
Nova Southeastern University
NSUWorks

HCNSO Student Theses and Dissertations HCNSO Student Work

7-1-2012

Post-Release Survival and Habitat Utilization of
Juvenile Swordfish in the Florida Straits
Jenny Fenton
Nova Southeastern University, fenton.jl@gmail.com

Follow this and additional works at: https://nsuworks.nova.edu/occ_stuetd

Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and
Meteorology Commons

Share Feedback About This Item

This Thesis is brought to you by the HCNSO Student Work at NSUWorks. It has been accepted for inclusion in HCNSO Student Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Jenny Fenton. 2012. Post-Release Survival and Habitat Utilization of Juvenile Swordfish in the Florida Straits. Master's thesis. Nova
Southeastern University. Retrieved from NSUWorks, Oceanographic Center. (191)
https://nsuworks.nova.edu/occ_stuetd/191.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Focc_stuetd%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Focc_stuetd%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Focc_stuetd%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/occ_stuetd?utm_source=nsuworks.nova.edu%2Focc_stuetd%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/occ_stupub?utm_source=nsuworks.nova.edu%2Focc_stuetd%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/occ_stuetd?utm_source=nsuworks.nova.edu%2Focc_stuetd%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1126?utm_source=nsuworks.nova.edu%2Focc_stuetd%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/186?utm_source=nsuworks.nova.edu%2Focc_stuetd%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/186?utm_source=nsuworks.nova.edu%2Focc_stuetd%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu


1 

 

NOVA SOUTHEASTERN UNIVERSITY OCEANOGRAPHIC CENTER 

 

 

 

 

 

 

 

Post-Release Survival and Habitat Utilization of  

Juvenile Swordfish in the Florida Straits  

 

 

 

 

 

 

 

 

 

By 

Jenny Fenton 

 

Submitted to the Faculty of  

Nova Southeastern University Oceanographic Center 

in partial fulfillment of the requirements for  
the degree of Master of Science with a specialty in:  

 

Marine Biology 

 

 

 

Nova Southeastern University 

July 2012 



2 

 

Thesis of 

JENNY FENTON 

 

Submitted in Partial Fulfillment of the Requirements for the Degree of 

 

Masters of Science:  

Marine Biology 

 

  

Nova Southeastern University  

Oceanographic Center 

 

July 2012 

 

 

 

Approved: 

Thesis Committee 

 

 

Major Professor: _________________________________     

                               David Kerstetter, Ph.D. 

 

Committee Member: ______________________________ 

                           Arthur Mariano, Ph.D. 

                                                                                 University of Miami          

 

Committee Member: ______________________________ 

                             Mahmood Shivji, Ph.D. 

  



i 

 

Abstract  

The use of pop-up satellite archival tags (PSATs) eliminates many of the 

limitations associated with acoustic and conventional tags by using fishery-independent 

data collection and retrieval.  Previous research techniques have provided information on 

longer-term movements, migrations, and behavior patterns, but there is still a need for 

additional tagging studies using tags with depth and light data and increased memory that 

will further define the short-duration activity patterns and habitat utilization of juvenile 

swordfish in the western North Atlantic.  PSATs have been successfully used on other 

large pelagic fishes, but have yet to be used on juvenile swordfish.  This study 

investigated two main topics: a) the post-release survival rates of juvenile swordfish after 

being released from the recreational rod-and-reel fishery and commercial swordfish buoy 

gear fishery in the Florida Straits, and b) the habitat utilization of juvenile swordfish 

following release.  High-resolution PSAT technology was used to estimate the post-

release survival of 16 individual juvenile swordfish captured with standard recreational or 

buoy fishing gear and techniques in the southeast Florida swordfish fishery.  Analysis of 

release mortality estimates was done using the “Release Mortality” Program.  Five of the 

fourteen reporting tags showed a mortality within 48 hours, for a release mortality rate of 

35.7%.  However, no common thread could be found among the five mortalities.  Results 

of the Release Mortality program indicated that if the true mortality rate was 35.7%, 

approximately 1800 tags would have to be deployed to increase the precision of the 

mortality estimates to +/- 5% of the true value.  The nine surviving fish varied in straight-

line distance traveled and in direction, and could withstand a wide range of temperatures.  

A deterministic, periodic model was developed to fit to the data and describe the fishes’ 

habitat utilization.  This model identified both diurnal and lunar signals in the data, 

confirming that juveniles do move vertically based on the daily cycle of the sun and the 

lunar cycle of the moon and that their diurnal movements are much greater than their 

lunar movements.  The results of this study can be valuable to management practices in 

future stock assessments and decisions regarding mandatory release of undersized fish. 

 

Keywords: juvenile swordfish, post-release survival, habitat utilization, pop-up satellite 

archival tags
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1.0 Introduction 

 

1.1 Biology and Ecology 

The swordfish, Xiphias gladius Linneaus 1858 (Figure 1), is a monogeneric 

species (Family: Xiphiidae) that diverged from the istiophorid billfishes (marlin, sailfish, 

spearfish) approximately 3 million years ago (Fierstein and Stringer 2007).  It is a 

solitary, pelagic, oceanadromous species found in tropical, subtropical and temperate 

waters worldwide from 45 N to 45 S, in temperatures from 5-27 C, and can function at 

extreme pressures and temperatures (Palko et al. 1981; Carey 1982; Nakamura 1985; Van 

den Burg et al. 2005; Abid and Idrissi 2006).  Swordfish inhabit epipelagic and 

mesopelagic water masses (NMFS 2006) in zones of high food production and where 

major ocean currents meet (Sakagawa 1989).  In the western North Atlantic, the Gulf of 

Mexico and the Straits of Florida in the Gulf Stream are primary spawning grounds for 

swordfish (Arata Jr. 1954; Arnold Jr. 1955; Markle 1974; Beardsley 1978; Taylor and 

Murphy 1992; Arocha and Lee 1996).  Juvenile swordfish were frequently caught in the 

pelagic longline fishery along the Atlantic coast of Florida (NMFS 2006) until the closure 

of the area to the fishery in 2001.  Adults are primarily found in pelagic waters warmer 

than 18 C and as deep as 500 meters (m) in Florida, from the 100 m isobaths to the EEZ 

boundary (NMFS 1999, 2006).  Thus, the Gulf Stream is a primary habitat for swordfish 

(Sedberry and Loefer 2001; NMFS 2006).  Juveniles range in size from 120 to 177 

centimeters (cm) measuring from the tip of the lower jaw to the fork in the tail, 

abbreviated as the lower jaw-fork length or LJFL (SCRS 2000; Arocha et al. 2003).
1
   

Swordfish feed in mesopelagic waters during the day and epipelagic waters at 

night (Clarke et al. 1995; Chancollon et al. 2006).  However, longline catches indicate 

swordfish feed more often at night at the depths easily accessible by the fishery (De 

Sylva 1974).  Individuals prey upon fish, cephalopods and crustaceans (Palko et al. 1981; 

Nakamura 1985; Heemsoth 2009).  Dietary composition and prey size change with 

increasing age and size and regional variability, showing high individual plasticity in 

                                                
1 The literature states that juveniles range in size from 120 to 177 cm LJFL and that size at first maturity 

ranges from 156 to 179 cm LJFL.  While the terms juvenile and undersized are not synonymous, those 

terms are interchangeable for the purposes of this study. To avoid the question of whether or not a fish at or 

larger than 156 cm LJFL is mature, the maximum size for this study is 150 cm LJFL. 
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foraging behavior (Chancollon et al. 2006; Heemsoth 2009).  Evidence of large prey 

items in the diet of swordfish is also consistent with a solitary foraging strategy (Palko et 

al. 1981).   

 

1.2 Management 

Swordfish fall under the category of Highly Migratory Species in Annex I of the 

1982 United Nations Convention on the Law of the Sea (UNCLOS 1982).  On an 

international level, Atlantic fisheries for HMS species are managed by the International 

Commission for the Conservation of Atlantic Tunas (ICCAT).  ICCAT defines three 

separate stocks of swordfish within its Convention Area: the Mediterranean Sea, the 

North Atlantic and the South Atlantic.  Some studies suggest that a mixing of populations 

across the North and South Atlantic stocks may take place (Matsumoto et al. 2003) and 

that the North Atlantic stock could be separated  into western and eastern stocks (Neilson 

et al. 2009).  However, the North Atlantic stock is currently treated as one unit for 

management purposes and the two stocks are divided at 5 N, based on biological, genetic 

(Kotoulas et al. 1995; Bremer et al. 1996; Chow et al. 1997; Kasapidis et al. 2006; 

Kotoulas et al. 2006), and tagging studies (Abid and Idrissi 2006).  In the United States, 

the Highly Migratory Species Management Division of the National Marine Fisheries 

Service (NMFS), under the direction of the Atlantic Tunas Convention Act (ATCA) and 

the Magnuson-Stevens Fishery Conservation and Management Act (MSFCMA), is 

responsible for the management of all HMS species.  As required by ATCA, the HMS 

Management Division domestically implements ICCAT recommendations and the 

MSFCMA guides the development of domestic fishery management plans.   

The Standing Committee on Research and Statistics (SCRS) is the scientific body 

of the ICCAT Commission.  In 1990, the SCRS scientific consensus indicated that if the 

levels of swordfish mortality remained, the stock would decrease (Anonymous 1995).  

ICCAT therefore approved a 15% decrease in fishing mortality from the 1988 levels for 

the North Atlantic swordfish stock (Anonymous 1995).  Knowing the fishing mortality 

rates is vital to these assessments.  In 1991, the United States established a total allowable 

catch (TAC) for swordfish in attempts to reduce mortality (Matlock 1995).  A stock 

assessment was conducted in 1996 indicating the stock was still considered overfished.  
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Based on this assessment and due to the large number of juveniles being caught, NMFS 

closed the waters off the east coast of Florida to commercial pelagic longline fishing in 

2001 (NMFS 2000).  As of 2009, the North Atlantic stock was considered rebuilt (SCRS 

2009).   

The 1999 Final Fishery Management Plan for Atlantic Tunas, Swordfish, and 

Sharks (NMFS 2006) outlines the two primary management measures in the recreational 

fishery for Atlantic HMS: minimum size limits and bag limits.  ICCAT minimum size 

options for the entire Atlantic are: 125 cm LJFL with a 15% tolerance for undersized fish 

or 119 cm LJFL with zero tolerance and evaluation of the discards.  The recreational 

retention limit was established in 2003; it is one swordfish per person or three per vessel 

per day, whichever is less, regardless of trip length.  Owners of vessels landing swordfish 

in the recreational fishery are required to report their catches to NMFS within 24 hours.  

This applies to both private and charter (headboat) vessels, but not those participating in a 

NMFS-registered tournament.  All reported recreational swordfish landings count against 

the incidental swordfish quota (NMFS 1999, 2006).  The NMFS HMS Management 

Division monitors all swordfish tournaments by requiring organizers to register their 

tournament with the NMFS Recreational Billfish Survey Program (RBS Program).  

Although only a fraction of the registered tournaments should be then “selected” by the 

RBS Program for complete reporting of tournament landings and angler participation, all 

registered tournaments are “selected” for such reporting in practice. 

New ICCAT recommendations and resolutions were adopted for the conservation 

of North Atlantic swordfish at the 2011 Commission meeting (Meski 2011).  ICCAT 

recalled two previous recommendations, the Supplemental Recommendation by ICCAT 

to Amend the Rebuilding Program for North Atlantic Swordfish [Rec. 06-02] and the 

Recommendation by ICCAT for the Conservation of North Atlantic Swordfish [Rec. 10-

02], and made the determination that the total catch for all North Atlantic swordfish for 

any one year during the management period (2012-2013) will not exceed the TAC set at 

13,700 metric tons (mt).  The United States annual catch limit has been set at 3907 mt for 

the two-year period, 2012-2013.  The transfer of a limited percentage of the annual catch 

limits between ICCAT member countries is also allowed.  In instances where the annual 

TAC is exceeded, individual countries responsible for exceeding their limit must “pay 
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back” their overharvest by a reduction in catch limit in following years.  These 2011 

recommendations and resolutions replace those in the Recommendation by ICCAT for 

the Conservation of North Atlantic Swordfish [Rec. 10-02]. 

 

1.3 Tagging 

Traditional tagging of HMS like swordfish has provided some information on 

movements and growth (Beckett 1974), but other options are needed to determine 

residence times, short-term movements (Sedberry and Loefer 2001) and post-release 

survival.  Reporting rates with traditional tags from pelagic species are low, however 

(approximately 2%; see Beckett 1974; Jones and Prince 1998; Ortiz et al. 1998).  Low tag 

return from these species could be due to one or more of the following causes: high 

mortality resulting from capture and tagging, high rate of tag shedding, fouling organisms 

covering the tag, failure to report tag recoveries, and faulty tag mechanisms (Jolley Jr. 

and Irby Jr. 1979; Bayley and Prince 1994; Jones and Prince 1998). 

Acoustic tracking studies on other billfish (e.g., sailfish Istiophorus platypterus by 

Jolley Jr. and Irby Jr. 1979; black marlin Istiompax indica by Pepperell and Davis 1999) 

indicate relatively high post-release survival for several hours to a few days after tagging.  

Acoustic telemetry has been used for short-term movement and vertical migration studies 

of swordfish (Carey 1990), but such methods are only good for assessing behavior for 24-

48 hours (Sedberry and Loefer 2001; Horodysky and Graves 2005).  However, acoustic 

tracking methods are not effective tools for estimating long-term post-release mortality.  

