
import java.util.HashMap; 
import java.util.List; 
 
/** 
 * The QuICL Oid-Trie algorithm to construct a Concept Lattice.  This is the Oid-Full algorithm  
 * only using a trie data structure to represent object ids. 
 *  
 * A concept lattice consists of a bottom concept. Concepts are discovered and added as ancestors 
 * using the method insert. 
 *  
 * @author David T. Smith 
 */ 
public class OidTrieConceptLattice implements ConceptLattice { 
  
 /** 
  * A position in the Trie representing an object set.  A TriePos references a TrieNode  
  * and an offset within that node which is the last object in the object set. 
  */ 
 private static class TriePos { 
  TrieNode node; 
  int      offset; 
   
  TriePos(TrieNode node, int offset) { 
   this.node = node; 
   this.offset = offset; 
  } 
     
  int getLength() { 
   return node.length + offset + 1; 
  }  
   
  public int hashCode() { 
   return node.hashCode() + offset; 
  } 
   
  public boolean equals(Object o) { 
   TriePos r = (TriePos) o; 
   return r.node == node && r.offset == offset; 
  } 
 } 
  
 /** 
  * A Trie child reference.  A TrieChildRef is used a key to lookup a child trie node. 
  */ 
 private static class TrieChildRef extends TriePos { 
  int baseOid; 
   
  TrieChildRef(TriePos pos, int baseOid) { 
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   super(pos.node, pos.offset); 
   this.baseOid = baseOid; 
  } 
   
  public TrieChildRef(TrieNode node, int lastOffset, int baseOid) { 
   super(node, lastOffset); 
   this.baseOid = baseOid;    
  } 
 
  public int hashCode() { 
   return node.hashCode() + (offset + 1) * (baseOid + 1); 
  } 
   
  public boolean equals(Object o) { 
   TrieChildRef r = (TrieChildRef) o; 
   return r.node == node && r.offset == offset && r.baseOid == baseOid; 
  } 
 } 
 
 /** 
  * A node within the Trie.  Each node is linked to child nodes using a hashtable.  A TrieChildRef  
  * will serve as the key. 
  */ 
 private static class TrieNode { 
  int oids[];       
  TriePos parent;   
  int length;       
   
  TrieNode(int oids[], int offset, TriePos child, int length) { 
   this.oids = new int[oids.length - offset]; 
   System.arraycopy(oids, offset, this.oids, 0, oids.length - offset); 
   this.parent = child; 
   this.length = length; 
  } 
 
  TriePos insert(int[] oids, int offset) { 
   TriePos r =  insert(this, oids, offset); 
   return r; 
  } 
   
  static TriePos insert(TrieNode node, int[] oids, int offset) { 
   int nodeOffset = 0; 
   int lastOffset = 0; 
   while (nodeOffset < node.oids.length && offset < oids.length &&  
           node.oids[nodeOffset] == oids[offset]) { 
    lastOffset = nodeOffset; 
    nodeOffset++; 
    offset++; 
   } 
    
   if (offset == oids.length) { 
    return new TriePos(node, lastOffset); 
   } 
    
   TrieChildRef key = new TrieChildRef(node, lastOffset, oids[offset]); 
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   TrieNode parent = trieChildren.get(key); 
    
   if (parent != null) { 
    return insert(parent, oids, offset); 
   }  
    
   parent = new TrieNode(oids, offset, new TriePos(node, lastOffset),  
              node.length + nodeOffset); 
   trieChildren.put(key, parent); 
   TriePos pos = new TriePos(parent, oids.length - offset - 1); 
   return pos; 
  } 
 } 
 
 /** 
  * A concept within the lattice. A concept contains a reference into a trie representing a list of object  
  * ids, list of item ids, and a list of parents. The parents provide the edges between the concepts. 
  */ 
 public static class Concept { 
  int[] aids; 
  TriePos oids; 
  TriePos intersectOids; 
  List<Concept> parents; 
 
  public Concept(int aid, TriePos oids, int noParents) { 
   addAttr(aid); 
   this.oids = oids; 
   this. intersectOids = oids; 
   parents = new ArrayList<Concept>(noParents); 
  } 
 
  public void addAttr(int aid) { 
   if (aid < 0) { 
    return; 
   } 
   if (aids == null) { 
    aids = new int[1]; 
   } else { 
    int[] naids = new int[aids.length + 1]; 
    System.arraycopy(aids, 0, naids, 0, aids.length); 
    aids = naids; 
   } 
   aids[aids.length - 1] = aid; 
  } 
 } 
 
 /** 
  * A class defining a tuple that is placed into the ToProcessList. 
  */ 
 private static class IntersectInfo { 
  SetCmp type; 
  Concept concept; 
 
  public IntersectInfo(SetCmp type, Concept concept) { 
   this.type = type; 
   this.concept = concept; 
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  } 
 } 
 
 
 private int minSupport = 0; 
 private Concept bottom = new Concept(-1, null, 16); 
 private TrieNode root = new TrieNode(new int[0], 0, null, 0); 
 private enum SetCmp {UNKNOWN, EQ, SUBSET, SUPERSET, INTERSECT}; 
 private List<Concept> allConcepts = new ArrayList<Concept>(); 
 private int[] intersectBuff; 
 private static HashMap<TrieChildRef, TrieNode> trieChildren =  
           new HashMap<TrieChildRef, TrieNode>(); 
 private static HashMap<TriePos, Concept> trieConcepts = new HashMap<TriePos, Concept>(); 
 
 /** 
  * Construct an empty concept lattice. The minimum support is specified. 
  *  
  * @param minSupport - the minimum support 
  * @param buffSize -the size for an intersection buffer 
  */ 
 public OidTrieConceptLattice(int minSupport, int buffSize) { 
  this.minSupport = minSupport; 
  this.intersectBuff = new int[buffSize]; 
 } 
 
 /** 
  * Insert a new item into the concept lattice. 
  *  
  * @param iid - item id to be added 
  * @param oids - the list of object ids - passed as an int array 
  */ 
 public void insert(int iid, int[] oids) { 
  if (oids.length >= minSupport) { 
   insert(bottom, iid, root.insert(oids, 0));    
   for (Concept c : allConcepts) { 
    c. intersectOids = null; 
   } 
  } 
 } 
 
 /** 
  * The QuICL Oid-Trie incremental insert algorithm to insert a new item into the lattice 
  *  
  * @param baseC - concept above which a new concept is found or inserted 
  * @param iid - item id to be added 
  * @param oids - a trie position representing a set of object ids of objects holding the item 
  * @return the found or created concept 
  */ 
 private Concept insert(Concept bottom, int iid, TriePos oids) {  
  Concept trieConcept = trieConcepts.get(oids); 
  if (trieConcept != null) { 
   trieConcept.addAttr(iid);   
   return trieConcept; 
  } 
   
  // create the ToProcessList to hold tuples 
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  List<IntersectInfo> toProcessList = new ArrayList<IntersectInfo>(); 
 
  for (Concept parentC : bottom.parents) { // prepare-search phase 
   if (parentC.intersectOids == null) {      
    // Intersect and compare oids w/parentC.oids 
    TrieNode trie1 = oids.node; 
    TrieNode trie2 = parentC.oids.node; 
    int inx1 = oids.offset; 
    int inx2 = parentC.oids.offset; 
    int[] oids1 = trie1.oids;  
    int[] oids2 = trie2.oids;  
    int i1 = oids1[inx1]; 
    int i2 = oids2[inx2]; 
    int ipos = intersectBuff.length; 
  