This method is labor-intensive and requires real-time tracking from a research vessel or 

fixed listening stations (Carey and Robinson 1981).  Because of the high cost of ship and 

personnel time, relatively few animals have been studied using acoustic telemetry 

methods, and the variables between individual studies make cross-study comparisons 

difficult (Graves et al. 2002). 

Electronic archival tags have also been used to study swordfish (e.g., Holdsworth 

et al. 2007).  Archival tags have helped to provide understanding of migrations, behavior 

patterns, and environmental preferences (Luo et al. 2008).  Archival tags sample and 

archive temperature, depth, and light and bin the data.  The light level data can often be 

used to estimate longitude and latitude (Wilson et al. 1992; Hill 1994; Hill and Braun 
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2001), but archival tags have not been very effective at determining swordfish location in 

previous projects.  In the best scenarios, solely light-based geolocation estimates are only 

accurate to 0.2 - 0.9 degrees longitude and 0.6 - 4.4 degrees latitude (Welch and 

Eveson 1999, 2001; Schaefer and Fuller 2002).  Scientists have tried to use sea surface 

temperature (SST) data to increase position estimate accuracy (Domeier et al. 2004; 

Nielsen et al. 2006), but this method is only useful in areas with a significant horizontal 

temperature gradient (Domeier et al. 2004; Nielsen et al. 2006), and nearshore SST 

values are often not as accurate as those in the open ocean (Pearce et al. 2006).  Since 

these types of tags must also be returned to recover the data, and return rates in mark-

recapture studies are only around 1%, they are very inefficient when studying swordfish 

movement (Holdsworth et al. 2007). 

Pop-up satellite archival tags (PSATs) were developed in the late 1990s to track 

large pelagic fishes (Arnold and Dewar 2001; Gunn and Block 2001).  These electronic 

tags can collect environmental and physiological data over several days, months, or even 

years (Arnold and Dewar 2001; Gunn and Block 2001).  PSATs vary in the features they 

offer: number of functions (temperature, pressure, tag inclination, light level), 

deployment period or length, amount of and format in which they store data, the format 

in which the data is transmitted, emergency releases and programming, and cost 

(Kerstetter et al. 2003).  They record a variety of ambient environmental data including 

temperature, pressure (later converted to depth), tag inclination, and light level (later used 

in geolocation estimation).  The tags then detach at a pre-programmed time, float to the 

surface, and transmit the stored data to an Argos satellite.  With each pass of the satellite, 

more position, temperature, and pressure information is transferred and transmitted to a 

ground station and then to the investigator via the internet (Sedberry and Loefer 2001; 

Graves et al. 2002; Graves et al. 2003; Kerstetter et al. 2003; Grusha and Patterson 2005; 

Kerstetter and Graves 2008; Kerstetter et al. 2008).  Data transmits early if premature 

detachment occurs or there is a lack of vertical movement.  Mechanical and software-

based release mechanisms free the tag if it reaches a depth where it could be crushed 

(Grusha and Patterson 2005).   

Some types of PSATs “bin” the data into user-programmed summary histograms.  

However, this feature does not allow for reconstruction of short-duration movements 
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within each pre-determined time period (Graves et al. 2003; Kerstetter et al. 2008).  Data 

retrieval can be limited by data compression compensating for low data transfer rates, 

finite battery life, and high transmission errors (Arnold and Dewar 2001; Gunn and Block 

2001).  However, recovery rates of the stored data through the Argos system are as good 

as 90% in some cases (Block et al. 1998; Lutcavage et al. 1999).   

The size of the PSAT and the size of the animal must be considered: if the 

bioenergetic cost of “towing” the tag changes the animal’s behavior or survival, the 

information gained is therefore not representative of an untagged animal (Grusha and 

Patterson 2005).  These tags have been successfully deployed on bluefin tuna Thunnus 

thynnus thynnus (Block et al. 1998, 3-14 days and 60-90 days; Lutcavage et al. 1999; 

Block et al. 2001), swordfish (Sedberry and Loefer 2001), blue marlin Makaira nigricans 

(Graves et al. 2002, 5 days), white marlin Kajikia albida  (Kerstetter and Graves 2006, 43 

days), sailfish (Prince et al. 2006, 18 days), and escolar Lepidocynium flavobrunneum 

(Kerstetter et al. 2008, 14 days). 

The use of PSATs allows a researcher to overcome limitations associated with 

acoustic, conventional, or PAT type tags.  Rather than needing to physically track an 

animal or wait for the return of a tag (Kerstetter and Graves 2008), the tag automatically 

detaches from the fish and transmits the data through an orbiting satellite system.  Data 

collection with archival tags may be fishery independent but the data retrieval is fishery-

dependent in the sense that the scientist is dependent on the fishery to catch the fish and 

return the tag.  With PSATs, both data collection and retrieval are fishery-independent 

(Block et al. 1998).   

 

1.4 Study Summary 

Using the PSAT technology of the X-Tag designed by Microwave Telemetry Inc. 

(Columbia, MD, USA), this project investigated two topics: the post-release survival 

rates of 16 individual juvenile swordfish (size range limits, 50-150 cm LJFL) after being 

captured with standard recreational rod-and-reel fishing gear or buoy gear and techniques 

and released in the Florida Straits, habitat utilization of juvenile swordfish after resuming 

normal behavior following release.   
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This type of tag collects individual data points on the temperature, pressure 

(converted to depth) and light levels of the surrounding environment every 90 seconds for 

9.5 days following capture and release, allowing for a more detailed reconstruction of the 

vertical and horizontal profiles of these fish.  The tag functions and size of the 

Microwave Telemetry Inc. HR X-tag model pop-up satellite archival tag are optimal for 

this kind of study (Figure 2).  Swordfish are capable of carrying tags for several months; 

however, the swordfish in this study will be much smaller than previous studies.  Other 

work has shown that smaller individuals of other species (e.g., striped bass Morone 

saxitilis in Graves et al. 2009) of similar size have successfully carried these tags.  This 

model tag is small enough that it does not add a substantial amount of bioenergetic costs 

to the fish carrying it as to interfere with the fishes’ natural behavior.   Calculations of 

bioenergetic costs with tags of this size show that fish as small as 11.3 kg could carry this 

tag with a bioenergetic cost of < 10%, the commonly accepted threshold for changing 

behavior (Grusha and Patterson 2005).   

While post-release survival and habitat utilization of adult swordfish have been 

evaluated with pop-up satellite archival tags (Sedberry and Loefer 2001, 43 days; Canese 

et al. 2008, 4-120 days), no similar studies on juvenile swordfish have been conducted.  

Swordfish are both a commercially and recreationally significant species.  The current 

minimum retention size for swordfish (119 cm LJFL) is lower than the scientific 

estimates for size at first maturity (Arocha and Lee 1996, 179 cm; Mejuto and Garcia-

Cortes 2007, 156 cm; data from Table 3 in Abid and Idrissi 2006), suggesting that some 

juveniles are being retained in the U.S. recreational fishery.  Not all juveniles are 

undersized, but all undersized swordfish are juveniles.  Therefore, it is also important to 

know the habitat utilization of this species at this life stage. 
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2.0 Chapter 1: Post-Release Survival 

 

2.1 Introduction 

The recreational swordfish fishery began in the 1920s as an incidental overnight 

fishery to daytime yellowfin tuna Thunnus albacares trips from Massachusetts to New 

York (De Sylva 1974; NMFS 2006).  Fishing was mostly done by handline or rod and 

reel (NMFS 1999, 2006).  Angling for swordfish was primarily a sport for the wealthy 

due to the high cost of travel, boat time, and equipment (De Sylva 1974).  Many early 

descriptions of the recreational swordfish fishery (e.g., De Silva 1974, Beardsley and 

Conser 1981) considered swordfish to fall under the category of “billfish” or used the two 

words interchangeably, as the same wealthy anglers targeting swordfish opportunistically 

during the early years of the fishery were also targeting istiophorid billfishes.  The 

billfish fishery as a whole expanded geographically and demographically after World 

War II due to increased leisure time and affluence, better and cheaper air travel, and 

newer and better gear, vessels, and angling techniques (De Sylva 1974; Beardsley and 

Conser 1981).  Advances such as faster sportfishing vessels, electronic navigation and 

depth-finding gear, and improved tackle increased the efficiency of fishing for swordfish.  

By the 1960s, about 50 swordfish were caught annually with rod-and-reel recreational 

fishing gear (NMFS 1999).  Most fishing was done during the day and targeted large 

swordfish basking at the surface (Levesque and Kerstetter 2007).   

The popularity of recreationally targeting swordfish grew in areas such as Florida, 

the Bahamas, and southern California (De Sylva 1974).  Around 1976, it evolved into a 

year-round recreational rod-and-reel fishery off Florida with fishermen attracting 

swordfish with live or dead bait (NMFS 1999, 2006).  Swordfish anglers began using 

gear and techniques adopted from Cuban pelagic longline fishermen and istiophorid 

billfish recreational fishermen; drifting baited lines at various depths at night (Levesque 

and Kerstetter 2007).  The first recorded swordfish caught at night by a recreational 

fisherman were landed in Miami, FL in 1976 (Dunaway 1976).  The world’s first night-

time swordfish tournament was held in Miami, FL in 1977; 27 vessels landed 86 

swordfish (Levesque and Kerstetter 2007).  Fishing success increased with this technique 

(25-30 swordfish were landed in 1976, while 400-500 were landed in 1977) and its use 
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spread into the Gulf of Mexico and Atlantic coasts of the United States (Beardsley and 

Conser 1981; NMFS 1999, 2006).  In the early 1980s, there were a large number of big-

game fishing tournaments throughout the western North Atlantic Ocean and the Gulf of 

Mexico (Beardsley and Conser 1981).  However, with a combination of declining catch 

rates and an increase in commercial fishing effort, the popularity of fishing for swordfish 

decreased in the early 1980s.  The last swordfish tournament in southeast Florida during 

the early period of the fishery was held in 1983; no swordfish were landed at this event 

(NMFS 1999, 2006; Levesque and Kerstetter 2007). 

While the recreational swordfish fishery has declined dramatically in the past 

twenty years, it is rebuilding off the east coast of Florida (NMFS 1999, 2006).  The first 

tournament since 1983 was held in 2001 in Fort Lauderdale.  Three fish were landed and 

twelve more released (Leech 2007).  Three more tournaments were held in 2002 off the 

southeast coast of Florida (Levesque and Kerstetter 2007).  As of 2007, the United States 

was one of only three (including Venezuela and New Zealand) nations to have a well-

established recreational swordfish fishery (Levesque and Kerstetter 2007), although other 

locations (e.g., the Azores and the Cayman Islands) have since developed fisheries.  

Swordfish are still mainly recreationally targeted by anglers using rod-and-reel gear 

(NMFS 1999, 2006).  Common billfish bait includes mullet, bonefish, balao, ballyhoo, 

mackerel, barracuda, dolphin, rainbow runner, jacks, tuna, bonito, squid, and flyingfish.  

Artificial bait includes rubber squids, sauries, mackerel, bonito, halfbeaks, and eels (De 

Sylva 1974).  The amount of moonlight is thought to affect catch rates, with the best 

fishing considered to be on the brightest nights.  A review of the former commercial 

pelagic longline fishery in the Florida Straits found a significant positive relationship 

between moon illumination and targeted fishing depth (Lerner et al. in review)
2
.  A strong 

north or northeast wind is also thought to negatively affect catch rates in southeast 

Florida; local anglers prefer a light south or southeast wind (Levesque and Kerstetter 

2007).  In 2003, a Highly Migratory Species (HMS) Angling permit became a 

requirement to recreationally target any HMS species, including swordfish (NMFS 2006). 

                                                
2
 Lerner JD, Kerstetter DW, Prince ED, Talaue-McManus L, Orbesen ES, Mariano A, Snodgrass D, 

Thomas GL.   Swordfish Xiphias gladius vertical distribution and habitat use in relation to diel and lunar 

cycles in the western North Atlantic.  In review, Transactions of the American Fisheries Society. 
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The swordfish buoy gear (SBG) fishery originated around 2000 as an alternative 

to the closed pelagic long-line fishery in east coast Florida waters.  This gear employs a 

J-hook attached to a 150-200 m length of monofilament (or braided nylon mainline) 

which is then attached to a large lighted inflatable float or a “hi-flyer” radar-reflecting 

buoy.  This addition allows the gear to be monitored by the vessel during the nighttime 

fishing operations.  Vessels can successfully deploy and monitor up to fifteen of these 

individual pieces, although the number deployed varies between vessels (pers. comm., D. 

Kerstetter).  This set-up is deployed as an individual piece of gear; as such, each piece is 

believed to function more like a small, individual, segment of pelagic longline gear.  SBG 

is currently classified as “handgear” under federal regulations, permitting the use of J-

style hooks.  SBG may prove to be an enticing alternative to pelagic longline gear for 

directed swordfish permit holders in Florida, given the rise in fuel costs of traveling great 

distances to reach open fishing grounds and the increased pressure on those fishing 

grounds.  

The United States has long been an advocate for the release of small swordfish 

during international management discussions.  Domestically, any swordfish that cannot 

be landed because of fishery regulations must be released (NMFS 2010).  However, these 

juveniles need a reasonable probability that they will survive the catch-and-release 

experience for this management measure to be effective.  Implementing recreational 

fishing methods with the lowest post-release mortality rates for swordfish under the 

minimum size limit is beneficial to both recreational and commercial fisheries.  Despite 

the evidence of post-release survival of other large pelagic species (Graves et al. 2002; 

Kerstetter et al. 2003; Kerstetter and Graves 2008), international pelagic longline 

fisheries are resistant to accepting management practices requiring the release of live 

undersized swordfish.  Implementing those management practices would mean less 

money to the fisheries and most individual fishers do not believe that small swordfish 

survive the release (D. Kerstetter, pers. comm.).   
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2.2 Materials and Methods 

2.2.1 Tagging 

Tagging was conducted as swordfish became available, during nighttime, aboard 

pre-arranged volunteer recreational rod-and-reel and commercial swordfish buoy gear 

fishing vessels in the Florida Straits.  Tagging efforts were concentrated in U.S. federal 

waters (>3 nm from shore) from Marathon in the Florida Keys north to West Palm Beach.  

A total of sixteen tags were deployed, nine on swordfish caught by buoy gear and seven 

on swordfish caught by recreational rod-and-reel gear.  Thirty-nine recreational fishing 

trips and three buoy fishing trips were conducted. 

The fishing procedure was what is considered the “normal” fishing manner for 

recreational and buoy fishing vessels targeting swordfish.  The “normal” fishing manner 

for recreational vessels is that in which vessels drift rod-and reel fishing gear from a 

single boat at multiple depths from sunset to after midnight (Levesque and Kerstetter 

2007).  The “normal” fishing manner for buoy vessels is that in which vessels deploy 

several individual buoys connected to a baited hook by monofilament approximately 150-

200m long (Kerstetter and Bayse 2009).  Bait was either dead squid or live or dead fish.  

The terminal tackle was an offset J-style hook ranging in size from 8/0 to 11/0.   

Only live swordfish with a lower jaw fork length between 50 and 150 cm (19.7 to 

59.1 inches) scoring higher than a 2 on a modified “ACESS” condition scale were 

eligible for tagging.  All fish tagged in this study scored a nine or higher on the scale.  

The modified “ACESS” scale (see Kerstetter et al. 2003) was used to quickly evaluate the 

condition of the fish prior to tagging.  The scale contains six different characteristics of a 

fish (activity, color, condition of the eyes, stomach eversion, general state of body 

musculature, and level of bleeding) and for each category a value of 0, 1, or 2 is assigned.  

A fish can score a maximum value of 12, indicating little damage and most likely 

survival, or a minimum value of 0, indicating severe damage and suggesting likely death 

(Kerstetter et al. 2003; Kerstetter and Graves 2006; Kerstetter et al. 2011).  This method 

of evaluating the candidacy of a swordfish for tagging was implemented to qualitatively 

asses the fishes’ likelihood of survival and to remove assumptions or biases on the part of 

the researcher.  The standard for determining live or dead was a lack of movement per 

Falterman and Graves (2002).   
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The fish were not removed from the water for tagging, rather they were held 

along side the vessel until calm.  Each tag had an attachment leader with a modified tag 

head with “wings” of hydroscopic nylon (Figure 3).  Activation of the tag was done by 

removing the magnet from the tag a minimum five minutes prior to attachment 

(Microwave Telemetry 2010).  It was then inserted 5 cm below the midpoint of the 

anterior dorsal fin approximately 10-15 cm deep using a tagging applicator; this 

technique locks the wings in place behind the pterygiophore bones securing the tag.  

When possible, an additional NMFS streamer tag was attached posterior of the PSAT 

helping to further identify the fish to anglers as a research subject.  When the hook was 

easily accessible, it was removed.  If not, the leader was cut near the hook and the fish 

was released with the hook remaining in the animal.  Additional data was collected on the 

following parameters: fish lengths, estimated weights, hooking location on the animal, 

time of day, geographic location, and surface water temperature.  Once the fish was 

brought to the boat, the entire procedure lasted approximately two minutes.   

To characterize the catch composition and disposition of the catch and bycatch, 

scientific personnel were aboard each recreational swordfish fishing trip and buoy fishing 

trip to record catch and bycatch information during the project.  However, little empirical 

information is available on the catch composition of the recreational swordfish fishery.  

Therefore, standardized datasheets were created and used to obtain trip, environmental, 

gear, effort, and catch data (Appendix A).   

The tag used was a Microwave Telemetry, Inc. (Columbia, MD, USA) HR X-Tag 

pop-up satellite archival tag.  It weighs 40 grams, is 12 cm by 3.2 cm in size, and can 

sustain pressures up to 2500 m in depth.  The tag sensors collected individual data 

readings of temperature, pressure (depth) and light levels.  They were programmed to 

collect the data every 90 seconds and release from the fish after 9.5 days.  Data was then 

transmitted to an Argos satellite using trademarked SiV technology that transmits only 

when a satellite is in view and able to receive transmissions, thereby saving the internal 

tag battery power and increasing data recovery rates.  The data files were then retrieved 

from the Argos satellite and sent to the manufacturer, which decodes the raw data from 

transmitted hexadecimal code before sending it to the end-user scientist (Microwave 

Telemetry 2010).    



13 

 

The tags were programmed to detach in 9.5 days.  The number of days for this 

study was determined based on previous research.  Conventional tag recaptures of billfish 

a few days following release demonstrate a return to feeding behavior (Kerstetter and 

Graves 2008).  Deployment period ranging from 5 to 10 days are considered appropriate 

when studying post-release mortality of billfishes; studies on blue, white, and striped 

marlin all suggest that if a mortality occurs, it happens within a few hours of tagging 

(Block et al. 1992; Brill et al. 1993; Kerstetter et al. 2004; Horodysky and Graves 2005) 

and most mortalities occur within 144 hours of release (Domeier et al. 2003; Horodysky 

and Graves 2005; Kerstetter and Graves 2006).  Longer deployment periods increase 

chances of natural or fishing mortality, or tag malfunction or damage (Goodyear 2002; 

Kerstetter et al. 2004).  Also, there is a direct and negative, relationship between data 

resolution and deployment length due in large part to limited data transmission capability 

through the satellite system (P. Howey, Microwave Telemetry, Inc., pers. comm.).   

 

2.2.2 Data Analysis 

Previous post-release survival studies with istiophorid billfish have used water 

temperature changes, depth utilization profiles, and net displacement distance to 

successfully infer survival of the tagged billfish (Kerstetter et al. 2003; Horodysky and 

Graves 2005; Kerstetter and Graves 2008).  The same three attributes were used in this 

study.  Temperature, depth and light data were retrieved from the tags by downloading 

the data from the ARGOS satellite system.  Net displacement distance was calculated as 

the distance between the release location and the location of the first “good” transmission 

to the ARGOS satellite system (Horodysky et al. 2007; Kerstetter et al. 2008).  Locations 

of transmitting tags are determined through a Doppler shift in the signal and labeled by 

Argos with a location accuracy code; “good” locations are those with an accuracy code of 

1, 2, or 3
3
.  In cases where the first transmission was not given a good accuracy code, the 

next transmission within the first three hours to be given a good accuracy code was used 

                                                
3 The precision of location estimates is based on the attitude of the receiving satellite, with transmissions 

through the ARGOS system categorized into seven location accuracy codes.  Locations are considered 

“good” if the ARGOS system reported an accuracy code within 250 meters (code 3), 500 meters (code 2) or 

1500 meters (code 1). 
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instead (Collecte Localisation Satellites 2010).  Straight-line distances were calculated 

using Google Earth software (Google Inc. 2012).   

Bootstrapping simulations were conducted using RELEASE MORTALITY to 

examine the effects of the low sample size on the estimated 90% confidence intervals of 

the release mortality estimates (Goodyear 2002; Horodysky and Graves 2005).  Since it is 

unclear how mortality caused by the tagging experience might be separated from 

mortality caused by the catch-and-release experience, that variable was not included in 

the analysis.  A total of 10,000 simulations were conducted (per Horodysky and Graves 

2005).  The “release mortality fraction” was determined by dividing the number of fish 

that died within 48 hours of release by the total number of fish tagged and released.  The 

“days to full expression” was the number of days of tag deployment (9.5 days).  The 

number of tags included in these simulations was 14 and the programmed pop-off day 

was the length of the tag deployment (9.5 days).  Tag shedding and tag failure can bias 

the release mortality estimates upward.  Due to the short duration of tagging deployment, 

tag failure, tag shedding, and natural mortality assumed to be unlikely to occur and were 

given a value of zero.  The simulations started with the actual number of tags deployed in 

the study, the number was then exponentially increased, and the 90% confidence interval 

(the 5
th
 and 95

th
 percentile values) were plotted until the values were +/- 5% of the initial 

assumed true value. 

There were two tag failures out of the 16 tags that were deployed.  These tags 

were completely removed from the analysis based on the rationale of Goodyear (2002): 

“If the actual level of release mortality is low and the assumption is made that tag failures 

represent fish deaths, this can lead to overestimating the release mortality rate.”  This bias 

is completely removed when the tags that failed to report are eliminated from the 

analysis. 

 

2.3 Results  

In Figure 4, the data that was retrieved from each reporting tag is plotted, showing 

the vertical movement profile (depth) over time.  Five out of the 14 fish whose tags 

reported died within about a day of tagging (Fig 4a-d, k; Table 1).  Nine out of the 14 fish 

survived the full 9.5 days (Fig 4e-j, l-n; Table 1).   The ratio of tags deployed versus 



15 

 

number of tags that provided significant data in this study is comparable to or better than 

other similar studies (Matsumoto et al. 2003; Loefer et al. 2007; Canese et al. 2008; 

Neilson et al. 2009; Dewar et al. 2011).  

The results of the Release Mortality program are presented in Figure 5, which 

shows the 5
th
 and 95

th
 percentile values plotted for each increase of the sample size.  The 

true value, or release mortality fraction, is indicated by the middle, horizontal, dashed 

line.  The upper and lower dashed horizontal lines indicate the 5
th
 and 95

th
 percentile 

values of the actual release mortality value for the given sample size (x axis values).  The 

point at which the 5
th

 and 95
th
 percentile values are within +/- 5% of the true value 

determines the number of tags required to achieve a 90% probability that the estimate 

will be within +/- 5% of the true release mortality, assuming that no tags fail, no tags are 

shed, there is no tagging induced mortality, and no natural mortality occurs.  By 

increasing the sample size, the estimate becomes more precise.  With this model, the 

results of 10,000 simulated experiments with a true mortality rate of 35.7% indicated that 

approximate 90% confidence intervals for mortality estimates for an experiment 

deploying 14 tags on juvenile swordfish range from 14.3% to 57.1%, assuming that no 

tags fail, no tags are shed, there is no tagging induced mortality, and no natural mortality 

occurs.  

 

2.4 Discussion 

Two of the tags released on fish caught on recreational rod-and-reel gear did not 

report.  This is not an uncommon occurrence and has been seen in other studies (Sedberry 

and Loefer 2001; Dewar and Polovina 2005; Holdsworth et al. 2007; Loefer et al. 2007).  

Failure to report can be the result of the tag antenna being damaged and therefore not able 

to communicate with the satellite.  The tag could also become lodged underneath 

structure (including dense mats of floating Sargassum), keeping it from reaching the 

surface prior to the depletion of the battery.  The fish and the tag could have been 

consumed by a predator, destroying the tag.  The fish could have also been captured by 

someone unfamiliar with tags that chose to keep the tag somewhere where it cannot 

transmit; since the tags require a seawater ground for transmission, even keeping a tag 

dry on a vessel cockpit would preclude reporting.  Without the data from those tags, the 
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fate of those two fish cannot be determined, and they were excluded from all analyses so 

as not to introduce a bias into the study. 

Vertical profiles for the five fish that died during the study are presented in Figure 

4.  The fish in Figure 4a died within 6 hours of the catch, tag and release experience.  

This is a small enough window to speculate that death was related or due to the stress 

caused by that experience.  This was the smallest fish seen throughout the study, 

measuring only 85 cm (LJFL) and caught on manual rod-and-reel gear (Table 1).  This 

fish was not hooked, but wrapped in the lines of at least two rods for an undeterminable 

amount of time.  It was only during haul-back that it was noticed that the fish was 

wrapped in the lines.  The fish was determined to be in good enough condition to be 

included in the study, based on the ACESS scale.  A few factors can be attributed to this 

fish’s death.  The fish was presumably unable to move about for a period of time, and it 

possibly was not in good enough condition to endure the stress of the catch, tag and 

release process (signs of which were not evident based on the ACESS scale).  

In comparison, the fish in Figure 4b was the largest fish seen during the study, 

measuring 129 cm (LJFL).  It was also caught on rod-and-reel.  This fish only fought for 

25 minutes and was tagged and released within two minutes.  It was hooked in the jaw 

and the hook was removed.  According to the ACESS scale, it was deemed viable enough 

to be included in the study.  This fish survived for only 28 hours after release.  The 

window between the tagging event and death is small enough that the stress of the 

tagging even could be the cause of death.  However, not knowing what the fish 

experienced before or after the event, one can only speculate the true cause of death.  All 

that is known for certain is that it exhibited abnormal behavior and died. 

The fish represented in Figures 4c and 4d died immediately after the catch, tag 

and release experience.  The fish represented in Figure 4k survived for approximately 24 

hours after the catch, tag and release experience.  All of these fish were caught on buoy 

gear, were approximately the same size, hooked in the jaw, and the hook was removed.  