    if (trie1 != trie2) { 
     for (;;) {    
      if (i1 == i2) { 
       intersectBuff[--ipos] = i1; 
       if (inx1 == 0) { 
        inx1 = trie1.parent.offset; 
        trie1 = trie1.parent.node; 
        if (trie1 == root) { 
         if (inx2 > 0 || trie2.parent.node != root) { 
         } 
         break; 
        } 
        oids1 = trie1.oids; 
        i1 = oids1[inx1]; 
        if (inx2 > 0 && trie1 == trie2) { 
         i2 = oids2[--inx2]; 
         break; 
        } 
       } else { 
        i1 = oids1[--inx1]; 
       } 
       if (inx2 == 0) { 
        inx2 = trie2.parent.offset; 
        trie2 = trie2.parent.node; 
        if (trie2 == root) { 
         break; 
        } 
        oids2 = trie2.oids; 
        i2 = oids2[inx2]; 
        if (trie1 == trie2) { 
         break; 
        } 
       } else { 
        i2 = oids2[--inx2];       
       } 
      } else if (i1 > i2) { 
       if (inx1 == 0) { 
        inx1 = trie1.parent.offset; 
        trie1 = trie1.parent.node; 
        if (trie1 == root) { 
         break; 
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        } 
        oids1 = trie1.oids; 
        i1 = oids1[inx1]; 
        if (trie1 == trie2) { 
         break; 
        } 
       } else {  
        i1 = oids1[--inx1]; 
       } 
      } else { 
       if (inx2 == 0) { 
        inx2 = trie2.parent.offset; 
        trie2 = trie2.parent.node; 
        if (trie2 == root) { 
         break; 
        } 
        oids2 = trie2.oids; 
        i2 = oids2[inx2]; 
        if (trie1 == trie2) { 
         break; 
        } 
       } else {  
        i2 = oids2[--inx2]; 
       } 
      } 
     } 
    } 
     
    int isize;  
     
    if (trie1 == trie2) { 
     if (inx1 < inx2) { 
      inx2 = inx1; 
     } else if (inx1 > inx2) { 
      inx1 = inx2; 
     } 
     isize= trie1.length + inx1 + 1 + (intersectBuff.length - ipos); 
    }else { 
     isize = intersectBuff.length - ipos; 
    } 
 
    // cache the result in the parent concept 
    if (isize == oids.getLength()) { 
     parentC.intersectOids = oids; 
    } else if (isize == parentC.oids.getLength()) { 
     parentC.intersectOids = parentC.oids; 
    } else { 
     if (isize < minSupport) { 
      parentC.intersectOids = rootPos; 
     } else { 
      if (trie1 == trie2) { 
       while (inx1 >= 0) { 
        intersectBuff[--ipos] = trie1.oids[inx1--]; 
       } 
       parentC.intersectOids = trie1.insert(intersectBuff, ipos); 
      } else { 
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       parentC.intersectOids = root.insert(intersectBuff, ipos);   
   
      } 
     } 
    }      
   }  
    
   if (parentC.intersectOids.getLength() < minSupport) { 
    continue; 
   } 
 
   // process the outcome of the intersection 
   if (parentC.intersectOids.getLength() == oids.getLength()) { 
    if (parentC.oids.getLength() != parentC.intersectOids.getLength()) {  // Subset 
     return insert(parentC, iid, oids); 
    } 
   } else {      
    if (parentC.oids.getLength() <= parentC.intersectOids.getLength()) {  // Superset 
     toProcessList.add(new IntersectInfo(SetCmp.SUPERSET, parentC)); 
    } else {                  // Intersect 
     toProcessList.add(new IntersectInfo(SetCmp.INTERSECT, parentC)); 
    } 
   } 
  }   
 } 
 
 /** 
  * Comparator used to sort concepts in descending order of support 
  */ 
 private static Comparator conceptComparator = new Comparator() { 
  public int compare(Object o1, Object o2) { 
   return ((Concept) o2).oids.getLength() - ((Concept) o1).oids.getLength(); 
  } 
 }; 
 
 /** 
  * Purge tuples in the ToProcesList that have intersection sets that are subsets of other intersection 
  * sets of other tuples 
  *  
  * @param toProcessList 
  */ 
 private void purgeSubsets(List<IntersectInfo> toProcessList) { 
  for (int i = 0; i < toProcessList.size() - 1; i++) { 
   IntersectInfo interInfo1 = toProcessList.get(i); 
   if (interInfo1.type != SetCmp.UNKNOWN) { 
    for (int j = i + 1; j < toProcessList.size(); j++) { 
     IntersectInfo interInfo2 = toProcessList.get(j); 
     if (interInfo2.type != SetCmp.UNKNOWN) {  
      TrieNode trie1 = interInfo1.concept.intersectOids.node; 
      TrieNode trie2 = interInfo2.concept.intersectOids.node; 
      int inx1 = interInfo1.concept.intersectOids.offset; 
      int inx2 = interInfo2.concept.intersectOids.offset; 
      int[] oids1 = trie1.oids;  
      int[] oids2 = trie2.oids;  
      int i1 = oids1[inx1]; 
      int i2 = oids2[inx2]; 
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      boolean subset = true; 
      boolean superset = true; 
       
      if (interInfo1.type == SetCmp.INTERSECT) { 
       if (trie1 != trie2) { 
        for (;;) { 
         if (trie1.length + inx1 > trie2.length + inx2) { 
          subset = false; 
          break; 
         } 
         if (i1 == i2) { 
          if (inx1 == 0) { 
           if (trie1.parent.node == root) { 
            break; 
           } 
           inx1 = trie1.parent.offset; 
           trie1 = trie1.parent.node; 
           oids1 = trie1.oids; 
           i1 = oids1[inx1];     
       
           if (inx2 > 0 && trie1 == trie2) { 
            i2 = oids2[--inx2]; 
            break; 
           } 
          } else { 
           i1 = oids1[--inx1];; 
          } 
          if (inx2 == 0) { 
           inx2 = trie2.parent.offset; 
           trie2 = trie2.parent.node; 
           oids2 = trie2.oids;     
        
           i2 = oids2[inx2]; 
           if (trie1 == trie2) { 
            break; 
           } 
          } else { 
           i2 = oids2[--inx2]; 
          } 
         } else if (i1 > i2) { 
          subset = false; 
          break; 
         } else { 
          superset = false; 
          if (inx2 == 0) { 
           if (trie2.parent.node == root) { 
            subset = false; 
            break; 
           } 
            
           inx2 = trie2.parent.offset; 
           trie2 = trie2.parent.node; 
           oids2 = trie2.oids;  
           i2 = oids2[inx2];  
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           if (trie1 == trie2) { 
            break; 
           } 
          } else { 
           i2 = oids2[--inx2]; 
          }  
         } 
        } 
       } 
       if (trie1 == trie2 && inx1 > inx2) { 
        subset = false; 
       } 
 
       if (subset) { 
        interInfo1.type = SetCmp.UNKNOWN;    
     
       } 
      } else { 
       subset = false; 
      } 
       
      if (interInfo2.type == SetCmp.INTERSECT && superset && !subset) { 
       if (trie1 != trie2) { 
        for (;;) { 
         if (trie1.length + inx1 < trie2.length + inx2) { 
          superset = false; 
          break; 
         } 
         if (i1 == i2) { 
          if (inx2 == 0) { 
           if (trie2.parent.node == root) { 
            break; 
           } 
           inx2 = trie2.parent.offset; 
           trie2 = trie2.parent.node; 
           oids2 = trie2.oids;     
        
           i2 = oids2[inx2];     
       
           if (inx1 > 0 && trie1 == trie2) { 
            i1 = oids1[--inx1]; 
            break; 
           } 
          } else { 
           i2 = oids2[--inx2]; 
          } 
          if (inx1 == 0) { 
           inx1 = trie1.parent.offset; 
           trie1 = trie1.parent.node; 
           oids1 = trie1.oids; 
           i1 = oids1[inx1]; 
           if (trie1 == trie2) { 
            break; 
           }       
     
          } else { 



296 

 

           i1 = oids1[--inx1]; 
          } 
    
         } else if (i1 < i2) { 
          superset = false; 
          break; 
         } else { 
          if (inx1 == 0) { 
           if (trie1.parent.node == root) { 
            superset = false; 
            break; 
           } 
            
           inx1 = trie1.parent.offset; 
           trie1 = trie1.parent.node; 
           oids1 = trie1.oids;  
           i1 = oids1[inx1];     
       
           if (trie1 == trie2) { 
            break; 
           } 
          } else { 
           i1 = oids1[--inx1]; 
          }  
         } 
        } 
       } 
       if (trie1 == trie2 && inx1 < inx2) { 
        superset = false; 
       } 
       if (superset) { 
        interInfo2.type = SetCmp.UNKNOWN;    
     
       }        
      } 
     } 
    } 
   } 
  } 
 } 
 
 public int getNoConcepts() { 
  return allConcepts.size(); 
 } 
} 
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Appendix E 

Implementation of Supporting Functions 

import java.io.FileNotFoundException; 
import java.io.FileOutputStream; 
import java.io.IOException; 
import java.io.PrintStream; 
import java.io.RandomAccessFile; 
import java.util.ArrayList; 
import java.util.Collections; 
import java.util.Comparator; 
import java.util.List; 
 