All three of these fish also shared one other common factor, tagging outcome.  The tag 

head and tether went through the fish with the tag head visible on the other side, a term 

referred to as “buttonholed” colloquially.  The fish in Figure 4c went momentarily slack.  

Given this information, it is possibly a tagging related death.  It is believed that the spine 
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of the fish in Figure 4d may have been hit during tagging.  This observation is based on 

the tagger being able to feel strong resistance when inserting the tag (that resistance most 

likely being bone) and a full body shudder from the fish at that moment.  Based on the 

field observations, and the resulting data, it is also possible that this is a tagging related 

death.  The fish in Figure 4k did not cease movement at any time, nor did it get hit in the 

spine and shudder.  It also survived for a full day before dying.  However, it was 

buttonholed during tagging.  So while the fish in Figure 4k could have been preyed upon, 

it was showing abnormal behavior after being released and it was buttonholed during 

tagging.  That may be the common thread to explain all three deaths. 

Successful, complete deployments were achieved for nine of the tagged and 

released fish (Fig. 4e-j, l-n; Table 1).  They were all tagged between June and December, 

and caught with both types of gear.  Sizes ranged from 90 cm to 121 cm (LJFL). Hooking 

varied between dorsal fin, jaw, gut, and being wrapped in the line. In each case the hook 

was removed, except for the gut hook that was left in.  Hook sizes ranged between 8/0 

and 11/0, and fight time ranged between 5 and 18 minutes.  When considering all 

parameters of the catch, tag and release experience, there is no clear common factor to 

explain the successful survival of these fish compared to the ones that died (Table 1). 

Based on the data collected at the time of each tagging, it seems that all fish 

tagged in this study experienced similar conditions during the catch, tag and release 

experience (Table 1).  There is no clear category in Table 1 that explains the cause of 

deaths or the survivals.  The only common thread is a unique event during all but one of 

the tagging experiences that resulted in death.  For one fish, it was being wrapped in 

fishing line and presumably not permitted to move and get enough oxygen flow.  For 

three other fish, they all shared the common factor of being buttonholed.  One of those 

same fish was mostly likely hit in the spine with the tagging applicator.  Another of those 

same fish went momentarily slack during tagging.  Conversely, while “buttonholing” 

those fish may have led to those deaths, there were two more fish that were buttonholed 

and survived the full deployment.  Two fish were deemed in need of resuscitation by the 

scientist and captain; this determination was made if the fish showed little to no 

aggressive movement after tagging. Of the fish that were deemed in need of resuscitation, 

those that were resuscitated survived.  
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While each fish did not have the same experience, they each suffered a unique 

event that could explain their death.  This holds true for all but one of the fish that died 

(Fig. 4b).  This was the largest fish tagged in the study at 129 cm LJFL.  It was caught on 

rod-and-reel, jaw hooked, the hook was removed, the hook was size 9/0, and it fought for 

25 minutes.  The only factor that may explain the fish’s death is: this fish had the longest 

fight time of all fish in the study.  Adult swordfish are known to fight for hours, and the 

cause of mortality resulting from a long fight time is that their weakened state increases 

the probability of becoming prey.  However, it is highly unlikely that a fight time of 25 

minutes resulted in the fish being in such a weakened state that it did not survive.  

Considering nothing is known about its experiences and behavior prior to tagging, no 

concrete determination can be made.   

Results of the Release Mortality program indicated that if the true mortality rate 

was 35.7%, approximately 1800 tags would have to be deployed to increase the precision 

of the mortality estimates to +/- 5% of the true value (Figure 5).  Conducting an 

experiment on that scale is currently not plausible, given the costs of the tags and the 

immense effort required to deploy them.  However, conducting these simulations can 

help to improve the estimates of total removals, which can subsequently be reflected in 

more accurate stock assessments (Goodyear 2002; Horodysky and Graves 2005). 

In this particular use of the Release Mortality modeling tool, tag shedding, tag 

failure and natural mortality were assumed to be zero due to the short duration of the tag 

deployment.  However, all three of these variables are likely to increase with a longer tag 

deployment and can all bias the release mortality estimate upward.  Since there is no 

positive, efficient way to confirm a tag shedding, tag failure, or even natural mortality 

event in connection with a non-reporting tag, it is difficult to account for those in the 

model.  Tag failures generate ambiguous results and should be minimized or eliminated 

from the analysis.  To minimize the occurrence of these scenarios, it is recommended to 

set the duration of tag deployment no longer than required for the majority of mortality 

instances to be fully expresses when estimating release mortality rates (Goodyear 2002).   

While this model is useful when estimating total removals from a population, 

there are some assumptions.  Each tagged fish is assumed to have the same probability of 

dying due to the catch-and-release experience.  In reality, many other variables factor into 
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the probability of death from catch-and-release: species, size of the fish, type of gear, 

type of hook, type of bait, skill level of the fishermen and captains, and environmental 

conditions (Goodyear 2002).  When designing a study, the researcher can control some of 

these variables (species, size of fish, type of gear, type of hook, type of bait), but some of 

the variables remain somewhat uncontrollable (skill level of the fishermen and captains, 

environmental conditions).  When using this model, it is important to keep in mind the 

uncontrollable variables of fishing and how those variables may affect the release 

mortality fraction. 
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3.0 Chapter 2: Habitat Utilization 

 

3.1 Introduction 

Studies show North Atlantic swordfish exhibit three generalized migration 

patterns varying in distance and direction.  They have been documented migrating 

northeastward in the summer and southwestward in the autumn, following the major 

currents in the North Atlantic Ocean, the Caribbean Sea, and the Gulf of Mexico (Mather 

et al. 1975; Palko et al. 1981; NMFS 2006).  Swordfish migrate westward toward the 

continental shelf in the summer and eastward into deeper water in the autumn (Palko et 

al. 1981).  They also exhibit diurnal movement patterns, spending the daylight hours at 

depths between 200 and 800 m and the nighttime hours between 0 and 160 m, 

presumably following prey abundance and distribution (Palko et al. 1981; Sedberry and 

Loefer 2001; Matsumoto et al. 2003; Takahashi et al. 2003; Dewar and Polovina 2005; 

Loefer et al. 2007; Canese et al. 2008; Abascal et al. 2010; Sepulveda et al. 2010; Dewar 

et al. 2011).  This diurnal movement can be referred to as an inverted U-shaped pattern of 

the depth distribution as their primary habitat is at depth.  The deepest depth ever 

personally observed was by G.R. Harbison in the Bahamas in 1984, who encountered a 

swordfish at 628 m from a submersible (described in Harbison and Janssen 1987), 

although records of deeper depths have been obtained from archival tagging (e.g., 1448 m 

by Lerner 2009). 

While previous research techniques have provided information on short-term 

movements, migrations, and behavior patterns, there is still a need for additional tagging 

studies with “second generation” tags with depth and light data and increased memory 

that will further define the activity patterns and migratory behavior of swordfish in the 

North Atlantic (Sedberry and Loefer 2001).  PSATs have been successfully used on other 

large pelagic fishes (Block et al. 2001; Horodysky et al. 2007; Kerstetter et al. 2008), but 

have yet to be used on juvenile swordfish.  Swordfish exhibit different habitat utilization 

and vertical movements than other large pelagic species, warranting a study of this 

nature.   

The type of tag being used in this study does not “bin” the data as seen in 

previously used PSATs (e.g. Kerstetter et al. 2008, Graves et al. 2003), rather it logs 
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individual linear data points (Figure 6) allowing for a more thorough profile of the 

swordfish’s behavior and habitat preferences (Microwave Telemetry 2010).  This type of 

data output directly leads to a more detailed description of swordfish behavior patterns.  

This is an increasingly important aspect of stock assessment modeling; more models are 

incorporating habitat preference data and this data can provide an experimentally-

generated estimate of the recreational fishing mortality of juveniles. 

 

3.2 Materials and Methods 

3.2.1 Tagging
4
 

Tagging was conducted as swordfish became available, at night, aboard pre-

determined volunteer recreational and buoy fishing vessels in the Florida Straits.  The tag 

used was a Microwave Telemetry, Inc. HR X-Tag pop-up satellite archival tag.  Fishing 

procedure was what is considered the “normal” fishing manner for recreation and buoy 

fishing vessels targeting swordfish.  Only live swordfish with a lower jaw fork length 

between 50 and 150 cm (19.7 to 59.1 inches) scoring higher than a 2 on the “ACESS” 

condition scale were tagged.  The standard for determining live or dead was a lack of 

movement per Falterman and Graves (2002).  The fish were not removed from the water 

for tagging, rather they were held along side the vessel until calm.  Each tag had an 

attachment leader with a modified tag head with “wings” of hydroscopic nylon (Figure 

3).  Activation of the tag was done by removing the magnet from the tag a minimum five 

minutes prior to attachment (Microwave Telemetry 2010).  It was then inserted 5 cm 

below the midpoint of the anterior dorsal fin approximately 10-15 cm deep using a 

tagging applicator; this technique locks the wings in place behind the pterygiophore 

bones securing the tag.  When possible, an additional NMFS streamer tag was attached 

posterior of the PSAT helping to further identify the fish to anglers as a research subject.   

The tags were programmed to detach in 9.5 days.  When the hook was easily 

accessible, it was removed.  If not, the leader was cut near the hook and the fish was 

released with the hook remaining in the animal.  Additional data was collected on the 

following parameters: fish lengths, estimated weights, hooking location on the animal, 

                                                
4 The Materials and Methods, Tagging section in Chapter 2 is a condensed version of the same section in 

Chapter 1.  This work will be submitted as two separate manuscripts for publication.  Please refer to the 

same section in Chapter 1 for more information. 
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time of day, geographic location and surface water temperature.  Net movement was 

estimated by determining the straight-line distance from the tagging location to the first 

location of reliable data transmission (Horodysky et al. 2007; Kerstetter et al. 2008) 

(Figure 7).  These data were used to analyze behavioral interactions with the fishing gear, 

such as habitat utilization patterns.  Data gathered by this study were also compared with 

other published descriptions of swordfish behavior for constancy.            

 

3.2.2 Data Analysis 

To analyze the habitat utilization patterns, a deterministic, periodic model has 

been developed to fit to the data.  The model was validated using adult swordfish and 

sailfish data and fits a line to the data elucidating any diurnal and lunar signals (Figures 

8-9).  This model has for amplitude parameters, two each for the diurnal and lunar cycles, 

and a mean depth value (Equation 1).  The amplitude of the diurnal signal is calculated 

from amplitude parameters 1 and 2 (Equation 2).  The amplitude of the lunar signal is 

calculated from amplitude parameters 3 and 4 (Equation 3).  When dep_t (Equation 1) is 

calculated for every time value and plotted with the time values, the resulting fit line 

shows the diurnal and lunar signals within the data.  The model was constructed using 

Matlab R2006a (The MathWorks Inc. 2006).  The time values were converted from the 

format Month/Day/Year, Hour:Minute:Second to decimal fractions of a day (i.e., 1.2 days 

from the start).  The depth values were mathematically manipulated to be depth 

deviations from the mean.   

Prior to using Equation 1, the amplitude parameters for the diurnal cycle (c1, c2, 

Equation 4) were calculated.  This calculation was done for each time value, the end 

result being a matrix with two values in each row, and the number of rows equal to the 

number of time values in the data set. The least square regression command was applied 

to the data (Equation 5), producing two coefficient values that are the amplitude 

parameters for the diurnal cycle.  Those coefficients were then used in Equation 6.  That 

equation calculates dep_t for every time value.  This gives the depth values that, when 

plotted with the time, give the diurnal signal.  Equation 7 calculates the residual values.  

For every depth deviation value associated with a time value, removing the fit value 

(calculated from Equation 6) gives the residual value.  This step removes this fit from the 
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depth deviations to form a depth residual data set, thus allowing one to then look for 

patterns (i.e. a lunar cycle) in the residual data set.   The same steps are then followed to 

calculate the coefficients (amplitude parameters) c3 and c4 for the lunar cycle from the 

residual data set (using Equation 8, then Equation 5).  Once all four coefficients are 

calculated, they are entered into Equation 1.  This equation calculates a dep_t value for 

every time value.  Equation 7 is repeated, removing the fit values from the depth values 

to calculate the residual values from the model (to be used in further calculations).  When 

the dep_t values are plotted with the time values and the original depth data, the resulting 

fit line shows the diurnal and lunar signals in the data (Figure 10).    

 

dep_t = = c1*cos(omeg1*t(i)) + c2*sin(omeg1*t(i)) + c3*cos(omeg2*t(i)) + c4*sin(omeg2*t(i)) + c5   (1) 

where:  cos is cosine (periodic function) 

 sin is sine (periodic function) 

 t(i) is the 1st value through the nth value of t 

 omeg1 is angular frequency of the diurnal cycle (ω=2∏/T where T = 1) 

omeg2 is angular frequency of the lunar cycle (ω=2∏/T where T = 28) 

c1, c2, c3, and c4 represent the amplitude parameters of the diurnal (c1 &  

c2) and lunar (c3 & c4) cycles 

  c5 is the mean depth value  

 

p1 = √(c1
2
 + c2

2
)                                                                                                                                            (2) 

 

p2 = √(c3
2
 + c4

2
)                                                                                                                                            (3) 

 

X = [cos(omeg1*t(i)) sin(omeg1*t(i))]                                                                                                         (4) 

 

x = lscov(A,b)                                                                                                                                                (5) 

 

dep_t = c1*cos(omeg1*t(i)) + c2*sin(omeg1*t(i))                                                                                      (6) 

 

res_t = dep_dev(i) - dep_t                                                                                                                            (7) 

 

X = [cos(omeg2*t(i)) sin(omeg2*t(i))]                                                                                                         (8) 
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 The correlation between the fishes’ movements was also analyzed.  Theoretically, 

as time passes, there is less correlation between events, and is quantified by the integral 

time scale.  The integral time scale is defined to be the integral of the correlation function 

over all positive temporal lags.  This value is, relative to the fit, a measure of time (in 

hours) in which motion is correlated.  The residual values calculated from Equation 1 in 

the model were used to calculate the integral time scale.  These values were averaged in 

one-hour bins and an input matrix was created, where the rows represented days and the 

columns represented the hourly bins.  In cases where gaps in the data were present, the 

available data was used to interpolate the missing values.  A covariance matrix, which 

calculates the sample variance of the values of a matrix, was calculated for the input 

matrix using the Matlab command “nancov”.  The variance of the data about the trend at 

hours 0 through 12 (Sh) was calculated from the covariance matrix data (Equation 9).  