/** 
 * A test harness to run the QuICL algorithms and the iceberg modified GMA algorithm. 
 * This harness includes function to transpose a data set from horizontal to vertical representation. 
 *  
 * Synopsis: 
 *  
 * java BuildLattice [options] 
 *  
 * where options are: 
 *  
 *     -i [inputFile] - the input file 
 *     -f [format] - the file format: 
 *       ibm - horizontal text base series of numbers, tid oid no_ids [iid ...] per row 
 *   txt - horizontal text base series of numbers [iid ...] per row 
 *   vert - vertical binary series of numbers produced by this harnes 
 *   (default ibm) 
 *  -a [algorithm] - the selected agorithm: 
 *   oidfull - QuICL Oid-Full 
 *   oidless - QuICL Oid-Less 
 *   oidtrie - QuICL Oid-Trie 
 *   gma - GMA 
*   transpose – only create transpose file from horizontal input 
 *   (default oidfull) 
 *  -g [support] - the relative support, a real number between 1 and 0 (default 0). 
*  -G [support] - the absolute support. 
 *  -r [transposeFile] - a intermediate file in vertical format produced by this harness 
 *  -s [sortOrder] - items sorted by support (ignored if format is vert) 
 *   asc - ascending support order 
 *   desc -descending support order 
 *   (default unsorted) 
 *  -n [no rows] – Process only the first n objects in the data set (default all objects). 
 *  -m [no columns] – Process only the first m items in data set (default all items). 
 * 
 * @author David T. Smith 
 */ 
public class BuildLattice { 
 // internal interface used to hide disk vs. memory based input 
 public interface RandomAccess {  
  void seek(long offset) throws IOException; 
  void writeInt(int i) throws IOException;   
  int readInt() throws IOException; 
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  void setLength(long l) throws IOException; 
  String readLine() throws IOException; 
  long length() throws IOException; 
  long getFilePointer() throws IOException; 
 } 
 
 // disk based implementation of RandomAccess 
 private static class RandomAccessFileI extends RandomAccessFile implements RandomAccess { 
  public RandomAccessFileI(String fileName, String mode) throws FileNotFoundException { 
   super(fileName, mode); 
  } 
 } 
 
 // memory based implementation of RandomAccess 
 private static class RandomAccessByteI implements RandomAccess { 
  byte[] buffer = new byte[0]; 
  int pos = 0; 
 
  public void seek(long offset) throws IOException { 
   pos = (int) offset; 
  } 
 
  public void writeInt(int i) throws IOException { 
   for (int k = 3; k >= 0; k--) { 
    write((i >> (8 * k)) & 0xFF); 
   } 
  } 
 
  public int readInt() throws IOException { 
   return ((read() << 24) | (read() << 16) | (read() << 8) | read()); 
  } 
   
  public int read() throws IOException { 
   if (pos < buffer.length) { 
    return buffer[pos++] & 0XFF; 
   } else if (pos == buffer.length){ 
    pos++; 
    return -1; 
   } else { 
    throw new IOException("Read past EOF"); 
   } 
  } 
   
  public void write(int i)  { 
   buffer[pos++] = (byte) i; 
  } 
   
  public void setLength(long l) throws IOException { 
   byte[] newBuffer = new byte[(int) l]; 
   System.arraycopy(buffer, 0, newBuffer, 0, Math.min((int) l, 
     buffer.length)); 
   buffer = newBuffer; 
  } 
 
  public String readLine() throws IOException { 
   StringBuffer input = new StringBuffer(); 



299 

 

   int c; 
 
   loop: for(;;) { 
    switch (c = read()) { 
    case -1: 
    case '\n': 
     break loop; 
    case '\r': 
     long cur = pos; 
     if ((read()) != '\n') { 
      seek(cur); 
     } 
     break loop; 
    default: 
     input.append((char) c); 
     break; 
    } 
   } 
 
   if ((c == -1) && (input.length() == 0)) { 
    return null; 
   } 
    
   return input.toString(); 
  } 
 
  public long length() throws IOException { 
   return buffer.length; 
  } 
 
  public long getFilePointer() throws IOException { 
   return pos; 
  } 
 }  
 
 /** 
  * Internal class to transpose a horizontal file to vertical format 
  */ 
 private static class TransposeDB { 
  private static final int bufferSize = 1024; 
   
  private static class OidWriter {  
   RandomAccess out; 
   int aid; 
   int offset; 
   int support; 
   int[] oidBuffer = new int[bufferSize]; 
   int size = 0; 
 
   public OidWriter(int aid, RandomAccess out) { 
    this.aid = aid; 
    this.out = out; 
   } 
 
   public void incrSupport() { 
    support++; 
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   } 
    
   public int getSize() { 
    return (2 + support) * (Integer.SIZE / Byte.SIZE); 
   } 
 
   public int setOffset(int offset) throws IOException { 
    this.offset = offset; 
    out.seek(offset); 
    out.writeInt(aid); 
    this.offset += Integer.SIZE / Byte.SIZE; 
    out.writeInt(support); 
    this.offset += Integer.SIZE / Byte.SIZE; 
    return this.offset + (support * (Integer.SIZE / Byte.SIZE)); 
   } 
 
   public void appendOid(int oid) throws IOException { 
    if (size == bufferSize) { 
     flush(); 
    } 
    oidBuffer[size++] = oid; 
   } 
 
   public void flush() throws IOException { 
    if (size > 0) { 
     out.seek(offset); 
     for (int i = 0; i < size; i++) { 
      out.writeInt(oidBuffer[i]); 
     } 
     offset += size * (Integer.SIZE / Byte.SIZE); 
     size = 0; 
    } 
   } 
  } 
 
  ArrayList<OidWriter> oidWriters = new ArrayList<OidWriter>(); 
  ArrayList<Integer> oidWritersIndex = new ArrayList<Integer>(); 
  private boolean sortAsc; 
  private boolean sortDesc; 
  private int prefix; 
  private int oidInx; 
  private int nCols; 
  private int nRows; 
  private boolean hasTid; 
  private boolean hasOid; 
  private boolean hasCount; 
  private int countInx; 
 
  public TransposeDB(boolean hasTid, boolean hasOid, boolean hasCount, boolean sortAsc,  
          boolean sortDesc, int nCols, int nRows) throws IOException { 
   this.hasTid = hasTid; 
   this.hasOid = hasOid; 
   this.hasCount = hasCount; 
   this.sortAsc = sortAsc; 
   this.sortDesc = sortDesc; 
   this.nCols = nCols; 
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   this.nRows = nRows; 
   prefix = 0; 
   countInx = -1; 
   oidInx = -1; 
    
   if (hasTid) { 
    prefix++; 
   } 
   if (hasOid) { 
    oidInx = prefix; 
    prefix++; 
   } 
   if (hasCount) { 
    countInx = prefix; 
    prefix++; 
   } 
  } 
   
  public void rotate(RandomAccess in, RandomAccess out) throws IOException { 
   out.setLength(0); 
   prepVertical(in, out); 
   in.seek(0); 
   writeVertical(in);   
  } 
 
  private void prepVertical(RandomAccess in, RandomAccess out) throws IOException { 
   String line; 
   int noid = 0; 
   int nRows = 0; 
   while ((line = in.readLine()) != null) { 
    if (this.nRows >= 0 && nRows >= this.nRows) { 
     break; 
    } 
    nRows++; 
    line = line.replaceAll("[ ]+"," "); 
    String[] parts = line.split("[, ]"); 
    if (oidInx < 0) { 
        noid++; 
    } else { 
     int oid = Integer.parseInt(parts[oidInx]); 
     if (oid > noid) { 
      noid = oid; 
     } 
    } 
    for (int i = prefix; i < parts.length; i++) {  
     if (nCols > 0 && i - prefix >= nCols) { 
      break; 
     } 
     String part = parts[i]; 
     int aid = Integer.parseInt(part); 
     while (oidWriters.size() <= aid) { 
      oidWriters.add(null); 
     } 
 
     OidWriter oidWriter = oidWriters.get(aid); 
     if (oidWriter == null) { 
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      oidWriter = new OidWriter(aid, out); 
      oidWriters.set(aid, oidWriter); 
     } 
 
     oidWriter.incrSupport(); 
    } 
   } 
 
   for (int i = 0; i < oidWriters.size(); i++) { 
    oidWritersIndex.add(i); 
   } 
 
   if (sortAsc) { 
   Collections.sort(oidWritersIndex, new Comparator() { 
    public int compare(Object o1, Object o2) { 
     int inx1 = (Integer) o1; 
     int inx2 = (Integer) o2; 
     OidWriter oidWriter1 = oidWriters.get(inx1); 
     OidWriter oidWriter2 = oidWriters.get(inx2); 
     if (oidWriter2 == null) { 
      return 1; 
     } 
     if (oidWriter1 == null) { 
      return -1; 
     } 
     return oidWriter1.support - oidWriter2.support; 
    } 
   }); 
   }  
    
   if (sortDesc) { 
    Collections.sort(oidWritersIndex, new Comparator() { 
     public int compare(Object o1, Object o2) { 
      int inx1 = (Integer) o1; 
      int inx2 = (Integer) o2; 
      OidWriter oidWriter1 = oidWriters.get(inx1); 
      OidWriter oidWriter2 = oidWriters.get(inx2); 
      if (oidWriter1 == null) { 
       return 1; 
      } 
      if (oidWriter2 == null) { 
       return -1; 
      } 
      return oidWriter2.support - oidWriter1.support; 
     } 
    }); 
     
   } 
    
       long fileSize = 2 * (Integer.SIZE / Byte.SIZE); 
   for (int oidWriterIndex : oidWritersIndex) { 
    OidWriter oidWriter = oidWriters.get(oidWriterIndex); 
    if (oidWriter != null) { 
     fileSize += oidWriter.getSize(); 
    } 
   } 
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   out.setLength(fileSize); 
    
   int offset = 0; 
   out.seek(offset); 
   out.writeInt(noid);  
   out.seek(offset); 
   int i = out.readInt(); 
   offset += Integer.SIZE / Byte.SIZE; 
   out.writeInt(oidWriters.size() - 1); 
   offset += Integer.SIZE / Byte.SIZE; 
 
   for (int oidWriterIndex : oidWritersIndex) { 
    OidWriter oidWriter = oidWriters.get(oidWriterIndex); 
    if (oidWriter != null) { 
     offset = oidWriter.setOffset(offset); 
    } 
   } 
  } 
 
  private void writeVertical(RandomAccess in) throws IOException { 
   String line; 
   int oid = 0; 
   int nRows = 0; 
   while ((line = in.readLine()) != null) { 
    if (this.nRows >= 0 && nRows >= this.nRows) { 
     break; 
    } 
    nRows++; 
    line = line.replaceAll("[ ]+"," "); 
    String[] parts = line.split("[, ]"); 
    if (oidInx < 0) { 
        oid++; 
    } else { 
     oid = Integer.parseInt(parts[oidInx]); 
    } 
    for (int i = prefix; i < parts.length; i++) {     
     if (nCols > 0 && i - prefix >= nCols) { 
      break; 
     } 
     int aid = Integer.parseInt(parts[i]); 
     OidWriter oidWriter = oidWriters.get(aid); 
     if (oidWriter == null) { 
      System.out.println("error"); 
     } 
     oidWriter.appendOid(oid); 
    } 
   } 
 
   for (OidWriter oidWriter : oidWriters) { 
    if (oidWriter != null) { 
     oidWriter.flush(); 
    } 
   } 
  } 
 } 
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 public static void main(String[] args) throws IOException { 
  ParmParser parmParser = new ParmParser(args, "i: a:r:s:n:m:f:g:G "); 
 
  String inFileName = null; 
  String rotateFileName = null; 
  String sort = "none"; 
  String format = "vert"; 
  String algo = "oidfull"; 
  boolean sortDesc = false; 
  boolean sortAsc = false; 
  boolean hasOid = true; 
  boolean hasTid = true; 
  int     nCols = -1; 
  int     nRows = -1; 
  float   relativeSupport = 0; 
  int     absSupport = 0; 
 
  int c; 
  while ((c = parmParser.getopt()) != -1) { 
   switch (c) { 
   case 'f': 
    format = parmParser.getOptarg(); 
    if (format.equals("ibm")) { 
     hasTid = true; 
     hasOid = true; 
     hasCount = true; 
    } 
    if (format.equals("txt")) { 
     hasTid = false; 
     hasOid = false; 
     hasCount = false; 
    } 
    if (format.equals("vert")) { 
     hasTid = false; 
     hasOid = false; 
     hasCount = false; 
    } 
    break; 
   case 'i': 
    inFileName = parmParser.getOptarg(); 
    break; 
   case 'r': 
    rotateFileName = parmParser.getOptarg(); 
    break; 
   case 'a': 
    algo = parmParser.getOptarg(); 
    break; 
   case 's': 
    sort = parmParser.getOptarg(); 
    if (sort.equals("asc")) { 
     sortAsc = true; 
    } 
    if (sort.equals("desc")) { 
     sortDesc = true; 
    } 



305 

 

    break; 
   case 'g': 
    relativeSupport = Float.parseFloat(parmParser.getOptarg()); 
    break; 
   case 'G': 
    absSupport = Integer.parseInt(parmParser.getOptarg()); 
    break; 
   case 'n': 
    nCols = Integer.parseInt(parmParser.getOptarg()); 
    break; 
   case 'm': 
    nRows = Integer.parseInt(parmParser.getOptarg()); 
    break; 
   } 
  } 
   
  RandomAccess in; 
  RandomAccess rotate; 
   
  in = new RandomAccessFileI(inFileName,"r"); 
 
  if (!format.equals("vert")) { 
   if (rotateFileName == null) { 
    rotate = new RandomAccessByteI(); 
   } else { 
    rotate = new RandomAccessFileI(rotateFileName, "rw"); 
   } 
   TransposeDB rotator = new TransposeDB(hasTid, hasOid, hasCount, sortAsc, 
     sortDesc, nCols, nRows); 
   rotator.rotate(in, rotate); 
   in = rotate; 
   in.seek(0); 
  } 
   
  long latTime = 0;; 
     
  int noids = in.readInt(); 
  int naids = in.readInt(); 
   
  int minSupport = absSupport; 
   
  if (minSupport == 0) { 
   minSupport= (int) (noids * relativeSupport + .5); 
  } 
  
  if (minSupport == 0) { 
   minSupport = 1; 
  } 
     
  ConceptLattice cl = null; 
   
  if (algo.equals("gma ")) { 
   cl = new GMAConceptLattice(minSupport, noids);  
  } else if (algo.equals("oidfull")) { 
   cl = new OidfullConceptLattice(minSupport, noids);  
  } else if (algo.equals("oidless ")) { 
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   cl = new OidlessConceptLattice(minSupport, noids);  
  } else if (algo.equals("oidtrie")) { 
   cl = new OidTrieConceptLattice(minSupport, noids);  
  } else if (algo.equals("transpose")) { 
   System.exit(0); 
  } 
   
  Thread.currentThread().setPriority(Thread.MAX_PRIORITY); 
   
  while (in.getFilePointer() < in.length()) { 
   markTime = System.currentTimeMillis(); 
 
   int aid = in.readInt(); 
   int support = in.readInt(); 
    
   if (support < minSupport) { 
    in.seek(in.getFilePointer() + (support * 4)); 
    continue; 
   } 
    
   int[] oids = new int[support]; 
   for (int i = 0; i < support; i++) { 
    int oid = in.readInt(); 
    oids[i] = oid; 
   } 
       
   long markTime = System.currentTimeMillis(); 
   cl.insert(aid, oids); 
   latTime+= System.currentTimeMillis() - markTime; 
  } 
   
  double time = (System.currentTimeMillis() - startBuildTime) / 1000.0; 
  System.out.print(algo + "\t" + inFileName + "\t" + sort + "\t" + relativeSupport + "\t" +  
          cl.getNoConcepts() + "\t" + (latTime/1000.0)); 
 } 

} 
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Appendix F 

Empirical Data in Support of Algorithm Validity 
 Min 

Supp 

O
id

-F
ul

l 

O
id

-T
rie

 

O
id

-L
es

s 

C
H

A
R

M
 

C
H

A
R

M
-L

 