Each of these values was then divided by S0 to calculate the autocorrelation value at each 

hour lag.  Twice the integral time scale is a measure of the time for auto-correlated events 

to become independent.  Estimates of the correlation function at discrete lags, tau, were 

calculated from residual depths using the best-fit harmonic model as the mean depth.  A 

general three parameter correlation, form C(1)cos(2 PI tau/C(2))exp-(tau^2/C(3)^2), 

was fit to the correlation estimates by minimizing the mean-square fitting error using a 

brute force method.  The integral time scale was calculated by integrating this best fit 

correlation function (see Garraffo et al. 2001 for details).  These steps were carried out 

for every full deployment record.   The integral time scale values were plotted against 

size, diurnal and lunar amplitude, mean depth, moon phase, and month of the year to 

determine a correlation.  Diurnal and lunar amplitude, mean depth, moon phase, and 

month of the year were also plotted against individual fish size (Figure 11).   

 
Σ Xij/n = Sh                                                                                                                                                  (9) 

where h=0:12 and 

at hour 0: i=1:24, j=1:24, n=24 

at hour 1: i=1:23, j=2:24, n=23 

at hour 2: i=1:22, j=3:24, n=22 

at hour 3: i=1:21, j=4:24, n=21 

at hour 4: i=1:20, j=5:24, n=20 

at hour 5: i=1:19, j=6:24, n=19 

at hour 6: i=1:18, j=7:24, n=18 

at hour 7: i=1:17, j=8:24, n=17 

at hour 8: i=1:16, j=9:24, n=16 

at hour 9: i=1:15, j=10:24, n=15 

at hour 10: i=1:14, j=11:24, n=14 

at hour 11: i=1:13, j=12:24, n=13 

at hour 12: i=1:12, j=13:24, n=12 
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The depth over time profile was also plotted over temperature data collected from 

the tags from fish that survived release (Figure 12).  The data from the two fish that died 

immediately are not included as their temperature data did not reflect survival and 

movement.  The temperature data was binned in 30 minute and 5 m depth increments and 

structured in a matrix format, with the rows representing depth and the columns 

representing half-hour bins.  The temperature data for the entire length of the deployment 

was interpolated from the temperature data given, and plotted with the depth and time 

data (original Matlab code courtesy of A. Bever, Virginia Institute of Marine Science, 

pers. comm.).  

Two additional summary figures were created.  Figure 13 is in 3D format, 

showing the mean, diurnal, and lunar amplitude values calculated by the model and the 

integral time scale values for each tag that reported data from a surviving swordfish (the 

two that died immediately are not plotted).  The three markers without a paired integral 

time scale value represent the three fish that died within a day of being released, no 

correlation data could be ascertained from those short records.  Figure 14 shows the 

diurnal and lunar amplitude around the mean for each surviving swordfish (the two that 

died immediately are not plotted).  

Testing of the model with adult swordfish and sailfish data validated the model’s 

output (Figures 8-9).  The adult swordfish data used to test the model were shared from 

previous work by Lerner (2009).  The tags used in that study were Mk10 PAT tags, 

programmed at a 30 second sampling interval and 1 hour bins, so the data points plotted 

are hourly binned data.  The data is uneven in time, so the plot of the fit to the data is not 

purely periodic.  The tagging was done in the Florida Straits.  The adult sailfish data used 

to test the model were shared from Kerstetter et al. (2008, 2011).  The tags used in that 

study were PTT 100 HR tags, programmed at a 95 second sampling interval, giving a 10 

day record.  The tagging was done in the Southeast Gulf of Mexico and the Florida 

Straits. 

By conducting a sensitivity analysis with five sets of data from each species, it 

was determined that by removing the upper 20 m data points from the juvenile swordfish 

files and the 0 m data points from the sailfish files, a better, more enhanced periodic 

signal could be extracted from the data (Table 2).  A sensitivity analysis evaluates how 
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the output changes when the input is changed; in this case, it is how the diurnal and lunar 

signals and mean value change when a certain section of the input data is removed.  The 

analysis was run for the following scenarios for sailfish: case 1= includes all data, case 2 

= without 0 meter data, case 3 = without 0-5 meter data.  The analysis was run for the 

following scenarios for swordfish: case 1= includes all data, case 4 = without 0-10 meter 

data, case 5 = without 0-20 meter data.    

The 0-5 m data in the sailfish files composes an average of 63.65% of the data, 

while the 0 m data alone composes an average of 33.87% of the data.    Removing 

63.65% of the sailfish data could weaken the accuracy of the results from the model.  

However, the periodic signal in the sailfish data can be enhanced when the 0 m data is 

removed as compared to using the full data set.  Based on those two observations, the 

decision was made to remove the 0 m data from the sailfish files when evaluating the 

vertical behavior with the model.  The 0-10 m data in the swordfish files composes an 

average of 5.44% of the data, while the 0-20 m data composes an average of 12.63% of 

the data.  The removal of the 0-30 m data was investigated, however, that would be a 

16.37% removal of data, possibly weakening the accuracy of the results from the model, 

and was therefore considered not a reliable option.  The periodic signal in the swordfish 

data is enhanced when the 0-10 m data is removed and when the 0-20 m data is removed; 

the difference in the fitting error values obtained from the model in either scenario is less 

than 10%.  By removing the 0-20 m data points (only 12.63% of the data) the surface is 

not over-sampled, thus leading to larger lunar amplitudes.  Based on these observations, 

the decision was made to remove the 0-20 m data from the swordfish files when 

evaluating the vertical behavior with the model. 

 

3.3 Results 

In this study, forty-two trips were conducted using recreational rod and reel gear 

and buoy gear from August 2010 to January 2012.  A total of 16 tags were deployed on 

juvenile swordfish in the Florida Straits.  All tagged fish were caught (and released in the 

same location) off the coast of South Florida, on the Florida shelf between Miami and 

Jupiter (Figure 7).  Sizes ranged from 85 cm to 129 cm LJFL.  Two fish died 

immediately, three showed erratic behaviors and died shortly after release, two tags never 
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reported, and nine carried the tag for the full 9.5 days (Table 1).  Results from several 

trips were no activity or only catching sharks.    

Figures created from the model for all reporting tags on fish that survived release, 

showing movement in the water column and diurnal and lunar signals, are presented in 

Figure 10.  Figures showing the depth over time profile of the fish with the water 

temperature are presented in Figure 12.  Table 1 presents data on tag number, date 

tagged, platform, length, hook location on the fish, hook status (wrapped in line, left in or 

removed), hook sizes used in the study, fight time, survival, straight-line distance each 

fish traveled, sub-figure of Figure 7 that the track is in, diurnal amplitude, lunar 

amplitudes, mean depth, temperature range, and lunar phase for all tags deployed.  

Testing of the model with adult swordfish and sailfish data validated the model’s 

output (Figures 8-9).  In tests run with adult swordfish data, a clear diurnal signal can be 

seen in the figures (Figure 8).  In tests run with adult sailfish data, a clear diurnal and 

lunar signal can be seen in the figures (Figure 9).  Proof of diurnal movements in adult 

swordfish has been demonstrated in other studies (Sedberry and Loefer 2001; Takahashi 

et al. 2003; Dewar and Polovina 2005; Loefer et al. 2007; Lerner 2009; Abascal et al. 

2010; Sepulveda et al. 2010), confirming the validation of the model.     

The three fish that died shortly after release all remained in the upper 140 meters 

of the water column and in waters 20-26°C until their deaths (Figures 4a,b,k; Figures 

12a,b,i).  The nine fish that survived the full deployment showed a wide range of depths 

encountered.  Collectively, they spent the nighttime hours in waters 0-200 m in depth, 

with occasional nighttime depths of 200-350 m.  Daytime depths ranges were 400-750 m, 

with occasional daytime depths of 250-400 m (Figures 4e-j, l-n).  Temperatures 

encountered ranged from a maximum of 31°C at the surface to a minimum of 6°C at 

maximum depths (Figure 12c-h, j-l).   

The calculations of the integral time scale for each record show that the amount of 

time in which the movements were correlated ranged from 2.8 to 10.5 hours (Figure 13).  

The limited analysis of a correlation between the integral time scale values and various 

variables shows a positive correlation between the integral time scale and size, lunar 

amplitude, month of the year and mean depth (Figure 11a, c, e, f).  No clear trend was 

evident when comparing the integral time scale value to diurnal amplitude or moon phase 
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(Figure 11b, d).  A positive correlation is indicated between size and lunar amplitude, 

month of the year and moon phase (Figure 11h, k, j), while a negative correlation is 

indicated between size and diurnal amplitude and size and mean depth (Figure 11g, i).    

In five of the nine full tracks (Figure 4e, 4f, 4h, 4j, 4m), the swordfish rose to the 

surface during the day for a period of time and then descended again.  In one case, the 

fish reached the surface (Fig 4m, delineated by 0 m depth data). The fish showed this 

behavior twice on day two for a total of approximately 1.85 hours or 0.81% (Figure 4m).  

In the other four cases the fish rose to shallow depths but did not reach a 0 m depth.  

Amount of time spent in surface waters during the day was 4.05 hours or 1.77% for the 

fish in Figure 4e, 3.41 hours or 1.5% for the fish in figure 4f, 6.66 hours or 2.91 % for the 

fish in figure 4h, 2.95 hours or 1.29% for the fish in figure 4j.   

 

3.4 Discussion 

3.4.1 Horizontal Movements 

Research fishing trips were conducted throughout the year, but tagging was only 

conducted between June and January, possibly suggesting seasonality in residence time 

of the fish.  The results of a study by Neilson et al (2009) demonstrated seasonal 

residence time in temperate and tropical waters.  However, the tagging trips conducted in 

this study were done on an opportunistic basis, not regularly, so some months saw more 

trips than others, possibly biasing the suggestion of seasonality.  Also, the short-duration 

tags used here do not provide enough information to assess the possibility of seasonality.   

All tagging locations, pop-off locations, and a line indicating the straight-line 

distance traveled for all reporting tags were plotted in Google Earth and are presented in 

Figure 7.  The straight-line distance traveled in kilometers (km) is presented in Table 1.  

All tagged fish were caught on the Florida shelf between Miami and Jupiter, off the coast 

of South Florida (Fig. 7a).  Upon observation, the tags could be sorted into three 

categories.  Three of the tagged fish remained in the area, and thus has the shortest tracks, 

residing in waters between Miami and West Palm Beach (Fig. 7b).  Three of the fish 

moved away from the tagging area, heading in a mostly north direction (Fig. 7c).  Eight 

of the fish moved away from the tagging area, heading in a north-east direction, more 

towards the open waters of the Atlantic (Fig. 7d).   
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When considering each case individually, and comparing the distance traveled to 

the survival time, a pattern appeared.  The three fish with the shortest tracks (Fig 7b), 

shared one variable in common, they each survived for the full deployment period of the 

tag (Fig. 4i, 4l, 4n; Table 1).  This indicates that the fish were not simply moving along 

with the current, they were exhibiting control over their movements and a choice to stay 

in the same location, most likely due to a sufficient food source.   

Of the three fish that moved northward, only one survived for the full deployment 

period (Fig. 4j Table 1).  It also had the shortest track of that group (Fig. 7c).  The long 

straight-line distance of the two fish that died after being caught, tagged, and released 

show they traveled farther (Fig. 7c, Table 1).  One explanation for that could be that 

while the fish didn’t live very long after tagging, the tag sank with the fish, was still 

attached for a period of time after the fishes’ death, and then it took some time for the tag 

to reach the surface, all while the fish and tag continued to be moved by the current until 

the tag reached the surface and was able to transmit it’s first location (Fig. 4a, 4k).  It is 

not believed that the fish were actually able to cover that amount of ground in the few 

short hours they lived after release.   

Of the eight fish that moved northeast, three died immediately after tagging (Fig. 

4b, 4c, 4d) and showed the longest tracks (Fig. 7d; Table 1).  Five of the fish survived for 

the full deployment period (Fig. 4e-h, 4m) and showed significantly shorter tracks (Fig. 

7d; Table 1).  This is believed to be more examples of the same occurrences.  Those fish 

that died show longer tracks because they were most likely caught in a fast moving 

current before the tag released.  Those fish that lived were exhibiting a choice in their 

movements and distance traveled; most likely they were following prey.   