G
M

A 

MA
GA

LIC
E 

C
he

ss
 

95% 74 74 74 74 74 75 74 
90% 503 503 503 503 503 504 499 
85% 1,885 1,885 1,885 1,885 1,885 1,886 1,886 
80% 5,083 5,083 5,083 5,083 5,083 5,084 5,084 
75% 11,525 11,525 11,525 11,525 11,525 11,526 11,526 
70% 23,991 23,991 23,991 23,991 23,991 23,992   
65% 49,240 49,240 49,240 49,240 49,240 49,241   
60% 98,392 98,392 98,392 98,392 98,392 98,393   
55%  192,863 192,863 192,863 192,863 192,863 192,864   
50%   369,450 369,450 369,450 369,450     
45%   707,964   707,964 707,964     
40%       1,366,833 1,366,833     

M
us

hr
oo

m
 

50% 45 45 45 45 45 45 45 
40% 140 140 140 140 140 140 140 
30% 427 427 427 427 427 427 427 
20% 1,197 1,197 1,197 1,197 1,197 1,197 1,197 
10% 4,897 4,897 4,897 4,897 4,897 4,897 4,885 
5% 12,854 12,854 12,854 12,854 12,854 12,854 12,843 
1% 51,672 51,672 51,672 51,672 51,672 51,672 51,640 
0% 238,709 238,709 238,709 238,709 238,709 238,709 238,709 

P
um

sb
 

95% 110 110 110 110 110 111 111 
90% 1,466 1,466 1,466 1,466 1,466 1,467   
85% 8,513 8,513 8,513 8,513 8,513  8,514   
80%     33,295 33,295 33,295     
75%     101,047 101,047 101,047     
70%     241,258 241,258 241,258     
65%     496,069 496,069 496,069     
60%       1,074,627 1,074,627     

P
um

sb
* 

50% 248 248 248 248 248 249 253 
45% 713 713 713 713 713 714   
40% 2,610 2,610 2,610 2,610 2,610 2,611   
35% 6,133 6,133 6,133 6,133 6,133 6,134   
30% 16,154 16,154 16,154 16,154 16,154 16,155   
25%     42,756 42,756 42,756     
20%       122,262 122,262     

Table F.1: Algorithm validity as assessed by number of concepts.  Highlighted values are 
considered to be in error. 



308 

 

  Min 
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A
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M
AG

AL
IC

E 

T1
0I

4D
10

0k
 

2.000% 155 155 155 155 155 156 156 
1.000% 385 385 385 385 385 386 386 
0.500% 1,073 1,073 1,073 1,073 1,073 1,074 1,073 
0.300% 4,509 4,509 4,509 4,509 4,509 4,510 4,509 
0.100% 26,806 26,806 26,806 26,806 26,806 26,807 26,564 
0.050% 46,993 46,993 46,993 46,993 46,993 46,994 46,253 
0.030% 71,265 71,265 71,265 71,265 71,265 71,266 69,117 
0.010% 283,397 283,397 282,397 283,397 283,397 283,398   
0.005% 769,777 769,777 769,777 769,777 769,777 769,778   
0.000% 2,347,374 2,347,374 2,347,374 2,347,374 2,347,374 2,347,375   

T2
0I

10
D

10
k 

5.00% 72 72 72 72 72 73 73 
3.00% 389 389 389 389 389 390 390 
1.00% 5,582 5,582 5,582 5,582 5,582 5,583 5,451 
0.50% 23,394 23,394 23,394 23,394 23,394 23,395 22,538 
0.30% 44,925 44,925 44,925 44,925 44,925 44,926 44,926 
0.10% 209,436 209,436 209,436 209,436 209,436 209,437 176,749 
0.05% 576,021 576,021 576,021 576,021 576,021 576,022   
0.03% 1,438,054 1,438,054 1,438,054 1,438,054 1,438,054 1,438,055   
0.00% 2,557,928 2,557,928 2,557,928 2,557,928 2,557,928 2,557,929   

T2
0I

20
D

10
0k

 

3.00% 19 19 19 19 19 20 20 
2.00% 143 143 143 143 143 144 144 
1.00% 5,256 5,256 5,256 5,256 5,256 5,257 5,257 
0.50% 27,067 27,067 27,067 27,067 27,067 27,068   
0.30% 72,640 72,640 72,640 72,640 72,640 72,641   
0.10% 150,970 150,970 150,970 150,970 150,970 150,971   
0.05% 212,765 212,765 212,765 212,765 212,765 212,766   
0.03% 461,138 461,138 461,138 461,138 461,138 461,139   
0.01% 3,519,933 3,519,933 3,519,933 3,518,933    3,519,933   

Table F.1 continued: Algorithm validity as assessed by number of concepts.  Highlighted 
values are considered to be in error. 
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 Min 
Supp 

O
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C
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C
H

A
R

M
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M
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C
he
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95% 2.6400 2.6400 2.6400   2.6400 2.6400   
90% 3.6329 3.6329 3.6329   3.6329 3.6329   
85% 4.4019 4.4019 4.4019   4.4019 4.4019   
80% 5.0313 5.0313 5.0313   5.0313 5.0313   
75% 5.4893 5.4893 5.4893   5.4893 5.4893   
70% 5.8376 5.8376 5.8376   5.8376 5.8376   
65% 6.1719 6.1719 6.1719   6.1719 6.1719   
60% 6.5147 6.5147 6.5147   6.5147 6.5147   
55% 6.8544 6.8544 6.8544   6.8544 6.8544   
50%               
45%               
40%               

M
us

hr
oo

m
 

50% 1.9348 1.9348 1.9348   1.9348 1.9348   
40% 2.3121 2.3121 2.3121   2.3121 2.3121   
30% 2.9977 2.9977 2.9977   2.9977 2.9977   
20% 3.3222 3.3222 3.3222   3.3222 3.3222   
10% 3.8365 3.8365 3.8365   3.8365 3.8365   
5% 4.1670 4.1670 4.1670   4.1670 4.1670   
1% 4.7521 4.7521 4.7521   4.7521 4.7521   
0% 5.7093 5.7093 5.7093   5.7093 5.7093   

P
um

sb
 

95% 2.5135 2.5135 2.5135   2.5135 2.5135   
90% 4.0130 4.0130 4.0130   4.0130 4.0130   
85% 5.1671 5.1671 5.1671   5.1671  5.1671   
80%     6.1234   6.1234     
75%     7.0167   7.0167     
70%     7.8129   7.8129     
65%     8.3051   8.3051     
60%               

P
um

sb
* 

50% 2.8233 2.8233 2.8233   2.8233 2.8233   
45% 3.3768 3.3768 3.3768   3.3768 3.3768   
40% 4.2237 4.2237 4.2237   4.2237 4.2237   
35% 4.6920 4.6920 4.6920   4.6920 4.6920   
30% 5.1352 5.1352 5.1352   5.1352 5.1352   
25%     5.5662   5.5662     
20%         5.9408     

Table F.2: Algorithm validity as assessed by average degree. 
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T1
0I

4D
10

0k
 

2.000% 0.9936 0.9936 0.9936   0.9936 0.9936   
1.000% 1.0259 1.0259 1.0259   1.0259 1.0259   
0.500% 1.6760 1.6760 1.6760   1.6760 1.6760   
0.300% 2.5656 2.5656 2.5656   2.5656 2.5656   
0.100% 3.2665 3.2665 3.2665   3.2665 3.2665   
0.050% 3.0998 3.0998 3.0998   3.0998 3.0998   
0.030% 2.8808 2.8808 2.8808   2.8808 2.8808   
0.010% 2.8089 2.8089 2.8089   2.8089 2.8089   
0.005% 2.9980 2.9980 2.9980   2.9980 2.9980   
0.000% 4.2880 4.2880 4.2880   4.2880 4.2880   

T2
5I

10
D

10
k 

5.00% 0.9863 0.9863 0.9863   0.9863 0.9863   
3.00% 0.9974 0.9974 0.9974   0.9974 0.9974   
1.00% 3.5809 3.5809 3.5809   3.5809 3.5809   
0.50% 3.6799 3.6799 3.6799   3.6799 3.6799   
0.30% 3.5860 3.5860 3.5860   3.5860 3.5860   
0.10% 2.6348 2.6348 2.6348   2.6348 2.6348   
0.05% 2.7358 2.7358 2.7358   2.7358 2.7358   
0.03% 3.0100 3.0100 3.0100   3.0100 3.0100   
0.00% 4.2975 4.2975 4.2975   4.2975 4.2975   

T2
5I

20
D

10
0k

 

3.00% 0.9500 0.9500 0.9500   0.9500 0.9500   
2.00% 1.0903 1.0903 1.0903   1.0903 1.0903   
1.00% 3.5273 3.5273 3.5273   3.5273 3.5273   
0.50% 4.0862 4.0862 4.0862   4.0862 4.0862   
0.30% 4.7434 4.7434 4.7434   4.7434 4.7434   
0.10% 4.6427 4.6427 4.6427   4.6427 4.6427   
0.05% 4.5055 4.5055 4.5055   4.5055 4.5055   
0.03% 4.1401 4.1401 4.1401   4.1401 4.1401   
0.01% 3.6720 3.6720 3.6720     3.6720    

Table F.2 continued: Algorithm validity as assessed by average degree. 
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Appendix G 

Effect of Item Sort Order on Lattice Growth 

N 
Ascending Insertion Descending Insertion 

Item |Item O| |L| Item |Item O| |L| 

1 50 1,975 1 58 3,195 1 
2 19 1,980 2 52 3,185 3 
3 68 1,984 3 29 3,181 7 
4 70 2,007 4 40 3,170 15 
5 15 2,026 5 60 3,149 31 
6 11 2,129 6 36 3,099 63 
7 38 2,196 7 7 3,076 127 
8 27 2,205 8 62 3,060 191 
9 54 2,216 9 34 3,040 383 

10 21 2,225 10 56 3,021 767 
11 72 2,345 11 66 3,021 1,151 
12 74 2,407 13 48 3,013 2,303 
13 17 2,500 15 5 2,971 4,607 
14 31 2,526 18 9 2,874 8,063 
15 46 2,556 21 25 2,860 16,071 
16 44 2,612 26 3 2,839 21,319 
17 64 2,631 32 42 2,714 36,203 
18 42 2,714 46 64 2,631 47,537 
19 3 2,839 69 44 2,612 61,462 
20 25 2,860 99 46 2,556 72,178 
21 9 2,874 140 31 2,526 80,468 
22 5 2,971 219 17 2,500 87,314 
23 48 3,013 349 74 2,407 92,913 
24 56 3,021 568 72 2,345 93,407 
25 66 3,021 925 21 2,225 94,768 
26 34 3,040 1,600 54 2,216 96,010 
27 62 3,060 2,737 27 2,205 96,972 
28 7 3,076 4,626 38 2,196 97,867 
29 36 3,099 8,182 11 2,129 98,176 
30 60 3,149 12,484 15 2,026 98,264 
31 40 3,170 22,000 70 2,007 98,316 
32 29 3,181 35,377 68 1,984 98,383 
33 52 3,185 69,518 19 1,980 98,383 
34 58 3,195 98,392 50 1,975 98,392 

Table G.1: Effect of sort order on lattice growth using Chess data set at 60%supp.  Item 
and |Item O| is the item id and size of the item’s extent of the Nth item.  |L| is the size of 
lattice after insertion of the 1 through Nth item of the given sort order. 
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N 
Ascending Insertion Descending Insertion 

Item |Item O| |L| Item |Item O| |L| 

1 7032 15,223 1 7072 38,749 1 
2 4526 15,463 2 161 36,856 3 
3 7046 16,487 3 197 36,746 7 
4 4799 16,666 4 4502 36,492 15 
5 2354 16,736 5 84 36,475 23 
6 7052 17,230 7 4499 36,386 47 
7 7026 17,486 9 168 36,267 63 
8 167 18,513 10 4933 35,782 112 
9 0 18,629 11 4937 35,387 210 

10 6857 19,226 12 4496 34,214 418 
11 4953 19,349 13 277 34,042 605 
12 5946 19,349 13 4493 32,200 851 
13 6856 19,349 13 4503 29,661 927 
14 4786 19,414 14 4798 29,632 959 
15 70 19,930 15 4413 29,349 1,459 
16 7036 21,490 20 2297 29,189 1,674 
17 2299 21,636 21 7057 28,619 2,318 
18 155 21,690 22 4807 27,370 2,331 
19 4525 21,851 28 4833 27,370 2,331 
20 4680 21,916 40 6867 26,769 3,674 
21 4780 21,916 40 4527 26,481 3,682 
22 4518 22,007 63 4627 26,481 3,709 
23 6869 22,277 67 4727 26,481 3,709 
24 6922 22,277 67 4785 26,481 3,709 
25 66 22,339 68 2301 25,362 3,771 
26 7022 22,502 74 2401 25,362 3,771 
27 2300 23,684 76 15 24,822 3,908 
28 7042 24,150 83 4946 24,445 6,338 
29 111 24,206 84 14 24,224 6,353 
30 252 24,206 84 163 24,224 6,353 
31 14 24,224 85 111 24,206 6,372 
32 163 24,224 85 252 24,206 6,372 
33 4946 24,445 103 7042 24,150 6,398 
34 15 24,822 104 2300 23,684 6,493 
35 2301 25,362 106 7022 22,502 6,539 

Table G.2: Effect of sort order on lattice growth using Pumsb* data set at 30%supp.  Item 
and |Item O| is the item id and size of the item’s extent of the Nth item.  |L| is the size of 
lattice after insertion of the 1 through Nth item of the given sort order. 
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N 
Ascending Insertion Descending Insertion 

Item |Item O| |L| Item |Item O| |L| 

36 2401 25,362 106 66 22,339 6,721 
37 4527 26,481 125 6869 22,277 6,776 
38 4627 26,481 153 6922 22,277 6,776 
39 4727 26,481 153 4518 22,007 7,100 
40 4785 26,481 153 4680 21,916 8,761 
41 6867 26,769 205 4780 21,916 8,761 
42 4807 27,370 230 4525 21,851 11,130 
43 4833 27,370 230 155 21,690 11,235 
44 7057 28,619 273 2299 21,636 11,337 
45 2297 29,189 282 7036 21,490 12,593 
46 4413 29,349 314 70 19,930 12,613 
47 4798 29,632 343 4786 19,414 13,671 
48 4503 29,661 385 4953 19,349 13,685 
49 4493 32,200 553 5946 19,349 13,685 
50 277 34,042 740 6856 19,349 13,685 
51 4496 34,214 881 6857 19,226 13,885 
52 4937 35,387 1,106 0 18,629 13,908 
53 4933 35,782 1,416 167 18,513 13,910 
54 168 36,267 2,596 7026 17,486 14,900 
55 4499 36,386 4,928 7052 17,230 14,940 
56 84 36,475 6,396 2354 16,736 14,942 
57 4502 36,492 12,245 4799 16,666 15,303 
58 197 36,746 12,825 7046 16,487 16,104 
59 161 36,856 14,395 4526 15,463 16,110 
60 7072 38,749 16,154 7032 15,223 16,154 

Table G.2 continued: Effect of sort order on lattice growth using Pumsb* data set at 
30%supp.  Item and |Item O| is the item id and size of the item’s extent of the Nth item.  |L| 
is the size of lattice after insertion of the 1 through Nth item of the given sort order. 
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Appendix H 

Size of the QuICL, GMA, and CHARM-L Data Elements 

Table H.1 provides the memory consumption of the data elements in the QuICL, 

GMA and CHARM-L implementations.  These are based upon examination of the 

sources and applying the Java memory sizes given in Table H.2 

Data structure element Memory in bytes 
Object id  4 
Item in QuICL lattice 4 
Item in GMA and CHARM lattice  

Item references are stored in an ArrayList.  Therefore a factor of 1.5 is applied 
to account for unused capacity 

6 

Parent child link in QuICL Oid-Full or Oid-Trie lattice 
Parent child links are stored in an ArrayList.  Therefore a factor of 1.5 is applied 
to account for unused capacity.  Only a single reference is used to traverse 
from child to parent. 

6 

Parent child link in QuICL Oid-Less, GMA, or CHARM-L lattice 
Parent child links are stored in an ArrayList.  Therefore a factor of 1.5 is applied 
to account for unused capacity.  Furthermore, two references are used for each 
to enable bi-directional traversal. 

12 

Concept in QuICL Oid-Full lattice  
As determined by: 

3 × Object reference + 1 × ArrayList overhead + 1 × Object overhead + 
2 × array overhead. 

124 
 

Concept in QuICL Oid-Trie lattice (includes TrieNode overhead)  
Assume ratio of TrieNode to Concept is near 1.0 : 

5 × int + 9 × Object reference + 7 × Object overhead +  
2 × array overhead + 1 × ArrayList overhead. 

The seven objects are: a Concept, two TriePos, TrieNode, TrieChildRef, and 
two HashMapEntry. 