Of the fish that survived the full deployment period, they showed a variety of 

movements, in terms of straight-line distance traveled and in direction.  Three fish chose 

to stay in the general area they were caught and tagged in, only moving between 42.6 and 

92.6 km.  One moved in a mostly northward direction and covered 416.7 km, the longest 

track of the surviving fish.  Five moved in a northeast direction, moving between 257.4 

and 320.4 km (Table 1).  This north/northeast movement of swordfish was also seen by 

Sedberry and Loefer (2001).  The average speed of the fish varied from 2.16 km/day to 

20.98 km/day with an average for all of 12.67 km/day (similar results were seen in 
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Canese et al. 2008).  Size appeared to have no correlation to the distance the fish traveled 

(also noted in Sedberry and Loefer 2001).  Two fish, both measuring 105 cm LJFL, 

showed a difference in their average speed of approximately 15 km/day.  This was seen 

again in two fish both measuring 121 cm LJFL (Table 1). 

 

3.4.2 Vertical Movements 

A model has been developed to fit a curve to the data showing the diurnal and 

lunar cycles and to get amplitude data on the vertical movements of the fishes from that 

model.  This model works for data collected on adult swordfish, sailfish and juvenile 

swordfish.  This model serves as a way to characterize the vertical behavior/distribution 

of these fishes. 

Data from all 14 reporting tags from the juvenile swordfish were analyzed using 

the new model developed.  Figures from each data set are presented in Figure 10.  The 

first two swordfish showed erratic behavior and died shortly after release, 6 hours (Fig. 

10a; Table 1) and 28 hours (Fig 10b; Table 1), respectively.  In each figure the abnormal 

behavior can be seen.  Figure 4 shows those same two data sets depicting the points at 

which the fish died, sank, and remained at a constant depth until the tag released from the 

fish.  The tags then floated to the surface and began to transmit.  Given the abnormal 

behavior of these fish, short duration time and subsequent death, the information on 

diurnal and lunar movements the model provides helps to confirm the abnormal behavior 

seen in these cases.  The third and fourth swordfish tagged in this study (Fig. 4c, d; Table 

1) died immediately after release.  The third fish simply floated at the surface while the 

forth fish sank and stayed at a constant depth until the tag release mechanism was 

activated.  For the third fish, not enough data was available to run the model.  For the 

fourth fish, the model does not give accurate information.  One other fish died roughly 24 

hours after release (Fig. 10i; Table 1) in this study, and the data shows it exhibited a 

similar vertical profile as the first two fish.  Figure 4 also shows that data set depicting 

the points at which the fish died, sank, and remained at a constant depth until the tag 

released from the fish.  In that case, the model also helped to confirm the abnormal 

behavior that fish exhibited before death.  
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Correlation data was also computed from the residual values produced by the 

model in attempts to analyze each fishes’ individual movements in relation to previous 

movements.  Those data were also compared to other variables.  The analysis was limited 

by the small sample size of only nine fish, but correlations were seen between the integral 

time scale and lunar amplitude, mean depth, month of the year, and size and between size 

and diurnal amplitude, lunar amplitude, mean depth, month of the year and moon phase 

(Figure 11).  An integral time scale of zero indicates no correlation between the variables 

at any time lag; while a large integral time scale implies that the motions are correlated 

over a long time.  Twice the integral time scale is the average time it takes for the data to 

become independent of each other.   

For the four cases where a positive correlation to the integral time scale is visible, 

this suggests that as the fish grows in size, changes its lunar amplitude or mean depth, or 

as the time of year changes, the fish’s movements through time are more correlated to 

each other.  Perhaps the fish are learning from their previous movements at depth as they 

age, over the course of the lunar cycle or over the course of the year.  Correlations 

between size and diurnal amplitude and mean depth were negative; suggesting that as a 

fish grows (and therefore ages), it is showing less random motion in the water column.  

Correlations between size and lunar amplitude, month of the year and moon phase were 

positive.  It is possible that as these fish age their movements are more influenced by the 

lunar cycle.  The positive correlation between size and month of the year suggests that as 

the year progresses, larger fish are more likely to be caught.  The positive correlation 

between size and moon phase suggests that larger fish are more likely to be caught during 

the last quarter of the lunar cycle.  The small sample size limits the conclusions that can 

be drawn; however, an increase in the sample size may strengthen the correlations seen 

here.   

  

3.4.3 Vertical Movements – Diurnal Signal 

There were nine reporting tags showing full deployment and enough of the data 

was returned that the model was successfully applied to each record (Fig. 10c-h, j-k).  In 

each record, a diurnal signal could be seen.  The magnitude of change in each signal 

varied between fish.  The range of the diurnal amplitude was from 217.63 m to 317.13 m.  
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Studies have shown that adult swordfish ascend around sunset and descend around 

sunrise, within an approximate two-hour window (Loefer et al. 2007; Abascal et al. 2010; 

Sepulveda et al. 2010; Dewar et al. 2011). Similarly, the diurnal movements seen in the 

juveniles are correlated with the daily cycle of the sun.   

The time of day of descension and ascension were evaluated for each fish for each 

day.  The group as a whole descended at approximately 10:09 (GMT) and ascended at 

approximately 23:06 (GMT).  However, closer evaluation of these times reveals that 

these records can be broken down into three groups based on their descension and 

ascension times.  The fish represented in figures 10j, 10k, and 10l all showed similar 

descension (average, 11:11 GMT) and ascension (average, 22:30 GMT) times, and were 

all tagged in December.  The fish represented in figures 10g and 10h both showed similar 

descension (average, 10:14 GMT) and ascension (average, 22:41 GMT) times, and were 

both tagged in September.  The fish represented in figures 10c, 10d, 10e and 10f all 

showed similar descension (average, 9:20 GMT) and ascension (average, 23:45 GMT) 

times, and were all tagged in June.  The times of ascension and descension for all fish 

were compared to sunrise and sunset times.  Each fish descended before sunrise each day 

(average 1.25 hours, range 0.33 -2.33 hours).  During 73% of the days, the fish ascended 

before sunset (average 30 minutes).  During 27% of the days, the fish ascended after 

sunset (average 13 minutes).  The range of ascension around sunset was from 2 hours 

before to 31 minutes after sunset.  The percent of days when ascension occurred after 

sunset increased from June (8.3%) to December (59.2%).  These movements confirm that 

the fish are ascending around sunset and descending before sunrise.  In addition, as the 

time of day of sunrise and sunset changes throughout the year, the fish adapt and change 

their descension and ascension times.  In June, when the sun sets later in the day, the fish 

are ascending about two hours later than in December.  The fish are also descending 

about an hour earlier in June than in December, as the sun rises earlier in the summer 

than in the winter.   

These figures show that juveniles are moving vertically on a daily basis in 

conjunction with the rise and set of the sun (Figure 10).  Most likely they are following 

prey as they move through the water column or are using the increase in sunlight during 

the day to search deeper depths until they find prey.  This also suggests that they are 
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following prey up in the water column at night or are limited by the amount of moonlight 

available to illuminate the water to search for prey.  The difference in the magnitude of 

vertical movement in the water column shown by each fish could be related to the time of 

year the fish was tagged.  There is a slight trend in that the maximum depths reached by 

the fish are deeper in the summer months than in the winter months.  During certain times 

of the year, the sun is more directly overhead, thus possibly allowing for more sunlight to 

penetrate deeper into the ocean.  The difference could also be related to the abundance of 

prey at any given time at any given depth in the water column.  In other words, a 

particular fish might not have needed to move as much to find food that day or for the full 

deployment duration.  

 

3.4.4 Vertical Movements – Lunar Signal 

In each record, a lunar signal could be seen as well.  The range of the lunar 

amplitudes was from 13.41 meters to 137.37 meters. The lunar signal seen in the 

juveniles’ movements can be correlated with the lunar phases; by using the day and time 

information associated with the depth data, the lunar trend was determined for the 

deployed period of each tag.  The fraction of the moon's visible disk illuminated by the 

sun (referred to here as moon illumination) for each night was ascertained.  The lunar 

trends in Figures 10c-f and 10j-k were decreasing in moon illumination (Fig 10c, 62% to 

0%; Fig 10d-f 53% to 1%; Fig 10j-l, 59% to 3%).  The lunar trends in Figures 10g-h, 10l 

were increasing in moon illumination (Fig 10g-h, 11% to 92 %; Fig 10l, 40% to 100%).  

When comparing the lunar signal from the model to the moon illumination data the 

following patterns were visible.  In Figures 10c-f, 10k the average depth of the lunar 

signal moves deeper in the water column as the moon illumination decreases.  In Figures 

10g-h, 10l the average depth of the lunar signal moves shallower in the water column as 

the moon illumination increases.  In Figure 10j, the average depth of the lunar signal 

moves shallower in the water column as the moon illumination decreases. 

Data from swordfish in other studies and areas have shown a positive correlation 

between average depth at night and visible moon fraction, with the fish remaining deeper 

during a full moon and shallower during a new moon (Loefer et al. 2007; Abascal et al. 

2010; Dewar et al. 2011).  It has been proposed that this movement in correlation to the 
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lunar cycle is due to the movements of their prey organisms (Tont and Wick 1973; 

Linkowski 1996).  At first appearance, it seems that only one of the fish in this study 

followed that same pattern (Figure 10j).  However, closer observation of the fishes’ 

average nighttime depths shows that seven of the nine fish are exhibiting the same 

correlation as seen in other studies, moving deeper as the moon illumination increases or 

shallower as the moon illumination decreases.  Two of the fish do not show this 

correlation; increased moon illumination allows a swordfish the ability to move deeper in 

the water column but does not require it (Figure 15a-i). 

There are several explanations for the discontinuity in the lunar signal.  In other 

studies evaluating average nighttime depth and visible moon fraction, the deployment 

period for the tags lasted up to several months and included multiple repeats of the lunar 

cycle.  The deployment length in this study only extended for approximately 1/3 of the 

full lunar cycle.  The tags used in this study were also set for a more frequent sampling 

interval, therefore providing higher resolution data.  In several of the records (Figures 

10e-h, 10k-l), the maximum daily depth fluctuates, by up to 400 m in some cases.  The 

model’s output of the lunar signal is easily manipulated by the fish’s daily maximum 

depths.  In none of the records was 100% data transmission achieved, resulting in gaps in 

the data.  All of these factors must be considered when evaluating the lunar signal 

produced by the model.   

 

3.4.5 Summarizing Model Data 

In Figure 13, the mean, diurnal and lunar amplitudes for each surviving fish are 

presented in a 3D plot.  This figure does not include the two fish that died immediately 

following release.  The integral time scale value is also presented next to each marker 

representing a fish that survived the full deployment period.  The three markers without a 

value next to them represent the three fish that died within approximately 24 hours of 

being released.  The clustering of the markers elucidates the similarities in the vertical 

movements in the groups of fish that did and did not survive the full deployment period.  

It also shows the innate variability of vertical movements in the fish that survived the full 

deployment period.  Those that died shortly after release are closely plotted as are those 

that survived the full deployment, with the exception of two.  Seven of the nine markers 
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representing full deployment are loosely clustered together, indicating they showed 

similar vertical movements, while two of them are outliers.  A review of Figures 10k and 

10l shows the reason for the distance.  Both fish showed truncated maximum daily depths 

at some point during the deployment period, causing their placement to be removed from 

the larger group. 

Figure 14 shows the diurnal and lunar amplitudes around the mean as calculated 

by the model.  Notice that the nine fish surviving the full deployment period all showed 

similar means and amplitudes.  There is variability in the values, but the pattern of 

diurnal movements being greater than lunar movements is consistent.  The three fish that 

died shortly after release all show similar means and amplitudes.  Those values are not as 

large or as varied.  This figure further elucidates the similarities among the fish in each 

group. 

Figure 16 shows the average fish behavior over 28 days, the length of the lunar 

cycle.  This figure was created by compiling the diurnal and lunar cycle amplitudes and 

average depth of all surviving fish and fitting that data in the model.  This figure shows 

the vertical movement patterns of the fish as a whole for a full lunar cycle.  The highest 

point in the signal (indicating the new moon phase) is approximately 14 days before the 

lowest point in the signal (indicating the full moon phase), clearly indicating a change in 

average vertical depth as the moon illumination fluctuates throughout a full lunar cycle. 

Figure 17a shows the fit line produced by the model when evaluating the average 

depth over time data from the nine full deployment records.  This shows that as a group, 

these juvenile swordfish are migrating to shallow waters (approximately less than 150 m) 

at night and deep waters during the day (approximately 350-750 m) with very little time 

spent at depths in between.  Figure 17b represents a 24-hour period in the middle of the 

deployment.  The diurnal signal and the depth data clearly show daytime maximum 

depths and nighttime minimum depths.   

All depth data from these tags can also be analyzed for a maximum depth reached 

by each fish, and an average maximum reached by juveniles as a whole for this study.  

The deepest depth any one juvenile fish reached was 767.9 m, and the average maximum 

depth reached by juveniles during this study was 682.2 m.  Based on the adult swordfish 

data used to validate the model, the deepest depth any one adult fish reached was 984 m, 
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and the average maximum depth reached by adults was 847.6 m.  The data showed that 

both juveniles and adults would reach the surface of the water column at night.  This 

behavior could explain the number of juvenile swordfish that are encountered during 

nighttime fishing on either type of gear.  This data also shows that while both adults and 

juveniles are remaining farther down in the water column during the day, they are 

stratifying out.  Adults, on average, go deeper than juveniles.  This could explain the lack 

of encounters with juvenile swordfish during daytime fishing, when anglers are known to 

target swordfish on the sea floor in a method now colloquially called “deep-dropping.”  