216 

Concept in QuICL Oid-Less lattice  
As determined by: 

5 × int + 7 × Object reference + 1 × Object overhead +  
2 × array overhead + 3 × ArrayList overhead. 

320 
 

Concept in GMA lattice  
As determined by: 

4 × Object reference + 1 × Object overhead + 1 × array overhead +  
3 × ArrayList overhead. 

276 

Concept in CHARM-L lattice  
As determined by: 

2 × int + 1 × long + 3 × Object reference + 1 × Object overhead +  
4 × ArrayList overhead. 

One ArrayList is a List of ArrayLists.  At least one ArrayList is assumed to be 
present in the List. 

356 

Table H.1: Memory consumption of QuICL, GMA, and CHARM-L data elements. 
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Java primitive or data structure Memory in bytes 
int  4 
long 8 
Object reference 4 
array overhead 12 
Object overhead 8 
ArrayList overhead (or similar structure)  

Value is based on assumption that a large number of ArrayLists will have a 
maximum size over the course of execution that is less than the default initial 
capacity.  

80 

Table H.2: Memory consumption of Java data elements. 
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Appendix I 

Calculated Memory Consumption 
 Min 

Supp 
Calculated Memory Consumption of QuICL Oid-Full in MBs (% of total) 

Actual 
Concepts Object Ids Items P-C Links Total 

C
he

ss
 85% 0 (1%) 21 (99%) 0 (0%) 0 (0%) 22 30 

75% 1 (1%) 119 (98%) 0 (0%) 0 (0%) 120 138 

65% 6 (1%) 450 (98%) 0 (0%) 2 (0%) 458 492 

55% 24 (2%) 1533 (98%) 0 (0%) 8 (1%) 1564 1656 

M
us

hr
oo

m 50% 0 (1%) 1 (99%) 0 (0%) 0 (0%) 1 8 

30% 0 (1%) 6 (99%) 0 (0%) 0 (0%) 6 13 

10% 1 (2%) 28 (97%) 0 (0%) 0 (0%) 29 42 

0% 30 (24%) 88 (70%) 0 (0%) 8 (7%) 126 153 

P
um

sb
 95% 0 (0%) 21 (100%) 0 (0%) 0 (0%) 21 29 

90% 0 (0%) 265 (100%) 0 (0%) 0 (0%) 265 287 
80% 1 (0%) 1467 (100%) 0 (0%) 0 (0%) 1468 1557 

P
im

sb
* 50% 0 (0%) 28 (100%) 0 (0%) 0 (0%) 28 38 

40% 0 (0%) 229 (100%) 0 (0%) 0 (0%) 229 263 

30% 2 (0%) 1114 (100%) 0 (0%) 0 (0%) 1116 1276 

T1
0I

4D
10

0k
 

0.500% 0 (2%) 5 (97%) 0 (0%) 0 (0%) 6 13 

0.100% 3 (11%) 27 (87%) 0 (0%) 1 (2%) 30 40 

0.050% 6 (15%) 32 (83%) 0 (0%) 1 (2%) 39 48 

0.010% 35 (40%) 48 (55%) 0 (0%) 5 (5%) 88 116 

0.005% 95 (56%) 61 (36%) 0 (0%) 14 (8%) 170 230 

0.000% 291 (68%) 77 (18%) 0 (0%) 60 (14%) 428 546 

T2
5I

10
D

10
k 1.000% 1 (17%) 3 (80%) 0 (0%) 0 (3%) 4 11 

0.500% 3 (26%) 8 (69%) 0 (0%) 1 (5%) 11 18 

0.100% 26 (53%) 20 (40%) 0 (0%) 3 (7%) 49 74 

0.050% 71 (65%) 28 (26%) 0 (0%) 9 (9%) 109 151 

0.000% 317 (73%) 49 (11%) 0 (0%) 66 (15%) 432 583 

T2
5I

20
D

10
0k

 1.000% 1 (2%) 27 (97%) 0 (0%) 0 (0%) 28 36 

0.500% 3 (4%) 87 (96%) 0 (0%) 1 (1%) 91 105 

0.100% 19 (8%) 216 (90%) 0 (0%) 4 (2%) 239 263 

0.050% 26 (10%) 232 (88%) 0 (0%) 6 (2%) 264 287 

0.010% 436 (49%) 458 (51%) 0 (0%) 0 (0%) 895 1094 

Table I.1: Calculated memory consumption of QuICL Oid-Full lattice.  Actual is the 
memory usage reported by the “Mem Usage” field of the Windows Task Manager upon 
termination of algorithm execution. 
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 Min 
Supp 

Calculated Memory Consumption of QuICL Oid-Trie in MBs (% of total) 
Actual 

Concepts Object Ids Items P-C Links Total 
C

he
ss

 85% 0 (10%) 4 (89%) 0 (0%) 0 (1%) 4 11 

75% 2 (11%) 20 (88%) 0 (0%) 0 (2%) 23 32 

65% 11 (12%) 79 (86%) 0 (0%) 2 (2%) 92 108 

55% 42 (13%) 278 (85%) 0 (0%) 8 (2%) 327 367 

M
us

hr
oo

m 50% 0 (2%) 0 (98%) 0 (0%) 0 (0%) 0 7 

30% 0 (4%) 2 (95%) 0 (0%) 0 (0%) 2 11 

10% 1 (9%) 10 (89%) 0 (0%) 0 (1%) 11 19 

0% 52 (53%) 38 (39%) 0 (0%) 8 (8%) 98 114 

P
um

sb
 95% 0 (0%) 21 (100%) 0 (0%) 0 (0%) 21 29 

90% 0 (0%) 264 (100%) 0 (0%) 0 (0%) 264 275 
80% 2 (0%) 1461 (100%) 0 (0%) 0 (0%) 1463 1552 

P
im

sb
* 50% 0 (0%) 27 (100%) 0 (0%) 0 (0%) 27 36 

40% 1 (0%) 197 (100%) 0 (0%) 0 (0%) 197 222 

30% 3 (0%) 941 (100%) 0 (0%) 0 (0%) 945 1024 

T1
0I

4D
10

0k
 

0.500% 0 (4%) 5 (95%) 0 (0%) 0 (0%) 5 13 

0.100% 6 (20%) 23 (78%) 0 (0%) 1 (2%) 29 40 

0.050% 10 (27%) 27 (71%) 0 (0%) 1 (2%) 38 48 

0.010% 61 (57%) 41 (38%) 0 (0%) 5 (4%) 107 129 

0.005% 166 (73%) 49 (21%) 0 (0%) 14 (6%) 229 261 

0.000% 507 (81%) 57 (9%) 0 (0%) 60 (10%) 624 820 

T2
5I

10
D

10
k 1.000% 1 (31%) 3 (66%) 0 (0%) 0 (3%) 4 12 

0.500% 5 (47%) 5 (48%) 0 (0%) 1 (5%) 11 19 

0.100% 45 (72%) 14 (22%) 0 (0%) 3 (5%) 63 82 

0.050% 124 (81%) 20 (13%) 0 (0%) 9 (6%) 154 181 

0.000% 553 (85%) 28 (4%) 0 (0%) 66 (10%) 647 945 

T2
5I

20
D

10
0k

 1.000% 1 (4%) 26 (95%) 0 (0%) 0 (0%) 27 37 

0.500% 6 (7%) 82 (93%) 0 (0%) 1 (1%) 89 105 

0.100% 33 (14%) 190 (84%) 0 (0%) 4 (2%) 227 256 

0.050% 46 (18%) 201 (80%) 0 (0%) 6 (2%) 253 287 

0.010% 760 (71%) 311 (29%) 0 (0%) 0 (0%) 1072 1349 

Table I.2: Calculated memory consumption of QuICL Oid-Trie lattice.  Actual is the 
memory usage reported by the “Mem Usage” field of the Windows Task Manager upon 
termination of algorithm execution. 
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 Min 
Supp 

Calculated Memory Consumption of QuICL Oid-Less in MBs (% of total) 
Actual 

Concepts Object Ids Items P-C Links Total 
C

he
ss

 85% 1 (86%)     0 (0%) 0 (14%) 1 9 

75% 4 (83%)     0 (0%) 1 (17%) 4 13 

65% 16 (81%)     0 (0%) 4 (19%) 19 43 

55% 62 (80%)     0 (0%) 16 (20%) 78 343 

M
us

hr
oo

m 50% 0 (93%)     0 (0%) 0 (7%) 0 8 

30% 0 (90%)     0 (0%) 0 (10%) 0 10 

10% 2 (87%)     0 (0%) 0 (13%) 2 22 

0% 76 (82%)     0 (0%) 16 (18%) 93 100 

P
um

sb
 95% 0 (91%)     0 (0%) 0 (9%) 0 8 

90% 0 (87%)     0 (0%) 0 (13%) 1 18 
80% 3 (84%)     0 (0%) 1 (16%) 3 100 

P
im

sb
* 50% 0 (90%)     0 (0%) 0 (10%) 0 11 

40% 1 (86%)     0 (0%) 0 (14%) 1 47 

30% 5 (84%)     0 (0%) 1 (16%) 6 234 

T1
0I

4D
10

0k
 

0.500% 0 (94%)     0 (1%) 0 (6%) 0 57 

0.100% 9 (89%)     0 (0%) 1 (11%) 10 77 

0.050% 15 (90%)     0 (0%) 2 (10%) 17 93 

0.010% 91 (90%)     0 (0%) 10 (10%) 100 205 

0.005% 246 (90%)     0 (0%) 28 (10%) 274 345 

0.000% 751 (86%)     0 (0%) 121 (14%) 872 896 

T2
5I

10
D

10
k 1.000% 2 (88%)     0 (0%) 0 (12%) 2 21 

0.500% 7 (88%)     0 (0%) 1 (12%) 9 25 

0.100% 67 (91%)     0 (0%) 7 (9%) 74 116 

0.050% 184 (91%)     0 (0%) 19 (9%) 203 235 

0.000% 819 (86%)     0 (0%) 132 (14%) 950 1156 

T2
5I

20
D

10
0k

 1.000% 2 (88%)     0 (0%) 0 (12%) 2 94 

0.500% 9 (87%)     0 (0%) 1 (13%) 10 114 

0.100% 48 (85%)     0 (0%) 8 (15%) 57 186 

0.050% 68 (86%)     0 (0%) 12 (14%) 80 199 

0.010% 1126 (100%)     0 (0%) 0 (0%) 1126 1306 

Table I.3: Calculated memory consumption of QuICL Oid-Less lattice.  Actual is the 
memory usage reported by the “Mem Usage” field of the Windows Task Manager upon 
termination of algorithm execution. 
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 Min 
Supp 

Calculated Memory Consumption of GMA in MBs (% of total) 
Actual 

Concepts Object Ids Items P-C Links Total 
C

he
ss

 85% 1 (2%) 21 (97%) 0 (0%) 0 (0%) 22 33 

75% 3 (3%) 119 (97%) 0 (0%) 1 (1%) 122 139 

65% 14 (3%) 450 (96%) 0 (0%) 4 (1%) 468 500 

55% 53 (3%) 1533 (96%) 0 (0%) 16 (1%) 1602 1656 

M
us

hr
oo

m 50% 0 (1%) 1 (99%) 0 (0%) 0 (0%) 1 11 

30% 0 (2%) 6 (98%) 0 (0%) 0 (0%) 6 16 

10% 1 (5%) 28 (95%) 0 (0%) 0 (1%) 29 40 

0% 66 (39%) 88 (52%) 0 (0%) 16 (10%) 170 194 

P
um

sb
 95% 0 (0%) 21 (100%) 0 (0%) 0 (0%) 21 36 

90% 0 (0%) 265 (100%) 0 (0%) 0 (0%) 265 298 
80% 2 (0%) 1467 (100%) 0 (0%) 1 (0%) 1470 1582 

P
im

sb
* 50% 0 (0%) 28 (100%) 0 (0%) 0 (0%) 28 42 

40% 1 (0%) 229 (100%) 0 (0%) 0 (0%) 229 259 

30% 4 (0%) 1114 (100%) 0 (0%) 1 (0%) 1119 1222 

T1
0I

4D
10

0k
 

0.500% 0 (5%) 5 (94%) 0 (0%) 0 (0%) 6 19 

0.100% 7 (21%) 27 (76%) 0 (0%) 1 (3%) 35 52 

0.050% 13 (28%) 32 (69%) 0 (0%) 2 (4%) 47 64 

0.010% 78 (57%) 48 (36%) 0 (0%) 10 (7%) 136 159 

0.005% 212 (71%) 61 (20%) 0 (0%) 28 (9%) 301 352 

0.000% 648 (77%) 77 (9%) 0 (0%) 121 (14%) 846 1048 

T2
5I

10
D

10
k 1.000% 2 (31%) 3 (64%) 0 (0%) 0 (5%) 5 14 

0.500% 6 (43%) 8 (50%) 0 (0%) 1 (7%) 15 24 

0.100% 58 (69%) 20 (23%) 0 (0%) 7 (8%) 84 104 

0.050% 159 (77%) 28 (14%) 0 (0%) 19 (9%) 206 235 

0.000% 706 (80%) 49 (5%) 0 (0%) 132 (15%) 887 1156 

T2
5I

20
D

10
0k

 1.000% 1 (5%) 27 (94%) 0 (0%) 0 (1%) 29 42 

0.500% 7 (8%) 87 (91%) 0 (0%) 1 (1%) 96 113 

0.100% 42 (16%) 216 (81%) 0 (0%) 8 (3%) 266 291 

0.050% 59 (19%) 232 (77%) 0 (0%) 12 (4%) 303 327 

0.010% 972 (68%) 458 (32%) 0 (0%) 0 (0%) 1430   

Table I.4: Calculated memory consumption of GMA lattice.  Actual is the memory usage 
reported by the “Mem Usage” field of the Windows Task Manager upon termination of 
algorithm execution. 
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 Min 
Supp 

Calculated Memory Consumption of CHARM-L in MBs (% of total) 
Actual 

Concepts Object Ids Items P-C Links Total 
C

he
ss

 85% 1 (83%)     0 (4%) 0 (12%) 1 10 

75% 4 (80%)     0 (5%) 1 (15%) 5 20 

65% 18 (78%)     1 (6%) 4 (16%) 23 63 

55% 69 (76%)     6 (7%) 16 (17%) 91 217 

M
us

hr
oo

m 50% 0 (91%)     0 (3%) 0 (6%) 0 12 

30% 0 (86%)     0 (5%) 0 (9%) 0 14 

10% 2 (83%)     0 (6%) 0 (11%) 2 22 

0% 85 (72%)     16 (14%) 16 (14%) 117 397 

P
um

sb
 95% 0 (90%)     0 (3%) 0 (8%) 0 24 

90% 1 (84%)     0 (4%) 0 (11%) 1 35 
80% 3 (81%)     0 (5%) 1 (14%) 4 48 

P
im

sb
* 50% 0 (88%)     0 (4%) 0 (8%) 0 32 

40% 1 (83%)     0 (5%) 0 (12%) 1 51 

30% 6 (80%)     0 (7%) 1 (14%) 7 84 

T1
0I

4D
10

0k
 

0.500% 0 (93%)     0 (2%) 0 (5%) 0 42 

0.100% 10 (87%)     0 (3%) 1 (10%) 11 76 

0.050% 17 (88%)     1 (3%) 2 (9%) 19 96 

0.010% 101 (89%)     3 (3%) 10 (8%) 114 284 

0.005% 274 (88%)     10 (3%) 28 (9%) 312 637 

0.000% 836 (84%)     37 (4%) 121 (12%) 994 1552 

T2
5I

10
D

10
k 1.000% 2 (86%)     0 (4%) 0 (10%) 2 21 

0.500% 8 (86%)     0 (4%) 1 (11%) 10 36 

0.100% 75 (89%)     2 (3%) 7 (8%) 84 184 

0.050% 205 (89%)     7 (3%) 19 (8%) 231 446 

0.000% 911 (84%)     39 (4%) 132 (12%) 1082 1548 

T2
5I

20
D

10
0k

 1.000% 2 (86%)     0 (3%) 0 (10%) 2 48 

0.500% 10 (84%)     0 (4%) 1 (12%) 11 115 

0.100% 54 (83%)     3 (4%) 8 (13%) 65 162 

0.050% 76 (83%)     4 (4%) 12 (13%) 91 207 

0.010% 1253 (100%)     0 (0%) 0 (0%) 1253   

Table I.5: Calculated memory consumption of CHARM-L lattice.  Actual is the memory 
usage from the “Mem Usage” field of the Windows Task Manager upon termination of 
algorithm execution. 
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