 

3.4.6 Temperature 

Figures depicting the vertical movement profile in conjunction with the 

temperature data of the bodies of water the fish were moving through are presented in 

Figure 12.  Figures from the two fish that died immediately are not included, as the 

temperature data from those tags was not sufficient and does not represent fish 

movement.  Those fish that showed abnormal behavior and then died (Fig 12a, b, i) 

consistently stayed in warmer waters, 20°C or higher.  Remaining in warmer waters 

could be part of the fish’s attempts to recover from the catch, tag and release event or 

some other stress prior to that.  For the nine fish that survived the full deployment, the 

temperature profiles vary daily and between fish as to the sea surface temperature and the 

depths at which the temperature changes.  However, the fish are showing the same 

movement patterns, and seem to not be hindered by temperature changes at the surface or 

at depth (a similar observation was noted in Abascal et al. 2010).  The variation in each 

record and between records could be due to the different fish moving to different 

locations and the changing temperatures of currents within the Gulf Stream (similarly 

suggested by Sedberry and Loefer 2001).  The temperature profiles of the five fish that 

traveled in a north-east direction (Fig 7d, Fig 12c-f, k) showed an increase in temperature 

at depth during the deployment.  This indicates those fish crossed the Gulf Stream and 

possible entered Bahamian waters.   

These fish showed an average temperature of 17.49°C.  They all stayed in waters 

with an SST of 24-30°C.  Throughout their entire movements, these fish moved through 

bodies of water ranging from 6°C to 31°C.  Data from swordfish tagged in other studies 
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have shown similar ranges of temperatures (Sedberry and Loefer 2001; Matsumoto et al. 

2003; Dewar and Polovina 2005; Abascal et al. 2010; Sepulveda et al. 2010; Dewar et al. 

2011).  This indicates a high tolerance for a wide range of temperatures.  In each figure, 

the swordfish repeatedly went to depths with temperatures in the single digits, indicating 

that the first excursion into those temperatures was not arbitrary.  This also indicates that 

their prey are also tolerant of these temperatures, as it is most likely that the swordfish are 

following or looking for their prey at these depths.   

Figure 18 shows the average depth plotted against the average temperature of the 

nine records over the full deployment.  While there is variation in the temperature at 

depth over time, there is a direct inverse relationship between depth and temperature.  As 

depth increases, temperature decreases.  There is a spread of temperatures, from 8°C to 

15 °C, at depths greater than 500 m, again indicating that some of the fish possibly 

travelled to Bahamian waters.  Figure 19 also shows the average depth over time vertical 

movement profile of the nine fish plotted on top of the average temperature data.  This 

figure demonstrates the same direct inverse relationship in that as depth increases 

temperature decreases.  

 

3.4.7 Irregular Post-Release Behavior 

Some studies have suggested that, after a fish has been released with a satellite 

tag, the first few/several days are not indicative of that fish’s normal behavior due to the 

need for recovery time (Hoolihan et al. 2011).  In Hoolihan et al. (2011), four out of the 

sixteen fish studied showed apparent irregular post-release behavior (IPRB).  The authors 

speculate that detection of irregular post-release behavior would increase with the use of 

high-resolution archival data.  The authors suggest that by not considering these 

behavioral changes, researchers may be introducing biases into their analyses.  They 

suggest a level of post-release behavioral modification due to capture and handling that 

may extend for long periods of time.  Contact with fishing gear, internal hooking, 

improper tag-and-release procedures, and acclimating to the tag can all be causes of 

behavioral modification.  Other studies have noted changes in behavior of swordfish 

following release (Abascal et al. 2010) and some authors have begun to exclude early 

portions of the data from their analyses (Hoolihan et al. 2009; Leroy et al. 2009; Dewar et 
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al. 2011).  However, this is not yet a universal practice among studies as some have 

noticed little post-tagging change in dive behavior and have not excluded data from 

analyses (e.g., Sepulveda et al. 2010).  

The possibility of irregular post-release behavior in the juvenile swordfish dataset 

was examined.  The fish represented in Figures 4a, 4b, and 4k could be categorized as 

showing IPRB as they did not resume common diurnal movements and died shortly after 

release.  The fish in Figures 4e, 4f, 4h and 4l returned to the common diurnal movements 

after release and the maximum depths reached were consistent throughout the 

deployment period, indicating no IPRB.  The fish in Figures 4g, 4i, 4j, 4m and 4n 

returned to the common diurnal movements after release.  However, in Figures 4g and 

4m, the fish did not reach the same maximum depths the first two days compared to the 

rest of the deployment, and in Figures 4i, 4j and 4n the maximum depth was shallower 

and more varied for the second half of the deployment.  The daytime surfacing behavior 

exhibited in Figure 4e was sparse and several days after release.  The fish in Figures 4f, 

4h, 4j each displayed daytime surfacing behavior within the first 24 hours of being 

released.  The fish in Figure 4m showed daytime surfacing behavior on the second day.  

The fish in Figures 4g, 4i, 4l, 4n did not show any daytime surfacing behavior.  

The wide variability among the fish in this study with regards to consistency in 

maximum depths reached and occurrence of daytime surfacing behavior further divides a 

small sample size.  Figure 13 elucidates the variability in the vertical movements seen in 

this group.  Therefore, no definite statement can be made from these results as to the 

behavior of juvenile swordfish being a factor of IPRB or simply behavioral variability.   

 

3.4.8 Basking and Daytime Surfacing Behavior 

            Basking behavior, common in other studies, is classified as any daytime ascent to 

the surface from depth followed by a descent back to depth prior to sunset (Holdsworth et 

al. 2007; Canese et al. 2008; Abascal et al. 2010; Sepulveda et al. 2010; Dewar et al. 

2011).  The number of times this occurs can range from none to multiple in a given data 

set and can happen at any time of the day and during all moon phases (Sepulveda et al. 

2010).  Dewar and Polovina (2005) suggested that these basking events are influenced by 

feeding events, stating that feeding adds to thermal stress and physiological requirements.  
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Possibly, the warm surface waters aid in digestion by minimizing thermal stress, as it is 

common to find full stomachs in those that are harpooned while basking (Dewar and 

Polovina 2005; Dewar et al. 2011).  Alternatively, Carey and Robinson (1981) suggested 

this behavior allows for recovery after foraging in oxygen-poor waters.   

              Only one fish (Figure 4m) in this study exhibited basking behavior (reaching a 0 

m depth), while four other fish rose to shallow surface waters during the day.  These 

occurrences will therefore be referred to as daytime surfacing behavior because the fish 

did reach shallow or surface waters.  Two of the fish showing daytime surfacing behavior 

only did so once on day one (Figure 4f, 4j).  One showed this behavior three times on day 

one (Figure 4h).  One fish showed this behavior once on days three, four, and five (Figure 

4e).  These daytime surfacing and basking events appeared to be sporadic, as not all fish 

showed the behavior (Figures 4g, 4i, 4l, 4n), nor were there consistent patterns in those 

that did show the behavior.  It is unknown why some of these fish rose to shallow depths 

but did not reach the surface.  However, the same explanations of what would cause a 

fish to bask at the surface could also explain the causes of a fish rising to shallow waters 

during the day.  While exact reasons are currently unknown, some juveniles in this study 

showed daytime surfacing behavior and basking behavior similar to those in other 

studies, suggesting this behavior is consistent throughout the species, and is neither 

population nor size specific. 

 

4.0 Conclusions 

             No definitive statement can be made as to the common thread among the five 

mortalities or among the nine fish surviving full deployment, exemplifying the variability 

within the species to sustain stress.  Considering the mortalities were evenly distributed 

between the two fishing methods, it is reasonable to conclude their mortality rates are 

approximately equivalent.  The results of the Release Mortality program indicated a 

necessary sample size of approximately 1800 tags to be 95% confident in the 

experimental mortality rate.  A study of this size is simply not plausible.  While there are 

some assumptions that should be taken into consideration when interpreting the results 

from this model, these simulations can help improve estimates of total removals in stock 

assessments.  



40 

 

              The model developed to analyze vertical movements of juvenile swordfish aided 

in quantitatively confirming behavioral patterns; juvenile swordfish do correlate their 

movements with the daily cycle of the sun and the lunar cycle of the moon.  While it is 

evident when visually comparing the data between the fish that died shortly after release 

and the fish that survived the full deployment that the former were exhibiting abnormal 

vertical movements, the model data results confirm this finding.  Close observation of the 

fishes’ nighttime depths in conjunction with the lunar phases shows they are descending 

deeper as the moon illumination increases or shallower as the moon illumination 

decreases.  Swordfish as a species show great variability in their vertical movements and 

the depths they reach, but their individual diurnal movements remain much greater than 

their lunar movements.   

             The nine fish that survived the full deployment varied their movements, in terms 

of straight-line distance traveled and in direction.  Some stayed close to shore, one moved 

north, and several moved out toward the open Atlantic.  Regardless of the direction and 

distance traveled, it is most likely that each was basing its movements on prey 

availability.  Comparing the descension and ascension times with sunrise and sunset 

revealed that the fish are descending before sunrise and ascending around sunset.  They 

are also adjusting the times at which they show this behavior in conjunction with the 

sunrise and sunset changes throughout the year.  While both adults and juveniles descend 

deeper in the water column during the day, adults may be descending deeper, thus 

stratifying out the population at depth.  Juvenile swordfish show a high tolerance for a 

wide range of temperatures, reaching depths where the temperature is in the single digits.  

However, they may also choose to stay in shallow, warmer waters as a recovery 

mechanism.   

Analysis of the integral time scale data indicated that as the fish grows in size, 

changes its lunar amplitude or mean depth, or as the time of year changes, the fish’s 

movements through time are more correlated to each other.  The negative correlation 

between size and diurnal amplitude and mean depth suggest that as a fish grows (and 

therefore ages), it is showing less random motion in the water column. It is possible that 

as these fish age their movements are more influenced by the lunar cycle.  The positive 

correlation between size and month of the year and moon phase suggests that as the year 
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progresses larger fish are more likely to be caught and that larger fish are more likely to 

be caught during the last quarter of the lunar cycle. 

             While there were five mortalities in this study, a 37.5% mortality rate, a 

significant part of the study was to investigate the fishery practices.  Therefore, this study 

was very inclusive in the fish that were tagged, by choosing a low ACESS scale score as 

the minimum score a fish must have to be included.  This was done so as not to impose a 

bias on the fish that were chosen.  A 35.7% mortality rate signifies a 64.3% survival rate, 

so the majority of the released fish survive, suggesting that release is still warranted.  

Since the release mortality is 35.7%, management bodies might consider lowering the 

legal retention size in order to account for the mortalities of those smaller swordfish in 

quotas and stock assessments.  The consequences to that action would be that even more 

juveniles would be landed before the opportunity to spawn and replace themselves in the 

population; enough of which could wipe out the population.  The ideal situation would be 

increased research efforts in minimal time that investigate changes in gear that could 

result in a decrease in the mortality rate of those smaller fish,  thereby lessening the 

negative impact on the population. 

This research can serve as a foundation for future studies.  Those could include 

studies that increase the number of fish tagged.   This would allow for continued 

comparisons among time of year, size, mean depth, diurnal and lunar amplitudes, moon 

phase and the addition of comparisons between gear types.  This would help to clarify 

any correlations between these variables and may help to determine the variables that are 

most influential on the fishes’ habitat utilization.  An increase in tags deployed would 

also refine the post-release mortality estimate.  Studies with longer duration tags would 

allow for further investigation of the lunar cycle’s impact on movement and also aid in 

further adjustments to the model.  Application of the model to more swordfish and other 

billfish data would allow for comparisons between juvenile movements and adult 

movements and comparisons among other billfish species.  This would help to refine the 

model and provide a common analysis of habitat utilization across those species. 

  The results of this study have provided information on post-release survival rates 

of juvenile swordfish, information that remains lacking in the scientific literature.  The 

knowledge of post-release survival rates may aid in determining better management 
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practices in terms of the efficacy of mandatory release of undersized fish.  The data from 

the tags, providing experimentally-generated estimates of fishing mortality, can be used 

in ICCAT stock assessments.   

This research could lead to better management practices in both the commercial 

and recreational fisheries to maximize post-release survival, both domestically and 

internationally.  Through mandatory individual angler call-ins and tournament reporting, 

the United States is one of few countries that aggressively monitors its recreational 

fishery, including monitoring against anglers landing undersized fish.  The ability to 

maximize post-release survival could be useful in ICCAT negotiations by demonstrating 

a lower fishing mortality (F) on the undersized component of the stock.  The United 

States recognizes the need and benefits of implementing a minimum retention size; there 

is also the understanding that due to the swordfishes’ migratory nature, this management 

measure is not very effective if other nations are simply retaining what is being released 

here.  With post-release survival data on swordfish to show other nations that releasing 

swordfish is not a waste and that there are monetary benefits to releasing undersized 

swordfish, the United States can continue to promote the implementation of international 

measures for releasing undersized fish to other countries and ICCAT.  An international 

consensus on minimum retention size could result in substantial monetary benefits to 

Atlantic coast countries and a continued stability of the stock. 
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Figures 

 

Figure 1: Drawing of an adult swordfish.  (Credit: Wendy Williams, Fisheries  

and Oceans, Canada; Taken from ICCAT Manual 2006 Chapter 2.1.9.) 
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Figure 2:  Relative sizes of Microwave Telemetry, Inc. X-Tag (top) and standard model 

(bottom) pop-up satellite archival tags (PSATs) next to a 72 cm fork-length mount of a 

blackfin tuna (Thunnus atlanticus).  The targeted swordfish individuals will be less than 

150 cm lower jaw-fork length. (Photo courtesy D. Kerstetter, NSU OC) 



58 

 

 

 

 

Figure 3: Design of nylon tag head incorporating “wings” for increased retention of tag 

by anchoring through inter-pterygiophore spaces. (Photo and tag head design courtesy of 

E. Prince, NOAA-NMFS SEFSC.) 
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k) 61667 

 

 

 

 

 

 
l) 61669 
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m) 87793 

 

 

 

 

 

 
n) 61666 

 

Figure 4: Figures from all 14 reporting juvenile swordfish tags showing vertical 

movements over time and, when available, the point at which the tag released from the 

fish.   
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Figure 5: The 5

th
 and 95

th
 percentile values for each increase of the sample size and the 

true value. 
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Figure 6:  Graphic comparison between data returned for two types of PSAT tags, based 

on 12 hours of data on June 17, 2007, from a sailfish tagged off the Lower Florida Keys, 

Florida Straits.  The left graph is the plot of the HR point data, while the right graph is a 

simulated example of summary data based on 10 m bins. 
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a) all tracks plotted together 
 

 
 

b) fish with the shortest tracks 
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c) fish with tracks heading north 

 

  
 

d) fish with tracks heading northeast 

 

Figure 7: Google Earth images showing where all fish were tagged and where the tags 

popped off: (a) all tracks plotted together, (b) fish with the shortest tracks, (c) fish 

with tracks heading north, (d) fish with tracks heading northeast. 
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a) Data1 

 

 
 

 

 

 
b) Data2 
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c) Data3 

 
 

 

 

 

 
d) Data4 
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e) Data5 

 

Figure 8: Adult swordfish data showing diurnal signal, denoted by reference number. 
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a) 0601 

 

 
 

 

 

 
b) 0604 
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c) 0607 

 
 

 

 

 

 
d) 0701 
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e) 0705  

 
 

 

 

 

 
f) Isla Mujeres  

 

Figure 9: Adult sailfish data showing diurnal and lunar signals, denoted by reference 

number. 
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a) 86997 
 

 

 

 

 
b) 89371 
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c) 88094 

 

 
 

 

 

 
d) 61670 
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g) 88097 

 

 
 

 

 

 
h) 88092 
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i) 61667 

 
 

 

 

 

 
j) 61669 
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k) 87793 

 

 
 

 

 

 
l) 61666 

 

Figure 10: Figures from all 12 juvenile swordfish tags for those that survived release, 

denoted by tag ID number, showing vertical movements over time and any 

diurnal or lunar signals in the data. 
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a) Integral time scale value vs. size 

 

 

 

 

 

 
b) Integral time scale value vs. diurnal amplitude 
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c) Integral time scale value vs. lunar amplitude 

 

 

 

 

 

 
d) Integral time scale value vs. moon phase 
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e) Integral time scale value vs. month of the year 

 

 

 

 

 

 
f) Integral time scale vs. mean depth 
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g) Size vs. diurnal amplitude 

 

 

 

 

 

 
h) Size vs. lunar amplitude 
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i) Size vs. mean depth 

 

 

 

 

 

 
j) Size vs. moon phase 
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k) Size vs. month of the year 

 

Figure 11: Integral time scale value and size vs. variables (size, diurnal amplitude, lunar 

amplitude, mean depth, moon phase, and month of the year). 
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a) 86997 

 

 

 
 

 

 
b) 89371 
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i) 61667    

 

 

 

 

 

 
j) 61669 
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k) 87793 

 

 

 

 

 

 
l) 61666 

 

Figure 12: Figures from 12 reporting juvenile swordfish tags, denoted by tag ID number, 

showing the depth over time profile with the water temperature data. 
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Figure 13: 3D plot showing the mean, diurnal amplitude, and lunar amplitude calculated 

by the model and the integral time scale value. 
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Figure 14: Diurnal amplitude and lunar amplitude around the mean calculated by the 

model. 
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c) 86998 

 

 

 

 

 

 
d) 87815 
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e) 88097 

 

 

 

 

 

 
f) 88092 
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g) 61669 

 

 

 

 

 

 
h) 87793 
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i) 61666 

 

Figure 15: Correlation between average nightly depth and moon illumination. 
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Figure 16: The average fish behavior over 28 days, the length of the lunar cycle.   
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a) full deployment  

 

 

 

 

 

 
b) one day, mid-deployment 

 

Figure 17: Average depth of all nine records of full deployment plotted over time with 

the fit calculated from the model, (a) full deployment, (b) one day, mid-deployment. 
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Figure 18: Average depth vs. average temperature for the full deployment period. 
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Figure 19: Average depth of all nine records for the full deployment period plotted over 

the temperature data. 
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Tables 

 

Table 1: Tag ID number, date tagged, platform (R & R = rod and reel, BG = buoy gear), 

length (in cm LJFL), hook location on the fish, hook status (left in or removed), hook 

size, fight time (in min), resuscitation (Res.), buttonholed (BH), survival, strait-line 

distance each fish traveled (in km), average speed (km/day), sub-figure of figure 7 that 

the track is in, diurnal amplitude (in m), lunar amplitudes (in m), mean depth (in m), 

depth range (in m), mean temp (in °C), temperature range (in °C), and lunar trend (new 

moon = nm, first quarter = fq, full moon = fm, last quarter = lq) for all tags deployed. 

 
Tag ID  86997 89371 88271 88096 88094 61670 86998 87815 

Date Tagged 10/15/10 01/29/11 06/21/11 06/21/11 06/21/11 06/22/11 06/22/11 06/22/11 

Platform R & R R & R BG BG BG BG BG BG 

Length 85 129 115 120 105 105 103 111 

Hook 
Location 

Wrapped 
 in line 

Jaw Jaw Jaw Dorsal fin Gut 
hooked 

Jaw Jaw 

Hook Status NA removed removed removed removed Left in removed removed 

Hook Size 10/0 9/0 8/0 8/0 8/0 9/0 9/0 9/0 

Fight Time 23 25 15 8 5 10 5 6 

Res. no no no no yes yes no no 

BH no no yes yes no no no yes 

Survival 6 hours 28 hours Fish died Fish died 9.5 days 9.5 days 9.5 days 9.5 days 

Distance  484.35 591.1 652.5 661.87 258.48 318.95 307.86 281.49 

Avg Speed N/A N/A N/A N/A 14.31 17.74 17.12 15.66 

Sub-figure 8c 8d 8d 8d 8d 8d 8d 8d 

Diurnal  
Amplitude 

47.42 15.08 N/A N/A 317.13  307.62 302.11 316.07 

Lunar Amp 15.35 16.76 N/A N/A 31.45 65.82 53.75 61.32 

Mean Depth 56.33 57.05 N/A N/A 399.18 459.41 392.19 431.83 

Depth Range 9-113 0-159 N/A N/A 1.3-691.3 1.3-767.9 1.3-737 1.3-727.6 

Mean Temp 25.96 24.09 N/A N/A 19.14 18.78 17.32 18.06 

Temp Range 20-29 20-25 N/A N/A 7-30 7-30 7-30 7-30 

Lunar Trend N/A N/A N/A N/A fm to nm fm to nm fm to nm fm to nm 

 

Tag ID  76997 88097 88092 61667 61669 87793 88093 61666 

Date Tagged 8/4/11 9/29/11 9/29/11 12/16/11 12/16/11 12/16/11 12/29/11 12/30/11 

Platform R & R R & R R & R BG BG BG R & R R & R 

Length 117 105 90 122 121 121 92 114 

Hook 
Location 

jaw jaw Wrapped 
in line 

jaw jaw Jaw Wrapped 
in line 

Wrapped 
in line 

Hook Status Left in removed N/A removed removed removed N/A N/A 

Hook Size 11/0 11/0 11/0 8/0 or 9/0 8/0 or 9/0 8/0 or 9/0 9/0 9/0 - 11/0 

Fight Time 7 13 8 8 8 12 12 18 

Res. no no no no no no yes no 

BH no no no yes no yes no no 

Survival NR 9.5 days 9.5 days 24 hours 9.5 days 9.5 days NR 9.5 days 

Distance  N/A 43.3 416.01 459.78 57.76 320.88 N/A 93.21 

Avg Speed N/A 2.17 20.98 N/A 3.19 17.69 N/A 5.18 

Sub-figure N/A 8b 8c 8c 8b 8d N/A 8b 

Diurnal  
Amplitude 

N/A 313.45 236.86 5.93 225.07 236.96 N/A 217.63 

Lunar Amp N/A 35.55 13.41 18.69 14.03 137.37 N/A 74.75 

Mean Depth N/A 349.68 363.16 56.87 239.29 402.85 N/A 256.65 

Depth Range N/A 0-698 0-696.6 1-158 0-505.7 0-660.3 N/A 0-656.3 

Mean Temp N/A 18.01 15.95 26.27 16.52 18.02 N/A 15.58 

Temp Range N/A 6-30 6-31 17-27 6-27 6-27 N/A 6-27 

Lunar Trend N/A nm to fq nm to fq N/A fm to nm fm to nm N/A nm to fm 
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Table 2: Sensitivity Analysis; case 1= includes all data, case 2 = without 0m data, case 3 

= without 0-5m data, case 4 = without 0-10 m data, case 5 = without 0-20 m data 

 

Fish ID Diurnal Amplitude Lunar Amplitude Mean  % removed 

Sail0603(1) 2.059871 0.371328 -4.63563 0 

Sail0603(2) 3.506753 1.21287 -12.3645 62.51 

Sail0603(3) 2.593007 1.037281 -18.3704 76.07 

Sail0605(1) 4.600567 14.32164 -16.3721 0 

Sail0605(2) 12.17759 23.30974 -26.4188 38.03 

Sail0605(3) 20.39323 18.1313 -33.1742 51.47 

Sail0606(1) 2.509998 4.390406 10.4504 0 

Sail0606(2) 2.399783 4.210811 -10.864 3.81 

Sail0606(3) 13.8974 10.68771 -39.3254 77.83 

Sail0607(1) 2.655154 5.603508 -19.9155 0 

Sail0607(2) 2.65581 5.608488 -19.9177 0.01 

Sail0607(3) 7.152176 6.332105 -29.3389 36.25 

Sail0608(1) 0.639668 0.070455 -4.47767 0 

Sail0608(2) 1.981685 1.256034 -12.7943 65.00 

Sail0608(3) 4.012381 2.642531 -18.0689 76.62 

Swo61670(1) 348.805 42.56372 -375.782 0 

Swo61670(4) 351.0618 29.87759 -386.759 2.90 

Swo61670(5) 307.6157 65.82062 -459.414 18.71 

Swo86998(1) 324.1958 41.08299 -349.408 0 

Swo86998 (4) 306.5309 52.71861 -385.941 9.60 

Swo86998 (5) 302.1118 53.74599 -392.198 11.10 

Swo87815(1) 331.1941 70.60455 -375.32 0 

Swo87815(4) 343.1128 52.09875 -380.911 1.50 

Swo87815(5) 316.074 61.32024 -431.827 13.49 

Swo88092(1) 236.3133 12.24655 -341.28 0 

Swo88092(4) 243.7466 5.68808 -352.121 3.15 

Swo88092(5) 236.8676 13.40949 -363.164 6.21 

Swo88094(1) 315.1993 26.95349 -345.814 0 

Swo88094(4) 325.6907 21.70917 -383.953 10.07 

Swo88094(5) 317.132 31.45341 -399.185 13.62 
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 Appendix A – Sample Data Sheet 

 

Swordfish Tagging Research                  Date:___________     

Jenny Fenton – Thesis Project 

 

Vessel Name: ____________________________     Wind Speed: __________________ 

Captain Name: ___________________________     Sea Conditions: ________________ 

Scientific Crew Name(s): ___________________     SST: ________________________ 

_______________________________________________________________________ 

 

Drift #1:                                                              Angler: ____________________  

Start Location: ______________________                        

End Location:  ______________________        Hook Type:_________________ 

Time Lines In: ______________________        Hook Location:______________ 

Time Lines Out: _____________________       Hook Depth:________________ 

 

Drift #2:                                                               Bait Type: __________________ 

Start Location:_______________________       Light Type:_________________ 

End Location: _______________________       TDR #: ____________________ 

Time Lines In: ______________________      

Time Lines Out: _____________________       Time Hooked:_______________ 

                                                                                         Time Tagged:_______________ 

Drift #3:                                                               Time Released:______________ 

Start Location:_______________________  

End Location: _______________________       Species: ___________________ 

Time Lines In:_______________________       Length: ____________________ 

Time Lines Out:______________________      Weight: ____________________ 

                                                                                         Sex:_______________________ 

Number of Rods:_____________________       X-Tag Number:______________ 

                                                                             RF Tag Number:_____________ 

_________________________________________________________________ 

 

ACESS scale 

 
Category Level 0 Level 1 Level 2  Score 

Activity inactive slightly moving very active  

Color grey blue-grey bright blue  

Eye Status both eyes lacerated one eye lacerated both eyes intact  

Stomach 

Eversion 

everted and lacerated everted, no 

lacerations 

not everted  

State of Body 
Musculature 

obvious deep 
lacerations 

some lacerations, 
none deep 

no obvious 
lacerations 

 

Bleeding extensive bleeding  light bleeding no/almost no 

bleeding 

 

 

Notes: __________________________________________________________________ 
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